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Concerns on security and congestion appear in security screening which is used to identify and deter
potential threats (e.g., attackers, terrorists, smugglers, spies) among normal applicants wishing to enter
an organization, location, or facility. Generally, in-depth screening reduces the risk of being attacked,
but creates delays that may deter normal applicants and thus, decrease the welfare of the approver
(authority, manager, screener). In this paper, we develop a model to determine the optimal screening pol-
icy to maximize the reward from admitting normal applicants net of the penalty from admitting bad
applicants. We use an M/M/1 queueing system to capture the impact of security screening policies on
system congestion and use game theory to model strategic behavior, in which potential applicants with
private information can decide whether to apply based on the observed approver’s screening policy and
the submission behavior of other potential applicants. We provide analytical solutions for the optimal
non-discriminatory screening policy and numerical illustrations for both the discriminatory and non-dis-
criminatory policies. In addition, we discuss more complex scenarios including imperfect screening,
abandonment behavior of normal applicants, and non-zero waiting costs of attackers.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Security screenings play an important role in many fields,
including visa issuance, cargo inspection, and airport security
screening. In-depth examination of applicants reduces security risk,
but can entail high congestion which may deter normal applica-
tions and in turn may conflict with the approver’s interests. Since
September 11, 2001, the security levels for the United States visa
issuance have been greatly tightened, significantly affecting regular
academic exchanges, and the interactions that go along with these
exchanges such as work obligations, collaboration networking, and
family reunions (Seife and Ding, 2003; Bhattacharjee, 2004a,b;
Bagla, 2006; Stone, 2008). For example, the US Government
Accountability Office (2004) states that the average waiting period
for a visa security clearance is 67 days, indicating that ‘‘students
and scholars with science backgrounds might decide not to come
to the US, and technological advancements that serve the US and
global interests could be jeopardized’’.

Concerns on security and congestion also appear in the setting
of container security at ports of entry. To prevent terrorists from
smuggling weapons into the US, US law mandates non-intrusive
ll rights reserved.

: +1 716 645 3302.

mes.
imaging and radiation detection for 100% of US-bound containers
at international ports. This 100% inspection has raised concerns
that resulting congestion will substantially increase the cost of
doing business and hurt commerce (Bakshi et al., 2009). Using dis-
crete-event simulation based on actual data, Bakshi et al. (2009)
empirically show that the current screening regime is not effective,
and a two-step screening process (with a rapid primary screening
of all cargo, followed by a more detailed screening of those con-
tainers that failed the first test) might be better.

In airport security, as early as the 1970’s, researchers have
applied queueing models to study airport congestion resulting
from security screenings (Gilliam, 1979). Since September 11,
2001, many researchers have studied airport congestion due to
the enhanced screening. Blalock et al. (2007) find that the tight-
ened post-9/11 baggage-screening policy has reduced passenger
volume by eight percent. Following the attempted terrorist attack
to Northwest Airlines Flight 253 on December 25, 2009, the US
started a new screening policy requiring citizens of 14 nations
(including Pakistan, Saudi Arabia and Nigeria), who are flying to
the US, to be subject to special screening at airports worldwide
(Lipton, 2010). This nationality-based discriminatory screening
policy has been widely criticized (Fisher, 2010), while its effective-
ness remains unclear.

Motivated by the above examples, we apply game theory and
queueing theory in this paper to study the approver’s optimal
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Fig. 1. The approval process with strategic potential applicants and congestion.
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screening policy, considering both system congestion and the
strategic behavior of potential applicants with private information.
Each potential applicant could be either a terrorist (bad type) or
not (good type), which is his private information and not directly
observable by the approver. The approver’s screening policy can
be non-discriminatory, or discriminatory based on the applicants’
observable attributes (such as age, nationality, gender, and security
history). There might exist some correlation between the unob-
servable information and the observable attributes.

The novelty of this research, compared to previous studies, is
that it allows strategic decisions by all types of potential applicants.
In particular, potential applicants could adapt their behavior
according to a disclosed security policy (Zhuang and Bier, 2007).
For example, smugglers may choose the weakest port to enter; lei-
sure travelers may choose not to travel because of congestion; and
foreign students may no longer apply to the US schools because of
the long waiting period for visas.

To our knowledge, no research to date has simultaneously con-
sidered both the applicant’s strategic behavior and congestion in
determining the optimal screening policy (with an exception of a
recent paper by Bakshi and Gans (2010), which considers conges-
tion and the terrorist’s strategic choice but does not consider the
normal people’s choice); our research aims to fill this important
theoretical gap. In particular, we first analytically derive the ap-
prover’s optimal non-discriminatory screening policy, and then
use numerical examples to illustrate the benefit of discriminatory
policies based on observable attributes.

We recognize that there exists close work on security screening
using game theory and economic modeling. For example, in the
setting of container security at ports of entry, Bier and Haphuriwat
(in press) study the optimal proportion of containers to inspect
using game theory to capture the fact that attackers are simulta-
neously trying to maximize their expected rewards. In critical
infrastructure protection, optimal defense investment in the face
of adaptive terrorists has been studied (Golany et al., 2009; Zhuang
and Bier, 2007; Zhuang et al., 2010; Golalikhani and Zhuang,
forthcoming). In the economics literature, Basuchoudhary and
Razzolini (2006) and Yetman (2004) have studied the idea of dis-
criminatory screening. In contrast to our paper, all of these papers
fail to consider congestion or normal applicants’ decisions.

In recent years, selective screening based on passenger profiling
has been proposed to reduce the inconvenience caused to normal
passengers and improve the effectiveness of screening devices.
McLay et al. (2006) show that using different screening procedures
on different passenger types (passenger risk information) can lead
to more effective security screening strategies. Babu et al. (2006)
study the effects of classifying passengers into different groups
and applying different levels of screening to them. Nie et al.
(2009) extend the work of Babu et al. (2006) by allowing passen-
gers to have heterogeneous threat levels. Recently, Cavusoglu
et al. (2010) study the impacts of profiling on the design of the
screening systems and other performance measures, such as the
reliability of screening device signals and the inconvenience
caused to normal passengers. However, these papers do not con-
sider strategic passengers’ behavior. Along the same line, in other
application domains which are different from transportation secu-
rity, Viaene et al. (2007) study the optimal screening policy for
detecting fraudulent automobile insurance claims, and Claeys
et al. (2010) study group screening policies in a queueing model
with dynamic arrivals.

