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ABSTRACT

In this paper, we integrate supply chain risk management with a government-terrorist game conducted
in war zones (such as Afghanistan and Iraq). The equilibrium outcomes of wargames depend on the
government’s resources delivered through military supply chains, which are subject to disruptions
such as natural disasters and terrorism. We study the government’s optimal pre-disruption preparation
strategies, including inventoryprotectionandcapacitybackupprotection. Considering theuncertainties
(e.g., the outage length of a disruption and the level of resources available to the terrorist), we conduct
Monte Carlo simulation experiments to numerically investigate the benefits using our disruption
preparation strategies compared with other strategies.

1 INTRODUCTION

Research on supply chain risk management has been popular in recent years (Juttner et al. 2003).
Chopra et al. (2007) indicated the importance of separating the recurrent supply risk and disruption
risk for appropriate mitigation mechanisms. Christopher and Lee (2004) argued that supply chains
are affected by many factors, including the uncertain changes in business strategies, and indicated that
it is easier to mitigate the supply chain risks with more information. Christopher and Peck (2004)
emphasized that it is critical to understand the nature of supply chain risks while building resilient
supply chain networks. Sheffi et al. (2003) studied how companies perceive, predict, and assess the
risks in order to protect their supply chains accordingly.
Various risks exist in supply chain networks, including social disasters, natural disasters, and

terrorism. In the mid-1990s, a severe economy recession in Honduras heavily impacted local ba-
nana industries, resulting in banana price soaring worldwidely. In late 1998, a category-5 hurri-
cane hit the banana industry in Honduras, and more than 50% of the banana crops were inundated
by floods, which resulted in damages of $3 billion (Encyclopedia of the Nations 2008). The 1999
Taiwan earthquake caused a significant worldwide supply shortage of Random Access Memory
(RAM), and tripled unit prices, due to a six-day shutdown of RAM factories in the Taiwan area
(Hopp, Liu, and Liu 2010). The 2004 Indian Ocean tsunami devastated major economy activity (pri-
marily fisheries) in a large region of Southern Asia by destroying the commonly used fishing tackles
(UK Agricultural Biodiversity Coalition 2004). During the days after 9/11/2001 terrorist attack, Ford
idled several assembly lines, because its trucks were delayed at the Canadian and Mexican borders
(Sheffi 2002).
Chopra and Sodhi (2004) classified supply chain risks into nine categories (disruption, delays, sys-

tem risks, forecasting risks, intellectual property risks, procurement risks, receivables, inventory risks,
and capacity risks) and analyzed the corresponding mitigation strategies. Hopp, Liu, and Liu (2010)
built mathematical models on supply chain networks and introduced two pre-disruption protection
mechanisms to mitigate supply chain risks: capacity backup (including subtree capacity protection
and single-node capacity protection) and inventory protection. In this paper, we focus on the appli-
cation of these two protection mechanisms against disruptions (the first category of risks classified
by Chopra and Sodhi (2004) above) on the military supply chains for wargames.
Since September 11, 2001, many researchers have studied homeland security games, including

wargames between attackers and defenders (Zhuang and Bier 2007). The equilibrium outcomes of
wargames depend on the government’s resources delivered through military supply chains to war
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zones, which are subject to disruptions such as natural disasters and terrorism. However, to the best of
our knowledge, there are no existing studies on the integration of supply chain risk management and
wargames. This paper is organized as follows: Section 2 presents two disruption preparation models
(inventory protection model and capacity backup model); Section 3 presents numerical Monte Carlo
simulation-based models to examine the benefits of our disruption preparation models by comparing
with other strategies; and Section 4 concludes the paper and provides some future research directions.

2 MODELING FRAMEWORK

As suggested by Zhuang and Bier (2007), governments and terrorists jointly determine their efforts at
equilibrium in wargames, and their equilibrium utilities depend on the available resources delivered
to war zones, which are subject to military supply chain disruptions. In our paper, we allow the
government to decide the amount of resources delivered to war zones and the investment in risk
management (inventory or capacity backup) against disruptions. On the other hand, the terrorist’s
resource is assumed to be given exogenously, and we do not study the terrorist’s risk management
(partially due to their limited finance and capacities). The above assumptions are reasonable since
government often has the ability to obtain needed resources (e.g., transferring funds from other gov-
ernment branches), while it might be difficult for many terrorist organizations to do the same.

