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Robust Allocation of a Defensive Budget Considering
an Attacker’s Private Information

Mohammad E. Nikoofal1 and Jun Zhuang2,∗

Attackers’ private information is one of the main issues in defensive resource allocation
games in homeland security. The outcome of a defense resource allocation decision criti-
cally depends on the accuracy of estimations about the attacker’s attributes. However, terror-
ists’ goals may be unknown to the defender, necessitating robust decisions by the defender.
This article develops a robust-optimization game-theoretical model for identifying optimal
defense resource allocation strategies for a rational defender facing a strategic attacker while
the attacker’s valuation of targets, being the most critical attribute of the attacker, is un-
known but belongs to bounded distribution-free intervals. To our best knowledge, no previ-
ous research has applied robust optimization in homeland security resource allocation when
uncertainty is defined in bounded distribution-free intervals. The key features of our model
include (1) modeling uncertainty in attackers’ attributes, where uncertainty is characterized
by bounded intervals; (2) finding the robust-optimization equilibrium for the defender using
concepts dealing with budget of uncertainty and price of robustness; and (3) applying the
proposed model to real data.

KEY WORDS: Defender-attacker game; defense resource allocation; private information; robust
optimization

1. INTRODUCTION

Terrorist threats of attack are a serious concern
to be addressed for the sake of the national econ-
omy and the quality of life. The recent history of ter-
rorist attacks on both military and civilian targets is
another reason for a deeper focus on this issue. In
assessing terrorist attacks, the goal of a defender is
to understand the terrorist group before an attack
occurs, or to implement adequate security measures
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to deter an attack or, at least, to decrease the ex-
pected damage of an attack. In the risk analysis com-
munity, a number of researchers have used system
analysis,(1) mathematical models,(2) decision trees,(3)

probabilistic risk analysis,(4) intelligent adversary
methods,(5−7) and game theory(8−11) to model the
strategic interactions in homeland security and coun-
terterrorism risk management.

Deterring terrorism is generally expensive and
deciding how, where, and when to allocate resources
in order to protect critical infrastructure is a difficult
problem, specifically when we have no accurate es-
timation about the attacker’s attributes. The princi-
pal issues are (1) precise estimation of the probabil-
ity of an attack; (2) exact assessment of the attacker’s
effort; and (3) identification of actual targets and
the attacker’s valuation of those targets. However,
the most important thing to be considered by the
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defender among mentioned issues is the attacker’s
valuation of its target, since it reveals the attacker’s
preferences regarding the targets, which are known
by the attacker but not to the defender.

A number of studies investigate the scenario
where the defender knows nothing, but assumes
probabilistic distributions about the attacker’s pref-
erences, while the attacker observes the defender’s
resource allocations. Bier et al.(12) study a model in
which a defender allocates defensive resources to a
collection of targets, and an attacker chooses a target
to attack from the collection. They assume a prob-
ability distribution for the attacker’s valuation of
targets, and find the equilibria in which the attacker
receives the valuation of the target in the case
of a successful attack and zero otherwise, and the
defender experiences a loss of her valuation of
the target from a successful attack by the attacker
and no loss otherwise. Bier et al.(13) provide a
methodology for identifying attacker and defender
equilibrium strategies in a sequential game where the
defender plays first. In their model, they assume that
the probability of an attack on each target is a func-
tion of the budget allocations to all targets, and also
presume that the success probability of an attack on
a specific target is a function of the defensive re-
sources allocated to that target. Using the data from
Willis et al.,(14) Bier et al.(13) claim that the cost effec-
tiveness of defensive investment plays an important
role in the optimal defense allocation plan. They take
into account the defender’s uncertainty about the at-
tacker’s target valuations using a probability distri-
bution that affects the defender’s assessment of the
probability of an attack, and the success of an at-
tack on the targets. In a more recent study by Hao
et al.,(15) similar to Bier et al.,(13) a probabilistic op-
timization model for defense budget allocations in
which the attacker might be strategic or nonstrate-
gic with a known probability distribution is investi-
gated. Considering probability distributions to model
uncertainty in attackers’ attributes is far from reality,
since the optimal defender’s strategy is seriously af-
fected by such prespecified probability distributions.

There are also several studies that investigate al-
locating defensive resources between terrorism and
natural disasters, since nature plays by chance, but
is still capable of causing significant economic losses
and casualties (e.g., Hurricane Andrew(16) and the
Northridge earthquake(17)). The model presented by
Powell(18) considers terrorism and natural disaster
simultaneously. A game-theoretic approach to re-
source allocation for countering terrorism and nat-

ural disasters simultaneously is proposed by Zhuang
and Bier(19) to identify equilibrium strategies for both
the attacker and the defender; however, they do not
consider any uncertainty in the attacker’s behavior,
and also, they do not provide real data to illustrate
the use of their model. In more recent works, Golany
et al.(20) and Levitin and Hausken(21) study the prob-
lem of allocating limited defensive resources among
vulnerable sites when the damage might be caused by
either probabilistic risk from nature (unintentional
threat), or strategic risk from terrorists (intentional
threat).