In the service operations management literature, there exists
some work using a game-theoretic formulation of a queueing prob-
lem to study the interaction between the service provider and the
customers who consider congestion when deciding whether or not
to queue (for an excellent overview, see Hassin and Haviv, 2003).
This formulation proves to be effective in modeling service systems
with customer behaviors and thus, fits for our settings. An example
using this formulation is Anand et al. (2011) which studies the sim-
ilar tradeoff between quality (analogous to security in the above
literature) and congestion trade-off in a setting where customers
decide whether to use the service based on their evaluations of
quality and speed. As in Anand et al. (2011), we endogenize the
trade-off between quality and congestion into individual decisions.
But in comparison, Anand et al. (2011) assume the service provider
directly decides service speed and price to maximize her revenue,
while our work assumes that the service provider determines
screening probabilities and service speed is a parameter, not a
decision. In addition, the quality/time interaction that Anand
et al. (2011) outline is modeled explicitly as a monotonic function:
as the service speed increases, the quality of the service decreases
which depresses demand. In contrast, the quality (security)/time
interaction in our paper lies implicitly in the fact that the more
applicants are screened, the more bad applicants can be caught
while more congestion is created at the approver. Due to the nat-
ure of the security context, we address differentiated screening
strategies in the presence of heterogeneous customers (potential
applicants or travelers) with observable information which is not
discussed by Anand et al. (2011).

The remainder of the paper is organized as follows. A descrip-
tion of the model is presented in Section 2. Section 3 provides an
analysis of the best responses of potential applicants. Section 4
provides an analytical solution for the approver’s optimal non-
discriminatory policy. Section 5 then provides numerical analysis
of both discriminatory and non-discriminatory policies and indi-
cates under which conditions discriminatory policies are signifi-
cantly better. Section 6 discusses and analyzes several extensions
of our model. Section 7 concludes this paper and provides future
research directions. Finally, the appendix provides proofs to the
propositions in this paper.

2. The model

We consider a manager, which we refer to as the ‘‘approver,’’
facing a population of strategic potential applicants willing to enter
a secure organization or facility. Note that in this paper we use ‘‘po-
tential applicant’’ to represent the people who have intentions to
apply but may or may not submit their applications. In contrast,
we use ‘‘applicant’’ to represent the people who have already sub-
mitted their applications. The approver decides whether to screen
each applicant based on observable attributes such as age, nation-
ality, gender, occupation, and security history. The approver can
immediately approve an application, in which case the applicant
passes. On the other hand, if the approver decides to screen the
applicant, the applicant will be placed in a queue to wait for the re-
sult of the screening process (either approval or rejection). Fig. 1
shows a flowchart of the process.

The approver’s goal is to reduce the risk of admitting bad appli-
cants (attackers), while simultaneously reducing the inconve-
nience (congestion) to good applicants. Screening numerous
applicants decreases the chance of admitting a bad applicant, but
increases waiting times, which could decrease the willingness of
good potential applicants to apply. All potential applicants are



1 In order to focus on the tradeoff between the congestion impact and the security
pact on good/bad potential applicants, respectively, we ignore the approver’s

reening cost which is proportional to U due to labor, time or financial costs
consumed during the screening process.
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assumed to decide whether to submit an application by weighing
the costs and benefits, according to the announced screening pol-
icy. In the following subsection, we outline our assumptions
regarding characteristics of potential applicants, cost structure,
screening, and service characteristics, and then formulate the ap-
prover’s optimization problem (taking into account the potential
applicants’ decisions).

2.1. Model setup

We assume: (1) the approver cannot immediately reject appli-
cants; i.e., applicants can be rejected only after screening; (2) when
the approver is indifferent between different levels of screening
probabilities, she will choose the lowest level due to conve-
nience/cost concerns. In Sections 2–5 we assume perfect screen-
ing; i.e., after screening, all of good applicants will pass and all of
bad applicants will be caught; in Subsection 6.1, we relax this
assumption by allowing non-zero screening errors. The elements
of the model are described as follows.

Applicant characteristics. Each potential applicant can be one
of two types, h 2 {g,b}, representing good and bad types, respec-
tively. The type is known to the potential applicant himself, but
unobservable to the approver. Each potential applicant also has
an observable attribute that can take on one of two possible values,
t 2 {1,2}. The probability that a potential applicant has attribute
t = 1 is given by p 2 [0,1]. We assume that potential applicants
are bad with probability a if t = 1 and with probability b if t = 2.
The joint probability masses are p(1 � a), pa, (1 � p)(1 � b), and
(1 � p)b, for a potential applicant of types 1g, 1b, 2g, and 2b,
respectively.

Cost structure. We assume that the approver gains R for admit-
ting each good applicant, and loses C for admitting each bad appli-
cant. A good applicant receives a reward of rg if he is approved and
incurs a waiting cost of cw per unit time if he is screened. A bad
applicant receives a reward of rb if he is approved and incurs a pen-
alty of cb if he is caught. To make analysis tractable, we assume that
the reward rb and the penalty cb are sufficiently large such that bad
potential applicants typically neglect the waiting cost when mak-
ing submission decisions. In Subsection 6.3, we relax this assump-
tion in numerical experiments.

Service characteristics. Potential applicants are assumed to ar-
rive according to a Poisson process with rate K. All potential appli-
cants independently decide whether to submit an application. We
assume no reneging; i.e., once an applicant begins screening, he
waits for the result of this process without leaving the queue or
withdrawing his application. In real applications, good applicants
could abandon the queue due to long waiting time. Thus, we relax
this assumption in Subsection 6.2 numerically. We model the
screening process as an M/M/1 queueing system with a service rate
of l. The average time interval between when an applicant submits
a request and when he gets an approval or rejection is denoted by
W, the average waiting time.

We assume that the applicants cannot observe the actual length
of queue. This assumption is reasonable because little evidence ex-
ists in the domains of our focus (visa applications, background
checks for security jobs and container screening), that the potential
applicants know the state of the queue when they make the sub-
mission decision. Typically, the potential applicants only know
the expected waiting time through their or other people’s experi-
ences. This type of model, characterizing customers’ equilibrium
behavior when the state of the queue is unobservable, has been de-
fined as ‘‘an unobservable queue’’ model in Hassin and Haviv
(2003).

