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Deterrence and Risk Preferences in Sequential
Attacker–Defender Games with Continuous Efforts

Vineet M. Payappalli,1 Jun Zhuang,1,∗ and Victor Richmond R. Jose2

Most attacker–defender games consider players as risk neutral, whereas in reality attackers
and defenders may be risk seeking or risk averse. This article studies the impact of players’
risk preferences on their equilibrium behavior and its effect on the notion of deterrence. In
particular, we study the effects of risk preferences in a single-period, sequential game where a
defender has a continuous range of investment levels that could be strategically chosen to po-
tentially deter an attack. This article presents analytic results related to the effect of attacker
and defender risk preferences on the optimal defense effort level and their impact on the
deterrence level. Numerical illustrations and some discussion of the effect of risk preferences
on deterrence and the utility of using such a model are provided, as well as sensitivity analy-
sis of continuous attack investment levels and uncertainty in the defender’s beliefs about the
attacker’s risk preference. A key contribution of this article is the identification of specific sce-
narios in which the defender using a model that takes into account risk preferences would be
better off than a defender using a traditional risk-neutral model. This study provides insights
that could be used by policy analysts and decisionmakers involved in investment decisions in
security and safety.
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1. INTRODUCTION

The attacks on the World Trade Center in New
York on September 11, 2001 became a pivotal mo-
ment in the way we study and understand risks in
security and safety. With numerous agencies such as
the Office of Domestic Preparedness and the Nuclear
Incident Response Team being created after these at-
tacks, the amount of resources that have been allo-
cated to understand and to prepare for these types
of risks have grown exponentially. The 2016 U.S.
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budget for the Department of Homeland Security
(DHS) is about $65 billion in total.(1) Such huge in-
vestments in the numerous counterterrorism and se-
curity efforts being launched every year demand a
more careful and rigorous approach to study and un-
derstand these risks.

The fundamental question this article investi-
gates is how the notion of risk preferences af-
fects players’ equilibrium strategies in a sequential
attacker–defender (AD) game and what it implies for
the notion of deterrence. In its most general form,
“deterrence is simply the persuasion of one’s oppo-
nent that the costs and/or risks of a given course of
action he might take outweigh its benefits.”(2)

The aim of this article is to try to narrow the
gap between existing mathematical models of AD
games in counterterrorism literature and the exten-
sive literature from behavioral economics and psy-
chology that documents the different attitudes of
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individuals toward risk and uncertainty. This study
could be of use to researchers, homeland secu-
rity practitioners, policymakers, policy analysts, and
other government agencies in understanding how
players in AD games develop strategies when risk
preferences, an important aspect of human behav-
ior and decision making, are introduced in analytical
models. This would improve decision making over
the large group of existing models, which implicitly
assume risk neutrality.

To our knowledge, there is no existing paper that
specifically examines the effects of risk preferences
on deterrence. The idea of deterrence springs from
the advantage that a first-mover may have to signif-
icantly affect the actions and choices of a second-
mover player (a.k.a., the first-mover advantage). As
Hausken(3) mentions, sequential games of this form
are useful in enabling analysts to come up with anal-
ysis and recommendations that are preemptive (cf.
Zhuang and Hausken,(4) Hausken and Zhuang,(5)

and Jose and Zhuang(6)). It is also of interest to note
that there may be instances in which it is to the ad-
vantage of the defender to not always reveal her/his
strategy by opting to play in a simultaneous fashion
(e.g., see Zhuang and Bier(7)). We believe that this
article will serve as a first building block in this re-
search direction.

Specifically, we present analytical results related
to the effect of attacker’s and defender’s risk prefer-
ences on the defense effort and their impact on the
optimal deterrence level. Numerical illustrations and
some discussion of the effect of risk preferences on
deterrence and the utility of using such a model are
provided, as well as sensitivity analysis of continuous
attack investment levels and uncertainty in the de-
fender’s beliefs about the attacker’s risk preference.
A key contribution of this article is the identification
of specific scenarios in which the defender using a
model that takes into account risk preferences would
be better off than a defender using traditional risk-
neutral models.

The rest of this article is organized as follows.
Section 2 provides a literature review, and Section
3.1 introduces the continuous defense, discrete
attack (CDDA) model, which is followed by some
analytical results in Section 3.2. Section 3.3 presents
numerical illustrations related to the propositions
and shows the equilibrium responses of the AD in
several interesting scenarios. Also shown in Section
3.3 is the importance of the risk-preference model
by comparing the results with a conventional risk-
neutral model, and the section provides scenarios

in which risk-preference models give better results
than risk-neutral models. Section 4 explores the
extension where the attacker also has a continuous
action space. Section 5 analyzes how the equilibrium
is affected if the defender has incomplete informa-
tion about the attacker’s risk preference. Section 6
concludes and presents future research directions.
Finally, the Appendix gives calculations and a plot on
which a discussion at the end of Section 3.3.1 is based.

2. LITERATURE REVIEW

In the risk analysis literature, numerous studies
try to better understand how we deal with risks as-
sociated with adaptive/strategic adversaries, where
game theory has often been used, with roots dat-
ing back to the 1950s. One class of models that has
grown in popularity and use are AD games.(8–10) As
Cox Jr.(11) mentions, these tools are constantly relied
upon when doing risk analysis because of their ability
to “reorient current adversarial risk analysis to make
it useful” through the development of useful predic-
tive models of causal relationships and improving a
defender’s decision-making capabilities.

Beyond counterterrorism, AD games have also
been applied to other general risk analysis con-
texts such as cybersecurity(12–14) and war gaming.(15)

Hausken and Levitin(16) provide a comprehensive
review of AD models from a systems perspective.
Developments related to the applications in coun-
terterrorism and corporate competition have supple-
mented the traditional statistical risk analysis with
a new approach called adversarial risk analysis.(17)

Hausken(18) applies game theory in probabilistic
risk analysis, thereby introducing a behavioral ap-
proach in assessing the reliability of systems. In gen-
eral, the literature has considered adversaries as
strategic(19–22) as well as nonstrategic.(23,24)

Decision making under uncertainty has been
the object of investigation in various disciplines for
decades.(25) Bernoulli’s proposal(26) that people max-
imized expected utility and not expected value was
the first step toward introducing risk preferences
in decision making. Research on decision making
under uncertainty has progressed a long way, with
the development of the von Neumann–Morgenstern
utility theorem,(27) a better understanding of the
willingness to pay for risky investment options, re-
gret theory,(28,29) and prospect theory.(30) Weber and
Johnson(25) provide a historical context of these
developments in the risk-preference literature. Al-
though most of these developments have found
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applications primarily in economics and finance, in
the broader context, the existence of risk preferences
is a universal phenomenon. We attempt to translate
some of these developments into the realm of critical
national security issues.

