
Risk Analysis DOI: 10.1111/risa.12679

Dynamic Forecasting Conditional Probability of Bombing
Attacks Based on Time-Series and Intervention Analysis

Shuying Li,1,2 Jun Zhuang,2,∗ and Shifei Shen1,∗

In recent years, various types of terrorist attacks occurred, causing worldwide catastrophes.
According to the Global Terrorism Database (GTD), among all attack tactics, bombing at-
tacks happened most frequently, followed by armed assaults. In this article, a model for an-
alyzing and forecasting the conditional probability of bombing attacks (CPBAs) based on
time-series methods is developed. In addition, intervention analysis is used to analyze the
sudden increase in the time-series process. The results show that the CPBA increased dra-
matically at the end of 2011. During that time, the CPBA increased by 16.0% in a two-month
period to reach the peak value, but still stays 9.0% greater than the predicted level after the
temporary effect gradually decays. By contrast, no significant fluctuation can be found in the
conditional probability process of armed assault. It can be inferred that some social unrest,
such as America’s troop withdrawal from Afghanistan and Iraq, could have led to the increase
of the CPBA in Afghanistan, Iraq, and Pakistan. The integrated time-series and intervention
model is used to forecast the monthly CPBA in 2014 and through 2064. The average rela-
tive error compared with the real data in 2014 is 3.5%. The model is also applied to the total
number of attacks recorded by the GTD between 2004 and 2014.
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1. INTRODUCTION

There are eight known attack tactics recorded in
the Global Terrorism Database (GTD),(1) including
armed assault, assassination, barricade incident,
bombing attack, hijacking, infrastructure attack, kid-
napping, and unarmed assault. The most frequently
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used attack tactic is the bombing attack, followed by
armed assault, as shown in Fig. 1.

Over 50% of global terrorist attacks are bomb-
ing attacks. A reason for this could be that it is
relatively easier to make a bomb than some other
weapons, such as guns. For example, bombs used in
the 2013 Boston Marathon bombing attack were be-
lieved to be homemade improvised explosive devices
(IEDs).(2) A second reason could be that bombs

are easier to transport and more lethal in a large
crowd than other weapons. Some bombing attacks
have caused a large number of casualties. For ex-
ample, the 2011 Russia Domodedovo International
Airport bombing attack caused 38 deaths and 168
injures; the January 24, 2011 Iraq bombing attacks
caused 35 deaths and 65 injures; the 2013 Boston
Marathon bombing caused three deaths and 264
injures; and the 2014 Pakistan Jinnah International
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Fig. 1. The occurrence probabilities of different attack tactics
from 2000 to 2014.
Source: The GTD.

Airport bombing caused 38 deaths and 22 injuries.(1)

Bombing attacks usually cause widespread panic
among the public. People injured by bombings often
end up disabled and/or with psychic trauma. For
example, Mark Fucarile and other survivors of the
Boston Marathon bombing lost their limbs and have
difficult lives since then.(3) With all of these facts
combined, bombing attacks have become one of the
most threatening tactics chosen by terrorists.

Deisler and Haimes(4,5) pointed out that risk
analysis research is a useful way to reduce the risk of
terrorist attacks. Past papers have developed meth-
ods to study the risk of bombing attacks happening
in different scales of targets; e.g., large regions, in-
frastructures, or even crowds. For example, Rosoff(6)

analyzed the risk of the Ports of Los Angeles and
Long Beach being attacked by dirty bombs. Leung(7)

studied how to protect bridges from bombing attacks
as well as some other attack tactics. Imana(8) stud-
ied the damages to bodies in a crowd when suicide
bombing attacks happened. These researches mainly
focused on the consequence of the bombing attacks.
The occurrence probabilities of different types of at-
tacks are also key factors influencing the level of
risk. Researches developed on studying the occur-
rence probabilities of specific types of attacks, such
as arson(9) and chemical, biological, radiological, and
nuclear (CBRN) attacks.(10) These kinds of studies
could help defenders decide the priorities of defen-
sive strategies against different tactics of attacks.

