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Abstract: We discuss strategic interactions between an attacker and either centralized or 
decentralized defenders, and identify conditions under which centralized defender 
decision making is preferred. One important implication of our results is that partial 
secrecy about defensive allocations (disclosure of the total level of defensive investment, 
but secrecy about which resources are defended) can be a strategy for achieving more 
cost-effective attack deterrence. In particular, we show that such partial secrecy can be 
potentially beneficial when security investments are discrete (e.g., as in the use of air 
marshals to counter threats to commercial aviation). 
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1. Introduction 

The increased threat of terrorism against the U.S. in the 21st century has forced the nation 
to spend more on defenses. With increasing demands for protection and a limited defense 
budget, important tradeoffs have to be made; see [3] for a discussion of the use of game 
theory to study to such questions. Note that many game-theoretic models (e.g., [4]; [19]) 
recommend making the defensive allocations public. Here, we consider a problem in 
which keeping the defensive allocation secret, and releasing only partial information, helps 
the defender deter attacks at lower levels of investment than would be possible if the 
defensive allocation were disclosed. Our model accounts for the strategic behavior of both 
the defender(s) and the attacker. Other examples of models with strategic interactions 
include [1], [4], [14], and [18].  
    In this paper, we consider a game between an attacker, and either one or two 
defenders. There are two resources to be defended. The attacker is trying to maximize his 
payoff, which is the total loss he inflicts on the defender(s), minus the cost of any attack. 
The attacker has partial information — he can observe how many resources are defended, 
but not which ones. The attacker then has to decide whether it is worth attacking at all, and 
if so, which resources to attack. A practical example of this phenomenon is the use of 
Lojack, which can be used to track down stolen cars. Ayres and Levitt [2] describe the 
results of an empirical study of the benefits of Lojack not only to car owners who have 
installed Lojack systems, but also to other car owners (due to positive externalities). 
Consistent  with the  findings of this paper, the results of  Ayres and Levitt [2] suggest 
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that the availability of information regarding the approximate market penetration of 
Lojack can help to reduce car thefts by deterring potential attackers, as long as the 
installation of Lojack on any given car is kept secret.  
    The game proposed and analyzed in this paper can be used to model a number of 
security decisions in which the decision maker has to allocate her defense budget among 
various resources, and wishes to avoid over-investment. The decision maker can protect 
all, some, or none of her resources, and wants to make an optimal decision. One novel 
feature of this model is that knowing how many resources are defended may deter the 
attacker even if not all resources have been defended, so there are both externalities 
between decentralized defenders, and an endogenous choice on the part of the attacker. 
Our model shows that under centralized decision making, the defender can sometimes 
achieve the social optimum by coordinating (mixed) defenses to ensure that one asset is 
always defended, making it more feasible and less costly to achieve attack deterrence. 
Thus, a centralized defender can sometimes achieve more cost-effective deterrence than 
decentralized defenders.  
    In their model, Bier et al. [4] find public disclosure of defenses to be an optimal 
strategy. This need not always be the case, as shown by our model. In particular, in order 
to deter the attacker, if defenses are publicly disclosed, the defender would have to defend 
all of her resources, as any undefended resource would be susceptible to an attack. By 
contrast, we show that in some cases, defense of a subset of resources will be sufficient to 
deter attack if the defended resources are kept secret, leading to more cost-effective 
defenses. In particular, terrorist groups like Al-Qaeda are known to avoid targets where the 
defense levels or chances of success are uncertain [18]; this can be exploited to deter 
attacks.  
    Section 1 presents the notation and assumptions for our model. Section 2 presents 
and compares the centralized and decentralized resource-allocation models. Section 3 
discusses some insights from the results of this game, and Section 4 gives directions for 
future work.  

1.   Notation and assumptions 

There are two types of players in this version of the game: an attacker (he); and either one 
defender (she) attempting to protect two resources, or two defenders (both she), each 
attempting to protect one resource.  

• V  = Value of both resources 

• Cdi = Cost of defending resource i, where i = 1, 2; we assume without loss of 
generality that the cost of defense for resource 1 is greater than that for resource 2 
(i.e., Cd1  Cd2), and both are less than the target valuation (i.e., 0< Cd2  Cd1 < V)  

• Ca = Cost of attacking either resource; we assume, 0 < Ca < V 
We assume that:  

• All parameter values are common knowledge to both the attacker and the 
defender(s).  

