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We analyze how a government allocates its resources between attacking to downgrade a terrorist’s resources
and defending against a terrorist attack. Analogously, the terrorist allocates its resources between attacking

a government’s asset and defending its own resources. A two-stage game is considered where the government
moves first and the terrorist moves second. We show that (a) when the terrorist’s resources are low, the gov-
ernment attacks the terrorist’s resources sufficiently to deter the terrorist from attacking and does not defend;
(b) when the terrorist’s resources are high, both the government and terrorist defend and attack. We analyze
T periods of the two-stage game between two myopic players. First we assume no linkages between peri-
ods. We show that after an attack the government may enjoy incoming resources, which deter the terrorist for
some periods. Between periods the terrorist’s resources may change because of arithmetically and geometrically
changing incoming funds. We allow the government’s and the terrorist’s resources to be determined randomly
in each time period. We also allow the government’s resources in one period to depend on the terrorist’s attacks
in earlier time periods for three dynamics, where the terrorist’s resources are drawn from a normal distribution
or change arithmetically or geometrically.
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1. Introduction
Essential for terrorism assessment is the understand-
ing of the terrorist’s and government’s objectives,
resource capacities, and the role of time. Extending
earlier research, which has typically assumed that the
government defends and the terrorist attacks, this
paper more realistically, and ambitiously, assumes
that both players both defend and attack simul-
taneously. The government defends its assets and
infrastructures, but may also attack the terrorist’s
resources. Consequently, the terrorist defends its
resources in addition to attacking the government’s
assets. Both players can thus use their resources
defensively and/or offensively. We furthermore con-
sider how the government and terrorist may defend
and attack through time. We analyze how the gov-
ernment may deter attacks (i.e., the terrorist does

not attack as a result of government deterrence), and
how the terrorist responds to such deterrence. We
model objectives as utilities, distinguish between unit
costs of defense and attack, and allow different asset
valuations for the government and the terrorist. The
interplay of these factors causes a variety of different
equilibrium strategies, which are analyzed.
We develop a model for how a government allo-

cates resources between defending against a terrorist
attack and attacking a terrorist’s resources, and how
a terrorist analogously allocates resources between
attacking a government’s asset and defending its own
resources. We consider the government and terrorist
as unitary players.
The government is usually more transparent than

the terrorist. Most governments publish their defense
budgets to the public (and therefore, to the terrorists).
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We thus assume that the terrorist takes the govern-
ment’s defense information as given when choosing
its attack strategy in each time period T . For each
period, we analyze a two-stage game where the gov-
ernment moves in the first stage, and the terrorist
moves in the second stage. Such a game is usually
more descriptive than a simultaneous game where the
players are unaware of each other’s actions. For exam-
ple, the U.S. homeland security defense budget and
its Iraq and Afghanistan operations are well observed
by the terrorist.1

The two-stage game is played T times, referred to
as periods (Zhuang et al. 2010). In §6 of this paper
there are no linkages between the T periods. In §7,
the government’s resources depend on the terrorist’s
attacks in earlier time periods. The time between peri-
ods is assumed to be sufficiently longer than the
time between stages so that each two-stage game can
be solved with backward induction for each period.
This means that the players are myopic and bound-
edly rational in the sense that they only consider one
two-stage game in each period. Support for bounded
rationality has been provided by Nobel Prize winner
Herbert Simon (1955), and in an extensive subsequent
literature; see, e.g., Lindblom (1959), Padgett (1980),
Rubinstein (1998), and Gigerenzer and Selten (2001).
Clausewitz (1832) suggests that attack is the best

defense. The principle is highly debated and does not
always hold. This paper seeks to determine to what
extent it is optimal to stay on the defensive and await
the terrorist’s attack and to what extent it is optimal
to go on the offensive and actively decrease the ter-
rorist’s resources.
To facilitate analytical tractability of the attack ver-

sus defense balance for two players, accounting for
the time factor, one asset is considered. The asset is
interpreted broadly as something of value, which the
government seeks to protect and the terrorist seeks
to destroy or capture. Some terrorists have a broad

1 Observing a government’s budget is not sufficient to know how
the government allocates its resources into multiple attacks and
defenses, though there may be instances where governments spec-
ify such allocations to some extent. Our simplifying assumption
in this paper is one government, one terrorist, one asset, and one
resource. Future research may focus on the players’ resource allo-
cations into multiple attacks and defenses.

objective, such as inflicting damage on a country (e.g.,
the United States). In the face of such a terrorist, a
government defends its entire country, which calls for
a broad defense. The model also applies for collec-
tions of assets interpreted as a joint asset and assets
defined more narrowly to the extent both the gov-
ernment and the terrorist can be perceived as allo-
cating budgets for attack and defense by collections
of assets or specific assets. One example of a collec-
tion of assets is the four targets of the 9/11 attack,
i.e., the World Trade Center’s north and south towers,
the Pentagon, and the White House (which was not
hit). Focusing on one asset means that we do not
analyze how the government and terrorist substitute�s
resources across assets. For that research question, see
Enders and Sandler (2004) and Hausken (2006), and
see Bier et al. (2007) for when a government allo-
cates defense to a collection of locations but a terrorist
chooses a location to attack. Typically, the govern-
ment’s action against terrorism receives a lot of media
and political attention, e.g., U.S. president Reagan’s
1986 attack of Libyan president Gaddafi. Such atten-
tion can be expected to play a role in the govern-
ment’s decision on its level of attack and whether or
not to attack. To avoid making the model too com-
plex, and acknowledging that modeling media and
political attention is challenging, this aspect has been
left out of our model.
Section 2 presents a literature review. Section 3

develops the model. The government allocates its
resources into defending its assets and attacking the
terrorist’s resources. The terrorist allocates the remain-
ing part of its resources into attacking the gov-
ernment’s assets and defending its resources. The
probability of asset damage, utilities, decision vari-
ables, game structure, and equilibrium are speci-
fied. Section 4 analyzes the two-stage game and
determines two cases for the solution; the terrorist
is deterred when the government attacks but does
not defend, or both players defend and attack. Sec-
tion 5 illustrates the solution. Section 6 considers the
T -period game with no linkages between periods.
It is first illustrated how the two cases arise and
which strategies are chosen in two subsequent time
periods dependent on various sizes of the terrorist’s
resources. Thereafter, the impact of letting the govern-
ment’s resources recover after an attack is analyzed
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(in Appendix B.2), which determines how the terror-
ist can be deterred. Finally, the terrorist’s resources
are allowed to increase arithmetically and geometri-
cally, and the impact on deterring the terrorist from
attacks is analyzed. Sections 7 and 8 consider the
T -period game with linkages between periods. We
model how the government’s resources in one period
change dependent on the changes of the terrorist’s
attacks in the two previous periods in §7, and vice
versa in §8. Section 9 suggests how to validate the
model and results. Section 10 concludes our find-
ings. Appendix A provides technical solutions to the
model, and Appendix B provides the T -period games
where the government’s resources are endogenously
linked between periods.

2. Literature Review
To position the current paper within the stream of
literature, we briefly outline earlier research. Earlier
research has considered passive defense in the sense
of defending against incoming attacks. Azaiez and
Bier (2007) consider the optimal resource allocation
for security in reliability systems. They determine
closed-form results for moderately general systems,
assuming that the cost of an attack against any
given component increases linearly in the amount of
defensive investment in that component. Bier et al.
(2005) and Bier and Abhichandani (2002) assume
that the government minimizes the success proba-
bility and expected damage of an attack. Bier et al.
(2005) analyze the protection of series and parallel
systems with components of different values. Bier
and Abhichandani (2002) apply game theory to char-
acterize optimal defensive strategies against inten-
tional attacks. Levitin (2007) considers the optimal
element separation and protection in a complex multi-
state series-parallel system and suggests an algorithm
for determining the expected damage caused by a
strategic terrorist. Patterson and Apostolakis (2007)
introduce importance measures for ranking the sys-
tem elements in complex systems exposed to terror-
ist actions. Michaud and Apostolakis (2006) analyze
such measures of damage caused by the terror and its
impact on people, the environment, public image, etc.
Dighe et al. (2009) consider secrecy in defensive allo-
cations as a strategy for achieving more cost-effective
terrorist deterrence. Zhuang and Bier (2007) consider

government resource allocation for countering terror-
ism and natural disasters. Levitin and Hausken (2008)
consider a two-period model where the defender,
moving first, distributes its resources between deploy-
ing redundant elements and protecting them from
attacks.
Raczynski (2004) simulates the dynamic interactions