There exist some recent game-theoretical stud-
ies on defender-attacker models using complete and
incomplete information. The bi- and tri-level opti-
mization model for sequential attacker-defender and
defender-attacker games, respectively, with informa-
tion transparency is proposed by Brown et al.(22)

to protect critical infrastructure against terrorist at-
tacks. They use mixed-integer programming to de-
fine defender and attacker decisions and budgetary
constraints for each of them. A model of secrecy
and deception in multiple-period attacker-defender
resource allocation games is proposed by Zhuang
et al.,(23) which analyzes a finite game between a sin-
gle attacker and a single defender as the defender
has private information, such as target value and
cost effectiveness, while the attacker does not, but
the attacker can update his knowledge about the de-
fender after observing the defender’s signals, and
also after observing the result of a contest. There also
exists similar research on counterinsurgency opera-
tions that studies the optimal government’s force al-
location against insurgents. In the work by Kaplan
et al.,(24) the authors extend a game-theoretical model
to obtain the optimal government force allocation
against insurgent strongholds when the government
has imperfect intelligence.

While the model presented in this article as-
sumes a sequential static game, a similar case with
simultaneous moves known as the Colonel Blotto
game includes situations in which there are comple-
mentarities among the targets being defended.(25) In
the Colonel Blotto game, two players simultaneously
distribute forces across n battlefields. Within each
battlefield, the player that allocates the highest level
of force wins. Roberson(26) extends the literature on
the Colonel Blotto game by characterizing the equi-
librium for all players.

In this article, we propose a defender-attacker
game with incomplete information in which the at-
tacker has private information about the valuation of
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targets. The defender tries to maximize her payoffs
using the attacker’s best response, and tries to cope
with uncertainty in the attacker’s attributes by mod-
eling uncertainty in distribution-free, but bounded,
intervals and choosing robust-optimization equilib-
rium. More precisely, our proposed model is dis-
tinguishable among similar models in achieving ro-
bust solutions that consider the tradeoffs between
the robustness of defense allocations and the con-
servatism level of the defender, taking into account
the cost of having such robustness in solutions. To
our best knowledge, no previous research has applied
robust optimization in homeland security resource
allocation.

2. WHY ROBUST OPTIMIZATION?

Addressing data uncertainty in mathematical
programming models has long been recognized as
an important issue in optimization. There are two
principal methods proposed to address data uncer-
tainty over the years: (1) stochastic-optimization pro-
gramming, and (2) robust optimization. In stochastic-
optimization problems, a common goal is to optimize
the expected value of some objective function, while
robust-optimization problems attempt to optimize
the worst-case performance of the system. As early
as the mid 1950s, Dantzig(27) introduced stochastic
programming as an approach to model data uncer-
tainty by assuming different scenarios for data to oc-
cur with different probabilities. The two main diffi-
culties with such an approach are (1) knowing the ex-
act distribution for the data, and (2) the size of the re-
sulting optimization model increases drastically as a
function of the number of scenarios, which poses sub-
stantial computational challenges.(28) In recent years,
robust optimization has gained substantial popularity
as a competing methodology in solving several types
of stochastic-optimization models. It has been suc-
cessful in immunizing uncertain mathematical opti-
mization. The first step in this direction was taken by
Soyster.(29) He proposed a worst-case scenario model
for linear optimization. Subsequently, more elabo-
rate uncertainty sets and computationally attractive
robust-optimization methodologies were proposed
by Ben-Tal and Nemirovski,(30,31) Goldfarb and
Iyangar,(32) and Bertsimas and Sim.(28,33)

Robust optimization refers to the modeling of
optimization problems with data uncertainty to ob-
tain a solution that is guaranteed to be good for all,
or most, of the possible realizations of the uncer-
tain parameters. In robust-optimization approaches,

the random parameters can be either continuous
(which are restricted to lie in some prespecified in-
tervals), or described by discrete scenarios (scenario-
based approaches). The scenario approach has two
main drawbacks. First, identifying scenarios is diffi-
cult and contaminated with speculations and inaccu-
racy. And second, due to the computational limita-
tions, one tends to identify a relatively small number
of scenarios. Using robust optimization in defender-
attacker models appears superior since the attacker’s
attributes almost always contain uncertainty in re-
gards to the defender. Defining probability distribu-
tions as a way to model uncertainty might be a tool,
but applying distribution-free models in conservative
situations related to human lives and the critical in-
frastructures of a country seems more appropriate.

The concept of robust optimization was
first introduced in game theory by Aghassi and
Bertsimas.(34) They presented a distribution-free
model of incomplete information games in which the
players use a robust-optimization approach to deal
with payoff uncertainties. In their proposed robust
game, they relax the assumptions of Harsanyi’s
Bayesian game model,(35) which assumes prior
probability distributions for players’ type. In this
research, regarding the concept of robust game
theory by Aghassi and Bertsimas(34) and the seminal
work by Bertsimas and Thiele,(36) we propose a
robust-optimization game-theoretical approach to
model the uncertainty in attacker’s attributes where
uncertainty is characterized on bounded intervals
based on the attacker’s target valuation. In our pro-
posed model, the defender can adjust the robustness
of the solution against the level of conservatism,
which reflects the reality that the defense allocations
have enough robustness against any relaxation of the
attacker’s valuation of the targets.

