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8.1 Theorem 1 in Balachandran and Schaefer (1980)

“Given Λd
i for i = 1, ..., k as in (9), then there exists a unique equilibrium aggregate arrival

rate

Λs =
k∑
i=1

λsi

and

λsi = max(min(Λd
i −

i−1∑
j=1

λsj , λ
m
i ), 0)

with the convention that
∑0

j=1 λ
s
j = 0.”

Remark: In the above theorem, k is the number of customer classes and in our paper

k = 2. λmi is the maximum possible arrival rate for class i, which corresponds with Λig in

our paper. Λd
i is the desired aggregate equilibrium arrival rate by the individual from class

i, which corresponds with Λ̂ig in our paper. In addition, Λd
i is derived by Equation (5) in

Balachandran and Schaefer (1980); the individual will enter until the cost of waiting exactly

offsets the reward due to service and the demand traffic is composed only by class i. λsi is

the stable aggregate equilibrium arrival rate for class i, which corresponds with λig in our

paper. Note that i = 1, ..., k is the ordering defined in (9) and Lemma 1 in Balachandran

and Schaefer (1980): If the reward net of the waiting cost of service time per value of time

of class i exceeds that of class i + 1, then Λd
i > Λd

i+1. In our paper, when 0 < Φ1 < Φ2,
rg−Φ1cw/µ

Φ1cw
> rg−Φ2cw/µ

Φ2cw
. Thus attributes 1 and 2 in our paper correspond with classes 1 and

2 respectively in the above theorem, and in addition Λ̂1g > Λ̂2g in our paper.

8.2 Proof to Proposition 1

The proof follows trivially from the optimization problem (5) for θ = b.

8.3 Proof to Proposition 2

(i) When Φ1 = 0, applicants of attribute 1 will not experience screening or waiting, and their

utilities are always positive. So potential applicants of attribute 1 will apply with probability

1. Similar analysis applies when Φ2 = 0.

(ii.a) When Φ1 < Φ2, recall Λ̂1g and Λ̂2g are the maximum traffic of good applicants for

screening defined in Equations (10) and (11), by setting the traffic from applicants of the

other attribute as zero and then solving utg(Φ,p) = 0, t = 1, 2 respectively. Note that

Λ̂1g > Λ̂2g when Φ1 < Φ2. Using Theorem 1 in Balachandran and Schaefer (1980), there
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exists a unique equilibrium aggregate traffic rate for screening λ1g + λ2g, where

λ1g = max(min(Λ̂1g,Φ1Λ1g), 0)

is the equilibrium aggregate arrival rate of the screened good applicants with attribute 1,

and

λ2g = max(min(Λ̂2g − λ1g,Φ2Λ2g), 0)

is the equilibrium aggregate arrival rate of the screened good applicants with attribute 2.

Thus, good potential applicants’ best response strategies satisfy:

p̂1g =
λ1g

Φ1Λ1g

=
1

Φ1Λ1g

max(min(Λ̂1g,Φ1Λ1g), 0)

and

p̂2g =
λ2g

Φ2Λ2g

=
1

Φ2Λ2g

max(min(Λ̂2g − p1gΦ1Λ1g,Φ2Λ2g), 0)

(ii.b) The proof is analogues to the proof to (ii.a) above.

(iii) When Φ1 = Φ2 = Φ, then p̂1b = p̂2b
.
= p̂b, we obtain

Λ̂1g = Λ̂2g = µ− Φp̂bΛb −
Φcw
rg

.
= Λ̂g.

and at the equilibrium, the utility for good applicants with attribute 1 is the same with the

utility for good applicants with attribute 2. If Λ̂g > Φ(Λ1g +Λ2g) = ΦΛg, then p̂1g = p̂2g = 1,

where good applicants have positive utilities. If Λ̂g < 0, then p̂1g = p̂2g = 0, where good

applicants have negative utilities. If 0 ≤ Λ̂g ≤ Φ(Λ1g + Λ2g) = ΦΛg, then p̂1g = p̂2g ∈ [0, 1]

and satisfy p̂1gΦΛ1g + p̂2gΦΛ2g = Λ̂g. Thus, we obtain that p̂1g = p̂2g =
bΛg

Φ(Λ1g+Λ2g)
=

bΛg
ΦΛg

,

where good applicants have zero utility.