The changes in attack data over time help us bet-
ter understand and prepare for terrorist attacks. For
example, Bogen(11) used data between 1968 and 2004
to forecast the maximum victims and event rates
through 2080 in Israel and other regions. Clauset(12)

studied the frequency and severity of terrorist

attacks worldwide since 1968 to make a forecast of
the future attacks. Hausken(13) studied the crime
intensity under different situations of imprisonment
development in Norway, England and Wales, and
the United States and made a forecast through
2103. However, it is not enough to understand the
law of severe attacks or crimes in the time domain.
The development about global attackers’ decision
making on choosing different tactics of attack is also
an interesting topic needing to be studied. It could
contribute to related studies on counterterrorism
(e.g., the development of lethal weapons, and the
effectiveness of specific weapon policy).

This article fills this gap by modeling and
forecasting the conditional probability of bombing
attacks (CPBAs) based on time-series and inter-
vention analysis by using data from the GTD. The
remainder of this article is structured as follows. Sec-
tion 2 introduces the methods and related theories
used in this research. Section 3 illustrates the process
of building the model and shows the results. Section
4 concludes. The Appendix applies the model to the
total number of attacks and shows the result.

2. METHODOLOGY

2.1. Time-Series and Intervention Analysis

The data in the GTD are used to calculate the
conditional probabilities of different attack tactics
based on the assumption that the intentions of differ-
ent attack tactics have the same probabilities of being
recorded. The conditional probability Cm of the at-
tack tactic m is calculated in Equation (1), where Ni is
the event number of tactic i recorded in the database.

Cm = Nm∑8
i=1 Ni

, i = 1, . . . , 8 (1)

In particular, the conditional probabilities in
a certain period should remain statistically stable
if no influential exogenous events occurred. It will
not be easily influenced by the completeness of the
data collection. Thus, changes to the conditional
probabilities may indicate a series of attacks, the
development of more effective attack weapons, or
the influence of some exogenous events. That is,
when the conditional probability of a certain attack
tactic goes up, or deterministic influential events
happen, it is time for the government to allocate
more targeted defensive resources; e.g., using more
bomb-sniffing dogs to search for suspicious bombs.
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Fig. 2. Time-series plot of the conditional probability of bombing
attack (CPBA) worldwide from 2004 to 2014.

When looking at data in the time domain, trends
and sudden changes can be analyzed, showing the
dynamic information of terrorist attacks. Time-
series methods have often been used to analyze
the information in time-related data by finding out
the statistical regularity inside the chronological
ordered random data set.(17) For example, Enders
and Sandler(14–16) used time-series and other econo-
metric methods to study the difference between
domestic and transnational terrorism, especially how
transnational terrorism affects global economics and
political environments. The formal and structural
method of time-series analysis is put forward by
Box and Jenkins in 1976. Useful models include the
autoregressive-moving average (ARMA) model, the
autoregressive integrated moving average (ARIMA)
model, etc.(18) When analyzing the sudden changes in
the process, intervention analysis is used to analyze
the influence of exogenous events.(19)

2.2. Data and Analysis Process

Supported by the National Consortium for the
Study of Terrorism and Responses to Terrorism
(START), the GTD has collected information on
over 140,000 terrorist attacks worldwide from 1970
to 2014. Considering data that are more relevant to
today’s global political and economic climates, the
monthly CPBA data between 2004 and 2014 are used
to form the fluctuant time series, as shown in Fig. 2.
Our research includes four steps to build the inte-
grated forecast model: (1) build a time-series model
to fit the CPBA process between January 2004 and
October 2011; (2) make forecasts between Novem-
ber 2011 and December 2013, fit the residuals be-
tween the predicted and observed data with the

intervention model; (3) integrate the time-series
model in step 1 and intervention model in step 2
to generate a new model; and (4) validate the new
model by forecasting the CPBA in 2014. Compare
the fitted and observed data. Make a forecast of the
CPBA through 2064.

3. DATA PROCESS AND RESULTS

3.1. Time-Series Modeling of the CPBA Process

Fig. 2 shows that the CPBA data before and after
October 2011 differ significantly. First, the observed
CPBA data before October 2011 (presented as pro-
cess {Xt }) are analyzed using the time-series model.

