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Abstract  Many of the method development efforts in the field
of multidisciplinary design optimization {MDO) attempt to sim-
plify the design of a large, complex system by dividing the system
into a series of smailer, simpler, and coupled subsystems. A rep-
resentative and efficient means of determining the feasibility and
robustness of MDO methods is cruaal. This paper describes the
construct and applications of a test simulator, CASCADE (Com-
plex Application Simulator for the Creation of Analytical Design
Equations}, that is capable of randomly generating and then con-
verging a system of coupled analytical equations. of user-specified
size (Hulme and Bloebaum 1996). CASCADE-generated systems
can be used for test sequencing and system reduction strategies.
convergence strategies. optimization techniques, MDO methods.
and distributed computing techniques tvia Parailel Virtual Ma-
chine), among others.

1 Background

It is desired to acnieve a systematic approach to the inte-
grated, concurrent design of products and their reiated pro-
cesses. including manutacture and support. Lhe interaction
of all participaung engineering groups throughout the de-
sign cycle 1s a truty muitidiscipiinary etfort. Many of the
recently deveioped capabilities to address concurrent design
have stemmed from tne field of muitidisciplinary design opu-
mization (MDO). The MDO apptoach is intuitive 1n that one
often attempts to decompose one large task into a group or
smaller. interretated icoupled). and more manageable tasks
{Sobieski 1982). The large task is often referred to as a sys-
tem. and the smailer. interrelated tasks are called subsys-
rems. Each subsystem contains destgn variables. as well as
additionai unknown outputs. often referred to as behaviour
variables. These subsystem vanabies ieither design or be-
haviour are collectively referred to as modules of the system.
Each subsystem can be thought of as a participating design
group of a large scale design. An example of this wouid be the
aerodynamics division of the design of an aircraft. One goal
of MDO is to anaiyse these subsystems concurrently, thus
speeding up the design time of the overall product. This
method was first established by appiving a linear decompo-
sition method to a hierarchical {top-down) system {Sobieski
1982).

Most design o cies contain participating groups that in-
reract laterally. Such design cycies are thus nonhierarchical
in nature. The giobal sensitivity equation { GSE) method was
the first approach to extend the concepts of the linear decom-

position method to nonhierarchicai systems (Sobieski 1932:

Bloebaum 1989). This method uses local sensitivities (deriva-
tives that are computed within each subsystem) to compute
total system sensitivities (Hajela et al. 1990). The concurrent
subspace optimization (CSSO) procedure {Sobieski 1990) ai-
locates the system design variables to subspaces, which cor-
respond to separate engineering Jisciplines. Each subspace
performs a separate optimization by operating on its own
unique set of design variables. The coordination problem is
solved by using the GSE. To aid in convergence, heuristic
approaches have been developed to adjust move limits and
related parameters (Bloebaum 1991). A related approach.
called collaborative optimization (CO) (Kroo 1995). decom-
poses the ~roblem further and eliminates the need for sep-
arate system and sensitivity analyses. This is accomplished
bv combining the design variables and those state variables
that couple the subspaces into one vector. These system-level
variables may be shared between subspaces. and hence may
assume nonunique values.

An MDO issue that is the focus of much research today 1s
the concept of sequencing the coupled subsystems. Sequenc-
ing is a metnodology that reorders the moduies in a given sys-
rem. to ailow for maximum efficiency in the execution of the
desien (McCuilev and Bloebaum 1994. 1995). The efficiency
~f asystem can be increased if certain problem-dependent pa-
rameters are minimized. such as cost, CPU time, feedbacks.
or crossovers (Steward 1081: Rogers 1989). A feedback oc-
curs when a system module requires information from an-
sther module that is located later in the design sequence. A
crossover occurs when the feedbacks of two modules inter-
sect. without any transfer of information. The development
of convergence strategies for such coupled systems is of par-
ticular importance (McCulley 1996).

Another area of current research within the field of MDO
is the concept of system reduction. through coupling suspen-
sion and elimination (Bloebaum 1992: Miller et al. 1995).
The decomposition of a large system resuits in a series of
smaller subsystems that are interrelated through couplings.
Because of the enormity of many engineering systems. there
s a need to minimize the complexities of the system. and thus
the time for both design system convergence and sensitivity
analysis. Thus. 1t is advantageous to tind an analytical means
for quanuifving the strengths of these coupilngs. Couplings
that are found to be weak can be suspended for a portion
of the svstem analysis, ot eliminated outright. This concept
provides the foundation for system reduction strategies.