8.4 Proof to Proposition 3

According to Proposition 1, when the screening probability is larger than or equal to sb,

none of bad potential applicants submit applications. As a result, the approver will never

get a strictly better payoff by performing a screening probability strictly larger than sb.

Recall that we assume in Section 2.1 that when the approver is indifferent between different

levels of screening probabilities, she will choose the lowest level. Therefore, here the optimal

non-discriminatory screening probability must be either sb, or some value in the interval

[0, sb).

1. When Φ = sb, then p̂1b = p̂2b = 0, there are no bad applicants. Then the traffic for

screening is composed only by good applicants. Using Proposition 2(iii) and Equations

27



(10-11), we obtain Λ̂g = Λ̂1g = Λ̂2g = µ − sbcw
rg

, and the demand rate of the screened

good applicants is max(0,min(Λ̂g, sbΛg)). Divided by Φ = sb, the demand rate of the

good applicants is max(0,min(
bΛg
sb
,Λg)). Then the approver’s objective value is:

Rmax(0,min(
µ

sb
− cw
rg
,Λg)).

2. When Φ ∈ [0, sb), then p̂1b = p̂2b = 1, all bad potential applicants are submitting.

Using Proposition 2(iii) and Equations (10-11), we obtain Λ̂g = µ− ΦΛb − Φcw
rg

. Then

the demand rate of the screened good applicants is max(0,min(Λ̂g,ΦΛg)). Divided

by Φ, the demand rate of the good applicants is max(0,min(
bΛg
Φ
,Λg)).

8 The optimal

strategy is to solve:

max
Φ∈[0,sb)

Rmax(0,min(
µ

Φ
− Λb −

cw
rg
,Λg))− C(1− Φ)Λb

Now we rewrite the nondiscriminatory optimization problem. Let

J1(Φ) = Rmax(0,min(
µ

Φ
− cw
rg
,Λg))

J2(Φ) = Rmax(0,min(
µ

Φ
− Λb −

cw
rg
,Λg)) + CΛbΦ− CΛb

and

J(Φ) =

{
J1(Φ), Φ = sb

J2(Φ), 0 ≤ Φ < sb

Thus, the optimal non-discriminatory strategy is to solve

max
0≤Φ≤sb

J(Φ)

Note that for a given value of Φ ∈ [0, 1], we have

J1(Φ) ≥ J2(Φ) (19)

Then let J∗ = max0≤Φ≤sb J(Φ), J∗1 = J1(sb), and J∗2 = sup0≤Φ<sb
J2(Φ). (We use “sup”

because J2(Φ) might not obtain its maximum in [0, sb).) We rewrite J2(Φ) as a piece-wise

linear function:

J2(Φ) =


RΛg + CΛbΦ− CΛb, Φ ≤ µ/(Λg + Λb + cw

rg
) (i)

Rµ
Φ
−RΛb −R cw

rg
+ CΛbΦ− CΛb, µ/(Λg + Λb + cw

rg
) < Φ ≤ µ/(Λb + cw

rg
) (ii)

CΛbΦ− CΛb, Φ > µ/(Λb + cw
rg

) (iii)
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Table 5: Additional Notations

Notation Explanation

x1 µ/(Λg + Λb + cw
rg

)

x2 µ/(Λb + cw
rg

)

x3 µ/(Λg + cw
rg

)

x4 µ rg
cw

x5

√
Rµ
CΛb

x6 1− RΛg
CΛb

x7
Rµ

RΛg+CΛb(x1−1)+R cw
rg

Table 5 provides notations xi, i = 1, ..., 7 that are used in this proof. Most of them

represent the intersection points.

