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Abstract

Industry is constantly pursuing faster and cheaper means for designing and manufacturlng goods and
services. The emerging field of Multidisciplinary Design Optimization (MIDO) attempts 1o simplify the design
of a large, complex system, by dividing the system into a series of smaller, simpler, and coupled subsystems.
Each subsystem can be thought of 4s a participating design group of a large scale design, An example would be
the aerodynamics division of the design of an aircraft. One goal of MDO is to analyze these subsystems
concurrently, thus speeding up the design (ime of the overall product.

In addition to decompasing a large system, the field of MDO strives to further simplify the system, using
techniques such as task scheduling and system reduction. Task scheduling seeks to find the optimum sequence
of subsystems in which to perform a sysiem analysis, so as (0 gain convergence most quickly, System reduction
secks to identify relatively weak couplings between subsystems, and then either temporarily suspend them (during
the sysiem analysis), or eliminate them allogether.

These methodologies require extensive testing, either on analylical representations of real-life syslems,
ue on the actual system ilself, prior lo implementation. Due to the complexily of these real-life systems, il is not
practical to perform methodology feasibility studies on the analytical and numerical representativns of the e
sysiem, Hence, some representative yet efficient means of determining the feasibility and robustness of MDO
methods is crucial. This thesis describes the design of a test simulator, called CASCADE (Complex Application
Simulator for the Creation of Analytical Design Equations), thal is capable of randomly generating and then
converging a complex system of analytical equations, of user-specified size. CASCADE-generated systems can
be used, for example, (o Lest the ordering and system reduction strategies that were described above, CASCADE
has been designed to operaie in a parallel compuling environment (using Parallel Virinal Machine}, as ihe field

of MDX} itself is perfecily suiled for such a setting.



Chapter 1

Introduction

The design methodology in worldwide industry is rapidly changing. United States
aircraft, avtomotive, and electronics industries, among others, are constantly searching for
ways to improve the efficiency of their design cycles to meet time and cost demands. The
traditional serial design approach is characlerized by a sequential design cycle, with respect
to the participating design groups. A design is formulated in a given design group and passed
to the next group, who uses the previous groups' output parameters as input parameters,
Because of both inefficiency and design system complexity, this approach has become
obsolete, in favor of the Concurrent Engineering approach.

Concurrent Engineering is a systematic approach to the integrated, concurrent design
ef products and their related processes, including manufacture and suppert, The interaction
of all participating engineering groups throughout the design cycle is a truly smudtidisciplinary
gffort. Many of the recently developed capabilities to address concurrent design have
stemtned from the emerging arca of Multidisciplinary Design Optimization, or MDQO. The
MDGO approach is intuitive: divide one large task into a group of smaller, interrelaled
{coupled), and more manageable tasks [16]. The large task is often referred Lo as a sysrem,
and the smaller, interrelated tasks are called subsvstems. Each subsystem contains design
variables, as well as additional unknown outputs, often referred to as behavior variabies.

These subsystem variables are collectively referred to as modules of the system. This method



was established by applying a linear decomposition method to a hierarchical {top-down)
system.

Most design cycles contain participating groups that interact lateraily. Such design
cycks are thus non-hierarchic in nature. The Global Sensitivity Equation (GSE} method was
the first approach to extend the concepts of the linear decomposition method to non-
hicrarchical systems [18,17. This method uses focal sensitivities {derivatives that are
computed within each subtask) to compute total system sensitivities.

An MDY issue that is the focus of much research today is the concept of scheduling
(or sequencing). Scheduling is a methodology that rearders the design tasks (modules) in 2
given system, to allow for maximum efficiency in the execution of the design [14]. The
cfficiency of a system can be increased if certain problem dependent parameters are
minimized, such as cost, CPU time, Jeedbacks, or cross-overs. A feedback occurs when a
system module requires information from another module that is located later in the design
sequence. A cross-over occurs when the feedbacks of two modules intersect, without any
transfer of information,

Ancther area of current research within the field of MDO is the concept of system
reduction, through coupling suspension and elimination, As explained, the decompositon of
a large system results in a series of smaller subsysiems, that are interrelated threngh
couplings. Because of the enormity of many engineering systems, there is a need to minimize
the complexities of the system, and thus the time for both design system convergence and
sensitivity analysis. It would be advantageous to find an analytical means for quantifying the

strengths of these couplings. Couplings that are found to be weak could be suspended for a



portion of the system analysis, or eliminated outright. This concept provides the foundation
for system reduction strategies.

Indusiry is primarily interested in the way that the varicus participating design groups
communicate. An efficient and natural way for design groups to pass information back and
forth is via distributed processing. The concept of distribuied processing assures that the
system design tasks are computationally distributed among the participating design groups.
In this way, distributed processing exiends the principals of MDO to a compuier network.
This meihodology allows for parallel communication between the design groups, and hence
provides greater efficiency than a sequential computing approach. A modern day approach
that is used 1o achieve distributed processing is the Parallel Virtual Machine (PYM) coding
language. PVM uses library calls and message passing to distribute tasks amongst the
individual computer hosts on the network.

It is quite clear that the field of MD(O has a great deal of poiential o provide
methodologies that can be used in industry. For this to happen, these MDO-methodologies
must be tested extensively. Researchers typically use previously-generated analytical sysiems
to test their methodologies. It woeuld be convenient for these researchers 10 possess a
simulator that is capable of generating, converging, and then further analyzing an analytical
representation of a complex engineering system. The simulater should be ropust and capable
of representing a wide range of complex systems. The simulation should likewise be arbitrary
(random), as many design scenarios are ofien presenied with issues that were initally
unpredicted. Lastly, the simulation: should be realistic, in that it shondd allow for a distributed

processing communication architecmre,



Given the above motivation, this thesis discusses the design and creation of an MDO-
type simulater of the described form, called CASCADE (Complex Application Simulator for
the Creation of Analytica) Design Equations). CASCADE can be used to generate complex
systems comprised of analytical equations, of user specified size. Thereafier, CASCADE
employs a system analysis to iteratively converge the generated system. To add realism 1o
the simulation, this process can be made 10 take place in a distributed environment, using the
PVM coding language. After the system has converged, CASCADE uses the GSE tmethod
Lo compute the total sensitivities off all culput responses, with respect o all inputs (design
variables), This sensitivity information could potentially be used to analyze coupling sirengths
for possible suspensionfelimination. CASCADE writes each converged cutput (behavior
variable) equation 10 a separate subrontine, Researchers could potentially experiment with
this sequence of subroutines to further investigaie coupling strengths, or to investigate the
sequencing issue.

Chapler 2 takes z closer look at the field of Multidisciplinary Design Optimization.
The methodotogies of the Global Sensitivity Equations, task scheduling, and coupling
suspension and elimination are investigated in greater detait,

Chapter 3 presents a background on the principals of distributed processing and
parallel computing. The coding methodology of Parallel Virtual Machine (PVM) is
investigated, as PYM is the chosen means for achieving a distributed computational

environment for this research,



Chapter 4 analyzes in detail the development and operation of CASCADE, the
application simulator that has been created by the author. The design considerations that
wentinto the creation of CASCADE are discussed.

Chapier 5 looks into the incorporation of PYM code within the framework of
CASCADE. CASCADE was initially designed to operate sequentially, on a single computer.
The principals of parallel processing were incorporaled as a final phase.

Chapter 6 presents resuits from two analytical sysiems that were created by
CASCADE. Chapter 7 analyzes these resulis, and compares and contrasts the implications
of the results on a more global level.

Chapter 8 presents concluding remarks on the accomplishments of this research, and
proposes suggestions for future work. The Appendix contains a program listing of
CASCADE, a user's manual for the entire simulater package, and two exampie system cases

that were created by using CASCADE.



Chapter 2

Multidisciplinary Design Optimization

Optimizati

The term optimize makes one think of analogous phrases such as maximize or make
the best. In fact, optimization is a concept that has significance in most of our everyday lives.
For example, in engineering we wish 1o "produce the best quality of life, using the resources
that are available” [24]. A problem ihat involves the concept of cptimization has several
impoertant parameters. The objective function is the cost function that is being extremized
(either minimized or maximized). The concept of optmizing a structure implicitly suggests
that there is some design freedom to change the structure [2]. The design variables are
changeable parameters that signify a potential for change. The constraints are limitations on
the design space. Constraints can be of numerous forms, including equality, ineguality, and

side constraints. A fypical optimization problem has the mathematical form of equation 2.1,

- Minimize FX)
Subject to gX)<0 j=1....]
hy(X) =0 k=1,..m [2.1]
and xtsxex? i=I,...n




The objective function and/or constrainis of any given optimization problem ¢ould
conceivably be a function of the design variables and/or the subsystem outputs of a nighly
coupled, decomposed system. With this general understanding of the discipline of
optimization, the specialized field of Multidisciplinary Design Optimization can be
investigated in detail.
Multidiseinli Design Optimization bac] |

United States indusiry has responded to competitive pressures that have resulted in
losses in market share due to high product development tmes, as high costs. Many
corporations are making use of the concurrent engineering approach, which causes product
developers, from the outset of design, to consider all elements of the product life cycle, from
conception through disposal. This requires constant interaction between all participating
design groups throughout the entire desipn cycle. This approach is mulidisciplinary, and

makes the traditional serial design approach, depicted in figure 2.1, obsolete [13].

fequirements fmptementati assurance engineering release

Marketing _“r)qign p| Enginecring Quality ge..| Production » Product

Figure 2.1; Traditional serial design approach

In the early 1980's, Sobieski laid the foundations for a field that is now known as
Multdisciplinary Design Optimization, or MDO. The fundamental objective of MDO is to
develop an improved design capability, while considering disciplinary interactions for
synergistic effects [3]. The underlying principle of MDO is quite simple: divide a large task,
into a sequence of smalicr, interreiated (complex or coupled) and more individually

manageable tasks [18]. In engineering optimization problems, the large task is commonly



known as a system, and the smaller, interrelated tasks are known as sibsystems. Each
subsystem contains design variable inputs, as well as additional unknown outputs {sometimes
called behavior variables), that are unique 10 that subsystem.
I ..

To accomplish the division of the sysiem, Sobieski applied a linear deonmpnsiﬁnn
method [18] for large-scalé multidisciplinary problems. This methodelogy is applicable to

hierarchic (top-down) systems, such as the one depicted in figure 2.2.

Figure 2.2: Hierarchic systerm model
In such a hierarchic system, there is a definite ordering to the execution of each module to
produce a final and exact result. The breakdown of most? complex engineering systems does
not result in a top-down system model, but rather a non-hierarchic system model, as depicied

in figure 2.3.



Figure 2.3: Non-hierarchic system model
A non-higrarchic system ¢ontains lateral couplings, ';vlﬁch essentially means that the system
has no discernable starting point. Between many of the modules in a non-hierarchic system,
there exists two-way couplings. (The output of one moduie is the input te & second module,
and Vicesversd)) Tk sysing anaidsis 16t a non-niérarchic Sysiem reaysres an wiskids guess 16
the magnitude of gacn output module, Jiearly, such'a system reguings itération 16 gain
convergence. Some decomposed sysiems exhibit traits from both hierarchi¢ and non-

hierarchic systetms, and are called hybrid-hierarchic, as seen in figure 2.4.

| NT I ) ' - ' T ST e T oW m

Figure 2.4: Hybrid-hierarchic system model

9



The Global Sensitivity Equation (GSE) method was the first to successfully extend Sobieski's
concepl of hierarchic modularity to non-hicrarchic systems, as early as 1990 [20,22,1,2].
Slobal Sensidvity Eauati

A sensitivity is defined as a change in an output value, with respect to a given input
value. System sensitivities are required to gain system improvement by prescribing a change
in the subsystem design variables. A sensitivity analysis can be a computationally lengthy {and
thus costly) procedure, and musi therefore be efficient. The Global Sensitivity Equation
(GSE) approach defings total derivatives of the culput quantities in terms of local
sensitivities. These local sensitivities are partial derivatives of each subsystem's outputs, with
respect to its inputs. For this research, local sensitivities are computed analytically. For.
complex output functions, a numerical procedure, such as finite difference methods, are
oflen required (0 attain these sensitivities.

To illustrate the mathematics of the GSE method, consider the two subsysiem
schematic seen in figure 2.5. This schematic can be thought of as an abstraction of a real-life
system. For exampie, the design of a large, multidisciplinary mechanical system, such as an
antomobile, contains interactions between numerous disciplines, sﬁch as structuras and
aerodynamics. Svbsystem A could be thought of an abstraction of the structures discipling;
subsystem B, the aerodynamics discipline. Subsysiem A has two sets of inputs: design
variables X 4, and the output {coupling) from subsysiem B, Yg . Similarly, subsystem B has

design variables Xy and the output {coupling} from subsystem A, Y 4, as its inputs.

10



YA

SUBSYSTEM A SUBSYSTEMEB

¥B

Figure 2.5: Subsystems interactions flowchart

Symbolically, this relationship is depicied as follows:

A((X,,Yp), Ya) =0
(2.2]

B((XB!YA}aYB) = 0
This expressions can be rewriten explicitly as follows:

Y, =X, Yp)
[2.3]

YB=(XB1YA)
Expanding equation [2.3) with a first order Taylor series gives:

dv, oY, &Y,dy,
dX, axX, aY,dx,

[2.4]
d¥, oY, oY, d¥,
dX; ax, oY, dx,

11



Applying the chain mle 10 equation [2.3] gives:

v, oY, dr,
dX, 9Y,dx,
[2.3)
dX, oY, dX,
Finaliy, eguations [2.4] and [2.5] can be represented as follows:
_DYATYA d¥A] [orA
_9YB 'im ﬂ i%. N 3? YR 12.6)
aYA d¥A dXB JXB

Equations [2,6] are the representation for the GSE [2].

The leftmost square matrix on the left side of equation [2.6] is known as the Glebal
Sensitivity Matrix (GSM)}, and is comprised of the couplings between interacting subsystems.
In other words, the GSM is a matrix of the pattial derivatives of all cutput equations with
respect 10 all other output equations. The dimension of this matrix is (nxn), where n is the
total number of ouiput equations in the systern. The matrix on the right hand side of the
equation is a2 matrix of partial sensitivities of all system outputs, with respect to all system
design vanables. The dimension of this matrix is (nxm), where m is the total number of
system design variables. The center matrix (the rightmost matrix on the left side of the
equation) is the desired matrix of total derivatives, These derivatives provide an indication

of how a change in one or more design variables will affect all of the outputs of the system.

