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A simulation-based comparison of multidisciplinary design
optimization solution strategies using CASCADE

K.F. Hulme and C.L. Bloebaum

Abstract The design of multidisciplinary systems (such
as aircraft, automobiles, and others) often requires an
iterative cycle that includes a design initialization, a sys-
tem analysis, a sensitivity analysis, and design optimiza-
tion. This design cycle is standard in the field of Multi-
disciplinary Design Optimization (MDO) and has of-
ten been referred to in the literature as the “Multiple-
Discipline-Feasible” (MDF) approach. The name stems
from the fact that complete multidisciplinary feasibility
is maintained in each and every design cycle. The draw-
back of MDF is that it can be a timely and a costly pro-
cedure. Numerous researchers have developed alternate
means for posing and subsequently solving the multidis-
ciplinary design problem. One such solution procedure
has been referred to both as “Simultaneous Analysis and
Design” (SAND) and “All-at-Once” (AAQ), and treats
the entire multidisciplinary design cycle as one large opti-
mization problem. Another alternate solution procedure
has been referred to as “Individual-Discipline-Feasible”

(IDF); this procedure exhibits characteristics which lie
in between the two extremes exemplified by MDF and
AAQ. IDF assures that each individual discipline is feas-
ible on every design cycle, while driving the entire sys-
tem (all disciplines) towards multidisciplinary feasibility.
The present work will present a rigorous numerical com-
~ parison of these solution strategies over a wide variety
of problem sizes and complexities. The purpose of this
comparison is for the eventual development of heuristics
which will govern the appropriateness of a given solu-
tion strategy for a giverrset of system characteristics. The

multidisciplinary design test problems that are used for

these comparisons are generated by a robust simulation
tool called CASCADE.
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1
Notation

AAQO = All-at-Once
BV = behaviour variable (subsystem outpu{:)
CS = cost scenario
CV = coupling variable
DV = design variable
IC = inequality constraint
IDF = Individual-Discipline-Feasible
MDF = Multiple-Discipline-Feasible
OF = objective function
OV = optimization variable
. SC = side constraint
SS = subsystem
SVF = system volatility factor
TS = test system

2
Background and motivation

Concurrent engineering is a systematic approach to the
integrated, simultaneous design of products and their
related processes. Many of the recently developed capa-
bilities to address concurrent engineering have stemmed

- from the emerging area of Multidisciplinary Design Op-

timization, or MDO. The origins of MDO can be traced
back to the early 1980’s, where a linear decomposition
approach (Sobieszczanski-Sobieski 1982) was used to
subdivide the design of a large engineering system into
a grouping of related and more manageable subsystems.
However, such a decomposition often results in a group-
ing of subsystems which cannot be placed into a definitive
top-down hierarchy. The resultant decomposition group-

ing is typically hybrid-hierarchic in nature as shown in the

example decomposition of Fig,. 1.

This inherent lack of hierarchy requires that the sys-
tem analysis associated with the overall design cycle be
initialized to some set of values, and iteratively con-
verged thereafter. Subsequent to attaining a converged
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Fig. 1 Hybrid hierarchic decomposition -

analysis solution, a sensitivity analysis is performed. The
sensitivity analysis can be a numerical procedure such
as finite differencing or an analytical procedure, namely
the Global Sensitivity Equation (GSE) (Sobieszczanski-
Sobieski 1990; Bloebaum et al. 1990) method. The sensi-
tivity analysis is required for the optimization of the de-
sign. The optimization step itself will typically cause cer-
tain optimization variables to change, which then neces-
sitates the reconvergence of the system analysis. Hence,
the entire design cycle repeats itself until a converged
solution is attained. A summary of such nonhierarchic
design synthesis is illustrated in Fig. 2, and further ex-
plained in the next section.

3 :
Muitidisciplinary solution strategies

The design cycle described above has been referred to in
literature as the “Multiple-Discipline-Feasible”, or MDF
approach (Cramer et al. 1992, 1994; Balling and Sobiesz-
czanski-Sobieski 1994). It has been demonstrated more
than any other approach on nonhierarchic multidisci-
plinary examples. The advantages of the MDF approach
include its commonality to most MDO researchers, and
its optimization problem, which treats only design vari-
ables (and not behaviour variables) as optimization vari-
ables. The primary disadvantage of the MDF approach is
that it is potentially very time and cost consuming. At
each optimization iteration, complete multidisciplinary
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Fig. 2 Nonhierarchic design synthesis - the “Multiple-
Discipline-Feasible” (MDF) strategy

feasibility is enforced. At each design cycle, a great deal
of time may be inefficiently spent during the full recon-
vergence of the system analysis portion of a design that is
still very far from its optimal solution.

More recently, researchers have focused on alternate
methods for posing and solving the multidisciplinary de-
sign problem. An approach has been developed which
treats the entire multidisciplinary design cycle seen in
Fig. 2 as a single large optimization problem. This is ac-
complished by converting the system analysis equations
into equality constraints, and by treating both system
design variables and subsystem outputs (behaviour vari-
ables) as optimization variables. Such an approach has
been referred to in the literature as both “Simultan-
eous Analysis and Design” (SAND) and “All-at-Once”
(AAO) (Haftka 1985; Cramer et al. 1992, 1994; Balling
and Sobieszczanski-Sobieski 1994). The primary advan-
tage of AAO is the elimination of an iterative design
cycle for attaining an optimal design through the outright
elimination of costly iterative analysis evaluations. One
possible disadvantage of AAO is that a much more com-
plicated optimization problem results. More optimization
variables and more equality constraints are present in the
AAO formulation. These variables and equations stem
from the addition of the system analysis equations to the
optimization problem statement.'A second disadvantage
is that disciplinary feasibility is only attained at a relative
or at an absolute extremum. This reduces the possibil-
ity of attaining a valid design solution if the optimizer
is unsuccessful in attaining the global optimum solution.
A generalized summary of the AAQ strategy is seen in
Fig. 3. Notice that the “residual evaluator” has replaced
the iterative system analysis seen in Fig. 2. In the residual
evaluator, the analysis equality constraints are posed and
evaluated.
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Another alternative to the classical MDF approach
exhibits characteristics which lie between the extremes
of MDF and AAO. Recall that MDF requires full disci-
plinary feasibility at each and every optimization itera-
tion, while AAO only enforces disciplinary feasibility at
the final solution (a local or global optimum), if attained.
An intermediate approach has been called “Individual-
Discipline-Feasible” (IDF) (Haftka et al. 1992; Cramer
et al. 1992, 1994; Balling and Sobieszczanski-Sobieski
1994). With IDF, each individual discipline (or subsys-
tem) is independently feasible at every optimization it-
eration. The optimizer eventually drives all of the in-
dividual disciplines towards multidisciplinary feasibility
by controlling the interdisciplinary data. In this formu-
lation, all coupling variables (behaviour variables that
are required inputs to other subsystems) are promoted
to being optimization variables. This takes place by tem-
porarily substituting a replacement “surrogate” variable
for each coupling variable in the optimization problem
statement. Auxiliary equality constraints are added to
the problem formulation to ensure that each and every
behaviour variable is equal to its corresponding surrogate
variable, at optimization convergence. These constraints
may be thought of as “equilibrium” constraints. A gen-
eralized summary of the IDF strategy is seen in Fig. 4.
Notice that the “analysis solver” has replaced the itera-
tive system analysis seen in Fig. 2. In the analysis solver,
both the single analysis solution (noniterative) and the
equilibrium constraint formulation take place.

With a fundamental understanding of each of the
three solution strategies, the authors’ means for obtaining
a wide variety of coupled multidisciplinary test systems
can now be discussed.
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Fig. 4 The “Individual-Discipline-Feasible” (IDF) strategy

4
Simulation of coupled systems

4.1
Motivation

A number of previous research efforts involving the com-
parison of the MDF, IDF, and AAO solution strategies

- have been extensive in theoretical detail. However, many

of these research efforts have limited their implementa-
tion of the theory to simple example problems, often
with easily obtainable closed-form solutions (Cramer et
al. 1994; Balling and Wilkinson 1997). The importance of
these past studies cannot be understated. In the present
work, it is desired to assess the utility of these solution
strategies, side-by-side, over a wide variety of system sizes
and subsystem-level coupling densities. The desired prob-
lem data should have a known structure, and should have
unknown (randomly generated) semantics; the global op-
timum solution of these test problems should be un-
known, a priori. It is only after such testing is completed
that heuristic rules can be developed which might help
to govern the appropriateness of a given solution strategy
for a given set of coupled system characteristics. To this
end, the present research expands on a preliminary inves-
tigation that has been previously conducted (Hulme and
Bloebaum 1998).