We find that in almost all AD games in the liter-
ature, players are modeled as risk neutral; i.e., they
make decisions that maximize expected payoffs or
minimize expected losses.(31) This has convention-
ally been done following the economic tradition of
assuming agents to be perfectly “rational” as well
as for modeling convenience.(3) However, extensive
empirical and theoretical evidence has shown that
risk neutrality may not be realistic or preferred in
practice.(26,27,30,32–34)

For example, Stewart et al.(35) suggest that poli-
cymakers within the U.S. government and its agen-
cies (including the DHS) are risk averse for “low-
probability high-consequence events” because of
the catastrophic or dire nature of these hazards.
This would imply that the U.S. government and its
agencies should be treated as risk averse in some
AD counterterrorism games. Some studies have
found that certain terrorist organizations are also
risk averse.(36–38) We also acknowledge that adver-
saries could be nonrational(39) or display bounded
rationality.(40) However, in this article, we focus on
rational adversaries who deviate from the traditional
norms of risk neutrality. We think that this is a nat-
ural starting point in understanding the effect of risk
preferences in issues such as deterrence.

In the AD games literature, some authors have
recognized the importance of risk preferences. For
example, Zhuang and Bier(9) mention that risk aver-
sion and risk-seeking behavior may impact the out-
comes when they apply game theory in studying
resource allocation for countering terrorism and nat-
ural disasters; however, they study risk preferences
by incorporating risk parameters only in part of the
utility function. Other papers mention the notion of
utility functions but often end up using linear util-
ity (i.e., they assume risk neutrality yet use the term
“utility” interchangeably with payoffs) or do not fully
model utility and risk preferences consistent with the
decision and risk analysis literature (e.g., Bell et al.(41)

and Liu et al.(42)).
In the context of sequential games, several pa-

pers discuss the notion of risk aversion not neces-
sarily of players, but of strategies. These fall into
the broad category of robust game theory where
an analyst may want to determine and minimize
worst-case scenarios. For example, Yin et al.(43) and

Qian et al.(44) study the notion of risk-averse strate-
gies in a sequential Stackelberg game (which is a
game between a leader and a follower competing
on quantity(45)), where each player optimizes over a
class of possible utility functions.

3. CONTINUOUS DEFENSE DISCRETE
ATTACK (CDDA) MODEL

3.1. Model

We consider a two-player sequential game. In
the first stage, the defender chooses a continuous
level of defense investment d ∈ [0,∞) that maxi-
mizes her/his expected utility. After observing the
defender’s level of investment, an attacker in the
second stage chooses to either attack (denoted by
“A” or a = A) or not attack (denoted by “NA” or
a = NA). If the attacker chooses to attack, his/her
success probability P depends on how much the de-
fender invested in defense. This probability success
function P : [0,∞) → [0, 1] is strictly decreasing in
d. To remove trivial cases, we assume that the func-
tion P is not equal to 0 or 1 for any d > 0.

For each player, we define three parameters.
First, the defender and the attacker each values3 the
“target” (the resource that the government tries to
defend from terrorist attacks) at vd and va , respec-
tively. In addition, each player has a unit cost for
defending (cd) and attacking (ca). For the attacker,
we assume that va > ca so that the decision whether
to attack or not does not become trivial. The utility
functions of the defender and the attacker are, re-
spectively, denoted by ud and ua . Fig. 1 provides the
sequence of steps and Table I summarizes the nota-
tion we use in the article.

In this article, we focus on the subgame perfect
Nash equilibrium4 strategy for both players and an-
alyze the impact of incorporating risk preferences in
an AD game, focusing on its impact on deterrence.

3.2. Analytical Results

We begin by examining the best response of the
attacker using backward induction. Observing the

3We assume in our model that players are able to quantify their
valuation of targets typically in monetary terms. For example,
Shan and Zhuang(46) use the valuation of 47 U.S. urban areas
provided by Willis et al.(47) to illustrate their model.

4An equilibrium found by applying rollback to the extensive form
game is referred to as subgame perfect equilibrium.(48)
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Fig. 1. Sequence of moves in the AD game (CDDA
model) with the players’ utilities.

Table I. Notation for Decision Variables and Parameters Used in the Article

Decision Variables a Attacker’s decision (a ∈ {A, NA} in CDDA model) or attacker’s effort
(attack investment level, a ≥ 0 in CDCA model)

d ≥ 0 Defender’s effort (defense investment level)

Functions P(d) and P(a, d) The probability of successful attack
ua Attacker’s utility function
ud Defender’s utility function

Ua(a, d) Total expected utility of the attacker
Ud(a, d) Total expected utility of the defender

â(d) ≡ arg max UA(a, d) Attacker’s best response

Parameters (a∗, d∗) Equilibrium strategy
λ Coeffecient of defender’s defense effectiveness
ca Attacker cost for attacking
cd Defender’s unit cost of effort
va Attacker’s valuation of the target
vd Defender’s valuation of the target

defense level d, the attacker chooses a ∈ {A, NA}
that maximizes his expected utility Ua(a, d). Propo-
sition 1 provides an important property about the at-
tacker’s best response.

Proposition 1. The attacker’s best response â(d) is of
a threshold type in d; i.e., there exists a threshold d̄
for which the attacker will attack (â(d) = A) when 0 ≤
d < d̄ and not attack (â(d) = NA) when d ≥ d̄.