• If a resource is defended, the success probability of an attack on that resource is 
zero. If not defended, the success probability of an attack on that resource is one.  
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• The attacker can attack at most one resource.1 

• The defender(s) and the attacker all maximize their own payoffs. For the attacker, 
the payoff is the expected value of any resource successfully attacked, minus the 
cost of the attack. For the defender, the payoff is the loss of expected value of any 
resource that is successfully attacked, minus the cost of defense.  

• The attacker can observe how many resources are defended, but not which ones. 
In other words, in cases where the defender adopts a mixed strategy, we assume 
that the attacker observes the actual number of resources defended as a result of 
the defender’s (random) choice, not merely the mixing probability.2  

We recognize that our model and the assumptions above are somewhat limiting. Other 
work ([19]) allows for more general attacker and defender characteristics, including 
differences in target valuations between the attacker and the defender, more general 
contest success functions, etc. However, those models address somewhat different research 
questions. Zhuang and Bier [19] focus on balancing protection from terrorism and natural 
disasters, and does not even find defender secrecy at equilibrium. Zhuang and Bier [20] do 
explore defender secrecy and deception, but in a rather different context. In particular, 
they find secrecy emerging from attacker uncertainty about defender types, even in a 
model with only a single defender resource, where the defensive investment is continuous 
and the success probability of an attack is a convex function of the defensive investment 
(unlike here). By contrast, here we find secrecy emerging from the existence of multiple 
defender resources and the discrete nature of defensive investment (so that the success 
probability of an attack is a non-convex function of defensive investment). Therefore, this 
paper identifies a fundamentally different reason for defender secrecy that that in [20], and 
provides unique insights into both one potential reason for secrecy, and a possible benefit 
of defender centralization. 

2.   Centralized and decentralized resource allocation  

In the centralized model, the defender moves first by investing in security for (some subset 
of) her two resources. The pure strategies for the two players are given below.  

• For the defender: Defend both resources (D1, D2); Defend resource 1 only (D1, ND2); 
Defend resource 2 only (ND1, D2); and Don’t defend either resource (ND1, ND2) 

• For the attacker, given that i resources are defended (i = 0, 1, 2): Attack resource 1 
(A1); Attack resource 2 (A2); and Don’t attack either resource (A0)  

The game is represented in its extensive form in Figure 1. See Appendix A for the 
calculation of equilibrium payoffs and strategies, which are summarized in Table 1 
(including the possibility of multiple equilibria when the attack cost is small and V = Cd1 + 
Cd2).   
By contrast, in the decentralized model, two independent defenders each individually 
invest in security for their respective resources. The pure strategies of the players are given 
below:  

                                                           
 
1 This assumption is of course limiting, but may be fairly realistic for some of the most 
demanding attack strategies, due to attacker budget constraints.  
2 This is clearly realistic in some situations (e.g., the attacker might know the market 
penetration of Lojack). However, there obviously also exist cases in which the attacker can 
infer the defender’s mixing probability (or observe a signal disclosed by the defender), but 
cannot observe the number of resources actually defended. See [20] for an example.
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• For defender 1: Invest in security (D1); Don’t invest in security (ND1) 

• For defender 2: Invest in security (D2); Don’t invest in security (ND2) 

• For the attacker, given that i resources are defended (i = 0, 1, 2): Attack resource 1 
(A1); Attack resource 2 (A2); Don’t attack any resource (A0)  

This game is presented in Figure 2. See Appendix B for the calculation of equilibrium 
payoffs and strategies, which are summarized in Table 2 (including again the possibility of 
multiple equilibriums). Note that there cannot be a pure-strategy equilibrium in which only 
one defender chooses to defend. For example, if defender 1 chooses strategy D1 and 
defender 2 chooses strategy ND2, then the attacker’s best response is to choose A2, in 
which case defender 2 would prefer to switch to D2, and so on.  
    Comparing the equilibrium payoffs of both models (as shown in Tables 1 and 2), we 
can see that the defender payoff in the centralized case is sometimes strictly better than the 
sum of the defender payoffs achieved in the decentralized case. In particular, when the 
centralized defender defends only one resource, the payoff is - Cd1, which is less negative 
than either - Cd1 - Cd2 or - V (the achievable payoffs in the decentralized case). In fact, for 
all parameter values, the centralized payoff is always (at least weakly) better than the sum 
of the two defender payoffs in the decentralized case.  