Approver’s strategy. The approver’s strategy is given by
U ¼: (U1,U2), where Ut 2 [0,1] is the probability of screening an
applicant with an attribute value t. Her objective is to maximize
the reward from admitting good applicants net of the penalty from
admitting bad applicants1:

max
U

JðUÞ ¼ ðk1g þ k2gÞR� ½ð1�U1Þk1b þ ð1�U2Þk2b�C; ð1Þ

where kth are the arrival rates of applicants with t 2 {1,2} and
h 2 {g,b}. Due to the assumption of perfect inspection, the good
applicants will pass eventually, regardless of whether they are
screened of not, and the bad applicants will pass only when they
are not screened. Therefore the approver gets a reward of R from
each good applicant and a penalty cost C from each bad applicant
who is not screened.

Potential applicants’ strategy. Potential applicants behave as
rational economic agents who maximize their expected utilities.
Their utilities depend not only on their own decisions, but also
on the decisions of other potential applicants and the decision of
the approver. Each potential applicant has two options: to submit
an application or not. Let pth 2 [0,1] denote the potential appli-
cants’ submission probability for t 2 {1,2} and h 2 {g,b} which is a
pure strategy if pth = 0, 1, and is a mixed strategy otherwise. The to-
tal traffic rate for screening is the summation over all screened
applicants:

P2
t¼1UtðptgKtg þ ptbKtbÞ where K1g ¼ pð1� aÞK, K1b =

paK, K2g = (1 � p) (1 � b)K, and K2b = (1 � p)bK. We denote
the potential applicants’ strategies by p ¼: (p1g,p2g,p1b,p2b). Thus,
the arrival rates of applicants are k ¼: (k1g,k2g,k1b ,k2b), where
kth = pthKth, for t 2 {1,2}, and h 2 {g,b}.

For a good potential applicant, his utility of not submitting an
application is zero and his utility of submitting an application is
the reward minus the expected waiting cost. Thus, his expected
utility is:

utgðU;pÞ ¼ ptg ½rg �UtcwWðU;pÞ�; for t 2 f1;2g; ð2Þ

where, from Ross (2002), the average waiting time for the M/M/1
queueing system is given by:

WðU;pÞ ¼ 1

l�
P2

t¼1UtðptgKtg þ ptbKtbÞ
: ð3Þ

Similarly, a bad potential applicant’s expected utility is:

utbðU;pÞ ¼ ptb½Utð�cbÞ þ ð1�UtÞrb�; for t 2 f1;2g: ð4Þ
2.2. Definition of equilibrium

Combining good and bad potential applicants’ utilities in Eqs.
(2) and (4), for a given approver’s strategy U, the objective func-
tion of a potential applicant with an observable attribute t and
an unobservable type h is:

max
pth

uthðU;pÞ ¼
ptg ½rg �UtcwWðU;pÞ� if h ¼ g;

ptb½Utð�cbÞ þ ð1�UtÞrb� if h ¼ b:

�
ð5Þ

Given U, we define the potential applicants’ best response:

p̂ðUÞ ¼ ½p̂1gðUÞ; p̂1bðUÞ; p̂2gðUÞ; p̂2bðUÞ�;

where

p̂thðUÞ ¼ arg max
pth

uthðU;pÞ; for t 2 f1;2g and h 2 fg; bg: ð6Þ
im
sc



Table 1
Major notations.

Notation Explanation

h 2 {g,b} Unobservable type of a potential applicant
t 2 {1,2} Observable attribute of a potential applicant
p Probability that a potential applicant has attribute 1
a Probability that a potential applicant with attribute 1 is bad
b Probability that a potential applicant with attribute 2 is bad
R Approver’s reward for admitting each good applicant
C Approver’s penalty for admitting each bad applicant
rg Good applicant’s reward if passed
rb Bad applicant’s reward if passed
cw Good applicant’s cost per unit of waiting time
cb Bad applicant’s penalty if rejected
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Definition 1. We call a collection (p⁄,U⁄) a subgame perfect Nash
equilibrium, or equilibrium, if and only if

p� ¼ p̂ðUÞ ð7Þ

and

U� ¼ arg max
U

J½U; p̂ðUÞ�: ð8Þ

Table 1 summarizes major notations used in this paper.
Having established our model, we now proceed to its analysis. In
particular, we first derive best responses of potential applicants in
Section 3, and then solve for the optimal strategy of the approver
in Section 4.
K Poisson arrival rate of all potential applicants
Kth Poisson arrival rate of potential applicants with type h and

attribute t
l Service rate of the screening process
W(U,p) Expected waiting time
U ¼: (U1,U2) Approver’s strategy
Ut 2 [0,1] Probability of screening an applicant with attribute t
J(U) Approver’s objective function
k = {kth} Arrival rates of applicants
p = {pth} Potential applicant’s submission probability
uth Potential applicant’s expected utility with attribute t and type

h

p̂ðUÞ Potential applicant’s best response for given U
3. Potential applicants’ best responses

3.1. Bad potential applicants’ best responses

Proposition 1. Bad potential applicants’ best responses are given
by2:

p̂tbðUtÞ ¼
1; Ut < sb ¼ rb

cbþrb
;

0; Ut P sb ¼ rb
cbþrb

;

(
for t ¼ 1;2: ð9Þ
Remark. Bad potential applicants do not consider congestion in
this section, so their strategies do not depend on the strategies
of other potential applicants. Their strategies solely depend on
a comparison between the probability of being screened and a
threshold value sb; they apply with probability one if the proba-
bility of being screened is sufficiently small (below sb), and with
probability zero otherwise. From the definition of sb, we see that
intuitively a bad potential applicant is more likely to apply when
his reward after passing screening is high, or his penalty after
being caught is low.
3.2. Good potential applicants’ best responses

A good potential applicant’s best response is more complex, be-
cause it depends on the decisions of other potential applicants
through negative externality associated with congestion, as shown
in Eqs. (2) and (3). If we fix the approver’s strategy U and bad po-
tential applicants’ best responses p̂tb, t = 1, 2, we are left with an
equilibrium analysis problem on two classes of customers: good
potential applicants with an attribute value of 1, and good poten-
tial applicants with an attribute value of 2. This equilibrium anal-
ysis problem has been solved in Balachandran and Schaefer
(1980). As in Balachandran and Schaefer (1980), we first define
the desired aggregate arrival rate of screened good potential appli-
cants as follows:

Note that the traffic caused by bad applicants is:

U1p̂1bpaKþU2p̂2bð1� pÞbK:

Assuming there are no good applicants with t = 2, at the
equilibrium, the maximum traffic of screened good applicants
should be:

bK1g ¼ l�U1p̂1bpaK�U2p̂2bð1� pÞbK�U1cw

rg
; ð10Þ

which is derived from the fact that the good applicant of
attribute 1 has zero utility at the equilibrium; rg �U1cwW ¼
rg � U1cw

l�U1 p̂1bpaK�U2 p̂2bð1�pÞbK�bK1g

¼ 0.
2 We assume when a bad potential applicant is indifferent between submitting or
not, he will choose not to submit his application due to cost concerns.
Similarly, if assuming there are no good applicants with t = 1,
then at the equilibrium, the maximum traffic of screened good
applicants should be:

bK2g ¼ l�U1p̂1bpaK�U2p̂2bð1� pÞbK�U2cw

rg
; ð11Þ

which is derived from the fact that the good applicant of
attribute 2 has zero utility at the equilibrium; rg �U2cwW ¼ rg�

U2cw

l�U1 p̂1bpaK�U2 p̂2bð1�pÞbK�bK2g

¼ 0.

Thus, bK1g is the maximum demand rate ‘‘desired’’ by the good
potential applicants with t = 1. That is, when assuming there are
no good applicants with t = 2, the good potential applicants with
t = 1 would apply (utility is non-negative) unless their screened
aggregate demand rate is more than bK1g . When the demand rate
reaches bK1g , their utility becomes zero. Similarly, bK2g is the maxi-
mum demand rate ‘‘desired’’ by the good potential applicants with
t = 2, when assuming there are no good applicants with t = 1.

Based on the above definitions of bK1g and bK2g , Proposition 2 be-
low specifies the best responses of good potential applicants. To
simplify notation, we denote the Poisson arrival rate of all good
potential applicants as Kg and the Poisson arrival rate of all bad
potential applicants as Kb. In other words, Kg = K1g + K2g =
[p(1 � a) + (1 � p)(1 � b)]K and Kb = K1b + K2b = [pa + (1 � p)b]K.

Proposition 2. Given the approver’s strategy U and bad potential
applicants’ best responses p̂tb for t = 1, 2:
(i) If U1 = 0, then p̂1g ¼ 1; if U2 = 0, then p̂2g ¼ 1.
(ii.a) If the approver uses a discriminatory policy and 0 < U1 < U2,

then the good potential applicants’ best responses are:
p̂1g ¼
1

U1K1g
max min bK1g ;U1K1g

� �
;0

h i
; and

p̂2g ¼
1

U2K2g
max min bK2g � p̂1gU1K1g ;U2K2g

� �
;0

h i
:

(ii.b) If the approver uses a discriminatory policy and 0 < U2 < U1,
then the good potential applicants’ best responses are:
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p̂1g ¼
1

U1K1g
max min bK1g � p̂2gU2K2g ;U1K1g

� �
; 0

h i
; and

p̂2g ¼
1

U2K2g
max min bK2g ;U2K2g

� �
;0

h i
:

(iii) If the approver uses a non-discriminatory policy
U1 = U2 = U > 0, then p̂1b ¼ p̂2b¼

: p̂b and bK1g ¼ bK2g¼: bKg . The
good potential applicants’ best responses are:
p̂1g ¼ p̂2g ¼

1; if bKg > UKg ;bKg

UKg
; if 0 6 bKg 6 UKg ;

0; if bKg < 0:

8>>><>>>:
Remark. First, note that the good potential applicants’ submission
probabilities tend to increase in their corresponding desired aggre-
gate arrival rates and decrease in screening probabilities and arrival
rates of all potential applicants. Second, for the case U1 < U2, good
potential applicants with t = 1 are less sensitive to congestion than
those with t = 2. In other words, facing the same level of conges-
tion, the good potential applicants with t = 1 have a higher utility
and thus are more likely to apply than those with t = 2. Therefore,
at the equilibrium, if none or a proportion of good potential appli-
cants with t = 1 apply (i.e., bK1g < U1K1g), then none of those with
t = 2 apply; if all of the good potential applicants with t = 1 apply
(i.e., bK1g P U1K1g), then a proportion or all of the good potential
applicants with t = 2 may apply. Similarly, if U1 > U2, good poten-
tial applicants with t = 2 are more likely to apply. When U1 = U2,
the approver is indifferent between these two attribute values
and thus good potential applicants behave the same.
4. Optimal screening policies

Substituting best responses of the potential applicants (as spec-
ified in Propositions 1 and 2) into the approver’s decision-making
problem as specified in Eq. (1), we study the approver’s optimal
strategy.

4.1. Non-discriminatory screening policy

We start with a non-discriminatory screening policy that uses
equal screening probabilities for applicants of two attributes:
U1 = U2 = U.

Proposition 3. The approver’s optimal non-discriminatory strategy
U⁄ is specified in Table 2:
Remark. As shown in Table 2, the optimal non-discriminatory
screening probability can only take one of these two values:
U� ¼ l

KgþKbþ
cw
rg
< sb (in this case, all bad potential applicants apply,

i.e., p̂b ¼ 1) and U� ¼ sb ¼ rb
cbþrb

(in this case, none of the bad poten-

tial applicants apply, i.e., p̂b ¼ 0). In general, the approver uses a
screening probability smaller than sb when the bad potential appli-
cant has a high incentive to apply (high sb) and when the reward of
admitting a good applicant is relatively high compared to the pen-
alty of admitting a bad one (high R and low C). In this case, U⁄

increases in the service rate l and the ratio of the good applicant’s
gain rg to his unit waiting cost cw; more applicants should be
screened if the screening process is faster or good potential appli-
cants are more tolerant to congestion. In addition, U⁄ decreases in
the arrival rate of all potential applicants K; the approver screens a
smaller proportion of applicants when the whole population
expands. In contrast, when bad applicants are very dangerous to
the approver (high C) and are deterred easily (low sb), and the
reward of admitting a good applicant is relatively low (low R) com-
pared to the penalty of admitting a bad one (C ), the approver
should use a screening probability which equals sb to deter all
the bad ones. In this case, U⁄ increases in rb and decreases in cb.
Proposition 3 also implies that U⁄ cannot be zero unless the bad
applicant’s reward rb or the service rate l equals zero.
4.2. Discriminatory screening policy

Now we study the discriminatory policy. A general result is gi-
ven in the following proposition.