We first calculate for J∗1 using the intersection points specified in Table 5:

J∗1 = J1(sb) =


RΛg, sb ≤ x3

R( µ
sb
− cw

rg
), x3 < sb ≤ x4

0, sb > x4

(20)

Now we solve for J∗. Note that the first and the third pieces of J2(Φ) are both non-

decreasing in Φ. The second piece is more complex. It decreases first and then increases.

Let x5 be its minimum point. Solving the first order condition of the second piece of J2(Φ):
Rµ
Φ

+ CΛbΦ − RΛb − R cw
rg
− CΛb, we obtain x5 =

√
Rµ
CΛb

. Thus we have the following three

cases.

1. x5 ≤ x1. Then the second piece of J2(Φ) is non-decreasing in Φ, too. Thus,

J∗2 = J2(sb)

Due to Inequality (19), we obtain

J2(sb) ≤ J1(sb)

In addition, from the result (20), we have

J∗2 ≤ J∗1

Thus, in this case,

J∗ = J∗1 =


RΛg, sb ≤ x3

R( µ
sb
− cw

rg
), x3 < sb ≤ x4

0, sb > x4

(21)

and Φ∗ = sb.

8Note that the screening probability might be zero here. In that case, if Λ̂g is positive, then the demand
rate is Λg; else if Λ̂g is negative, the demand rate is zero.
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2. sb ≤ x1 < x5. Then [0, sb) is the first piece of J2(Φ). This piece is non-decreasing in

Φ. Thus we have

J∗2 = J2(sb)

Due to Inequality (19), we obtain

J2(sb) ≤ J1(sb)

From the result (20), we have

J∗2 ≤ J∗1

Note that sb ≤ x1 < x3 < x4. Due to (21), we have

J∗ = J∗1 = RΛg and Φ∗ = sb.

3. x5 > x1 and sb > x1. Then J2(Φ) is non-decreasing in [0, x1]. If sb ≤ x5, J2(Φ) is

decreasing in [x1, sb). If sb > x5, J2(Φ) is non-increasing in [x1, x5] and non-decreasing

in [x5, sb). Then,

J∗2 = max(J2(x1), J2(sb))

Since J2(sb) ≤ J1(sb) = J∗1 , we only need to compare the values of J2(x1) and J∗1 . Note

that J∗1 ≥ 0. So we only need to compare the values of J2(x1) and J∗1 when J2(x1) ≥ 0.

The sufficient and necessary condition for J2(x1) ≥ 0 is

x1 ≥ 1− RΛg

CΛb

.
= x6 (because J2(x1) ≥ 0⇐⇒ RΛg + CΛb(x1 − 1) ≥ 0) (22)

Next we analyze the following three cases according to the values of J∗1 .

(a) sb ≤ x3. Then J∗1 = RΛg. Since x1 < sb ≤ 1,

J2(x1) = RΛg + CΛb(x1 − 1) < RΛg = J∗1

Thus,

J∗ = J∗1 = RΛg and Φ∗ = sb.

(b) sb > x4. Then J∗1 = 0. Due to Condition (22), we obtain:

J∗ =

{
J∗1 = 0, x1 ≤ x6,

J2(x1), x1 > x6,

and

Φ∗ =

{
sb, x1 ≤ x6,

x1, x1 > x6.
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(c) x3 < sb ≤ x4. Then J∗1 = R( µ
sb
− cw

rg
) ≥ 0. When J2(x1) ≥ 0 (or equivalently,

x1 ≥ x6),

J2(x1) > J∗1 ⇐⇒ RΛg + CΛb(x1 − 1) > R(
µ

sb
− cw
rg

)

⇐⇒sb >
Rµ

RΛg + CΛb(x1 − 1) +R cw
rg

.
= x7.