3.  Discussion and interpretation  

Our model shows that attacker deterrence can sometimes be achieved with only partial 
defense. In particular, if the cost of an attack is high enough (Ca  0.5V in the centralized 
model), a centralized defender can successfully achieve at least partial attack deterrence (a 
non-zero probability of no attack) by probabilistically mixing defenses (see Table 1); by 
contrast, complete deterrence (a zero attack probability) with partial defense is possible 
only when Cd1 = Cd2. By contrast, in the decentralized model, each defender chooses her 
individual optimal action, instead of the social optimum. This can either drive up the total 
level of investment required to deter attacks (to include defense of both resources), or 
make it so costly to deter attacks that the defenders no longer find it worthwhile to do so. 
Thus, centralizing defensive allocations allows a centralized defender to achieve a lower 
expected loss than the expected sum of losses to the decentralized defenders. 
(Interestingly, in the decentralized case, mixed defenses are never strictly preferred, as 
discussed in Appendix B.)  
    Note, however, that in practice, decentralized decision-making could be better in 
cases where the decision maker itself is the target of attack, since a successful attack could 
have a destabilizing effect on the decision-making process [10] — e.g., if attacks on the 
defender’s communication and control capabilities disrupt the ability of a centralized 
defender to control the defenses of geographically dispersed resources. In addition, 
centralized decision making may be more costly in practice (because of possible 
transaction costs to achieve coordination), or suffer from lack of detailed information 
about the resources on the part of the centralized decision maker (information asymmetry). 
Our model does not take these considerations into account.  
    The model indicates that partial defense is especially likely to lead to attack 
deterrence when the cost of attacking is high. This suggests that making attacks more 
costly may be one important component of a cost-effective security strategy.  
    One illustrative application of this model is to the case of onboard air marshals. If the 
information about which planes have air marshals is kept secret but the number of air 
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marshals is known (at least approximately),3 then having air marshals on only some planes 
can result in attack deterrence. By contrast, if the presence of air marshals on any given 
plane were made public, then one would need to have air marshals on all planes (or none, 
if too costly), as those planes without air marshals would become targets of attack. The 
importance of secrecy was highlighted by the Federal Law Enforcement Officers 
Association when the cover of air marshals was allegedly in danger due to the rigid dress 
code enforced by the Federal Air Marshal Service [11]. This in principle could present a 
significant risk, since it increases the chance that terrorists could identify the air marshals, 
overpower them, and hijack a plane [9].  
    Similarly, U.S. Customs and Border Protection (CBP) [16] considers prevention of 
terrorists and terrorist weapons entering the US to be its top priority, but also realizes the 
potential tradeoffs between security and efficiency. The Container Security Initiative 
attempts to address these tradeoffs by proposing inspection of high-risk containers at 
foreign ports [17]. If 100% inspection is infeasible or undesirable due to cost 
considerations, models such as ours could potentially be used to help assess the percentage 
of containers that must be inspected to achieve attack deterrence.   

4.   Directions for further work  

Decision makers facing the dilemma of whether to invest in security may not necessarily 
follow the recommendations of traditional game-theoretic models. Traditionally, much 
research has focused on identifying (Nash) equilibriums under the assumption of 
rationality. Unfortunately, these equilibriums do not always predict people’s choices in 
actual decisions. Behavioral game theory ([7]; [5]) provides a means to weaken the 
rationality assumptions of traditional game theory, and extend game theory to include 
psychological aspects. Experiments could therefore be used to test the behavior of 
decision makers faced with defensive choices similar to those in this paper, in order to 
explore the possible effects of phenomena such as “probability neglect” [15], individual 
differences in risk attitude [13], coordination [8], learning [12], and reputation building 
[6].   
    In our model, the attacker can be deterred by partial defense only if the details of the 
defensive allocations to the various targets are not disclosed. We hypothesize that this type 
of defensive strategy is especially likely to be desirable when the defender’s resources are 
roughly equally attractive to the attacker. By contrast, if the defender owns one attractive 
resource and one or more resources of little or no interest to the attacker, the optimal 
defensive strategy may be more likely to involve leaving the low-valued resources 
undefended and disclosing the defensive allocations, since the attacker may be unlikely to 
attack the lower-valued resources even if they are not defended. Further research to clarify 
the situations under which deterrence can be achieved by partial defense (e.g., with larger 
numbers of assets of unequal values) would be desirable. It would also be interesting to 
explore what happens to our results when defenses are imperfect (i.e., when defenses do 