3. PROBLEM FORMULATION

3.1. Notations

We study a one-shot Stackelberg game in which
the defender, the Stackelberg leader, chooses her de-
fense strategy first and then the attacker, the Stack-
elberg follower, observes this decision and makes his
own strategy choice. We define the following param-
eters and variables to propose the model:

Vi: defender’s valuation of target i ,
ui: attacker’s valuation of target i,

ũi : attacker’s valuation of target i in the
defender’s belief,
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[u−
i , u+

i ]: bounded interval of attacker’s valua-
tion of target i in the defender’s be-
lief,

Ai: attacker’s budget assigned to target i,
La

i (ui , Di , Ai): attacker’s expected damage of an at-
tack on target i ,

L̃d
i (Vi , Di , Ai): defender’s expected damage of an at-

tack on target i when the attacker’s
target valuation is unknown to the
defender,

λ: effectiveness ratio of an attack,
Di: defender’s budget allocated to target

i ,
D: total budget of the defender,

Di : least possible defense level required
to deter an attack on target i ,

�(Di): attacker’s best response when the de-
fender chooses Di for i = 1, . . . , N,

ψ : defender’s robust-optimization equi-
librium for the sequential game.

3.2. Damage Function Specifications

The strategic attacker observes the defense dis-
tribution among the targets and then chooses the
target to launch an attack on in order to maxi-
mize his payoffs. In our proposed model, we as-
sume that if target i is attacked, the expected dam-
age (Li ) depends on three factors: (i) the attacker’s
effort assigned to target i , Ai ; (ii) the defense allo-
cations to target i , Di ; and (iii) the player’s valua-
tion of target i , that is, Vi , ui , for the defender and
the attacker, respectively. To define the player’s op-
timization problem, let us specify a damage func-
tion with the following properties: L̃d

i (Vi , Di , Ai ) and
La

i (ui , Di , Ai ) are twice differentiable with respect
to the defender’s and attacker’s effort, where Di >

0, La
i (ui , Di , 0) = 0, and limDi→∞ La

i (ui , Di , Ai ) =
limDi→∞ L̃d

i (Vi , Di , Ai ) = 0. Meaning the expected
damage from an attack on target i is zero when either
the attacker’s effort is zero or the defender’s effort
goes to infinity. An appropriate candidate for the ex-
pected damage function, which nicely possesses the
mentioned properties, is the cumulative exponential
function, as used in Bier et al.(13) and Golalikhani
and Zhuang.(37) However, we recognize that there
are other types of damage functions, such as linear
functions as used by Golany et al.(20) and ratio func-
tions as used by Zhuang and Bier.(19) So, let us de-
fine the expected damage from the standpoint of the

defender and the attacker, respectively, as follows:

L̃d
i (Vi , Di , Ai ) = Vi (1 − e−λAi /Di ), (1)

La
i (ui , Di , Ai ) = ui (1 − e−λAi /Di ). (2)

In Equations (1) and (2), λ is the effectiveness
ratio of an attack. One unit increment in ratio Ai/Di

increases the expected damage on target i about
100e−λ%; λ may vary for different targets, but we
only investigate the effect of different levels of λ on
the defender’s optimal solution in the following sec-
tions. Note that the value of a target depends on the
decision-making environment and may consist of dif-
ferent measures. For example, the psychological im-
pact of an attack on a target may be more critical
than its imposed property loss (e.g., the terrorist at-
tack on the World Trade Center in New York on
September 11, 2001). To capture different aspects of
an attack, we assume that the total value of a target,
that is, Vi for the defender and ui for the attacker,
has three weighted dimensions: the target’s mone-
tary value to show its property, the target’s mortality
value to show the number of fatalities and injuries,
and the target’s strategic value to indicate the tar-
get’s political and psychological importance. Assum-
ing that the attacker has private information about
each element of the mentioned weights imposes un-
certainty about the defender’s optimization problem.
Throughout this article, for analytical convenience,
we assume that the uncertainty about the attacker’s
valuation of the target happens in the attacker’s total
value of the target, that is, ui .

