ABSTRACT

n this paper, we investigate the dynam-
ics between a defender and an attacker

when considering the issue of technol-
ogy in a multiperiod sequential game with
uncertainty. In this setting, defenders can
improve their chances of defending against
an attack by investing in technology, whereas
attackers can forego attacking by using their
time to accumulate knowledge, resources, or
technology to improve their future chances
of success. Because dynamic games of this
type are generally difficult to solve, we ex-
amine a simple modified dynamic pro-
gramming algorithm that could be used to
computationally analyze problems in this
framework. We study how parameters be-
have in this model in order to understand
how they affect the optimal behavior of
each player and later compare simple heuris-
tics for each player to the optimal solution
to this model. We show that there could be
gross inefficiencies when the optimal tim-
ing of technology adoption and accumula-
tion is not considered.

INTRODUCTION

One of the key challenges in maintaining
security is keeping up with developments
in technology. In recent years, government
agencies have faced many potential threats
to its security, from deterring the entry of
terrorists to more nontraditional forms of
threats ranging from shoe bombers to con-
traptions involving printer cartridges, liquids,
and gels. With attackers becoming more cre-
ative and technologically sophisticated, an
important challenge for government agencies
is to find ways to respond to these chal-
lenges in a timely manner, keeping in mind
their budget and resource limitations.

In the context of warfare, the choice of
technology levels can also be critical in de-
termining the ability to defend a country or
to invade another. Nations that face poten-
tial threats continually invest in upgrading
and maintaining their defense mechanisms
by allocating significant portions of their
annual budgets to this end, while other
states or terrorist groups are also investing,
purchasing, and utilizing more sophisti-
cated weaponry, devices, and technologies.

The timing then of the new technolo-
gies to be adopted by both parties becomes

an important issue to consider, especially
because a single successful attack can have
a tremendous impact on one or both parties,
may it be with respect to human lives lost,
damage to property, impact on the econ-
omy, hysteria that it may cause the citizens
of a country that was attacked, as well as
the significant costs associated in defend-
ing and attacking a state. As new technolo-
gies to maintain security, safety, and defense
emerge, implementation and adoption may
be viewed as a necessary step for a defender
since these changes should lead to improved
levels of security. However, given the state
of the economy, the adoption of certain
technologies may not be practical or even
feasible due to the costs associated with
adopting and operating these technologies.
Similarly, an attacker neeeds to consider
the issue of timing. He may need to balance
the decision of whether to attack at any pe-
riod with the decision of whether to allocate
the resources for a certain period toward
improving their technology to ensure that
future attacks have a higher probability of
success.

In this paper, we study technology
adoption in the context of strategic multi-
period security games. Although technol-
ogy accumulation and adoption has been
widely studied in the economics and deci-
sion analysis communities, this topic has
not yet been extensively studied in the de-
fense studies literature. This paper tries to
fill in this gap. One novel feature of this
paper is that the dynamics between an at-
tacker and defender are fully analyzed in
a multiperiod setting. This multiperiod
setting is a tacit requirement in analyzing
technology adoption issues, since the trade-
offs between immediately adopting a tech-
nology and delaying such action can only
be meaningful in a dynamic setting. We rec-
ommend a framework that could be used
in analyzing such a complex decision where
interdependence between periods plays a
critical role. Moreover, we illustrate the im-
portance of these timing decisions for the
defender by looking at the significant im-
provements in costs savings that can be
achieved compared to simple reasonable
heuristics that could be employed.

LITERATURE REVIEW

The use of games in modeling the rela-
tionship between an attacker and a defender
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has a long history in economics, starting with
the work of Dresher (1961). The variety of ap-
plications and research related to issues in mil-
itary operations research and defense studies
is rich, and is highlighted in recent surveys
by Kardes and Hall (2005) and Sandler and Arce
(2003). However, most of these applications sim-
ply focus on single-period games or repeated
games where the significant information from
previous periods is ignored.

In modeling the timing of when to adopt
new technologies, single-stage games are no
longer adequate in showing the dynamic na-
ture of accumulating and investing resources
to obtain new and better technologies. Past
decisions and information become relevant to
decision making. Several studies consider mul-
tistage games in the context of homeland secu-
rity. For example, Bandyopadhyay and Sandler
(2011) consider the interaction between preemp-
tion and defense in a two-stage game, where
two defenders (home and foreign) face poten-
tial threats from a common attacker. Faria (2003)
considers a continuous time game between a
terrorist that maximizes his damage and a gov-
ernment that maximizes national security. His
dynamic system-based model shows that equi-
librium for such a relationship is a cyclical pat-
tern of terror. Feichtinger and Novak (2008)
also conclude that a persistent oscillatory be-
havior is justifiable in the long run using an
open-loop Nash solution concept of dynamic
game theory.

