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Abstract

The design of multidisciplinary systems (such as
aircraft, automobiles, and others) often requires an
iterative cycle that includes a design initialization, a
system analysis, a sensitivity analysis, and design
optimization.  This design cycle is standard in the field
of Multidisciplinary Design Optimization (MDO) and
has often been referred to in literature as the  “Multiple-
Discipline-Feasible” (MDF) approach.  The name stems
from the fact that complete multidisciplinary feasibility
is maintained each and every design cycle.  The
drawback of MDF is that it can be a timely and a costly
procedure.  Numerous researchers  have developed
alternate means for posing and subsequently solving the
multidisciplinary design problem.  One such solution
procedure has been referred to both as “Simultaneous
Analysis and Design” (SAND) and “All-at-Once”
(AAO), and treats the entire multidisciplinary design
cycle as one large optimization problem.  Another
alternate solution procedure has been referred to as
“Individual-Discipline-Feasible” (IDF); this procedure
exhibits characteristics which lie in between the two
extremes exemplified by MDF and AAO.  IDF assures
that each individual discipline is feasible on every
design cycle, while driving the entire system (all
disciplines) towards multidisciplinary feasibility.  The
present work will present a rigorous numerical
comparison of these solution strategies over a wide
variety of problem sizes and complexities.  The
multidisciplinary design test problems that are used for
these comparisons are generated by a robust simulation
tool called CASCADE.
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Background and Motivation

Concurrent engineering is a systematic approach to the
integrated, simultaneous design of products and their
related processes.  Many of the recently developed
capabilities to address concurrent engineering have
stemmed from the emerging area of Multidisciplinary
Design Optimization, or MDO. The origins of MDO
can be traced back to the early 1980's, where Sobieski14

used a linear decomposition approach to subdivide the
design of a large engineering system into a grouping of
related and more manageable subsystems.  However,
such a decomposition often results in a grouping of
subsystems which cannot be placed into a definitive
top-down hierarchy.  The resultant decomposition
grouping is typically hybrid-hierarchic in nature as
shown in the example decomposition of Figure 1.

Figure 1: Hybrid-hierarchic decomposition

This inherent lack of hierarchy requires that the system
analysis (associated with the overall design cycle) be
initialized to some set of values, and iteratively
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converged thereafter.  Subsequent to attaining a
converged analysis solution, a sensitivity analysis is
performed.  The sensitivity analysis can be a numerical
procedure such as finite differencing or the Global
Sensitivity Equation (GSE)15,4 method.  The sensitivity
analysis is required for the optimization of the overall
design.  The optimization step itself will typically cause
certain optimization variables to change, which then
necessitates the  re-convergence of the system analysis.
Hence, the entire design cycle repeats itself until a
converged solution is attained.  A summary of such non-
hierarchic design synthesis is illustrated in Figure 2.

Figure 2: Non-hierarchic design synthesis -
The “Multiple-Discipline-Feasible” (MDF) strategy

The design cycle that has just been described has been
referred to in literature as the “Multiple-Discipline-
Feasible”, or MDF approach1,5,6.  It has been
demonstrated more than any other approach on non-
hierarchic multidisciplinary examples1.  The advantages
of the MDF approach include its commonality to most
MDO researchers, and its optimization problem, which
treats only design variables (and not behavior variables)
as optimization variables.  The primary disadvantage of
the MDF approach is that it is potentially very time and
cost consuming.  At each optimization iteration,
complete multidisciplinary feasibility is enforced6.  At
each design cycle, a great deal of time may be
inefficiently spent while fully re-converging the system
analysis portion of a design that is still very far from its
optimal solution.