12



Having computed the GSM and the right hand side matrix, the total derivatives are

computed by using LU-decomposition with numerical ¢conditioning. Before this can take

place, the components of both matrices must be scaled, or normalized [10, 3]. This is because

the magnitudes of the design variables (X) and the subsystem outputs (Y) are often of widely-

varying magnitude, For equation [2.6] above, the normalization form for the partial

derivative terms of the GSM is as follows:

] mrrd - -
UIA 'UIA . IE
—EE— T — . __T . [2?]

....................m..aYB ar ...... . ;A

nalized partial derivative is primed, on the left side of equation [2.7].

of the GSE, the unscated total derivatives are recovered as follows:

dYA d}:{r YA
dX, dx, X, (28]

en background on engineering optimization, system decomposition, and
he: design synthesis for generic non-hierarchic muliidisciplinary problems

rethodology is illustrated in figure 2.6.
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Figure 2.6: Non-hierarchic design synthesis

With a given set of design varigbles, the system outputs are initialized, which allows for an
initial system analysis of all the decomposed subsysiems. System convergence is checked
thereafter; if the system has not converged, sensitivities are computed, and fed to an
optimizer. The optimizer uses the sensitivities tc better the design by perturbing the system
design variables. This updated design is once again fed to the system analyzer. The process
repeats itself until the optimum design has converged.

The simulator program that has been created in the present research focuses on two
segmenis of this design cycle: the system analysis and the sensitivity computation. A system
ol user specifed size is constructed, and thereafter converged. Sensitivities of the converged

system of equations are then computed, by using the GSE method. This information can then

14



be used (by researchers in the MDO community) to compare and contrast ways to converge
the system more efficiently. This time savings may be achieved by system reordering (via task
sequencing), or by sysiem reduction strategies (via coupling suspension and elimination).

Desien S Matrix and Scheduli
Consider the five subsystem hybrid-hierarchic system of figure 2,7,

351

'
Y ' 1

852 5583 ™ 854

\

Figure 2.7: Five subsystem, hybrid-hierarchical interaction

835

This complex sysiem can be represented as a square Design Structure Matrix (DSM), whergin
each of the subsystems is dencted as a box, along the diagonal {23). (A more complicated
DSM could be composed, where each box along the diagonal represents each modiele [output
equation or design variable] of each and every subsystem). Figure 2.8a depicts a randomly

ordered DSM for the system of figure 2.7,

Figure 2.8a: Randomly oriented DSM

15



To understand this ﬁgure1 fully, one must compare it back ¢o figure 2.7. From figure 2.7, it

is clear that subsystem 3 requires inputs from subsystems 1,4 and 5, and transmits outputs (as

inputs) to subgysiems 4 and 5. Note the orderipe of figure_2.Ra. This_infermation_is
Lranslitea to tabfigure as follows: subsystemi@ provides informatiimvia feedforwards 10
subsystems 4 and 5, and receives feedbacks from modules 1,4 and 5. From this example, iti
is clear that feedbacks are pieces of information that are required from subsystems that are
located downstream in the solution process. An initial guess and an iterative framewoark are
hence reguired to ¢onverge a system with feedbacks.

One area of interest within the field of MDO is known as task sequencing, or
scheduling, Optimal scheduling of a systern is the result of reordering the sequence of boxes
in the DSM, se as to maximize the efficiency of the system analysis. This is accomplished
primarily by reducing the GSM feedbacks. Figure 2.8b is an illusiration of a re-ordered DSM
of the figure 2.7 system. Using this ordering strategy, the number of feedbacks has been
reduced from 3 to 3. This reduction will reduce the nummber of iterative loops required for

Sysiem convergence,

i

Figure 2.8: Reordered GSM

16



Another (although less important) objective of a task sequencer is to reduce the
number of crossovers in the DSM. A crossover occurs when one modules feedback crosses
over that of another, without exchanging information at the intersection {17, 15]. Crossovers
tend 10 obscure the convergence process in any systern that contains them. This causes
additional iteration and computational expense. The removal of ¢rossovers increases the
clarity of the convergence procedure, allowing for greater controf of the process from the
design managers standpoint. Figure 2.9a illustrates a 7 medule GSM, that contains 7

crossovers, The reordered (GSM of figure 2.9b sees the elimination of all crossovers.

Figure 2.9: 7 module GSM a) with 7 crossovers b) without crossovers
A final benefit of scheduling is to aide in identifying weak links. Once a system has
been optimally scheduled, the sensitivities of the couplings can be analyzed. Those that are
found 1o be comparatively weak conld be suspended for a select number of iterations of the

convergence procedure, or eliminated altogether.

17



Sysiem Reduction
Consider next the ¢conpled sysiem of figure 2.1{. The system is seen to have 3

subsystems, each having anywhere from 2 - 4 ouiputs each,‘ and either 2 or 3 design

variables.

Subsystem 1
wl, ©utpot - ) 21,2213
yLy3 whw
11‘ b 3!3’4
Subsysten 2 = 12y pe-l Subsysier 3
{DUIP“'- b }r} z122.23 {'D“th- = Z:l

Figure 2.10: 3 non-hierarchic subsystems
The full GSM, whereby each box is a module (design variable or output eguation) is seen in
figure 2.11. It has been optimally sequenced, sc as to minimize feedbacks, by using

CeMAID.

e -

2 3
2 4+ - a
X3 L]
531x1 &
12 ¥
52v3 []
£141 L)

5122 tu-f—r—Lar
1§17 11

21 T
S2v4 13}
s2v2 fis
Eaz1 o 15
£373 1%

11

Figure 2.11: GSM for figure 11 system
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The circles depicted in figure 2.11 represent the couplings between the various modules. At
this stage, the system designer needs to know the relative strength of all of these couplings.
This knowledge may allow for the temporary suspension, or the outright elimination of select
couplings.

Bloebaum’s method for assessing coupling strength is based on local sensitivities [3],
This method finds the numerical value ol every coupling sensitivity, using the previously
explained GSE method. These sensitivities are normalized, and then compared. Modules that
are found to have the smallest set of normalized sensitivities are considered o be weak
couplings. These couplings are then ¢onsidered for temporary suspension or outright
elimination, providing that they do not have a substantial impact further downstream. This
determination is made based on downstream coupling strengths.

Recall that many optimization problems have objective functions and constraint
functions that have outputs of complex systems as their variables. Hence, the drawback of
the local sensitivity method for identifying weak couplings is that it does not relate the local
coupling strengihs to their effect on the global problem, namely the objective function and
constraints. A coupling may have a relatively small normalized sensitivity, but may still have
a large effect on the objective function or constrainis. This coupling may therefore have g
major impact on the accuracy of the design solution.

More recently, researchers have been looking for ways 10 assess coupling strengths
based on total sensitivities. Miller and Bloebaum have developed such a method; their
analysis creates a separate coupling sirength for the objective function and cach constraint

[16]. TFhis work suggests that temporary suspension of certain couplings only occur every

19



other cycle, due (o the difficulty in predicting which constraints will be active, during any
given syslem analysis iteration. In addition, this work suggests that the criterion for the total
elimination of a coupling be based on a user defined percentage of the objective function
magniwde.
Closurg

Given the above background, it is clear that MDO is a field with a great deai of
potential for industrial implementation. It ig equally clear that the methods and theories that
have been presented must be tested extensively, using a wide range of problems. Before
discussing the simulator that has been developed in this research, a background will bhe
presented on distributed computing and paraliel processing, Both are technigues that are
imperative for the implementation and growth of the field of MDO. This background will

help Lo place the discussion of the simulater in the appropriate context.

20



Chapter 3

Parallel Processing and Distributed Computing

Background

The term parallelism denotes the possibility of executing several operations
simultaneously [5]. Parallel processing is the method of having many small tasks solve one
large problem. The origins of parallel processing can be traced back to the early 1960's,
when researchers were fascinated by the challenge of solving problems while assuming the
existence of a parallel environment. Of course, no such environment existed at the time, and
researchers had no idea how or if these pﬁncipalé could be applied to scientific problems.
This method has emerged as a key enabling technology in modern computing. The
applicability of parallel processing to MDO is readily apparent, based on the background that
has been presented.

It seems obvious that the system solution process could be rapidly accelerated by
simultaneously executing certain stages of a lengthy sequential process. However, the
- conversion of a sequential algorithm to a parallel algorithm is not a simple one. In addition,
this conversion does not usually provide the maximum attainable parallelism for a given
problem. The simple fact that there is no trivial correspondence between sequential and
parallel computing opens new horizons for scientific investigation [5].

The pés; several years have witnessed an ever—iﬁcreasing acceptance of parallel

processing. The acceptance has been facilitated by two major developments: Massively
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Parallel Processors (MPP's) and distributed computing. MPP's are the world's most powerful
type of computer. They combine thousands of CPU's (in a single cabinet) and gigabytes
worth of RAM. Distributed computing is a process whereby a set of computers connected
by a network are used collectively to solve a single large problem [9]. The method of
distributed computing has an advantage over the implementation of an MPP; that is cost.
MPP's could cost millions of dollars; in contrast, the cost in interconnecting a local set of
networked computers is minimal. Figure 3.1 illustrates the general nature of a distributed

computing environment, with two upper-level computers allocating tasks to the six lower-

level machines.
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Figure 3.1: Workstation network

ctive, distributed computing requires high communication speeds. Over the To be effe
vork speeds have increased dramatically. Among the primary advances in past 20 years, nety
technology is the standard Ethernet based network, developed in the early computer network

ses a digital signal with a bandwidth (speed) of 10 Mega-bits per second. 1980's. Ethernet 1
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More recent networking advances include the development of Asynchronous Transfer Mode,
or ATM. ATM utilizes an optical signal, and has communication rates as fast as 2500 Mega-
bits per second [12]. Though very costly, ATM would be the ideal network platform for
distributed computing, with its high-speed inter-communication rates.

Two notions that are common to most parallel processing schemes are the notions of
concurrence and message passing. Concurrence is the simultaneous participation of entities

(design groups) in the quest towards a common goal. One of the main obstacles to

ort it, and most languages and software paradigm of choice; most multiprocessors supp

systems use it.

Parallel Virtual Machine (PVM.
system uses message passing to allow The Parallel Virtual Machine (PVM)
> any of a wide variety of computer types. programmers to exploit distributed corﬁputing, usin;
n of individual computers (referred to as A key concept in PVM is that it makes a collectis
Iansparentl)‘; handles all message routing, hosts) appear as one large virrual machine. PVM
rk of (often times) incompatible computer data conversion, and task scheduling across a netwc
mple, and general. TheT user writes his or architectures [9]. The PVM computing model is si
(This is an idealization. Often times, the her application as a collection of cooperating tasks.
analogous parallel model. As previously user must break his sequential program into an
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discussed, this is not a simple undentaking. Mote information will be presented on this topic
in Chapter 5). Typically, an initiating task, commonly referred to as the master task, will
Spawn a series of sfave tasks, that are used (o accomplish all of the computational "grunt
work”. These slave tasks receive information from the master, perform their computations,
and then send the newly computed information back 1o the master task. The master task will
then gather, organize, and interpret the information received from all of the slaves, and then
make a decision accordingly (tlerminate the program, or iterate),

Tasks access PVM resources through a library of standard routines. These routines
allow for the initialization and termination of tasks across the network, as well as
communication amongst them. Most to all PYM applications contain calls to a select few

essential routines, which are lisied and defined in table 3.1:

pvmfmytid - enrolls the process into PVM, and obtains the task ID of the current Process
prafparent - obtains the task ID of the parent that spawned the current process
pymifspawn - spawns a new task

pvmfinitsend - clears the send buffer, and prepares it for sending a new message
prmfpack - packs data into the send buffer

pvinfsend - sends the packed data

puemfrecy - receives the packed data

prosfunpack - unpacks the sent data from the active message buffer

prmfexit - exits the current process from PYM

Table 3.1: Essential PVM routine calls

All PYM routines are written in the C programming language. However, these routines are

available for implementation in both FORTRAN and C programming applications. The



routine names in table 3.1 are calls to these routines from a FORTRAN application, such as
thosc that were used for the present rasearch.
Belation o MDO

The primary goal of MDQ is to efficiently divide a large engineering sysiem into
series of smaller, more tractable, yet coupled subsystems. This is called decomposition. Due
Lo their immanent, natural parallelity, decomposition methods are generalty suitable for
parallel processing. In fact, parallel processing itself can be considered as a very ganeral
decomposition approach [7].

As discussed in Chapter 2, the decomposition of a system will result in either a

hierarchic structure, or more often a non-hierarchic structure {Figure 3.2).

Figure 3.2: Hierarchically or non-hierarchically structured systems
This form of decomposition, where the variables and equaticns are decomposed, ¢an be more
specifically referred 10 as a model decomposition. The goals of a model decomposition are
to reduce problem sizes, provide a more convenient problem definition, and use specialized
solution methods within the subsystems. Similarly, the implementation of parallel processing
can be thought of a decomposition known as computational decomposition. The benefit of
a such a decomposition is primarily a reduction in computational time. Computational
decomposition tends 1o simaulate an asynchronous communication environment, whose
benefits were mentioned earlier in Chapter 3. Very often, computational decomposition is
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used in combination with model decomposition, where the independent subproblems are

solved in paralle] [7], as shown in figure 3.3,

deCom posinon pprac e

_-—'—'_-_._._._._._._._'_ _‘_‘_-_-_-_-_-_-_-_-_-_‘—'—-_._
model decomposiarss o ptorat Secampess ’
sl dectmpositon of e
SerouTe on CptunLTion medel

4 ¢

mduction of probilem uizes
more conveniend enhiem definiion

u.nﬁ of secialized wlution

Figure 3.3: Classification of the decomposition approaches

Closurg

Thus far, a background on MDOQ has been présented, and the potential for its
industrial implementation has been made clear. Moreover, the suitability of MDO techniques
for paraliel processing in a distributed computing enrvironment has been verified, Given the
theoretical background, and its appticability to a state-of-the-art computational platform, this
paper is now ready to present details on the simulator program that has been creared.
CASCADE (Complex Application Simulator for the Creation of Analytical Design Equations)
will implement the principals of MDO to build and construct an analytical design setting,
consisting of coupled equations. By using PYM, the parallelity of the created system will be

exploited through the computational distribution of its subtasks.
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Chapter 4

Complex Application Simulator for the Creation of

Analytical Design Equations (CASCADE)

Syslem ConsImction and convergence
I. Inputs

The first task of the CASCADE package ("package” of FORTRAN files and
subroutines) is 10 accept a series of user-inpuls, that will define the current program
execution. These options are answered by the user by executing a program called cascin.f.
Upon executing this program, the user is first promipted to answer a few preliminary options;
first, a seed value for the random number generator. The random number generator is used
for the many arbitrary decisions that CASCADE will make. An IMSL, Gaussian-distributed
generator is used, that returns a real value between 0 and 1. The second preliminary question
that the user iy asked is whether or not distributed computing {with the aid of PYM) will be
employed to construct and converge the system. If PVM is to be used, a slightly differant
code methodology is empleyed, and will be discussed in Chapter 5. This chapter presents the
single-machine, sequential code methodology for system analysis.