Note that when J2(x1) ≥ 0 (or equivalently, x1 ≥ x6), x7 ∈ (x3, x4], which is

because

x7 =
Rµ

J2(x1) +R cw
rg

≤ µ
cw
rg

= x4

and

x1 < 1 (because 1 > sb > x1)

=⇒ Rµ

RΛg + CΛb(x1 − 1) +R cw
rg

>
Rµ

RΛg +R cw
rg

=
µ

Λg + cw
rg

=⇒ x7 > x3.

Thus we have

J∗ =

R( µ
sb
− cw

rg
),

x1 ≤ x6,

or x1 > x6 and x3 < sb ≤ x7

J2(x1), x1 > x6 and x7 < sb ≤ x4

and

Φ∗ =

sb,
x1 ≤ x6,

or x1 > x6 and x3 < sb ≤ x7

x1, x1 > x6 and x7 < sb ≤ x4

Summarizing all the above results, we find that if and only if x7 < sb and min(1, x5) > x1 > x6,

J∗ = J2(x1)and Φ∗ = x1; otherwise, J∗ = J∗1 as defined by Equation (20), and Φ∗ = sb.

8.5 Proof to Proposition 4

The non-discriminatory optimization problem is identical to the discriminatory optimization

problem plus an additional constraint: Φ1 = Φ2 = Φ.

8.6 Proof to Proposition 5

The proof follows trivially from the optimization problem (13) for θ = b.
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8.7 Proof to Proposition 6

The proof is exactly the same as the proof to Proposition 2 based on the updated expressions

of Λ̂1g and Λ̂2g in Equations (15-16).

8.8 Proof to Proposition 7

According to Proposition 5, when the screening probability is larger than or equal to s′b, none

of bad potential applicants submit applications. In addition, the submission probability of

good potential applicants decreases as the screening probability increases. Thus as a result,

the approver will never get a strictly better payoff by performing a screening probability

strictly larger than s′b. Recall that we assume that when the approver is indifferent between

different levels of screening probabilities, she will choose the lowest level. Therefore, the

optimal non-discriminatory screening probability must be either s′b, or some value in the

interval [0, s′b). Note that the approver’s objective function under the nondiscriminatory

policy is

(1− egΦ)λgR− (1− (1− eb)Φ)λbC

1. When Φ = s′b ≤ 1, then p̂1b = p̂2b = 0, there are no bad applicants. Then the traffic for

screening is composed only of good applicants. Using Proposition 6(iii) and Equations

(15-16), we obtain Λ̂g = Λ̂1g = Λ̂2g = µ− s′bcw
(1−egs′b)rg

, and the demand rate of the screened

good applicants is max(0,min(Λ̂g, s
′
bΛg)). Divided by Φ = s′b, the demand rate of the

good applicants is max(0,min(
bΛg
s′b
,Λg)). Then the approver’s objective value is:

(1− egs′b) max(0,min(
µ

s′b
− cw

(1− egs′b)rg
,Λg))R.

2. When Φ ∈ [0, s′b), then p̂1b = p̂2b = 1, all bad potential applicants are submit-

ting their applications. Using Proposition 2(iii) and Equations (10-11), we obtain

Λ̂g = µ − ΦΛb − Φcw
(1−egΦ)rg

. Then the demand rate of the screened good applicants

is max(0,min(Λ̂g,ΦΛg)). Divided by Φ, the demand rate of the good applicants is

max(0,min(
bΛg
Φ
,Λg)).