between terror and antiterror groups. Feichtinger and
Novak (2008) use differential game theory to study
the intertemporal strategic interactions of Western
governments and terror organizations. They illustrate
long-run persistent oscillations. Berman and Gavi-
ous (2007) study a leader follower game, where the
state provides counterterrorism support across multi-
ple metropolitan areas to minimize losses, whereas the
terrorist attacks one of the metropolitan areas to max-
imize his utility. Berrebi and Lakdawalla (2007) con-
sider how terrorists sought targets in Israel between
1949 and 2004, responding to costs and benefits, and
find that long periods without an attack signal lower
risk for most localities, but higher risk for impor-
tant areas. Barros et al. (2006) apply parametric and
semiparametric hazard model specifications to study
durations between Euskadi Ta Askatasuna’s (a Spain-
based terrorist group) terrorist attacks, which seem
to increase in summer and decrease with respect to,
e.g., deterrence and political variables. Udwadia et al.
(2006) consider the dynamic behavior of terrorists,
those susceptible to terrorist and pacifist propaganda,
military/police intervention to reduce the terrorist
population, and nonviolent, persuasive intervention
to influence those susceptible to becoming pacifists.
Hausken (2008) considers a terrorist that defends an
asset that grows from the first to the second period.
The terrorist seeks to eliminate the asset optimally
across the two periods. Telesca and Lovallo (2006) find
that a terror event is not independent from the time
elapsed since the previous event, except for severe
attacks, which approach a Poisson process. This latter
finding suggests that attack and defense decisions are
not unit periodic in nature, but that there are linkages
through time. One objective of the current paper is to
understand more thoroughly the nature of such link-
ages through time, affected by changes in resources,
unit costs of defense and attack, etc.
Bakir (2008) develops a decision tree model for

evaluating countermeasures to secure cargo at south-
west U.S. border entries. Merrick and McLay (2010)
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analyze whether screening cargo containers for smug-
gled nuclear threats is worthwhile. Barrett (2010)
determines the cost effectiveness of on-site chlo-
rine generation for chlorine truck attack prevention.
Feng and Keller (2006) provide a multiple-objective
decision analysis for terrorism protection, focusing
on potassium iodide distribution in nuclear inci-
dents. von Winterfeldt and O’Sullivan (2006) ques-
tion whether we should protect commercial airplanes
against surface-to-air missile attacks by terrorists.
For a recent survey of work that examines the strate-

gic dynamics of governments versus terrorists, see
Sandler and Siqueira (2009). They survey advances in
game-theoretic analyses of terrorism, such as proac-
tive versus defensive countermeasures, the impact of
domestic politics, the interaction between political and
militant factions within terrorist groups, and fixed
budgets. Furthermore, Brown et al. (2006) consider
defender-attacker-defender models. First the defender
invests in protecting the infrastructure, subject to a
budget constraint. Then, a resource-constrained attack
is carried out. Finally, the defender operates the resid-
ual system as best possible. They exemplify with
border control, the U.S. strategic petroleum reserve,
and electric power grids. Trajtenberg (2006) studies a
model with a nonstrategic terrorist, targets in a given
country that choose defensive measures, and a gov-
ernment who chooses the proactive effort level.
Some research has focused on investment substi-

tutions across time. First, Enders and Sandler (2004)
suggest that a terrorist may compile and accumu-
late resources during times when the government’s
investments are high, awaiting times when the gov-
ernment may relax his efforts and choose lower
investments. Second, Keohane and Zeckhauser (2003,
pp. 201, 224) show that “the optimal control of ter-
ror stocks will rely on both ongoing abatement and
periodic cleanup” of “a terrorist’s ‘stock of terror
capacity.’ ” Enders and Sandler (2005) use time series
to show that little has changed in the overall ter-
rorism incidents before and after 9/11. Using 9/11
as a break date, they find that logistically complex
hostage-taking events have fallen as a proportion of
all events, whereas logistically simple, but deadly,
bombings have increased as a proportion of deadly

incidents. Enders and Sandler (1993) apply data from
1968 to 1988 and find both substitutes and comple-
ments among the attack modes. Evaluating the effec-
tiveness of six policies designed to thwart terrorism,
they find that policies designed to reduce one type of
attack may affect other attack modes.
Sandler and Siqueira (2006) model the differences

between proactive and defensive policies with pseudo
contest functions. They find that preemption is usu-
ally undersupplied. A country’s deterrence decision
involves both external benefits and costs as the ter-
rorist threat is deflected, whereas its preemption deci-
sion typically gives external benefits when the threat
is reduced for all potential targets. With damages
limited to home interests, they find that a coun-
try would overdeter, whereas for globalized terror,
a country would underdeter. Bandyopadhyay and
Sandler (2009) consider in a two-stage game to study
the interaction between preemption and defense. In
the first stage, two countries decide their levels of
preemption against a common threat. Preemption
decreases damages at a diminishing rate. Preemp-
tion, as a public good, is subject to a free-rider
problem. In the second stage, the countries decide
their levels of defense against the threat adjusted by
the first-stage preemption. An increase in one coun-
try’s defense increases the probability of an attack
against the other country. They find that high-cost
defenders may rely on preemption, whereas too lit-
tle preemption may give rise to subsequent excessive
defense.
Cárceles-Poveda and Tauman (2011) study a two-

stage game. In the first stage, an endogenously deter-
mined subset of countries choose their proactive effort
levels, which downgrade through a functional form
the resources available to the terrorist in the second
stage. In the second stage, the terrorist allocates its
remaining resources to attack the countries, while, at
the same time, the countries choose their defensive
measures.
There are significant differences between our

paper and Bandyopadhyay and Sandler’s (2009) and
Cárceles-Poveda and Tauman’s (2011) papers. First,
we assume that both the government and the terror-
ist are fully strategic when allocating their resources
between defense and attack. The terrorist’s resources
are downgraded by two fully strategic players where
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the government attacks and the terrorist defends its
resources. In contrast, Bandyopadhyay and Sandler
(2009) assume a nonstrategic threat and Cárceles-
Poveda and Tauman (2011) assume that the resources
available to the terrorist in the second stage are down-
graded nonstrategically through a functional expo-
nential form. The resources available to the terrorist in
the second stage are applied in their entirety. The ter-
rorist’s strategic decision is how to allocate its down-
graded resources across the countries. Second, we
assume that the damage probability for the govern-
ment’s asset depends on the strategic decision by
the government of how well to defend its asset, and
the strategic decision by the terrorist of how well
to attack the asset using its downgraded resources,
accounting for a contest intensity. In contrast, Bandy-
opadhyay and Sandler (2009) assume that the terror-
ist’s second-stage attack depends nonstrategically and
functionally on the countries’ first-stage preemption,
and Cárceles-Poveda and Tauman (2011) assume that
the damage inflicted on country i is determined by a
functional form which is proportional to the resources
allocated by the terrorist to country i, proportional
to the political and/or economic power of country i,
and inverse proportional to the defense of country i

in the second stage. Third, we consider one uni-
tary government, which means abstracting away the
collective action problem of multiple governments.
In contrast, Bandyopadhyay and Sandler (2009) and
Cárceles-Poveda and Tauman (2011) account for the
collective action problem with two and multiple
players, respectively. Fourth, both Bandyopadhyay
and Sandler (2009) and the present paper deter-
mine solutions where the government does not
defend.
Our paper builds upon and extends earlier

research. First, we enrich the one-period model by
allowing both the government and terrorist to both
defend and attack. The government defends itself
and at the same time attacks the terrorist’s resources.
Analogously, the terrorist defends its resources, and,
at the same time, uses its remaining resources to
attack the government. Second, we repeat the one-
period model T times to understand how long the
terrorist can be deterred.

3. The Model
3.1. Motivation and Notation
The model in this paper seeks to answer the research
question of how two players, a government and a
terrorist, strike a balance between attack and defense
over time. Game theory is chosen as the modeling
methodology to account for the two players’ strate-
gic options. Important factors related to this research
question are the players’ resources, asset valuations,
the contest intensity for asset damage, and unit costs
of defense and attack. Throughout this paper we use
the following notation.