Zhuang et al. (2010) model secrecy and de-
ception in a multiperiod signaling game, where
defenders can achieve cost savings in terms of
defense costs when secrecy and deception are
considered in a game. Hausken and Zhuang
(2011a) consider a multiperiod game in which
defenders can allocate their resources to both
defend these resources and attack attackers in
hopes of downgrading their resources for fu-
ture attacks. Similarly, attackers can allocate
their resources to launch attacks and defend
their own resources. Their game is designed
by repeating a single-period game and linking
them by the end of period resources to the start
of period resources at the next period. In an-
other paper, Hausken and Zhuang (2011b) con-
sider a government facing a terrorist who can
stockpile in a two-period game. In particular,

they see that in this two-period game the first-
period resources, cost functions, and resource
growth factors can generate scenarios where
stockpiling can occur.

With respect to the literature on technol-
ogy adoption, accumulation, and competition,
most of the research in this area has focused
on a single decision maker or firm who plays
a game against nature; however, a few papers
have discussed the notion of competition in
technology adoption typically involving a sin-
gle common technology. For example, Reiganum
(1981) studied the timing of adoption of a new
technology in a game highlighting the phenom-
enon of a leader and a follower even among
identical firms when competition is introduced.
Chambers and Kouvelis (2003) use a Cournot-
style game between firms in a two-period set-
ting to study the interaction between learning
and investment effects for a single-product-
producing firm. The focus of these papers, how-
ever, differs. They tend to focus on the adoption
of a common technology and competition for
market share in a common market pool, mak-
ing the insights somewhat distant and irrele-
vant to the context of security and defense
games. In addition, these papers generally con-
sider a zero-sum game where the share of the
customer base is the prize, which may not be
appropriate for the attacker-defender game.

In this paper, we connect the literatures
on technology adoption and attacker-defender
games by using this modeling framework in
understanding the problem of optimal timing
and purchase of newer and potentially costlier
technologies for attacking and defending. Al-
though some papers in the attacker-defender
games literature discuss some elements or no-
tions of technology adoption, this paper also
differs from these papers in several respects.
First, almost all models in the attacker-defender
games are single- or two-period games, which
may not fully capture the issue of timing in-
vestments in newer technologies. One excep-
tion to this is Hausken and Zhuang (2011a),
who consider a T-period game. In their model,
however, decisions are made myopically, with-
out considering the entire event horizon. Given
that investments in technology can be viewed
as investments for the future, this myopic ap-
proach that led to analytically tractable solutions
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will be inappropriate for our context since we
would like to capture the tradeoffs each player
makes at every period, which are dependent
on the history of decisions that were made. To
resolve this issue, we use a dynamic program
approach that searches for a global optimum,
which a myopic approach cannot provide.

The model we propose for technology adop-
tion is a multiperiod attacker-defender game
in which both players are strategic or forward-
looking—i.e., they consider not only the bene-
fits they will attain at the present period but
also how their choices would impact latter pe-
riods in the game. Given that these problems
tend to be analytically intractable, we also pro-
pose a dynamic programming framework that
can be used to solve this problem. The advan-
tage of the dynamic programming approach is
that it provides a global optimum that may not
necessarily be the same as the local optima for
each period that the myopic approach provides.

We show through some numerical illustra-
tions, sensitivity analyses, and benchmarking
studies of certain heuristics some of the poten-
tial benefits this framework provides.

MODEL
Model Setup and Notation

We consider a sequential, finite-horizon
game with uncertainty between a defender and
an attacker, where the basic sequence and dy-
namics of the game is summarized in Figure 1.
In this game, the defender, at the beginning of
each period t, can choose to maintain her cur-
rent level of technology for defense or adopt
a higher and costlier level of technology. The
attacker observes the level of technology of the

ATTACKER-DEFENDER GAMES

defender and can choose to launch an attack
or use the time to accumulate resources to im-
prove his chances of success in future attacks.

If the attacker chooses to launch an attack,
the attack’s success is determined probabilisti-
cally by the current levels of capability by the
attacker to attack and the defender to defend.

This process continues until the end of the
horizon differing only with the level of tech-
nology available for each player at the start of
each period, which depends on the sequence
of acts that each player makes in the earlier
periods.