                                                           
 
 Information sufficient to generate a reasonably good estimate of the number of air marshals can be found on 

the internet with only a quick search (e.g., “a Federal Air Marshal flies 181 days per year, flies 15 days per 
month, spends 900 hours in an aircraft per year, spends five hours in an aircraft per day…” “We have hundreds 
of Assistant Federal Security Directors for Law Enforcement stationed directly at airports across the 
country.  There are also Federal Air Marshals attached to each of the fifty-six FBI Joint Terrorism Task Forces 
nationally;” http://www.tsa.gov/lawenforcement/people/index.shtm). In fact, this information may well have 
been disclosed precisely for its deterrent effect. Potential attackers would presumably be able to gain even more 
information about the number of air marshals if they spend more effort.
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not reduce the success probability of attacks to zero), and when the attacker knows the 
level of defensive investment (i.e., number of targets defended) only imperfectly. 
    Moreover, in this paper, we focus exclusively on discrete investments (e.g., air 
marshals, since it is not possible to put a fraction of an air marshal on each plane). We 
anticipate that the same phenomenon will occur for continuous rather than discrete 
investments, if the success probability of an attack is a non-convex function of the level of 
defensive investment. For example, this might occur if low levels of security investment 
are relatively ineffective, and some minimum level of investment is needed in order to 
have highly cost-effective defenses (creating a region in which the success probability of 
an attack is a concave function of the defensive investment). This again should be 
confirmed. 
    Secrecy about defensive investments could also be desirable for other reasons, of 
course. For example, the attacker may be unsure about the values of the defender’s 
resources, and attempt to infer the values of those resources to the defender by observing 
her levels of defensive investment. In this case, disclosing a high level of investment in a 
valuable target could make that target more attractive to the attacker, rather than deterring 
an attack. Yet another reason for secrecy about defensive investments could be if highly 
defended targets are inherently more prestigious to attackers. A more complete 
understanding of the conditions under which secrecy can be desirable would help to 
integrate these various considerations into a single model. 
    Therefore, to increase the realism and flexibility of the model, it would be interesting 
to introduce models with defender deception, defender learning, and attacker learning. 
Until now, we have assumed that all players have complete information about the game. 
However, the possibility of defender deception (rather than just secrecy) about the level of 
defenses would allow us to model cases in which the attacker is unsure about the 
defender’s resource values, and attempts to infer the value of each resource to the defender 
by observing the defensive allocations. In this case, there could be incentives for deception 
on the part of the defenders. For example, deception could allow the defender to shift 
attacks to well-defended resources with low vulnerability, or to prevent attacks on high-
value resources by making low-value resources appear more attractive to the attacker. 
Learning could help the defender better understand the attractiveness of various resources 
to the attacker, and conversely, help the attacker better plan and execute attacks against 
defender resources. In particular, in a repeated-game context, attacker learning could 
eventually reduce or even eliminate the benefits of defender deception.  
    Finally, combined effects of learning and reputation building could be studied 
analytically in a dynamic model, in which interactions occur repeatedly over time. Such a 
model might be applicable in cases where the defensive investments are flexible (i.e., 
where the fixed cost of defense is relatively small), so that defensive investments can be 
modified from one period to another at a modest cost.   
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Figure 1: Game in extensive form for a centralized defender 

 

 

Figure 2: Game in extensive form for two decentralized defenders 

 

          

Defender 1 

Attacker 

A0 







A1 













A2 

Attacker 

A0 






A1 










A2 

Defender 2 Defender 2 

D1 ND1 

Attacker 

A0 






A1 











A2 

Attacker 

A0 





A1 










A2 

D2 D2 ND2 ND2 

(D1, D2) (ND1, D2) 

Defender 

Attacker 

A0 






A1 




 




 

A2 

Attacker 

A0 




 

A1 




 




 