Parameters:
T number of time periods
t time period, t = 1� � � � � T
rt government’s resources in period t, rt ≥ 0
Rt terrorist’s resources in period t, Rt ≥ 0
gt government’s unit attack cost in period t, gt ≥ 0
Gt terrorist’s unit defense cost in period t, Gt ≥ 0
mt contest intensity for asset damage, mt ≥ 0

Decision variables:
dt government’s defense effort protecting the asset

in period t, dt ≥ 0
At terrorist’s attack effort attacking the asset in

period t, At ≥ 0
at government’s attack effort attacking the terror-

ist’s resources Rt in period t, at ≥ 0
Dt terrorist’s defense effort protecting its resources

in period t, Dt ≥ 0

Functions:
Pt probability of asset damage in period t, 1≥ Pt ≥ 0
Qt proportion of terrorist resources remaining after

the government’s attack, 1≥Qt ≥ 0
ut government’s expected utility in period t

Ut terrorist’s expected utility in period t

3.2. Assumptions
In each time period t, t = 1�2� � � � � T , the govern-
ment has an available budget in terms of resources rt .
We first assume that rt is exogenous, and in §7 we
endogenize rt . In each time period t, the govern-
ment moves first by transforming the resources rt to
either defense dt at unit cost 1 or attack at at unit
cost gt directed against the terrorist’s resources. The
resources rt can be capital goods and/or labor. More
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specifically, using Hirshleifer’s (1995, p. 30), Skaperdas
and Syropoulos’s (1997, p. 102), and Hausken’s (2005,
p. 62) terminology, gt is the unit conversion cost of
transforming the resources rt into at . The unit conver-
sion cost of transforming rt into dt is 1. We thus get2

rt = dt + gtat� (1)

Equation (1) strikes a balance between defending an
asset, and actively attacking and decreasing the terror-
ist’s resources. The transformation into dt and at can
be considered as production processes where 1/gt

is the productive efficiency. Note that (1) implicitly
requires that at ∈ �0� rt/gt� and dt ∈ �0� rt�. Note also
that allocating equal amounts of resources (e.g., a cap-
ital good such as money) into defense and attack (rt/2
to each) generally does not mean that the defense
effort dt and attack effort at become equally large
because the productive efficiencies of these two kinds
of efforts may be different. For example, economies
of scale, differences in competence and organizational
structure, and different production processes, may
cause 1 and 1/gt to differ substantially.
An allocation of fixed and exogenously given

resources into two kinds of efforts has been made ear-
lier by Hirshleifer (1995) and Hausken (2005) in a one-
period game. A feature of this paper is that rt is first
exogenously given in each time period (§§3–6), and
thereafter endogenously (§7). When exogenous, nei-
ther the government nor the terrorist affects rt over
time, but rt may change over time because of exter-
nal factors. In §6.3, rt is drawn from a random dis-
tribution, and in §7, rt is endogenous determined by
the terrorist’s attacks in earlier time periods. Further
endogenizing may be done in future research.
We consider the government and terrorist as uni-

tary players, abstracting away the collective action
problem within each of these players. Both gov-
ernments and terrorists may, to some extent, have
separate power fractions and decentralized deci-
sion making. For example, in the United States,
terrorism defense is to some extent separated in
a chain of command and funding channels from
attack activities. However, moving toward the top of

2 Equation (1) abstracts from a general unit defense cost xt obtained
by replacing (1) with xtrt = xtdt + xtgtat .

the chain of command, which in the United States
means Congress and the president, resource allocation
inevitably occurs between defense and attack. Multi-
ple terrorist threats generated by one or multiple ter-
rorists are either perceived as independent, or, if they
have commonalities, they can be grouped together
as a large threat generated by a collective player,
applying Simon‘s (1969) principle of “near decompos-
ability,” which means grouping together players with
similar but not entirely aligned preferences. Future
research may model the government and terrorist as
nonunitary heterogeneous players.
The terrorist observes the government’s choice of dt

and at in the first stage in each time period3 and allo-
cates in the second stage its resources into defense Dt

at unit cost Gt against the government’s attack, and
attack At at unit cost 1 against the asset controlled
by the government. Although the players’ decisions
occur in two stages, the two contests, over the ter-
rorist’s resources and the asset, occur after the two
stages, i.e., after the efforts dt , at , Dt , and At have been
chosen. This is illustrated in Figure 1.
We model the proportion of the remaining terror-

ist’s resources, which is the part of the terrorist’s
resources that has not been destroyed by the gov-
ernment’s attack, as a contest between the terror-
ist’s defense of its resources and the government’s
attack. For this purpose we use the common ratio
form (Tullock 1980, Skaperdas 1996) contest success
function, i.e.,

Qt�at�Dt�=
Dt

Dt + at

� (2)

where �Qt/�Dt > 0 and �Qt/�at < 0. Equation (2)
expresses that the terrorist keeps a larger fraction of
its resources when its defense Dt is large and the gov-
ernment’s attack at is small. The terrorist’s original
resources in each period is Rt , but it decreases to QtRt

because of the government’s attack, where QtRt is the
proportion of the remaining resources, and �1−Qt�Rt

is the proportion of the damaged terrorist’s resources.
The remaining resources QtRt are transformed into

3 For simplicity we assume that there is no secrecy or deception
in government disclosure of attack and defense, in contrast to the
studies by Zhuang et al. (2010) and Zhuang and Bier (2011).
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Figure 1 Sequence of Moves of the Model

Stage 1 of period t

Government
chooses attack at

Government’s
defense dt

Terrorist’s
attack At

Terrorist observes at and dt,
and chooses defense Dt

TimeStage 2 of period t

Contest over
terrorist’s resource

Qt(at, Dt)

Contest over
asset Pt(dt, At)

attack At and defense Dt . The terrorist’s resource allo-
cation equation can thus be expressed as4

QtRt =
Dt

Dt + at

Rt =GtDt +At� (3)

Analogously to (1), Rt can be a capital good and/or
labor, and Gt is the unit conversion costs of trans-
forming Rt into Dt . The unit conversion cost of trans-
forming Rt into At is 1. Hence, 1/Gt is the productive
efficiency. Equation (3) states that the terrorist’s allo-
cation into At and Dt at the same time determines
QtRt , which depends on Dt . This means that the ter-
rorist possesses only QtRt when making its allocation
in period t. The terrorist cannot allocate its propor-
tion �1 − Qt�Rt into defense and attack in period t

because that proportion gets eliminated by the gov-
ernment in period t. This immediate feedback is real-
istic because the terrorist needs to protect its entire
resources. For example, when launching an attack, the
terrorist needs to protect equipment and personnel
involved in the attack. As an example, assume gt =
Gt = 1, rt = Rt = 2, and that the government chooses
dt = at = 1, and the terrorist chooses Dt = 1/2. Hence,
the terrorist has resources QtRt = �Dt/�Dt + at��Rt =
��1/2�/�1/2+ 1��2 = 2/3 available for defense and
attack. Equation (3) implies 2/3= 1/2+At� which
gives At = 1/6.

4 Equation (3) abstracts from a general unit attack cost Xt obtained
by replacing (3) with XtQtRt =XtGtDt +XtAt .

For the probability of asset damage, we also con-
sider the ratio form contest success function,

Pt�dt�At�=
A

mt
t

A
mt
t + d

mt
t

� (4)

where mt ≥ 0 is a parameter for the contest intensity,
�Pt/�dt < 0� and �Pt/�At > 0. The model thus has five
parameters, i.e., two unit costs gt and Gt , two players’
resources rt and Rt , and the contest intensity for asset
damage mt .
When mt = 0, the efforts dt and At have no impact

on the asset damage, which gives Pt = 0�5. When
0<mt < 1, exerting more effort than one’s opponent
gives less advantage in terms of asset damage than
the proportionality of the players’ efforts specify. For
example, when mt = 0�5, high terrorist effort At = 2
and low government effort dt = 1 give Pt = 0�59< 2/3,
which means that the terrorist gets a lower probabil-
ity of asset damage than 2/3 despite the higher effort.
When mt = 1, the efforts have a proportional impact
on the damage. When mt > 1, exerting more effort
than one’s opponent gives more advantage in terms
of vulnerability than the proportionality of the agents’
efforts specify. For example, At = 2, dt = 1, mt = 2
gives Pt = 0�8> 2/3. Finally, mt =� gives a step func-
tion where Pt = 1 if and only if At > dt . The parameter
m is a characteristic of the contest, which can be illus-
trated by the history of warfare. Low levels of m occur
for assets, which are defendable, predictable, and con-
sisting of individual asset components, which are dis-
persed, i.e., physically distant or separated by barriers
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of various kinds. Neither the government nor the ter-
rorist can get a significant advantage. High levels of
m occur for assets that are less predictable, easier to
attack, and where the individual asset components are
concentrated, i.e., close to each other or not separated
by particular barriers. This may cause dictatorship by
the strongest. Either the government or the terrorist
may get the advantage.

3.3. Problem Formulation
The probability that the asset is not damaged is
1− Pt�dt�At�, which the government maximizes.
Analogously, the terrorist maximizes the probability
of damage. The government’s and terrorist’s expected
utilities in period t are

ut�dt�At�= 1− Pt�dt�At�=
d
mt
t

A
mt
t + d

mt
t

�

Ut�dt�At�= Pt�dt�At�=
A

mt
t

A
mt
t + d

mt
t

�

(5)

Inserting (1) and (3) into (5) gives

ut�at�Dt�=
�rt−gtat�

mt[
Dt

(
Rt

Dt+at

−Gt

)]mt

+�rt−gtat�
mt

�

Ut�at�Dt�=

[
Dt

(
Rt

Dt+at

−Gt

)]mt

[
Dt

(
Rt

Dt+at

−Gt

)]mt

+�rt−gtat�
mt

�

(6)

The government’s one decision variable is at , where
dt follows from (1). Analogously, the terrorist’s one
decision variable is Dt , where At follows from (3). We
assume common knowledge and complete informa-
tion so that both players know all the parameters and
the game structure.
In each time period t we consider a two-stage game

where the government moves first and the terror-
ist moves second. To determine the subgame per-
fect Nash equilibrium (see Mas-Collel et al. 1995,
Chap. 9.B), we assume that the government chooses at

in the first stage. The terrorist observes at and chooses
Dt in the second stage.