The rigorous testing of these solution strategies re-
quires the use of a wide variety of stable test systems.
For this task, a robust simulation tool termed CASCADE

_has been used. CASCADE is an acronym which stands

for “Complex Application Simulator for the Creation of
Analytical Design Equations”. A thorough description of
CASCADE can be found in past literature (Hulme and

‘Bloebaum 1996, 1997). A brief overview will be presented

here for completeness.
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4.2
Simulator description and uses

CASCADE is a computer tool that generates a coupled
system representation that consists of analytical equa-
tions of user-specified size. CASCADE has the capability
of generating equations which represent both a coupled
system analysis and an associated optimization problem.
The analysis portion consists of a band of equations that
attempt to represent the coupled structural nature of
the subsystem outputs (behaviour variables). Each be-
haviour variable is a function of both independent in-
puts (design variables) and dependent inputs (other be-
haviour variables). The optimization portion consists of
a system-level objective function or numerous subsystem-
level objective functions, inequality constraint equations,
and implicit side constraints on the optimization vari-
ables. The equations themselves are polynomial functions
with positive integer exponents, and are typically highly
nonlinear in nature. The design space that results from
the objective function and inequality constraint equa-
tions is nonconvex, and usually clustered with a multi-
tude of local minima. While such test systems might be
extreme in the sense that they do not accurately repre-
sent the semantic behaviour of a “real world” multidis-
ciplinary system, the authors care to view the represen-
tative behaviour of these test systems as a “worst case”
scenario.

CASCADE-generated equations that are created to
represent the system analysis portion of the multidisci-
plinary design problem can be generated at varying levels
of “system volatility”. System volatility serves as a me-
ter of both the strength of the couplings and the stabil-
ity of the generated system. Default CASCADE systems
are generated at a system volatility of 1, which indi-
cates a loosely coupled system of well-behaved equations
that are gnaranteed to remain stable within the implicit
variable bounds. The user can vary the system volatil-
ity from 1 to 10, where 10 would represent a tightly-
coupled, highly unstable set of equations (see Fig. 5). If
a coupled set of analysis equations are thought of as an ar-
ray of equality constraint contours, a low system volatil-
ity would tend to result in an optimization design space
that is cluttered with many “shallow” local minima, while
a large system volatility would tend to result in a design
space with fewer, but “steeper” and much more drastic
local minima.

-4 Low stability
p Tightly coupled

High stability
Loosely coupled

1 5 10
Fig. 5 System volatility factor for CASCADE

Using fixed-point iteration (which is an easily imple-
mented but costly means for converging a coupled set
of nonlinear equations), a five subsystem, twenty-five be-
haviour variable system with a system volatility of 1
might require 15-20 iterations to achieve convergence to
six decimal places. The same size system with a system
volatility of 5 might require 35-50 iterations to converge,
and with a system volatility of 10, might require 100-150
iterations to.converge. Note that with a system volatil-
ity of anything greater than 1, the behaviour variables
are no longer implicitly guaranteed to behave within the
implicit variable bounds. This becomes an issue when as-
signing side constraints for any behaviour variable turned
optimization variable in the IDF and AAQ solution strat-
egy implementations. The next section will present an
example CASCADE system, and a corresponding prob-
lem statement for each of the three solution strategies.

5
Integration of CASCADE with the multidisciplinary
solution strategies

A sample CASCADE system is presented as follows. Fig-
ure 6 consists of a multidisciplinary system that has been
decomposed into three inter-related subsystems. Each
subsystem has its own set of independent design variables
as input (the “X’s"), as well as dependent behaviour vari-
ables - outputs from other subsystems - also serving as
input (the “W’s”, “Y’s”, and “Z’s”). The CASCADE-
generated analysis equations that exhibit the coupled be-
haviour illustrated in Fig. 6 might appear as follows:

Wy = 0.22X}, +0.05Y3 —0.4622 + 0.73(XwY2)",
Wa = —0.96Y2 +0.5625 — 0.03(XwY2)?,

W3 = 0.36X3, +0.93(Z1Y2)?,

Y: = 0.08X3 — 0.06W} +0.11W3 — 0.09(XyW1)?,
Yz = 0.50W +0.41W2 +0.99( Xy Ws)?,

Zy, = —0.43X% — 0.88W2 +0.25(W2Xz)> . (1)

The CASCADE-generated optimization problem is
a function of the same design and behaviour variables
that are found in the analysis equations, and might ap-
pear as follows:

minimize :
F=004X2 +0.96X3 +0.15X} - 0.26W7+

0.44W,} +0.57W3 —0.07Y' + 0.68Y7 —0.02Z7, (2)



subject to:

gw = —578.9+0.36Y3 +0.55X}, +0.09(Xw Z1)* <0,
gy = —226.7+0.26 X3 +0.51W] +0.53(XyWs)' <0,
gz = —1095.1+0.33YZ +0.47(XzW2)" <0,

-9999 < Xw, Xy, Xz < 9999. (3)

Note that CASCADE generates the inequality con-
straints around the converged system analysis in such
a way that the initial design point is a feasible design
point. The problem statements for each of the three solu-
tion strategies will be presented, corresponding to Fig. 6
and (1) through (3).

Y, ) Subsystem W o Z,
W, Fv, Tx, W,
Subsystem Y Y, Subsystem Z

TXY sz

Fig. 6 Decomposed three-subsystem coupled system

5.1
MDF

Optimization variables: Xw, Xy, and Xz.

Analysis: Equation (1). Full iterative reconvergence every
MDO cycle.

Optimization: Equations (2) and (3).

Comment. The problem is solved as posed in (1) through
(3) and in a cyclic manner similar to that seen in Fig. 2.

5.2
IDF

Optimization variables: Xw, Xy, Xz, and surrogate vari-
ables Xw1, Xw2, Xws, Xy2, and Xz:.

Analysis: A single noniterative “solution” of (1) on each
cycle, modified as follows. Note the presence of replace-
ment “surrogate” variables on the right-hand side of the
equations

Wy = 022X}, +0.05X3, — 0.46X%, +0.73(Xw Xy2)*,
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Wa = —0.96X%,+0.56X3, — 0.03(Xw Xy2)?,

Wi = 0.36 X2, +0.93(X 21 Xv2)?,

Y; = 0.08Xy3 —0.05X},, +0.11X 4 — 0.09(Xy Xw1)3,
Yz = 0.59X 3+ 0.41X3,, +0.99(Xy Xw3)?,

7, =—043X% - 0.88X%,,+0.25(XwaXz)?. (4)
Optimization

minimize :

F=0.04X3, +0.96 X3 +0.15X% — 0.26 X, +

0.44X},,+0.57X3,; — 0.07Y] +0.68X%, — 0.02X3, ,

(5)
subject to :
gw = —578.9+0.36 X5, +0.55X w1+
0.09(XwXz1)® <0,
gy = —226.7+0.26X5 +0.51 X+
0.53(XyXw3s)' <0,
gz = —1095.1+0.33X2, +0.47(XzXw2)' <0,
0=Xw1—-W1, 0=Xws—Wz, 0=Xws;—Ws,
0=Xy2-Y2, 0=Xz1-2,,
-9999 < Xw, Xy, Xz, Xw1, Xwa, Xw3, Xv2, Xz1 <
9999 . (6)

Comment. Note that Y; is not an optimization variable,
since it is not required as input by any subsystem.

5.3
AAO

Optimization variables: Xw, Xy, Xz, W, Wa, W3, Y1,
Yz, and Zl.