9 The optimal strategy is to solve:

max
Φ∈[0,s′b)

(1− egΦ) max(0,min(
µ

Φ
− Λb −

cw
(1− egΦ)rg

,Λg))R− (1− (1− eb)Φ)ΛbC

9Note that the screening probability might be zero here. In that case, Λ̂g = µ > 0, then the demand rate
is Λg.
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Now we rewrite the nondiscriminatory optimization problem. Let

J1(Φ) = (1− egΦ)Rmax(0,min(
µ

Φ
− cw

(1− egΦ)rg
,Λg))

J2(Φ) = (1− egΦ)Rmax(0,min(
µ

Φ
− Λb −

cw
(1− egΦ)rg

,Λg)) + (1− eb)CΛbΦ− CΛb

and

J(Φ) =

{
J1(Φ), Φ = s′b
J2(Φ), 0 ≤ Φ < s′b

Thus the optimal non-discriminatory strategy is to solve

max
0≤Φ≤1

J(Φ)

Note that for a given value of Φ ∈ [0, 1], we have

J1(Φ) ≥ J2(Φ) (23)

Before analyzing the structure of the objective functions, we first show properties of some

useful functions. We denote A , µeg > 0, B , cw
rg
> 0, f+(y) ,

(y+A+B)+
√

(y+A+B)2−4Ay

2egy
,

and f−(y) ,
(y+A+B)−

√
(y+A+B)2−4Ay

2egy
. Then when y > 0,

df+(y)

dy
=

1

2eg
[−A+B

y2
+

1

y2
(

(y + A+B)− 2A√
(y + A+B)2 − 4Ay

y −
√

(y + A+B)2 − 4Ay)]

=
1

2egy2
[−A−B +

(y + A+B)y − 2Ay − (y + A+B)2 + 4Ay√
(y + A+B)2 − 4Ay

]

=
1

2egy2
[−A−B +

(A−B)y − (A+B)2√
(y + A+B)2 − 4Ay

]

df+(y)

dy
< 0⇔ −A−B +

(A−B)y − (A+B)2√
(y + A+B)2 − 4Ay

< 0

⇔ (A−B)y − (A+B)2 < (A+B)
√

(y + A+B)2 − 4Ay

If (A − B)y − (A + B)2 < 0, the above inequality obviously holds. Else if (A − B)y −
(A+B)2 ≥ 0,

(A−B)y − (A+B)2 < (A+B)
√

(y + A+B)2 − 4Ay

⇔ ((A−B)y − (A+B)2)2 < (A+B)2((y + A+B)2 − 4Ay)

⇔ −4ABy2 < 0 (which obviously holds)
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Thus df+(y)
dy

< 0 holds. Similarly, we can provedf−(y)
dy

< 0 holds.

lim
y→+∞

f+(y) =
1

2eg
lim

y→+∞

(y + A+B) +
√

(y + A+B)2 − 4Ay

y

=
1

2eg
+

1

2eg
lim

y→+∞

√
(y + A+B)2 − 4Ay

y
=

1

eg

and

lim
y→0+

f−(y) =
1

2eg
lim
y→0+

(y + A+B)−
√

(y + A+B)2 − 4Ay

y

=
1

2eg
lim
y→0+

(1− 1

2

2(y + A+B)− 4A√
(y + A+B)2 − 4Ay

) (Using l’Hospital’s rule)

=
A

A+B
· 1

eg

We obtain:

f+(y) >
1

eg
≥ 1 and f−(y) <

A

A+B
· 1

eg
, when y > 0

Summarizing the above results, we have the following lemma:

Lemma 1 For f+(y) ,
(y+A+B)+

√
(y+A+B)2−4Ay

2egy
, and f−(y) ,

(y+A+B)−
√

(y+A+B)2−4Ay

2egy
, where

A > 0 and B > 0, y > 0,

1. Both f+(y) and f−(y) are strictly decreasing in y.

2. f+(y) > 1
eg
≥ 1.

3. 0 < f−(y) < A
A+B
· 1
eg

.