Denote

t = time period, wheret =1, ..., T = o;

M = maximum level of technology feasible for
the defender;

D! = decision of the defender at time f, where
D! € {0,1,..., M}, which represents the addi-
tional levels in technology that the defender
chooses to add at time ¢;

D¢ = decision of the attacker at time f, where
D! € {0,1}, where 1 and O represent the de-
cision to accumulate and to attack, respectively;

t
¢, = > D" is the level of technology for the
=1
defender at time ¢;
t

A=Y D! is the level of accumulation for

i=1
the attacker at time f;
P, A) = probability of a successful attack when
the technology level of the attacker and de-
fender are iy and A, respectively;
v,, v = damage valuation associated with a
successful attack, to attacker and defender,
respectively;
8, 64 = discount factor of the attacker and
defender, respectively.

Period 1 Period 2 see Period T

Defender Attacker Defender Attacker Defender Attacker

Stay atCurrent
Accumulate Level

Stay at Current Stay atCurrent

Level Accumulate Level Accumulate

AN

Increase Increase Success

Level By 1
.

Attacl

Level Up to M

Level Up to M Level Up to M

Figure 1. Attacker-defender game.
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Although many factors could potentially
affect the probability of a successful attack, in
this paper we model this success probability
primarily as a function of the technology level
i of the defender and the accumulation level A
of the attacker. Without loss of generality, we
order s and A such that higher values are con-
sidered to be of higher quality—i.e., the higher
¢ (A), the lower (higher) the chance an attack
will be successful. In addition, we typically
should choose functions that demonstrate some
notion of a diminishing relative effectiveness
of technology as the technology levels of both
players increase.

To clarify what we mean by level of tech-
nology (and accumulation), we associate this
level to the set of technologies (resources) that
are adapted by the defender (attacker) to main-
tain (compromise) security of the target. It does
not necessarily refer to a specific technology
but to a portfolio of techniques that are used
and employed, although it may be possible that
the main difference between a certain level and
next level available for adoption is a single
technology. This implies that the state space is
generated by an ordering of the set of possible
actions, which typically is comprised by some
small set of specific technologies together with
some appropriate combinations of these indi-
vidual technologies. Thus the probability asso-
ciated with ¢ is not attributable to a specific
technology but to the joint implementation of
the tools in that portfolio for a specific chosen
level. In the end, the technology set employed
by the defender (attacker) indexed from 0 to
M (0 to T) is an ordered set in which the port-
folio of technologies associated with a higher
index leads to a lower (higher) chance of a suc-
cessful attack. We also assume that once a higher
level of technology is implemented, a defender
will not choose a lower level of technology in
the future.

As a simple but realistic example, consider
a Transportation Security Administration (TSA)
point of entry trying to deter the entrant of
a potential attacker into a secured area such
as an airport. They can employ a variety of ap-
proaches such as physical search, metal detec-
tor, and x-ray body scanner. One way to create
a technology set is to have the following {y =
1 = physical search, y = 2 = physical search

and metal detector, y = 3 = x-ray full body
scanner}. Here, as ¢ increases, the probability
of defense (i.e., deterring the entrance of an
attacker) increases because of the quality of
the technology. Additional refinements can be
made to have a larger set of alternatives (e.g.,
machines of differing qualities, newer methods
for detection, more combinations of alterna-
tives). In this instance, we see that the incre-
ments may be discrete and the difference
between each step is “equal,” but the implica-
tions that they have in terms of effectiveness
and costs are not necessarily “equal.”

Related to better chances for defense, we
associate a fixed cost for adopting a new tech-
nology for the defender at period t, denoted
by Cu(¢,t). Aside from this one-time cost, we
also include a period-dependent operating cost
Co(,t) incurred every period when technol-
ogy level ¢ is implemented. Similarly, the at-
tacker has some associated cost C,(A, t), which
is dependent on the attacker’s accumulation
level. Although time is not explicit in this no-
tation, we note that A is associated with time
since Df in {0, 1} implies that A =t + A, for
every period t.

Problem Formulation and
Equilibrium Concept

In each period t, the defender is faced
with a decision DY whether to maintain the
current level of technology (D7 = 0) or invest
in a higher level of technology by increasing
from the current level ¢, _; up to M(DY ¢
{1,....M—¢,_,}). The defender incurs an
adoption cost if she chooses to invest and an
operating cost dependent on the ending level
of technology. In terms of optimization, the de-
fender tries to minimize the value function V¢
representing the expected costs by weighing
the costs associated with these investments
and the expected savings in the reduced ex-
pected damage of a successful attack if the
attacker chooses to launch an attack. After
the defender sets up a defense, the attacker
chooses whether to launch an attack in a man-
ner that maximizes his value function V{. The
advantage of not launching an attack is that
the attacker can further develop capabilities

Military Operations Research, V18 N2 2013
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or technology to improve the success of future
attacks.