Figure 1: Integrating military supply chain risk management with wargames between a terrorist and a government

As Figure 1 shows, we consider two protection mechanisms the government may invest in:
inventory protection and capacity backup protection. Both of which are interesting and realistic: after
a disruption occurs, some fast, expendable resources (e.g., bullets and bombs) are difficult to supply
through backup capacity providers in a timely manner, while some other resources could not be held
in inventory for a long time (e.g., food and medicines). For the sake of simplicity, we consider one
single generic resource and analyze these two protection mechanisms separately.
We acknowledge that, in reality, the supply chain network may be very complex (e.g., different

nodes could be supported by different inventories or backup suppliers). However, in this paper, we
only consider a single capacity backup provider and assume that the daily needed resource can be
fully satisfied by this provider.
As Figure 2 shows, we let one period consist of peace time (which starts at the end of the last-period

disruption and ends at the beginning of the current-period disruption) and failure time (which stars
from the beginning of the current-period disruption and ends when the disruption influence ends).
Hence, the length of each period depends on two factors: the peace time length and the failure time
length.

Figure 2: Periods and timing for peace, outage and disruption

Table 1 introduces the notation that is used throughout the paper. We assume that the government’s
optimal payoff in the war zone for each period is given by r

r+R · v. This may be obtained by solving
a simultaneous-more game between a government and a terrorist, whose defense and attack efforts
are bounded by r and R, respectively (Zhuang and Bier 2007). On the other hand, we consider that
the government maximizes her total expected payoff in war zone, subtracting the expected cost on
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Table 1: Notation used throughout the paper.

Characteristic parameters Characteristic parameters
R Resource of terrorist fD(d) Probability density function of delay time
v Government’s asset valuation fL(l) Probability density function of failure time
D Time required (delay) to bring capacity backup fX (x) Probability density function of peace time
L Failure time in disruption
X Peace time (before disruption)
Cost parameters Decision Variables
m Daily revenue rate I Inventory level (in time unit)
h Daily holding cost per unit inventory r Daily resource that government uses
α Reservation cost of capacity backup
β Daily usage cost of capacity backup

preparation against disruptions, which is a function of the government’s resource r and the inventory
level I (for inventory protection mechanism).

2.1 Inventory Protection Mechanism

Wefirst consider that the government holds a certain amount of inventory in peace time as a preparation
against disruptions, and uses this inventory during the outage time (which is denoted by L). Equation
(1) below shows the government’s expected utility, using the inventory protection model.
During peace time, the government holds inventory I, costing h · I per day. When a disruption

occurs, the inventory position decreases with a rate of r and, hence, holding cost decreases with a
rate of h · r until the inventory is empty. After the inventory is empty, we assume that the government
experiences a revenue loss at a rate of m. Therefore, we have the total expected utility of government
over one period:

z(I,r) =
r

r+R
· v︸ ︷︷ ︸

payoff in war zone

− h · I ·
∫ ∞

0
x · fX(x) ·dx︸ ︷︷ ︸

holding cost during peace time

−h ·
∫ ∞

0

l−1
∑
i=0

[I− i · r]+ · fL(l) ·dl︸ ︷︷ ︸
holding cost during outage time

−m ·
∫ ∞

0
[l · r− I]+ · fL(l) ·dl︸ ︷︷ ︸

revenue loss during outage time

.
(1)

2.2 Capacity Backup Mechanism

Using the capacity backup mechanism, the government does not hold inventory but, instead, she
reserves the backup supplier before disruptions and consumes the capacity backup during the outage
time (after a disruption occurs). Equation (2) below provides the government’s total expected utility
when using capacity backup as preparation against disruptions. The government pays the reservation
fee at a rate of α during the entire period and the usage fee at a rate of β during the outage time.
Therefore, we have the government’s expected utility:

z(r) =
r

r+R
· v︸ ︷︷ ︸

payoff in war zone

−α · r ·
(∫ ∞

0
x · fX(x) ·dx+

∫ ∞

0
l · fL(l) ·dl

)
︸ ︷︷ ︸

reservation cost for capacity backup

−β · r ·
∫ ∞

0

∫ l
0

(l−d) · fL(l) · fD(d) ·dd ·dl︸ ︷︷ ︸
usage cost for capacity backup

− m · r ·
∫ l
0
d · fD(d) ·dd︸ ︷︷ ︸

revenue loss during delay time

.