A2 

Attacker 

A0 




 

A1 




 




 

A2 

(D1, ND2) (ND1, ND2) 

Attacker 

A0 




A1 







A2 



                         Nikhil S. Dighe, Jun Zhuang and Vicki M. Bier 38 

Table 1: Equilibrium strategies and payoffs for the centralized case 

Attacker Defender 
Parameter Values 

Strategy Payoff Strategy Payoff 

0.5V < Ca < V and  
Cd1 > Cd2 

t1 A1 + (1- t1) A0, 
where 

t1 = (Cd1 - Cd2) /2V 

 
0 
 

r (D1, ND2)+(1-r) 
(ND1, D2), where  

r = 1 - Ca/V 
- Cd1 

0.5V < Ca < V and  
Cd1 = Cd2 

A0 
 

0 
 

r (D1, ND2)+(1-r) 
(ND1, D2), where 1 
- Ca/V  r  Ca/V 

- Cd1 

Equilibrium  
1 

t1 A1 + (1- t1) A0, 
where 

t1 = (Cd1 - Cd2)/2V 

 
0 
 

r (D1, ND2)+(1-r) 
(ND1, D2), where r 

= 1 - Ca/V 
- Cd1 

0.5V=Ca 
and  
Cd1 > Cd2 Equilibrium  

2 

t1 A1 + t2 A2 + (1- 
t1- t2) A0, where t1 

+ t2 < 1; t1, t2>0; 
and  

t1 - t2 = (Cd1-Cd2)/V 

0 
r (D1, ND2)+(1-r) 
(ND1, D2), where  

r = 0.5 

- Cd1 +  
t2 (- V) 

Equilibrium  
1 

A0 
 

0 
 

r (D1, ND2)+(1-r) 
(ND1, D2), where  
1 - Ca/V  r  Ca/V 

- Cd1 

0.5V= Ca 
and  
Cd1= Cd2 Equilibrium  

2 

t1 A1 + t2 A2 + (1- 
t1- t2) A0, where t1 

+ t2 < 1; t1, t2>0; 
and  

t1 - t2 = (Cd1-Cd2)/V 

0 
r (D1, ND2)+(1-r) 
(ND1, D2), where 

 r = 0.5 

- Cd1  

+ t2(- V) 

Ca < 0.5V and V < Cd1 + 
Cd2 

0.5 A1 + 0.5 A2 
 

V - Ca 

 
(ND1, ND2) - V 

Equilibrium  
1 

0.5 A1 + 0.5 A2 
 

V - Ca 

 
(ND1, ND2) - V Ca< 0.5V 

and 
V = Cd1 + 
Cd2 

Equilibrium  
2 

A0 
 

0 
 

(D1, D2) - Cd1 - Cd2 

Ca < 0.5V and V > Cd1 + 
Cd2 

A0 
 

0 
 

(D1, D2) - Cd1 - Cd2 

Table 2: Equilibrium strategies and payoffs for the decentralized case 

Attacker Defender 1 Defender 2 
Parameter Values 

Strategy Payoff Strategy Payoff Strategy Payoff 

Cd2  Cd1 < 0.5V A0 0 D1 - Cd1 D2 - Cd2 
Equilibrium  1 A0 0 D1 - Cd1 D2 - Cd2 Cd2  0.5V  Cd1 Equilibrium  2 0.5 A1 + 0.5 A2 V - Ca ND1 - 0.5V ND2 - 0.5V 

0.5V < Cd2  Cd1 0.5 A1 + 0.5 A2 V - Ca ND1 - 0.5V ND2 - 0.5V 

Appendix A: Calculating Equilibrium Payoffs of the Centralized Model 

In order to calculate the equilibrium strategy and payoffs, we consider cases in which both, none, 
and one of the resources are defended.  
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A.1: Both resources are defended 

When both resources are defended, the attacker’s optimal strategy is A0, as this is the only strategy 
that gives a non-negative payoff. Then the defender payoff is - Cd1 - Cd2, and the attacker payoff is 0. 

A.2: None of the resources are defended 

When none of the resources are defended, then the attacker’s optimal strategy is any mixture of 
strategies A1 and A2. The defender payoff is - V, and the attacker payoff is V - Ca. 