Analysis: None. (“Analysis” is included in the optimiza-
tion problem.)

Optimization
minimize :
F=004X2 +0.96X3 +0.15X% — 0.26W}+

0.44W} +0.57W3 — 0.07Y;! +0.68Y5 — 0.0277, (7)
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subject to :

gw = —578.9+0.36YF +0.55X ), +0.09(Xw Z1)° < 0,
gy = —226.7+0.26X3 +0.51W2+0.53(XyW3)' <0,
gz = —1095.1+0.15Y] +0.33Y7 +0.47(Xz W2)' <0,
0 =0.22X% +0.05YF — 04627 + 0.73(XwY2)' — W1,

0 = —0.96Y2 +0.56Z5 — 0.03(XwY2)* — W2,

0 =0.36X2 +0.93(2,Y2)? - W3,

0=0.08X3 —0.05W} + 0.11W3 — 0.09(XyW1)* Y1,
0 =0.59W3 +0.41W?2 +0.99( Xy W3)® — Y2,
0=-043X2%—0.88W3+0.25(WaXz)>— 21,

—9999 < XW1XY7XZ7 Wla Wz) W3aYi; },27 Zl S 9999.
(8)

Comment. All design and behaviour variables are con-
trolled by the optimizer.

" With a general understanding of the three different
means for posing the MDO test systems that are gen-
erated by CASCADE, the results of several numerical
comparisons can be presented. Prior to doing so, a brief
description of both the three simulation types and general
optimization details is offered.

6
Simulation description — Test systems and
optimization details

CASCADE has been used to generate a multitude of
simulations of coupled multidisciplinary systems. These
test systems vary both in size and in coupling com-
plexity. Section 7.1 presents a comparison of five test
systems which were tested “extensively”. The idea here
was to gain strong preliminary insight into the dy-
namic of each of the solution strategies by spending
a substantial amount of effort testing a small num-
ber of test systems. For each solution strategy and for

each test problem, more than 100 trial executions were

performed, where varying optimizer settings were at-
tempted. Section 7.2 presents a comparison of test sys-
tems which were tested “moderately”. The idea here
was to test a larger number of test systems in a rela-
tively short period of time. Here, forty-five systems were

tested in total; five test system sizes were used, with
a total of nine different “instances” (same structure,
different semantics) of each system generated for each
systemn size. Well-trusted “default” optimizer settings
were used, the insight to which was gained during the
Section 7.1 testing. Finally, Section 7.3 presents a com-
parison of three “moderately” tested systems, while spe-
cifically taking into consideration the simulated cost
associated with the execution of each of the solution
strategies. The idea here was to illustrate that in ad-
dition to the final objective function value attained, the
system manager must also take into consideration the
amount of resources required to achieve the final solu-
tion for the particular solution strategy that has been
chosen.

The ANSI-C translated version of Automated De-
sign Synthesis (ADS) (Vanderplaats 1985) has been used
as the optimization software for these MDO test sys-
tems. The strategy-optimizer combination that has been
used for the acquisition of all of the simulation results
is Sequential Linear Programming - Method of Feastble
Directions. Internal finite difference methods have been
used to attain gradient information, within ADS. All trial
executions were performed on a SUN Ultra 1 Creator
3D workstation, under comparable network conditions.
Fixed-point iteration was used as the iterative technique
for converging the analysis equations, when the MDF so-
lution strategy was implemented.

7
Results

7.1
Preliminary testing

For the first set of trial executions, the authors tested
each of the solution strategies in great depth for each
of the five test problems. Many hours were spent al-
tering optimizer settings and performing a multitude of
trial executions. Testing was halted only after an enor-
mous number of trial attempts were made, and after the
authors felt confident that no more substantial improve-
ment could be gained with a “reasonable” amount of fur-
ther effort. Hence, the data presented should be a good
indicator of the “best” attainable result for each of the
solution strategies. Primary characteristics of each of the
five test systems are summarized in Table 1. Recall that
the number of coupling variables for each test system cor-
responds to the number of behaviour variables of a system
which are required as input by at least one other sub-
system.

Test system 1 has three subsystems (W, Y, and Z),
which have 2, 1, and 3 behaviour variables per subsystem,
3, 2, and 1 design variables per subsystem, and 1, 3, and
2 inequality constraints per subsystem, respectively. The
initial value of the objective function is —678.71. Figure 7



Table 1 Summary of the five test systems (preliminary test- '

ing)

Test No. No. No. No. No. Initial
System SSs BV’s DV’s ICs CV's OF

1 3 6 6 6 5 —678.71
2 5 9 11 10 8 -43.91
3 10 20 40 20 12 1622.74
4 15 45 45 90 43 -820.18
5 20 100 40 3 92 197.40

provides a detailed illustration of the coupling structure
of the first test system. Figure 8 compares the test sys-
tem 1 objective function histories for all three solution
strategies. All solution strategies achieve approximately
the same optimal design point, with the MDF strategy at-
taining the lowest objective function value of —1711.79.
Table 2 summarizes the “best” results attained (where
“best” implies lowest objective function) for all five test
systems, for each of the three solution strategies.
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Fig. 7 Schematic of test system 1
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Fig. 8 Test system 1 — Objective function value vs. evalua-
tion number

Test system 2 has five subsystems (U, V, W, Y, and
Z), which have 1, 2, 1, 3, and 2 behaviour variables per
subsystem, 3, 2, 1, 2, and 3 design variables per sub-
system, and 4, 0, 1, 2, and 3 inequality constraints per
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subsystem, respectively. The initial value of the objective
function is —43.91. Figure 9 provides a detailed illustra-
tion of the coupling nature of the second test system,
and Figure 10 compares the test system 2 objective func-
tion histories for all three solution strategies. Again, all
solution strategies achieve approximately the same opti-
mal design point. Here again, the MDF strategy attains
the lowest objective function value of —3150.08. Refer to
Table 2 for tabular results.
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Fig. 9 Schematic of test system 2
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Fig. 10 Test system 2 — Objective function value vs. evalua-
tion number

Test system 3 has ten subsystems, a total of twenty
behaviour variables, forty design variables, and twenty
inequality constraints. (For the final three test systems,

_detailed coupling illustrations and objective function his-

tories are omitted for brevity.) The initial value of the
objective function is 1622.74. Once again, all solution
strategies achieve approximately the same optimal de-
sign point. The MDF strategy attains the lowest ob jective

‘function value of —11859.7. Refer to Table 2.
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Table 2 Result summary for test systems 1-5

TS Sol Total Final Active Active Run time
strat. ovs OF SC's IC’s (sec)

1 MDF 6 —1711.79 3 1 0.486
IDF 11 —1706(45 3 1 1.916
AAO 12 -1705.15 3 2.029

2 MDF 11 —3150.08 4 1 1.094
IDF 19 —3144.08 4 1 7.245
AAO 20 —3124.61 4 1 9.146

3 MDF 40 -11859.7 15 4 22.927
IDF 52 —11407.5 13 6 27.023
AAO 60 —11316.8 13 6 64.201

4 MDF 45 —10118.8 13 22 57.854
IDF 88 —8882.84 11 10 307.943
AAO 90 —8483.45 11 12 260.995

5 MDF 40 —12012.6 26 2 98.179
IDF 132 —10253.4 13 2 1892.150
AAOQO 140 —10980.8 14 2 3098.899

Test system 4 has fifteen subsystems, a total of forty-
five behaviour variables, forty-five design variables, and
ninety inequality constraints. The initial value of the ob-
jective function is —820.18. Here, all three solution strate-
gies do not arrive at “equivalent” solutions. The MDF
strategy attains the lowest objective function value of
—10118.8, which is approximately 10% lower than the
next best solution attained, by the IDF strategy. Refer to
Table 2.

Finally, test system 5 has twenty subsystems, a total

of one-hundred behaviour variables, forty design vari- .

ables, and only three inequality constraints. The initial
value of the objective function is 197.40. Here again, there
is a distinct difference between the final solutions reached
by each of the three solution strategies. MDF again
achieves the lowest objective function value of —12012.6,
considerably lower than the next best solution attained,
by the AAO strategy. Refer to Table 2.