Proof. The attacker will maximize his/her ex-
pected utility, i.e., his optimization problem is:
max Ua(a, d)= P(d)ua(va −ca)+(1−P(d))ua(−ca).
In this case, the attacker will choose a = A if and
only if

P(d)ua(va − ca) + (1 − P(d))ua(−ca) > ua(0)

⇔ P(d) >
ua(0) − ua(−ca)

ua(va − ca) − ua(−ca)

⇔ d < P−1
(

ua(0) − ua(−ca)
ua(va − ca) − ua(−ca)

)
. (1)

The second inequality holds because va > ca and ua

is nondecreasing in its argument. The third inequal-
ity follows from the assumption that P is strictly de-
creasing in d. (We note that if we instead assume that
P is nonincreasing, we can easily replace P−1 by the
generalized inverse P[−1] and with some work show
that the result still holds.) �

This threshold idea tells us that there exists a
level d̄ ∈ [0,∞) such that the attacker will choose
not to attack for any d ≥ d̄, because the probabil-
ity of successful attack is too low to provide him/her
sufficiently large expected utility for attacking. This
threshold d̄ is what we will refer to as the deterrence
level, which is given by:

d̄ =
⎧⎨
⎩

0 when r ≥ 1
P−1(r) when 0 < r < 1
∞ when r ≤ 0

(2)

where r = ua(0)−ua (−ca )
ua(va−ca )−ua(−ca ) . The conditions r > 1 and

r < 0 are trivial and do not arise for a strictly
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nondecreasing function ua . Also, when ua is a strictly
increasing function, there will always be a positive fi-
nite d̄ as 0 < r < 1.

First, we note that this quantity is well defined
since we assumed that P is strictly decreasing in its
argument. Next, we provide an interpretation for this
quantity by analyzing the simple case when ua(x) is
linear (i.e., a risk-neutral attacker). For a strictly in-
creasing ua , the deterrence level in Equation (2) sim-
plifies to P−1( ca

va
) in the risk-neutral case, which rep-

resents the point where the expected gain P(d)va

equals the cost of attacking ca .
In the more general setting of nonlinear util-

ity, we study how the deterrence level changes when
an attacker is viewed to be more risk seeking (less
risk averse). Using Pratt’s(32) definition, we say a
player with utility function û is more risk seeking
(less risk averse) than a player with utility function
u if there exists an increasing convex function g such
that û(x) = g(u(x)) for all x.

The next proposition provides insights on the de-
terrence level as we consider the more general setting
of risk preferences.

Proposition 2. The deterrence level d̄ is (i) at least
as high for a more risk-seeking (less risk-averse) at-
tacker, (ii) nondecreasing in va, and (iii) nonincreas-
ing in ca for a risk-seeking attacker.

Proof. Since P is decreasing in d, P−1 must also
be decreasing. Therefore, it is sufficient to study
whether K(ua, va, ca) := ua(0)−ua (−ca)

ua(va−ca )−ua(−ca ) is increasing
or decreasing. For ease of notation, let x = −ca and
y = va − ca . Since we assume that va > ca > 0, we
have x < 0 < y.

(i) Consider two utility functions ua and ûa , where
û(x) = g(u(x)) and g is an increasing convex
function. By the convexity of g, we know that
the marginal utility differential between y and
x is greater than the differential between 0
and x, i.e., g(ua(y))−g(ua (x))

ua(y)−ua (x) >
g(ua(0))−g(ua (x))

ua(0)−ua (x) ⇔
ua(0)−ua (x)
ua(y)−ua (x) >

g(ua(0))−g(ua (x))
g(ua(y))−g(ua (x)) ⇔ K(ua, va, ca) >

K(g(ua), va, ca). Therefore, the deterrence
level associated with ua is lower than the
deterrence level associated with ûa , since P−1

is decreasing.
(ii) For v′

a > va , we note that ua(v′
a − ca) ≥

ua(va − ca) for any utility function ua .
Hence, K(ua, v

′
a, ca) = ua(0)−ua (−ca )

ua(v′
a−ca)−ua(−ca ) ≤

ua(0)−ua (−ca )
ua(va−ca )−ua(−ca ) = K(ua, va, ca).

(iii) To prove that d̄ is nonincreasing in ca for a
risk-seeking attacker, we need to show that
K(ua, va, ca) is increasing for a convex ua . We
note that

∂K
∂ca

= u′
a(−ca)

ua(va − ca) − ua(−ca)

− [ua(0) − ua(−ca)](u′
a(−ca) − u′

a(va − ca))
[ua(va − ca) − ua(−ca)]2

,

where u′
a = ∂ua

∂ca
. The first term on the right-hand

side is positive because all utility functions are
nondecreasing in their arguments. The second term
is also positive for a convex ua because u′

a(−ca) −
u′

a(va − ca) < 0; i.e., increasing convex utility func-
tions become steeper. Therefore, for convex ua , we
have ∂K

∂ca
≥ 0. �

Proposition 2 shows how the deterrence level is
affected by changes in the model parameters. In par-
ticular, we notice that for a more risk-seeking (less
risk-averse) attacker, a defender has to invest more
to completely deter an attack. As expected, we also
see that as the value of the target to the attacker in-
creases, the deterrence level increases.

Finally, we note that the impact of the attacker’s
costs ca is not directly evident in this model, since
analytically the effect of ca on d̄ depends on the
utility function. Depending on the concavity of the
attacker’s utility function ua , we may not necessar-
ily see a monotonic change in the deterrence level.
For a risk-seeking attacker, we can show that d̄ is
nonincreasing in ca . However, for a risk-averse at-
tacker, this is not guaranteed because the proof of
Proposition 2(iii) is not applicable for concave (risk-
averse) utility functions.

Next, we consider the defender, who has the
benefit of moving first. Her/his defense level choice
can be a strategic decision that results in deter-
rence; however, this choice has to be balanced with
the relative value of the target and the cost as-
sociated with such defensive investments. Propo-
sition 3 describes the equilibrium strategy of the
defender.