Proposition 4. The approver’s optimal discriminatory policy is
always better than any non-discriminatory policy.
Remark. Proposition 4 indicates that theoretically the approver’s
optimal payoff under a discriminatory policy is higher than that
under a non-discriminatory policy. The reason is that the approver
can utilize observable information to disproportionately screen
applicants. For example, if knowing applicants of attribute 1 are
more likely to be bad, the approver will screen more of them and
screen fewer applicants of attribute 2. Thus, on average, under a
discriminatory policy, good applicants will experience a shorter
waiting time, bad applicants will experience more strict screening,
and the approver will get a higher payoff. In practice, however,
there exist many reasons to justify a non-discriminatory policy.
For example, due to equity/political concerns, the approver might
not be allowed to implement a discriminatory policy. In addition,
implementing this policy might be difficult due to a high cost of
collecting and verifying observable data. Thus, to decide which pol-
icy to use, a good benefit/cost balance must be made.

Analysis of the optimal non-discriminatory screening policy in
Section 4.1 implies the complexity to analytically derive the
optimal discriminatory policy. Thus, we numerically calculate the
optimal discriminatory policy U�1;U

�
2

� �
for a given set of parameter

values in the next section.
5. Numerical experiments

In this section, we conduct numerical sensitivity analysis of our
model and compare the discriminatory policy with the non-dis-
criminatory policy. To highlight the most interesting cases, we pro-
vide sensitivity analysis only for parameters R, rb, and K. The
baseline parameter values used in all numerical experiments in
this paper are set as follows: p = .6; a = .2; b = .02; R = 1; C = 10;
rg = 1; rb = 2; cw = 1; cb = 1; K = 100; and l = 10. Note that in this
baseline case, we have sb ¼ rb

cbþrb
� 0:67.

5.1. Changing the approver’s reward from admitting a good
applicant R

For a discriminatory policy as shown in Fig. 2 (upper panel),
when the approver’s reward from admitting a good applicant in-
creases, the approver becomes more reluctant to screen applicants.
In other words, the screening probabilities U1 and U2 are both
non-increasing in R. Thus, potential applicants (including the bad
ones) become more likely to apply; i.e., pth (weakly) increases in
R for t = 1, 2, h 2 {g,b}. The intuition is that when the reward from
admitting a good applicant is higher, the approver is willing to re-
duce screening congestion and take a greater risk of admitting bad
applicants.

For a non-discriminatory policy (middle panel in Fig. 2), the
screening probability is also non-increasing in R and potential
applicants (including the bad ones) become more likely to apply.



Table 2
The optimal non-discriminatory screening policy.

Conditions U⁄ Notes

sb >
Rl

RKgþCKbðl=ðKgþKbþcw
rg
Þ�1ÞþRcw

rg
; and min 1;

ffiffiffiffiffiffiffi
Rl

CKb

q� �
> l

KgþKbþcw
rg
> 1� RKg

CKb

l
KgþKbþcw

rg

p̂b ¼ 1

Otherwise sb p̂b ¼ 0

Fig. 2. Sensitivity analysis for the approver’s gain R.
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Comparing the approver’s payoffs for discriminatory and non-dis-
criminatory policies (lower panel in Fig. 2), the difference is not
significant for either large or small values of R, and only significant
for medium values of R. The intuition is as follows. Recall that the
benefit of a discriminatory policy is due to the reason that it can
disproportionately screen applicants: screening fewer less risky
ones to reduce congestion while screening more risky ones to low-
er the loss. When R is sufficiently large (>3 in this example), it is
more important to reduce congestion for attracting more good
potential applicants than to reduce security risk for deterring bad
potential applicants. Thus, the approver screens only a small per-
centage of applicants no matter under a discriminatory or a non-
discriminatory policy. As a result, potential applicants’ submission
behaviors are similar under these two policies. The benefit from a
discriminatory policy is not obvious. When R is sufficiently small
(<1 in this example), reducing security risk by deterring bad poten-
tial applicants is relatively more important than reducing conges-
tion to have more good potential applicants. Thus the screening
probabilities are set high no matter under a discriminatory or a
non-discriminatory policy. In summary, a discriminatory policy
shows more advantage when the tension between congestion
and security risk is more intensive.
5.2. Changing the parameter of bad potential applicants rb

A high reward when approved (large rb) motivates bad potential
applicants to apply.3 First, look at the optimal discriminatory policy.
In the example shown in Fig. 3, the optimal screening probability for
applicants of attribute 1 is always sb ¼ rb

rbþcb
, which is increasing with

rb. Thus when rb increases, bad potential applicants of attribute 1 are
all deterred. In contrast, the approver’s screening probability for
3 Since decreasing cb has the same impact as increasing rb, we ignore the numerica
results on cb in this section.

4 We have conducted numerical experiments on service capacity l. Since decreas-
ing l has the similar impact as increasing K, we do not report its numerical results in
this paper.
l

applicants of attribute 2 is relatively small. Especially, when rb > 0.2
in Fig. 3, the approver’s screening probability for applicants of attri-
bute 2, U2 is zero, and therefore, both good and bad potential appli-
cants apply with probability 1: p2g = p2b = 1. This is because in this
numerical example, an optimal discriminatory policy focuses on
reducing the security risk from more risky applicants of attribute 1
while ignoring less risky applicants of attribute 2. Such a focus is
more important when bad potential applicants are more likely to ap-
ply (for example, rb > 0.2). Due to the increased congestion by
screening more applicants of attribute 1, the submission probability
of good potential applicants p1g is decreasing as rb increases.

Second, look at the optimal non-discriminatory policy. In the
example shown in Fig. 3, the optimal screening probability for all
applicants always follows sb ¼ rb

rbþcb
. Thus there are no bad appli-

cants and submission probabilities of good potential applicants de-
crease as the screening probability increases.