A final plot presented in this subsection of results
is shown in Fig. 11, which is a plot of total execution
time vs. test system for all three solution strategies. No-
tice that the execution times are plotted logarithmically
along the y-axis (i.e. “1” =10' seconds, “3” = 103 sec-
onds, etc.). The MDF strategy achieves its final solution
the most quickly for all five test systems, followed by
the IDF strategy (for four of the five test systems), fol-
Jowed by the AAQO strategy, which requires the most time
to attain its final solution (for all but one of the test
systems). Note also that execution times increase dramat-
ically with system size, as does the rate of the increase

in execution time. Test system 1, a relatively small test -

system which has six design and six behaviour variables,
requires no more than 3 seconds to solve for all three
strategies. Test system 3, a moderately sized test system
with twenty behaviour variables and forty design vari-

ables, requires approximately 23 seconds to solve with
the MDF strategy, and almost 65 seconds to solve with
the AAO strategy. Conversely, test system 5 is a rela-
tively large test system which has one-hundred behaviour
variables and forty design variables. This test system re-
quires approximately 100 seconds to solve with the MDF
strategy, and almost 3100 seconds to solve with the AAO
strategy.

[emor oiDF ® AAO |

Fig. 11 Execution time (logio seconds) vs. test system

7.2
Verification testing

For the second set of trial executions, the authors took
a different approach. Having previously gained insight
to the behaviour of each of the solution strategies under
a wide range of optimizer settings, the number of trial
executions for each test system and for each solution



strategy was to now be limited. The limit for each test
system instance was set to be the number of attempts re-
quired to attain five improved solutions (over the initial
feasible solution), or ten total trial executions; whichever

was arrived at first. In addition, at least one improved -

solution was required. This allowed the authors to gain
a large cross-section of data rather quickly, while using
a reliable assignment of optimizer settings. These reliable
optimizer settings were held constant; the only optimizer
parameters that were allowed to change between trial
executions were the relative move limit parameter (for
all solution strategies), the binary variable-scaling switch
(for all solution strategies), and the penalty parameter for
equality constraints (for AAO and IDF only). Hence, this
stage of testing provides the system manager with an in-
dication of which solution strategy can be relied upon to
achieve a good solution quickly, having made only minor
modifications to a “standard” and trustworthy set of op-
timizer settings. :

Forty-five systems were tested in all. Five system sizes
were used, and nine distinct instances of each system
were created and tested for each system size. The nine in-
stances represent three distinct system structures at each
of three levels of “system volatility”; see Section 4.2. Pri-
mary characteristics of each of the five test system sizes
are summarized in Table 3.

Table 3 Summary of the five test system sizes (verification
testing)

System No.of No.of No.of No.of No.of
size SS’s BV's DV’s IC’s CV’s
1 2 6 6 2 5

2 3 9 9 6 8

3 5 15 15 15 13

4 10 40 40 20 35-36
5 12 48 48 24 39-42

System size 1 has two subsystems which have three
behaviour variables per subsystem, three design variables
per subsystem, and one inequality constraint per sub-
system, respectively. Again, there were nine instances of
system size 1 tested; three each at system volatility of
1, 3, and 5, respectively. Tabular result comparisons for
all simulations are listed in Table 4. The MDF strategy
achieves the lowest final objective function in five of the
nine system size 1 instances, those being instances 2, 5, 7,
8, and 9. The IDF strategy achieves the lowest final objec-
tive function in system size 1 instances 3 and 6, and the
AAO strategy achieves the lowest final objective function
in system size 1 instances 1 and 4.

Figure 12 presents a slightly different interpretation
of these same results. For each of the nine system in-
stances, the objective function improvements for the
three solution strategies are normalized against the so-
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lution strategy which attained the lowest final objective
function for that given system instance. For example, for
instance 1 of system size 1, AAO achieved the greatest
improvement in the objective function, decreasing from
a starting value of —1187.97, to a final value of —2038.7
(see Table 4); marking a total improvement of 850.74. The
MDF and IDF strategies saw decreases in the objective
function to —1870.6 and —1966.4 (see Table 4), respec-
tively, corresponding to objective function improvements
of 682.69 and 778.45, respectively. Hence, normalized
improvements for MDF, IDF, and AAO for instance 1
of system size 1 are: 0.802, 0.915, and 1.0, respectively.
These numbers are plotted as the first of nine sets of
bars in Fig. 12. Note that the labels on the independent
axis of Fig. 12 (and subsequent plots that are analogous
to it) are sequences of two numbers — the first is the
instance number, and the second is the system volatil-
ity factor, displayed in parentheses. For instance 2 of
system 'size 1, the improvements for each of the three
solution strategies are normalized against the MDF im-
provement, since MDF showed the greatest improvement
in the objective function, for that particular instance of
system size 1.
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Fig. 12 Normalized improvement for system size 1

System size 2 has three subsystems which have three
behaviour variables per subsystem, three design variables
per subsystem, and two inequality constraints per sub-
system, respectively. Again, there were nine instances of
system size 2 tested; three each at system volatility of
1, 3, and 5,.gespectively. Result comparisons are listed
in Table 4. The MDF strategy achieves the lowest final

_objective function in seven of the nine system size 2 in-

stances, those being instances 2, 3, 5, 6, 7, 8, and 9.
The IDF strategy achieves the lowest final objective func-
tion in system size 2 instance 4, and the AAO strat-
egy achieves the lowest final objective function in system
size 2 instance 1. Figure 13 presents a “normalized” com-
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Table 4 Result summary for system sizes 1-5

System 8 Inst Initial Final OF  Final OF  Final OF
size V no. OF (MDF) (IDF) (AAO)
F Y '
1 1 1 -1187.97 ~1870.6 —1966.4 —-2038.7
4 —761.44 —2106.0 —2105.7 —-2106.1
7 —689.7 -2076.2 —2003.5 —1880.3
3 2 1428.91 —-2102.7 ~1776.2 —1668.7
3 826.39 —2518.4 —1438.1 —1601.6
8 639.14 ~2417.7 —1747.1 —1535.0
5 3 —861.91 -2627.1 ~-2627.4 —-1137.2
5 —504.22 —5235.0 —5427.3 —1566.4
9 —340.64 -22031. —19174. —2848.7
2 1 1 30.84 ~749.8 —778.08 —975.43
4 —63. —746.81 —970.37 —954.2
7 776.14 —3229.2 —2412.0 —-2419.5
'3 2 -327.23 —5250.7 -3180.2 —1065.4
3 328.37 —2258.0 —2050.3 -1519.5
8 —-1378.1 —4748.2 —1679.8 ~1555.6
5 3 —606.01 —2344.5 —1681.0 -1205.7
5 1517.62 —2940.0 —2333.8 -1959.8
9 968.32 —5966.8 —1442.8 —-1718.2
3 - 1 1 259.94 —3298.7 —1303.5 —1425.36
4 20.44 —3433.79 —2353.44 —1754.06
7 —623.77 —4208.31 —1424.02 —1824.62
3 2 —714.6 —6095.35 —5425.83 —~5261.48
3 173.27 —4033.66 —3368. —2787.12
8 —1964.36 —7295.89 —T7413.61 —6598.22
5 3 565.06 —-3348.61 —2880.12 -2730.17
5 ~909.6 —3877.41 -2162.83 —2075.66
9 468.95 —4013.51 —2612.87 —2204.04
4 1 1 —666.89 —9581.46 —5623.66 ~4982.23
4 159.27 -13143.95 —2526.37 —1402.99
7 2092.89 —13752.55 125.41 106.21
3 2 1091.82 —6775.22 . —3615.68 —4474.38
3 4796.72 —9372.94 731.76 830.41
8 —4079.22 —14793.08 —5454.39 —4985.31
5 3 —1014.9 —9540.44 —3410.96 —3798.6
5 443.29 —13373.53 —2746.87 —2729.25
9 —492.71 -11101.14 —2463.47 —1953.93
5 1 1 774.8 —21308.78 —9050.62 —7824.56
4 —4193.6 —-18576.07 —6938.9 —7123.5
7 273.5 —13735.75 -1369.76 —-949.01
3 2 108.19 —-14632.72 -3378.39 —4882.27
3 2128.57 —-5036.72 —4.46 75.11
8 4702.5 ~11953.16  531.84 1763.89
5 3 —1702.66 —14513.31 —3008.24 —3282.05
5 2357.14 —14262.63 1.53 —2150.55
9 2292.28 —11847.47 -312.56 92.83

parison of the nine instances of system size 2, as explained
in the previous paragraph.