With these preliminaries, the user is asked to define the size of the system that is to
be constructed. A range of i 10 99 subsysiems is allowed, each potentially having anywhere
from 1 to 99 equations within. The reason for the maximum limit of 99 is that array

dimensioning prevented the use of numbers sufficientty larger than 99, for these two options.
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The number of subsystems is represented by a parameter called numss. The number of
equation per subsystem is represented in an array called bvperss. Based on the total number
of equations in the system, the user is told whether or not a sensitivity anatysis will be
permitted for the present run. (Presently, dimensiening constraints prevent the computation
of 2 Global Sensitivity Matrix of size greater than 999 x 999). If the size of the system is
within range, the user is then asked whether or not a sensitivity analysis is desired. If a
sensitivity analysts is desired, the user is asked whether or not to accept the matrix-
conditioning defaults for ataining the total derivatives via LU-decomposition.

In brief, the next two groups of user-options are comprised of writing to screen
options, and writing to file oplions. The finat group of user options pertain to convergence.
The user is first asked to specify a convergence criterion, ranging from 0.0001 to 1.0. The
upper limit of 1.0 seems to be the maximum allowable convergence deviation, while 0.0001
seems to be an acceptable mintmum criterion, especially when considering the affects of
numerical imprecision. In cther words, the system will converge when all equation
magnitudes, on the current iteration, have converged to within the aforementioned numericai
criterion, [rom their respective magnitudes on the previous iteration. The user also enters
convergence-eqse parameters. In other words, if the systetn is having problems converging,
the initial convergence criterion can be eased 10-fold, 100-fold, and/or can be reset to 1.0,
after a user-specified number of iterations. All of the user-input parameters are written to a

file, called cascin.dar. This file is required to initiate the main (calling) program.
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This section presents a brief overview of the user-inputs that are required to initiate
CASCADE. For a detailed explanation of each user input option, refer to the User's Manual,
that is available in Appendix II.

IL Calling program preliminaries

The calling program perion of the CASCADE package is called casceallf. The
primmary purpose of this program is to ¢all all of the subroutines that perform the various tasks.
Initially, the program reads the parameters from the newly created input file, that was
described in section I. Following this, the random number generater is again used to generate
4 mote sets of gquantities. These are: the number of design variables per snbsystem, [an
intager value between 1 and 5] (called array totdv); the magnitudes of the design vanables,
|2 real value between (0 and 10] {called array dvmag); the number of terms per output
cquation, [an integer value batween 1 and 20 (called array termperss), and the inital
magnitudes of each output-term coefficient, [a real valve between ) and 1} {called array
coeffmag). The ranges for these 4 guantities were chosen somewhat arbitrarily. Having
numerically solved numerous smaller analytical, complex systems prior to writing this
program, the author obtained a feel for the nature of these quantities. Recall that the system
to be created will be non-hierarchical in nature, and thus has no starting point from which to
work downward, Before the system construction process can begin, the magnitude of every
output equation is thus initialized to zero. The array that these output magritudes are stored
in is called bvmag.

Al this point in the program, the first of 3 "clocks” is initiated, so as 10 measure CPU

time. The 3 clocks that are used measure: 1.} the time required to build and converge the
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system of equations, 2.) the time required 10 solve for the sensitivities of the system, and 3.)
the time required io execule the entire program, once the vartables are initialized, and the
tnain loop is entered.  All CPU times are measured in seconds, using an IMSL library coutine.
I11, Determinztion of the nature of each term

At this point, the first main subroutine of the pregram is entered: subroutine determ.
In short, this subroutine determines the pature of every term, in every equation, in every
subsystem, in the constructed system. For each term, the first parameter that is decided upon
is the counpling, which is stored in &n array called ssche. An integer random number 1
retumed, varying between 0 and the number of subsystems in the system. If sscho retums a
Zero, then the coupling is not a coupling to another subsysiem, bt instead a coupling (0 a
design variable. If sscho returns any other number, that number represents the subsystem of
the given terms coupling. It must be mentionad that this coupling is forced 1o be or not to
be cenain values it cenain situations.  The first term of every output equaticn is forced 10 be
& design vanable. Hence, sscho for the first term of every equation will be zero. The
coupling of every term is enforced never 10 be equal io the subsystem in which that erm
resides. n other words, the value of sscho for a term in subsystem number 26, will never be

equal t0 26. For a summary of parameter sscho, see table 4.1,



sscho: the coupling nature of each term in the system
Range: from @ to the number of subsystems in the system (rumss)

sscho = 0 : design variable dependency

sscho = (any non-zero number) : dependency to that output equation number
Enforcements; first term in every equation - sscho = ¢ (design variable dependent)
output equation dependency of 2 term never involves the subsystem of that term

Table 4.1: Parameter ssche

If, for a given term, a value of zero for sscho is retumed, the dependency is 1o a design
variable, and not to an equation magnitude from another subsystem, as discussed above. Two
additional parameters must be determined, for this chosen dependency. The first is the design
variable number, stored in an array called numdv. Recali that every subsystem has from
between 1 and 5 design vanables associated with it, as decided by the random number
generator, and stored in array fotdv, Hence the value of numdy for the present term is again
decided by the random number generator, and ranges from between 1 and the value of tordy
tor the subsystem in which the present term resides. For example, if subsystem number 6
containg 4 design variables {totdv(6) = 4}, then every 1erm in subsystem number 6 that bas
a design varizble dependency will have a numufv value of between 1 and 4. In short, a chosen
design variable dependency has 4 values 10 choose from, in the present subsystem. Fora

summary of parameter numdy, refer to table 4.2,
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numdv: The chosen design variable number, when the term dependency is to a design variable
i.e. when sscho =0

Range: From 1 to 5, the previously chosen number of design variables in the present subsystem

Table 4.2: Parameter numdy
The second parameter that must be determined for a design variable dependency is the
exponent of the term. The exponent of such terms are stored in an array called dvexp. Once
again, the random number generator is called to return a value of dvexp, for every term, from
- omemee — B0 IGleEer yalug between fhand A, The inteper thar is retamed cagrasnands tnsnevoenani. - - — -—

as summarized: by table 4.3.

dvexp or bvexp exponent

Table 4.3: Exponent values corresponding to dvmag values
The 6 exponent choices above were chosen so as 1o have various ways to alfer the
magnitude of the term, by way of its exponent. In other words: an exponeat of "1™ will
not alter the term magnitude. an exponent of "2" will increase the magnitnde of the term, an
exponent of "-1" will essentially invert the magnitude of the term, and the three fractional
exponents will slightly lower the magnilude of the term. To show how these exponents could
potentially change the magnitude of a term, consider the following scenario. Consider that
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4 given term is coupled to design variable number 3 of the snbsystem that it belongs te. The
value of that design variable is 7.83. The coefficient of this term in €.879, Table 4.4

summarizes how the vaiue of the tlerm would change, after applying the exponent.

0.579*7.831 = .88

0.879 » 7.83% = 53,89
0.879 * 7831 = g.112
0.879 * 7.8312 = 2,46
0.879 * 7.8313 = 1,75

0.879 * 7.831/4 = 1.47

Table 4.4: Effect of the exponent on the magnitude of the term
As discussed earlier, the first 1erm of every output equation is enforced to be a design
variable (sscho = 0). A second enforcement on the first term of every eguation is that the
exponent be substanrial; eilher 1 or 2. Hence, the value of dvexp for the first term in every

output equation is enforced 1o be, correspendingly, 0 or 1. For a summary of parameter

dvexp, refer 1o table 4.5,

dvexp: The chosen exponent code for a deslgn variable coupled term (when sscho = 0}
Range: From {} to 6; see table 4.3 for correspondence

Enforcements: First term of every equation must have a dvexp value of 0 or 1 {(an

exponent of 1 or 2, respectively)

Table 4.5: Parameter dvexp

I, for a given term, any non-zero value for ssche is reumed, the dependency of the
term is to an equation magnaitude from another subsysiem, as discussed above. Again, two

additional parameters must be determined, for this present coupling. The first is the eguation
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number of 1he chosen subsystem coupling, which is stored in an array called sumbv. In other
words, with which equation of the chosen sscho subsystem value is the coupling associated?
Recall that the number of equations for a given subsystem are stored in an array called
bvperss. Hence, for a given non-zero value of sscho for the present term, the random
generator is called to return a value of numby for this term, from between 1 and the value of
bvperss for subsystem sscho {i.e. the value of bvperss (sscho)}. For example, let there be
12 equations in subsystem number 32; i.e. bvperss (32) = 12. Then, if for a given term (not
in subsystem number 32}, a coupling value for sscho of 32 is chosen, the value of nuwmby
that will be returned by the random number generator wili be between 1 and 12. Again, the
quantity 12 represents the number of equations in snbsystem number 32. Fora summary of

parameter numby, refer to table 4.6.

numby: The chosen output equation number dependency, when the coupling of the
present term is to another subsystem (when sscho =0)
Range: From 0 o the number of subsystems (numss) in the system

Enforcements: none

Table 4.6: Parameter numby

Similar to the design variable dependencies, an exponent is also associated with the
output equation couplings. These values are stored in an array called bvexp. The
correspondence between the random number generatorchosen values of bvexp and the
exponent itself are identical to the correspondence between the dvexp valves and their

exponents; refer to tabie 4.3. For 2 summary of parameter bvexp, refer to table 4.7.
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bvexp: The chosen exponent ¢ode for an cutput equation-coupled term (when sscho # 0)

Range: From 0 to 6; see table 4.3 for correspondence

Enforcements: none

Table 4.7: Parameter bvexp

noBaitels vl tiduocunnen sforel evel ¥ eqoanoinentriral o yigr ussoenaist whel

The first term of every output equation is always positive. Hence, the value of sign, for the
first term in every equation is always O or 1. Consecutive negative terms are te be avoided,
for reasons which will soen become apparent. Hence, if sign equals 2 for term pumber 12 in
equation number 7 of subsystem number 3, then term number 13 (of the same equaticn and
subsystem) will have a sign value of either O or 1. For a summary of parameter sign, refer to

table 4.8,

sign: The sign code for each term in the system,
Range: sign = § or 1 - the term is positive
sign = 2 - the term is negative
Enforcements: the first termn of every equation {which, is enforced to be a design
variable)} has a positive sign (sign=0o0r 1)

consecutive negative terms in the same output equation are not allowed

Table 4.8: Parameter sign

Before exiting the determ subrouting, the ¢hosen sign of each term is "connected” o

ihe coefficient of each term. For example, if the coefficient of a given term was determined
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to be (.578 (ceeffmag = 0.578), and the sign of that lerm was deemed negative (sign = 2),
the new value for cogffmag for that term is -0.578. If, instead, the value of sign for that term
was a { or a 1, then the value of coeffrrag would have remained the same.
IV. Determination of the magnitudes and sensitivities of each term

Al this point, the characteristics of every term in the system have been deiermined.
The second subroutine, mags (short for magnitudes) is now entered. It is in this subroutine
that the magnimdes of each cutput equation term, and the sensitivity of each term are
compuied. This subrouting first decides whether each given term is a design variable
dependency (designated by an sscho value of zero) or an output equation coupling
{designated by any non-zero sscho valne). The magnritude of each term is compuied into an
array called termmag. If the term has a design variable dependency, the magnitude of the
chosen design variable is raised {0 its chosen exponential power, and that quantily is
multiplied by the chosen exponent of the term. If the term has an output equation coupling,
then the chosen subsystem / subsystem equation (of the coupling) is raised to its chosen
power, and multiplied by its chosen coefficient.