Industry s primarily interested in the way that the var-
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jous participating design groups communicate. An efficient

and natural way for design groups to pass information back
and forth is via distributed processing. The concept of dis-
tributed processing assures that the system design tasks are
computationaily distributed among the participating design
groups. In this way, distributed processing extends the prin-
cipals of MDO to a computer network. This methodology
allows for paratiel communication between the design groups,
and thus provides greater efficiency than a sequential com-
puting approaci. A modern day approach that is used to
achieve distributed processing is the parallel virtual machine
(PVM) coding language (Geist et al. 1994). PVM uses li-
brary calls and message passing to distribute tasks amongst
the individuai computer hosts on the network. Hence, some
researchers are investigating the uses of PVM for the com-
plex systems encountered in MDO. All of these research areas
invoive development of methods to increase efficiency or ro-
bustness in the MDO environment. Hence. all of these efforts
require example problems on which to test their methods.

5 \otivation for rreation of CASCADE

-

It is quite clear that the field of MDO has a great deal of
potential to provide methodologies that can pe used 1in In-
dustry. For this to happen. these MDO methoaologies must
be tested extensively. Researcners typicaily spend a _reat
deal of time and erfort deveioping trial systems to test tneir
metnodologies. These systems are often quite iarge and com-
putationally expensive to deai with. It wouid. tnerefore. oe
-onvenient for these researcners 10 DOSSess a simuiator that is
capabie of generating, converging. and then further anaiysing
an analiyticai representation of a complex engineering system.
The simulator shouid be robust and capaoie of generauing
a svslem wnose coupiing nature is either r:iuom or user-
specined. Lastiy. tne simulation spould be reanstic. n tnat
it shouid aliow for a Jistributea processing ccmmunication
architecture. ’

This paper aiscusses the design and creation of an MDO-
type simulator. "ASCADE {Compiex Appiication Simuiator
for the Creation c1 Analytical Design Equations). CASCADE
can be used lo generate coupied systems of anaivtical equa-
tions of user-spectried size. Thereaiter. CASCADE employs a
system analysis to Jterativeiy converge the generated system.
To add reaiism to the simuiation. this process can be made Lo
take place in a distributed environment. using tne PVM coa-
ing ianguage. After the system iis converzea. CASCADE
uses the GSE method to compute the total sensitivities ot ail
output responses {behaviour variables). with respect to ail
inputs (design variables). This sensitivity information could
potentially be used to anaiyse coupiing strengths tor possible
suspension/elimination or couid be used in an optimization
sensitivity anaivsis. CASCADE writes eacu converged out-
put (behaviour variable) equation to a separate subroutine.
Researchers couid potentially experiment with this sequence
of subroutines to further investigate coupiing strengths. se-
/juencing issues. or convergence strategies. lastly, for test-
ing optimization strategies. CASCADE generates a coupled
ptimization problem. whose variables are both the design
variables and the behaviour variables of the converged set

of equations. [he objective function and eachi constralnt

function of the randomly generated optimization problem are
written to separate subroutines. The problem is then solved.
using the CONMIN optimizer (Vanderplaats 1973).

3 Programming methodology of CASCADE

The CASCADE simulator s described by first addressing the
make-up of the coupled sys'am and the inputs required by
the user. then discusses the means of achieving a converged
system, and finally addresses post-convergence features.

3.1 Preliminaries

CASCADE has been designed to create unpredictable, ran-
domly generated systems of user-prescribed size. Such sys-
tems will best represent the wide variety of MDO problems
that mignt be of interest to researchers. For this reason.
a random number generator is used to make a number of
system-reiated decisions. For example. random number gen-
eration 1s used to determine both the number of terms per
behaviour variable (output e~uation), and an initialized value
for each design variable. By default. CASCADE will ran-
domly generate the “nature’ (i.e. the decision as to which
subsystems are coupled to which other subsystems) of the
couplings. when executed. Alternatively, the user may wish
to speciiy the exact nature of the couplings for the system to
be created. This can be accomplished by creating an input-
coupling data file prior to execution of the main program.
This file snouid contain (a) a dummy character string on the
top line. :b) the integer number of subsvstems in the system
1o be created (n) on the second line. and then (c) an (n x n!
boolean matrix. whose columns dictate the coupiing of the
-vstem. Eor futher details. visit the URL listed at the end of

_als document.

2.2 System construction

Prior to executing CASCADE to generate and converge a sys-
Lem. the user IMust create an input file. The user assigns a
variety of options 1n this file. inciuding the number of subsys-
tems. design variables. and behaviour variables in the system.
{Recall that the user can alternatively specify the number of
subsystems. as well as the exact coupling nature of the sys-
tem by creating the coupling data file explained earlier). The
liser assigns numerous other options when generating the in-
put tile. inciuding convergence options. and post-convergence
options. such as GSE derivatives and a coupled optimization
problem. Once these preliminaries are handled. the system
can be constructed. term by term.