System size 3 has five subsystems which have three be-
haviour variables per subsystem, three design variables
per subsystem, and three inequality constraints per sub-
system, respectively. Again, there were nine instances of

system size 3 tested; three each at system volatility of
1, 3, and 5, respectively. Result comparisons are listed
in Table 4. The MDF strategy achieves the lowest final
objective function in eight of the nine system size 3 in-
stances, the exception being instance 6, where the IDF
strategy slightly outperforms the MDF strategy. Fig-
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Fig. 14 Normalized improvement for system size 3

ure 14 presents a “normalized” comparison of the nine
instances of system size 3.

System size 4 has ten subsystems which have four be-
haviour variables per subsystem, four design variables
per subsystem, and two inequality constraints per sub-

system, respectively. System size 5 has twelve subsys-.

tems which have four behaviour variables per subsys-
tem, four design variables per subsystem, and two in-
equality constraints per subsystem, respectively. Once
again, nine instances of both system size 4 and sys-
tem size b were tested; three each at system volatil-
ity of 1, 3, and 5, respectively. Result comparisons are
listed in Table 4. The MDF strategy achieves the lowest
final objective function for all instances of system sizes
4 and 5. Figures 15 and 16 present a “normalized” com-
parison of the nine instances of system sizes 4 and 5,
respectively.

27

Verification testing

[ = MDF = IDF

M) 23 ) M) 5(3) 68 7N 83  95)
System instance number (system volatility)

Fig. 15 Normalized improvement for system size 4

Verification testing

1) 2(3) 350 4(1) 53) 65 7N 83 9(5)
System instance number (system volatility)

Fig. 16 Normalized improvement for system size 5

A final set of tabular results for this subsection
of results begins with Table 5. Table5 lists the nu-
merical average of the normalized improvements for
all nine instances of each system size. For all system
sizes, MDF has the highest average normalized improve-
ment, which is greater than 0.93 for all system sizes.
(Realize that an “average” score of 1.0 for a given sys-
tem size and solution strategy would indicate that the
given sofwion strategy achieved the greatest improve-
ment for all nine system instances). The IDF strat-
egy has the second highest average normalized im-
provement for all but the fifth system size, where the
AAQ strategy slightly outperformed the IDF strat-
egy. Table 6 decomposes the results of Table 5, by sep-
arately listing the average normalized improvements
for each of the three system volatility factors (1,3,5),
respectively.
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Table 5 Overall average normalized improvement

System MDF IDF AAO
size

1 0.974511 0.867397 0.609992
2 0.936463 0.696686 0.606587
3 0.997599 0.673029 0.616955
4 1 0.288155 0.276975
5 1 . 0.218398 0.225778

Table 6 Average normalized improvement for each system
volatility level

SVF System MDF IDF AAO
size

1 1 0.934150 0.951706 0.946229
2 0.809389 0.83078 0.888729
3 1 0.731733 0.72019
4 1 0.478485 0.506041
5 1 0.261119 0.283744

3 1 1 0.694386 0.647022
2 1 0.676974 0.466061
3 1 0.650427 0.536771
4 1 0.239882 0.208988
5 1 0.210100 0.253840

5 1 0.989384 0.95609 0.236723
2 1 0.58230 0.464972
3 0.992799 0.636926 0.593898
4 1 0.146098 0.115897
5 1. 0.183974 0.139749
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Simulated cost-based testing

7.3.1
Simulation overview

The primary theme of this final subsection of results is
that of “trade-off”. The first two subsections of results
have focused solely on the ability of each of the solution
strategies to achieve design improvement through a de-
crease in the system-level objective function. However,
design improvement, is not the only characteristic that
must be considered by the design manager. Inevitably,
the implementation of each of these solution strategies
will have an associated cost. This cost might stem from
computational resources expended (i.e. CPU time), from
man hours invested in carrying through the solution pro-
cess of the given system as posed, or from any of a number
of other sources. In this research effort, separate simu-
lated and generic cost amounts have been assigned to
each analysis evaluation, each objective function evalua-
tion, and each constraint function evaluation. The goal
with this study was to arrive at a simulated total cost

amount associated with implementing each of the solu-
tion strategies. These cost amounts are then compared
side by side. The design manager can weigh the gains ob-
tained?in the optimized design versus the cost incurred in
arriving there, for each of the solution strategies. Three
systems were tested for this final phase of result acquisi-

‘tion; the characteristics of these systems are summarized

in Table 7.

Table 7 Summary of the three test systems (cost-based test-
ing)

Test No. No. -No. No. No. Initial
sys. SSs BV's DVs ICs CV's OF

1 10 10 10 20 9 —-76.37

2 10 20 30 10 18 —577.26

3 10 50 50 5 47 —-1436.3
7.3.2

Simulation details

In this simulation the overall cost in implementing a so-
lution strategy is a function of three distinct components
— analysis cost, objective function cost, and constraint
function cost. The objective function cost is analogous
for all three solution strategies; the details of the other
two components differ slightly for each solution strategy.
For the MDF strategy, the analysis cost is the cost of
an analysis evaluation for each behaviour variable multi-
plied by the number of iterations required to converge the
system of coupled analysis equations, summated every
design cycle. The constraint function cost is the sum of
the cost of each of the system inequality constraints, surn-
mated every design cycle. For the IDF strategy, the an-
alysis cost is the cost of an analysis evaluation for each
behaviour variable, summated every design cycle. The
constraint function cost is the sum of the cost of each of
the system inequality constraints, plus the sum of the cost
for each of the equilibrium constraints corresponding to
each coupling variable, summated every design cycle. For
the AAO strategy, there is no analysis evaluation cost.
The constraint function cost is the suni of the cost of each
of the system inequality constraints, plus the sum of the
cost of each analysis equation (where here each analysis
equation is posed as an equality constraint), summated
every design cycle.

Three “cost scenarios” are used in the presentation of
the results. These scenarios are summarized in Table 8.
Cost scenario 1 is such that the cost of an analysis eval-
uation is approximately equivalent to the cost of both
an objective function evaluation and an inequality con-
straint function evaluation. Here, the cost of all three
function evaluations are randomly chosen to be between
0 and 100 units. The authors speculate that this is not
a realistic cost scenario. The cost of an analysis eval-
uation (which, in a real system might stem from the



result of a costly FEM matrix inversion, for example)
could be far greater than the evaluation cost of the op-
timization functions, linear or nonlinear. In response to
this line of thinking are more realistic cost scenarios 2
and 3. Cost scenario 2 represents a “semi-costly” analy-
sis, where the costs of analysis evaluations are randomly
chosen to be between 0 and 500 units, and objective and
inequality constraint function costs are again randomly
chosen to be between 0 and 100 units. Hence, on average,
the analysis/optimization evaluation cost ratio is equal
to 5.0 for cost scenario 2. Cost scenario 3 represents a
“costly” analysis, where the costs of analysis evaluations
are randomly chosen to be between 500 and 1000 units,
and objective and inequality constraint function costs are
again randomly chosen to be between 0 and 100 units.
Hence, on average, the analysis/optimization evaluation
cost ratio is equal to 15.0 for cost scenario 3. (Note: rela-
tive to all other cost quantities, the evaluation cost of
the equilibrium constraints IDF strategy could be consid-
ered negligible. However, in this simulation, the cost of an
equilibrium constraint function evaluation has been set to
be equal to 10% of the evaluation cost of its associated
analysis equation).

