8 Online Supplementary Materials—Appendix
8.1 Theorem 1 in Balachandran and Schaefer (1980)

“Given A? for i = 1,....k as in (9), then there exists a unique equilibrium aggregate arrival

rate i
A=
i=1
and
i1
Af = max(min(A{ — Z A% A1), 0)
j=1

with the convention that Z?zl A5 =07

Remark: In the above theorem, k is the number of customer classes and in our paper
k = 2. A" is the maximum possible arrival rate for class ¢, which corresponds with A;, in
our paper. A¢ is the desired aggregate equilibrium arrival rate by the individual from class
1, which corresponds with //iig in our paper. In addition, A¢ is derived by Equation (5) in
Balachandran and Schaefer (1980); the individual will enter until the cost of waiting exactly
offsets the reward due to service and the demand traffic is composed only by class 7. AJ is
the stable aggregate equilibrium arrival rate for class ¢, which corresponds with A;, in our
paper. Note that i = 1,...,k is the ordering defined in (9) and Lemma 1 in Balachandran
and Schaefer (1980): If the reward net of the waiting cost of service time per value of time

of class i exceeds that of class i + 1, then A¢ > A? . In our paper, when 0 < ®; < s,

rg—Picw/p > rg—Pocw/p
Dicy Doy

2 respectively in the above theorem, and in addition /A\lg > Kgg in our paper.

. Thus attributes 1 and 2 in our paper correspond with classes 1 and

8.2 Proof to Proposition 1

The proof follows trivially from the optimization problem (5) for § = b.

8.3 Proof to Proposition 2

(i) When ®; = 0, applicants of attribute 1 will not experience screening or waiting, and their
utilities are always positive. So potential applicants of attribute 1 will apply with probability
1. Similar analysis applies when &5 = 0.

(il.a) When ®; < @, recall 7\\19 and Kzg are the maximum traffic of good applicants for
screening defined in Equations (10) and (11), by setting the traffic from applicants of the
other attribute as zero and then solving u;,(®,p) = 0, t = 1,2 respectively. Note that
/AXlg > /Ang when ®; < ®5. Using Theorem 1 in Balachandran and Schaefer (1980), there
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exists a unique equilibrium aggregate traffic rate for screening A;, + Aoy, where
Ag = max(min(//ilg, ®1Aq,),0)

is the equilibrium aggregate arrival rate of the screened good applicants with attribute 1,
and
Aoy = max(min(Ag; — A1y, P2Asy),0)

is the equilibrium aggregate arrival rate of the screened good applicants with attribute 2.

Thus, good potential applicants’ best response strategies satisfy:

. )\1 1 N
plg = (I)IA/\glg = (I)lAlg max(mm(Alg, q)lAlg)a O)
and \ 1
Pog = —28_ — max(min(Agy — p1,P1A 1y, Payy),0)

q)QAQg B ¢2A29
(ii.b) The proof is analogues to the proof to (ii.a) above.

(iii)) When ®; = &y = &, then py, = poyp = Py, we obtain

~ ~ R be, .~
Alg = Agg = U — q)pbAb - = Ag.
Ty
and at the equilibrium, the utility for good applicants with attribute 1 is the same with the
utility for good applicants with attribute 2. If Kg > O(Ag+Agy) = DA, then pi, = poy = 1,
where good applicants have positive utilities. If Kg < 0, then p1y; = poy = 0, where good

applicants have negative utilities. If 0 < Kg < @(Agy + Ayy) = PA, then py, = po, € [0, 1]
Ay _ A

and satisfy pi1,®A1y + Pog PNy, = /A\g. Thus, we obtain that p;, = pey, = B, Ry — A

where good applicants have zero utility.

8.4 Proof to Proposition 3

According to Proposition 1, when the screening probability is larger than or equal to sy,
none of bad potential applicants submit applications. As a result, the approver will never
get a strictly better payoff by performing a screening probability strictly larger than s,.
Recall that we assume in Section 2.1 that when the approver is indifferent between different
levels of screening probabilities, she will choose the lowest level. Therefore, here the optimal

non-discriminatory screening probability must be either s,, or some value in the interval

[0, Sb).