In analyzing this problem, we employ the
traditional Nash equilibrium concept. More-
over, similar to Powell (2007), Zhuang et al.
(2010), and Golalikhani and Zhuang (2011), we
employ the subgame perfect Nash equilibrium
(SPNE) refinement. This means that the solu-
tion at every subgame is a Nash equilibrium
itself, i.e.,

D = argntl)idn Vi (D |1, A1)
D} =arg max Vi(D} |§-1,A1-1,D; )

for t = 1, ..., T. This can usually be solved
through backward induction. Specifically, in
period T, the attacker decides to maximizes
his or her value by comparing the expected
benefit of attacking (expected value of target
less the cost of attacking) versus doing nothing,
i.e., the optimization problem for choosing be-
tween attacking or doing nothing is

V(D7 [r,Ar-1) =
II;)%X{P((,Z/TM\Tfl)’Uu —Co(A7-1,T),0}. (1)

T

Equation 1 implies that if the costs are not
significantly high, the attacker would choose
to attack. Otherwise, the attacker would sim-
ply choose to accumulate, which is paramount
to doing nothing since action is no longer per-
missible after time T. The defender has the fol-
lowing optimization problem:

VE(D$ | Yr_q,Ar1) =
min  {Cy(¢r_, + D7, T)1

d
p4:Db+yp_ =M [D7#0]
+ Co(Wr_y + D, T)
+ Py + D?,Arﬂ)vdl[DnT:O]}, )

Repeating this, we have the following
Bellman equation for any intermediate period
t<T

Military Operations Research, V18 N2 2013
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V?(D? | d/ta/\ffl) =
rrlgaux (P, A e—1)va — Ca(As-1, t)}l[Dgzl]

+ 8V (1 (DY), A1 + (1= D))}
4/ ~d
v, (Dt | _1.At-1) =

min  {C4(¥_1 + D, )1

D20
DYDY + g =M Dt #0]

+ o1 + D, 1)
TP+ D’Zv/\tfl)vdl[[)‘;:o]

+ 84V (W, + D A (D)} 3)

Here, we note that the value function be-
comes complicated quickly because the next
period’s state variable A, for the defender is de-
pendent on the decision D¢ since this will dictate
what the attacker will do in the intermediate
stage. Similarly, this is true for ¢;,; and D{ for
the attacker since D will dictate the defender’s
optimal strategy in the next period.

Figure 2 summarizes the steps in the dy-
namic programming algorithm that we use to
solve this game for any set of cost functions
Ca C4, and C,. The recovery of the optimal solu-
tion often yields a clear decision for a player. In
the rare event that a player is indifferent be-
tween two strategies, we note that an alternative
optimal solution exists and that the Nash equi-
librium would then involve a mixed strategy be-
tween alternatives. For example, in the case of
an attacker, it may be possible that the attacker
would instead choose to attack with a certain
probability a*, and with probability 1 —a* choose
to accumulate.

In addition, if we choose reasonable func-
tions that are bounded, compactness guarantees
that an optimal solution exists. One thing to
note is that the algorithm performs better than
brute force enumeration of all possible paths
that each player can take, but like most dynamic
programming models, the algorithm still would
be prone to some computational issues when T
and M are high. Fortunately, this does not pose
a significant problem since the expansion is on
the action space and horizon rather than the
state space, where issues related to the curse
of dimensionality may occur.
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Algorithm:

Initialize:

Set T, M,vy,v4, 04,04, V0, Ao, parameters of C,,Cy,C,

Last Pertod Solution:
for (a,b) € {to,..., M} x {Xo,..., T+ Ao}
Compute and Store

Vi(Dila,b) == maxpa 0,13 [P(a, b)va — Ca(b, T)|1pg.—g

D$*(a,b) := argmax V(D5 |a, b)

Vi (Df]a,b) := minpg. pa 4 qepr Cala + Dg, T)1pg 20 + Cola+ Dg.T)

+ P(a+ DY, b)valips: g
D¥(a,b) := arg min V(Dé|a, b)

Iteration Steps:
Repeat for t=T-1,T-2,...,1

for (a,b) € {vo,...,M} x{Xo,...., T+ Xo}

Compute and Store

Vi#(Dfla, b) = maxpgeqo1y[P(a, b)v* — Ca(b, )]1pe—g)
+ 8.V (a+ D (a,b+1— D§),b+1— Df)

D*(a,b) = arg max Va(Dga, b)

VA(Df|a,b) = minyd. iy q<pr Cala + Df, 1)1 pasg) + Cola + D{,t) + P(a + D{,b)val|pg-=q)
+ 064V (a+ D¢, b+ [1 — D¢(a+ D¢, b+ 1 — D¥(a+ DE,b))))

Df*(a,b) = argmin V(Dfla, b)

Recovering the Optimal Solution:
for t=1,2,...,T

Yo =i+ DPF (1, M)

Av = A1+ D (e, A1)

Figure 2. Summary of the dynamic programming algorithm.