The terms that are generated and combined to create the
coupled set of equations take the form:
]/l'zz«:;.z:j‘y%-s_;‘(‘kwik%"“. (1
where. z; 1s the i-th output of the Y subsystem, anu s a
function of j design variables x and output couplings lrom
other subsystems such as w's from subsystem V. Turther.
ach of these design variables and coupiing outputs can be
raised to some power (bj and d) and is premultipiied by a
roetficient (aj and cg)-

First. the nature of every term in the system is deter-
\mined. as ilustrated in (1), on the first iteration of execu-
vion. For each term in the system, the sign, exponent (vt



of a possible six cnoices), and coupiing nature (coupling to
either a design variable or to a behaviour variable) is deter-
mined. Next, the magnitudes of each term and the sensitivity
of each term are determined. Design variable magnitudes are
identically known as they are initialized by the random num-
ber generator, and held constant. Hence, the magnitudes of
design variable-coupied terms can be identically computed on
the first iteration. CASCADE generates nonhierarchical sys-
tems which require both initial guesswork of the behaviour
variable magnitudes and iteration to converge. The mae-
nitudes of the behaviour variables are not initially known.
For this reason, the magnitudes of behaviour variable-coupled
terms cannot be computed identicaily. The initial guess for
the magnitude of all behaviour variables, on the first itera-
tion, is chosen to be 1.0.

Next. upper upper and lower limits are assigned on the
magnitudes of the terms in each behaviour variable. The
magnitude of each term must be greater than 0.0, and less
than +3500.0. This assures that every term will be positive.
and not excessiveiv “large”. This iimitation takes place to
prevent both a diverging behaviour variable, and an unde-
fined exponentiation of a negative term. Further limited is
the magnitude of the entire behaviour variable equation. once
all terms in the given equation have deen summed.

2.9 Sample CASCADE system

In this sample system. the user nas decided that the system
wiil have three subsvstems. The user has also decided that
subsystem 1 has two outputs “uwq” and Cwo’, subsystem
has four outputs "y . "ya", ¥z ind “y4 . ana suosystem
3 has three outputs “3 . "2 and "I3. Simiiariyv. the user
has decided that eacn subsystem nas one independent design
variable ( Ly, <y, and Iz, respectively! (Fig. 1).
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Fig. 1. System of three coupled subsystems

Recail that CASCADE will ranaomiy detsrmine the num-
¢ of terms per output equation (ranging from 1 to 20). as
veil as the coupling nature, coefficient. sign, and exponent
of each term in each equation. Assume that CASCADE has
Jecided that equauion 'ty (of subsvstem 1) wiil have three
terms. lable 1 summarizes CASCADE's decisions that leaa
to the construction of equation w1.
As a result. equation wy wiil appear as tollows:
w0y = +0.967z3, +0.265u7 L —1.0872] s 2
C'ASCADE carries out a simiiat procedure for equation
\f the same subsysicm. as weil as equations "y~ and "7
»f subsyvstems 2 ana 3. respectiveiv. [pon creation ot the

system. i’ rative convergence procedures commence.
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Table 1. CASCADE term generation for equation w;

Equation wy | Term 1 Term 2 Term 3
Sign I positive positive negative
coefficient | 0.967 0.265 0.087
coupling nature | des. var. (z) | beh. var. (y) | beh. var. (2)
coupling numoer | 1 4 1
exponent i 2 -1 1/3

3.4 System convergence

Once all equation magnituaes have been determined and
found to be within an “acceptable” range, a convergence
check takes place. The newly computed magnitudes of each
behaviour variable, on the present iteration, are compared to
the corresponding magnitudes from the previous iteration. If
the differences between these values, for all behaviour vari-
ables. are less than or equal to the initial convergence crite-
rion, then the system is determined to be converged. If not,
the process repeats. and the newly computed (and more ac-
curate) behaviour variable magnitudes are used for the next
iteration. Convergence “ease rurameters have been incor-
porated into the program, sucn that the user can ease the
convergence criterion by 1 and/or 2 decimal places after a
user-defined number of iterations. This wiil take place if the
system is having problems-converging to the initial conver-
gence criterion.