More recently, researchers have focused on alternate
methods for posing and solving the multidisciplinary
design problem.  An approach has been developed

which treats the entire multidisciplinary design cycle
seen in Figure 2 as a single large optimization problem.
This is accomplished by converting the system analysis
equations into equality constraints, and by treating both
system design variables and subsystem outputs
(behavior variables) as optimization variables.  Such an
approach has been referred to in literature as both
“Simultaneous Analysis and Design” (SAND)1,5,6,8 and
“All-at-Once” (AAO)1,5,6.  The primary advantage of
AAO is the elimination of an iterative design cycle for
attaining an optimal design through the outright
elimination of costly iterative analysis evaluations.  One
possible disadvantage of AAO is that a much more
complicated optimization problem results.  More
optimization variables and more equality constraints are
present in the AAO formulation.  These variables and
equations stem from the addition of the system analysis
equations to the optimization problem statement.  A
second disadvantage is that disciplinary feasibility is
only attained at a relative or at an absolute extremum.
This reduces the possibility of attaining a valid design
solution if the optimizer is unsuccessful in attaining the
global optimum solution.  A generalized summary of
the AAO strategy is seen in Figure 3.  Notice that the
"Residual Evaluator" has replaced the iterative System
Analysis seen in Figure 2.  In the Residual Evaluator,
the analysis equality constraints are posed.

Figure 3: The “All-at-Once” (AAO) strategy

Another alternative to the classical MDF approach
exhibits characteristics which lie between the extremes
of MDF and AAO.  Recall that MDF requires full
disciplinary feasibility at each and every optimization
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iteration, while AAO only enforces disciplinary
feasibility at the final solution (a local or global
optimum), if attained.  An intermediate approach is
called “Individual-Discipline-Feasible” (IDF)1,5,6,9.
With IDF, each individual discipline (or subsystem) is
independently feasible at every optimization iteration.
The optimizer eventually drives all of the individual
disciplines towards multidisciplinary feasibility by
controlling the interdisciplinary data6.  In this
formulation, all coupling variables (behavior variables
that are required inputs to other subsystems) are
promoted to being optimization variables.  This takes
place by temporarily substituting a replacement
“surrogate” variable for each coupling variable in the
optimization problem statement.  Auxiliary equality
constraints are added to the problem formulation to
ensure that each and every behavior variable is equal to
its corresponding surrogate variable, at optimization
convergence.  These constraints may be thought of as
“equilibrium” constraints. A generalized summary of
the IDF strategy is seen in Figure 4. Notice that the
"Analysis Solver" has replaced the iterative System
Analysis seen in Figure 2.  In the Analysis Solver, both
the single analysis solution (non-iterative) and the
equilibrium constraint formulation take place.

Figure 4: The “Individual-Discipline-Feasible”
(IDF) strategy

With a fundamental understanding of each of the three
solution strategies, the authors’ means for obtaining a
wide variety of coupled multidisciplinary test systems
can now be discussed.  For this task, a robust simulation
tool called CASCADE10,11 has been used.

Simulation of coupled systems

A number of previous research efforts involving the
comparison of the MDF, IDF, and AAO solution
strategies have been limited to a classical two
subsystem multidisciplinary system, such as an aero-
elastic example.  It is desired to assess the utility of
these solution strategies over a wide variety of system
sizes and subsystem-level coupling densities.  It is only
after such testing is completed that heuristic rules can
be developed which will govern the appropriateness of
a given solution strategy for a given set of coupled
system characteristics.

The rigorous testing of these solution strategies requires
the use of a wide variety of stable test systems.  For this
reason, the CASCADE simulator has been used for the
generation of analytical test systems.  CASCADE is an
acronym which stands for “Complex Application
Simulator for the Creation of Analytical Design
Equations”.  A thorough description of CASCADE can
be found in past literature.  A brief overview will be
presented here for completeness.

CASCADE is a computer tool that generates a coupled
system that consists of analytical equations of user-
specified size.  CASCADE has the capability of
generating equations which represent both a coupled
system analysis and an associated coupled optimization
problem.  The optimization portion consists of an
objective function, inequality constraint functions, and
side constraints.  The intended use of such systems is
for the advancement of any research work that involves
the use of simulated coupled system behavior.
CASCADE-generated test systems have been used for
Multidisciplinary Design Optimization research
involving sequencing12, convergence12, and coupling
suspension7 strategies, response surface methods3,
parallel processing with Java2, distributed computing
with PVM10,11, design space visualization via graph
morphing17, multidisciplinary data fusion, and others.
CASCADE can be accessed on the World Wide Web at
the MDO Test Suite13.