NUMERICAL ILLUSTRATION
Base Case Model

To illustrate how the solution for this game
behaves, we consider a numerical illustration.
For this purpose, we have to choose specific
functional forms for the probability success
and cost functions. In particular, we select

>
>
=2

<

where P is decreasing in iy and increasing in
A, C4and C, are increasing in ¢ and decreasing
int, C, is decreasing in t and A, and the scaling
constants b,, b;, and b, are positive. For our
baseline values, we select: jp = Ag = 1, v, =
vg=0v=10,T=M=20,6,=6;,=009, b, =
by =0b,=1.

The selection of the appropriate cost func-
tions can be at times tricky and in many

instances, they may not necessarily be well-
behaved. For example, these functions may
not necessarily be strictly monotonic or con-
tinuous in their parameters. In addition, sev-
eral realistic alternatives may also be possible
for functions such as the probability success
function P. In selecting these functions, one
important criterion should be the ability of
these functional forms to capture many essen-
tial features in the dynamics between attacker
and defender. For example, the notion of an
“adaptive adversary” dilemma should not be
neglected in the choice of the probability func-
tion. The adaptive adversary phenomenon re-
fers to the fact that the relative effectiveness
of a technology may diminish over time as the
opponent accumulates or invests in technology
as well. By choosing a function that has the ap-
propriate concavity that we mentioned earlier,
we can capture part of this reality, where a
diminishing level of effectiveness can be ob-
served as the parameters A and ¢ increase.
The optimal solution for the baseline case
is provided in the first plot (subplot al) in

Military Operations Research, V18 N2 2013
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Figure 3, where over time (x-axis), we plot the
optimal level of technology (y-axis) for each
player. Here, changes in y represent techno-
logical improvements for a player, whereas
a flat region represents retention of technol-
ogy for the defender, and an attack for the at-
tacker. In this plot, we see that the optimal
Nash strategy for the attacker is to attack in
almost every period (except period 15, when
the attacker should accumulate to increase
the probability of success), whereas the de-
fender invests only in certain periods (periods
2,3,9,15 and 16).

Under closer scrutiny, the decision of how
much to invest in a technology is not as sur-
prising. Because the cost functions chosen are
steep in the sense that they have exponential
tails, intuition suggests that the most advanced

ATTACKER-DEFENDER GAMES

technologies will be costly relative to the bene-
fits at early stages. Thus, one could predict that
the decision on how much to invest should be
relatively small, i.e., the defender should invest
small amounts over time. In the unlikely case
that the cost functions are not that steep and
the overall costs are relatively low, the amount
to invest in new technologies should be rela-
tively large at some early period. However, it
is difficult for a decision maker to predict the
optimal time to invest without performing cal-
culations. One possible reason for this is that
most individuals would have a hard time recon-
ciling the tradeoffs between the cost of adopt-
ing new technologies at different periods of
time and the net benefits the new technol-
ogies would provide if an attack were made—a
phenomenon that is supported by research
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Figure 3. Sensitivity analysis for T = 20 when parameters for the defender (V) and attacker (e) are made

to vary.
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on behavioral decision making on time in-
consistency and discounting (e.g., Shane et al.,
2002).

Figure 4 shows the policy function D} and
D? for this problem at several time periods. We
note that the region on the x-axis from t + 1
to T for various periods t is empty because
these are unreachable states during the first ¢
periods of the game. In addition, we note that
the policy function takes on much more values
for the attacker than for the defender given the
size of their action spaces. The defender can
improve up to level M at any period, whereas
the attacker can only choose to attack or accu-
mulate at every period.

One quick observation here is that the pol-
icy function does not seem to be well-behaved
even with the use of simple functional forms
for the cost and probability success function.
This is driven by the discrete nature of the ac-
tion space but more so by the discontinuous
nature of the objective function, making it dif-
ficult to predict over what regions it would
be necessary to invest in a dynamic game.
When the appropriate functions for the cost
and success functions are less well-behaved
(e.g., noncontinuous, nonmonotonic), which
arises naturally in settings where the effec-
tiveness of a technology set is not necessarily

strictly increasing or perfectly correlated with
respect to the level and the cost, the prediction
of the optimal behavior becomes more diffi-
cult. For this reason, we believe, here lies the
contribution of using such a model.