1. When ® = s, then py, = pg, = 0, there are no bad applicants. Then the traffic for

screening is composed only by good applicants. Using Proposition 2(iii) and Equations
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(10-11), we obtain Kg = Klg = 7\\25, = pu — 2 and the demand rate of the screened

good applicants is max(0, min(Kg, spMg)). Divided by ® = s;, the demand rate of the

good applicants is max(0, min(/;—j, A,)). Then the approver’s objective value is:

Rmax(0, min(£ — <2 A))).

Sp Tg

2. When ® € [0,s,), then py, = pop, = 1, all bad potential applicants are submitting.
Using Proposition 2(iii) and Equations (10-11), we obtain /A\g =y — ®Ay — % Then

rg

~

the demand rate of the screened good applicants is max(0, min(Ay, ®A,)). ‘Divided
by @, the demand rate of the good applicants is max(0, min(%, A,)).® The optimal
strategy is to solve:

max R max(0, min(% — Ay — c—w, Ay))—C(1—D)A,

Pe[0,55) Tq
Now we rewrite the nondiscriminatory optimization problem. Let

J1(®) = Rmax(0, min(% - i—w,Ag))
g
Cw

Jo(®) = Rmax O,minﬁ—Ab——,A + CANy® — CA
P r g

g

and

- Jl(q)), (I) = S
J((I)) B {JQ(CD), 0< d < Sy

Thus, the optimal non-discriminatory strategy is to solve

max J(P)
0<P<s,

Note that for a given value of ® € [0, 1], we have
Ji(@) = Jo(P) (19)

Then let J* = maxo<a<s, J(P), J§ = Ji(ss), and J;5 = supgcg,, J2(P). (We use “sup”
because Jo(P) might not obtain its maximum in [0, s).) We rewrite Jo(®P) as a piece-wise

linear function:

RA, + CAy® — CA,, O < pf(Ag + Ay + &) (i)
Jo(®) = B — RAy — R& 4+ CA® — Oy, g1/ (Mg + My + 22) < & < pr/ (A +22) (i)
CAb(I) — CAb, b > M/(Ab + i—Z) (111)
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Table 5: Additional Notations

’ Notation \ Explanation ‘
TR N0 W vy
| (At )
t |, + )

Tg
Ty Mo,
Ry
L5 CAy
RA
T 1-— C’Ai
T R

RA,+CR, (o1 —)+RZE

Table 5 provides notations z;,7 = 1,...,7 that are used in this proof. Most of them
represent the intersection points.

We first calculate for J; using the intersection points specified in Table 5:

RA,, sy < 23
Jik = Jl(Sb) = R(-s&b — i—j), T3 < Sp < Iy (20)
O, Sp > X4

Now we solve for J*. Note that the first and the third pieces of J5(®) are both non-
decreasing in ®. The second piece is more complex. It decreases first and then increases.
Let x5 be its minimum point. Solving the first order condition of the second piece of Jy(P):

% + CAy® — RAy — Ri—;“ — CAy, we obtain x5 = CR—/(‘b. Thus we have the following three

cases.
1. x5 < 1. Then the second piece of Jo(®) is non-decreasing in ®, too. Thus,
J3 = Ja(se)
Due to Inequality (19), we obtain
Ja(sp) < Ji(sp)

In addition, from the result (20), we have

Jy < J7
Thus, in this case,
RAg7 Sb S €3
J=J] = R(i—i—j), T3 < Sp < T4 (21)
0, Sp > T4

and ®* = s,

8Note that the screening probability might be zero here. In that case, if Kg is positive, then the demand
rate is Ag; else if A, is negative, the demand rate is zero.
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2. sy < x1 < x5. Then [0, s,) is the first piece of Jo(P). This piece is non-decreasing in
®. Thus we have
Jy = Ja(sp)

Due to Inequality (19), we obtain
Jo(sp) < Ji(sp)
From the result (20), we have
Jy < JY

Note that s, < x; < 23 < x4. Due to (21), we have

J*=J7 = RA;, and " = s,

3. x5 > x1 and s, > x1. Then Jy(®P) is non-decreasing in [0, z1]. If s, < x5, Jo(P) is
decreasing in [x1, sp). If s, > x5, Jo(P) is non-increasing in [z, 5] and non-decreasing
in [z5, ). Then,

Jy = max(Jy(x1), Jo(sp))

Since Jy(sp) < Ji(sp) = Ji, we only need to compare the values of Jy(x1) and J;. Note
that J; > 0. So we only need to compare the values of Jo(z1) and J; when Jo(z1) > 0.