Third, the difference in the approver’s payoffs under discrimina-
tory and non-discriminatory policies is significant for large values
of rb. This is because when bad potential applicants have a greater
incentive to apply, the approver in general screens more applicants,
which results in higher congestion. Then it is more beneficial to
screen fewer applicants with low risk to reduce congestion and to
screen more applicants with high risk for security concern. This again
confirms that a discriminatory policy shows more advantage when
the tension between congestion and security risk is more intensive.
5.3. Changing the arrival rate of all potential applicants K

A higher arrival rate of all potential applicants implies more
congestion.4 First, look at the optimal discriminatory policy. In our



Fig. 3. Sensitivity analysis for rb.
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numerical example, there are proportionally fewer bad applicants of
attribute 2 than those of attribute 1. Thus, as shown in Fig. 4, when K
is sufficiently high (K > 30 in this example), in order to reduce con-
gestion, the approver tends to ignore less risky applicants of attri-
bute 2 by setting U2 = 0 and focus on screening more risky
applicants of attribute 1 by setting screening probability U1 at the
threshold level sb � 0.67. Thus, at the equilibrium, potential appli-
cants of attribute 2 apply and get approved immediately while bad
potential applicants of attribute 1 are all deterred. In addition, good
potential applicants of attribute 1 will apply with a positive submis-
sion probability which decreases as congestion (K) increases.

Second, look at the optimal non-discriminatory policy. Screen-
ing probabilities are always set high to fully deter all bad potential
applicants. Similar with the discriminatory case, there are fewer
good applicants as K increases due to increased congestion.
Fig. 4. Sensitivity a
Third, comparing the optimal discriminatory and non-discrimi-
natory policies, we can see that the difference is small when con-
gestion is low and the difference increases linearly with K when
congestion is high. The intuition is as follows. Under high conges-
tion, the approver’s payoff using a non-discriminatory policy stays
constant as K increases; the traffic for screening is composed only
by good applicants, and their aggregate demand rate is the desired
aggregate arrival rate which is determined by service capacity and
other parameters excluding K (see Eq. (10) when p̂1b ¼ p̂2b ¼ 0).
Using a discriminatory policy, since U1 = sb and U2 = 0, bad poten-
tial applicants of attribute 1 are all deterred and potential appli-
cants of attribute 2 all submit applications and are admitted
without being screened. Then the traffic for screening is composed
only by the good applicants of attribute 1, and their aggregate de-
mand rate is determined by parameters excluding K (see Eq. (10)
nalysis for K.
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when U2 = 0 and p̂1b ¼ 0). Thus using a discriminatory policy, a
payoff to the approver is composed by the total reward from
admitting good applicants of attribute 1 which is a constant and
the total reward net of penalty from admitting applicants of attri-
bute 2 which is linearly increasing with K. Therefore, as K in-
creases, a discriminatory policy shows more advantage, which
linearly increases.

6. Extensions of our model

In this section, we extend our model to the following situations:
(1) screening is imperfect, i.e., there exist errors that good appli-
cants are identified as bad and bad applicants are identified as
good (subsection 6.1). (2) The approver considers that some pro-
portion of good applicants may withdraw their applications before
the approval/rejection decision, and this proportion depends on
the waiting time (subsection 6.2). (3) Bad potential applicants
may factor waiting costs into their submission decisions (subsec-
tion 6.3).

6.1. Imperfect screening

In this subsection we study imperfect screening. In particular,
we let eg denote the error probability that good applicants are
identified as bad and let eb denote the error probability that bad
applicants are identified as good. Then the approver’s objective
function (1) becomes:

max
U

JðUÞ ¼ ½k1gð1� egU1Þ þ k2gð1� egU2Þ�R� ½ð1� ð1� ebÞU1Þk1b

þ ð1� ð1� ebÞU2Þk2b�C; ð12Þ

where the approver gets the reward R from each approved good
applicant and gets the penalty C from each approved bad applicant.
The potential applicant’s objective function (5) becomes:

max
pth

uthðU;pÞ ¼

ptg ½ð1� egUtÞrg �UtcwWðU;pÞ�
if h ¼ g;

ptb½ð1� ð1� ebÞUtÞrb þ ð1� ebÞUtð�cbÞ�
if h ¼ b:

8>>><>>>: ð13Þ
6.1.1. Bad potential applicants’ best responses
With imperfect screening, Proposition 1 becomes:

Proposition 5. Bad potential applicants’ best responses are given by:
p̂tbðUtÞ ¼
1; Ut < s0b ¼

rb
ð1�ebÞðcbþrbÞ

0; Ut P s0b ¼
rb

ð1�ebÞðcbþrbÞ

(
for t ¼ 1;2: ð14Þ
Remark. Note that the error probability eb plays an important role
in imperfect screening. Compared to the perfect screening model,
with imperfect screening bad potential applicants are more likely
to submit their applications as the threshold probability
s0b ¼

rb
ð1�ebÞðcbþrbÞ

is higher than that of perfect screening, sb ¼ rb
cbþrb

.

When screening precision is low (eb >
cb

cbþrb
), rb
ð1�ebÞðcbþrbÞ

> 1 and then
Table 3
The optimal non-discriminatory (imperfect) screening policy (eb >

cb
cbþrb

and p̂b ¼ 1).

Conditions

f�ðKb þKgÞ > 1 and RKg

CKb
P 1�eb

eg
; or f�ðKb þKgÞ 6 1 6 f�ðKbÞ and RKg

CKb
P max 1�eb

eg
; 1�

�

f�ðKb þKgÞ 6 1 6 f�ðKbÞ and RKg

CKb
< 1�eb

eg
and f�ðKb þKgÞP

ð1�eg Þðl�KbÞ�Kg�cw
rg

h i
Rþð1�ebÞC

ð1�ebÞCKb�eg RKg

Otherwise
all bad potential applicants submit their applications no matter
what the screening probability is. So in order to deter some bad
potential applicants, the error probability eb must be controlled
within ½0; cb

cbþrb
�.
6.1.2. Good potential applicants’ best responses
According to the updated utility functions defined in (13), sim-

ilarly as the perfect screening case, we derive the desired aggregate
arrival rate of screened good potential applicants:bK1g ¼ l�U1p̂1bpaK�U2p̂2bð1� pÞbK� U1cw

ð1� egU1Þrg
ð15Þ

and

bK2g ¼ l�U1p̂1bpaK�U2p̂2bð1� pÞbK� U2cw

ð1� egU2Þrg
: ð16Þ

Then we obtain the following proposition about the good potential
applicants’ best responses.