The ARMA(p,q) model integrates the autore-
gressive model and the moving average model.
Considering a time-series process {Mt }, the moving
average model only considers a finite number of dis-
turbances fitted to the current value, so in the moving
average model, the current disturbance and the dis-
turbances q periods ahead are used for regression;
that is, M̂t = μ + et − ∑q

i=1 θi et−i . In the autoregres-
sive model, contributions of all disturbances in the
past are considered. After derivation, variables p
periods ahead in the series are used as regression
variables of the current variable; that is, M̂t =
δ + ∑p

i=1 φi yt−i + et . The parameters include δ, φ, μ,
and θ . The process {et } is the series of disturbances,
also known as white noise. The ARMA model can
only be applied to stationary series(20) whose statisti-
cal properties do not change over time. An ARIMA
(p,d,q) model(21) can be used to deal with the nonsta-
tionary but homogeneous process, which means that
the first or higher order differences of the original
nonstationary process could produce a stationary
ARMA process. The new notation d denotes the
orders of difference required by the original process.
However, the excessive difference procedure should
be avoided when using the ARIMA model.

A time-series process that has a unit root (mean-
ing that 1 is a root of the process’s characteristic
equation) is considered to be nonstationary.(22) So,
a unit root test is often conducted before the model
is built. In this article, an augmented Dickey–Fuller
(ADF) test(23) is used to determine the fiducial
probability of a unit root existence in the time-series
sample. The more negative the t value is, the stronger
to reject the hypothesis that there exists a unit root
at some level of confidence. The process {Xt } is
tested by the ADF test. The result in Table I shows
that fiducial probability of the t-value is much less
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Table I. Unit Roots Test of Process {Xt }

t Value Fiducial Probability

ADF test value −8.08 <0.1%
Reference value −3.50 1%
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Fig. 3. The ACF and the PACF of the process {Xt } (with 5% sig-
nificance limits for the autocorrelations).

than 0.1%, which indicates that the process {Xt } is at
least trend stationary (i.e., the process can generate a
stationary one after removing the underlying trend).

The autocorrelation function (ACF),(18) which
is also known as serial correlation, means that there
is correlative relationship between two different
random variables in the series. If variables in the
series are significantly correlated with the variables
p periods ahead, the series is p-order autocorrelative
(self-regression). However, the ACF only shows
the simple correlative relationship between the two
variables without removing the influence of data
between these two variables, which makes it difficult
to distinguish series of different orders. The partial
ACF (PACF) solves this problem by removing the

Table II. Unit Roots Test of Process {Yt }

t Value Fiducial Probability

ADF test value −10.59 <0.1%
Reference value −3.50 = 1%

impact of other random variables, except the two
variables being analyzed.

The ACF and PACF of the process {Xt } are
shown in Fig. 3. The 5% significance levels(24) shown
by the two horizontal dotted lines are used to distin-
guish the lag values that are statistically significant
from zero. Fig. 3 shows that the lag values of the ACF
and the PACF cannot be extracted clearly for pro-
cess {Xt }. Therefore, it is not acceptable to build an
ARMA model directly.

The process {Yt } is used to denote the first differ-
ence series of the {Xt }. And the process {Ŷt } and the
{X̂t } are used to denote the fitted series of {Yt } and
{Xt }, respectively, where the process {X̂t } is derived
from the {Ŷt }. The unit roots of the process {Yt } are
examined by the ADF test, with the results shown in
Table II. The hypothesis that the process {Yt } does
not have a unit root is accepted. The ACF and PACF
of the {Yt } together with the 5% significance levels
are shown in Fig. 4. It shows that the ACF of the
{Yt } cuts off after lag 1 and then follows a sinusoidal
pattern about 0, while the PACF tails off near 0.
According to the first-order negative correlation
features, the ARMA(0,1) model is chosen to fit the
process {Yt }.(25)

The process {et } calculated by the fitted pro-
cess {Ŷt } is examined. The ACF and the PACF plots
(Fig. 5) of the {et } show that there is no significant au-
tocorrelation or partial autocorrelation. Data in the
process {et } have an average value of −0.32%, which
is close to 0. Due to these findings, the process {et }
can be defined as white noise. Thus, the first-order
difference is sufficient for modeling, and Equation
(2) shows the fitted function of the process {Ŷt }:

Ŷt = et − 0.891et−1 − 0.093 (2)

Consequently, the fitted ARIMA(0,1,1) function
of the process {Xt } is shown in Equation (3).