2.5 Eztension to PVM

The above procedure is an example of what occurs for a single
computer operation. This procedure is slightly modified to
operate in a aistributed computing environment. via PVM.
A master machine enroils in PVM. and periorms the prelim-
inaries: nameiy. random number generation. and reading in
the input file. The master then spawns siave tasks on the
other hosts that were detected on the virtual machine that is
oresently avaiiable. The master then packs and sends array
Jata for one subsvstem, to each slave. Each slave receives and
inpacks the data sent to it by the master. and then performs

1e anaivsis descric=d in Section 3.2. for the one subsystem
that was sent to it. Each slave then sends the newly com-
puted data back to the master for a convergence check. The

rocess repeats until the system converges. Post-convergence
_satures take piace on the master machine. and the slaves exit
their processes { Fig. 2).

1.6 Post-convergence features

Once the svstem has converged. CASCADE performs a vari-
ety of post-convergence features. that could be greatly ben-
oficial to an MDO-researcher. Character strings are used to
write every converged behaviour variable of the created sys-
tem to a separate subroutine. These subroutines couid be
used in a system reduction analysis, 10 view the effects of the
uspension and/or elimination of relatively weak couplings.
Alternatively. each converged subroutine could be optimally
sequenced. anda then re-converged, to test sequencing or con-
vergence strategies. Also, these subroutines can be used to
rost distributed computing approaches.

The GSE approach is used to attain the total derivative
‘natrix of the svstem that has been created. Equation (3) lists
the GSE for a svstem with two subsystems, A and B. In this
case, each subsystem has an independent input, “X”, and
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Fig. 2. Extension of system analvsis to PV}

a dependent input “Y”, which is the output {rom the other
subsystem. The left- and rignt-hand side paruai derivative
matrices seen in (3) can De computed at the subsystem level.
as the sensitivity of eacn output equation ol tile system can
Le ccmputed. with respect to both (a} every otner behaviour
variable and (b) every subsystem design varianie.
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These matrices are then normaiized. sna an LU-de-
composition is used to attain the normaiizea total deriva-
tive matrix. _he total derivatives are recovered by “un-
normalizing” each element of this normalized matrix. This
matrix can be used to assess the coupling relations that are
weak relative to the others. It is possible that these weak
coupiings be eliminated from the system anaivsis. or at least
suspended for part of it. These derivatives could also be usea
for some torm of formal system optimization procedure.

A statistical output listing of the constructed svstem 1s
provided. The file lists CPU times. and the numoer . 1tera-
tions required to converge the system. The 1ile aiso generates
a term-by-term listing of the entire system that has been gen-
erated. (Note. By using the same input seed vaiue. repeat
systems can be generated. This wiil be usetul for method
comparison studies.)

Finally, the user has the option of generating an opu-
rmization problem. whose variables are the coupied variabies
of the converged CASCADE system. These variables inciude
design variables, which were initialized and heid constant tor
the convergence procedure. and behaviour variacies. which
were initialized and iteratively updated and eventually con-

verged. Tor the purpose of the optimization problem. the

behaviour variables are treated as constants, and the design
variables are aitered so as to provide the global optimum so-
lution. The traditional optimization problem statement is
stated as follows: .

minimize £(X),

subject to
g(X)<0, j=lm, h(X)=0, k=Ln,
x{<x; <Xt i=ln. (4)

F is known as the objective function, and is the function
being minimized, g; are the inequality constraints, hj are
the equality constraints, and X is the vector of design vari-
ables. In the analysis of a complex engineering system, one
may need to minimize a function whose variables are cou-
pled, and whose constraints are also functions of these cou-
pled variables. Such a problem statement may be stated as
follows:

minimize F(X,w, y,2),

subject to

(X w.y,2) 0.
(X w,y,5) 0, XfSXSX:‘, i=1,n. (5)
Notice that the objective function and inequality constraint
functions are functions of both the design vector X. and of the
coupled behaviour variables w. y, and z. Because CASCADE
will randomiy generate the nature {namely, the coefficient.
sxponent. and coupling) of each term of the objective and
constraint functions. provisions must be made to guarantee
that an optimum soiution will exist for the problem that is
generated. [irst of ail. the number of inequality constraints
must be less than or equal to the number of design variables.
to assure that the design space wiil not be overconstrained.
The computer simuiator development of Padula et al. (1986.
1987) demonstrated that each constraint function must be
one of ~i.ree forms: (a} strictly decreasing, (b) strictly in-
creasing. or (c) asvmptotically increasing; hence the three
constraints 1 +5). Together. these three types of equations
can simulate tne benaviour of most engineering systems. A
sample optimization problem. as generated by CASCADE. is
seen in the foilowing equation:

g X, w,y,2) <0,

minimize OBJ =

Alen)? = Az = Bw)? = fi(z)
subject to

g1 = =20r = ay/(211) + a2/ (y3) + b1/ (z11w2),
Ja = —20r + a3(z32) + ag(y1) + ba(33222),