Moreover, we show in the next section that
using even simple reasonable heuristics for
either party could lead to gross inefficiencies,
which further strengthens the argument for
considering such models in policy formula-
tion, analysis, and decision making.

Sensitivity Analysis

Compared to a single-period model, changes
in parameters for a multiperiod model could
potentially reverberate throughout the entire
time horizon. To have a better understanding,
we illustrate how the optimal state space values
(7, A]) change for several parameter values.
The optimal solution (D", D%") can easily be
recovered by looking at the difference in the
value of the state space variables at every time
period. Subfigures in rows (b) to (g) of Figure 3
show three instances for the parameters b,, b,
84, 64, Vs, and v, which can be compared to the
baseline case located at the top row of the same

figure.
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Figure 4. Policy function for the attacker and defender at different periods (t = 5, 10, 15, 20).
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o Cost of an attack (b,). By adjusting a multipli-
cative constant associated with the cost of
implementing an attack, we analyze how
the attacker’s (and consequently the de-
fender’s) optimal behavior changes. As the
cost of launching attacks increases, the at-
tacker will reduce the frequency of attacks.
In the baseline case, it is optimal for the at-
tacker to attack in almost every period. As
the cost increases, the number of attacks de-
creases in favor of having a higher level of
accumulation to improve the success rate of
an attack. In particular, we note that most
of the accumulation occurs early on and the
attacker behaves similarly to the baseline
case in the latter stages. On the side of the
defender, the impact of such a change is that
the defender is forced to invest in technol-
ogy to cope with the attacker’s level of accu-
mulated resources/technology.

o Cost of implementing a better technology (b,).
When the cost of adopting a new technology
increases, we observe the defender to be
more careful in choosing when to adopt a
higher level of technology. We note that when
the cost becomes too high, the defender sim-
ply chooses to maintain the current level of
technology and hopes that the attacks be-
come unsuccessful. Here, the defender ex-
pects to absorb the expected cost of an attack
since the cost of implementing a higher tech-
nology outweighs the benefits from the reduc-
tion in the expected damage from an attack.

e Discount factor for the attacker and defender (8,
and 8,). When the discount factor for the
attacker increases (i.e., less discounting), we
notice that the attacker would choose to ac-
cumulate more in early periods. This hap-
pens because the value of future attacks will
be potentially higher since the level of ac-
cumulation would increase and the net con-
tribution of these future attacks would be
higher at the present. Conversely, we observe
that if the discount factor is low enough (i.e.,
discounting is significant), the attacker would
choose not to accumulate and simply keep
on attacking at every possible instance, be-
cause foregoing an attack for a higher chance
of success in a future period is less attractive
since the discounted value of a future attack
is now significantly reduced.

Military Operations Research, V18 N2 2013
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For the defender, the timing for the adop-
tion of newer technology also depends on
the discount factor. The defender would delay
investing in newer technologies when 6, is
high and adopts immediately when 6§, is
low. In the latter case, the attacker correspond-
ingly acts by accumulating more than the case
when discounting is low since he knows that
the defender can easily move to a higher level
of technology in latter periods since large
jumps in technology levels are significantly
discounted.

o Value of a successful attack for the attacker and
defender (v, and v,). When a player values
an attack much more than the other, the opti-
mal decision would be to accumulate more
(invest more in technology) since a single
successful attack now has a greater effect on
the value function. Interestingly, since the
valuation of the opponent is not changed,
we see in plots (f1) to (g3) in Figure 3 that
the opponent’s change in strategy is not sig-
nificantly different in form from the baseline.
The rationale here is that the player with an
increased valuation would do whatever it
takes to have or avoid a successful attack.

Aside from varying the parameters, we
note that certain scenarios are interesting in
that they lead to certain phenomena studied in
the technology innovation literature. For exam-
ple, one interesting phenomenon that occurs in
certain settings is the notion of a technology
competition or arms race (see Anderton (1989)
for a review). For example, in Figure 3 (b2) the
two players accumulate technology to improve
their chances of successfully defending and
attacking for intermediate values of b,. This
phenomenon ceases when the cost of attacking
is either too low or too high because in these
two extremes the attacker will clearly either
just attack or just accumulate. It is in the inter-
mittent case of accumulating and attacking that
the defender needs to improve resources. De-
spite the fact that an attacker tries to accumu-
late resources in this setting, the option to
launch an attack is open to the attacker if it
seems that there is a reasonable chance of suc-
cess even if the cost of an attack is not that low.