To attempt to clarify the proceduore thus far; the determination of the nature of each
term, and the subsequent determinations of the magnitude and sensitivity of each term, 2
example terms are presented, Assume, for the purpose of this illustration, that an arbitrary
systemn has 3 subsystems (rumss = 3}, each having 3 equations (bvperss () = 3). Both terms
belong o the first eguation of the first subsystem, which has 2 design variables (dvperss (1)
=2). The first term of the equation has a design variable dependency (sscho = 0) to the

second design variable (numdv = 2). The exponent of the first term is 2 (dvexp = 1), and the
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sign of the tert is positive (sign = 1). The coefficient of the first term was chosen to be
{1.286. The second term of the equation has an output equation coupling to the first equation
(numbv = 1) of the third subsysiem (sscho = 3). The exponent of this second term is 1/3
(bvexp = 4), and the sign of the terrm is negative (sign = 2). The exponent of the second term
was Chosen to be 0.993. The form of the first term is seen in table 4.9 (part a) and, given the
above paramelers, its representation lies below it (in part b). Realize that ss, egn, and term
are array variables for the current subsystem, subsystem equation, and equation term,

respectively.

a) termmag (ss,eqn,term) = dvinag (ss,numdyv (ss,eqn,term)) 9o Gseanterm)
x coeffmag(ss,eqn,term)

b) termmag (1,1,1} = dvmag (1,2)% x 0,286

Table 4.9: Example term with design variable dependency

The form and representation of the second term are seen in table 4.10.

a} termmag (ss,eqn,term) = bvmag (sscho (ss,eqn,term),
numbv (ss,equ,term))”™P Semtem o oooffmag (ss,eqm,term)

b} termmag (1,1,2)} = bvmag (3,1)>** x - 0.993

Table 4.10: Example term with output equation coupling

On the first fteration, the value of bymag (3,1) will be 1.0; the value of dvmag (1,2) might be

6.34 { recadl that it was a previously determined real random number, from between 1 and t0).
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Using these values, the magnitades of termmag (1,1,1) and ermmag (1,1,2) are 11.50 and

-.993, respectively. Refer to table 4.11,

termmag (1,1,1) = 0.286 * 6.34° = 11.50
termmag (1,1,2) = -0.993 * 1.0 °** = .0.993

Table 4.11: Magnitudes of the two example terms

Sensitivities for every oulput term are stored in an array called sens. These local
derivatives are computed analytically. The derivatives are taken (for each term) with respect
to the coupling, be it a coupling 10 a design variable or lo another output equation. For

illustrative purposes, the sensitivities for the above 2 (erms are listed in table 4.12.

sens (1,1,1) = 0.286 x ((2} x dvmag (1,2)") = 3.62

sens (1,1,2} = -0.993 x ((0.333) x bvmag (3,1) ") = -0.331

Table 4.12: Local sensitivities for the ¢two example terms

¥. Term magnitude check

After the magnitude of each equation term is computed, the program determines
whether or not the magnitude is within the allowable range. For reasons which will be
explained later in this chapier, the aliowable range is +1.0 < termmag < +500 for positive
terms, and -0.25 = fermmag > -100.0 for negative terms. If the magnitude of the term is
within the allowable range, the program proceeds. If not, the coefficient of the term is either
raised or lowered 10-fold (as appropriate}, and the term magnitude and sensitivity are re-

computed. This procedure repeats itself until the magnitude of the term is within the
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allowable range. Adjustment of the coefficients typically occurs often on the early iterations,
and subsides for the later iterations.
V1. Coefficient magnitude check

After the magnitodes of every equation term in the system have been computed, the
program enters a subroutine called termrange. As the name implies, this subroutine places
constrainis on the magnitudes of each term through the magnitude of the coefficients. Itis
clear from the previous paragraph that the potential exists for the initial output term
coeflicients 1o be heavily adjusied. Coefficients could be substantially raised or lowered, well
out of the initial range of 0 to 1. For this reason, there should be reasonable bounds for the
coefficient magnitedes, such that they do not expand to infinity or diminish to zero. For
reasons that will sheretly be explained, the set limits on both the positive and negative

coefficients are as follows:
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If, while in this subroutine, a term is found to be in violation of one of these coefficient
constrainis, then the coefficient is set to be identically equal to that constraint value, and the
magnitudc of the term and sensitivity of the term (termmag and sens, respectively) are raised
or lowered, accordingly. (Both fermmag and sens are linear functions of the coefficient
magnitude).

The termmag subroutine is always entered on the early iteraticns, when the system is
still "developing”. However, if, after a ccrt.am user defined number of iterations the program

must ease the convergence crilerion because the sysiem won't converge (o the initGal
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criterion, the program ceases 1o enter the rermmag subrouting, While all of the
aforementioned restrictions on the coefficient magnitudes are ideal, they are not absolutely
necessary. System convergence is imperative.

¥1l. Equation magnitude check

Upon exiting the termmag subroutine, all equation terms have acceptable magnitudes,
which include coeflicients that themselves have acceptable magnitudes. Now, the magnitude
of each and every outpuat equation can be calculated. Afer the characteristics of the final
term of a given cutput equation have been detertnined, the magnitnde of the entire output
cyuation (bvmag) is determined by simply adding together all of the term-magniludes that
comprise that equation. To prevent divergence and arithinetic difficulties, the upper and
lower bounds for the magnitude of each cutput equation have been set 1o be 9999 and 0,
respectively, The lower valug of 0 simply assures that all output equations are positive in
magnitude. The upper bound of 9999 was chosen simply to prevent equation magnitudes of
greater than 4 figures, and was a heuristical decision. These Limitations are applied in a
subrouting called egrirange. Before this subrouting can be discussed, the reasoning for these
limitations will be presentad.

An upper bound is needed, to prevent output equations that have terms with
exponents of 2 {bvexp = 1) from increasing without bound. For instance, let subsystem
number 2, equation number 3, term number 4 have a coupling with subsystem number 5,
equaticn number 4. In addition, let this coupling be reciprocal. In other words, a term
subsystem number 3, equation number 4 (say, for example, rm number 6) has a coupling to

subsystem 2, equation number 3. Using the jargon terms that were presented eartier:
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IT the magnitudes of the output equations bvmag (5,4) and bvmag (2,3) are initially large,
these couplings would most definitely drive both equations to infinity, For instance, let the
magnitude of both equaticns, afier 1 iteration, be 100. Wilh no other terms considerad
(Recali that the above terms are terms number 4 and 6, respectively, in eguations that could
potentially have 20 terms, and hence 20 such reciprocal couplings.), the magnitudes of these
terms on the second iteration would be 1002 = 10000; 100002 = 100000000 on the third
iteration, and so on. Tt is clear that an upper bound must be ser, 10 prevent this likely
scenario. As previously noted, 9999.0 has been chosen as the upper bound.

A lower bound is needed to assure that instances of mathematical impossibility wiil
never be reached. Recall that any given equation term will have 1 of a random choice of 6
different exponent values. Three of these 6 choices require that the ierm being exponentiated
be non-negative. For instance, let the exponent of a given cquation term be 1/3; hence Bvexp
=4. Let this tertn be coupled to subsystermn mmmber 4, equation number 3. If the present term
is term number 2, of equation number 1, of subsystem number 5, the relevant expression for

the term is as follows:
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The magnitude of bvmag must be positive. A negative 1erm raised to a fracticnal power is

undefined, The same logic can be applied to the 1/2 and 1/4 exponents, which are 2 of the
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other 5 exponent choices, To avoid the possibility of such a scenario, the magnitude of every
output equation has been imposed to be greater than 0.0,

The magnitude of each output equaticn is controlled by contrelling each term of the
equation. This is accomplished by conirolling the magnitude of each term-coefficient.
Bounds on the magnitude of each term and the coefficient of each term were imposed eartier
in this chapter. without e¢xplaining the reasoning behind the bounds. Recatl that the
magnitudes of each equation term are set to be +1.0 < termmag < +500 for positive e1ms,
and -0.25 > termmag = -100.0 for negative terms. The upper bound for positive ferms was
attained by dividing the maximum allowable magnitude of a given equation, by the maximum
number of terms allowed in that equation; +9999/2( = 500. The lower bound of +1.0 for the
magnitude of each positive equation term is used to enforce that every equation term in the
system is subsiantial and contributing, 10 some degree. (A term with a magnitude of
0.0000057 is so small that it has zero contribution, for all intents,) The corresponding bounds
for negative equation termns are set to be lower, by a factor of between 4 and 5. Recall that
the lower bound on the entire equation is {.0. Negative equations are to be avoided, bence
negative tenns are enforced to have narrower bounds than positive terms.

Recall that the minimal and maximal bourds on the equation-termn coefficients were
set to be 0.000001 and 10000.0, respectively, for both positive and negative terms. The
reasoning ¢an now be explained. For example, let a given term have a coupling to another
output equation that has attained its maximum magnitude (+9999). Let the exponenl of this
tertm be 2. The magnilude of this term, without the coefficieat figured in, would be farge;

more specifically, +99997 = 100,000,000, A coefficient of +0.000061 multiplied by this
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magnitude approximately yekis +1((}, which enforces the magnitude of the term back into
its allowable range [+1.0 < rermmag < +500). If the sign of the coefficient were negative,
the sarne logic would hold. The magnitude of the term would then be approximately -100,
which is also within the allowable range for a negative term [-0.25 = termmag = -100.0).

Conversely, let the exponent of the same term be -1, Then, the magnitude of the term
would be smal instead of large. With the coefficicnt initially neglected, (+9999)% = +0.0001.
To make this term substandlal, and within the allowable range [+1.0 < rermmag < +500]
for a positive term, a maximum coefficient of +10000.0 can be multiplied by it, approximately
yielding +1.0. If the sign of the coefficient were negative, the same logic would hold. The
term magnitude would then be approximately -1.0, which is also within the allowable range
for a negative term [-0.25 > rermmag > -100.0].

Recall that the CASCADE program enters a subrouting called egarange 10 impose
limitations on the magnitude of each cutput equation. If the magnitude of a given output
equation is found 10 have a value that is greater than +9999, then changes are made to each
term that cornprises that equation, depending on the sign of each term. If the given term is
positive, then the magnitude of that term is enforced to be identically +500.0, and the
coefficient and sensitivity of that term are scaled proportionally, Recall that the quantity
+500.0 comes from the division of +9999 (maxitnum equation magnitude} by 20 {(maximum
number of terms per equation), Negative tenms are left alone. Heuristics have found that
lowering the magnitude of an output equation is best achieved by either decreasing the

positive terms or by increasing the negative terms, but not by altering both simultaneousty,

43



If the magnitude of a given outpul equation is found to be less than 0.4, then certain
other changes are made to the terms that comprise the equation, depending on the sign of
each term. If the tem is negative, then the magnituge of that term is enforced (o be
identically -1.0, and the coefficient and sensitivity of that term are scaled proportionally. If
the term is positive, then the magnitude of that term is enforced to be identically +10.0, and
the coefficient and sensitivity of that term are scaled proportionally. These actions will ensure
4 positive equation, with manageable term-magnitudes, for the present iteration.

After every e in the system has gone through the determ, mags, termrange, and
egnrange subroutines, the system is sufficlently constructed for the present iteration.
System convergence tnust now be checked. 1115 likely that the laiter 3 of these 4 subroutines
will be encountered at least 40 times, to successfully converge a large system.

VII1. System convergence

The subroutine that checks for system convergence is called converge. The first thing
that this subroutine does is that it sets the convergence criterion for the current iteration,
Recall that the user enters both an initial convergence criterion, as well as convergence ease
parameters. These parameters tell the program when (after how many passes) it may ease the
initial convergence criterion 10-fold, 100-fold, and when it may check for convergence of all
equarions to within "1,0". The newly-compuizd magnitudes of each output equation (bvmag)
for the present iteration are checked against the magnitudes of the comesponding output
cquation from the previous iteration. These old magnitudes are stored in an array called
bvmageld. On the flrst iteration, there are no old equation magnitudes to compare to,

hence each equation magnitude of the bvmageld array is set to equal to each corresponding
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cquation magnitmde of the bvmag array, plus 10 times the convergence criterion, such that
the system will not falsely converge. The absoluie value of the differences between the
magnitudes of bvmag and bvmageld, for cach output equation, are then checked. If this
difference is less than or equal 1o the present convergence criterion, for every output
equation, then the system has converged, and the program will proceed. Upon convergence,
the magnitude of each output equation can be written 10 an output file (called outegns. da?),
if 50 desired.

If, for one ore more equations, the difference between bvmag and bvmagoeld is greater
than the convergence criterion, then one of two things will happen. The program first checks
to see if the initial convergence criterion has been eased. 1) If the convergence criterion has
not been eased, or if the convergence criterion has been eased but the maximum number of
iteraions has not been exceeded, then the values of bvmagold are set (o equal the
corresponding values of bvmag (for use in the next iteration), and the program is sent back
to the mags subroutine, for re-computation of each equation term of the sysiem. The
program will then enter the termrange anid egnrange subroutines before entering the converge
subroutine again, on the next ileration. 2} If the convergence criterion has been eased. and
all system equations have not yet converged to within "1.0" of their previous value (after the
user specified number of iteratjons), the program will abruptly exit. This feature was applied
to ensure that a non-converging system will eventually exit the program loop. Before exiting,
the program will corapute the size of the largest (absolute value) difference between bvmag

and bvmagold, for every equation. This quantity will clearly be greater than 1.0, and will give
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some indication as to how close the system was to converging after that many iterations. The

convergence check procedure is illustrated in the figure 4.1 flowchart.

—o ]
;

Figure 4.1: Convergence check fowchart
A dditional E
L Average coefficient values
After the system has been construcied and has converged, the program will proceed

and perform various other features. The first such feature attained in a subroutine called




Recall further that many term-coefficients were likely modified, to ensure that the coefficient
itself, the termn that the coefficient is part of, and the entire equation associated with the term,
have acceptable magnitudes. It may therefore be insightful (to understand the statistics of the
converged system) to look at the numerical average of the positive and negative coefficients
of the converged system. Because every equation is enforced to be positive, it is expected
that the average positive coefficient will be greater than the average negative coefficient.

The averages are attained by first computing the number of positive and negative
terms, stored in quantities numpos and rusnneg. This is accomplished by simply counting the
number of terms that have a siga value of 0 or 1 for positive, and the number having a sign
value of 2 for negative. Next, quantities sumpos and sumneg are computed by adding all of
the positive and negative coefficient values, respectively. The numerical averaged positive
and negative coefficients, called avgpos and gvgneg respectively, simply equal the divisions
of sumpasfumpos and sumnegfnumneg, respectively,
H. Equations writien to subroutines

The second feature that can be employed to the converged system is a very itnportant
ong, The user is initially given the option 1o wrile each output equation of the converged
system (o a separate subroutine, (Such subrontines could be used in a system reduction
analysis, 10 view the effects of coupling suspension and elimination. Alternatively, each
converged equation (module) of the subroutine could be perturbed in some fashicn, optimally
sequenced, and then re-converged, likely in a more rapid manner). This feature is performed

in a subroutine called egrsubs.
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If the user decides to write each equation 10 a subroutine, the user is given the choice
of what computer language the subroutines will be written in either FORTRAN 77 or ANSI
C. The equation will then be written to a file called egns.for or egns.c, as the case may be.
The first item that is writien to each subroutine is the title. The titles of each subrouting are
egnxxxx, where "o ranges from 0001 to a maximum of 9999, These 4 numbers represent
the 1otal number of equations in the system, tisted sequentially. Following the tide, the output
equation (bvmag) and design variable (dvmag) array dimensions are written to the subroutine,
and the bvmag common array declaration is written to the subroutine, This statement is
needed in the subroutine so that each output equation need not be explicitly declared in each
subroutine. {There could be 9999 of them!} Both of these operations are used for writing
FORTRAN subroutines, and are not required for writing ANSI C subroutines. Instead, in
ANSI C programimning, a subroutine is initiated by typing "{". Hence, this symbol is written
te an ANSI C subroutine {and is obviously not required for writing a FORTRAN subroutine).
Nex1, expressions for the destgn variable magnitudes, of the subsystern that contains the given
output equaticn, are written 1o the subroutine. Recall that the number of design variables per
subsystem ranges from 1 10 5. Hence, from 1 to § design variable quantities are writlen [0
each subrouting.