Definition 1. A strategy pair �aS
t �D

S
t � is a subgame

perfect Nash equilibrium if and only if

DS
t =Dt�a

S
t �= argmax

Dt≥0
Ut�a

S
t �Dt� (7)

and
aS
t = argmax

at≥0
ut�at�Dt�at��� (8)

4. Solving the Two-Stage Game
Solving the game in period t with backward induc-
tion, Appendix A determines the subgame perfect
Nash equilibrium solution in Table 1.
There are two cases of solutions classified by the

terrorist’s resources Rt : In Case 1, with an inactive
terrorist and deterring government, when the terror-
ist’s resources are low, the terrorist is deterred with
at > 0; there is no terrorist activity, and the govern-
ment keeps the whole asset. In Case 2, with an active
terrorist and active government, when the terrorist’s
resources are high, both the government and terrorist
defend and attack.
Table 1 also shows that at equilibrium, the terrorist

chooses either Dt = At = 0 or �Dt > 0� At > 0�. Intu-
ition for this can also be gathered from (3). The ter-
rorist’s defense effort Dt is positive if and only if its
attack effort At is positive. This follows because the
reason for the terrorist to defend is to ensure that
resources are available to attack; and if the terrorist
does not defend, then there are no resources available

Table 1 Solution to Subgame Perfect Nash Equilibrium for
Period t

Cases Case 1 Case 2

Conditions Rt <
Gtrt
gt

Rt ≥
Gtrt
gt

Scenarios Inactive terrorist and Active terrorist and
deterring government active government

at
Rt

Gt

Gt r
2
t

g2
t Rt

dt 0 rt

(
1− Gtrt

gtRt

)

At 0 Rt

(
1− Gtrt

gtRt

)2

Dt 0
rt
gt

(
1− Gtrt

gtRt

)

ut 1
1

1+ �Rt/rt −Gt/gt �
mt

Ut 0
1

1+ �Rt/rt −Gt/gt �
−mt
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to attack. The numerator for the terrorist’s utility in (6)
would be negative when at ≥Rt/Gt−Dt . Hence, when
at ≥Rt/Gt , which means that the governments’ attack
is larger than (or equal to) the terrorist’s resources
divided by the terrorist’s unit defense cost, the terror-
ist is guaranteed zero utility regardless of which strat-
egy it chooses. If it chooses Dt = 0 after at ≥ Rt/Gt ,
its resources are eliminated and it cannot attack. If
it chooses At = 0 after at ≥ Rt/Gt in an attempt to
defend its resources, (3) implies Dt = 0, which means
that it cannot defend. Hence, when at ≥ Rt/Gt , we
assume that the terrorist’s resources are eliminated
and the terrorist chooses Dt =At = 0. As Rt decreases
below Rt =Gtrt/gt , a smaller amount of government
resources is needed to deter the terrorist. In particular,
using (A1) in Appendix A, at =Rt/Gt is the minimum
attack needed to prevent the terrorist from attacking
and is sufficient to deter the terrorist. In this case 1,
using (1) when dt = 0, we assume that the govern-
ment uses r∗t = gtRt/Gt ≤ rt , which deters the terrorist
and saves rt − r∗t of resources for the government.
For Case 1, intuitively, the government’s attack that

deters the terrorist increases in Rt and decreases in Gt ,
because a more resourceful or lower-cost terrorist
needs a larger attack to be deterred. For Case 2, con-
versely, the government’s attack decreases in Rt and
increases in Gt because the government has lower
capability to attack a more resourceful or lower-cost
terrorist. Intuitively, at increases in rt/gt . The gov-
ernment’s defense increases in Rt and decreases in
Gt because the government according to (1) uses its
resources to strike a balance between at and dt . As the
government’s unit attack cost gt increases, the gov-
ernment shifts its resources into increasing defense
dt , which is inverse U-shaped in rt . When rt is small,
the government refrains from defense because of
weakness. When rt is large, the government refrains
from defense because of strength, gradually shifting
its resources into the attack which eventually, for
large values of rt , deters the terrorist. As the gov-
ernment becomes more resourceful, its defense ini-
tially increases strongly and concavely, �dt/�rt > 0
and �2dt/�r

2
t < 0, whereas its attack initially increases

slowly and convexly, �at/�rt > 0 and �2at/�r
2
t >0. With

an intermediate amount of resources, the govern-
ment’s defense reaches a maximum where �dt/�rt =0.
With much resources the government shifts its

resources into the attack, which deters the govern-
ment and makes less use for the defense, �dt/�rt <0.
Increasing terrorist resources Rt causes convexly
increasing terrorist attack and concavely increasing
terrorist defense. Both At and Dt decrease in Gt . Intu-
itively, the terrorist’s attack decreases in the govern-
ment’s resources. Interestingly, the terrorist’s defense
Dt mirrors the government’s defense dt with an
inverse U-shape as a function of the government’s
resources.
According to Table 1, the boundary conditions Dt =

Rt/Gt or at = 0 cannot arise at equilibrium. The ter-
rorist will not choose Dt = Rt/Gt because that leaves
no resources for attack, which guarantees zero utility
according to (5). Interestingly, at = 0 does not arise at
equilibrium (see Appendix A). The intuition is that
the government always prefers to proactively attack
the terrorist’s resources to degrade these, to a degree
adjusted by Rt and Gt for Case 1 and Rt , Gt , rt , and
gt for Case 2.
One should be careful when providing examples

to illustrate the two cases because assessments are
needed as to whether the examples fit the modeling
assumptions. Different countries, organizations, and
agencies have set up different lists of terrorist organi-
zations according to various criteria.5 Case 1 suggests
that governments may handle minor terrorist threats
with proactive attacks against their modest resources.
One example is the U.S. president Reagan’s attack
on Tripoli and Benghazi April 14, 1986, after which
Libya disappeared from media attention as a sponsor
of terrorist attacks. One example of a contradictory
anecdote for Case 1 is when attacking a terrorist with
scarce resources causes hatred (Glaeser 2005, Kress
and Szechtman 20096) to emerge within this terrorist,
which draws resources so that this terrorist becomes a
larger future threat. (This possibility is handled in §6.3

5 See http://www.state.gov/s/ct/rls/other/des/123085.htm for the
United States July 7, 2009, list of 45 Designated Foreign Terrorist
Organizations, and http://en.wikipedia.org/wiki/Terrorist_groups
for the lists of various countries.
6 Kress and Szechtman (2009, p. 578) “model the dynamic relations
among intelligence, collateral casualties in the population, attrition,
recruitment to the insurgency, and reinforcement to the government
force.” They show that the government can contain the insurgency,
but not eradicate it.
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where the terrorist’s resources are allowed to increase
for a variety of reasons.) At the other extreme, Case 2
is illustrated by Al-Qaeda, which both attacks and
defends, and faces governments, which attack and
defend at home and abroad.7

Table 1 shows that the government always attacks
the terrorist’s resources, choosing at > 0, and does not
defend in Case 1. This result is interesting, especially
with the many minor terrorist threats around the
world (assuming these are independent, or grouped
together applying Simon‘s (1969) principle of “near
decomposability”). It is really in a government’s inter-
est to eliminate these with active defense at > 0.
We show that minor terrorists with Rt ≤ Gtrt/gt are
fully deterred in Case 1. As a terrorist grows more
resourceful, from Case 1 to Case 2 in Table 1, the
government starts to use passive defense dt as in
Case 2. On the one hand, this decreases the terrorist’s
resources available for attack and protects the asset
against the terrorist’s attack furnished by the terror-
ist’s resources, which have not been eliminated by at .
As the terrorist’s resources increase, from Case 1 to
Case 2 in Table 1, the government suffers a more infe-
rior position: when the terrorist’s resources are low,
the government applies a small amount of resources
to destroy the terrorist’s resources; otherwise, the gov-
ernment applies its entire resources striking a balance
between active and passive defense.
In Case 1, the contest intensity plays no role. In

Case 2, the government’s and terrorist’s strategic
choices are equally unaffected by the contest inten-
sity m, but their utilities are affected by m. Case 2

7 Kaplan et al. (2010) consider how to confront entrenched insur-
gents. They develop one equilibrium with perfect government
intelligence where “the insurgents concentrate their force in a sin-
gle stronghold that the government either attacks or not depend-
ing upon the resulting casualty count” (p. 329). Under alternative
assumptions they show how insurgents may “spread out” in a way
that maximizes the number of soldiers required to win all bat-
tles. Taliban, operating mostly in Afghanistan and Pakistan, and
various locally operating terrorists, are hybrids of Cases 1 and 2
as viewed by the United States. Attacking them locally, such as
attacking Taliban in Afghanistan, contains and deters them from
global attacks. Although intelligence is invested into terrorists oper-
ating more locally than Al-Qaeda, specific defenses against terror-
ists far away from their operating territories are less imperative.

implies

�ut

�mt

> 0 ⇔ rt >
Rt

1+Gt/gt

�

�Ut

�mt

> 0 ⇔ rt <
Rt

1+Gt/gt

�

(9)

Changes in the contest intensity always benefit one
player and harm the other. The player advantaged
with the most resources, or a low unit cost, bene-
fits from increasing contest intensity. The terrorist’s
resource degradation in (3) implies that with equal
resources rt = Rt and equal unit costs Gt = gt , the
government benefits from increasing contest intensity,
whereas the terrorist does not.