With respect to the other parameters, we see
that the technology race is not really clearly seen
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because what usually happens is that the for
a significant change in parameters, only one of
the parties would significantly try to improve
its level of technology/accumulation. For ex-
ample, when v, is high, the defender will invest
more in technology as the expected cost of an
attack starts to outweigh the cost of adopting
and implementing a newer technology. The
same is true for v, with the caveat that at
much higher levels of v, the defender will also
somewhat increase his level of technology. The
attacker would then start to gradually accumu-
late resources since the value of a successful at-
tack is higher. He tries to achieve it at higher
levels of v, when multiple tries as well as im-
proving his chances through accumulation.

We note that the results in this example are
specific to the functional forms employed but
the contribution of this paper lies in the use of
the suggested framework and the illustration
of some types of analysis that could be done.
In addition, we believe that many of the in-
sights that we discover from these numerical
examples will hold for a wide range of func-
tion forms that have similar monotonic prop-
erties with respect to model parameters ¢, A,
and ¢.

Analysis of Some Attacker
and Defender Heuristics

The importance of timing investment deci-
sions manifests most clearly when the savings
are substantial relative to the decision-making
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Figure 5.

Percentage Decrease

effort. We perform some benchmark analysis
by comparing the optimal strategy to some po-
tentially reasonable heuristic strategies that a
defender may employ. We measure the differ-
ence in the optimal costs when the defender
employs these heuristics and the attacker re-
sponds optimally to the defender’s choices in
investment.

First, we consider the case in which the
defender chooses to invest immediately in the
most effective albeit most expensive technol-
ogy, which we refer to as Policy D1. Typically,
this type of behavior can be justified when a
decision maker who cannot correctly value the
costs and benefits of adopting a technology is
mistakenly led to believe that the costs of adopt-
ing the best safeguards would always outweigh
the cost associated with a successful attack.

A second reasonable strategy (hereafter re-
ferred to as Policy D2) is for the defender to
simply invest slowly by choosing to invest in
one level of technology at a time, i.e., increase
the level of technology by one unit per period.
Unlike Policy D1, this one yields a more modest
approach to investing, which could be viewed
by the public as an act where the defender is
constantly doing something to protect its in-
ternal security.

Figure 5 shows the percentage increase in
the optimal solution when comparing these
two policies when the time horizon is made
to vary. For example, here we see that when
the players are engaged in a one-period game,
Policy D1 yields a 566% increase in expected
costs for the defender while Policy D2 yields

(b) Decrease in Expected Benefit for Certain
Non-Optimal Strategies for the Attacker
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(Left) Percentage increase in expected cost under varying time horizon (T) when (a) investing one

unit of technology per period and (b) choosing to invest in the most expensive technology immediately. (Right)
Percentage decrease in expected benefit under varying time horizon (T) when attacker accumulates nonoptimally
for varying amounts of time and attacks every period thereafter.
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a 22% increase. In both instances, these two
strategies provide substantially higher costs
for the defender.

As the time horizon increases, we observe
that Policy D1’s inefficiency decreases, because
for longer time horizons, the cost of adopting
a higher level of technology early on can be
“spread out” over the longer horizon since the
defender can reap additional benefits in the re-
duced chance of having a successful attack over
time. On the other hand, Policy D2 slightly in-
creases over time because there are more pe-
riods for potential discrepancies between the
optimal solution and the solution that Policy
D2 provides. Recalling the structure of the opti-
mal solution in the baseline case, we see that
there are now more periods in which a moder-
ate investment is no longer considered optimal.
In fact, for several periods, the defender should
simply stay at its current level rather than con-
tinually investing in newer technologies. Al-
though this may be slightly increasing over
time, Policy D2 still yields a better solution than
Policy D1 for all values of T considered, which
yields an increase in expected costs of some-
where between 170% and 570%. For Policy D2,
the increase in expected costs is more modest
with a range of 13% to 36%. When discussing
large sums of money for implementing this de-
fensive strategy, we see that using such a model
could still yield substantial cost savings com-
pared to implementing some nonoptimal heu-
ristics that can be thought to be natural or
reasonable. Similarly, we can examine how the
attacker can potentially be at a disadvantage
when acting in a nonoptimal fashion while
the defender reacts optimally to the attacker’s
choices. In particular, we examine the case in
which the attacker accumulates for the first
few periods and then simply attacks until the
end. A potential justification for this is that
the attacker may want to first attain a certain
level of technology before attacking to improve
the chances of success.