Table 8 Summary of the three cost scenarios

Cost Analysis cost  Optimization Analysis/
scenario range cost range Optimization
cost ratio
1 (0,100) (0,100) 1.0
2 (0,500) (0,100) 5.0
3 (500,1000) (0,100) 15.0
7.3.3

Simulation results

Table 9 presents a comparison of the three solution strate-
gies for all three test systems and cost scenarios. Consider
first test system 1, cost scenario 1. Listed for each solu-
tion strategy are five quantities: objective function im-
provement, analysis evaluation cost, objective function
evaluation cost, constraint function evaluation cost, and
total evaluation cost. Figure 17 presents a plot of this very
same data. Note however, that each of these five quan-
tities are plotted normalized, and are normalized separ-
ately. (i.e. the three objective function improvements are
normalized against each other, the three analysis costs
are normalized against each other, the three objective
function costs are normalized against each other, etc.)
The general trends of this first system are as follows:
MDF achieves the greatest objective function improve-
ment, but has a huge analysis cost and by far the highest
overall cost. AAO attains substantial improvement in the
objective function, has no iterative analysis cost what-
soever, but has a large constraint cost (recall that the
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analysis equations are now posed as equality constraints),
and has in this case, the largest objective function cost.
IDF attains substantial improvement (albeit the lowest
of the three strategies) at a low analysis cost, and at the
lowest objective function, constraint, and total cost, re-
spectively. Table 9 and Figs. 18 and 19 present analogous
results for the more realistic cost scenarios 2 and 3, re-
spectively, for test system 1. In comparing Figs. 18 and 19
to Fig. 17, note that the objective function improvements
are the same, the analysis and objective function costs
are higher, but proportionately so, the constraint cost for
IDF grows to be larger than that for MDF, and the pro-
portion by which the total cost for MDF is larger than
that for AAO and IDF becomes larger. Table 9 presents
analogous results for the second and third test systems,
respectively.
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Fig. 17 Normalized comparisons for test system 1, cost scen-
ario 1

Figures 20 and 21 are normalized plots of the cost
scenario 3 data for the second and third test systems,
respectively. The second test system is typified by the
following: the objective function improvement of MDF
doubles that of both IDF and AAO; a huge MDF analysis
cost, ten times larger than that of IDF; comparable objec-
tive function costs, with that of MDF being the largest,
followed by IDF and then by AAQ; the constraint cost is
largest for AAQ, followed by IDF for the second and third
cost scenarios (as with the first test system); MDF has
the highest overall cost by an increasing proportion (as
cost is increased from cost scenario 1 to cost scenarios 2
and 3), followed by IDF, and followed by AAO, which is

. the least costly solution strategy for the second test sys-

tem. The third test system is typified by the following:
the objective function improvement of MDF that nearly
quintuples that of both IDF and AAO; a huge MDF an-
alysis cost, ten times larger than that of IDF; compa-
rable (and comparatively miniscule) objective function
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Table 9 Cost scenarios 1-3 for test systems 1-3

T C Sol OF Anal. OF Cons. Total
S S strat. imprv.  cost cost cost cost
1 1 MDF 2337. 2.16E6 12247 3.40E5 2.51E6
IDF 1831. 1.69E% 8917 2.61E5 4.40E5

AAO 2324. 0 16354 7.64E5 7.81E5

2 MDF 2337. 1.08E7 12247 3.40E5 1.12E7
IDF 1831. 8.54E5 8917 3.21E5 1.18E6

AAO 2324. 0 16354 2.01E6 2.03E6

3 MDF 2337. 2.62E7 12247 3.40E5 2.65E7
IDF 1831. 2.06E6 8917 4.29E5 2.50E6

AAO 2324. 0 16354 4.22E6 4.23E6

2 1 MDF 7276. 7.20E6 37710 4.10E5 7.65E6
IDF 3349. 7.66E5 30915 3.98E5 1.19E6

AAO 3329. 0 27585 9.83E5 1.01E6

2 MDF 7276. 3.62E7 37710 4.10E5 3.67TE7
IDF 3349. 3.85E6 30915 6.70ED 4.55E6

AAO 3329. 0 27585 3.73E6 3.76E6

3 MDF T276. 1.00E8 37710 4.10E5 1.01E8
IDF 3349. 1.07E7 30915 1.28E6 1.20E7

AAO 3329. 0 27585 9.86E6 9.88E6

3 1 MDF 14581. 2.45E7 3828 2.00E5 2.47E7
IDF 3302. 2.19E6 2649 3.31E5 2.52E6

AAO 3106. 0 6063 5.33E6 5.33E6

2 MDF .14581. 1.24E8 3828 2.00E5 1.24E8

IDF 3302. 1.10E7 2649 1.18E6 1.22E7

AAO 3106. 0 6063 2.56E7 2.56E7

3 MDF 14581. 3.71E8 3828 2.00E5 3.71E8
IDF 3302. 3.31E7 2649 3.25E6 3.64E7

AAQO 3106. 0 - 6063 7.61E7 7.61E7
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costs, with that of MDF being the largest, followed by
AAO and then by IDF; the constraint cost is largest for
AAO, followed by IDF for all three cost scenarios; MDF
has the highest overall cost by an increasing proportion
(as cost is increased from cost scenario 1 to cost scen-
arios 2 and 3), followed by AAO, and followed by IDF,
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Fig. 19 Normalized comparisons for test system 1, cost scen-
ario 3

which is the least costly solution strategy for the third
test system.

The next section will take a closer look at all three
subsections of results, and will consequently make some
heuristic observations regarding the utility of each of the
solution strategies.
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Discussion

8.1
General observations

The first major point to be made regarding the results
is that by having multiple solution strategies to pose
and solve the same coupled multidisciplinary design prob-
lem, a design manager will arrive at three different prob-
lem statements, each with its own “problem dynamic”.
The solution path for each problem will likely be totally
unique, and highly dependent on the initial design point.
Hence, having three separate means for posing and solv-
ing an MDO problem can only be advantageous to a de-
sign manager. This was clearly found to be the case in the
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present work. The authors would typically perform sev-
eral trial executions on a given test problem using a given
solution strategy, and attain what appeared to be the
“global” optimum solution. Thereafter, numerous trial
executions of the same test problem with a different solu-
tion strategy would often result in an improved solution,
hence revealing the initial “global” optimum solution as
being merely an improved local optimum solution.

The “problem dynamic” that is mentioned in the pre-
vious paragraph results from the nature of each solu-
tion strategy; the means with which the multidisciplinary
design problem is posed for a given strategy. Problems
which contain a large system analysis portion (i.e. prab-
lems which have a large number of behaviour variables)
will result in a large iterative system analysis for the
MDF strategy. The same scenario will result in no sys-
tem analysis at all for AAQ, but will instead result in
a large number of nonlinear inequality constraints in the
optimization. This same scenario results in an interme-
diate state for IDF - an equilibrium equality constraint
and a single analysis evaluation are required for each be-
haviour variable that promotes coupling.

A large factor that is affected by this topic of “prob-
lem dynamic” is the use of move limits within the opti-
mizer. CASCADE has been known to generate treacher-
ous design spaces that are cluttered with a multitude of
local minima, any of which may contain the initial design
point. Often times, very large move limits are required
to retreat such a scenario. Because MDF (and to a lessér
degree, IDF) has a distinct analysis step, large move lim-
its must be handled with caution. If a design manager
allows the design variables to change by a large degree
on a given optimization iteration, the ensuing system an-
alysis may see large changes in the behaviour variable
magnitudes. This may cause the initial design on the sub-
sequent optimization cycle to be infeasible, from which
the optimizer might not be able to recover, depending on
the degree of infeasibility. The authors’ trial executions of
the test systems during both “preliminary” and “verifica-
tion” testing solidified these statements.