X̂t = X̂t−1 + et − 0.891et−1 − 0.093 (3)

The process {X̂t } contains a deterministic drift,
so a downward trend with the slope of −0.09% is
expected when doing the forecast. The fitted values
in Fig. 6 show that the CPBA gradually increased
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Fig. 4. The ACF and the PACF of the process {Yt } (with 5% sig-
nificance limits for the autocorrelations).

from 52.9% to 58.8% between 2006 and 2008, and
then decreased to 52.0% till the end of 2011. At that
time, there is a significant jump in the CPBA process.

3.2. Intervention Modeling of the CPBA Process

At the end of 2011, there is a sudden jump in the
CPBA process over a two-month period, as shown in
Fig. 6. An intervention analysis is done to understand
how the data changed under external intervention.

There are two general types of indicator
variables used to transfer the two kinds of basic in-
terventions, a step variable (denoted by S(T)

t−1) for step

intervention and a pulse variable (denoted by P(T)
t−1)

for pulse intervention, as defined in Equation (4).

S(T)
t =

{
1, t ≥ T
0, t < T

, P(T)
t =

{
1, t = T
0, t �= T

(4)

The step intervention means that the effect
lasts for a period of time after the intervention
appears at time T. It describes a lasting effect in
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Fig. 5. The ACF and the PACF of {et } (with 5% significance limits
for the autocorrelations).
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Fig. 6. Fitted and forecasted values of the CPBA from 2004 to
2013 by the time-series model.

the process. For example, if a technique has been
developed to fight against a certain attack tactic
efficiently, the conditional probability of this attack
tactic may have a negative step intervention. The
pulse intervention describes a relatively temporary
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Fig. 7. Examples of step intervention and pulse intervention.

Fig. 8. Examples of one intervention response.

change that only affects the very moment after
the intervention appears. For example, the sudden
change of regime in a country may cause a pulse
intervention in the terrorist attacks. The examples of
two basic interventions are shown in Fig. 7. There are
several patterns of response that can be transferred
with the two basic interventions. Fig. 8 is one of
the typical responses having both the temporary
and permanent effects. It represents a sudden pulse
change with magnitude (ω1 + ω2) (the total strength
of the temporary and permanent effects) after time
T, and then gradually decays with rate δ (decay rate
of temporary effect) and goes back to magnitude
ω2 (the strength of the permanent effect). Equation
(5) shows the model of Fig. 8. It is chosen because
of the close pattern shown in Fig. 9. When doing
a long-term forecast, the intervention events are
assumed to follow a Poisson distribution with a rate
of λ per month in the prediction model. The strength
of the temporary effect and permanent effect follows
the normal distribution with mean of μ1 and μ2 and
standard deviation of σ1 and σ2. The decay rate of
temporary effect also follows the normal distribution
with mean of μδ and standard deviation of σδ :

Ît =
(

ω1 B
1 − δB

+ ω2 B
1 − B

)
P(T)

t . (5)
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Fig. 9. Partitions of intervention response from 2011 to 2013.
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Fig. 10. Fitted values of intervention response from 2011 to 2013.

The residuals between the observed and fitted
values are calculated to form the intervention re-
sponse series. The process { Ît } is used to denote the
fitted intervention response series, which includes
three parts: (1) the preintervention response (part I
in Fig. 9), which can be fitted by the model in Section
3.1, (2) midintervention (part II in Fig. 9), where the
CPBA suddenly increased significantly and reached
the peak value in a two-month period, and (3) postin-
tervention (part III in Fig. 9), where the temporary
effect of the intervention gradually fades away.

The least-square method is used to assess pa-
rameters ω1, ω2, and δ. The most suitable values are
ω1 = 0.07, ω2 = 0.09, and δ = 0.90. The smallest least
variance is 0.018, which shows the model fits well.
The values of ω1 and ω2 show that the CPBA has in-
creased by 16.0% to reach the peak value, but still
stays 9.0% greater than the predicted level after the
temporary effect gradually decays. The intervention
response fitting is shown in Fig. 10. Consequently,
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Fig. 11. The CPBA comparison between Iraq, Afghanistan, Pak-
istan, and other countries from 2004 to 2014.