Proposition 3. Let Ud(dint ) := P(dint )ud(−vd −
cddint ) + (1 − P(dint ))ud(−cddint ). The equilibrium
strategy of the defender d∗ ∈ [0, d̄] is an interior point
(which we denote by dint ) if and only if Ud(dint ) >

ud(0) and



6 Payappalli, Zhuang, and Jose

0 1 2 3 4 5
3.5

4

4.5

5

defense investment, d

D
ef

en
de

r’
s

ex
pe

ct
ed

ut
ili

ty
,
U

d
/
20

(a) * * *

*

d = 0

0 1 2 3 4 5
3.5

4

4.5

5

defense investment, d

(b) d = dint

0 1 2 3 4 5
3.5

4

4.5

5

defense investment, d

(c) d = d̄

 

 

Defender’s utility, Ud/20 Deterrence effort, d̄ Optimal defense effort, d

d̄ dint d̄ d̄

Fig. 2. A set of scenarios showing the three possible types of optimal solutions for the CDDA model. Baseline values: zd = za = 100, vd =
va = 60, cd = ca = 5, and λ = 1, where λ is the defense effectiveness coefficient in the exponential success function P(d) = e−λd .

Ud(dint ) >
[ua(0) − ua(−ca)]ud(−vd − cdd)

ua(va − ca) − ua(−ca)

+ [ua(va − ca) − ua(0)]ud(−cdd)
ua(va − ca) − ua(−ca)

.

Proof. The defender faces the following optimiza-
tion problem to maximize her/his expected util-
ity. Plugging in the attacker’s best response in
Equation (1) to the defender’s optimization problem,
we have:

maxd Ud(â(d), d)

=
⎧⎨
⎩

P(d)ud(−vd − cdd)
+(1 − P(d))ud(−cdd)

}
if â(d) = A

ud(−cdd) if â(d) = NA.

(3)

The value of d that maximizes the defender’s
utility will be the equilibrium defender strategy d∗.
If we let dint := {d : U ′

d(d) = 0}, then we have

d∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 when Ud(0) > max(Ud(d̄), Ud(dint ))

dint

{≡ interior solution,
when Ud(dint ) > max(Ud(0), Ud(d̄))

d̄
{≡ deterrence solution,

when Ud(d̄) > max(Ud(0), Ud(dint )).

The conditions provided in the proposition follow by
expanding Ud(0) and Ud(d̄). �

Proposition 3 explains that there are three types
of solutions d∗ to the defender’s problem. Fig. 2 illus-
trates the three possible scenarios numerically. First,
d∗ can be 0 when the defender does not invest any
amount into defense (Fig. 2(a)). This case happens in
the extreme case when vd is not sufficiently high so
that the defender deems the target to be worth pro-
tecting or alternatively the probability of successful

attack is sufficiently high so that the cost of defense
is too high to have any significant impact or savings.

The other extreme case d∗ = d̄ happens when
the cost of defense is relatively cheap such that the
defender has sufficient resources to invest in defense
(Fig. 2(c)). Even though the defender can reduce the
probability of successful attack by investing d > d̄,
she/he would not choose to do so. The result suggests
that the level of investment needs not exceed d̄, i.e.,
there is no need to overinvest in defense.

The case d∗ = dint is perhaps the most interest-
ing since this represents the middle ground where the
defender neither goes all the way nor does she/he do
nothing at all. This interior solution happens when
the defender’s investment is sufficiently high to mini-
mize the expected disutility while taking into account
that she/he needs not spend too much in defending
the target. From Proposition 3 and Equation (2), we
notice that due to the Boolean nature of the attack,
dint is independent of the attacker’s utility function
ua , and the deterrence defense level d̄ is independent
of the defender’s utility function ud. A closed-form
solution does not exist for dint and hence for d∗ be-
cause of the specific way utility functions are defined.
More details are provided at the end of Section 3.3.1
and in the Appendix.

3.3. Numerical Illustration

3.3.1. Sensitivity Analyses

To provide some additional insights to this
model, we provide a few numerical illustrations that
allow us to see in detail how the equilibrium strate-
gies and payoffs depend on the model parameters.
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Fig. 3. Probability of successful attack P(d) plotted for differ-
ent values of defense investment d and defense effectiveness λ.
Clearly, a higher value of λ decreases P(d) and vice-versa.

For the purpose of numerical illustration, we assume
a few functional forms in this section. In particular,
following Bier et al.,(49) we assume an exponential
success function P(d) given by:

P(d) = exp(−λd),

where λ > 0 is the defense effectiveness coefficient.
This function is strictly decreasing in d and is
bounded between (0, 1] for d ∈ [0,∞) (Fig. 3).

For the players’ utility functions, we use power
utility functions(50) of the form:

ua(x) = (za + x)βa ud(x) = (zd + x)βd ,

where the risk-preference parameters for the AD, βa

and βd > 0 are parameters that primarily affect the
curvature of the utility function. Finally, the terms
za and zd are large positive constants introduced so
that za + x and zd + x are always positive and well
defined especially when βa and βd ∈ (0, 1). In addi-
tion, the use of za and zd gives flexibility in the func-
tional form estimation process and could potentially
be interpreted as initial wealth (or endowment) if it
makes sense in the context being studied. An inter-
esting and useful feature of the power utility function
is that it covers the three main categories of risk pref-
erences that we want to investigate. In particular, we
are able to cover risk-averse (0 < β < 1), risk-neutral
(β = 1), and risk-seeking (β > 1) behaviors.

For sensitivity analyses, we focus on the changes
that happen to these three variables: (i) defender’s
deterrence effort d̄, (ii) defender’s optimal effort d∗,
and (iii) attacker’s optimal effort a∗. In particular,
we examine these variables as the following seven
parameters vary: (i) defender’s target valuation vd,
(ii) defender’s cost coefficient cd, (iii) defender’s
risk-preference parameter βd, (iv) attacker’s target

valuation va , (v) attacker’s cost effectiveness ca , (vi)
attacker’s risk-preference parameter βa , and (vii)
defense effectiveness λ. The changes in the equi-
librium behavior of the players are captured in the
one-way sensitivity plots in Fig. 4 that vary only
one parameter at a time while holding all other
parameters equal to the baseline case.