3.3. Defender’s Optimization Model

The defender seeks to find the optimal defen-
sive resource allocation, Di, which minimizes the to-
tal expected damage,

∑N
i=1 L̃d

i (Vi , Di , Ai ), and the to-
tal defensive investment costs,

∑N
i=1 Di . A strategic

attacker observes the defense budget that is allo-
cated to each target, and then chooses which target
to attack to maximize his payoffs. As the defender
is strategic, she does not leave target i purposefully
undefended; otherwise, the attacker observes such
a target and may launch an attack to add Vi to his
payoffs with the least possible attack budget. Bier
et al.(12) propose a model in which the defender opti-
mally manipulates the attacker’s behavior by leaving
a target undefended. Levitin and Hausken(38) then
study the deployment of false targets as part of a de-
fense strategy. The defender wishes to minimize her
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defense costs and expected losses:

Min
N∑

i=1

Di +
N∑

i=1

Ii=i∗ L̃d
i (Vi , Di , Ai ) (3)

subject to

N∑
i=1

Di ≤ D , (4)

Di ≥ 0, i = 1, . . . , N, (5)

where, Ii=i∗ is the binary indicator that takes 1 if tar-
get i is attacked by a strategic attacker, and 0 other-
wise. Constraint (4) assures that the sum of defenses
allocated to all targets cannot exceed the total bud-
get of the defender, and Constraint (5) assures that
Di is a nonnegative variable. The defender then tries
to minimize her expected loss by choosing robust re-
sponses against a strategic attacker who has private
information about his target valuation. We will fur-
ther discuss the defender’s robust-optimization equi-
librium in Section 4.

3.4. Attacker’s Optimization Model

Recently, Wang and Bier(39) proposed an opti-
mization attacker model based on a multi-attribute
terrorist utility. Their model explores how intelli-
gence about terrorists’ preferences can affect opti-
mal resource allocations for infrastructure protec-
tion. Traditionally, the attacker’s behavior is defined
on a set of attack probabilities, based on certain tar-
gets,(13,18) which is more suitable in modeling a non-
strategic attacker because such an attacker decides
regardless of the defense allocations. Assigning a
probability distribution of the uncertainty of attacks
to certain targets in facing a strategic attacker is lim-
ited, since a strategic attacker may choose the tar-
gets after observing the defense distribution among
all targets.

Following Powell(18) and Bier et al.,(13) we as-
sume that the strategic attacker analyzes the defense
distribution; thus, concentrating his attack budget to
launch an attack on only one target, the target that
maximizes his payoffs. The attacker gets his highest
utility through following the equation:

La
i (ui∗ , Di∗ , Ai∗) − Ai∗ ,

i∗ = arg max
{

La
k (uk, Dk, Ak) − Ak

}
∀ k = 1, . . . , N.

(6)

Note that, in Equation (6), the attacker chooses
his efforts based on his private information about tar-
get valuation, which subsequently contaminates the
defender’s optimization problem with uncertainty.

4. SEQUENTIAL MOVES: STACKELBERG
EQUILIBRIUM APPROACH

4.1. Attacker’s Best Response

The concept in this section is based on the work
by Zhuang and Bier.(19) The defender employs the
attacker’s best response to estimate the attacker’s ef-
fort. This is a key feature of our research; it makes
it possible to define prespecified intervals to con-
sider uncertainty in the attacker’s attributes. Satisfy-
ing the optimality condition, ∂[La

i∗ (ui∗ ,Di∗ ,Ai∗ )−Ai∗ ]
∂ Ai∗

= 0,
yields the attacker’s best response as follows:

�(Di∗) =

⎧⎪⎪⎨⎪⎪⎩
0 if Di∗ ≥ D̄i∗ ,

Di∗

λ
ln

(
λui∗

Di∗

)
otherwise.

(7)

where i∗ = arg max{La
k(uk, Dk, Ak) − Ak},∀k =

1, . . . , N. Regarding Equation (7), D̄i = λui is the
least possible level of defense required to deter an
attack on target i∗ that satisfies the �(Di∗) = 0. If the
attacker’s valuation of target i∗ becomes small such
that ui∗ ≤ Di∗/λ, then the attacker does not attack
target i, which makes �(Di∗) = 0. Increasing the
attacker’s target valuation induces the attacker to
launch an attack in a way that if the attacker’s valu-
ation of target i becomes high such that ui∗ > Di∗/λ,
then the attacker’s response, �(Di∗), will be initially
increasing in Di∗ for 0 ≤ Di∗ < λui∗/e, and then
decreasing in Di∗ for λui∗/e ≤ Di∗ < D̄i∗ , and finally
zero for Di∗ ≥ D̄i∗ , in which the attacker will be
completely deterred.

As we show in Proposition 1, some of the targets
may be left undefended in the optimal defense
allocation. On the other hand, the attacker has a
continuous-attack level and can benefit the whole
value ui of an undefended target (from Equation (2))
by incurring an infinitesimal attack level. In this arti-
cle, we assume that the attacker incurs a fixed attack
cost to strike the target, as studied in Bier et al.,(12)

Zhuang et al.,(23) Golalikhani and Zhuang,(37)

Konrad,(40) Zhuang and Bier,(41) Dighe et al.,(42)

Zhuang,(43) and Bier and Haphuriwat.(44)
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4.2. Defender Robust-Optimization Equilibrium

This section aims to show how the defender can
incorporate the uncertainty in the attacker’s valua-
tion of targets in her optimal decision while no prior
belief exists about such an uncertainty. Before find-
ing the defender’s robust-optimization model, let us
first find out the structure of the defender’s optimal
strategy.