(2)
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3 SIMULATION ANALYSIS

With the inventory protection / capacity backup mechanism, the government may balance the prepa-
ration cost and the failure loss in order to maximize her overall expected utility. To investigate the
impact of preparation on the government’s utility, we conduct a Monte Carlo simulation to examine
the benefit that the government would receive when using protection strategies based on our modeling
frameworks, as compared with other strategies.

3.1 Design of Numerical Experiments

We have designed two sets of Monte Carlo simulation experiments in order to study the inventory
protection mechanism and capacity backup mechanism in Section 3.2 and 3.3, respectively. Table
2 summarizes the baseline input parameter values. In each Monte Carlo simulation experiment, we
randomly generate the following four parameters: peace time (X), outage length (L), time required
to bring capacity backup online (D, for capacity backup model only), and terrorist resources (R). We
also assume that each of these parameters follows a triangular distribution with a lower limit (LL), a
mode (MO), and a upper limit (UL) (as shown in Table 2).

Table 2: Baseline case values of inputs parameters in numerical studies.

Parameter Value Parameter Value Parameter Value
R 60 v 2700 m 1.2
h 0.006 α 0.3 β 0.008
XLL 4 XMO 10 XUL 15
LLL 4 LMO 10 LUL 16
DLL 1 DMO 3 DUL 4
RLL 40 RMO 60 RUL 100

3.2 Impact of Inventory Protection Mechanism on Optimal Government’s utility

In this section, we compare the inventory protection policy based on our Inventory Protection model
provided in Section 2.1 with two policies that the government may use:

• Police A: Zero inventory policy, i.e., I = 0;
• Police B: Mean outage length inventory policy, i.e., by some means (e.g., using some historical
data), the government may have an estimate of the mean outage length (μoutage) and set the
inventory level equal to I = μoutage · r.

In the following, we call the above two policies Police A and Police B together as the Fixed
Inventory Level Policy, and under the randomly generated scenarios of X , L, and R, we present the
corresponding numerical model to calculate the government’s utility (z1) as follows:

max
r

z1(r) =
r

r+R
· v−h · I ·X−h ·

L−1
∑
i=0

[I− i · r]+−m · [L · r− I]+, (3)

where I = 0 (zero inventory policy) or I = μoutage · r (mean outage length inventory policy).
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3.2.1 Inventory Protection Numerical Model

Based on the baseline case described in Section 3.1, Equation (1) becomes:

max
I,r

z0(I,r) =
r

r+R
· v−h · I ·E[X ]

−h ·
[
LMO
∑
l=LLL

(
l−1
∑
i=0

[I− i · r]+ · f (1)L (l)

)
+

LUL
∑

l=LMO+1

(
l−1
∑
i=0

[I− i · r]+ · f (2)L (l)

)]

−m ·
[
LMO
∑
l=LLL

[l · r− I]+ · f (1)L (l)+
LUL
∑

l=LMO+1
[l · r− I]+ · f (2)L (l)

]
, (4)

where E[X ] = XLL+XMO+XUL
3 , f (1)L (l) = 2(l−LLL)

(LUL−LLL)(LMO−LLL) and f
(2)
L (l) = 2(LUL−l)

(LUL−LLL)(LUL−LMO) .

We denote the optimal solution pair (r∗, I∗) to Equation (4) as Best Response Policy. For the baseline
case (as shown in Table 2), we calculate the optimal government’s policy to maximize the expected
government’s utility denoted as z∗0(I∗,r∗).
To examine whether the Best Response Policy performs well under randomly generated scenarios,

we introduce z∗2 as the government’s utility with the Best Response Policy, and realized under the
randomly generated scenarios of X , L and R:

z∗2 =
r∗

r∗+R
· v−h · I∗ ·X−h ·

L−1
∑
i=0

[I∗ − i · r∗]+−m · [L · r∗ − I∗]+. (5)

Under each randomly generated set of parameters (X , L, and R), we find the optimal government’s
policy to maximize the government’s utility (z3):

max
I,r

z3(I,r) =
r

r+R
· v−h · I ·X−h ·

L−1
∑
i=0

[I− i · r]+−m · [L · r− I]+. (6)

Note that, in reality, it might be impossible for the government to know a disruption scenario (X , L,
and R) before developing a preparation plan (the Ideal Preparation Policy), i.e., we can view z∗3 as
the Ideal Government’s Utility.
In the following, in order to quantitatively further investigate the benefit of using the Best Response

Policy we compare the Best Response Policy with the Fixed Inventory Level Policy and the Ideal
Preparation Policy.