8.2
Results from “preliminary” testing (Section 7.1)

A major arer of discussion involves the “goodness” of
the results attained. The primary figure of merit for the
test results is the final value of the objective function.
Figures 8 and 10 plot the objective function histories of
the first and second test systems, respectively. In both
of these test systems, the MDF strategy, which has the
fewest optimization variables, attains the lowest final ob-

_jective function, and reaches its final solution the most

quickly. The AAO strategy, which has the largest num-
ber of optimization variables, tends to lag towards its
final solution much more slowly. Not surprisingly, the
IDF strategy tends to follow a path which is interme-

"diate to the extremes of the MDF and AAOQ strategies.
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In fact, the MDF strategy attains the best final ob-
jective function value for test systems 3, 4, and 5 as
well; refer back to Table 2. In all but the fifth test sys-
tem (where AAO slightly outperforms IDF), the IDF
strategy attains the next best final solution, followed
closely by the final solution of the AAO strategy. Seem-
ingly, for the types of problems generated by CASCADE
(highly nonlinear and nonconvex), the solution strat-
egy with the smaller number of optimization variables
tends to attain the greatest improvement in the objective
function.

Total execution times for the five test systems tended
to follow the same trend - MDF attained its solution the
fastest, followed by IDF and AAOQ. (Refer to Fig. $1). For
the MDF solution strategy (FULL iterative system analy-
sis), total execution times for the five test problems were
approximately 0.5, 1.1, 22.9, 57.9, and 98.2 seconds, re-
spectively, where the corresponding number of optimiza-
tion variables for each test problem is 6, 11, 40, 45, and
40, respectively. (Refer to Table 2). For the AAQO solu-
tion strategy (NO system analysis), total execution times
were approximately 2.0, 9.1, 64.2, 261.0, and 3098.9 sec-
onds for the five test systems, corresponding to 12, 20,
60, 90, and 140 optimization variables, respectively. One
must keep in mind that these execution times are clock
times required for multidisciplinary design simulations.
To attain an understanding of the total time required to
attain a solution for a real-life system (of the same coup-
ling structure that is being simulated by CASCADE),
one would have to factor in the relative times required
for analysis and objective function calculations for the
real-life system itself. Analysis calculations are likely to
be the largest factor in terms of total execution time, by
a considerable margin, which is not being reflected in the
CASCADE test problem simulations. These issues were
initially addressed in Section 7.3, and will be further dis-
cussed in Section 7.4.

8.3
Results from “verification” testing (Section 7.2)

Having performed both the preliminary testing (Sec-
tion 7.1) and the subsequent verification testing (Sec-
tion 7.2), and upon observing the tabular (Tables 3-6)
and graphical (Figs. 12-16) results corresponding to the
verification testing, numerous statements can be made
with a greater deal of confidence. As system size in-
creases, the likelihood that either IDF or AAO will out-
perform MDF (in terms of final objective function at-
tained), decreases. For the first system size, where the
optimization variable count is low for all solution strate-
gies (MDF = 6; IDF = 11; AAO = 12), all solution
strategies perform fairly well. MDF attains the best final

solution for five of the nine system instances, and IDF and

AAO each attain the best final solution for two of the nine
instances. System size 2 is slightly larger, as is the corres-
ponding optimization variable count: (MDF = 9; IDF =

17; AAO = 18). Here, MDF attains the best final solu-
tion for seven of the nine system instances, and IDF and
AAO each attain the best final solution for one of the nine
instances. Aside from a single system instance in system

size 3, MDF attains the best final solution in all remaining

instances of system sizes 3, 4, and 5, through which the
optimization variable count continues to increase in size.

Some trends regarding the correlation of the solution
strategies with system volatility factor are worthy of note.
For system size 1, the smallest system size tested, the
AAO strategy attains the lowest final solution in two of
the nine system instances; both of those instances are low
volatility (SVF = 1) system instances. The IDF strat-
egy also attains the lowest final solution in two of the
nine system instances; both of those instances are high
volatility (SVF = 5) system instances. The MDF strat-
egy attains the lowest final solution in all three of the
intermediate volatility (SVF = 3) system instances, and
one each of the low and high volatility system instances.
As system size increases, these trends remain somewhat
evident, but quickly diminish. For system size 2, the
AAO strategy attains the lowest final solution in one of
the nine system instances; which is again a low volatil-
ity (SVF = 1) system instance. For system size 3, the
IDF strategy attains the lowest final solution in one of
the nine system instances; this instance is again a high
volatility (SVF = 5) system instance. As system size
increases to system sizes 4 and 5, the MDF strategy
attains the lowest final solution, regardless of system
volatility.

Not only does the likelihood that MD¥F will outper-
form the IDF and AAO strategies grow with the size of
the system, but so too does the amount by which MDF
outperforms them. Table 5 appears to be a clear indi-
cator of this fact. When comparing these results “down
the rows”, it is seen that average normalized improve-
ment (which was explained in the final paragraph of Sec-
tion 7.2) for MDF is calculated as 0.97 for the first system
size, grows to 0.99 for the third system size, and max-
imizes to 1.0 for the fourth and fifth system sizes. For
the IDF solution strategy, the average normalized im-
provement is calculated as 0.86 for the first system size,
decreases to 0.67 for the third system size, and steadily
decreases to 0.21 for the fifth system size. For the AAO
solution strategy, the average normalized improvement is
calculated as approximately 0.61 for the first three sys-
tem sizes, decreases to 0.27 for the fourth system- size,
and drops to 0.22 for the fifth system size. If these re-
sults are instead compared “across the columns”, and if
the average normalized improvement is to be perceived as
a measure of reliability for attaining the greatest improve-
ment in objective function, one sees the following. For
all but the fifth system size (where AAO slightly outper-
forms IDF), MDF is the most reliable strategy, followed
by IDF, followed by AAO.

Table 6, though based on smaller subsections of data,
reveal some noteworthy trends as well. The “SVF = 17
data shows that all three solution strategies perform com-



parably at low system volatility, and at smaller system
sizes (sizes 1 and 2). As system size increases, MDF be-
gins to outperform the other strategies by a steadily in-
creasing amount. The general tendency is that IDF out-

performs AAQ, but this is not always the case. The “SVF -

— 3" data, which presents intermediate system volatility
data, supports this possibility. Here however, a greater
disparity between the performance of the solution strate-
gies is seen at the smaller system sizes. Finally, the “SVF

— 5” data demonstrates that at high system volatility, the -

performance of the solution strategies becomes more un-
predictable. MDF continues to perform well for all system
sizes, and is nearly matched by the performance of IDF
at the smallest system size. IDF and AAO perform “re-
spectably” against MDF for the second and third system
sizes, but are greatly outperformed by MDF for the larger
system sizes (4 and 5).The next section will focus on the
downside of implementing a particular solution strategy;
a downside that must be weighed against the existing po-
tential for design improvement. The downside, of course,
is the cost incurred while implementing a particular solu-
tion strategy.

8.4
Results from “cost-based” testing (Section 7.3)

Clearly, for the types of systems generated by CAS-
CADE, the MDF solution strategy has shown itself to
be the most reliable, regardless of system size or system
volatility, for attaining the greatest design improvement.
However, the results of Section 7.3 demonstrate that the
cost incurred in attaining this improvement is tremen-
dous. Analysis cost is typically ten times (or greater)
larger for MDF than for IDF. In general, the factor by
which analysis cost for MDF exceeds that for IDF is
a function of how many iterations are required to con-
verge the system of coupled nonlinear analysis equations
each design cycle. To a lesser degree, this factor is also
a function of what percentage of the system behaviour
variables are not coupling variables. When it comes to
analysis cost, AAO is undoubtedly the most attractive so-
lution strategy — there is absolutely no ezplicit analysis
cost. As the average cost of an analysis evaluation in-
creases between the cost scenarios, the total analysis cost
increases for MDF and IDF, but does so in proportion.
Objective function cost tends to be comparable for all
three solution strategies, and small when compared to the
other costs incurred during solution strategy implementa-
tion. Being that AAO has the largest associated optimiza-
tion problem, it tends to incur the greatest objective func-
tion cost. This is not always the case; for test system 2,
AAO actually incurs the smallest objective function cost.
The objective function cost is clearly a function of the dy-
namic of the problem being solved - the amount of design
improvement that is possible by the particular solution
strategy being implemented. This is clearly a function of

the initial starting design point. As the average cost ofan .
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objective function evaluation increases between the cost
scenarios, the total objective function cost increases for
all three solution strategies, but does so in proportion.
Constraint function cost exhibits the most interesting
and noteworthy behaviour when comparing the solution
strategies and cost scenarios. For MDF, the constraint