The sufficient and necessary condition for Jy(x;) > 0 is

gﬁg = z6 (because Jo(r1) > 0 <= RA, + CAy(2, — 1) > 0) (22)
b

T >1—
Next we analyze the following three cases according to the values of J7.
(a) sp < x3. Then Jf = RA,. Since 27 < s, < 1,
Jo(z1) = RAy + CAy(z1 — 1) < RA, = J7

Thus,
J*=Jj = R\, and ®" = s,

(b) sp > z4. Then J; = 0. Due to Condition (22), we obtain:

J*_ Jik:()a xlgxﬁn
J2($1), x> Zg,

and

ool n < s,
1, X1 > Tg.
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(¢) 3 < s < xy. Then J; = R(£ — ‘;—’;) > 0. When Jy(z1) > 0 (or equivalently,

Sb

T > %),
« [ Cu
Jo(z1) > Jf <= RA, + CAy(z; — 1) > R(s_ _ r_)
b g
R
=g > K =

RA,+ CAy(zy — 1) + R

Note that when Jy(z1) > 0 (or equivalently, xy > w4), 7 € (x3,x4), which is

because
Ty = Ity <t = x
! Jg(azl)—FR% _Mrg 4
and
z1 < 1 (because 1 > s, > x1)
R R
. 1 - B m
RAy +CAy(xy — 1) + R~ RA;+ R A+
g g g
— I7 > T3.
Thus we have
T, < Tg,
* R(ﬁ - C_w)7 L=
J = STy or 1 > xg and x3 < s, < x7
Ja(x1), x1 > 1 and x7 < 8 < 14
and
X1 S Ze,
% Sb,
" = or x1 > xg and x3 < s, < 27

r1, T1 > xgand x7 < s, < 14

Summarizing all the above results, we find that if and only if 27 < s, and min(1, z5) > 27 > g,
J* = Jo(x1)and ®* = xy; otherwise, J* = J; as defined by Equation (20), and ®* = s,,.

8.5 Proof to Proposition 4

The non-discriminatory optimization problem is identical to the discriminatory optimization

problem plus an additional constraint: ®; = &y = ®.

8.6 Proof to Proposition 5

The proof follows trivially from the optimization problem (13) for 6 = b.
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8.7 Proof to Proposition 6

The proof is exactly the same as the proof to Proposition 2 based on the updated expressions
of /A\lg and Kgg in Equations (15-16).

8.8 Proof to Proposition 7

According to Proposition 5, when the screening probability is larger than or equal to s;, none
of bad potential applicants submit applications. In addition, the submission probability of
good potential applicants decreases as the screening probability increases. Thus as a result,
the approver will never get a strictly better payoff by performing a screening probability
strictly larger than sj. Recall that we assume that when the approver is indifferent between
different levels of screening probabilities, she will choose the lowest level. Therefore, the
optimal non-discriminatory screening probability must be either sj, or some value in the
interval [0,s)). Note that the approver’s objective function under the nondiscriminatory
policy is
(1 —e,P)NR— (1 —(1—ep)P)NC

1. When ® = s < 1, then py, = pap = 0, there are no bad applicants. Then the traffic for
screening is composed only of good applicants. Using Proposition 6(iii) and Equations
(15-16), we obtain Kg = Klg = Kgg =u __%__and the demand rate of the screened

N (I—egsy)rg?

good applicants is max(0, min(/fXg, spA\,)). Divided by ® = s;, the demand rate of the

good applicants is max(0, min(%, A,)). Then the approver’s objective value is:
b

Cw

L
(1 — GQS;)) maX(O, Inln(s—;7 — m, Ag))R

2. When & € [0,s}), then p1, = pop = 1, all bad potential applicants are submit-
ting their applications. Using Proposition 2(iii) and Equations (10-11), we obtain
/A\g = u— DA, — (1};%‘ Then the demand rate of the screened good applicants
is maX(O,miP(Ag, ®A,)). Divided by @, the demand rate of the good applicants is