/2

g3 = =20ry +as(22)"° + ag(z33)" + b3(z5213)"° . (6)
Refer to the nomenciature of Fig. 1. In this.example, the a’s.
b's. r's. and f's are randomly generated constant coeflicients.
Again, the r's are eiements of the design vector X, and the
w's, y's. and.z’s are coupied behaviour variables from the
original set of equations generated by CASCADE. The expo-
nents and couplings in the constraint equations are randomiy
cenerated. The signs of the objective function terms are ran-
domiv generated. as weil. The first term 1n each constraint
equation Is set to be a negative constant. All other terms in
each constraint equation are positive couplings, which. when
summed with the negative first term. must remain less than
or equal to 0 for constraint satisfaction.



To prevent an unbounded optimization proolem. side con-
straints are generated for each design variable. Lower bounds
are set to be a random number between 0 and 1. The lower
bound is set to be greater than zero, so as to prevent unde-
fined exponentiations of fractional powers. The upper bound
is set to be a random number between 0 and 150.0. and larger
than the lower bound. Recall that each design variable is
initialized and held constant during the convergence process
of the system of coupled equations. That initialized value
is used as the starting value for the optimization proolem.
CASCADE assures that the side constraint region 1or each
design variable bounds this starting value.

Once properly generated, the optimization problem is
solved by using Vanderplaats’ CONMIN program. which is a
FORTRAN program for constrained function minimization.
CONMIN makes use of the method of usable-feasible direc-
tions. CONMIN has been set to allow for user-suppiied gradi-
ents. which are more accurate and less costly than internally
computed finite-difference gradients. Because the objective
and constraints are known functions of the design and be-
haviour variable vectors, their gradients are computed pre-
cisely by analytical means. with relative ease. Note that the
total derivative of the objective function or a constraint func-
tion with respect to a design variable wiil be a function of
the partial derivative of the function with respect to the de-
sign variable. pius a partial derivative componer’ from each
output equation. Equation (7) lists the derivaiives of an ar-
bitrary objective function and constraint funcuion ii. j) with
respect to design vanable w from Fig. 1.

dF OF  °F dw 9F du 3F i

iXw  ONXw owdXw Jvale o AN

igi;  dgi,  deis dw Ggiy dw T3 Az o
2l - L e - e T — 7]
d e d‘\w C'.\w dz\'w Y (]4\“' - N

Note taat the total derivative terms on the rigni-iand sides
of the above equations come {rom the soiution ol the GSE.
After the optimization proplem has been cenerated and
soived. the objective function and constraint ecuatlons are
sacn written to a separate subroutine. bV using charact::
sirings. The user has the option of generaung either FOL-
TRAN or ANSI C subroutines. The initiai design variabie
magnitudes and behaviour variable magnitudes are written

10 a suproutine, as weil.

4 Outputs of CASCADE for varying system sizes

Because the thrust of this work focuses on the adevelopment
~f the CASCADE simuiator. it is difficult to discuss resuits
in the traditionai sense. The worth of this simutator can only
e measured in its use by the MDO community. It should
be noted. however. that CASCADE has aiready been used
-xtensively for optimal sequencing and converger ¢ strategy
studies. as well as for system reduction and for 3.~ O method
-esting. In particular. researchers from the MODEL labora-
cory at SUNY Buffalo have used the simuiator in various
-apacities. The simulator has been used to generate test sys-
-ems for deveioping sequencing strategies for rime and cost
(McCulley and Bloebaum 1996). for the evai-

-onsiderations
uspension/elimination inglish

..ation of weak coupiings for s
-t ai. 1996), and for using Java as a distributed computing

‘col 1 Becker and Bloebaum 1996). Likewise. the simulator
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has been used to generate test systems to examine the exten-
sion of the CSSO method to the analysis of mixed-variable
coupled systems (Chi and Bloebaum, 1996). In this paper,
however, the potentials of distributed computing using PVM
are explored and discussed in some detail, with resulting com-
putational times presented .

4.1 Clock time normaiized per iteration

The clock time required to build and converge a coupled sys-
tem is a primary concern of a system analyst. CASCADE
has been used here to generate a wide variety of systems and
to analyse the execution times involved. This was done in
an effort to better understand the potential advantages, as
well as the drawbacks of using distributed computing in an
MDO-setting. All execution times have been normalized by
the number of iterations that were required to converge the
system to the specified criterion of 1.0E-4. The first resuit is
seen in Fig. 3, which plots the “single computer” resuits. The
-smputers that were used are called Moriarty and EAS00; the
Jsrmer is a 12 processor mini-supercomputer, and the latter
is a Sun-Sparc 4 workstation.