Theorem 1. (a) When Rt < Gtrt/gt , the terrorist is
fully deterred with a government attack effort at =Rt/Gt ,
and the government does not defend. (b) When Rt ≥
Gtrt/gt , both players attack and defend.

Proof. The proof follows from Table 1. �

5. Illustrating the Two-Stage Game
To determine plausible parameter values, we reason
as follows. Both players may have a variety of pro-
duction processes for their four kinds of efforts. An
especially common and salient ceteris paribus starting
point is to assume that all the four unit costs of effort
are equal and set to 1; that is, gt = Gt = 1. The most
plausible value for the contest intensity is also mt = 1,
which means that the players’ efforts have a propor-
tional impact on the damage of the attack. A further
benchmark is that the players are equally resourceful,
rt = Rt , though this latter assumption will be altered
substantially as we proceed, through changing Rt .
Using (1) and (3), where unit costs are 1, we choose
rt = Rt > 1 to get conveniently sized efforts. We ana-
lyzed the impact on the solution in §4 and Table 1
of varying rt =Rt upward and downward and found
that rt =Rt = 10 is a plausible benchmark, which illus-
trates important characteristics of the model.
This section illustrates the two-stage game with

the baseline values Gt = 0�1, Rt = 0�5, mt = 1, gt = 2,
and rt = 5, which give Case 2 in Table 1. Figure 2
shows the four equilibrium choice variables at , dt ,
At , and Dt and the two utilities ut and Ut as the



Hausken and Zhuang: Governments’ and Terrorists’ Defense and Attack in a T -Period Game
56 Decision Analysis 8(1), pp. 46–70, © 2011 INFORMS

Figure 2 Equilibrium Behaviors as Functions of rt , Rt , gt , Gt , and mt , with Baseline Values Gt = 0�1, Rt = 0�5, mt = 1, gt = 2, and rt = 5
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parameter values rt , Rt , gt , Gt , and mt respectively
change from the baseline value. The vertical dashed
lines demarcate Case 1 from Case 2. For the baseline
values, we assume that the terrorist is less resource-
ful than the government, which is often or usually
realistic. The reason for assuming a low unit defense
cost for the terrorist is that it might be cheaper for
the terrorist to protect his resources (hiding in caves,
on his home turf, etc.) than attacking the govern-
ment (sending personnel and weapons to New York
City, etc.).8

In the upper left panel, when Rt < Gtrt/gt ⇔
0�5 < 0�1rt/2 ⇔ rt > 10 (Case 1), the terrorist with-
draws. When rt ≤ 10 (Case 2), both players’ defenses
are inverse U-shaped in an interior solution. For
high rt , the government defends moderately (neither
too much nor too little) out of strength, instead relying

8 Clausewitz (1832) argues in this regard for the superiority of
defense over attack. The very low value Gt = 0�1 is needed because
of the terrorist’s resource degradation in (3). We analogously
assume a larger unit attack cost for the government.

on attack. For low rt , the government defends moder-
ately out of weakness, whereas the terrorist defends
moderately out of strength, instead relying on attack.
The government’s and terrorist’s attacks, and utilities,
increase and decrease, respectively, in rt .
In the upper middle panel, when Rt < Gtrt/gt =

�0�1 × 5�/2 = 0�25 (Case 1), the terrorist withdraws.
The government must increase its attack in Rt , at =
Rt/Gt , to ensure the deterrence. When Rt ≥ 0�25
(Case 2), the interior solution arises where, in accor-
dance with the right column in Table 1, both players’
defenses and the terrorist’s utility increase asymptot-
ically toward constants as Rt reaches infinity; that is,
limRt→� dt = rt = 5, limRt→�Dt = rt/gt = 5/2 = 2�5,
limRt→�Ut = 1, the terrorist’s attack increases toward
infinity, limRt→�At = +�, and the government’s
attack and utility decrease toward zero, limRt→� at = 0,
limRt→� ut = 0.
In the upper right panel, Rt < Gtrt/gt ⇔ gt <

Gtrt/Rt = 0�1 × 5/0�5 = 1 (Case 1) deters the terror-
ist. As gt increases above 1, the government allocates
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less resources to the more costly attack and more
to defense. The terrorist allocates less resources to
defense and more to attack when gt > 2, as deter-
mined by

�Dt

�gt

= �

�gt

[
rt
gt

(
1− Gtrt

gtRt

)]

= r2t Gt − rtgtRt +Gtr
2
t

g3
t Rt

< 0

⇔ gt >
2rtGt

Rt

= 2× 5× 0�1
0�5

= 2� (10)

In the lower left panel, a large unit defense cost Rt <

Gtrt/gt ⇔ Gt > Rtgt/rt = �0�5× 2�/5 = 0�2 for the ter-
rorist (Case 1) deters the terrorist from defense and
attack. As Gt increases above 0.1, less resources are
needed by the government to deter. Hence, the gov-
ernment decreases its attack according to at = Rt/Gt

as Gt increases. As Gt decreases below 0.1, the ter-
rorist is not deterred. Instead, the terrorist’s attack,
defense, and utility increase dramatically, whereas
the government’s attack, defense, and utility decrease
dramatically.
Last, in the lower middle panel, where Case 2

applies throughout, we see at , dt , At , and Dt are inde-
pendent of mt as shown in Table 1. However, the gov-
ernment’s utility ut increases in mt , and the terrorist’s
utility Ut decreases in mt , because the government is
advantaged with 5> 0�5/�1+ 0�1/2� in (9).

6. The T -Period Game with No
Linkages Between Periods

We assume that the time between periods is suf-
ficiently longer than the time between stages so
that each two-stage game can be solved with back-
ward induction. This means that the players are
myopic and boundedly rational, and only consider
one two-stage game in each period. These assump-
tions are made for analytical tractability and because
of the nature of real-world interactions. First, analyz-
ing a T -period game with backward induction from
period T , and simultaneously analyzing the embed-
ded two-stage game with backward induction from
Stage 2 in period t, t = 1� � � � � T , is an insurmountable
task. Second, real-world players are indeed myopic
and boundedly rational and do not look too far ahead

because of the plethora of eventualities and unfore-
seen contingencies that may arise. Survival in the
present is important, and there is a tendency to dis-
count events in the remote future unless they can
be demonstrated to be important. Additionally, polit-
ically elected officials are usually elected for limited
amounts of time and as a result there is not gen-
erally continuity between successive administrations.
We thus assume that the government and the terrorist
maximize ut and Ut , respectively, in each period. This
section considers the same baseline as in Figure 2,
that is Gt = 0�1, Rt = 0�5, gt = 2, mt = 1, and rt = 5.

6.1. Modeling the Government’s Resources rt
This section keeps the terrorist’s resources at its base-
line Rt = 0�5 and assumes that the government’s
resources rt increase from a low level or decrease from
a high level. An increase may occur after a political
decision or after an earlier terrorist attack. A decrease
may occur, e.g., when a substantial amount of time
has elapsed after a terrorist attack. We investigate the
following three functional forms of increment where
rt changes over 20 periods: arithmetic rt = 1+0�6t and
geometric rt = 1�1368t , where rt increases from 1 to 13,
and stochastic rt , which is randomly drawn from a
normal distribution with mean 5 and standard devi-
ation 5 (when negative, we let rt be zero) for t =
1� � � � �20. Figure 3 shows the equilibrium dynamics
of these three functional forms. The functional forms
when rt decreases from 13 to 1 over 20 periods are the
time-reversed version of the functional forms when rt
increases from 1 to 13 over 20 periods, shown by read-
ing Figure 3(a) and 3(b), from right to left. With arith-
metically increasing rt , both players both defend and
attack through period 14 (Case 2), where rt < 10 and
the government cannot deter. During periods 15–20
(Case 1), the terrorist is deterred by the government’s
attack. With geometrically increasing rt , both play-
ers both defend and attack simultaneously through
period 17 (Case 2), and then the terrorist is deterred
starting from period 18 (Case 1). With geometrically
increasing rt , it takes much more time (three addi-
tional periods) than with arithmetically increasing rt
to cause Rt <Gtrt/gt , which is needed to deter the ter-
rorist. Both the terrorist’s and government’s defense
efforts are inverse U-shaped during the nondeterrence
phase. Early on, the terrorist’s defense is low or mod-
erate because of strength. As the deterrence phase gets
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Figure 3 Equilibrium Behaviors as a Function of Time Period When rt Is Dynamic
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approached, the terrorist’s defense is low because of
weakness.
When drawing rt from the normal distribution,

Figure 3(c) shows that at and dt fluctuate up and
down when rt fluctuates up and down, respectively.
The low values of rt in periods 5, 11, 13, and 14 cause
low values of at , dt , and ut (Case 2). The large rt values
in periods t = 9�10�16, and 20 cause Case 1, which
benefits the government with ut = 1, dt = 0, and at = 5,
whereas the deterred terrorist suffers Ut = 0. Case 2
arises in the remaining periods. The low rt values
rt = 0 in periods t = 13 and t = 14 cause the govern-
ment to suffer ut = 0 while the terrorist enjoys Ut = 1.