Figure 5 also shows the effect on the opti-
mal value function for the attacker for differ-
ent levels/periods of accumulation (0%, 50%,
and almost 100% of the time horizon and here-
after referring to them as Policies A1, A2, and
A3, respectively). Although the plots are non-
monotonic due to the discrete nature of the
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time horizon, we see that their general pattern
indicates that as the time horizon increases, the
percentage decrease generally increases over
time. We also note that the case where the at-
tacker attacks every period is best among the
heuristics, which is not surprising since the
optimal SPNE strategy in the baseline case is
for him to attack in almost every period. Using
the numeric example that we have, we can see
that for the longer time horizons, the decrease
in the objective value function can be substan-
tial (~20-30%). We note that these patterns
remain persistent when both players play the
heuristic strategies discussed. In this case, both
players will experience significant changes in
their optimal cost or benefit value that is simi-
lar in pattern and generally worse in value than
the plots in Figure 5.

Finally, we conduct some sensitivity analy-
ses on the parameters and see how well the
heuristics presented perform relative to the op-
timal strategy. For the defender, we see from
Figure 6 that the difference between the perfor-
mance of the heuristics is relatively stable for
most parameters (v,, b, 8, and 6,). However,
for v; and b,;, we observe that the performance
is more or less the same except for extremely
large values. This tells us that for most reason-
able values of the parameters, there is a sub-
stantial cost savings for the defender when
using the optimal strategy compared to the heu-
ristics analyzed. Similar plots are provided for
the attacker in Figure 7. Here, we see that the
general ranking between the heuristics remains
the same for all parameters with a few minor
exceptions—e.g., see Policies A2 and A3 in plots
(a), (c), and (e) of Figure 7.

CONCLUSION

Conventional wisdom teaches that in many
aspects of life, timing is everything. This defi-
nitely holds in the area of multiperiod attacker-
defender games where improper timing in
investments toward defense, preparation, and
security can have a serious economic conse-
quence for both attacker and defender. Effec-
tive planning requires the careful discernment
of when and how much to invest at every pe-
riod, taking into account that the interaction
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Figure 6. Sensitivity analysis for the defender heuristics.

between an attacker and defender goes beyond
a single period.

The research in the area of technology adop-
tion and competition has been well-established
in the economics and decision analysis litera-
tures. However, this is not true in the security
games and military operations research litera-
ture. This paper fills that gap by presenting a
multiperiod dynamic game between an attacker
and defender, which captures the tradeoffs be-
tween immediately implementing important

technology improvements and the cost and
risk associated with potential threats and at-
tacks. We provide a modeling framework that
could be used for planning and understand-
ing the costs and benefits of adopting new
technologies in the context of homeland secu-
rity. Although these models can capture the
complex interactions between the two parties,
the price for this is the lack of analytic tracta-
bility even for simple nontrivial functional
forms, which nowadays is easily addressed
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Figure 7. Sensitivity analysis for the attacker heuristics.

by the rapid development in computational

methods.

By using some simple examples, we see that

despite the fact that some simple heuristics
seem to perform reasonably well, the costs sav-
ings in correctly timing investments in security
could be significant considering the current
spending levels of government agencies. Al-

though the paper focuses on a specific set of

functional forms and numerical examples, we
believe that the idea and framework is still

Military Operations Research, V18 N2 2013

general enough to be applied to specific tech-
nology adoption problems of a government
agency or an international police/security or-
ganization. We hope that this type of analysis
can provide operations research professionals
in the military and homeland security areas
insightful justification to provide evidence
either for or against proposals to policy and
decision makers related to the planning, sched-
uling, and acquisition of portfolios of defense
technologies.
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Although we have addressed an important
problem, there are other challenges and inter-
esting questions that can be analyzed going
forward. First, the incorporation of incomplete
information in this setting may be applicable in
many settings. For example, each player may
not have full knowledge of the technologies
being adopted by each party. Instead, each party
may have only partial information, similar to
what was done by Zhuang et al. (2010). Another
interesting avenue to pursue is the incorpora-
tion of investment opportunities for technology
with uncertain quality or payoff. This issue deals
with the common problem that many technolo-
gies are being proposed for use and need fund-
ing, but the effectiveness and potential cost of
developing them are typically uncertain. We
believe that embedding this additional layer
of uncertainty will yield interesting insights
with respect to the potential tradeoffs a de-
fender would make to allocate scarce resources
between investing them for protection in the
immediate versus the distant future.

Another area of future work is to see how
the dynamics of an attacker-defender game
would change when multiple parties work
against an attacker (e.g., several nations or gov-
ernment agencies) or perhaps multiple parties
working against a defender (e.g., multiple ter-
rorist groups), or both. Here, one can inves-
tigate how the sharing of technology could
improve the system or make it worse for one
or both parties given the asymmetry in infor-
mation, resources, and technology of parties
involved.
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