Proposition 6. Based on the updated expression for bK1g and bK2g

specified in Eqs. (15) and (16), Proposition 2 still holds for the model of
imperfect screening.
Remark. Note that although under perfect screening and imper-
fect screening, the good potential applicants’ best responses have
the same structure, the screened aggregate demand rates bK1g andbK2g are different. Due to the screening error, bad potential appli-
cants are more likely to apply while good potential applicants
are less likely to apply. So good potential applicants’ submission
probabilities are smaller than those under perfect screening.
6.1.3. The non-discriminatory screening policy
In the case of imperfect screening, the structure of the optimal

non-discriminatory screening policy is more complex due to the
impact of screening errors. To be concise, we denote A , leg > 0,

B, cw
rg
> 0 and define f�ðyÞ , ðyþAþBÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyþAþBÞ2�4Ay
p

2eg y .

Proposition 7. The approver’s optimal non-discriminatory screening
strategy U⁄ when screening precision is low (eb >

cb
cbþrb

) is specified in

Table 3, in which case all bad potential applicants submit their
applications (p̂b ¼ 1). The approver’s optimal non-discriminatory
screening strategy U⁄ when screening precision is high (eb 6

cb
cbþrb

) is

specified in Table 4, where under certain conditions, bad potential
applicants may choose not to submit their applications (p̂b ¼ 0).
Remark. When eb >
cb

cbþrb
(Table 3), the optimal non-discrimina-

tory screening probability can only take one of these three values:
0, f�(Kb + Kg) 2 (0,1), or 1. Different from perfect screening, U⁄ can
be zero if errors are high (small 1�eb

eg
), or the potential reward from

good applicants is large relative to the potential penalty from bad

applicants (high RKg

CKb
). All bad potential applicants submit their

applications, i.e., p̂b ¼ 1, because they believe they are very likely
to pass screening by error.
U⁄

1�eb
ð1�eg Þðl�KbÞ=Kgþ cw

rgKg

�
; or f�ðKbÞ < 1 and RKg

CKb
P 1�eb

eg

0

Kb

; or f�ðKbÞ < 1 and f�ðKb þKgÞP ð1�ebÞCKb�RKg

ð1�ebÞCKb�eg RKg

f�(Kb + Kg)

1



Table 4
The optimal non-discriminatory (imperfect) screening policy eb 6

cb
cbþrb

� �
.

Conditions U⁄ Notes

0 < s0b 6 f�ðKb þKgÞ and RKg

CKb
P 1

eg s0
b
; or f�ðKb þKgÞ < s0b 6 f�ðKgÞ and RKg

CKb
P max 1�eb

eg
; 1

eg s0
b

n o
; or f�ðKgÞ < s0b 6

l
legþcw

rg

and RKg

CKb
P max 1�eb

eg
;

Kg

Kg� l
s0
b
þlegþcw

rg

( )
; or l

legþcw
rg

< s0b 6 1 and RKg

CKb
P maxf1�eb

eg
;1g

0 p̂b ¼ 1

f�ðKgÞ < s0b 6
l

legþcw
rg

and RKg

CKb
< 1�eb

eg
and f�ðKb þKgÞP

CKbþð
l
s0
b
�leg�cw

rg
�Kg ÞR

ð1�ebÞCKb�eg RKg
; or l

legþcw
rg
< s0b 6 1 and f�ðKb þKgÞP CKb�RKg

ð1�ebÞCKb�eg RKg

f�(Kb + Kg) p̂b ¼ 1

Otherwise s0b p̂b ¼ 0

Fig. 5. Sensitivity analysis for eb.
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When eb 6
cb

cbþrb
(Table 4), the optimal non-discriminatory

screening probability can only take one of these three values: 0,
f�ðKb þKgÞ 2 ð0; s0bÞ, or s0b. Again, different from perfect screening,

U⁄ can be zero if errors are high (small 1�eb
eg

, large egs0b), or the

potential reward from good applicants is large relative to the
potential penalty from bad applicants (high RKg

CKb
). Note that s0b is the

threshold screening probability that can deter all bad applicants.
Thus when U� ¼ s0b ¼

rb
ð1�ebÞðcbþrbÞ, none of the bad potential appli-

cants submit their applications, i.e., p̂b ¼ 0.

As a special case of this proposition, RKg < CKb, i.e., the loss
from admitting all the bad applicants is higher than the benefit of
admitting all the good applicants, and eg + eb < 1, i.e., the screening

is above a certain precision level. Then RKg

CKb
< 1�eb

eg
and thus, the

optimal screening probability is always above zero. This result
implies that screening becomes necessary if the aggregate risk
from attackers is higher than the aggregate benefit from good
applicants and the overall screening error is limited within a
certain range.
6.1.4. Changing error probabilities
In this subsection, we illustrate the impact of screening

precision numerically. Fig. 5 shows the impact of changing eb, the
probability that bad applicants are identified as good.5 Interest-
ingly, we observe non-monotonicity in this case. In particular, for
5 To separate the impacts of eg and eb, we assume eg = 0 in this case.
the discriminatory policy, when 0 < eb 6
cb

cbþrb
� 0:33, as eb increases,

the approver increases screening probabilities in order to make up
for the losses due to wrong classification. When 0.33 < eb 6 0.5, the
approver already screens all applicants and high congestion has
deterred all the good potential applicants. However, bad potential
applicants still submit their applications because they hope to be
misclassified as good applicants. When 0.5 < eb 6 0.95, screening
cannot function well to deter or detect bad applicants, and it can
only increase congestion. So the approver decreases the screening
probabilities in order to lower congestion and attract good appli-
cants. When eb approaches 1, the screening probabilities approaches
0, because screening becomes useless. We observe similar patterns
in the case of the non-discriminatory policy. Intuitively, the ap-
prover’s payoff using either a discriminatory policy or a non-discrim-
inatory policy decreases in eb. In addition, a discriminatory policy
shows more advantage when eb is low. As eb increases, screening
in general becomes ineffective and thus the benefit of using a dis-
criminatory policy decreases.