The output equation itself is written to the subroutine by using character strings. Each
lerm of the outpat equation is written 10 the subroutine as follows. Character stzing char2
stores the sign of the term. Hence, a sign value of either {} or 1 for a given term would yield
a char2 value of "+"; a sign value of 2 would yield a char2 value of "-". Character string

char3 depends on whether the coupling of the present ierm involves a design variable, or
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another output equation. If the conpling involves a design variable, then char3 = "dvmag(".
(nherwise, an output equation coupling yields a char3 value = "fvmag(". The first argumenl
of the coupling is stored in & real array called one. If the coupling of the term involves a
design variable, then the value of one would be the value of the subsystern that the present
term belongs 10. If the coupling involves ancther cutput equation, then the value of one
would be the chosen subsystem coupling (sscho) of the given term. String char4 is a comma,
",", and is used to separate the (wo arguments of the coupling. The second argument of the
coupling is stored in a real arcay called mo. I the present coupling involves a design variable,
then the value of mo equals the chosen design variable number (numdv) of the subsystem of
the present term, If the coupling involves anather output equation, then the value of mo
equals the cutput equation number of the subsystem that was chosen for the coupling
{numbv). String char5 is an end parenthesis, ")", and is used to complete the coupling
arguments. Finally string char6 stores the exponent of the term-coupling, and thus depends
on gither parameter dvexp or parameter bvexp. For example, if the exponent of the present
design variable coupled tert is 172 (dvexp = 3), then char6 would equal: "**.50". Similarly,
if the exponent of the present output equation-coupled term is -1 (bvexp = 2), then char6
would equal: "**-1.". (The above example has assumed that the subroutine is being written
in FORTRAN 77, An analogous procedure would be emploved for the writing of an ANSI
C subroutine}. To clarify this paragraph, able 4.13 summarizes the character string values,

for both design variablecoupled and cutput equation-coupled lerms. The table again assumes

the writing of FORTRAN 77 subroulines.
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character: design variable coupling output equation coupling
char2 +or - +0or-

char3 dvmag( bymag(

onie (subsystern number) {sscho)

chard , $

two (numdy) (numbv)

chars } )

charé (dvexp) (bvexp)

Table 4.13: Character strings used for writing equations to subroutines

To ensure a clear understanding of this methodology, an example term is presented.
Assume that term number 3, of equation number 2, of subsystern number 1, is written to a
FORTRAN 77 subroutine. (This subroutine equation may contain from between 1 and 20
terms. This example shows the procegdure only for term number 3. Hence, in this example,
this equation is assumed 10 have af leasr 3 terms.) Let this term have a coefficient of 0.582,
and be positive (sign = (). Assume that this term has a coupling to another output equation -
subsysiem number 4 (ssche = 4), equation number 2 (rumbv = 2). Let the exponent of the
coupling be 1 (bvexp = 0). The write statement that would be vsed to write this term to the

subroutine would appear as in table 4.14.
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write * -+ -, char2(3), coeffmag(1,2,3), char3(3), one(3), chard4(3), twa(3),
char5(3), char6(3), - - -

where:

char2(3) = "+", coeffmag(1,2,3) = 0.582, char3(3) = “bvmag(", one(3) = 4,

chard(3)y=",",two(3) =2, char5(3) =")", and char6(3) = "' **1.0".

Table 4.14: Example write statement for one term, writien in FORTRAN

For each output equation {and hence, for each subroutine) the abeve procedure is
repeated for all 20 terms of the equation. If the equation contains less than 20 terms, then zeros
are added te the end of the equation, in place of the previcusly explained character string
quantities. Finally, a compietion is writien to the subroutine, In FORTRAN, this inciudes the
refurn and end statements. In ANSI C, only a "}" symbol is required, to complete the
subroutine.
II. Sensitivity computation

The third of the post-convergence feares of the CASCADE package is also very
important. Total sensitivities can be computed, using 2 subroutine called derivs, Recall the form
of the Global Sensitivity Equations first presented in equation [2.6], and repeated in figure 4.2,

for clarity:




{bserve that the total derivatives can be attained by first attaining the local output-oulput
sensitivities of the Left Hand Side (LHS) matrix, and the local output-input sensitivities of the
Right Hand Side (RHS) matrix. With the magnitudes of these two matrices known, the total
derivative matrix can be attained by using an LU-decomposition with numerical conditioning.

First, the LHS matrix is computed. First, all diagonal elemenis of the matrix are assigned
2 value of unity. The LHS matrix is a square matrix, and the diagonal terms represent the
sensitivity of each output equation, with respect to itself, which is simply 1.0. The off-diagonal
elements are computed one at a time, by cyeling through the rows of the LHS matrix. Recall that
each cutput equation "Y" contains from 1 1o 20 terms within. This implies that each output "Y"
(and hence each row of the LHS matrix) could have anywhere frem 1 to 20 non-zero elements,
which represent the ¢conpling sensitivities of the current "Y" value, to the other output equations.
An example i3 presented to clarify this methodology. Let there exist a 3 subsystem system, each

having 2 equations. The LHS matrix will thus be {6x6}, and will have the following form;

FERE a1 TERT gz TEMF g SORSE . SRS, MRS,

NS ) BOMS . SOMS ), SERS ., Sems .. sens .

ERY gy SOV gy SONE g5 FONS 0 SENS 4,4 HENSE o [4.1]
IHS =

BONS 1y SEHS \ SERS . SEMS ., sens .. sens .

FENS 31y SENS 4y, SEMIS g,y FENS oo SERS g g SOMSyu

TERS gy BEMS oy SENS .y BEMS o, SEMS . SENS o

where, for instance, sens; 27 is the sensitivity of subsystem number 1, equation number 1, to
subsystem number 2, equation number 1, and so forth. For example, let equation number 1 of

subsystem number 1 contain 4 terms. The first ferm is, as always, a design variable ("X"}
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coupling, and has no contribution te this mairix. The second term has a coupling to subsystem
number 3, equation number 2. The computed value of this sensitivity was found to be 0.069.
The third term has a coupling to subsystem number 2, equation number 1. The computed value
of this sensitivity was found to be -0.480. Lasily, the fourth term is another design variable
coupling, and has no contribution to this matrix. Hence, the first row of the LHS matrix, which

results from the couplings of subsystetn number 1, equation number 1, to other output equations,

appears as follows:
1 0 -0480 0 0 0.069
06 0 00 O
LHS(outputl,1) = 06 0 000 [4.2]
0 ¢ 0 00 O
06 O 00 O
06 0 00 0

Recall that the diagonal elements of the matrix always have a value of unity, as the sensitivity
of any output, with respect Lo itself, equats 1.0. CASCADE uses similar methodology to
compute the other rows of the LHS matrix. All off-diagonal elements of the LHS matrix are
multiplied by -1, 1o put the matrix in the form of figure 4.2. Using techniques that were
described earlier (see equaticn 2.6), the LHS matrix is then normalized, tenm by term, to
mprove its numerical condition for the forthcoming LU-decomposition.

The compunation of the RHS matrix uses similar methodelogy, but involves all of the

design variable couplings instead of the output couplings. Recall that the first term of every
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output equation is enforced to be a design variable. Therefore, every output equation "Y"
will contain at least one coupling to a design variable "X". It is possible that a select few of
the other ternms of each output equation could as well have a design variable coupling. Again,
the off-diagonal elements are computed one at a lime, by cycling through the rows of the
RHS matrix, The same example that was used for the LHS matrix will be used for the RHS
matrix, to clarify this methodology. Recall that the system has 3 subsystems, each having 2
equations. Let the first subsystem contain 4 design variables, the second, 1 design variabie,
and the third, 2 design variables, Hence, the RHS matrix will be (6x7); 6 rows symbolizing
the 6 equations in the system, and 7 columns representing the 7 design variables in the system,
The form of the matrix is as follows:

rems 1y Ty SRS g JERE G TEME gy SEREy 4 FeRS |1,:u.
FEUS 1201 FE gqp FOUE ypgy SERE gy gy SN o RO 53 FERS oo

[:: 2,1 FM g TERS 5y 44 FAS 504 ST o) ST 4 SERK 5, 4

R gy FME gy SEHS ., SENE 3o SENS gy SEMK g4,

[4.3]

AT 3101 TERT 5 g FERE qp gy FEMEy) gy HNE g oy MERF. o) SENS g, 5

PO a1 TME 5y $EMEgay TRE 3o ga BN g0y IMS 4 MME43

where, for instance, sensj 7, 14 is the sensitivity of subsystem number 1, equation number 1, to
subsystem number i, design variable number 4, and so forth. Recall that in the previous
exarmple, equation number 1 of subsystern nember 1 contains 4 terms. Recall again that both
the first and fourth terms of this cutput equation have design variable couplings. Let term
number 1 be coupled tc:; design variable number 3, (of the subsystem to which it belongs;

subsystem number 1). Similarly, let term number 4 be coupled 10 design vartable number 3,
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of subsystem number 1. The computed values of these sensifivities were found to be 7.93 and
-3.66, respectively. Hence, the first row of the RHS matrix, which results from the couplings

of subsystem number 1, equation number 1, to its design variables, appears as follows:

004270000

00 0 0000

60 0 0000
ReStouputl,) = | 6 0 0000 [44]

00 0 0000

00 0 000 o0

Notice that there exisis only non-zero element, due to the design variabie couplings of output
equation number 1 of subsystem number 1. In this example, the equation contained only 4
terms, 2 of which were design variables. Both of the design variable couplings were to the
third design variable of subsystem number 1, Hence, the numerical value of RHS (1.3) is
simply the sum of these two sensitivities, All other elements of this row equal zero.
CASCADE uses similar methodology to compute the other rows of the RHS matrix, Using
techniques that were described earlier (again, see equation 2.6), the RHS matrix is
normalized, term by term, to improve its numerical condition for the forthcoming LU-
decomposition,

With the LHS and RHS matrices computed, there is enough information to compute
the matrix of total derivatives. The dimension of this matrix will be {mxn), where m is the

total number of equations in the entire system, and n is the total number of design variables
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both positive and negative terms), and the total number of iterations required for
convergence., The primary block of information written to this file are the term parameters
themselves. For each and every term of the system, the values for sscho, numbvy, bvexp,
numdy, dvexp, sign, and coeffmag are 1abulated in this data file. In addition, the magnitudes
of all of the design variables, for each subsystem in the system, are appended to this file, This
file provides the nser with concise insight to the nature of the system that was randomly
generated.
Closure

This chapter has provided an in-depth description of the development and operation
of the CASCADE package, and the various design considerations therein, CASCADE, as
has been explained thus far, was initially designed to construct and converge the system of
equations sequentially, on one computer. With this framework, the operation of CASCADE
has been expanded to a parallel network of computers, and has made use of distributed
computing techniques with the aid of Parallel Virual Machine (PYM). Chapter 5 will focus

on the discussion of this transition.
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Chapter 5

CASCADE implementation using

Parallel Virtual Machine (PVM)
Sysiem construction and convergence

The principals of distributed computing have been used to extend the operation of a
portion of the CASCADE package, from a sequential 10 a paralle] computing environment.
Specifically, a parallel machine is used te construct, and then sequentially converge a system
of equations. The post-convergence features that were described in the last chapter will still
be performed on a single computer.

The files associated with the execution of CASCADE in parailel are called cascmast.f
and cascslav.f. The former is the master program, and the latter is the slave program, using
the jargon that was presented in Chapter 3. The execution of CASCADE in parallel, with
these two files, begins by executing the master progeam, cascmastf , on a single machine,
As with the sequential version, the program first reads the input file {cascin.dat) parameters,
and proceeds to initialize a rumber of parameters of ils own, with the zide of the random
nurnber generator. These parameters include the number of design variables per subsystem,
the magnitudes of the design variables, the number of terms per output equation, and the
initial magnitudes of the term-coefficients and the output equations.

Once alt of the preliminaries have been taken care of on the master node, distributed

computing can take place. PVM is initiated within the master program by issuing the
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pvmfmytid cormmand, Before doing so, a no more work flag, called nmw, is set to equal a

positive integer. As long as the system is in either a construction or "not-conver ed" state,
ng g
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are available on the virtuzl machine. The number of separate stave tasks that
is equal to the total number of hosts mounted on the virtual machine (catled par:
minus 1. Quantity {kosts - 1} is referred to as ahost. Remember that one of the
virtual machine is executing the master program itself; hence the value of qu
Next, an nhest number of tasks are spawned; in other words, the slave progra
is spawned nkost times. Each instance of the slave Program is executing o
machine, and is sent a variety of parameters with which to perform a variety of ¢t
These parameters mclude: a seed for random number generation; a subsystem n
no more work flag value, the number of output equations per the present subsyst
containing the number of terms per output equation; the fteration number: th
design variables per the present subsystem: the array contatning the temr
magnitudes; the arrays containing the design variable and cutput equation mag
the array containing the output equation magnitudes from the previous itera
parameters are sent to the slave tagks by issuing a sequence of three commands:
1o initialize the send buffer, pvmfpack 1o pack the datz into the buffer (either
real4, or reai8 for double precision), and pymyfsend to send 1he data to the slav

Each slave program that was spawned by the master must issue two

commands: pvmfimytid to enroll in PYM as a slave, and then pvmfparent to f
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identification number of the program that spawned the task {in this case, the task id of
cascmast.f). Thereafier, each slave program st first receive, and then unpack the data that
was sent to it by the master, The commands are pvmfrecy and pvinfunpack, respeclively.
Afer receiving the data, each slave decides whether or not to proceed. This is decided by the
value of the no more work flag, nmwf. As long as this value is positive, there is more work
1o be done. Each slave then proceeds, handling only one subsystemn, to call the determ,
mags, iermrange, and eqnrange subroutines, to detecmine the equation-term parameters, and
then ¢ompute and alter the corresponding magnimdes of the quantities involved, as was
previously described. The newly compuied and the re-calenlated data within each slave
program is then sent back to the master program for analysis. For CASCADE, this data
includes: the coupling arrays sscho, numbv, bvexp, numdy, dvexp, and sign; the coefficient
magnitude array; the sensitivity array; the cutput equation magnitude array; and the task id
of the slave itself, called myeid, locally. The slave then proceeds to the top of the program,
and awaits either more work or a negative no more work flag, welling the slave o exit.