6.2. Modeling the Terrorist’s Resources Rt

This section keeps the government’s resources at
its baseline rt = 5 and assumes that the terrorist’s

resources Rt increase�s from a low level. First, the
terrorist may be newly formed and may acquire
increasing funding from various sources if its objec-
tive gains support. Second, the terrorist may be well
established, may have depleted its resources in ear-
lier attacks, and may, if earlier attacks were suc-
cessful, more easily acquire further resources. For
example, attacks such as 9/11-type attacks may gener-
ate sufficient momentum and willing investors among
supporters of the attack to furnish a high Rt in
subsequent years. Third, the terrorist may experi-
ence hatred (Glaeser 2005) arising from a variety of
sources, which may recruit volunteers and funding,
which may get directed at governments. We inves-
tigate the following three functional forms of incre-
ment where Rt changes over 20 periods: arithmetic
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Figure 4 Equilibrium Behaviors as a Function of Time Period When Rt Is Dynamic
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Rt = 0�05+ 0�05t and geometric Rt = 0�05× 1�1644t ,
where rt increases from 0.05 to 1.05, and stochastic
Rt , which is randomly drawn from a normal dis-
tribution with mean 0.5 and standard deviation 0.5
(when negative, we let Rt be zero) for t = 1� � � � �20.
Figure 4 shows the equilibrium dynamics of these
three functional forms. With arithmetically increas-
ing Rt , the terrorist is deterred by the govern-
ment’s attack through period 4, and the government
does not defend (Case 1). From period 5, both play-
ers both defend and attack (Case 2). With geometri-
cally increasing Rt , the terrorist is deterred through
period 10 (Case 1), because it then takes much more
time than with arithmetically increasing Rt to cause
Rt > Gtrt/gt needed to avoid deterrence. From peri-
ods 11 to 20 (Case 2), the terrorist’s attack effort
increases convexly. When Rt is drawn stochastically,
At and Dt fluctuate up and down when Rt fluctuates
up and down, respectively. Larger values of At and
Dt cause lower government utility ut .

6.3. Modeling Changes in Both rt and Rt

This section assumes that Rt is randomly drawn from
a normal distribution with mean 0.5 and standard
deviation 0.5 (when negative, we let Rt be zero), and
that rt is randomly drawn from a normal distribution

with mean 5 and standard deviation 5 (when neg-
ative, we let rt be zero) for t = 1� � � � �20. Using the
same baseline parameter values as above, Figure 5
shows the equilibrium behaviors as functions of time
period. The terrorist is deterred (Case 1 in Table 1)
earning zero utility in periods t = 6�7�11�13�17�
and 20, where Rt/rt < Gt/gt = 0�05. Case 2 arises in
the remaining periods. The low rt values rt = 0 in peri-
ods t = 1�8�16, and 19 cause the government to suffer
ut = 0 while the terrorist enjoys Ut = 1. Period 4 illus-
trates how a low rt and high Rt cause low government
utility and high terrorist utility.

7. The T -Period Game with the
Terrorist’s Resource Linkages
Between Periods

7.1. The Terrorist’s Resources Depend on the
Government’s Attacks

To model the terrorist’s resource linkage between
periods, this section assumes, for all t > 2,

Rt =Rt−1e
!�at−1−at−2� =⇒ Rt =R2e

−!a1e!at−1� (11)

where ! is a parameter and the implication (sec-
ond part of (11)) follows straightforwardly. When
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Figure 5 Equilibrium Behaviors as a Function of Time Period When Both rt and Rt Are Normally Distributed
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!> 0, (11) models how the terrorist’s resources Rt

in period t increase if the government launches an
attack larger than in the previous period, decrease
if the government launches an attack smaller than
in the previous period, and remains unchanged if
the government launches the same attacks in subse-
quent time periods. The reasoning is that the gov-
ernment’s attack reinvigorates the terrorist because
of various factors such as more easy access to fund-
ing, the emergence of hatred, etc. Conversely, when
! < 0, (11) models how the terrorist’s resources Rt

in period t increase if at−1 < at−2, decrease if at−1 >
at−2, and remains unchanged if at−1 = at−2. The rea-
soning is that the government’s attack successfully
degrades the terrorist so that the terrorist’s resources
decrease.

Figure 6 shows the equilibrium behavior when
! = 0�5, using the same parameter values and three
dynamics for rt used in §6.1. With arithmetically and
geometrically increasing rt in Figure 6(a) and 6(b),
the government’s utility increases, whereas the ter-
rorist’s utility decreases. Although the terrorist’s util-
ity is low, it is never deterred because Rt ≥ 0�05rt
(Case 2). When drawing rt from the normal distribu-
tion, Case 1 occurs when t = 3�7�9�11�19, and Case 2
occurs otherwise.
Figure 7 shows the equilibrium behavior when

!=−0�5, using the same parameter values and three
dynamics for rt used in §6.1. In Figure 7(a), rt
increases arithmetically. Case 2 occurs when t ≤ 6.
The government’s attack at increases, dt is inverse
U shaped, and the terrorist’s utility decreases as the
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Figure 6 Equilibrium Behaviors as Functions of Time Period When rt Is Dynamic and the Terrorist’s Resources Are Linked Between Periods
for �= 0�5
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government becomes more resourceful. Case 1 occurs
when t ≥ 7 with oscillatory at and Rt according to (11).
As at increases from t = 6 to t = 7 to deter the
terrorist, Rt decreases from t = 7 to t = 8 according
to (11). This allows the government to decrease at

when t = 8, which is sufficient to deter the terror-
ist. This in turn causes Rt to increase when t = 9,
causing oscillations. In Figure 7(b) rt increases geo-
metrically. Case 2 occurs when t ≤ 12. Case 1 occurs
when t ≥ 13. Oscillations of at and Rt occur also
here, but are much smaller. In Figure 7(c), rt is drawn
from the normal distribution. Case 1 occurs when

t = 3�4�5�6�10�11�12�13�14. Case 2 occurs other-
wise. When rt = 0 for t = 1�7�9�16�17, the terrorist
enjoys maximal utility Ut = 1.

7.2. The Terrorist’s Resources Depend on the
Terrorist’s Attacks

After a major attack by the terrorist, the terrorist may
need time to recover. Its available resource in the next
period may thus be lower than in the current period.
Conversely, if the terrorist chooses no attack or a small
attack in the current period, its available resource in
the next period may be higher than in the current
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Figure 7 Equilibrium Behaviors as a Function of Time Period When rt Is Dynamic and the Terrorist’s Resources Are Linked Between Periods
for �=−0�5
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period. We model that resource linkage as

Rt =Rt−1e
−"�At−1−At−2� =⇒ Rt =R2e

"A1e−"At−1� (12)

which accounts for the terrorist’s production and
funding technology, where " > 0 is a parameter.
The terrorist’s resources Rt in period t decrease

if the terrorist launches an attack larger than in the
previous period, increase if the terrorist launches an
attack smaller than in the previous period, and remain
unchanged if the terrorist launches the same attack in
subsequent time periods.
Setting " = 3, and using the same parameter val-

ues and three dynamics for rt used in §6.1, Figure 8

shows the equilibrium behavior. When rt is small,
the terrorist’s resources Rt and attack effort At

fluctuate slightly around 0.5 and 0.3, respectively.
When rt becomes large, At decreases according to At =
Rt�1 − Gtrt/�gtRt��

2 in Table 1, which causes Rt to
increase according to (12), which leads At to increase
and thus causes a cycle, as observed in both Figure 8(a)
and 8(b). We have Case 1 when t = 10, 12, 14, 16, 18, 20
in Figure 8(a), when t = 12, 14, 16, 18, 20 in Figure 8(b),
and when t = 4, 14, 16, 18, 20 in Figure 8(c). We have
Case 2 otherwise. Furthermore, in Figure 8(c) we have
rt = 0 for t = 3, 7, 11, 12, 13, which cause Ut = 1.
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Figure 8 Equilibrium Behaviors as a Function of Time Period When rt Is Dynamic and the Terrorist’s Resources Are Linked Between Periods for � = 3
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8. Suggestions for How to
Validate the Model