3.2.2 Experiment Procedure for Inventory Protection Model

The experiment is designed according to the following procedure:

Step 1: Use Equation (4) to find the government’s optimal resource r∗ and the optimal inventory
level I∗ for the baseline case (as shown in Table 2); record r∗, I∗, and the corresponding
government’s optimal utility z∗0(I∗,r∗).

Step 2: Randomly generate 100 sets of the following three parameters: X , L, and R.
Step 3: For each set of randomly generated parameters (X , L, and R), calculate and record the

government’s utility zA∗1 ≡ z∗1,I=0,r=r̂ , where r̂ is the optimal solution to Equation (3) with I = 0
obtained by using simulation optimization method as shown below:
• Sub-Step 3.1: Consider the following possible levels of r: ri = i, ∀i= 0,1, · · · ,800.
• Sub-Step 3.2: For each level of r, r = ri, i= 0,1, · · · ,800, under the 100 sets of three ran-
domly generated parameters (X , L, and R), use Equation (3) to calculate the corresponding
100 values of z

1,I=0,r=ri
, and record the average value z̄

1,I=0,r=ri
.

• Sub-Step 3.3: Compare all z̄
1,I=0,r=ri

, i = 0,1, ...,800, find r̂ ≡ ri∗ = argmaxri{z̄1,I=0,r=ri},
and record r̂.
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Step 4: For each set of randomly generated parameters (X , L, and R), calculate and record the
government’s utility zB∗1 ≡ z∗1,I=μoutage·r̃,r=r̃ , where r̃ is the optimal solution to Equation (3) with
I = μoutage · r obtained by using the simulation optimization method as demonstrated in Sub-
Step 3.1-3.3.

Step 5: For each set of randomly generated parameters (X , L, and R), calculate and record the
government’s utility z∗2 ≡ z∗2,I=I∗,r=r∗ by using Equation (5), and the government’s optimal utility
z∗3 by using Equation (10).

Step 6: Under each set of generated parameters, calculate and record:

• The value ωA = (z∗2− z
A∗
1 )/|zA∗1 |, and the value ωB = (z∗2− z

B∗
1 )/|zB∗1 |, representing the

percent increase of utility that the government would experience, if the government invests
in inventory preparedness using the Best Response Policy, as compared to using Policy A
and Policy B, which were introduced in Section 3.2.

• The value ω23 = (z∗2− z∗3)/|z∗3|, which represents the difference between the government’s
utility using the Best Response Policy and the Ideal Government’s Utility.

Step 7: Find the sample means of ωA, ωB, and ω23, and denote them by ωA, ωB, and ω23,
respectively.

Step 8: Find the sample standard deviations of ωA, ωB, and ω23, and denote them as sωA , sωB , and
sω23 , respectively.

3.2.3 Simulation Results

The simulation results of the experiment are shown in Table 3. Figure 3 demonstrates zA∗1 and z
B∗
1 (the

government’s utility using the two types of Fixed Inventory Level Policy), z∗2 (the government’s utility
using the Best Response Policy), and z∗3 (the Ideal Government’s Utility).

Figure 3: Monte Carlo simulation-based comparison results between the Best Response Policy and two Fixed Inventory
Level Policies, and the Best Response Policy, respectively.

Observation 1: On average, using the Best Response Policy against disruptions is much better than
using the Fixed Inventory Level Policy.
Table 3 shows that the average percent gains of the government’s utility due to using the Best

Response Policy, compared with the Fixed Inventory Level Policy, are 260.17%, with the fixed
inventory level equal to zero (Policy A) and 21.11%, and with the fixed inventory level equal to
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Table 3: Numerical study of the percent gain of the government’s utility using the Best Response Policy compared to the Fixed
Inventory Level Policy A and B, and the percent loss of the government’s utility using the Best Response Policy compared with
the Ideal Government’s Utility.