A.3 One of the resources is defended 

Note that the defender cannot choose pure strategy (D1, ND2) or (ND1, D2) at any equilibrium. For 
example, if the defender chooses (D1, ND2) with certainty, the attacker’s best response is to choose 
A2, in which case the defender would like to switch to strategy (ND1, D2), and so on. Therefore, we 
must consider mixed strategies.  
    Let r and (1 - r) be the probabilities that the defender chooses strategies (D1, ND2) and (ND1, 
D2), respectively, where 0<r<1. Let t1, t2,  and (1- t1 - t2) be the probabilities that the attacker 
chooses strategies A1, A2, and A0, respectively, where 0  t1, t2  t1 + t2  1. At any possible 
equilibrium, (r*, t1*, t2*), the following two conditions must be satisfied: 
First, the defender is indifferent between choosing (D1, ND2) and (ND1, D2) given t1* and t2*; i.e., -        

Cd1 + t2* (- V) = - Cd2 + t1*( - V)                                              (1) 
Second, given r*, the attacker payoffs of choosing pure strategies A0, A1, and A2 are 0, - Ca + (1 - r*) 
V, and - Ca + r*V, respectively. Thus, there are in principle seven possible attacker strategies: pure 
strategies A0, A1, and A2; mixing between A0 and A1; mixing between A0 and A2; mixing between 
A1 and A2; and mixing among all of A0, A1, and A2.  
We now consider each of these in turn:  

• In order for pure strategy A0 to be an equilibrium (t1* = t2* = 0), we must have 
max {- Ca + (1 - r*) V, - Ca + r*V}  0 
or in other words Ca/V  r*  1 - Ca/V. According to (1), we also require Cd1 = Cd2. 

• In order for pure strategy A1 to be an equilibrium (t1* = 1; t2* = 0), we must have 
max {0, - Ca + r*V}  - Ca + (1 - r*) V .According to (1), this can be true only when Cd1 = 
Cd2+V, which contradicts our assumption that Cd1 < V. 

• In order for pure strategy A2 to be an equilibrium ( t1* = 0; t2* = 1), we must have 
max {0, - Ca + (1 - r*) V}  - Ca + r*V 
According to (1), this can be true only when Cd2 = Cd1+V, which contradicts our assumption 
that Cd2 < V. 

• In order for mixing between A0 and A1 to be an equilibrium (0< t1* <1; t2* = 0), we must have  
- Ca + r*V  0 = - Ca + (1 - r*) V                         (2) 
According to (1) and (2), we then get t1*= (Cd1-Cd2)/V, r* = 1 - Ca/V, and Ca  0.5V.  

• In order for mixing between A0 and A2 to be an equilibrium (t1* = 0; 0< t2* <1), we must have  
    - Ca + (1 - r*) V  0 = - Ca + r*V 

According to (1), this can be true only when t2*= (Cd2 - Cd1)/V  0, since we have assumed that 
Cd2  Cd1. Hence, we have a contradiction. 

• In order for mixing between A1 and A2 to be an equilibrium (t1*+ t2* = 1; t1*, t2*>0), we must 
have 0  - Ca + r*V = - Ca + (1 - r*) V                                           (3) 
According to (1) and (3), we then have r* = 0.5, t1* = 0.5 + (Cd1 - Cd2)/2V, t2* = 1 - t1*, and Ca 
 0.5V.   

• In order for mixing among all of A0, A1, and A2 to be an equilibrium (t1* +  t2* < 1; t1*, t2*>0), 
we must have  

    - Ca + r*V = - Ca + (1 - r*) V = 0                  (4)  
This can be true only when Ca = 0.5 V. In that case, we have r* = 0.5, and t1*- t2* = (Cd1-
Cd2)/V.  
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A.4: Equilibrium Payoffs 

Comparing the (expected) defender payoffs of the three possible defender actions (defending both 
resources, defending neither resource, and defending only one resource), the equilibriums are as 
follows: 

• If Ca = 0.5V, and Cd1 > Cd2, then there are two equilibria. In the first equilibrium, the defender 
chooses (D1, ND2) with probability r = (1 - Ca/V), and (ND1, D2) with probability (1 - r); the 
attacker chooses A1 and A0 with probabilities t1 = (Cd1 - Cd2)/2V and 1 - t1, respectively. The 
expected defender payoff equals - Cd1, and the expected attacker payoff equals 0. In the second 
equilibrium, the defender chooses (D1, ND2) with probability r = 0.5, and (ND1, D2) with 
probability (1 - r); the attacker can choose A1, A2, and A0 with probabilities given by t1, t2, and 
1 - t1 - t2, respectively, for any t1, t2 such that t1 + t2 < 1; t1, t2 > 0; and t1 - t2 = (Cd1-Cd2)/V. In 
this case, the expected attacker and defender payoffs equal 0 and - Cd1 + t2 (- V), respectively. 