Table III. The Comparison of the Terrorist Attacks between
Iraq, Afghanistan, Pakistan, and Other Countries from

November 2011 to December 2013

Region Total Proportion Bombing Proportion

Three countries 10,757 52.2% 7,775 62.5%
Others 9,842 47.8% 4,666 37.5%

Equation (6) is used to represent the intervention
response:

Ît = 1.90 Ît−1 − 0.90 Ît−2 + 0.16P(T)
t−1 − 0.15P(T)

t−2 .(6)

A search of the time node is performed to find
out what exogenous event influenced the CPBA pro-
cess. At the end of 2011, America withdrew all troops
from Iraq(26) and some troops from Afghanistan,(27)

left unstable governments in these two countries, and
unsolved conflicts between Afghanistan and Pak-
istan. Social unrest became a big problem in these
countries. According to the performed analysis, these
events may have led to a sudden increase in the num-
ber of bombing attacks in these three countries. The
CPBA of these three countries was separated from
other countries in the world, as shown in Fig. 11, and
it can be seen that bombing attacks happened much
more frequently in Iraq, Afghanistan, and Pakistan
after October 2011. The bombing attacks in other
countries continued a downtrend with larger fluctua-
tion. Additionally, 62.3% of global bombing attacks
from November 2011 to December 2013 were located
in these three countries,(1) as shown in Table III.
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Fig. 12. The fitted CPAA from 2004 to 2014.

3.3. Integrated Time-Series and Intervention Model

Comparisons between the conditional probabili-
ties of bombing attacks and armed assaults is done to
check the significance of bombing attacks data. The
same method is used to build a time-series model
(ARMA(1,0)) to fit the conditional probability of
armed assaults (CPAAs) (shown in Fig. 12), which
contributed to a quarter of all attacks over the world.
The results show that the CPAA process remains
stable (around 25%) showing no trend, and no
significant fluctuation can be observed at the end of
2011. The big difference in these two data patterns
of attack tactics provides the proof that previously
mentioned political events did not affect the CPAA
significantly like the CPBA.

The integrated time-series and intervention
model is used to forecast the CPBA in 2014 and
through 2064, as shown in Fig. 12. When doing
the forecast through 2064, the baseline values of
the average event number per month λ are set as
λ = 1/96 or λ = 1/144, indicating the interventions
have an average interval of 8 years and 12 years,
respectively. Other baseline values of parameters
are set as follows: μ1 = 0.07, μ2 = 0.09, σ1 = 0.01,
σ2 = 0.01, μδ = 0.90, and σδ = 0.10. The means
of the parameters are referred to the observed
intervention response that happened at the end of
year 2011, as discussed in Section 3.2. Fig. 13 shows
that when the average interval of the interventions
is larger (i.e., 12 years, or λ = 1/144), the downtrend
of the CPBA is easier to maintain.

Four residual plots in Figs. 14(a)–(d) are used
to analyze the residuals of fitness among the 120
CPBA data between 2004 and 2013. From these four
plots, we note that the sequence of residuals is close
to a normal distribution and has an average value
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Fig. 13. The fitted and forecasted CPBA from 2004 to 2064 with different average intervals of interventions.

Table IV. Relative Error (RE) of Forecast in 2014

Month RE Month RE Month RE Month RE

Jan. −5.46% Apr. −7.67% July −4.01% Oct. −8.00%
Feb. 2.35% May 1.96% Aug. −7.16% Nov. 0.47%
Mar. 1.21% June −1.38% Sept. −0.14% Dec. −2.21%

close to 0. The slightly lower tails are due to the
reservation of the extreme data in the process. There
is no significant correlation between the residuals
and fitted values, regardless of whether by fitted
values or by order. These observations indicate that
the fitness of the integrated model is acceptable.

Observed data in 2014 are also used to validate
the model. The relative errors between the observed
and fitted values from 2014 are calculated in
Table IV. Notably, the data from 2014 are not used
when doing the forecast. The average relative error
is 3.50%, showing that the influence of a long-term
decreasing trend and the intervention still works
in 2014. However, the data decreased a little faster
than forecast, which indicates the situations in these
countries may be improved.