Clock timeJiteration vs. System size
Supercomputer and workstation resuits
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Fig. 3. Clock time resuits: single computer

Clocx timesiteration vs. System size
Distributed computing resuits
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Fig. 4. Clock time resuits: distributed computing

As expected. the supercomputer substantially outper-



134

forms the workstation. Tiie supercomputer normalized clock
times are at least twice as fast, for most system sizes. Most
systems require from 40-60 iterations to converge, so the ab-
solute clock times for the supercomputer are on the order of
180 seconds, for a 10000 behaviour variable system. More-
over, there is a near linear correlation between normalized
clock time and system size, for both computer scenarios.

From several points of view, the distributed computing
data of Fig. 4 does not live up to expectations. Here, three
scenarios are investigated, with 3, 10. and 24 slave machines.
Both the master and slave machines are Sun Sparc 4 work-
stations. similar in nature to EAS00. As expected, there is
a general upward trend in normalized clock time, with an
increase in system size, for all three scenarios (3, 10, and 24
slave machines). However, the clock times are larger than
those corresponding to the single machine data of Fig. 3. At
first glance. this appears to be counter-intuitive. One wouid
think that a system that is solved by multiple machines wouid
be constructed and converged more quickly than a system
that is analysed on one machine. This was not found to be
the case.

Upon comparing the three curves themseives in Fig. 4.
one sees that for the most part. systems of all sizes required
roughly the same amount of time to converge. regardless of
the number of slave machines being used. This again ap-
pears to be counter-intuitive. It wouid seem likely that a
svstem solved using distributed computing techniques wouid
converge faster. wnen using a greater amount of slave com-
puters on the virtual machine. This was not found to be the
-ase. Clearly. the question then becomes - “why 7.

As highly coupied as the system of equations that CAS-
CADE generates are. the systems are not compiicate! enougn
to fully expioit the strengths of distributed computing. Mes-
sage passing dominates the ciock time invoivea with converg-
ing a system winen using distributed compuiing techniques.
To explore this situation further. “sleep” times were Intro-
‘uced into eacn supsystem anaiysis. [n otner words. eacn

1bsvstem anaiysis is performed {either in a sequential or a
iistributed computing environment). and then the program
execution pauses Ior a user-specified number of seconds. This
sleep time is incorporated in order '~ simuiate a computation
with a higher level of complexity. .ence requiring a longer
length of time for analysis.

1.2 Effects of sieep tume on each <nbsysiem icraiion

Sleep times were initially experimented with on the Moriarty
supercomputer. the EASO0 workstation. and the 3 ana iU
slave distributed computing scenarios.

Figure 5 is a piot of clock time vs. system size for ail
four scenarios, with a 0.1 sleep time. With this amount of
sleep time. the distributed computing scenarios clearly over-
take both Moriarty and EASOU. for the full range of system
sizes. However. there is still only minimali differentiation be-
tween the 5 and 10 slave scenarios. To see if any numerical
sieep time would have an impact on the variation between
Jistributed computing results with varving numbers of slave
machines. the sieep tine was further increased to V. seconds.
The resuits are seen in Fig. 6. Iere. the 5 and 10 slave ma-
chine curves are spiit apart, with the 10 slave scenario cleariy

outperforming the 3 slave scenario. This is the intuirive resuit
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that was hoped for all along.
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{ence. each subsystem analysis of CASCADE-generated
svstems required roughly one half of one second longer so that
the benetits of distributed computing could be fully demon-
strated. This is an extremely important point for those who
wish to use CASCADE to simulate a distributed computing
environment. [t is necessary to have sufficiently large cal-
culation times so that message passing does not dominate
and skew results. Of additional interest is the calculation of
system derivatives, which can be used in a vartety of MDO

applications.

1.3 Effects of normaiization on GSE solution

Table 2 lists condition number vs. system size, for both nor-
malized and not-normalized scenarios. The condition num-
ber provides a general indication as to how well-conditioned
the partial derivative matrices were. when used to attain the
total derivative matrix. Thus. the ¢ondition number retlects
the reliability of the numerical estimate that was attained for
the total derivative matrix. (A low condition number is de-
sirable.) The normalized data has matrix condition numbers
that are far lower than those for the not-normalized data. Us-
‘ng not-normalized data. a total derivative solution could not



;e found for the 490 equation system exampie. as depicted
in the table. For this sysiem size. the condition number 1s
infinite. for all intents.