-~

max(0, min(%, A,)).? The optimal strategy is to solve:

max (1 — e, ®) max(0, min(ﬁ — Ay — Cu

E0,5)) ) (1 . 69¢)Tg7Ag))R - (1 - (]. - 6b)¢)AbC

9Note that the screening probability might be zero here. In that case, Kg = p > 0, then the demand rate
is Ag.
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Now we rewrite the nondiscriminatory optimization problem. Let

(@) = (1 = e,®) R max(0, min(5 — O_ZW,A_Q»

Jo(®) = (1 — e,P) Rmax(0, min(ﬁ — Ay — Cu

® W’Ag)) + (1 — ep)CA® — OA,

and

) b =g
J(@) — Jl( )7 Sb
JQ((D), 0< d < SZ

Thus the optimal non-discriminatory strategy is to solve

max J(P)

0<d<1

Note that for a given value of ® € [0, 1], we have
Ji(P) > Jo(P) (23)

Before analyzing the structure of the objective functions, we first show properties of some

A (Y+A+B)+4/(y+A+B)2-4Ay

useful functions. We denote A £ pe, > 0, B £ i—j >0, fr(y) = 55y :
and f_(y) & WHATB)~ W HATE) 44y Py o when y >0,

2eqy

df+(y) 1. A+B 1, (y+A+B)—24
—= = —[- + - - + A+ B)2—4A
dy 269[ vy \/(3/+A+B)2—4Ayy Vi ) 2
1 [_A_B+(y+A+B)y—2Ay—(y+A—|—B)2+4Ay]
2e,1/? V{y+ A+ B)? —44y
1 A— B)y— (A+ B)?
_ 1l a_py A=By-ArB?
2eqy V{y+A+ B — 44y

@) _ o _s_py AZBy-(A+B*
dy VW + A+ B)?— 44y

& (A=By— (A+B)? <(A+B)\/(y+ A+ B)? — 44y

If (A— B)y — (A+ B)? <0, the above inequality obviously holds. Else if (A — B)y —
(A+B)* >0,

(A-B)y—(A+B)* < (A+DB)y/(y+A+B)?2—44y
& (A= By —(A+B)?*)? < (A+ B)>*((y+ A+ B)? — 4Ay)
& —4ABy® < 0 (which obviously holds)
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Thus & +( ) < 0 holds. Similarly, we can prove=—% f ( ) < 0 holds.

A+ B A+ B)2—4A
bm foly) = L g WHATB VAT B - ddy
y——+o0 269 Yy—+00 Yy
1 1 2 __
I S Vy+A+B?—44y 1
2eq  2ey y—+oo Y €q
and
1 A+ B) — A+ B)? —4A
lim f (y) = — lim w+A+B) -+ A+D) Y
y—0+ 2eq4 y—0+ Yy
1 1 2 A+ B)—4A
= — lim(1-= A+ D) ) (Using I’'Hospital’s rule)
269 y—0+ 2\/(y—|—A+B)2—4Ay
a1
A+B e
We obtain:

A
foly) > i > Land f-(y) <

Summarizing the above results, we have the following lemma:

- —, when y >0
€y

\/—, _ _
Lemma 1 For f.(y) & W2 [ (y) & LEEDNEAI
A>0and B> 0,y >0,

1. Both fi(y) and f_(y) are strictly decreasing in y.
2. f+(y) > i 2 1.

8. 0<f(y) <25 L.

A+B ey
Note that
H Cw H Cw
——A <N +—=-————<A A
o ’ (1—e,P)r, g o (1—¢e,P)ry b+ B

=l — e, @) — 2 < (1— e, 0)D(Ay + A,)

g

= (A + Ag)eg®2 — (Ay+ Ay + e, + i—w)¢>+u <0
g

The roots of the above inequality are

(Ao Ag o pey 82 &[R4 Ay + ey + 5202 — dp(Ay + Ag)e,
Z(Ab + Ag)eg

= fe(Ap +Ay).
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Due to Lemma 1 and because ® € [0, 1|, we obtain that

%—Ab—(l_ecﬁ<Ag, f,(Ab+Ag)<(I)S1
BNy — =25 > Ay, 0< O < f(A+A)