The master then receives the newly computed and re-calculated data back from each
slave. If there are more subsystems to be solved for the present iteration, then the master
sends each completed slave a new subsystem number, and associated parameters, for more
calculations. Ifall subsystems have been sent out to the various slaves for analysis, the master
node will simply wait until it has received newly-computed data back from all of the slaves,
for all of the subsystems. Once all subsystems have been processed by the slaves, and all
information sent back to and received by the master, a convergence check can take place.

This check takes place sequentiaily, on one computer, If the system has not converged, the
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distributed-computing process is repeated, using the updated magnimades of every output
eqquation in the system until convergence. If the system is found to have converged, the
program proceeds, on one computer, through the average, egnsubs, derivs, and param post-
convergence subroutines, The master program assigns the no more work flag a negative
value, anx sends this value to all of the slaves, allowing them to exit FYM, vsing the pvmfexit
command. The master program then issues this command, itself, terminating the current run
of CASCADE in parallel.
Closure

This chapter has outlined the procedure for operating the CASCADE package in a
distributed-computing framework, using PYM. This operation stemmed from an exiensicn
of CASCADE's sequential operation, on one computer, as was fully explained in Chapter 4.
The next chapter will present various example systems that were created by using
CASCADE, in both sequential and distribumed envitonments. The presemation of these
example systems will likely clarify the details of the last twe chaplers, and will provide a

gnideline for the analysis and comparison of CASCADE's infinitely possible output systems,
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Chapter 6

Example problems created by using CASCADE

Input file

Recall that the first thing that the user must do to run CASCADE is create an input
fike, called cascin.dat. This is accomplished by answering a series of system related questions,
by executing & prograrn called cascinf. This chapter will present two system cases, Very
generally, case 1 was created sequentially on one computer, and case 2 was created by using

distributed computing (P¥M). The input files for the two cases are segn in table 6.1.

Case 1 Case 2
-1504 -5039
3 3
2 P4
2 Fj
3 3
2 F4
7 7
1 1
1 |
1 1
10E+11 10E+11
L 0
2 2
2 2
2 .
2 2
1 1
1 1
L 1
1 1
1 2
£ &
1 10
200 - 200
400 S0

Table 6.1: Input files for the two system cases
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These numbers provide the numerical values and the option flags that are required to execute
CASCADE. The italicized values towards the top of the table reflect that both of these
system cases have 3 subsystems, each with 2 equations in the first and third subsystems, and
each with 3 equations in the second subsystems. Hence, there are a total of 7 output
e{ualions per system,

Table 6.2a is an excerpt from the parameters fle (called params.dat) that was created

for the first system case.

63



CFU timve requlred to balld soed converge the sysicm (seomds)= 5260
CPCU timve requived to acquire e senallvither (reomidsie 612721
Thet €l requived 1o sxvcude the enlire progrem (secopdyy: 1.06763

55% 1 BVE 1 fermit 1

sschos 0; nurobye®®; brexp=*; nomdr=1; drexp=5; sgn=0 elichent=  W526497
S5 ) BYE 1 et 2

snchoe 2; mamby= 1; brexp=1; momdv=%; dvexpa®s dgnml: coeffichenis DD
S5F I BVE 1 ermad 3

sschom 1; noaby= 1; bveap=ly; namdr="; dvexp="; signal: cocllickeain  1.0GIG4H
SF I BYF 1 termt d

sscleoer 33 nombyv= 1; byexpecd; Romsdve®; dvespe?; tipanl; coclilickents  -0837244
1 BEYF I tew¥ 5

sschom & nimby="¥; byexp="; nomdr=3; dvexp=3; san=l; coefliclents 5159545

B8 2 BVE 2 termd |
sachom 03 numby=—=*; hyexp=¥; nmmdv=l; drexp=l; sigrmll; coellicientn 0765490
858 3 BY¥ 2 termd 3
schom & nuthye®*; byeaps*; nomdy=d; dvexp=3; dgr=I; coeMckemi= 4665159
558 31 BY#H 2 termd 2
sschvi= I mumbyvar 1; bvexpmS; numdye®; drexp="; dign=1; coefficient= 905074
_REE_U_RYE 2 dapnd 4
aoti0% EE Wk § T KD S T Gy R s oI o= T T
SEx D 1_BAR - Sivbe ¥4 E
sechom 1z gumbd= 1; blexp=i; homavs?; gvaxp="raigh=1: cpenckent 00018k }
HhEx -1 R - Divioe Tad T
sschoe 1:"gomb¥= 2; brixp=d; homav="Tdvixp=": thghal: boeMickenis - 1. 455030 ]
HEREX - - VEE - Ty T T 1
sschiom 1: yumnd= 1; byexp=0; nomavi"; dvexp="righ=2: codlliclents -LO4275E -
SS#x . AZVER T tormE T ="
sschitm 0 aumbyms*; bvexp=*; numdv=2: dvixp={k sigh=0; coellicleimz 172.52310i 1
ESF= L -TUES 2 qorm¥F -9 -
tschom I "gumbrs 1: brexps3d; amdv="t] dvexpats slgnel; coeBlckeat=  LO6712T 1
S5 3 BYH-2 termd 10
sscho= 0; ambr=""; bvexp=?| numsdvad; dvexpmd; dgna?; coclliciend=  -0434359
558 3 BYS-I term# 1l
stchom (; mombye¥: hrexpe®; numdv=4; dvexpxl; dgnely wmellicents 5477740 |
558 Z-BVER I wrm#d L2
frchom ; nusabya™; brexp=™; nemmdv=3; dvexpd; dgn=l; coeifichentn 25814862
558 2 -BYY I qermd 13
gacho= O nusabva™; byexpe®; numdv=d; dmp=l sigm=1; corfMiclesd= 0047374

LT T
I

Sebaystesa &1 1; dvmag(l) = 5156
Sebiyiiom F: 1; dvomgll) = 1.734
Sebsystema 1 1: dvooag{d) = 9.702
Swbaystema #: I dvimag{l) = 9098
Sebsysiemm #: 3; dvimagill= 9441
Seboystema 1 3; dvimag2) = 0.058
Swbaystemm 3: 3 dvimagid = 4158
Sebsysiem §: }; dvinag(d) = 4.594

'I'uﬂlvllmge nepﬂvemetﬂdml. -Mmssg
The svsiem couverged after 22 naciin

i

_ijﬂl?&n{_L i ﬁ_nnn;l_m;rg”!uu””
'l"l"l'll'_[_l_ll'llllll llllllllllllll

Fonnnnnnni

.i!!!ﬂ..!,lii:JIIIIIIIIIIIIIIIIIIII

ni
ni
"

Table 6.2a: Parameters file excerpt for the first system case




The heading of the file shows the user various CPU times for the present sysiem. This excerpt
shows the parameters for the first and last equations in this system; subsystem number 1,
output equation number 1, and subsysterm number 3, output equation number 2. For each and
cvery term of the ontput equation, the six covpling values are listed (sscho, numbv, bvexp,
numdy, dvexp, and sign), as well as the value of the term-coefficient, for the converged
system. Note thal a term that has a non-zero value for miunby and bvexp will not have values
for numdv and dvexp, and vice-versa. (A term is coupled either to a subsystem design
variable or to another subsystem output equation; not to both). This nullity is denoted by
asterisks in the data file. Appended to the end of the parameiers file are the numerical values
for every design variable in the system (there are 8 total), the values of the average positive
and negative coefficients, and the number of iterations that were required for convergence.
Table 6.2b lists similar data, for the second system case. In this systern, note that there are

6 total design variables.

63



CPU time required to build and converge the system (seconds)=  0.37043
CPU time required to acquire the sensitivities (seconds)= 0.03642
The time required to execute the entire program (seconds)= 0.46114

SS# 1 BV# 1 term# 1

sscho= 0; numbv=**; bvexp=*; numdv=3; dvexp=4; sign=1; coefficient= 4.581233
SS# 1 BV# 1 term# 2

sscho= 3; numbv= 2; bvexp=2; numdv=*; dvexp=*; sign=1; coefficient= 678.811371
SS# 1 BV# 1 term# 3

sscho= 3; numbv= 1; bvexp=1; numdv=*; dvexp=*; sign=0; coefficient=  0.000078
SS# 1 BV# 1 term# 4

sscho= 3; numbv= 1; bvexp=3; numdv=*; dvexp=%*; sign=0; coefficient= 2.572560

SS# 3 BV# 2 term# 1

sscho= 0; numbv=**; bvexp=*; numdv=1; dvexp=1; sign=0; coefficient= 1.373290
SS# 3 BV# 2 term# 2

sscho= 2; numbv= 2; bvexp=2; numdv=*; dvexp=*; sign=2; coefficient= -880.118236
SS# 3 BV# 2 termit 3

sscho= 2; numbv= 1; bvexp=2; numdv=*; dvexp=*; sign=1; coefficient= 2147.589773
SS# 3 BV# 2 term# 4

sscho= 2; numbv= 3; bvexp=3; numdv="*; dvexp=*; sign=0; coefficient= 4.540861
SS# 3 BV# 2 term# 5

sscho= 1; numbv= 2; bvexp=2; numdv="*; dvexp="*; sign=1; coefficient= 8251.212239
SS# 3 BV# 2 term# 6

sscho= 2; numbv= 1; bvexp=3; numdv=*; dvexp="*; sign=1; coefficient= 8.121039
SS# 3 BV# 2 term# 7

sscho= 0; numbv="**; bvexp=*; numdv=1; dvexp=5; sign=1; coefficient=  3.085842
SS# 3 BV# 2 term# 8

sscho= 2; numbv= 1; bvexp=2; numdv=*; dvexp=*; sign=0; coefficient= 637.509406
SS# 3 BV# 2 term# 9

sscho= 2; numbv= 3; bvexp=4; numdv=*; dvexp=%*; sign=1; coefficient=  6.200842
SS# 3 BV# 2 term# 10

sscho= 2; numbv= 1; bvexp=1; numdv="*; dvexp=%*; sign=2; coefficient= -0.000756

Design variables for the current system of equations:
Subsystem #: 1; dvimag(1l) = 5.300

Subsystem #: 2; dvmag(1) = 3.497
Subsystem #: 2; dvinag(2) = 1.911
Subsystem #: 3; dvmag(l) = 1.425

The average positive coefficieni=  632.7095337
The average negative coefficient : -157.0396881

The s;stem converﬁed after 23 Bass%.

Table 6.2b: Parameters file excerpt for the second system case
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Ta provide sotne indication as to the complexities of the couplings, even in these small
and simple systems that have been created, observe (igure 6.1. The figure is a block diagram
that illostrates the module inter-relations for the rable 6.2b system. Realize that the
couplings of only 2 of the 7 modules are drawn: those of the (irst and last equations, of

the 7-aquation system.

Figure 6.1: Block drawing depiction of the second system case couplings

Output magnitudes
While the parameters filz provides the user with the detailed nature of gach term, the
outegns.dat file shows the user the final, converged magnitudes of every equation in the

system. Again, these magnitudes represent the summation of the magnitudes of every term
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in each equation. Table 6.3 shows the final magnitudes of the 7 output equations for the two

SYSl2im Cases.

Case 1 Case 2
bvmag( 1, 1)= 129.1590¢ bymag( 1, 1)= 90.9539
bymag( 1, 2)= 597.945% bvmag( 1, 2)= 688.1819
bvmag( 2, 1)= B865.3136 bvmag{ 2, 1)= 58.7405
bvmag( 2, 2)= 17.1665 bvmag({ 2, 2)= 7349493
bvmag( 2, 3= %0L0440 bvmag({ 2, 3)= 1960485
bymag( 3, 1}= 310.3985 Dbvmag( 3, 1)= 527.6104
hvma 2)= 160.1847 bvmag( 3, 2)= 223.5547

Table 6.3: Output magnitudes for the two system cases
Note primarily that all output equatons are positive. This {as discussed in Chapter 4)
prevents undefined expenentiations, that would be encountered when attempling 1o raise a
negative output cquation 1o a fractional power.

Recall that the user has the option to compute the total derivatives of every output
equalion in the system, with respect 1o every input (design vacdiable). Table 6.4z lists Lhese
total derivatives for the [irst system case. The option to compute the derivatives was chosen
when executing the input file. When the uscr decides to compute sensitivities, he or she must
also make two other decisions, First, whether or not te use normalization lechnigues in
atlaining the total denivatives. Second, whether or not 10 use the default LU-decomposition
matrix conditioning parameters for attaining the total derivative matrix, from the left and
right hand side matrices. For both of the system cases presented here, nommalization

techniques were employed, and the defanlt decomposition paramelers were vsed.
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The condilion number of (hiy ssflmate ke 19.637T%

dYMX( 1, 11=  -L11TI5939 dYAX( 4, S1=  GOGODDODOD0
dYAX( 1, D= MISLIS0ST2 AV/X( 4, 6= O.DGOKO0HHN)
dYMX( 1, H=  00GELIE5EI2 dYAX( 4, Hi=  LOMOH0M0
dY/AdN({ 1, )= 5912584345 AYAX( 4, 8= GUOGODOBOBIG
dYiXi 1, 5= DITMEIS6S dYMx{ 5, I'=  -LETTI6EI508
dY/AX( 1, 6= BLAPISO0GI0N dYMXC 5, 2= 10.0051004791
dYMN{ 1, b= -OD0OS2R1163 SVHX( 5, M= MESMTIHE
dYAIXI 1, 8= 4.2FM354019 dYMX( 5, A)m  ILAAES09ZAGY
dYAX( 2, 3= -1OGGROS154 dYAX( 5, 5)= 9081594344
dYAN[ 2, 2= S981107TIT0R JYMDNL 5, 61m 1980003662100
dY/Md¥( 2, 3= QI9IES19126 dAYMX( 5, Ti=  -00ZTTIRISIS
dYMX({ 2, )= 160713517782 AYMX( 5, B)= 1028619198408
dY/dX{ 2, 5w DLAGT4SETESD dY/XC 6, le  -LOBOTIHMST
AYMXL 2, 6= 1023620376587 dYAIX{ 6, 1= GEGO40TEIOA
dY/MX({ 2, Ti=  -LOZ70002671 dY/MX( 6, = L4NEI0GRISI
dY/MX{ L, 8)=  S.J17T4S6ENS dV/idX( 6, )=  LETTSESIIL
AYAX( 3 L= -RTTTORGISE0 dY/MX{ 6, Sia  (LGIGIS108EY
AYHIX{ 3, 2= LG6S63IB6ITR dY/MX] 6, G)=  13204BG67SEMTL
dY/MX( 3, 3= D30ZEIG000 dYt X 6, The  QLLTSTHESG0L
SYAX( & b= 263T4110794) dY/X{ 6, )=  GASWTITID
AYAX{ 3, 5= LESEAIMIN2 dYAX( 7, L= 00436308160
dYidXi 3, 6)=  361.2666GI5977 dYMX( 7, 2v= 02620775700
AYAX( A Tia -0 042340665 JYME( T, D= DOLT0LO2IS0
dYAN( 3, 8= 12767932610 AVAMEX] T, d}=  0.AS10763645
AYAXC 4, L= G 000000 JYMX( T, Bt= LOSIL3L0185
AYMAX] 4, 2= DOMMM0G00 dY/X( 7, 6)= 2369910430908
AYAMX( 4, B = (0000000000 dYAX( 7, Ni=  -GOMI3054742
dYMX( 4, 1= (556815532 dYAX{ 7, Sl 123LITTEMGS