The plots in Fig. 4 show several important vari-
ables including the two equilibrium solutions d∗ and
a∗. The baseline values are highlighted by the solid
vertical line, while the critical point when the at-
tacker strategy changes is highlighted by the dashed
line. In Figs. 4(a) and 4(e), we note that the equi-
librium investment of the defender increases, and
then stays constant as the target valuation of the
defender and attacker, respectively, increases. For
the defender, we see that she/he is prompted to in-
vest more to protect the resource as its valuation in-
creases. The case for the attacker (Fig. 4(e)) follows
the result provided in Proposition 2(ii), which im-
plies that more effort is required from the defender
to deter an attacker as the target valuation increases.
This result holds irrespective of the attacker’s risk
preference.

In analyzing the impact of costs, Fig. 4(b) shows
that the defender would invest less when her/his cost
increases. This reduced investment may prompt an
attacker to attack and the overall expected utility of
the defender would then decrease. Hence, a defender
may want to later focus her/his attention on mitigat-
ing this risk by trying to improve other aspects of de-
fense (e.g., improving the effectiveness of defense λ)
when costs are beyond her/his control. On the other
hand, when ca increases, Fig. 4(f) shows that d̄ will
decrease and approach zero at a point where the at-
tacker is worse off attacking, irrespective of the de-
fender’s investment level. To some extent, if govern-
ments are able to affect the cost of an attack; e.g.,
making it more difficult and costly to launch an attack
(e.g., increased cost of materials and components for
bombs and increased cost for successfully moving re-
sources), the overall defense effort may be signifi-
cantly reduced.

Related to the risk-preference parameters,
Figs. 4(c) and 4(g) provide some interesting results.
Here, we see that a more risk-seeking (less risk-
averse) defender would defend less although she/he
is certain that attack would happen. This is interest-
ing because we would expect that the certainty of the
attack makes the defender invest more, but that does
not necessarily happen. The reason is that, the de-
fender knows that the high risk-seeking behavior of
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Fig. 4. One-way sensitivity analysis of attacker’s equilibrium response (a∗), optimal defense effort (d∗), and deterrence level (d̄), with
respect to the parameters used in the CDDA model. Regions marked with A and NA refer to the regions for which it is optimal for the
attacker to “Attack” and “Not Attack,” respectively. Baseline values: λ = 1, za = zd = 100, va = vd = 60, ca = cd = 5, and βa = βd = 1.

the attacker makes it very costly for her/his to de-
ter the attack. Hence, the defender “gambles” on the
outcome of the attack rather than investing a lot of
resources up front. Fig. 4(g) provides an illustration
of Proposition 2(i), where d̄ increases when facing a
more risk-seeking (less risk-averse) attacker.

Finally, Fig. 4(d) focusing on the defense effec-
tiveness parameter λ shows that d̄ decreases in λ.
This happens because an increase in λ decreases the
probability of a successful attack making it more un-
likely for an attacker to get a high expected utility
from attacking. In terms of the equilibrium level d∗,
we see that d∗ initially increases, and then eventually
decreases. Although the very high success probability
of attack at very low values of λ forces the defender
not to invest, the increased chance of unsuccessful at-
tacks when λ increases encourages the defender to
invest more. However, at higher values of λ, the in-
crease in expected returns from defense is overcome
by the significant increase in the cost of investing,
leading the defender to invest less. Most of the time,
this parameter is beyond the control of both play-
ers. If this parameter can be adjusted as well (e.g.,
by technology investments; see Jose and Zhuang(6)),
then this could also be used as a powerful deterrence
tool.

It is important to mention here that despite us-
ing very simple but reasonable utility functions, it is
not possible to derive a closed-form solution for dint

and d∗. Hence, we analyzed a few more baseline sce-
narios to see if the dint follows the same trend as in
Fig. 4. The plots are given in the Appendix. It fol-
lows from Fig. A1 in the Appendix that due to the
highly nonlinear form of the closed-form expression
of ddint

dβd
, it does not follow a specific trend, and hence

it cannot be inferred whether dint always follows the
same decreasing trend as in Fig. 4. However, in real
applications, nonavailability of a closed-form solu-
tion of dint does not necessarily hinder the decision-
making process of the defender because it may be
possible to reasonably estimate the defender’s and
the attacker’s equilibrium responses numerically, or
simply use these examples to understand which sce-
nario or realm the problem belongs to.

3.3.2. Model Comparison

We study in this subsection the usefulness of the
new model with risk preferences proposed in this
article. We define the utility of the model as the dif-
ference between the defender’s expected damages
between the model in Section 3.1 and a model in
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a CDDA model that takes into account risk preferences (new model) and another that does not (risk-neutral model). Baseline values:
za = zd = 100, va = vd = 60, ca = cd = 5, and βd = 1.

which the defender incorrectly believes that the at-
tacker is risk neutral and acts accordingly. Using the
same baseline parameter values as in Section 3.3.1,
we perform one-way sensitivity analyses to study the
impact of the risk-preference parameter βa on the
utility of the model, as shown in Fig. 5.

We present the baseline case of a risk-neutral
defender. The expected damage of the defender is
shown in terms of the expected costs, which explains
the negative values. For all the values of λ con-
sidered here, the difference between the expected
values of the two models is zero when βa = 1; i.e.,
the perceived risk-preference level of the attacker is
correct.

Fig. 5(a) shows that when the defender’s defense
effectiveness is low (e.g., λ = 0.25), the new model’s
performance is comparable to that of a risk-neutral
model, for the range of βa considered. The differ-
ence between the expected damages of the two mod-
els is zero because when the defense effectiveness is
too low, the certainty of attack and the success rate
of attack are high. Hence, the defender is better off
by investing dint (an interior solution, which is inde-
pendent of βa because of the Boolean nature of the
attack).

Fig. 5(b) shows the case when the defense ef-
fectiveness is slightly higher (e.g., λ = 0.35). When
βa < 1, a defender using a risk-neutral model for the
attacker would prepare more for an attack and hence
incur higher expected costs of defending than a de-
fender using the new model that correctly considers
risk preferences. The difference in expected damage
is zero for βa > 1 because in such cases the defender

is better off by investing dint , which is independent
of βa . Fig. 5(c) shows that for higher values of λ

(e.g., λ = 0.5), when βa < 1, the difference is posi-
tive because the defender’s investment reaches the
maximum, d̄. When βa > 1, the defender using the
risk-neutral model for the attacker would defend less
than the level required to deter the attack. Hence,
attack is certain and the defender’s expected damage
is higher. On the other hand, the defender using the
new model would be able to deter the attack, so
her/his expected damage is lower.