PROPOSITION 1. In a sequential game between a
defender with optimization model (3)–(5) and an
attacker with optimization model (6), there is an op-
timal threshold for each target to be defended in equi-
librium such that target i is defended if and only if the
defender’s valuation of the target is greater than its op-
timal threshold. Such a threshold is increasing in the
attacker’s valuation of the target, but it is decreasing in
the defender’s budget.

Proof: See the Appendix.

REMARKS: First note that in the sequential game,
some targets may be left undefended in equilib-
rium. This result may critically depend on our as-
sumption that the attacker could attack at most
one target. If this assumption was relaxed, the de-
fender would defend more targets, since the attacker
could destroy those economically undefended tar-
gets with negligible costs. Second, note that the de-
fender, as the leader, tries to choose her best effort
by plugging the attacker’s best response (7) into her
optimization model (3), but there are unknown pa-
rameters, ũi∗ , in the attacker’s best response in the
defender’s point of view, necessitating robust deci-
sions by the defender. The traditional way to handle
such a static incomplete information game was pro-
posed by Harsanyi,(35) which determined the Bayes-
Nash equilibria. It assumes that the players have
conditional probability distributions derived from a
certain probability distribution over the parameters
unknown to the various players. However, the equi-
libria are seriously affected by prior assumptions
about the probability distributions. In Aghassi and
Bertsimas,(34) the authors proposed a distribution-
free model of incomplete information games, which
relaxes the assumptions of the Harsanyi’s Bayesian
model, in which the players use robust-optimization
approaches to contend with payoff uncertainties.

Before determining the defender’s robust-
optimization equilibrium, let us assume that the
defender can define a free-distribution interval for
the attacker’s target valuation such that ũi ∈ [u−

i , u+
i ].

The assessment of the lower and higher bounds is

the main obstacle in using the robust-optimization
approach when uncertainty is characterized on
bounded intervals, but on the other hand, the de-
cisionmaker can extend the length of an interval
to satisfy her belief about uncertain parame-
ters. Assuming l̄i = 1/ũi , alternatively we can say
l̄i ∈ [1/u+

i , 1/u−
i ], which is centered at its nominal

value l̄i and of half-length l̂i , but its exact value is
unknown. The nominal value may be the decision-
maker’s prior belief about the value of uncertain
parameters, which is, in our case, the defender’s
prior belief about the attacker’s valuation of the
targets. In particular, the defender may assume her
valuation of target i, which is Vi, as the nominal
value for the attacker’s valuation of target i, which is
ui, and then define the extreme bounds as a fraction
of Vi, for example, [0.5Vi, 1.5Vi]. The nominal value
and the half-length value can be determined by
l̄i = ( 1

u−
i

+ 1
u+

i
)/2 and l̂i = ( 1

u−
i

− 1
u+

i
)/2. It is a practi-

cal approach to adjust the level of conservatism in
the solution so that a reasonable tradeoff between
robustness and performance is achieved. We define
the scaled deviation of the uncertain parameter
l̂i from its nominal value as zi = l̂i − l̄i/l̂i . It is
clear that the scaled deviation takes on a value in
[–1, 1]. Moreover, following Bertsimas and Sim,(33)

we impose a constraint on uncertainty in the follow-
ing way: the total scaled deviation of the uncertainty
parameters cannot exceed some threshold �, called
the budget of uncertainty, which leads to:∑

i∈J

|Zi | ≤ �, (8)

where J is the set of indexes of the uncertain pa-
rameters. By taking � = 0 (or, � = |J|), we obtain
the nominal (or, worst) case, respectively. Bertsimas
and Sim(33) show that having the threshold � varied
in (0, |J|) allows greater flexibility to build a robust
model without excessively affecting the optimal cost.
In order to avoid assigning certain probability dis-
tributions to the attacker’s target valuation, we con-
sider the budget of uncertainty in the defender’s ro-
bust optimization. To define the defender’s robust-
optimization equilibrium, consider the following set:

� =
{

l̃i ∈ [l̄i − l̂i , l̄i + l̂i ]∀i ∈ J,
∑
i∈J

[|l̃i − l̄i |
/

l̂i ] ≤ �

}
,

(9)

where � includes all uncertain variables in the model
whose total scaled deviations cannot exceed the
threshold �. We now use the concept of robust game
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theory proposed by Aghassi and Bertsimas(34) to ob-
tain the robust-optimization equilibrium for the de-
fender by plugging the attacker’s best response into
the defender’s optimization model, which creates the
following equilibrium:

ψ = arg min∑N
ĩ=1 Di ≤D

l̃i ∈�

N∑
i=1

Di +
N∑

i=1

Ii=i∗ Vi

(
1 − l̃i Di

λ

)
, (10)

where l̃i = 1/ũi . Note that Equilibrium (10) is a
linear robust-optimization model with respect to
the defender’s effort where uncertainty is defined
on bounded intervals. Bertsimas and Sim(28) show
that uncertain linear programming problems can be
solved as a more complex linear programming prob-
lem by reformulating their robust linear counter-
parts. Moreover, Bertsimas and Thiele(36) propose
the budget of uncertainty to flexibly adjust the level of
conservatism of robust solutions. To characterize the
defender’s robust-optimization equilibrium stated in
Equilibrium (10), we use the robust-optimization ap-
proach presented by Bertsimas and Thiele,(36) and we
also describe how the concept of the budget of uncer-
tainty can be employed to adjust the robustness of
the defender’s decision against the uncertainty in the
attacker’s attributes. The attacker chooses the only
target that maximizes the expected damage while
the defender tries to minimize damage, which en-
ables us to have the equivalent defender’s robust-
optimization problem as follows:

Min
N∑

i=1

Di + z (11)

subject to

Vi

(
1 − l̃i Di

λ

)
≤ z, i = 1, . . . , N, (12)

N∑
i=1

Di ≤ D, (13)

Di ≥ 0, i = 1, . . . , N, (14)

l̃i ∈ �. (15)

Note that, in the above optimization model, con-
straint set (12) assures that the expected damage of
target i is counted in the objective function only if the
attacker chooses target i to launch his attack on. The
model presented in (11)–(15) is a robust linear op-
timization problem, where uncertainty incurs in the

constraints’ coefficients. It can be reformulated to its
robust linear counterpart by linearization techniques
presented by Bertsimas and Thiele.(36) We refer the
reader to Bertsimas and Thiele(36) to see how the
robust linear counterparts of our above model can be
obtained.

4.3. The Role of Budget of Uncertainty

To adjust the robustness of defensive budget
allocations to the defender’s level of conservatism,
we impose a budget of uncertainty, �, that is the
total scaled deviation of the uncertain parameters,∑

i∈J |zi |, which cannot exceed in �. In particular, �

is an exogenous variable in the model that controls
the uncertainty in decision making. We will show that
the robustness of the solution incurs more cost to the
decisionmaker, which is called the price of robust-
ness. As the budget of uncertainty controls the to-
tal scaled deviation of uncertain parameters, the up-
per value of � is equal to the number of uncertain
parameters. The idea here is that the most pertur-
bation in the model happens when all uncertain pa-
rameters take on the values in their upper or lower
bounds in prespecified intervals, and in this case
zi = 1 or zi= − 1,∀i ∈ J , respectively, and conse-
quently

∑
i∈J |zi | equals the number of members of

l, where l includes all uncertain parameters.
Bertsimas and Sim(33) show that in the model

with N constraints, each of them has ln uncertain pa-
rameters, and one can control the uncertainty in con-
straint n by considering 0 ≤ �n ≤ |Jn|, where �n is the
budget of uncertainty related to the nth constraint.
In the constraint set (12) in the defender’s robust-
optimization equilibrium, we have N constraints each
having one uncertain parameter, which means Jn = 1
for n = 1 , . . . , N and 0 ≤ �n ≤ 1.In the next section,
we apply the proposed game to real data to see how
the defender is able to trade off between the robust-
ness of his solution and the level of his conservatism
that imposes the price of robustness.

5. APPLYING ROBUST GAME TO
REAL DATA

We apply our approach to data from the FY
2004 Grant Allocations, and also Willis et al.,(14)

which provides estimates on the expected annual
terrorism losses to the 10 most valuable urban ar-
eas of the United States (Table I). According to
Section 3.2, the target value consists of three dimen-
sions. In Table I, columns 2, 3, and 4 correspond to
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Table I. Expected Property Losses, Expected Fatalities and Injuries, UASI Budget Allocations for the 10 Urban Areas with the Highest
Losses ($ Million),(14) Air Departures from U.S. Department of Transportation (DOT)(13)

Expected Expected Air Departures FY 2004 UASI Grant
Urban Area Property Losses Fatalities & Injuries (Major & Minor Airports) Allocations ($ Million)

New York 413 5350 23599 47
Chicago 115 1212 39949 34
San Francisco 57 472 19142 26
Washington, DC-MD-VA-WV 36 681 17253 29
Los Angeles-Long Beach 34 402 28816 40
Philadelphia, PA-NJ 21 199 13640 23
Boston, MA-NH 18 225 11625 19
Houston 11 160 20979 20
Newark 7.3 74 12827 15
Seattle-Bellevue-Everett 6.7 88 13578 17
Total 719 8863 201408 270

different dimensions of a target value. Specifically,
the expected property losses correspond to the mon-
etary value, the total number of fatalities and injuries
show the mortality value, and the total air departures
from both major and minor airports indicate the po-
litical value. The total target valuation is $719 million
and the total defensive budget is $270 million.