Table 6.4a: Total derivative matrix for the First system case

Take note of two aspects of the information in this file. First, the relative smal! sizc of the
condition number. With a small system such as this one, matrix ill-conditioning is not
expected, and hence a small condition number is intiitive. Moreover, normalization
techniques were employed in attaining this matrix, The purpose of normalizing cach matrix
element is W enforce all matrix elements (o be of the same order of magnitede, thus reducing
Lhe likelihood of an ill-conditioned matrix. Second, note the dimension of the malrix: (7x8).
The 7 rows represent the 7 subsyslems in the system; the 8 columns represent the 8 design
variables in the system. Similar data is seen in table 6.4b [or the second system case. Note
that the condition number 15 of similar magnitude, and that the matrix is now cnly of order

(7x6), as Ihe second system containg only 6 design variables.
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The condilion numbet of Lhis cxtimale Ls: 17.54263
dYsdX( L, L= O, OOONHI) dAvidXi 4, 4) = 267 4T4TEM
dY/dX( 1, 2= -0.0568428747 dYAX( 4, S)=  -7554438920
d¥YrdXi 1, 3= 0 TR G040 dYMX[ 4, 6= 198240002 15
dYMX( 1, 41 = 0.1EE5984277 dYdXxi 5, 1) = O DOOOOHNON
dYAX( 1, Fj= D00 | AG dYMXE & 1)= -0 JABIIR T
dYmdX({ 1, &= L SO058T 2869 dY/dX( 5, 3= QDB T T
dYmdX( 2, 1)= 0, DOOOO0O00 dY/dX( 5, H= L 5640783131
dY/MdX( 2, = 6.GE2ERG1427 dY/MIX{ &, 51 = 00269998 T
dYHX{ 3 3= 0, E881519248 a¥/dX( 5, G w G O1654 X708
dYMX([ 2, 4im L. 0E9195305 dYAMX( 6, 1= DA
dYAX( 2, 5= 0000014501 3 AN 6 2} = =049 304052
AVMXE 2, 6l= 110316715240 dY/MX( 6, 3)= 5240863563
dYMAN{ X 1i= 0, DOORM00 dYMAX{ &, )= 009531 53
dYX{ 3 )= 00557988882 AV 6 5= =L 6946302 36
dYMX] 3, A= -0INTIZ0 d¥MX{ 6, 6)=  I1EBLEI3EI942
AYMXD X 4= - L XA%G 2503 0R dYMXL 7, 1}= L
dyYidxi( X 5= =001 429401 dYAX( 7, = L 1923779994
d¥dx{ 3, 6= Qo1 D62 B0M) d¥dx{ 7, 3= 0LO0HZIS0RIZ
dYidX{ 4, §1= O 0000000 dY/MX{ 7, 4} = 0.69 330030465
dYAdX( 4, 3= 01698314250 dYMX{ T, Sl = -O.001802%7i7
dY/EX( 4, 3= 0. 1532086372 AYHX( T, 6} = S G5T1¥ZZ 166

Table 6.4b: Total derivative matrix for the second system case
. i : brouti

Recall that onc of the most important user options is whether or not (0 write each

equation of the converged sysiem (0 2 separate subroutine. This could be beneficial to
researchers who are concerned with system reduciion sirategies. Recall that once the user
decides 1o create such a subrouting, the user must decide which language 1o write the
subroutines in: FORTRAN 77 or ANSI C. For system case 1, the subroutines are wrilien in
FORTRAN (in file egns.for), and lor system case 2, the subroutines are writien in C (in file
egns.c}. Referring back to table 6.1, one can see that two values near the end of table are in
italicized print. The "1" in the case 1 column denotes a choice of FORTRAN, while the 2"
in the case 2 column denotes a choice of ANST C. Table 6.5a is an excerpt of the subroutine

IHle for the first system case, showing the fArst and last subroutine entries. Similarly. table 6.5b

pertains to the second system case.
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Subroutine eqoiMii
Dimension bymag{99.99),dvmap(99.,6)
Common byvmag

dvmap( 1,1)= 5.156
dvmap( 1.2)= 1,734
dvmag({ 13)= 9.702

bvmag{ 1, 1)= +{ 0826497 dvmag( 1, 1N**25)
£+ 0.0000%4%*bvmag{ 2, 1**20)+ 0064643 bvmag! 2, 1)**1.0)
i 0.537248*bymag! %, 1)**33)+{ 5189545 dvimagl 1, 2)¥*50)
fH 0.0000H)* 0+ 0 W 0. MR * o+ 0 )
Fi 000K 4 0 (2% 0. (KM * 0+ 0 ¥
FEY] 0.000000 i+ 0 i 0. HHHHH* 0+ 0 }
4 0600000 * 0 W 0. 00HNHY* 0+ O }
4 00000+ o+ 0 i 0.000000* LT )
i4{ 0.0 0000*> O+ O 234 G.000000% 0+ 0 )
IRy 0LHH000* 0+ 0 H 0.000000* 0+ 0 )
£+ 0.000000* bt 0 )

Return

Eod

Subroutine eqniH3T

Dimension bymag(99,99),dvimag(99,6)
Common bymag

dvmag{ },1}= %.441
dvmag{ 3,2)= 058
dvmag{ 3,3)= 4.188
dviag! 3,4)= 4.594

bymag( 3, 2)= H 0.765490*dvmag( 3, 4)¥*2.0)
i+ 4.665359*dvimag{ 3, **50)+( 2905074%bymag{ 2, 1)*%.25)
+( 2.905074*bvmag( 2, 1)%*.25)( 0.000183*bymag{ 1, 1)**2.0)
f+ 1.455039*bvmag( 1, 2)**.50)-( 0.042755%bvmag( 1, 1)**1.0}
P+ 172523101 dvmag( 3, 2)**1.0)+( 2.067727*bvmag{ 1, 1)**.50)
1 0.434359*dvmag{ 3, 4350+ 0.473740*dvmapl 3, 4)%*2.0)
+{ 25.814882%dvmag( 3, 2)**.33)( B.047374%dvmagl 3, 4)**20)
f 2543B52*bymag( 2, I*25) LOS9242%dvinagl 3, B**10)
#+{ 0.000000* 0+ 0 e D.000000+ o+ 0 )
I+ 0.080000* 0+ 0 H( 0000000+ o+ 0 )
i+ 0.000000* 0+ 0 )

Table 6.5a: Equation-subroutines for the first system case
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void eqn0001{void)
{

dvmag| 1][1]= 5.300;
dvmag| 11[2]= 3.377;
dvmag[ 11[3]= 3.647;

byvmag[ 1][ 1)= +( 4.581233*powidvmag[ 1][ 31,33)
+{ 678811371 *pow(bvmag]l 3 2),-L))+( 0. 78* powibvmagl I3[ 11,200
+[ 2.572560*powhvmagf 3) 11,500+  0.0MH00* 0+ 0 )
+( 0,00 * 0+ 0 H DO * 0+ 0 )
+( 0000000 * 0+ 0 I+ 0000000 * 0+ 0 }
+( 0.000000* 0+ 0 H 0.00H0000 * - 0 )
+i 0.000000* g+ 0 H 0000000 0+ 0 )
+( 00000 0+ 0 )Lk 0.000000* L | )
+( .000000* 0+ 0 L) 0,000 000* 0+ 0 )
+( 0.000000* 0+ 0 I 0000000+ 0+ 0 )
+{ 0.000000* 0+ 0 bH

)

void eqa(07{void)

{
dvmagl 3]|t]= 1.425;
bymag[ 3] 2]= + 1.3732M* pow(dvenapl I3[ 13.2.0))

-{ BBO.118236*pow(bvmag| 2] 21-L3+( 2147.589773*pow(bvmag[ 2][ 1],-L))
+f 4.540861*pow(bymag] 2][ 3L.S0)+( 825L.212230%pow(bvmag] 11 2]-1.))

+( 8121039 powbymag] 21 11500+ 1085842 powidvmagl 3 1L.25)
+( 637509406 pow(bvmag] 2Z)[ 1]-1.py 6.200842*pow(bvmagl 2] 3},33))
-{ 0.000756*powi(bvmagl 2][ 11,2.0%) H O00000* 0+ O )
+{ G00000-0> 0+ 0 I G000 o+ 0 )]
+{ D.000G000> 0+ 0 I 0. 000000* o+ 1) )
+{ 0.0 B0 0+ 0 I+ 2000060+ 0+ 0 )
+{ R ITC 0+ © I+ 0000000+ 0+ 0 )]
+{ 0.000000* 0+ 0 )

Table 6.5b: Equation-subroutines for the second system case
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In comparing the Iwo tigures, first note that they arc wrillen in two different computer
languages. Notice that the subroutine titles are numbered sequentially. The first equation of
subsystem number 1 is written 10 subrouting 000/, while the second equation of the third
subsysiem is written to subroutine 0007. The FORTRAN subroutine (systemn case 1) requires
the dimensioning of the dvmag and bvmag arrays, and a common declaration of the bvmag
array. The C subroutine {sysiem case 2} initiates by using the "{" symbol. The primary code
logic of cach subroutine, in both languages, is twofold: declaration of the current subsysiem
design varables, and the output equation assipnment. The latter is based on the values of the
coupling array parameters, for each and every term. These parameters have been outlined in
the params.dat file, as previously discussed. Completion of the FORTRAN subrontine is
achieved by using the resurn and end statements. Completion of the C subroutine is achieved
by using the "} symbol.
Closure

This chapter has presented two example system cases that have been created by
CASCADE. The first system of equations was created and solved on one machine. The
second system was creaed and solved in parallel, by using PYM. The intent of this chapter
was (0 give the user & feel for the aesthetic of the input and output of a CASCADE generaled
syslem. Given this foundation, the next chapter will analyze the resuls of these example
systermns, and other CASCADE generated sysiems.  In doing so, the dynamics of a randomly
generated complex system ¢an be more (ully understood. For a full listing of the inputfoutput

files that have been outlined in this chapter, refer o Appendix I1L
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Chapter 7

Macroscopic analysis of numerous CASCADE outputs

Of primary concern to a system analyst is the CPU time required to converge a
complex system. Smaller CPU times result in smaller computational costs. It is therefore of
great interest 10 reduce the time required to build and converge an analytical complex sysiem,
as much as possihle. Many test systems have been penerated by CASCADE to obtain a wide
range of time-related results over a wide range of system sizes. Systems that were solved
sequentialty on one computer were solved both on a local SUN workstaton (named
Hyperion), and on a 12-processor mini-supercomputer (named Moriarty). For the present
time, systetns that were splved using distributed computing (PYM) were solved only on local
SUN stations, similar in specification to Hyperion. Virtnal machines having $, 9, and 13
computers were used, so a8 to have 4, 8, and 12 slave machines, respectively. Figures 7.1 and
7.2 are plots of CPU time vs. system size. The former plots results for the single computer

scenario, while the latter plots results for the PYM scenario,
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CPU time vs System size
Resuits for Hyperion and Moriarty

BPUﬂme(mondiI
-c38888

2000 4000 6000 BOOOD 10000
System size (number of equations)

» Morarty data e MOTITY Pbgression
= Hypericridsts = Hyperion reqrassion

Figure 7.1; Single computer CPU time results

CPU time vs. system size, using PVM
4, B, and 12 slave machines

-§4888348

CPU time (seconds)

2000 4000 GODD 8000 10000
System size (number of equations}

| 2= 4 slave machines -=- 8 slave machines  —+- 12 slave machines |

Figure 7.2: Virtual machine CPU time results, using PYM
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Upon first observing figure 7.1, it is quite obvious that for all system sizes, the
Moriarty supercomputer is far more efficient than a local workstation, CPU times are roughly
4 times shorter for sysiems solved on Moriarty than those solved on Hyperion, Moareover,
there is an almost finear correlation between CPL titne and system siza, as the two regression
curves very closely maich the two sets of data points.

From several points of view, the distributed computing data does not live wp 1o jts
expectations. As expected, there is a general upward trend in CPU time, with an increase in
system size, for all 3 scenarios (4, 8, and 12 slave machines). However, the CPU times are
larger than those cormesponding to the single machine data of fipure 7.1, At first glance, this
appears to be counter-intvitive. Ong would think that a system that is solved my multiple
machines would be constructed and converged more quickly than a sysiem that is analyzed
on one machine. This was not found to be the case.

Upon comparing the 3 curves themselves in figure 7.2, one sees that for the most part,
the systems that were solved on only 4 slave machines converged most quickly, followed by
systems that were solved on 12 machines, followed by systems that were solved on 8
machines, which required the longes: time to converge. This again appears to be counter-
intuitive. If would seem likely that a system solved using parallel computing techniques
would soive faster, when using a greater amount of slave computers on the virtual machine.
This was not found to be the case.

The above data only considers the amount of time to convergence, and does not take

into consideration the munber of iterations that these systems required, 1o converge. Before
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any strong observations can be made, the iterative-related data should first be taken into
account.
lterations to convergence

The CPU-time results that were just presented are, in part, & function of the number
of iterations that are required by the system, to gain convergence, It appears likely that the
number of iterations to convergence is a function of both the size of the systern, and more
importantly, the nature of the complexities {couplings) of the system. Figures 7.3 and 7.4 plot
the number of iterations to convergence vs. systern size, for both single computer and PVM

SCenarios.