Note that

µ

Φ
− Λb −

cw
(1− egΦ)rg

< Λg ⇐⇒
µ

Φ
− cw

(1− egΦ)rg
< Λb + Λg

⇐⇒ µ(1− egΦ)− cw
rg

Φ < (1− egΦ)Φ(Λb + Λg)

⇐⇒ (Λb + Λg)egΦ
2 − (Λb + Λg + µeg +

cw
rg

)Φ + µ < 0

The roots of the above inequality are

(Λb + Λg + µeg + cw
rg

)±
√

(Λb + Λg + µeg + cw
rg

)2 − 4µ(Λb + Λg)eg

2(Λb + Λg)eg
= f±(Λb + Λg).
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Due to Lemma 1 and because Φ ∈ [0, 1], we obtain that{
µ
Φ
− Λb − cw

(1−egΦ)rg
< Λg, f−(Λb + Λg) < Φ ≤ 1

µ
Φ
− Λb − cw

(1−egΦ)rg
≥ Λg, 0 ≤ Φ ≤ f−(Λb + Λg)

Similarly,

µ

Φ
− Λb −

cw
(1− egΦ)rg

< 0⇐⇒ ΛbegΦ
2 − (Λb + µeg +

cw
rg

)Φ + µ < 0

The roots of the above inequality are

(Λb + µeg + cw
rg

)±
√

(Λb + µeg + cw
rg

)2 − 4µΛbeg

2Λbeg
= f±(Λb).

Due to Lemma 1 and because Φ ∈ [0, 1], we obtain that{
µ
Φ
− Λb − cw

(1−egΦ)rg
< 0, f−(Λb) < Φ ≤ 1

µ
Φ
− Λb − cw

(1−egΦ)rg
≥ 0, 0 ≤ Φ ≤ f−(Λb)

Now we are able to rewrite J2(Φ) when Φ ∈ [0, 1] as:

J2(Φ) =


[(1− eb)CΛb − egRΛg]Φ +RΛg − CΛb, 0 ≤ Φ ≤ f−(Λb + Λg)
µR
Φ + [egRΛb + (1− eb)CΛb]Φ− ( cwrg R+ egRµ+RΛb + CΛb), f−(Λb + Λg) < Φ ≤ f−(Λb)

(1− eb)CΛbΦ− CΛb f−(Λb) < Φ ≤ 1

Obviously, when 0 ≤ Φ ≤ f−(Λb + Λg)

max
0≤Φ≤f−(Λb+Λg)

J2(Φ)

=

{
J2(0) = RΛg − CΛb, (1− eb)CΛb ≤ egRΛg
J2(f−(Λb + Λg)) = [(1− eb)CΛb − egRΛg]f−(Λb + Λg) +RΛg − CΛb, (1− eb)CΛb > egRΛg

When f−(Λb + Λg) ≤ Φ ≤ f−(Λb),
d2J2(Φ)
dΦ2 = 2µR

Φ3 > 0, which implies J2(Φ) is strictly

convex in [f−(Λb + Λg), f−(Λb)]. Therefore

max
f−(Λb+Λg)≤Φ≤f−(Λb)

J2(Φ) = max{J2(f−(Λb + Λg)), J2(f−(Λb))}.

When f−(Λb) ≤ Φ ≤ 1, J2(Φ) is increasing in Φ. So maxf−(Λb)≤Φ≤1 J2(Φ) = J2(1), from

which we can see f−(Λb) is dominated by 1.

In summary, the optimal screening probability can only take a value among {0, f−(Λb +

Λg), 1}.
Now we analyze J1(s′b) when s′b ≤ 1.
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Since

µ

s′b
− cw

(1− egs′b)rg
< Λg ⇐⇒ Λgeg(s

′
b)

2 − (Λg + µeg +
cw
rg

)s′b + µ < 0

Taking s′b as the independent variable, the roots of the above inequality are

(Λg + µeg + cw
rg

)±
√

(Λg + µeg + cw
rg

)2 − 4µΛgeg

2Λbeg
= f±(Λg).