This paper has developed a model with intuitive rea-
soning, has solved the model with game-theoretic
tools, has presented two cases for the size of the ter-
rorist’s resources, has accounted for changes through
time, and has illustrated the solution for various
parameter values. Future research should support
the model empirically and validate the results. Let
us, somewhat ambitiously, sketch some directions for
such research. Parameters should be estimated and
tuned to match real-world cases. Cases that have
occurred are a natural starting point. Proceeding
through the parameters and variables in the nomen-
clature list, the government’s resources, asset val-
uation, and unit costs of defense and attack are

determined from public records, interviews, and esti-
mation techniques. The asset valuation can be esti-
mated by letting people and elected officials rank the
value of multiple assets against each other. The ter-
rorist’s resource, asset valuation, and unit costs of
defense and attack could also be estimated, either in
similar manners, or by applying covert techniques
and espionage, exploring statements and interview-
ing defectors and sympathizers of potential terrorists,
and applying expert judgments. Methods common
in decision theory may also be used to estimate the
parameters experimentally.
The contest intensity mt for asset damage can be

estimated by assessing how efforts by the govern-
ment and terrorist have impact. If efforts have mod-
est impact in an egalitarian contest, the intensity is
low. If efforts have substantial impact (e.g., “winner
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takes all”), the intensity is high. History can also be
used to estimate mt . An example of low intensity
where no side easily gets a significant upper hand
is the time prior to the emergence of cannons and
modern fortifications in the 15th century. Another
example is entrenchment combined with the machine
gun, in multiple dispersed locations, in World War I
(Hirshleifer 1995, pp. 32–33). “But in World War II
the combination of airplanes, tanks, and mechanized
infantry allowed the offense to concentrate firepower
more rapidly than the defense, thus intensifying the
effect of force superiority” (Hirshleifer 1995, p. 32).
Once a collection of real-world cases have been

compiled with estimated values of parameters and
variables through time, the next step is to analyze
whether these cases comply with the solution pre-
dicted in this paper. First, we determine whether a
low level of terrorist’s resources causes the govern-
ment to attack them for deterrence purposes, whether
intermediate terrorist’s resources cause the terrorist
to attack and defend, and whether a high level of
terrorist’s resources causes both players to defend
and attack. Second, we estimate empirically how the
parameters, especially the government’s resources,
change after an attack and determine whether or for
how long the terrorist gets deterred, and whether
the deterrence period matches the deterrence period
predicted in this paper. Third, we estimate empir-
ically how the terrorist’s resources change after an
attack, whether an arithmetic or geometric increase
is descriptive, and whether the impact on the play-
ers’ strategies matches the solution predicted in this
paper. This approach assumes that reactions of both
players in the past were myopically optimal. This
assumption may be an approximation, which we
expect can be improved by compiling data from
more cases.
The solutions are discussed with policy admin-

istrators. Once some agreement has been reached
on parameter values, one may proceed with cases
that may occur with varying degrees of likelihood
and prescribe optimal policies for each case. Prior to
the 9/11 attack, the notion of flying airplanes into
buildings had been contemplated by various pro-
fessionals, but had been assessed as too speculative
for serious consideration. There is a need to pro-
ceed through both likely and unlikely scenarios, and

assess the optimal government response for each sce-
nario. That requires some analysis of the players’ reac-
tions after a hit by the terrorist, which has not been
included in the model, and illustrates some challenges
for future research.

9. Conclusion
This paper assumes that a government allocates
resources between defending against a terrorist attack
and attacking a terrorist’s resources. We also assume
that a terrorist allocates resources between attacking a
government’s asset and defending its own resources.
The government builds the defense of its infrastruc-
ture over time. The terrorist takes this defense as
given when choosing its attack strategy at each time
period. In each period, we analyze a two-stage game
where the government moves in the first stage, and
the terrorist moves in the second stage.
There are two cases of solutions classified by the

terrorist’s resources. First, when the terrorist’s re-
sources are low, the government attacks the terror-
ist’s resources sufficiently to deter the terrorist from
attacking and does not defend. This interesting result
suggests that governments may handle the many
minor terrorist threats around the world with proac-
tive attacks against their modest resources, rather than
designing a passive defense to passively await these
to grow large and require more substantial resources.
Second, when the terrorist’s resources are high, both
the government and terrorist defend and attack.
Repeating the two-stage game, we first consider

two periods and show how the two cases arise depen-
dent on changes in the terrorist’s resources. Second,
we allow the government to recover after an attack,
caused by an increase in its resources driven by
easier access to funding, with subsequent gradual
decrease to its initial level. We show how effectively
the government deters attacks during this period of
higher resource availability, and when the terrorist is
no longer deterred from further attacks. This tran-
sition to renewed terrorist attacks occurs when the
terrorist’s resources are again larger than the govern-
ment’s resources multiplied with the ratio of the ter-
rorist’s unit defense cost and the government’s unit
attack cost. The intuition is that when the terrorist is
resourceful and enjoys a low unit defense cost, while
the government is not resourceful and has a high
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unit attack cost, then terrorist attacks resume. Third,
we consider the impact of increasing the terrorist’s
resources arithmetically and geometrically from a low
level, because the terrorist is either unestablished and
gaining increased funding, or is established and gain-
ing easier access to funding because of the success
of earlier attacks. Fourth, we allow the government’s
and the terrorist’s resources to be determined ran-
domly in each time period. Fifth, we allow the gov-
ernment’s resources in one period to depend on the
terrorist’s attacks in earlier time periods for the three
events for which the terrorist’s resources are drawn
from a normal distribution or change arithmetically
or geometrically.
The model in this paper is intended to be useful

for legislators, the military, and government leaders.
Based on some plausible assumptions, the strategic
nature of the interaction between a government and a
terrorist is captured, causing policy recommendations
for when, and to what extent, the government should
defend itself versus attacking the terrorist and how
the terrorist responds by either being deterred, attack-
ing, or defending its resources. Striking a balance
between realism and parsimony, the model accounts
for the players’ resources, asset valuations, the con-
test intensity for asset damage, and the unit costs of
defense and attack. Future research may account for
alternative factors. We have also assumed boundedly
rational players, where the time between periods is
sufficiently longer than the time between stages so
that each two-stage game can be solved with back-
ward induction for each period. Future research may
search for alternative ways of modeling the challenges
of these interactions through time.
In this paper we provide two basic dynamics on the

linkages for the terrorist’s resources. Future research
could investigate more scenarios such as a combi-
nation of the dynamics studied in §§7.1 and 7.2, or
dynamics depending on the government’s and/or ter-
rorist’s defense levels.
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Appendix A. Solving the Model
We solve the game in period t with backward induction,
starting with the second stage. For any given government’s
attack at , maximizing the terrorist’s utility Ut�at�Dt� spec-
ified in (6) gives the terrorist’s best-response function
Dt�at�= argmaxDt≥0Ut�at�Dt�. In particular, the first deriva-
tive for Ut�at�Dt� specified in (6) is
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(A1)

Equating (A1) with zero, we solve for Dt as a function of at ,
which gives Dt =

√
Rtat/Gt − at , which is positive if and

only if at ≤ Rt/Gt . If at > Rt/Gt , we have a boundary con-
dition where Dt = 0. We thus express the terrorist’s best-
response function as follows:

Dt�at�= argmax
Dt≥0

Ut�at�Dt�

=
{
0 if at ≥Rt/Gt�√
Rtat/Gt − at if at ≤Rt/Gt�

(A2)

Note, that both the terrorist and government’s utility func-
tions are concave in their respective decision variables, and
as a result the second-order conditions are satisfied, and the
first-order conditions ensure a maximum. From (A2) we see
that the optimal terrorist’s defense level Dt increases in the
amount of available resources Rt and decreases in the ter-
rorist’s unit defense cost Gt (as long as Gt <Rt/at).

Inserting the terrorist’s best response (A2) into (6) yields
the government’s first-stage utility:

ut�at� =



1 if at ≥Rt/Gt�

�rt − gtat�
mt

�
√
Rt −

√
Gtat�

2mt + �rt − gtat�
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if at ≤Rt/Gt�

(A3)
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We first determine the interior solution. The government’s
first-order condition in the first stage implies

�ut�at�

�at

= 0 =⇒ at =
Gtr

2
t

g2
t Rt

=⇒ dt = rt −
Gtrt
gtRt

� (A4)

which is inserted into (A2) to yield
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From (A3), when at ≥Rt/Gt , it follows that the second-order
derivative is �2ut�at�/�a

2
t = 0. When at ≤ Rt/Gt it does not

seem possible to prove analytically that the government’s
second-order condition
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is satisfied, but our numerical tests suggest that it is satis-
fied. Both players’ choice variables are positive when

Rt ≥
Gtrt
gt

� (A6)

which means that an interior solution of positive govern-
ment’s attack and defense and positive terrorist’s attack
and defense is guaranteed when the terrorist is sufficiently
resourceful. When (A6) is not satisfied, the government
refrains from defending, dt = 0, and focuses on attack, at =
rt/gt , as determined by (1). Note here we have at = rt/gt >
Rt/Gt , and therefore, using (A2), we have Dt = 0, and apply-
ing (3) we have At = 0.