P (1—eg®@)ry — 797
Similarly,
ﬁ—Ab—c—”‘” <0 <= Ape, P — (Ay + pe +C—w)<I>+u<0
o (1 —e,P)r, g 7,

The roots of the above inequality are

(Ap + peg + i—j) + \/(Ab + peg + i—j)? — duhe,

= f1(Ay).
2Abeg fi( b)
Due to Lemma 1 and because ® € [0, 1], we obtain that
o — M~ g <0, (M) <@ <1
% - Ab - (1_§Z¢)rg Z Oa 0 S o S f—(Ab)

Now we are able to rewrite Jo(®) when ® € [0, 1] as:

[(1—e,)CAp — egRAg]<D + RA, — CAy, 0 <
Jo(®) = ¢ 4 4 [eg RA, + (1 — e,) CAp)® — (%2R +egRu+ RNy + CAy),  f-(Ap+Ag) <@ < (A
(1 —ep)CA® — CA f=(

Obviously, when 0 < & < f_ (A, + A,)

d

OS‘PS?}%/}\(H-Ag)JQ( )
J2(0) = RAg — CAy, (1 —ep)CAy < egRA,
Jo(f-(Ap+Ag)) =[(1 — ep)CAp — egRAG f-(Ap + Ay) + RAy — CAy, (1 —ep)CAy > egRA,

When f_(Ap +Ay) < & < fo(Ay), di‘l];(f) = %—f > 0, which implies Jo(®) is strictly

convex in [f_(Ay + Ay), f-(Ap)]. Therefore

B,y (@) = maxd B (A Ag)), H(F- ()}

When f_(Ay) < @ < 1, Jo(®) is increasing in ®. So maxy (a,)<a<1 Jo(P) = Jo(1), from
which we can see f_(A;) is dominated by 1.

In summary, the optimal screening probability can only take a value among {0, f— (A +

Ag), 1}

Now we analyze J;(s;) when s; < 1.
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Since

Cuw Cw
B < Ay e Ay ()P — (A + ey + )5 < 0

s, (1 —egsy)rg T'g

Taking s, as the independent variable, the roots of the above inequality are

(Ag + peg + (;_1;]) + \/(Ag + peg + %)2 —dphge,
2Ab€g

= fi(Ag>‘

Due to Lemma 1 and the fact s; < 1, we obtain that when f_(Ay) < s, < 1, & —
b
< Ag; when 0 < s, < f_(A,), & — 7=~ > A, . In addition, we have

;'LP; |

m (a- egsb)r
H Cuy , CwS),
— = < 0= (1- — <0
R AT sl
= s > S
peg + 7
Thus we rewrite .J;(s;) when s <1 as:
(1 —egsp) RA, 0< s, < f-(Ag)
JI(Sb) = éR - (H’eg + (;_Z)Ra f—(A ) < 5;; S m
0 m < Sb <1

Next we discuss J* = maxp<ap<1 J(P).

Case i: when s; > 1 (or equivalently, e, > Cb‘fﬁrb), all bad potential applicants are

submitting their applications (p, = 1), then J* = maxg<ap<i Jo(P):

1. fo(Ap+Ay) > 1. Then 0 < @ < f_(Ay+A,) always holds. So from the above analysis,
we obtain

Jo = max{J5(0), 2o(1)}
= max{RA, — CAy, (1 —e,)RA; — e, C' Ay}

Therefore if g—xl‘z > 1;;17, then ®* = 0; else if g—ﬁi < %, then &* = 1.
2. f-(Ap+A,) <1< f_(Ap). Then from the above analysis, we obtain

Jy = max{J5(0), Jo(f- (A + Ay)), J2(1)}
= maX{RAg — CAb, [(1 — €b>CAb €gRAg]f, (Ab —+ Ag) —+ RAg — CAb,
(1 —ey)(t—Ap)R — e,CAy — —R}

Ty
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Therefore if RAg > =% then J; = max{J>(0), J>(1)}. In this case if [A; — (1 —e,)(u—
Ap) + i—Z]R 2 (1 — eb)CAb, O* = 0; if [Ay — (1 —ey)(pp — Ap) + i—Z]R < (1 =€) CAy,
O* =1.