Fig. 6 shows the impact of changing eg, the error probability that
good applicants are identified as bad.6 Since the approver’s strategy,
either discriminatory or non-discriminatory, does not change with eg,
the submission probabilities of bad potential applicants do not
change in eg. Then eg only influences the submission intention of
the good potential applicants; their submission probability decreases
slowly as eg increases. As a result, the benefit of using a discrimina-
tory policy does not vary much as eg increases.
6 To separate the impacts of eg and eb, we assume eb = 0 in this case.
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X. Wang, J. Zhuang / European Journal of Operational Research 212 (2011) 100–111 109
6.2. Non-zero abandon rate for good applicants

Now we study the scenario that good applicants could abandon
the queue due to long waiting time. For example, in the visa con-
text, after months of waiting, good applicants could give up and
go elsewhere. This will change the objective function of the ap-
prover as the approver would optimally invest the screening effort
expecting some approved applicants might not be available to
come. To model this scenario, we define the abandon rate, A(W),
as the percentage of good applicants who abandon the queue be-
fore the screening process ends. A(W) 2 (0,1] is a non-decreasing
function of the expected waiting time W. Thus, the approver’s
objective function (1) becomes:
Fig. 7. Sensitivity
JðUÞ ¼ ½1� AðWÞ�ðk1g þ k2gÞR� ½ð1�U1Þk1b

þ ð1�U2Þk2b�C: ð17Þ

In our numerical experiments, we use a specific functional
form, A(W) = 1 � exp(�c ⁄W), where c P 0 measures the good
applicants’ intention to abandon the queue. When c = 0, we
have the same results as presented in previous sections. As
shown in Fig. 7, for both discriminatory and non-discriminatory
policies, when c increases, good applicants are more sensitive to
congestion and thus the approver gets a lower reward from
the good applicants who stay until screening ends. To alleviate
congestion, the approver increases screening probabilities to
deter all of the bad potential applicants and some of the good
analysis for c.
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potential applicants. As a result, the benefit of using a discrim-
inatory policy decreases in c until it approaches zero when c
approaches infinity.

6.3. Non-zero waiting costs for bad applicants

In this subsection, we assume bad applicants have non-zero
waiting costs in the screening process. In particular, the bad poten-
tial applicant’s expected utility in Eq. (4) becomes:

utbðU;pÞ ¼ ptb½Utð�cbÞ þ ð1�UtÞrb �UtbwWðU;pÞ�;
for t 2 f1;2g; ð18Þ

where bw is the bad applicant’s cost per unit of waiting time and
when bw = 0, we have the baseline results same as presented in pre-
vious sections. From Fig. 8, we have the following observations. The
impact of increasing bw is similar to that of decreasing the threshold
screening probability sb, because the more sensitive to congestion,
the less likely bad potential applicants submit their applications.
For example, in the case of the discriminatory policy, when
0 < bw < 1, although the screening probability U1 is very low, bad
potential applicants of attribute 1 are deterred due to their sensitiv-
ity to congestion. When 1 6 bw < 2.5, as bw increases, although the
screening probability U2 decreases, bad potential applicants of
attribute 2 are deterred because a higher bw implies a lower thresh-
old deterring all bad applicants. When bw P 2.5, bad potential
applicants of both attributes are deterred due to high waiting costs.
In the case of the non-discriminatory policy, the optimal screening
probability is always set at the threshold to deter bad applicants
and thus we see clearly this threshold (the optimal screening prob-
ability) is non-increasing in bw. Note that when bw P 1.8, the opti-
mal screening probability is constantly at a low value. This is
because all good applicants submit their applications, all bad one
are deterred, and the approver’s payoff already reaches its upper
bound. So the approver has no incentive to further decrease the
screening probability. Finally, comparing the discriminatory and
non-discriminatory policies, we observe that the benefit of using a
discriminatory policy is large when bw is small, and it is very small
when bw is large. This again indicates that a discriminatory policy
shows more advantage when the approver has more difficulties in
balancing congestion and security risk.
Fig. 8. Sensitivity a
7. Conclusion and future research directions

In this paper we study the approver’s optimal screening policies
facing strategic potential applicants with private information. We
provide analytical solutions for the optimal non-discriminatory
screening policy and numerical illustrations for both the discrimi-
natory and non-discriminatory policies. We find that although the
optimal discriminatory screening policy is always better than the
optimal non-discriminatory policy, the benefit of using a discrimi-
natory screening policy is not significant when the tension
between congestion and security risk is not intensive. These situa-
tions include: congestion is low (total potential arrival rate is low,
or the service rate is high), or the approver’s reward from admit-
ting a good applicant (or penalty from admitting a bad applicant)
is very high or very low, or the bad potential applicant has a low
incentive to apply (low reward if passed, or high penalty if caught,
or high cost per unit of waiting time), or the screening error is high.
In those cases, a non-discriminatory policy might be more appro-
priate in practice.

For future research, more elaborate decision models could be
developed. First, this paper assumes that the parameters of the
models are common knowledge, as most game-theoretic models
do (Mas-Colel et al., 1995). However, in practice the approver
and potential applicants may not know the system parameters,
and thus a model with information would be an interesting direc-
tion. Second, this paper assumes that different types of screened
applicants join a single queue, while alternatively, in the screening
process different resources (multiple servers) could be used for dif-
ferent applicants with different observable characteristics; and as a
result the waiting time performance could be different for appli-
cants with different characteristics. Third, the service rate could
be increased at a cost and thus optimization could be introduced
to minimize the total costs. Finally, in our model we do not con-
sider the fact that in some cases bad applicants of one attribute
could pretend to be of the other attribute, in order to receive lower
screening probabilities. For example, the bad applicants of attri-
bute 1 could in principle pretend to be of attribute 2 to receive zero
screening probabilities in the baseline scenario, as long as such
deception is not too costly; (see Zhuang and Bier, 2011; Zhuang
et al., 2010; Zhuang and Bier, 2010 for the role deception in
nalysis for bw.
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sequential games). In this situation, we expect that the discrimina-
tory screening policy would become less effective, which again
justifies the non-discriminatory policy.
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