We would expect similar results when the de-
fender is risk averse or risk seeking because ex-
pected damage is independent of her/his risk pref-
erence. From Fig. 5, the new model gives lower
expected damage if the true type of the attacker is
risk seeking than when he/she is risk averse. Also,
the new model does not give considerably less ex-
pected damages for very low values of defense effec-
tiveness λ. This happens because when the attack is
more likely to be successful, the defender would not
try to deter the attack and choose the interior solu-
tion, which is independent of βa . Hence, except in
the case when defense effectiveness is very low, the
defender is expected to incur losses if she/he uses a
risk-neutral model.

This example illustrates by how much our model
that correctly considers risk preferences could out-
perform a risk-neutral model. For example, the sen-
sitivity analysis in Fig. 5 could be used to deter-
mine the threshold value of defense effectiveness λ

above which the new model performs better than
the risk-neutral model against risk-averse as well as
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Fig. 7. Attacker’s best response â(d) as a function of defender’s
investment d, in the CDCA model. Baseline values: za = zd = 100,
va = vd = 60, ca = cd = 5, and βa = βd = 1.

risk-seeking attackers. For the baseline values con-
sidered, when λ = 0.35 (moderate defense effective-
ness) the new model outperforms the risk-neutral
model only against a risk-averse attacker, whereas
when λ = 0.5 (high defense effectiveness) the new
model outperforms the risk-neutral model against
risk-averse and risk-seeking attackers.

These results suggest that users of AD mod-
els could value risk preferences less in certain situ-
ations but should also be aware of the potential sav-
ings/losses that could be incurred in situations where
these models yield substantial differences.

4. CONTINUOUS DEFENSE CONTINUOUS
ATTACK (CDCA) MODEL

4.1. Model

The model that we present here is an extension
of the CDDA model in Section 3. The main differ-
ence from the CDDA model is that the attacker
is able to choose from a continuous level of attack

effort a ∈ [0,∞) that maximizes his/her expected
utility. The modified game tree is given in Fig. 6.
Since it is reasonable to say that the defender’s
and the attacker’s efforts determine whether the
attack is successful or not, we need to take this into
account when assessing the probability of successful
attack. We use the contest success function of the
form P(a, d) = a

a+d .(51) This function is increasing
in a, decreasing in d, and bounded between 0 and 1,
∀a, d ≥ 0.

By backward induction, we begin by examining
the best response of the attacker. Observing the
defense level d, the attacker chooses a ≥ 0 that
maximizes his/her expected utility Ua(a, d). His/her
optimization problem is: max Ua(a, d) = P(a, d)
ua(va − caa) + (1 − P(a, d))ua(−caa) = a

a+d ua(va −
caa) + d

a+d ua(−caa). The attacker’s best response
function â(d) is obtained using the necessary
first-order condition ∂

∂a Ua(a, d) = 0. That is,

â(d) = arg maxa

(
a

a + d
ua(va − caa) (4)

+ d
a + d

ua(−caa)
)

.

Hence, the defender’s equilibrium investment is
d∗ = arg maxd Ud(â(d), d) and the attacker’s equi-
librium investment is a∗ = â(d∗). Finding a general
analytical solution for â(d), a∗, or d∗ is not possible,
and the following sections discuss how the situation
could be analyzed further in such cases.

4.2. Numerical Illustration and Sensitivity Analysis

For the purpose of illustrating insightful scenar-
ios, we use the same functional forms for utility as in
Section 3.3. Under power utility ua(x) = (za + x)βa ,
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Equation (4) becomes:

â(d) = arg maxa

(
a

a + d
(za + va − caa)βa (5)

+ d
a + d

(za − caa)βa

)
.

Closed-form solutions do not exist for â(d), a∗,
and d∗ due to the properties of the general power

form utility function, as mentioned in Section 3.2.
Hence, we study the behavior of â(d), a∗, and d∗ to
observe possible trends and derive insights.

Fig. 7 shows that the best response of the at-
tacker first increases and then decreases in the de-
fender’s investment d, and approaches and stays at
zero for high values of d.

Fig. 8 illustrates the changes in the equilib-
rium responses (a∗ and d∗) as the parameters
va, vd, ca, cd, βa, and βd change one at a time, keep-
ing all others at the baseline values. For ease of com-
parison, we use the same baseline values that are
used in the sensitivity analysis of the CDDA model in
Section 3.3.1 (Fig. 4).

Due to diminishing marginal expected utility of
attacking a defender’s valuable target, a∗ increases
in vd and then stabilizes (Fig. 8(a)). This behavior
is comparable to a∗ in Fig. 4(a). However, d∗ expo-
nentially increases in vd in Fig. 8(a) in contrast to
the marginally decreasing d∗ in Fig. 4(a) due to the
possibility of deterrence induced by the Boolean na-
ture of attack in the CDDA model. It is optimal for
the defender to increase her/his investment as the
attacker’s valuation of his/her target (va) increases
(Fig. 8(d)), and this keeps the attack completely de-
terred until a particular value of va (as observed
in Fig. 4(e)). However, the defender is better off
by decreasing her/his efforts when va increases any
further.

Interestingly, both the attacker and the defender
invest more at very low values for the cost parame-
ter and invest significantly less when costs are very
high (Figs. 8(b) and (e)). In fact, the attacker is de-
terred completely when the cost of attack is signifi-
cantly high (Fig. 8(e)). Another interesting observa-
tion is that in Fig. 8, a∗ in Fig. 8(b) is very similar to
d∗ in Fig. 8(e). This is surprising because one would
not expect so much symmetry in a sequential game.
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In addition, the trends of d∗ are different in Figs. 8(b)
and 8(e), but still similar in Figs. 4(b) and 4(f).