Number of iterations vs. system size
Results for Hyperion and Morlarty

-l

-3 8888

Number of iterations

0 2000 4000 6000 BOOO 10000
System size (number of equations}

[ Moriarty datn -~ Hyperion data

Figure 7.3: Single computer Iteration results
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Number of iterations vs, system size
PVM resufis: 4, §, and 12 machinas

System size {(number of squations)

|+4mm - & shivrm machines +12Mm-dim|

Figure 7.4: Virtual machine Iteration results, using PVYM

Upon first observing figure 7.3, several observations can be made. As expected, there
does appear to be an upward trend in the number of iterations to convergence, as the sysiem
size is increased. However, there are several spikes on the two graphs, where smaller systems
required a comparatively large number of iterations to converge. For instance, the 500
subsystern system that was solved on Ryperion required over 9 iterations to converge, while

uit tiger 2000 SooSysenr syswnr reaarea by a0 hErauons o converge, A'sunudr spike s,
seen on tie Mondrty ploi, where neariv 70 uerations were reqyired to converge a 3000
subsystem system, while only 40 jigrations were required to converge a 6000 subsysiem
system. These discontinuities can be attributed 10 excessive coupling compigxities. Ofien

times, strong reciprocal couplings will be generated in a system. Such couplings are
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characterized by a group of terms in several output equations that are all "strongly coupled”
(an exponent of "2") amongst each other. For example, a term in output equation A is
strongly coupled to terms in equations B and C, and a term in equation B is strongly coupled
back 10 a term in equation A and to a term in equation C. Additionally, a term in equation
C is strongly coupled back to terms in both equations B and A. This type of scenario might
comprise 2 coupling loop that does not converge easily. Realize that a large system may have
many such reciprocal coupling loops, and/or coupling loops of much greater size.

The distributed computing iteration resulis are seen in figure 7.4. These results appear

-tz hedevi cnmalnted thansha sinrlesachinesesnlts of firvre 2 4 _Eirst, the. pppencs 1 he

subsystems that were analvzed earfier, on the same iteration. For example, a single computer
is analyzing subsystem number 24, equation number 2. The second term of this equation is
a subsystern coupling, to subsystem number 18. Subsystem number 18 was analyzed earlier
than subsysiem number 24 (on the present iteration), and thus the newly updated data for
subsysiem number 18 is already available to subsysiem number 24, In the case of a PYM-
analyzed system, it is often the case that 10 or more subsystems are being solved at the same
time. In the example that is being presented, it may be the case that subsystems 15 through

25 are being analyzed at once. Hence, subsystem 24, for example, will be sent data for
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subsystems 15-23 and for subsystem 25 from the previous iteration. Subsystem 24 will not
have access to the most recent changes made to other subsystems that are currently being
analyzed. This may, in the end, require a greater number of iterations to convergence, for the
enlire system. Aliematively, it may not matter much at all. This dara access differential
between the single computer and PVM results dikely explains the scatter that is seen in the
fipure 7.4 data.

Recall from the previous subsection that CPU times for the PVM data were both a}
greater than those for the single machine data, and b) un-correlated, with respect to the
nuntber of machines that were used to analyze the systems. Given the iteration data of this
subsection, it may be beneficial to normalize the CPU times for the PYM data, with respect
to the number of iterations to convergence. Table 7.1 presents the CPU time per iteration,
for the 4, 8, and 12 slave machine scenarios. For the purposes of this analysis, data was also

obtained vsing a 20 slave machine virmal machine, for system sizes of 1000 and 2500

equations.
System size 4 slave & slave 12 slave 20 slave
machings machines machines machines
100 0.246 0.264 0.275 -
500 1.124 1.139 1.183 -
1000 2,730 . 2810 2814 2.944
2500 6.717 6.830 6.374 7.047
5000 11.030 11.224 11.535 -

Table 7.1: CPU time {seconds) required per iteration, for the PYM systems

80



This table indeed clarifies certain issues. Now, there does seem to be a cormelation
between the CPU time per iteration, and the number of staves on the virtual machine. The
comelation, however, is the opposite as that expected. With more machines, sysiems are
taking longer 10 solve. This table indicates that at present, PYM is not providing a savings
in solution time, and the reason is that message passing is dominating the time required
for convergence. To have each subsystem solved on a separate maching, recall that a great
deal of necessary information must first be sent to that machine, in order for the analysis (o
take place. This information inclides 2 good deal of large, multi-dimensional arrays. In order
o successfully pass these arrays (using the FORTRAN programming language), it was
necessary to both a) statically ditmension the arrays at a very large onmber, and b) send the
elements of the aray cne-by-one. Had a better means been found to transfer the amay
information from the master to the slaves, it is likely that the full benefit of having a virtnal
machine with 10 or more slave machines would have been encouniered,

The sensitivity analysis of the converped system can be very useful to system-
reduction researchers. The matrix of total derivatives provides an indication as to how
sensitive each system output is to each system input. As discussed in the last chapter,
normalization techniques are often vsed, so as to improve the nomerical condition of the lefi
and right hand side matrices that are used in the LU-decomposition, to attain the total
derivative matrix. The benefits of this procedure will now be realized.

Figure 7.5 is a plot of the CPU time required to compute the total sensitivity matsix

v3. the size of the system.
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Sensitivity CPU time vs. system size
Normailzed and un-Normailized data
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Figure 7.5: Sensitivity CPU times vs. system size
For smaller systems, the CPU times of the normalized and un-normalized Systems arg
comparable. As the system size increases, the CPU time required to compute the sensitivity
matrix is slightly shorter for the normalized matrices than for the un-normalized matrices.
This reduction in CPU time is likely attributable to the numerical conditioning provided by
the nommalization procedure. Table 7.2 is a lists condition numbers vs, system size, for both

normalized and un-nomalized scenarios,
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number of condition number - condition rumber -
system equations nrormalized sensitivities Un-normalized sensifivities

10 6.418 3618.588

20 10.211 1942.187

50 25.586 3112120.500

100 835.608 885146.875

200 94,514 no solution

500 282,544 7622248.000

Table 7.2: Condition number comparison of normalized / un-normalized data

The differences in magnitude are astounding. The nommalized data has matrix conditicn

nutnbers that are far lower than those for the un-normalized data. Using un-normalized data,
a total derivative solution could not be found for the 200 equation system exampile, depicted
in the above table. Note that the general trend is an increase in condition number occurs with

an increase in system size. As was the case with number of ilerations (o convergence,

excessive coupling complexities could result in high condition numbers associated with small

systems. This is the case with the 100 equation, normalized system in the above table.
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Closure

Given the presentation of two example system cases in chapter 6, this chapter has
attemnpted to quantify the system outputs of numerous executions of CASCADE on a more
global scale. Foremost, this chapter has analyzed the effect of system size on both the CPU
time required (o build and converge a system of equations, and the number of iterations to
convergence, for both sequentially created systems, and parallel-created sysiems vsing PYM.
In 5o doing, the constructions and solutions of a sequentially created systern on both a  single
workstation, and on a supercomputer were contrasted.  Also, the comparison of system
results that were attained by using distributed computing, with varying numbers of slave
machines (4, 8, and 12), has taken place. Moreover, the effects of matrix normalization on
the computation of the total derivatives of a system of equations were analyzed, from both
a CPU-time and a numerical-conditioning standpoint. The final chapter will attempt to
summarize the motivation, background, and results for this thesis, and will attempt to address

recommendations for future work.



Chapter 8

Conclusions

Summary

The emerging field known as Multidisciplinary Design Optimization inherently has
great petential for becoming an industrial standard for the design of Iarge, complex systems.
The basik methodology is simple: divide a large task or system into numerous smaller, but still
inter-related subtasks. These subtasks can be divided among the participating design groups
and solved simultaneously, it a non-hierarchic manner. The analysis of a complex system
must take place on 2 powerful computer. Hence, it is clear that the MDO methodology lends
itself well te distributed computing environments, in which one large computational task is
divided among numerous computers, connected on a network.

The motivation for MDQ is 1o reduce the time and cost required for the design
process. Most complex systems are non-hierarchic in nature, and require an iterative scheme
(and initial approximaticns) to converge. Task sequencing researchers attempt to find the
optimal sequence (crder) in which to analyze the systern modules, 50 as (o gain the converged
solution in the least amount of time. System reduction researchers seek to effectively reduce
the size of a complex system, with a minimal loss in accuracy. Researchers have attempled
to temporarily suspend andfor permanently eliminate output couplings that were

comparatively found to be less substantial.
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Before these MDO-strategies can be implemented in the design process of such large
systems as automobiles and aircraft, they must be tested. A method for analytically simulating
real-life, large system couplings is necessary. The simulation should be able to predict the
output sensitivities of the system; the change in the system outputs with respect to a
prescribed change i the design variables of the sysiem. The stmulation should also lend itself
well to a distributed computing environment. The numerous design tasks of a large system
design should be computationally distributed among the participating design groups. The
simulation should be rebust; it should accommodate 2 wide range of system sizes and
cotnplexities. Finally, the simulation should be randorm; it should create design scenarios that
may have been initially unforeseen by the system analysts. To this end, the author has
designed a computer program, coded in FORTRAN, and called CASCADE (Complex
Application Simulator for the Creation of Analytical Design Equations),

CASCADE accepts user inputs to randomly construct and then converge a large
system of complex equations. This system of equations should be viewed as an analytical
representation to a real-life design scenario. After the user tells CASCADE the desired size
of the system, the narure (the initial coefficient, the sign, the coupling, and the exponent) of
each term, of each equation, of each subsystem of the system is determined randomiy, using
a random mumber generator. The non-hiefarchic system is constructed on the first iteration,
and converged on #ierations thereafter, after having initialized each and every output eqoation
to a value of unity. This procedure was first implemented on a single computer format,
cycling though all of the subsystems in the system, one-by-one, in a sequential manner. The

procedure was later modified for solution in a distribwed computing environment, using
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Parallei Virmal Machine (PVM). A virtual machine is construcied, consisting of numerous
local workstations. Each subsystem in the constructed system is then sens to a separate
computer for analysis, such that the nurnber of subsystems being analyzed at one time is equal
to the number of computers on the virtual machine. Inherently, this appears to be more
efficiert, and more realistic,

Once the system is constructed and converged, either in a single computer or
distributed computing manner, CASCADE offers numerous post-convergence features. The
Global Sensitiviry Equation method can be used to compute the total sensitivities of the
system outputs, with respect to the inpuis. This is done by first computing sensitivities on a
local Jevel. The matrices from which the total derivatives are computed can either be
normalized or not. Normalized matrices offer a higher likelihood of an accurate solation. A
second important feature is the option {o write each eéquation of the converged system to a
separate subroutine. This could be beneficial to sequencing researchers. Again, these
researchers might perturb the design variables of the converged system, and then analyze the
various ordering possibilities of the subroutines to see which sequence would attain a new
converged solution most quickly. A final important feature is the option to write the
converged sysiem to a parameters file. This file provides a comprehensive listing of the
nature of each term in the system that has been construcied, as well as other system statistics,

The two chapters preceding this chapier have atiempted to present and discuss the
output system resuits of executing CASCADE. The former chapter presented two example
cases of small systems that were created by CASCADE. The first of the two sysiems was

created on one computer, by sequentially cycling through the subsystems of the system. The
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second of the two systems was created in a distributed computing environment, by using
PVM. Excerpts of the input file, and the output files (parameters, output magnitudes, total
sensitivities, and equations written to subroutines) were presented. The laiter chapier has
analyzed the resualts of nurnerous executions of CASCADE on a more global level. The single
computer results saw an increase in CPU time, and an upward trend in number of iterations
1o convergence with an increase in system size. As expected, systems that were solved using
the Moriarty supercomputer solved much faster than those solved on the local Hyperion
workstation. Unfortunately, the PYM results did not live up to expectations. The CPU times
for the parallel machine-generated systems were larger than those for the single compater
systems. Moreover, CPU times per Heration were larger, when a larger number of slave
computers were used on the virtual machine, Tt is likely that the time required to pass
information from the master machine to the slave machines is what dominated the
convergence time for the PVM scenarios. This information passing included the static
dimensioning of large, multi-dimensional arrays, that could only be sent from machine to
machine element by element.

As for the computation of the total desivative matrix by using the GSE method, matrix
normadization was found io be beneficial. The condition number of the solution matrix was
fower when using normalization techniques. This is an indication of a more reliable numerical
estimate. The CPU times required 1o attain the normalized derivative matrix were also lower,

than those required to attain un-normalized derivative matrices.
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Future work

The first step that should be taken for the advancemant of this research would be to
improve the results associated with distributed computing and PYM. A method must be
found to more effectively pass the large array data from the master to the slave. It is obvious
that the use of numerous computers to solve a small portion of a large problem is more
efficient than the use of only one computer 10 solve the entire large problem. This proves that
messape passing was the dominating factor in the time taken to build and converge the
systems, while using paraliel processing techniques, An interface is required. that will enable
the PYM message passing to avoid the performance degradation due to communication

through the operating system and 2 transport layer protocol, Refer 1o figure 8.1.

JAnolication lication
destred _ PVM - pvM
intert: T l

TCRAUDP | TCRUDP

: G=
G G
- P
A At
Pilot Project Goal Full Proposal Gaal

Figure 8.1: Direct message passing to the Network layer
This desired interface allows PYM to execute the application (CASCADE), and bypass
protocol overhead of UDP and IP, and communicate directly to the low-level network
interface. For this preliminary work, the low-level network has been Ethemet-based;

eventually, a conversion to an ATM-based network is foreseen.
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Another titne-improvermnent ¢could be made by setiing up a virtual machine whose hosts
censist of the numerous processors on a tulti-processor supercomputer. This was the
original intemt of this research. A method was not found to achieve this scenario, and hence
the multi-workstation virtual machine was implementad instead.

The size of systems created by CASCADE has been limited by the static dimensioning
allowances of the FORTRAN programming language. If this were overcome, systems of
infinite size could potentially be constructed and converged., This would prove that the
principals of MDO could be extended to systems of any imaginable size, with couplings
having any imaginable complexity.

A final idea is to physically combine the CASCADE package with the other MDO-
related program methodologies that have been discussed, such as task sequencing software
and couzpling suspensicn software. An MDO-framework is envisioned, in which a complex

system could be randomly buit and converged, then optimally altered and re-converged.
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