We study how the defender’s optimal strat-
egy is affected by the uncertainty on the at-
tacker’s attributes by solving the defender’s robust-
optimization equilibrium (11)–(15) in different val-
ues of � (budget of uncertainty). The length of the
bounded interval that the defender assumes about
the attacker’s valuation of target i is also a critical fac-
tor in the defenses allocated to target i, which leads
us to determine the defender’s optimal solution for
different lengths of bounded intervals (u+

i − u−
i ). We

also study the effect of robustness of the defender’s
solution on the objective value of nominal problems
using the concept of the price of robustness. Finally,
the impact of the effectiveness ratio of attack, λ, on
the defense allocation is studied. While the goal of
this extensive example is to study the uncertainty
in the attacker’s value of targets on defense alloca-
tions, simplified later, we assume that the target value
equals the expected property loss. One can find the
results when the target value equals other measures
in the Appendix.

For the effectiveness ratio of attack λ = 0.05,
Fig. 1 shows how the defensive budget allocations
may vary among targets for different values of �, and
also when the defender extends the extreme bounds
of the intervals that she assumes concerning the at-
tacker’s valuation on certain targets. The figures on
the left panel shows the portion (%) of each target

from the budget allocated to all targets, and the right
panel shows the absolute value ($ million) of the bud-
get allocated to each target.

Regarding the left panel of Fig. 1, when the de-
fender becomes more uncertain about the attacker’s
valuation of targets, that is, when � increases, the
defense allocation highly depends on the length of
the interval that the defender assumes about the at-
tacker’s value of the targets. Extending the extreme
bounds of the interval, when each uncertain param-
eter can violate more than 80% of its scaled devia-
tion, the defensive budget is mostly allocated to more
valuable targets. In particular, when the defender
assumes ũi ∈ [0.1Vi , 10Vi ], then most of the defen-
sive budget is allocated to New York and Chicago
as the two most valuable targets. On the other hand,
when the defender shortens the length of the inter-
vals, when ũi ∈ [0.8Vi , 1.25Vi ], then she faces less un-
certainty about the extreme bounds on the intervals,
which results in the defensive budget distribution
among the targets. From the right panel figures, it is
intuitively inferred that the total defensive budget in-
creases in the budget of uncertainty. Indeed, the de-
fender increases the defense level when she becomes
more uncertain about the attacker’s value of the tar-
gets.

Fig. 2 shows how much extra loss the defender
would have to suffer in comparison with the base-
line case, if she wants to assure a specific level of
robustness. We call this extra loss the price of ro-
bustness. Assuming larger values of the budget of un-
certainty gives more robust solutions. However, it is
clearly inferred from Fig. 2 that, for any length of in-
terval, the more robust the solution is, the greater the
price of robustness the defender would endure. The
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Fig. 1. Optimal defensive budget allocations among the seven most valued cities in the United States as a function of the budget of uncer-
tainty (x-axis) when λ = 0.05, V: defender valuation of the target.
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Fig. 2. The tradeoff between cost and
robustness: price of robustness as a
function of the budget of uncertainty
when the effectiveness ratio of attack
λ = 0.05.

increasing trend for the price of robustness as a func-
tion of � is more significant for longer intervals,
which means that for a given level of robustness, the
defender would suffer more of a loss when she ex-
tends the extreme bounds of the interval.

It is also inferred from Fig. 2 that increasing the
robustness of the solution is more costly when the
defender assumes longer intervals about uncertain
parameters. For example, in Fig. 2, the extra cost
to increase the robustness of the solution from the
case when uncertain parameters are allowed to vio-
late in 80% of their scaled deviations to the case that
they are allowed to violate in 90% of those, is $1.164
million for [0.8Vi, 1.25Vi], $7.214 million for [0.5Vi,
2Vi], $27.91 million for [0.2Vi, 5Vi], and $59.424
million for [0.1Vi, 10Vi].

Now let us study the impact of the effectiveness
ratio of an attack λ on the defender’s optimal so-
lution for different levels of robustness. In Fig. 3,
we describe how the defensive budget distribution
among the targets varies for different values of λ

when the defender assumes that the attacker’s val-
uation of target i belongs to [0.2Vi, 5Vi].

From the left panel of Fig. 3, it is derived that
the defensive budget is mainly distributed among the
most valuable targets when the effectiveness ratio of
attack λ goes to high values. Indeed, for high val-
ues of λ, the marginal benefit from hardening the
most valuable targets is greater than that of defend-
ing low value targets. In particular for λ = 0.02 and
λ = 0.2, as the low values for λ, the defensive bud-
get is distributed among all targets; for λ = 0.5, it
is distributed among the five most valuable targets:
New York, Chicago, San Francisco, Washington, and
Los Angeles; and for λ = 1, the defensive budget is

distributed between only two of the most valuable
targets: New York and Chicago. From the right panel
figures, it is also inferred that, for a fixed value of
�, the defender increases the total defensive budget
among all targets when λ increases.

In Fig. 4, we study the price of robustness in
terms of the budget of uncertainty in different values
of λ.