The attacker’s response (a∗) to changes in βd

and βa is similar (Figs. 8(c) and 8(f)). However, de-
terrence is absent in these cases, which contrasts
with the discrete case where a risk-neutral (risk-
averse) attacker is deterred against a risk-averse
(risk-neutral) defender (Figs. 4(c) and 4(g)).

In summary, the analysis here shows vari-
ous scenarios in which there could be similar-
ities/dissimilarities between the results from the
CDDA and the CDCA models. Solely by extending
the attack effort from discrete to continuous, signif-
icant variation is observed in the results. Thus, un-
derstanding the attacker’s decision-making process
could be a critical step for the defender in drafting
more effective defense strategies. Optimal preemp-
tive defense strategies against an attacker with con-
tinuous defense capabilities could be quite different
from those against an attacker with discrete attack
capabilities.

5. CONTINUOUS DEFENSE CONTINUOUS
ATTACK - INCOMPLETE INFORMATION
(CDCAII) MODEL

One realistic challenge in modeling risk prefer-
ences is determining what level or type of risk atti-
tude to incorporate. In many terrorism and countert-
errorism contexts, it is difficult to estimate specific
forms of utility or estimate risk-preference parame-
ters. For example, the defender might be uncertain
about the attacker’s risk attitudes and other param-
eters. In some contexts, it may be possible to have a
rough estimate of players’ risk preferences through
revealed preferences that can be measured by spe-
cific actions taken in the past (e.g., Phillips(36–38)).
Other approaches to estimation could be interview-
ing subject-matter experts.

We model this commonly encountered setting
where the defender is uncertain about the attacker’s
risk preference by extending our model to an incom-
plete information model in which the players have
some beliefs instead of the precise knowledge about
their opponent’s type. As the second-mover, the at-
tacker has the advantage of observing the defender’s
actions. It is also very likely for the attacker to be
much more informed about the defender than vice
versa, because the defender (such as a government
entity) is often mandated by transparency laws to di-
vulge a significant amount of information (e.g., de-
fense budget) to the public.

5.1. Model

In this section, we use abbreviations RA, RN,
and RS to represent risk-averse, risk-neutral, and
risk-seeking behaviors, respectively. In the model
considered here, the defender has certain beliefs
about the risk preference of the attacker, which is
that the attacker could be RA with probability p, RN
with probability q, and RS with probability 1 − p −
q. We extend the CDCA model in Section 4 to de-
velop the CDCAII model as follows. The attacker’s
best response function is â(d) = arg maxa Ua(a, d).
The defender’s equilibrium investment is:

d∗ = arg maxd(p · Ud(âRA(d), a) (6)

+ q · Ud(âRN(d), a)

+ (1 − p − q) · Ud(âRS(d), a)),

where âRA(d), âRN(d), and âRS(d) represent the best
responses of a risk-averse, risk-neutral, and risk-
seeking attacker as perceived by the defender, re-
spectively. The attacker’s equilibrium investment is
a∗ = â(d∗).

5.2. Numerical Illustration and Sensitivity Analysis

Although the defender is uncertain about the at-
tacker’s risk preference, the attacker has complete
knowledge of the defender’s risk preference. Hence,
the attacker’s best response function in this case is
the same as in Fig. 7.

Considering a discrete setting where the de-
fender believes that the attacker is RA, RN, or RS
with probabilities p, q, and 1 − p − q, respectively,
the defender’s expected utility is calculated as the
probability-weighted sum of three utilities (calcu-
lated by considering the attacker as RA, RN, and
RS), each weighted by the respective probability (p,
q, or 1 − p − q). Using the same functional forms of
utility and baseline values as in Sections 3.3 and 4.2,
we show in Figs. 9–11 how the equilibrium invest-
ment of an RA, RN, and RS defender (d∗), respec-
tively, and that of an attacker (a∗) changes as the de-
fender’s beliefs change. In cases where the attacker
or defender (or both) is (are) considered not to be
RN, the risk preference values are set at 0.5 and 2.0
for RA and RS behavior, respectively. Since a con-
tinuous range of risk preference values is not used,
discrete step values are obtained for a∗ and d∗. In all
cases, the defender’s investments are identical for all
three types of attackers, which makes sense because
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Fig. 9. Sensitivity analysis of equilibrium
investments of a risk-averse (RA) de-
fender (d∗) and an attacker (a∗) with re-
spect to the parameters p and q. Base-
line values: va = vd = 60, ca = cd = 5, and
βd = 0.5.

Fig. 10. Sensitivity of equilibrium invest-
ment of a risk-neutral (RN) defender (d∗)
and an attacker (a∗) with respect to the
parameters p and q. Baseline values: va =
vd = 60, ca = cd = 5, and βd = 1.

the defender does not know the true type of the at-
tacker.

First, an RA defender invests the most when
she/he strongly believes that the attacker is RN, and
the least when she/he strongly believes that the at-
tacker is RS (Figs. 9(d)–(f)). An RN defender invests
the most when she/he strongly believes that the at-
tacker is RA and weakly believes that the attacker
is RN; and less when she/he believes that the at-
tacker is RS (Figs. 10(d) –(f)). This is comparable to

Fig. 8(f) in which d∗ decreases in βa . An RS defender
(Figs. 11(d)–(f)) invests the most when she/he weakly
believes that the attacker is RS; except when her/his
beliefs of the attacker being RA and RN are
high and low, respectively (when she/he invests the
least).

When facing an RA defender, the RA and the
RN attackers invest the most when the defender’s
belief about his/her risk preference is accurate
(Figs. 9(a) and 9(b)). Against any type of defender,
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Fig. 11. Sensitivity of equilibrium investment of a risk-
seeking (RS) defender (d∗) and an attacker (a∗) with re-
spect to the parameters p and q. Baseline values: va =
vd = 60, ca = cd = 5, and βd = 2.

an RS attacker invests the most when the defender
invests the most (Figs. 9(c) and 9(f), 10(c) and 10(f),
and 9(c) and 9(f)). Against an RN defender (Fig. 10),
an RA attacker invests less in response to larger
investments from the RN defender; however, an
RS attacker does the opposite. Also, a∗ of an RN
attacker is higher for a broader range of p and q
than a∗ of an RA or an RS attacker, which can be
compared to Fig. 8(f) in which a∗ is higher when
βa = 1 than when βa = 1.