• If Ca = 0.5V and Cd1 = Cd2, then there are two equilibria. In the first equilibrium, defender 
chooses (D1, ND2) with probability r, and (ND1, D2) with probability (1 - r), for any (1 - Ca/V) 
 r  Ca/V; the attacker chooses A0. The expected attacker and defender payoffs in this 
equilibrium equal 0 and - Cd1, respectively. In the second equilibrium, the defender chooses 
(D1, ND2) with probability r = 0.5, and (ND1, D2) with probability (1 - r); the attacker can 
choose A1, A2, and A0 with probabilities t1, t2, and 1 - t1 - t2, respectively, for any t1, t2 such that 
t1 + t2 < 1; t1, t2>0; and t1 - t2 = (Cd1-Cd2)/V. In this case, the expected attacker and defender 
payoffs equal 0 and - Cd1 + t2 (- V), respectively. 

• If 0.5V < Ca < V and Cd1 > Cd2, then the defender optimal strategy is to choose (D1, ND2) with 
probability given by r = (1 - Ca/V), and (ND1, D2) with probability (1 - r). At this equilibrium, 
the attacker chooses A1 and A0 with probabilities t1 = (Cd1 - Cd2)/2V and 1 - t1, respectively. 
The expected defender payoff equals - Cd1, and the expected attacker payoff equals 0. 

• If 0.5V < Ca < V and Cd1 = Cd2, then the defender equilibrium strategy is to choose (D1, ND2) 
with probability r, and (ND1, D2) with probability (1 - r), for any r such that (1 - Ca/V)  r  
Ca/V. At this equilibrium, the attacker chooses A0. The expected attacker and defender payoffs 
in this case equal 0 and - Cd1, respectively. 

• If Ca < 0.5V and V < Cd1 + Cd2, then the defender’s optimal strategy is to choose the strategy 
(ND1, ND2). At this equilibrium, the attacker is assumed to choose A1 and A2 with probabilities 
t1 = 0.5 and 1 - t1, respectively. The defender payoff equals - V; and the attacker payoff equals 
V - Ca. 

• If Ca < 0.5V and V = Cd1 + Cd2, then there are two equilibria that involve use of pure strategies 
by the defender: In the first equilibrium, the defender chooses the strategy (ND1, ND2); the 
attacker chooses A1 and A2 with probabilities t1 = 0.5 and 1-t1, respectively; the defender 
payoff equals - V, and the attacker payoff equals V - Ca. In the second equilibrium, the 
defender chooses the strategy (D1, D2); the attacker chooses A0; the defender payoff equals - 
Cd1 - Cd2 = - V; and the attacker payoff equals 0. Since the defender payoff is the same in both 
equilibria, there is no reason to expect one strategy to be preferred to the other; moreover, the 
defender could in principle randomize between (D1, D2) and (ND1, ND2). 

• If Ca < 0.5V and V > Cd1 + Cd2, then the defender’s optimal strategy is to choose the strategy 
(D1, D2); the attacker chooses A0; the defender payoff equals - Cd1 - Cd2; and the attacker 
payoff equals 0. 

The equilibrium payoffs and strategies are summarized in Table 1. 

Appendix B: Calculating Equilibrium Payoffs of the Decentralized Model 

In order to calculate the equilibrium strategy and payoffs, we consider three possible pure strategies 
(both, none, and one of the resources are defended). However, we also have to consider mixed 
strategies in this case. In particular, one defender could choose to defend while the other chooses a 
mixed strategy; one defender could choose not to defend while the other chooses a mixed strategy; 
or both defenders could choose mixed strategies.  
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B.1: Both defenders choose to defend 

When both defenders choose to defend, the attacker’s optimal strategy is A0, as it is the only 
strategy that gives a non-negative payoff. Then the payoffs of defenders 1 and 2 are - Cd1 and - Cd2, 
respectively, and the attacker payoff is 0. 