Difference in Performance Value for λ = 1 Value for λ = 1.5
ωA

(
ωA = (z∗2− zA∗1 )/|zA∗1 |

)
286.55% 345.58%

ωB
(
ωB = (z∗2− zB∗1 )/|zB∗1 |

)
18.44% 23.37%

ω23
(
ω23 = (z∗2− z∗3)/|z∗3|

) −9.39% −15.71%

μoutage · r̃ (Policy B). Furthermore, assuming ωi follows a normal distribution with unknown variance,
and using the corresponding formula

[
ω i− 1.645·sωi√

100 ,ω i+
1.645·sωi√

100

]
, i = A,B, we calculate the 90%

confidence interval (CI) for the true means of ωA and ωB:

• A 90% CI for the true mean of ωA is [241.20%,331.90%];
• A 90% CI for the true mean of ωB is [13.60%,23.28%].

The simulation results imply that the government can gain a significant increase in the utility, if the
government prepares for supply chain disruptions based on the Best Response Policy presented in this
paper, rather than on the Fixed Inventory Level Policy.
Recall that, in order to calculate the inventory protection level I∗ of the Best Response Policy, we

consider a triangle distribution for the length of outage; but under the Fixed Inventory Level Policy
with I = μoutage · r, only the mean outage length is taken into consideration (i.e., less information
about the length of the outage is considered). Therefore, it is reasonable and intuitive to observe
that the government experiences utility gain by using the Best Response Policy in place of the Fixed
Inventory Level Policy.
Note that, ifwe consider the range length of a randomvariableQ (Q∈ {X ,L,R}) as (QUL−QLL) ·λ ,

i.e., Q ∈
[
QLL+QUL

2 − QUL−QLL
2 ·λ , QLL+QUL2 + QUL−QLL

2 ·λ
]
, we will have the baseline case correspond-

ing to λ = 1. We keep QMO constant, but increase the value of λ from λ = 1 to λ = 1.5; i.e., the
ranges of the three randomly generated parameters are enlarged. Based on our simulation results (as
shown in Table 3), we have:

• ωA = 345.58% and a 90% CI for the true mean of ωA is [261.96%,429.19%];
• ωB = 23.37% and a 90% CI for the true mean of ωB is [18.58%,28.16%].

Observation 2: On average, the more uncertainties associated with disruptions (higher λ value),
the more gain the government experiences by using the Best Response Policy against disruptions, as
compared to using the Fixed Inventory Level Policy.
Increasing the range of the outage length affects the inventory protection level I∗ of the Best

Response Policy; however, since we used a symmetric triangle distribution of the outage length (i.e.,
the mean outage length does not change with the value of λ ), the Best Response Policy will perform
even better, as compared to the Fixed Inventory Level Policy, when there are more uncertainties
associated with disruptions.
Table 3 shows that, compared with the Ideal Government’s Utility, the average percent loss due

to using the Best Response Policy |ω23|, is 15.71% (and a 90% CI for the true mean of ω23 is
[−18.75%,−12.67%]) when λ = 1.5, and |ω23|= 9.39% (and a 90% CI for the true mean of ω23 is
[−10.71%,−8.07%]) when λ = 1.
Observation 3: On average, the government’s utility under the Best Response Policy is close to the
Ideal Government’s Utility.
The above two average errors, (ω23 =−9.39% for the case of λ = 1 and ω23 =−15.71% for the

case of λ = 1.5), are almost certainly smaller than the potential estimation errors in the input data,
many of which can only be roughly estimated. Our observation suggests that the potential benefits
of using a more accurate input data set is positive, but may not be worth the cost. In short, if the
government uses our inventory protection model against disruptions, roughly knowing the input data
might be adequate.
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Observation 4: On average, the fewer uncertainties associated with disruptions, the less percent
loss the government experiences by using the Best Response Policy, as compared with the Ideal
Government’s Utility.
Intuitively, when there are fewer uncertainties associated with disruptions, the Best Response

Policy achieves results closer to the Ideal Preparation Policy.

3.3 Impact of Capacity Backup Mechanism on Optimal Government’s utility

In this section, we compare the capacity backup protection policy, based on our Capacity Backup
model, with the no-capacity-backup-preparation policy that the government may use. In the following,
we call such policy No Capacity Backup Policy, and the corresponding numerical model to calculate
the government’s utility (z1) is as follows:

max
r

z1 =
r

r+R
· v−m · (L · r). (7)

3.3.1 Capacity Backup Numerical Model

Based on the baseline case described in Section 3.1 and Equation (2), we have the following Capacity
Backup numerical model to calculate the government’s utility (z0):

max
I,r

z0(r) =
r

r+R
· v−α · r · (E[X ]+E[L])