We now consider the noninterior solutions (boundary
conditions). The players have four decision variables, but dt

follows from (1) when at is given, and At follows from (3)
when Dt is given. Hence, we focus on the noninterior solu-
tions generated by at and Dt .

The variable at can take two extreme values, at = 0 and
at = Rt/Gt . We first consider at = 0 chosen by the govern-
ment in the first stage. Inserting at = 0 into (6) and (A2) to
determine the terrorist’s best response in the second stage
gives Dt = 0. Using (1) gives dt = rt , using (3) gives At =Rt ,
and using (4) and (5) gives Pt = Ut = �1+ �Rt/rt�

−mt �−1 and
ut = �1 + �Rt/rt�

mt �−1. The government prefers the higher
utilities in Table 1 for both Cases 1 and 2 and thus, will
not choose at = 0 in equilibrium. Second, we consider at =
Rt/Gt , which cannot exceed at = rt/gt , meaning that only
Case 1 has to be considered. Inserting at = Rt/Gt into (A2)
gives Dt = 0. Using (1) gives dt = rt − gtRt/Gt , (3) gives
At = 0, and (4) and (5) give Pt = Ut = 0 and ut = 1, respec-
tively, where the government is already guaranteed max-
imum utility 1 in Table 1. Third, we consider the event
that the government chooses the interior solution for at

and that the terrorist responds with the noninterior solu-
tion Dt = 0. The terrorist then gets 0, which is inferior to
the utility from interior solution, which is 0 for Case 1 and
�1 + �Rt/rt − Gt/gt�

−mt �−1 for Case 2. Fourth, we consider
the event that the government chooses the interior solution
for at and that the terrorist responds with the noninterior
solution Dt = 0 as determined by solving (3) when At = 0.
The terrorist then gets 0, which is inferior to the utility from
interior solution, which is 0 for Case 1 and �1 + �Rt/rt −
Gt/gt�

−mt �−1 for Case 2. Hence, the four noninterior solu-
tions do not apply, and the equilibrium solution in Table 1
is exhaustive.

Appendix B. The T -Period Game with the
Government’s Resource Linkages Between Periods

B.1. The Government’s Resources Depend on the
Terrorist’s Attacks

To model the government’s resource linkage between peri-
ods, this section assumes, for all t > 2,

rt = rt−1e
#�At−1−At−2� =⇒ rt = r2e

−#A1e#At−1� (B1)

where # ≥ 0 is a parameter, and the implication (second
part of (B1)) follows straightforwardly. Equation (B1) mod-
els how the government’s resources rt in period t increase if
the terrorist launches an attack larger than in the previous
period, decrease if the terrorist launches an attack smaller
than in the previous period, and remain unchanged if the
terrorist launches the same attacks in subsequent time peri-
ods. The resiliency of the U.S. economy through 9/11 and
Hurricane Katrina suggests that l should not be too large,
where #= 0 means rt = rt−1.
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Figure B.1 Equilibrium Behaviors as a Function of Time Period When Rt Is Randomly Drawn from a Normal Distribution and the Government’s
Resources Are Linked Between Periods for �= 3
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When Rt increases arithmetically or geometrically, the ter-
rorist stays inactive (t < 5 in Figure 4(a) and t < 11 in Fig-
ure 4(b)), and thus the government’s resources stay con-
stant according to (B1). When Rt increases above 0.25, the
terrorist starts attacking, which increases the government’s
resources.

We use the same parameter values and three dynam-
ics for Rt used in §6.2. Figure B.1 shows the equilibrium
behavior when # = 3 and Rt is randomly drawn, as in
§6.2. The large Rt drawn in period 7 causes a large At

in period 7, which, according to (B1), causes a large rt
and at in period 8, which deters the terrorist. Case 1 arises
when t = 5�8�10�13�16�18�19, or 20, and Case 2 otherwise.
Equation (B1) states that if no attack occurs in period t− 1,
that is, At−1 = 0, which corresponds to Case 1, the govern-
ment’s resources in the subsequent period are rt = r2e

−#A1 =
5e−3�0�5� = 1�1, shown in periods t = 6, 9, 11, 14, 17, 19, and 20
in Figure B.1.

Figure B.2 shows the equilibrium behavior when #= 9
and Rt increases arithmetically and geometrically as in
§6.2. When Rt increases arithmetically, starting in period
t = 5, Rt becomes sufficiently large to allow the terrorist
to attack �At > 0�, which leads the government’s resources
to grow from 5.0 starting in period t = 6. As Rt increases,
At increases, causing rt to increase. A large rt in a given
period causes a low At in the same period, causing rt+1
to decrease and thereafter to fluctuate up and down in
a cycle of increasing and unbounded rt . More specifically,
the rt values for the periods 5–20 are 5.0, 5.4, 5.9, 6.4, 7.0,
7.5, 8.3, 8.3, 10.9, 6.8, 37.2, 5.0, 226.2, 5.0, 518.8, and 5.0,

respectively. When Rt increases geometrically, starting in
period t = 11, Rt becomes sufficiently large to allow the
terrorist to attack, which leads the government’s resources
to grow from 5.0 starting in period t = 12. The rt values
increase to 9.1 in period 17, decrease to 9.0, increase to
17, and finally decrease to 5.1. For both the arithmetically
and geometrically increasing Rt , the large # = 9 implies
that the increases of rt are substantial, which causes At to
decrease according to Table 1. This in turn causes rt in (B1)
to decrease. This explains how rt moves up and down in
this fully deterministic scenario. This result stands in con-
trast to Figure 3 in §6.1, where rt is exogenously specified
to increase, which causes At to decrease, but §6.1 mod-
els no feedback from this decrease of At to the subsequent
decrease of rt .

We tested for large values of the time periods T = 200
and T = 2�000 and did not find a similar cycle for rt
when Rt increases geometrically. This is because when rt
increases geometrically, Rt grows so fast that the govern-
ment has no chance to recover. Furthermore, we have found
no additional qualitative insights by studying linkage with
a longer memory. In particular, we tested the case rt =
rt−1e#�At−1−0�5At−2−0�5At−3� for t = 20, 200, and 2000 and did not
observe cycles when Rt increases geometrically.

B.2. Modeling the Government’s Resource rt Bouncing
Back After an Attack

Assume that Rs ≥ Gsrs/gs so that an attack occurs in
period s. Assume for simplicity that all other parameters
remain fixed for all t ≥ s while the government’s resource rt
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Figure B.2 Equilibrium Behaviors as a Function of Time Period When Rt Increases Arithmetically and Geometrically and the Government’s
Resources Are Linked Between Periods for �= 9
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(b) Rt  increases geometrically
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changes. This is because after an attack in period s the gov-
ernment more easily acquires funding from various sources.
With a significantly higher rt , the condition Rt ≥ Gtrt/gt is
no longer satisfied, which deters the terrorist. Assume that
rt follows the form for t ≥ s:

rt =
{
rs if t = s�

rs + �rmax − rs�e
−&�t−s−1� if s < t ≤ t∗�

(B2)

where rmax is the maximum value that rt acquires in period
s+ 1 after a terrorist attack As in period s, and & > 0 regu-
lates how quickly rt bounces concavely back and decreases
to its original level rs because of defense reinforcement.
Equation (B2) states that rt = rs in period s, that rt = rmax
in period s + 1, and thereafter decreases. As discussed
below (1), rt continues to be exogenously given in each
time period. Modeling the political processes after a terror-
ist attack is challenging and left for future research. Because

limt→� rt = rs and �rt/�t < 0, a second attack eventually
occurs in period t∗ determined by the smallest t such that
Rt ≥Gtrt/gt (see Table 1), which implies

t∗ =
⌈
s+ 1+ 1

&
ln

(
rmax − rs

Rtgt/Gt − rs

)⌉
� (B3)

where �z� is the least integer that is not less than z. When
F = 0, rt = rmax�As� for all t > s, and the terrorist is always
deterred. When F =�, rt = rs for all t > s, and the attacker
attacks in each subsequent period. Using the same param-
eter values as in §5, aside from rt , Figure B.3 shows the six
equilibrium values ut , Ut , at , dt , At , Dt , and rt as functions
of time t when s = 0, rmax = 40, and F = 1. The terrorist
is deterred in periods 1 and 2 by the substantial govern-
ment’s attack at = 20 because Rt <Gtrt/gt is satisfied, caus-
ing Case 1. In period t∗ = 3, rt drops to 14 according to (B2).
Therefore, Rt < Gtrt/gt is no longer satisfied, and we get
Case 2, in which the terrorist resumes activities.
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Figure B.3 Equilibrium Behavior as a Function of Time Period When rt Is Dynamic
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