Regarding Fig. 4, for a given level of robustness,
when uncertain parameters violate less than 78% of
their scaled deviations, increasing the robustness of
the solution is more expensive when λ rises. For ex-
ample, in Fig. 4, given the robustness for the de-
fense allocations, when uncertain parameters have
60% freedom to violate, it costs $6.866 million for
λ = 0.02, $60.52 million for λ = 0.2, $108.68 million
for λ = 0.5, and $155.55 million for λ = 1. Note that,
for big values of λ, the price of robustness no longer
changes when uncertain parameters have high per-
turbation. For example, for λ = 1, when uncertain
parameters have the freedom to violate more than
70% of their scaled deviations, the price of robust-
ness is fixed to $196.77 million. In fact, for large val-
ues of λ, when perturbation in uncertain parameters
is high, then the defensive budget is mainly allocated
to the most valuable targets, and, in this case, there
is no more chance to increase the robustness of the
solution.

6. CONCLUSIONS AND FUTURE
RESEARCH DIRECTIONS

In this article, we studied a sequential defender-
attacker game with incomplete information in which
the defender plays first, and then the strategic
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Fig. 3. Optimal defensive budget allocations among seven of the most valuable cities in United States as a function of the budget of
uncertainty (x-axis) when ũi ∈ [0.2Vi , 5Vi ].
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Fig. 4. The tradeoff between cost and
robustness: the price of robustness as a
function of the budget of uncertainty
when ũi ∈ [0.2Vi , 5Vi ].

attacker, who has private information about his tar-
get valuation, observes the defenses, and central-
izes his effort to launch only one attack. Modeling
the attacker’s attributes as uncertain parameters on
bounded intervals, we proposed robust-optimization
equilibrium for the defender, which gives her the
flexibility to adjust the robustness of the solution to
the level of her conservatism. By applying our pro-
posed approach to real data, we studied the effect of
the defender’s assumptions of the extreme bounds of
the uncertain parameters on the robustness of her so-
lution, and also the impacts of the effectiveness ratio
of attack on the robustness of the defender’s solution.

In practice, it is difficult to assess attacker pri-
vate information, including target valuation, justi-
fying the robust approach proposed in this article.
For reference on methods of compiling information
about how the attacker and defender value targets,
see Keeney.(45)

This article can be extended by considering a sce-
nario when the attacker tries to attack on multiple
targets in a simultaneous game, where the value of a
set of targets is more than the sum of each individ-
ual target. Such a model would be a robust version
of Colonel Blotto games. In our model, the uncer-
tainty is defined as intervals with known upper and
lower bounds. Such a way to model uncertainty is ap-
plicable only when we handle an uncertain parameter
with continuous levels. One can extend the proposed
model in this article to focus on facing with nonstrate-
gic attackers, as nonstrategic attacking is consid-
ered exogenously (e.g., he may only strike the most
valuable target, regardless of the observed defense
levels).
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APPENDIX

Proof of Proposition 1. In a sequential game on
hand, we need first extract the attacker’s best re-
sponse function (presented as Equation (7)) and
then plug it into the defender’s optimization prob-
lem (3)–(5) to obtain her best response. Consider the
defender’s optimization problem as follows:

Min
N∑

i=1

Di +
N∑

i=1

Ld
i (Vi , Di , Ai )

subject to
N∑

i=1

Di ≤ D

Di ≥ 0, i = 1, . . . , N.

To satisfy the optimality condition, first we need
to relax the budget constraint. The common way to



942 Nikoofal and Zhuang

Fig. A1. Optimal defensive budget allocations among the most valuable cities in the United States as a function of the budget of uncertainty
when target value corresponds for the mortality value (total number of Fatalities and injuries).

Fig. A2. Optimal defensive budget allocations among the most valuable cities in the United States as a function of the budget of uncertainty
when target value corresponds to the political value (total air departures).

deal with such a condition is to penalize the objective
function by μ(N

∑N
i=1 Di − D) , where μ ≥ 0 is the

Lagrange multiplier. The Lagrangian function might
be defined as follows:

L(Di , μ) =
N∑

i=1

Di +
N∑

i=1

Ld
i (Vi , Di , Ai )

+μ

(
N∑

ι=1

Di − D

)
. (A1)

Plugging the attacker’s best response function
into the Lagrangian function above gives the de-
fender’s optimization problem as follows:

L(Di , μ) =
N∑

i=1

Di

[
1 − Vi

λui
+ μ

]
+

N∑
i=1

Vi − μD.

(A2)

It is clear that in optimal solution of the above
Lagrange function Di ≥ 0 if its coefficient is less
than zero. In words, target i is defended if and only

if its valuation is greater than a threshold, that is,
Vi > λui (1 + μ).

Optimal Defense Allocation for Different
Dimensions of Target Value

Figs. A1 and A2 show the optimal defensive bud-
get allocations among the most valuable cities in the
United States as a function of the budget of uncer-
tainty when target value, respectively, corresponds to
the mortality value (total number of fatalities and in-
juries) and political value (total air departures). We
assume that the attacker’s valuation of target i be-
longs to [0.2Vi, 5Vi], and the effectiveness ratio of at-
tack λ = 0.2.

REFERENCES
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