B.2: Neither defender chooses to defend 

When neither defender chooses to defend, then any mixture of strategies A1 and A2 is optimal for 
the attacker. For simplicity, we assume that the attacker will attack each resource with probability 
0.5. Therefore, both defenders have an expected payoff of - 0.5V, and the attacker payoff equals V - 
Ca. 

B.3: Only one defender chooses to defend 

Note that there cannot be a pure-strategy equilibrium in which only one defender chooses to defend. 
For example, if defender 1 chooses strategy D1 and defender 2 chooses strategy ND2, then the 
attacker’s best response is to choose A2, in which case defender 2 would prefer to switch to D2, and 
so on.  

B.4: One defender chooses to defend and the other chooses a mixed strategy 

In order to use a mixed strategy, the defender must be indifferent between defending and not 
defending. That implies in particular that the expected payoffs of the two defenders in this case must 
equal the payoffs when the defenders choose strategies D1 and D2, respectively (or in other words, - 
Cd1 and - Cd2), no matter what the attacker response is. This suggests that for each mixed-strategy 
equilibrium (if one exists), there would also exist a pure-strategy equilibrium in which the defender 
payoffs are (weakly) larger. Note also that the attacker will know which action of the mixed strategy 
is played (because we assume that the attacker knows the total number of defended targets), which 
makes the mixed strategy less interesting. Since in practice implementing a mixed strategy is likely 
to be more difficult than implementing a pure strategy, without generating any benefit, we do not 
expect that a defender would choose a mixed strategy in this case, and therefore do not further 
consider the possibility of mixed strategy in cases where the defenders could choose strategies D1 
and D2 in equilibrium.  

B.5: One defender chooses not to defend and the other chooses a mixed strategy 

By similar logic to the above, there is no need to consider this case further, since it cannot 
outperform the candidate equilibrium in which the defenders choose strategies ND1 and ND2, 
respectively. 

B.6: Both defenders choose a mixed strategy  

Again, in order to use mixed strategies, both defenders must be indifferent between defending and 
not defending. This implies in particular that the expected payoffs of the defenders in this case must 
equal the payoffs when they choose strategies D1 and D2, respectively, or in other words, - Cd1 and - 
Cd2. Thus, there is no need to consider this case further, since it cannot outperform the case when 
the defenders choose strategies D1 and D2.  

B.7: Equilibrium Payoffs 

Comparing the defender payoffs discussed in Sections B.1 and B.2, the equilibrium defender 
options are as follows: 

• If 0.5V < Cd2  Cd1, then the equilibrium strategies for defenders 1 and 2 are ND1 and ND2, 
respectively. At this equilibrium, the attacker is assumed to choose either A1 or A2 with a 
probability of 0.5. The expected payoff equals - 0.5V for each defender, and the attacker 
receives a payoff of V - Ca, as discussed in Section B.2.   

• If Cd2  Cd1 < 0.5V, then the equilibrium strategies for defenders 1 and 2 are D1 and D2, 
respectively. At this equilibrium, the attacker chooses A0. The expected defender payoffs equal 
- Cd1 and - Cd2, respectively, and the attacker receives a payoff of 0.  

• If Cd2  0.5V  Cd1, then there are two equilibria. In the first equilibrium, defenders 1 and 2 
choose D1 and D2, respectively; the attacker chooses A0; the payoffs of defenders 1 and 2 are 
given by - Cd1 and - Cd2, respectively; and the attacker receives a payoff of 0. In the second 
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equilibrium, defenders 1 and 2 choose ND1 and ND2, respectively; the attacker chooses either 
A1 or A2 (with an assumed probability of 0.5); the payoff is - 0.5V for each defender; and the 
attacker receives a payoff of V - Ca. Since defender 1 prefers the second equilibrium, while 
defender 2 prefers the first equilibrium, there is no clear reason to expect any particular 
equilibrium to be realized, especially since the two defenders are assumed to make decisions in 
a decentralized manner. However, some coordination mechanism might make it possible to 
achieve the socially optimal equilibrium. 

The equilibrium payoffs and strategies are summarized in Table 2. 
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