Table 2. Condition number comparison of normalized/non-
normalized data

Number of | Conaition number: | Condition number:
system normalized | not-normalized
equations sensitivities sensitivities
E 100 40.06 60634.
: 300 37.10 101310.
500 390.70 101182
700 60.09 38305.
990 345.83 47565084.%

* no solution attained

Figure 7 is a plot of the clock time required to compute the
total sensitivity matrix vs. the size of the system. for both
the normalized and not-normalized scenarios. For smaller
systems. the clock times for both scenarios are comparable.
As the system size increases. the ciock time required to com-
pute the sensitivity matrix is siightly shorter for the nor-
malized matricss “nan for the not-normalized matrices. This
reduction in clock time is likely attributable to the benefi-
cial numerical conditioning provided by the matrix normal-
ization procedure. In other words. normaiization tecnniques
not only resuit in a more reliable numnericai estimate of the
rotal derivative matrx. but they do so in a siightly shorter

Seriod of time.
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There does not seem to be any cotrreiation between condi-
rge condition number wiil

tion number and svstem size. A la
A system whose

result when the degree of coupling 1s high.
coupling nature 13 generated randomiy by the user can pos-
sess a wide range of coupling conpiexity. regardless of the
In other words. highly coupied svstems

size of the system.
.ition numpers) can resuit tor small or

‘and hence large ccm
“or large systems.

. CONMIN resuits of coupled optimization profi
Numerous coupled systems and corresponding optiiization
probicms have been created with the CASCADE simulator.
Because 1t is «itficult to verify that the solution produced by
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CONMIN is in fact the global optimum solution, the results
for small system sizes have been compared to those obtained
using 10° iterations of an exhaustive search algorithm. This
comparison can be viewed in Table 3.

Table 3. Comparison of optimization results for CONMIN and

exhaustive search

% subsystems | Initial | :.ONMIN | Exhaustive-
1 (# constraints) | feasible | - “t*mum search
. solution | optimum
‘ 3 (6) -693.0 | -764.2 -7449
| 3 (6) I -3049 | -561.3 -548.1
; 3 (6) | +227.3 -97.8 -85.0
; 5 (10) [ -135.6 -1916.5 -1800.3

It is clear from tais table that the optimum solution attained
with CONMIN is superior to that attained with the exhaus-
tive search. for all four test cases. If CONMIN were not
consistently producing the global or near-global optimum so-
lution, it wouid seem likely that the exhaustive search algo-
rithm would attain a superior suittion, for at least one of the
above scenarios. This was not fcund to be the case, thus pro-
viding greater confidence in the CONMIN-generated results.

5 Summary and discussion

The motivation for MDO is to reduce the time and cost re-
juired for the design process. Most coupied systems are
~onhierarchical in nature. and require an iterative scheme
-and initial approximations) to converge. Task sequencing
-esearchers attempt to find the opr:mal sequence (order) in
-vhich to anaivse the system moduics. 0 gain the converged
solution in the least amount of time. System reduction re-
.earchers ek to effectively reduce the size of a coupied sys-
-sm. with a minimal loss in accuracy. Researchers have at-
-2mpted to temporariiy suspend and/or permanently elimi-
<ate oufrut coupilngs that were comparatively found to be
":3§ subst.antal.

Before sucn MDO-strategies can be implemented in the
lesign process of such large systems as automobiles and air-
sraft. they must be tested. A method for anaiytically simulat-
'ng real-life. large system couplings is necessary. To this end,
-he authors have designed a computer program, CASCADE
‘Complex Application Simulator for the Creation of Analyt-
‘cal Design Equations). CASCADE accepts user inputs to
-andomly construct and then converge a large system of cou-
sled equations. This system of .-.1ations should be viewed
1s an analvtical representation i reai-life design scenario.
“onstruction and convergence was first impiemented using a
<ingle computer format. cyciing though all of the subsystems
‘1 the system. one-by-one. in a sequential manner. The pro-

-odure was later modified for solution in a distributed com-
irtual Machine (PVM).

suting environment. using Parallel V
and converged, CAS-

Once the system 1s constructed
ADE offers numerous post-convergence features. The
‘iobal sensitivity equation {GSE) method can be used to
-ompute the total derivatives of the system outputs, with
-espect to the inputs. This is accomplished by first comput-
.ng sensitivities on a local level. A second important feature
's the option to write each equation of the converged sys-

rem to a separate subroutine. This could be beneficial to
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sequencing researchers, who might perturt the design vari-
ables of the converged system. and then anuyse the various
ordering possibilities of the subroutines to see which sequence
would attain a new converged solution most quickly. A third
important feature is the option to write the converged sys-
tem to a parameters file. This file provides a comprehensive
listing of the nature of each term in the system that has
been constructed. as well as other system statistics. A fi-
nal important feature is the option to create an optimization
problem, whose opjective function and constraints (inequai-
ity and side) are functions of the design and behaviour vari-
ables of the just-converged system of equations. The prob-
lem is solved by using the GSE derivatives and the CON-
MIN optimizer. The generated objective function, constraint
functions. and input variables are subsequently written to
subroutines. by using character strings.