−β · r ·
{ LMO

∑
l=LLL

f (1)L (l) ·
(
DMO
∑

d=DLL
(l−d) · f (1)D (d)+

DUL
∑

d=DMO+1
(l−d) · f (2)D (d)

)

+
LUL
∑

l=LMO+1
f (2)L (l) ·

(
DMO
∑

d=DLL
(l−d) · f (1)D (d)+

DUL
∑

d=DMO+1
(l−d) · f (2)D (d)

)}
−m · r ·E[D], (8)

whereE[Q] = QLL+QMO+QUL
3 forQ∈{X ,L,D}, f (1)Q (q)= 2(q−QLL)

(QUL−QLL)(QMO−QLL) and f
(2)
Q (q)= 2(QUL−q)

(QUL−QLL)(QUL−QMO)

for Q ∈ {L,D}.
The optimal expected government’s utility z∗0(r∗) is a function of the government’s optimal resource

r∗, which is calculated under the baseline case as shown in Table 2. In the following, we refer the
policy, making use of both the capacity backup and the government’s optimal resource level, as the
Best Response Policy.
To examine whether the Best Response Policy performs well under randomly generated scenarios,

we introduce z∗2 as the government’s utility, with the Best Response Policy for each randomly generated
set of parameters (X , L, D, and R):

z∗2 =
r∗

r∗+R
· v−α · r∗ · (X+L)−β · r∗ · [L−D]+−m · r∗ ·D. (9)

Under each randomly generated set of parameters (X , L, D, and R), given that the government
adopts the capacity backup preparation mechanism against disruptions, we calculate the optimal
government’s resource level in order to maximize the government’s utility (z3):

max
r

z3(r) =
r

r+R
· v−α · r · (X+L)−β · r · [L−D]+−m · r ·D. (10)

As indicated inSection3.2, z∗3 canbeconsidered the IdealGovernment’sUtility, while thecorresponding
optimal policy can be viewed as the Ideal Preparation Policy.
In the following, in order to further investigate the quantitative benefit of using the Best Response

Policy, we compare the Best Response Policy with the No Capacity Backup Policy and the Ideal
Preparation Policy.
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3.3.2 Experiment Procedure for Capacity Backup Model

The experiment procedure is as follows:

Step 1: Use Equation (8) to find the government’s optimal resource r∗ for the baseline case (as
shown in Table 2); calculate the government’s optimal utility z∗0(r∗); record r∗ and z∗0.

Step 2: Randomly generate 100 sets of the following four parameters: X , L, D, and R.
Step 3: For each set of generated parameters (X , L,D, andR), calculate and record the government’s

utility z∗1 ≡ z∗1,r=r̂ according to Equation (7), where r̂ is the optimal solution to Equation (7)
obtained by using simulation optimization method as shown below:
• Sub-Step 1: Consider the following possible levels of r: ri = i, ∀i= 0,1, · · · ,800.
• Sub-Step 2: For each level of r, r = ri, i= 0,1, ...,800, use the 100 sets of four randomly
generated parameters (X , L, D, and R) and Equation (7) to calculate the corresponding
100 values of z

1,r=ri
; record the average value z̄

1,r=ri
.

• Sub-Step 3: Compare all z̄
1,r=ri

, i= 0,1, ...,800, find r̂≡ ri∗ = argmaxri{z̄1,r=ri}, and record
r̂.

Step 4: For each set of the generated parameters, calculate and record the government’s utility
z∗2 ≡ z∗2,r=r∗ according to Equation (9), and the optimal government’s utility z∗3 according to
Equation (10).

Step 5: Under each set of generated parameters, calculate and record:
• the valueω = (z∗2−z∗1)/|z∗1|, representing the percent increase of utility that the government
would experience if she invests in capacity backup preparedness;

• the valueω23 = (z∗2−z∗3)/|z∗3|, representing the difference between the government’s utility
using the Best Response Policy and the Ideal Government’s Utility.

Step 6: Find the sample means of ω and ω23, and denote them as ω and ω23, respectively.
Step 7: Find the sample standard deviations of ω and ω23, and denote them by sω and sω23 ,

respectively.

3.3.3 Simulation Result

The simulation results of the experiment are shown in Table 4. Figure 4 demonstrates z∗1 (the gov-
ernment’s utility using the No Capacity Backup Policy), z∗2 (the government’s utility using the Best
Response Policy), and z∗3 (the Government’s Ideal Utility).