If % < lg—geb, then J5 = max{Jo(f_(Ay + Ay)), J2(1)}. In this case if f_ (Ab + A g) >
[(1—eg)(u—Ap)—Ag—T2]R+(1—ep)CAy - _ . [(1—eg)(u—Ap)—Ag— T2 ] R+(1—e5)C'Ap
(1761))0/\5719}3/\!] ’ (P = f_ <Ab+Ag)’ lf f_ (Ab+Ag> < (1- eb)CAb egRA ’

o =1.
3. fo(Apy+A,) < f-(Ay) < 1. Then from the above analysis, we obtain

Jy = max{J2(0), Jo(f-(Ap + Ay)), J2(1)}
= maX{RAg - CAb, [(1 - eb)CAb - egRAg]f, (Ab -+ Ag) -+ RAg - CA[,, —BbCAb}

A — : : A _
If gAq > 16—:”, then J; = max{.J5(0), J2(1)}. In this case since g—Ai > 1696” > 1— ey,

Jo(0) > Jg(l) and then ®* = 0.
If RAQ < =%, then J5 = max{Jo(f-(Ay +Ay)), J2(1)}. In this case if f-(Ap+Ay) >

(1 )CA FA . . (1—ep)CA .
(1763’0[\;69]%&, Q* = f_(Ap+ Ay); else if f(Ap+Ay) < = ej)bc/\,,b - R o = 1.

Case ii: when s, <1 (or equivalently, e, < %), J* = max{Ji(s},), maxo<e<s, J2(P)}.

Note that Vs; € (0, 1], we have Jy(s}) < Ji(s;) (due to the inequality (23)). Then we obtain:

Jo(a) - [malR(0). () 0 < sy < (Ao +Ay)
max{J2(0), Jo(f-(Ay + M), H(s)}, Fo(Ay+ A,) < 5 < 1

Case ii has the following subcases.
LIFO<s, < fo(Ap+Ay)(< fo(A )) (O) RA, — CA, and Ji(s;) = (1 — eys;) RA,,.
gﬁ > egls;)’ o = 0; When 9 2 < egs,, P* = ).

2. I fo(Ap+Ag) <5, < 1, JH(P) = maX{Jz( )s Jo(f- (A + Ag)), Ji(sy) }-

2.1. RAQ > = then J5(0) > Jo(f-(Ap + Ay)) and thus J* (@) = maX{Jg( ), Ji(sy)}

2.1.1 sb < f,( 0), Ji(sy) = (1 — eys;)RA,, then when gﬁlg) > - S,, ®* = 0; when
% egls,b, O =g,

2.1.2. f(Ay) < s < W, Ji(sy) = S”—,bR — (pey + i—’;’)R, then when (A, — % + peg +
i—’”)R > CNy, ©* = 0; when (A, — é + peg + CT—Z)R < CNy, O = 5.

2.1.3 e +cw < s, <1, Ji(s;) =0, then when IC%?\Z > 1, ®* = 0; when gf\i <1, ®* =g,
Tg

2.2. g/gg < 1;—:’), then J5(0) < Jo(f-(Ap + Ay)) and thus J*(®) = max{Jo(f_ (A +

Ag)), Ji(sp)}-
2.2.1. s;, < fo(Ay), Ji(s}) = (1—eysp) RA . Since f-(Ap+A,y) < s <1< (102)’302“’:17221\ ,
we obtain Jo(f_(Ay + Ay)) < Ji(s;) and thus &* = s;.
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222, f_(Ay) < s < prpre Ji(sp) = Jsi,bR — (pegy + i—j)R, then when f_(Ay + A,) >
CAb+(i7uegf%‘;ng)R . g CAH(ifuegfj—g—Ag)R
(—es)Chs—cg Ay P = f_ (Ab + Ag); when f,(Ab + Ag) < (1=ey) O,

—egRA
Ch,—RA
2.2.3 m < sy < 1, Ji(sy) = 0, then when f_(A, + A,) > (1—eb)CbAb—eZRAg’

CAy—RA, .
fo(Ap+Ay); when f_(Ay+Ay) < Teicn ey ®° = 5h

, P =s
o* =

o~
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