4. CONCLUSIONS

Among over 140,000 terrorist attacks collected
by the GTD, over half are bombing attacks, and
about a quarter are armed assaults. After remov-
ing the noise, we noted that between 2006 and 2008,
the CPBA increased from 52.9% to 58.8%. After
2008, the CPBA went into a downtrend of 0.09% per

month to 52.0% until the end of 2011. The ARIMA
model fails to forecast a jump in the CPBA process
at the end of 2011.

The intervention analysis shows that the CPBA
increased 16.0% at the end of 2011, and keeps 9.0%
larger than the predicted level after the temporary ef-
fect gradually decays. During that period, the United
States withdrew all troops from Iraq and some from
Afghanistan. At the same time, the relationship be-
tween Pakistan and Afghanistan worsened. Data
show that the increased CPBA mainly comes from
these three countries. This research infers that the
chaotic situation of society may cause terrorists to
choose bombing attacks more frequently. By con-
trast, the CPAA remained stable in the last 10 years
and did not fluctuate significantly at the end of 2011.

The integrated time-series and intervention
model is used to forecast the monthly CPBA in 2014
and through 2064. The average relative error com-
pared with the real data in 2014 is 3.5%, showing the
good performance of the forecast model. For predic-
tion in the next 50 years, the interventions are as-
sumed to follow a Poisson distribution with average
intervals of 8 years or 12 years.

Time-series analysis can be used to analyze
the dynamic information of terrorist attacks in
the time domain by removing noise in the data.
Intervention analysis can be used to understand the
influence of exogenous events on global terrorism
activities. In this research, the integrated time-series
and intervention model is used to study long-term
tendency in the sequence of the CPBA all over
the world, as well as the influence of social unrest
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Fig. 14. Residual plots of integrated model of {Xt }: (a) normal probability plot, (b) histogram of the residuals, (c) residuals by fitted value,
and (d) residuals by order.

in Iraq, Afghanistan, and Pakistan, to the sudden
change in the CPBA process. It should be noticed
that, similar to all statistical models trained with past
data, this model can only offer good predictions if
the future conditions and relationships are in line
with the historic conditions and relationships. The
intervention part of the model was used to account
for a historical artifact. The forecast model cannot
predict the future interventions themselves.

Future research would focus on analyzing the
data in some regions where terrorist attacks happen
frequently. This would help study the influence of
some local changes of social environment to the data
(e.g., new policy, or the stage change of political
parties).
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APPENDIX: TIME-SERIES MODEL OF TOTAL
ATTACKS RECORDED BY THE GTD

The time-series model is used to fit the total
number of attacks recorded by the GTD by month.
After doing the ADF test, the original process proves
to be nonstationary (as shown in Table AI). The
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Fig. A1. The ACF and the PACF of total attacks’ difference pro-
cess.

first difference of the original process has been cal-
culated, and its stationary properties are shown in
Table AI. The ACF and PACF of the first differ-
ence process are shown in Fig. A1 (as in Fig. 4 in
the body). We can see the same pattern shown in
the ACF and PACF graphs of first difference pro-
cess of the CPBA. The time series of total attacks is
fitted with an ARIMA(0,1,1) model too. The fitted
function of total attacks (denoted by {Ât }) is shown
in Equation (A1). The observed and fitted values of
the total attacks between 2004 and 2014 are shown in
Fig. A2.

Table AI. Unit Roots Test of Total Attacks Process and Its
Difference Process

t Value Fiducial Probability

Original process −0.766 0.825 Nonstationary
Difference process −19.969 <0.001 Trend stationary
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Fig. A2. Observed and fitted values of total attacks from 2004 to
2014.

Ât = Ât−1 + et − 0.541et−1 + 8.949. (A1)

After removing the noise, we see a clear up-
trend in the total attacks after 2004, and the increase
speeds up from the end of 2011 until the end of 2013,
which may be the effect of social unrest analyzed in
Section 3.2. The total number of attacks went down
in 2014. From 2004 to 2014, there were about 8.95
more attacks per month when compared to the pre-
vious month. Although both the processes of total
attacks and CPBA are fitted by the ARIMA (0,1,1)
model, information is different. The constant term
in Equation (A1) represents the uptrend in the total
attacks, which cannot be found in Equation (3) show-
ing the CPBA. Lastly, there is no significant inter-
vention in the time-series plot of total attacks, which
could help find out the effect of exogenous events.
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