~ cost is solely a function of inequality constraint evaluation

cost, which remains constant for all three cost scenarios,
For IDF, the constraint cost is a function of both inequal-
ity constraint evaluation cost (constant) and equilibrium
constraint cost for each coupling variable. Recall that the
latter cost has been approximated to be equal to 10% of
the analysis cost for each analysis equation {(behaviour
variable) that corresponds to each coupling variable - this
quantity changes between cost scenarios. Similarly, for
AAO, the constraint cost is a function of both inequal-
ity constraint evaluation cost (constant) and the cost of
each analysis equation posed as an equality constraint.
Again, this latter quantity changes between cost scen-
arios. Hence, constraint cost is‘the only of the three cost
quantities that changes disproportionately between the
cost scenarios. For example, for test system 1, cost scen-
ario 1, AAQ has the largest constraint cost, followed by
that of MDF, which is about half as large, followed by
IDF, which is about one-third as large as that of AAO.
For cost scenario 2, where inequality constraint cost re-
mains constant but analysis cost (on average) increases
five-fold (refer to Table 8), the AAO constraint cost be-
comes almost three times larger (than its cost scenario 1
value), MDF constraint cost remains constant, and IDF
constraint cost nearly matches that of MDF. Finally, for
cost scenario 3, the AAO constraint cost doubles from
that of its cost scenario 2 value, MDF constraint cost
again remains constant, and IDF constraint cost over-
takes that of MDF by approximately 25%. For this cost
scenario, the AAO constraint cost is almost ten times
larger than that of IDF, which has the second highest
total constraint cost.

Total cost is a function of all three costs that have
been discussed thus far. Total cost was found to be high-
est for all test systems and all cost scenarios for the MDF
strategy, and usually by a substantial margin. This is due
almost entirely to the enormous iterative analysis cost
that is incurred every design cycle. Analysis cost is also

~found in the IDF (as the analysis cost) and AAO (as
a vast portion of the constraint cost) strategies, but re-
call that analysis cost is noniterative in nature in IDF and
AAQ, resulting in a lower summated final cost. Objective
function cost was found to have a miniscule effect on the
total cost for all test problems and cost scenarios. Con-
straint cost was the only cost quantity that increased dis-
proportionately between the cost scenarios. As explained
_previously; this is because the constraint cost for the IDF
and AAO strategies is a function of both the constant in-
equality constraint evaluation cost, and the nonconstant
analysis evaluation cost, which appears by virtue of the
‘equilibrium constraints and the analysis-based equality
constraints, respectively.
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For the first and third test systems, total cost was
higher for AAO than it was for IDF. This came as a mild
surprise to the authors, but on closer observation, began
to make sense. For the first test system, MDF and AAO
performed comparably in terms of objective function
improvement. IDF showed improvement, but substan-
tially less than that of the other two strategies. Hence,
IDF likely converged upon its inferior solution relatively
quickly, with a great deal fewer evaluations (both analysis
and optimization) expended. For the third test system,
IDF slightly outperformed AAO in terms of objective
function improvement. Here again, the authors spec-
ulate that IDF reached its final solution (which looks
to be a stingy local optimum) rather quickly, and with
fewer total evaluations, than did AAO, which achieved
roughly the same final solution, but which has more
optimization variables and a more complicated design
space than does IDF. In both cases outlined above, IDF
would hence have a lower associated total cost than
would AAO.

A final observation to be made involves objective func-
tion cost, which appears to be a good gauge for deter-
mining which solution strategy will incur the lowest total
cost. For the first and third test systems, the objective
function cost (and hence the total number of objective
function evaluations) for the AAQ strategy is almost
twice as large as that for the IDF strategy. In both test
systems, the total cost for the AAO strategy approxi-
mately doubled that of the IDF strategy. For the second
test system, the objective function cost for the IDF strat-
egy was slightly larger than that for the AAQ strategy.
For this test system, the total cost of the IDF strategy was
slightly larger than that for the AAO strategy. As previ-
ously explained, MDF was found to have the largest total
cost, often by a substantial margin, regardless of the ob-
jective function cost.

8.5
Closing observations

It is the authors’ theory that for any given MDO problem
at some initial starting point, an improved local (or hope-
fully global) optimum solution can be found, regardless
of the solution strategy that is applied. The real issue is
the “ease” with which the best found solution is attained,
with each of the strategies. To this end, MDF consistently
arrived at the “best found” design point on one of the
first few trial executions, and with minor modifications
of the default optimizer settings, or no modifications at
all. The IDF and AAO solution strategies were quite the
contrary - many more trial executions were required to
attain the corresponding “best found” solution for each
of these strategies. Moreover, substantial modifications
to the default optimizer settings were required. Some of
the default eptimizer parameters which were commonly
adjusted (during the “preliminary” testing phase only)

include: relative move limits, relative and absolute finite

difference step sizes, the value of the penalty parame-
ter for equality constraints (IDF and AAO only), max-
imum iterations and convergence criteria at both the op-
timizer and strategy levels, and the binary switch for vari-
able scaling. Variable scaling worked consistently well for
the MDF solution strategy, whose optimization variables
consist solely of design variables. Often times, the IDF
and AAO strategies required that variable scaling not be
used, especially for larger system sizes. This is likely be-
cause these strategies have both design and behaviour
variables acting as optimization variables and numerous
additional equality constraints resulting from the analysis
equations, which renders the scaling of the design prob-
lem an impossible task.

9
Conclusions

This research effort has presented a numerical com-
parison of the MDF, IDF, and AAO solution strate-
gies across simulated multidisciplinary design systems
of varying size and complexity. The multidisciplinary
test systems have been generated by CASCADE, a ro-
bust simulation tool. From the results that have been
attained, some general conclusions can be drawn. Given
the ability to pose a multidisciplinary design problem
three different ways, a design manager has three dis-
tinct means for solving the design problem, which should
only be to his or her advantage. Each of the three so-
lution strategies exemplifies a unique problem dynamic,
greatly dependent on the initial design point, and in
most cases, on the settings of the optimizer. Numerous
figures of merit must be considered when choosing an
appropriate solution strategy; the primary of which is de-
sign improvement. The MDF strategy has been found
to arrive at the “best found” solution for a vast ma-
jority of the test problems in this effort. AAO usually
attains final solutions that are vastly improved (over
the initial design) without any form of costly iterative
system analysis, but at the expense of a complex de-
sign space that is cluttered with nonlinear equality con-
straints. IDF has shown itself to be a good trade-off
between the extremes of MDF and AAOQ; fewer analysis
evaluations than MDF, and (equilibrium) equality con-
straints that are simpler, and usually fewer in quantity
than those of AAO, depending on the coupling nature
of the system. The IDF was typically found to outper-
form the AAO strategy, in terms of objective function
improvement.

The reader must realize that the results that have
been presented represent MDO problem simulations, and
must be interpreted as such. In a real-world MDO prob-
lem, total solution times for the MDF strategy would
likely have been the longest by a considerable margin (due
to the many costly iterative analysis evaluations that it
requires), followed by IDF (fewer, noniterative analysis '
evaluations) and AAO (no iterative analysis evaluations).



The cost-based testing support this line of speculation.
MDF was found to be the most costly solution strategy
in all three cost-based test systems, usually by a factor
of ten or more. The cost comparison between IDF and

AAO is not straightforward. AAO was found to be twice.

as costly as IDF for two of the three cost-based systems
tested, and outperformed IDF (in terms of objective func-
tion improvement) in one of these two systems. AAO was
found to be slightly less costly than IDF in one cost-
based test system, but was slightly outperformed by IDF
in this test system. Finally, the authors reason that an im-
proved local (or hopefully global) optimum solution can
be found, regardless of the solution strategy used. The ul-
timate goal of the design manager is to utilize the solution
strategy which will achieve the “best found” design with
the least difficulty. To this end, the MDF strategy was
found to constantly achieve its “best found” solution with
minimal modification of optimizer settings, and with the
smallest number of trial executions.
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