Table 4: Numerical study of the percent gain of the government’s utility using the Best Response Policy, compared with the No
Capacity Backup Policy and the percent loss compared with the Ideal Government’s Utility.

Difference in Performance Value for λ = 1 Value for λ = 1.5
ω
(
ω = (z∗2− z∗1)/|z∗1|

)
69.41% 109.11%

ω23
(
ω23 = (z∗2− z∗3)/|z∗3|

) −1.07% −3.11%

Observation 5: On average, using the Best Response Policy against disruptions demonstrates better
results when compared with the No Capacity Backup Policy.
The average percent gain of the government’s utility, due to investment in capacity backup pre-

paredness, is 69.41% (as shown in Table 4), while a 90%CI for the truemean ofω is [40.19%,98.62%],
which implies that, if government prepares against supply chain disruptions using the capacity backup
model presented in Section 2, the increase in the government’s utility is significant.
In the baseline case we use λ = 1 to determine the ranges of four randomly generated parameters.

Here, we keepQMO (Q∈ {X ,L,D,R}) constant, but increase the value of λ to λ = 1.5; i.e., the ranges
of all four randomly generated parameters are enlarged. Based on our simulation results for the case
of λ = 1.5, we show that ω = 109.11% (as shown in Table 4), and that a 90% CI for the true mean
of ω is [24.93%,193.30%].

2690



Jin, Liu and Zhuang

Figure 4: Monte Carlo simulation-based comparison results between the Capacity Backup Policy and No Capacity
Backup Policy, and the Best Response Policy, respectively.

Observation 6: On average, the more that uncertainties are associated with disruptions, the more
gain the government experiences by using the capacity backup protection mechanism, compared with
using no capacity backup.
By comparing z∗2 with z∗3, we investigate the difference between using the Best Response Policy

and using the Ideal Preparation Policy. Our simulation results shows that:

• when λ = 1, ω23 =−1.07% (as shown in Table 4) and a 90% CI for the true mean of ω23 is
[−1.33%,−0.81%];

• when λ = 1.5, ω23 =−3.11% (as shown in Table 4) and a 90% CI for the true mean of ω23
is [−3.91%,−2.30%].

Observation 7: On average, the government’s utility under the Best Response Policy is very close to
the Ideal Government’s Utility.
Note that, under both policies, the government uses the capacity backup against disruptions. The

only difference is in the government’s resource level under each policy, which may have relatively
little impact on the government’s utility.

4 CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In war zones, a government’s performance may be dramatically affected by disruptions to military
supply chains. Fortunately, the impact of disruptions may be mitigated by pre-disruption preparation
mechanisms. In this paper, we have investigated two protection mechanisms (inventory protection
mechanism and capacity backup protection mechanism), and their impact on the government’s total
expected utility in wargames.
Under our inventory protectionmodel, the government’s objective is tomaximize the total expected

utility by balancing the trade-off between the protection cost of inventory preparation and the war-
zone disadvantage caused by military supply chain disruptions. We conducted a set of Monte Carlo
simulation-based experiments to compare the Best Response Policy with the Fixed Inventory Level
Policy. We observed that, on average, using the Best Response Policy against disruptions is much
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better than using the Fixed Inventory Level Policy. Furthermore, we found that when there were more
uncertainties associated with disruptions, the government would experience greater gains by using
the Best Response Policy, as compared with the Fixed Inventory Level Policy. We also compared the
Best Response Policy with the Ideal Preparation Policy and found that the government’s utility of
using the Best Response Policy is close to the utility when using the Ideal Preparation Policy, which
implies that knowing only the approximate input data might be adequate, since the potential benefit
of using a more accurate input data set is probably not worth the costs.
Under the capacity backup model, our simulation results show that, on average, using theCapacity

Backup Policy against disruptions is much better than using the No Capacity Backup Policy; and
furthermore, the government’s utility of using the Capacity Backup Policy is very close to the Ideal
Government’s Utility.
Interesting future research directions in this under-studied field of integrating supply chain risk

management with wargames include:

• Combining the inventory protection and capacity backup protection to against disruptions;
• Investigating multiperiod inventory protection plan, integrated with a multi-period wargame;
• Extending the single-resource model to multiple-resource one; and
• Extending our single capacity backup model to a more complex one that considers multiple
capacity backup providers; furthermore, selecting suitable capacity backup supplier(s) from
the candidate pool according to capacity flexibility, capacity cost, and reliability may be
considered.
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