Due to Lemma 1 and the fact s′b ≤ 1, we obtain that when f−(Λg) < s′b ≤ 1, µ
s′b
−

cw
(1−egs′b)rg

< Λg; when 0 ≤ s′b ≤ f−(Λg),
µ
s′b
− cw

(1−egs′b)rg
≥ Λg . In addition, we have

µ

s′b
− cw

(1− egs′b)rg
< 0⇐⇒ (1− egs′b)µ−

cws
′
b

rg
< 0

⇐⇒ s′b >
µ

µeg + cw
rg

Thus we rewrite J1(s′b) when s′b ≤ 1 as:

J1(sb) =


(1− egs′b)RΛg, 0 ≤ s′b ≤ f−(Λg)
µ
s′b
R− (µeg + cw

rg
)R, f−(Λg) < s′b ≤

µ
µeg+ cw

rg

0 µ
µeg+ cw

rg

< s′b ≤ 1

Next we discuss J∗ = max0≤Φ≤1 J(Φ).

Case i: when s′b > 1 (or equivalently, eb >
cb

cb+rb
), all bad potential applicants are

submitting their applications (p̂b = 1), then J∗ = max0≤Φ≤1 J2(Φ):

1. f−(Λb+Λg) > 1. Then 0 ≤ Φ < f−(Λb+Λg) always holds. So from the above analysis,

we obtain

J∗2 = max{J2(0), J2(1)}

= max{RΛg − CΛb, (1− eg)RΛg − ebCΛb}.

Therefore if RΛg
CΛb
≥ 1−eb

eg
, then Φ∗ = 0; else if RΛg

CΛb
< 1−eb

eg
, then Φ∗ = 1.

2. f−(Λb + Λg) ≤ 1 ≤ f−(Λb). Then from the above analysis, we obtain

J∗2 = max{J2(0), J2(f−(Λb + Λg)), J2(1)}

= max{RΛg − CΛb, [(1− eb)CΛb − egRΛg]f−(Λb + Λg) +RΛg − CΛb,

(1− eg)(µ− Λb)R− ebCΛb −
cw
rg
R}

36



Therefore if RΛg
CΛb
≥ 1−eb

eg
, then J∗2 = max{J2(0), J2(1)}. In this case if [Λg− (1−eg)(µ−

Λb) + cw
rg

]R ≥ (1 − eb)CΛb, Φ∗ = 0; if [Λg − (1 − eg)(µ − Λb) + cw
rg

]R < (1 − eb)CΛb,

Φ∗ = 1.

If RΛg
CΛb

< 1−eb
eg

, then J∗2 = max{J2(f−(Λb + Λg)), J2(1)}. In this case if f−(Λb + Λg) ≥
[(1−eg)(µ−Λb)−Λg− cwrg ]R+(1−eb)CΛb

(1−eb)CΛb−egRΛg
, Φ∗ = f−(Λb+Λg); if f−(Λb+Λg) <

[(1−eg)(µ−Λb)−Λg− cwrg ]R+(1−eb)CΛb

(1−eb)CΛb−egRΛg
,

Φ∗ = 1.

3. f−(Λb + Λg) < f−(Λb) < 1. Then from the above analysis, we obtain

J∗2 = max{J2(0), J2(f−(Λb + Λg)), J2(1)}

= max{RΛg − CΛb, [(1− eb)CΛb − egRΛg]f−(Λb + Λg) +RΛg − CΛb,−ebCΛb}

If RΛg
CΛb
≥ 1−eb

eg
, then J∗2 = max{J2(0), J2(1)}. In this case since RΛg

CΛb
≥ 1−eb

eg
≥ 1 − eb,

J2(0) ≥ J2(1) and then Φ∗ = 0.

If RΛg
CΛb

< 1−eb
eg

, then J∗2 = max{J2(f−(Λb + Λg)), J2(1)}. In this case if f−(Λb + Λg) ≥
(1−eb)CΛb−RΛg

(1−eb)CΛb−egRΛg
, Φ∗ = f−(Λb + Λg); else if f−(Λb + Λg) <

(1−eb)CΛb−RΛg
(1−eb)CΛb−egRΛg

, Φ∗ = 1.