The previous section analysed the time-related results of
numerous executions of CASCADE. The single computer re-
sults saw an increase in CPU time with an increase in system
size. As expected. systems that were solved using the Mori-
arty supetcomputer soived much faster than those soived on
the local EASQ0 workstation. Unfortunately. the unaltered
PV resuits did not live up to expectations. The CPU times
for the parailel machine-generated systems were larger than
those for the singie computer systems. Moreover, CPU times
per iteration were invarianc. wnen a larger number of slave
computers were used on the virtual macnine. It is probabie
that the time required to pass information from the master
machine to the siave machines is wnat dominated the con-
vergence time for the PVM scenarios.

To reduce the impact of message passing, sieep times were
introduced into the convergence procedure. to simulate cai-
culations of higher compiexity. On both the singie computer
and distributed computing scenarios. each supsystem anal-
vsis was performed. and then followed by a user-specinied
period of sleep. Vith 0.3 seconds of sieep time. the au-
vantages of using a larger numper of siave macnines for dais-
tributed computinZ become evident. Ihe bottom tine 1s that
the CASCADE-generated systems aione are not compiicated
enough to expioit the benerits of distributed processing.

Matrix normalization was found to be benencial. for the
computation of the total derivative matrix by using the GSE
merhod. The condition number of the solution matrix was
lowsr when normaiization techniques were empioyed: inai-
cating a more reiiable numericai estimate. The CPU times
required to attain tne normaiized derivative matrix were aiso
lower. than those required to attain not-normaiized derivative
matrices.

The resuits of the solution to the coupled optimizauon
problem were comvared to those obtained from an exhaus-
tive search algorithm. for smailer problem sizes. In all cases.
the CONMIN soliution is superior to that ¢ the exhaustive
algorithm. This comparison provides a certain degree of con-
fidence that CONMIN is providing the giobal optimum soiu-
rion the majority of the time. if not always.

6 Future work

One step ti:nf can be taken tor the advancement of this re-
search wolit De [0 1mprove !ne resuits associated with dis-

tributed computing and PVM. A method must be found to
more effectively pass the large array data from the master to
the slave. Message passing was found to be the dominating
factor in the time taken to build and converge the systems,
while using distributed computing techniques. An interface
that could enable the PVM message passing to bypass se-
lect network layers, without performance degradation, and
reduce message passing time would be beneficial. Eventually
a conversion to an AT)M-tasea network is foreseen (Lakshmi-
narayan 1993). Further time-related improvement could be
made by setting up a virtual machine whose hosts consist of
the numerous processors on a multiprocessor supercomputer.

The size of systems created by CASCADE has been lim-
ited by the static dimensioning allowances of the FORTRAN
programming language. If this were overcome, systems of
infinite size could potentially be constructed and converged.
This would prove that the principais of MDO could be ex-
tended to systems of any imaginable size. with couplings hav-
ing any imaginable compiexity.

A final addition is presently heing added to CASCADE -
a user-friendly Java-basea graphical user interface. Because
the interface is coded in Java, any computer architecture can
potentiaily make use of it. The interface wiil allow the user
to easily assign all input options required to construct and
converge a coupled system of equations. The interface will
also ailow the user to choose the desired post-convergence
features. such as creation of the total derivatives via GSE.
construction of an optimization problem. and so forth. Once
all options are assigned. the user wiil press a button which
will simuitaneously create the input file that is required to ex-
ecute CASCADE. and then implement the system command
to physically execute CASCADE. All pertinent output files
will be written to the user’s directory upon execution.

To execute ("ASCADE and make use of this interface.
‘he user wiil need a Java interpreter. as weil as the compiled
CASCADE code +written in FORTRAN). The necessary files
will be avaliable in eariv 1997 via the MDO test suite ( Paduia
¢t al. 1096). provided by the NASA Langiey Research Center.
whose URL is as follow:s:
hutp:/ /{mad-www.larc.nasa..ov/ mdob/mdo.test/classlprob3.htmi
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