An RN attacker invests less when the de-
fender has a wrong belief about the attacker’s risk-
preference type, despite the large difference in the
possible defense investments (2.10 or 4.04). The at-
tacker’s response against an RS defender (Fig. 11)
follows a pattern similar to that against an RN de-
fender: An RA attacker invests less in response to
larger investments from the RN defender; however,
an RS attacker does the opposite.

The illustrated models in Figs. 9–11 highlight the
impact of incomplete information about a player’s
risk-preference types. These are useful in AD games
because they can significantly affect the equilibrium
responses of the players. The CDCAII model pre-
sented here addresses the difficult issue of estimating
the level of risk preferences but still provides insights
into how results would change based on incorrect be-
lief about the attacker’s risk preference type.

6. CONCLUSION AND FUTURE RESEARCH
DIRECTIONS

In this article, we consider a sequential, single-
period, single-target AD game, where the defender

preemptively invests in defense and the attacker
chooses whether to attack or not. Here, the effect
of players’ risk preferences on the equilibrium
behavior of these players is analyzed, focusing
on the notion of deterrence, and these results are
presented analytically, numerically, and graphically.
Numerical illustrations and sensitivity analysis of
continuous attack investment levels and uncertainty
in the defender’s beliefs about the attacker’s risk
preference are also provided. One key contribution
of this article is the identification of specific scenarios
in which the defender using our model would be
better off than a defender using a risk-neutral model
similar to those used in most of the literature.

We find that this incorporation of risk pref-
erences is appealing and that this would certainty
strengthen the policymakers’ and risk analysts’ un-
derstanding of models. This incorporates a funda-
mentally recognized behavioral and economic prin-
ciple that is often not considered in mathematical
models such as AD games for the purpose of conve-
nience. AD game models that incorporate risk pref-
erences provide robustness to a recommendation or
an analysis when the recommendation remains the
same when parameters are changed. In cases where
the solution and equilibrium behavior could signifi-
cantly vary, it may be useful to inform decisionmak-
ers and risk analysts of such possibilities.

In terms of future research directions, this work
opens new questions and areas to be explored.
One interesting question is how risk preferences
propagate in multiperiod games (e.g., Cole and
Kocherlakota(52) and Jose and Zhuang(6)). This
puts forward the question of whether changes in
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deterrence solutions that are due to risk preferences
can be sustained in equilibrium for multiperiod
games. It would be of interest to understand how
solutions may evolve if we also allow intertemporal
changes in risk preferences. Another interesting ex-
tension would be to understand how risk preferences
can also affect the solution in these games when
players have multiple objectives. Keeney(53) and
Keeney and von Winterfeldt(54) mention that mul-
tiple objectives would be a fertile area of research
in risk analysis, and we believe that this area could
further be enriched by incorporating the notion of
risk preferences.

The next step to the model would be to find
ways to validate the model and its predictions. This
could perhaps be done through behavioral studies
or experiments. Thereafter, we expect that incorpo-
rating other behavioral theories (e.g., prospect the-
ory or regret theory) into the model could provide

additional insights into other specific contexts and
applications.
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Fig. A1. Plot for slope of dint with respect to βd .
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APPENDIX

We present here the explanation of the conclud-
ing paragraph in Section 3.3.1. As it is of interest to
analyze the behavior of dint with respect to βd, we
first derive an expression for the slope ddint

dβd
. Then, we

plot the variation of this slope with respect to βd. If
there is a certain type of behavior in dint with respect
to βd, we may be able to say something about this
function. For example, if we find a nonmonotonic be-
havior in certain cases, then we are able to show by
contradiction that this function is nonmonotonic. The
defender’s utility function (when an attack happens)
is:

Ud(d) = P(d)ud(zd − vd − cdd) + (1 − P(d))ud(zd − cdd).

Assuming functional forms P(d) = e−λd and ud(x) =
(zd + x)βd as done in Section 3, the utility function is:

Ud(d) = e−λd(zd − vd − cdd)βd + (1 − e−λd)(zd − cdd)βd .

By the implicit function theorem, we have:

ddint

dβd
= − ∂(Ud(dint ))/∂βd

∂(Ud(dint ))/∂dint
,

where dint is the interior point solution for the
defender’s investment level. Using our functional
forms, we obtain the expression in Equation (A.1)
where G = zd − vd − cdd and H = zd − cdd.

This is an expression for the slope of the interior
point solution dint with respect to the defender’s risk-
preference parameter βd. Fig. A1 shows the variation
in the slope of the interior point solution ddint

dβd
with

respect to the defender’s risk-preference parameter
βd. It is seen that there is no specific trend that the
slope follows, which means it cannot be generalized
whether the dint increases or decreases with respect
to βd, for all sets of baseline values. This could be due
to the high nonlinearity and the nonelementary form
of the slope for dint with respect to βd, even when a
simple utility function is used.

ddint

dβd
=

(c(1 − e−dλ)(H)−1+βd + ce−dλ(G)−1+βd + c(1 − e−dλ)(H)−1+βdβd ln(H)−
e−dλ(H)βdλ ln(H) + ce−dλ(G)−1+βdβd ln(G) + e−dλ(G)βdλ ln(G))

(c2(1 − e−dλ)(H)−2+βd (−1 + βd)βd + c2e−dλ(G)−2+βd (−1 + βd)βd−
2ce−dλ(H)−1+βdβdλ + 2ce−dλ(G)−1+βdβdλ − e−dλ(H)βdλ2 + e−dλ(G)βdλ2)

(A.1)
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41. Bell MG, Kanturska U, Schmöcker JD, Fonzone A. Attacker–
defender models and road network vulnerability. Philo-
sophical Transactions of the Royal Society Series A, 2008;
366(1872):1893–1906.

42. Liu Y, Comaniciu C, Man H. Modeling misbehavior in ad
hoc networks: A game-theoretic approach for intrusion de-
tection. International Journal of Security and Networks, 2011;
1(3/4):243–254.

43. Yin Z, Jain M, Tambe M, Ordónez F. Risk-averse strategies
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