Case ii: when s′b ≤ 1 (or equivalently, eb ≤ cb
cb+rb

), J∗ = max{J1(s′b), max0≤Φ≤sb J2(Φ)}.
Note that ∀s′b ∈ (0, 1], we have J2(s′b) < J1(s′b) (due to the inequality (23)). Then we obtain:

J∗(Φ) =

{
max{J2(0), J1(s′b)} 0 < s′b ≤ f−(Λb + Λg)

max{J2(0), J2(f−(Λb + Λg)), J1(s′b)}, f−(Λb + Λg) < s′b ≤ 1

Case ii has the following subcases.

1. If 0 < s′b ≤ f−(Λb + Λg)(< f−(Λg)), J2(0) = RΛg − CΛb and J1(s′b) = (1− egs′b)RΛg.

Then when RΛg
CΛb
≥ 1

egs′b
, Φ∗ = 0; when RΛg

CΛb
< 1

egs′b
, Φ∗ = s′b.

2. If f−(Λb + Λg) < s′b ≤ 1, J∗(Φ) = max{J2(0), J2(f−(Λb + Λg)), J1(s′b)}.
2.1. RΛg

CΛb
≥ 1−eb

eg
, then J2(0) ≥ J2(f−(Λb + Λg)) and thus J∗(Φ) = max{J2(0), J1(s′b)}

2.1.1. s′b ≤ f−(Λg), J1(s′b) = (1 − egs
′
b)RΛg, then when RΛg

CΛb
≥ 1

egs′b
, Φ∗ = 0; when

RΛg
CΛb

< 1
egs′b

, Φ∗ = s′b.

2.1.2. f−(Λg) < s′b ≤
µ

µeg+ cw
rg

, J1(s′b) = µ
s′b
R − (µeg + cw

rg
)R, then when (Λg − µ

s′b
+ µeg +

cw
rg

)R ≥ CΛb, Φ∗ = 0; when (Λg − µ
s′b

+ µeg + cw
rg

)R < CΛb, Φ∗ = s′b.

2.1.3 µ
µeg+ cw

rg

< s′b ≤ 1, J1(s′b) = 0, then when RΛg
CΛb
≥ 1, Φ∗ = 0; when RΛg

CΛb
< 1, Φ∗ = s′b.

2.2. RΛg
CΛb

< 1−eb
eg

, then J2(0) < J2(f−(Λb + Λg)) and thus J∗(Φ) = max{J2(f−(Λb +

Λg)), J1(s′b)}.
2.2.1. s′b ≤ f−(Λg), J1(s′b) = (1−egs′b)RΛg. Since f−(Λb+Λg) < s′b ≤ 1 ≤ CΛb−egs′bRΛg

(1−eb)CΛb−egRΛg
,

we obtain J2(f−(Λb + Λg)) < J1(s′b) and thus Φ∗ = s′b.
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2.2.2. f−(Λg) < s′b ≤
µ

µeg+ cw
rg

, J1(sb) = µ
s′b
R − (µeg + cw

rg
)R, then when f−(Λb + Λg) ≥

CΛb+( µ
s′
b
−µeg− cwrg −Λg)R

(1−eb)CΛb−egRΛg
, Φ∗ = f−(Λb + Λg); when f−(Λb + Λg) <

CΛb+( µ
s′
b
−µeg− cwrg −Λg)R

(1−eb)CΛb−egRΛg
, Φ∗ = s′b.

2.2.3 µ
µeg+ cw

rg

< s′b ≤ 1, J1(s′b) = 0, then when f−(Λb + Λg) ≥ CΛb−RΛg
(1−eb)CΛb−egRΛg

, Φ∗ =

f−(Λb + Λg); when f−(Λb + Λg) <
CΛb−RΛg

(1−eb)CΛb−egRΛg
, Φ∗ = s′b.
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