For clarity, a sample CASCADE system is presented as
follows (Figure 5).
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Figure 5: Decomposed three-subsystem
coupled system

Figure 5 consists of a multidisciplinary system that has
been decomposed into three inter-related subsystems.
Each subsystem has its own set of independent design
variables as input (the “X’s”), as well as dependent
behavior variables - outputs from other subsystems -
also serving as input (the “W’s”, “Y’s”, and “Z’s”).
The CASCADE-generated analysis equations that
exhibit the coupled behavior illustrated in Figure 5
might appear as in Equation [1]:

W1 = 0.22XW
1 + 0.05Y2

3 - 0.46Z1
2 + 0.73(XWY2)

1

W2 =
 -0.96Y2

2 + 0.56Z1
3 - 0.03(XWY2)

2

W3 = 0.36XW
2 + 0.93(Z1Y2)

2

Y1 = 0.08XY
3 - 0.05W1

1 + 0.11W3
1 - 0.09(XYW1)

3

Y2 = 0.59W3
1 + 0.41W1

2 + 0.99(XYW3)
3

Z1 = -0.43XZ
2 - 0.88W2

2 + 0.25(W2XZ)2

[1]

Note that each behavior variable output equation is a
polynomial function of both single-coupling terms and
double-coupling (interaction) terms.  The CASCADE-
generated optimization problem is a function of the
same design and behavior variables that are found in the
analysis equations, and might appear as in Equations [2]
and [3]:

Minimize:
F = 0.04XW

2 + 0.96XY
3 + 0.15XZ

1 - 0.26W1
2 + 0.44W2

1

+ 0.57W3
3 - 0.07Y1

1 + 0.68Y2
2 - 0.02Z1

3

[2]

Subject to:
gW = -578.9 + 0.36Y2

3 + 0.55 XW
1 + 0.09(XWZ1)

3 � 0
gY = -226.7 + 0.26XY

3 + 0.51 W1
2 + 0.53(XYW3)

1 � 0
gZ = -1095.1 + 0.33 Y2

2 + 0.47(XZW2)
1 � 0

- 9999.0 � XW, XY, XZ � + 9999.0
[3]

Note again the presence of both single-coupling and
interaction terms in the objective and inequality
constraint functions.          CASCADE generates the
inequality constraints around the converged system
analysis in such away that the initial design point is a
feasible design point.  Once generated, the analysis
equations, objective function and constraint functions
are written to three separate output files, each of which
is a compilable ANSI C-based header file.  The utility
of these functions is at the discretion of the user.  For
the present research, the functions are used to
numerically compare and contrast the MDF, IDF, and
AAO solution strategies.  The next section will present
an example CASCADE system, and a corresponding
problem statement for each of the three solution
strategies.

Integration of CASCADE with the multidisciplinary
solution strategies

To further illustrate the nature of the present research,
the problem statements for each of the three solution
strategies will be presented, corresponding to Figure 5
and Equations [1] through [3].

MDF

� Optimization variables:  XW, XY, and XZ

� Analysis:  Equation [1].  Full iterative re -
convergence every MDO cycle.

� Optimization:  Equations [2] and [3].
� Comment:  The problem is solved as posed in

equations [1] through [3] and in a cyclic manner
similar to that seen in Figure 2.

IDF

� Optimization variables:  XW, XY, XZ, and surrogate
variables XW1, XW2, XW3, XY2, and XZ1

� Analysis:  A single non-iterative "solution" of
Equation [1] on each cycle, modified as follows.
Note the presence of replacement “surrogate”
variables on the right hand side of the equations:

W1 = 0.22XW
1 + 0.05XY2

3 - 0.46XZ1
2 + 0.73(XWXY2)

1

W2 =
 -0.96XY2

2 + 0.56XZ1
3 - 0.03(XWXY2)

2

W3 = 0.36XW
2 + 0.93(XZ1XY2)

2

Y1 = 0.08XY
3 - 0.05XW1

1 + 0.11XW3
1 - 0.09(XYXW1)

3

Y2 = 0.59XW3
1 + 0.41XW1

2 + 0.99(XYXW3)
3

Z1 = -0.43XZ
2 - 0.88XW2

2 + 0.25(XW2XZ)2

Subsystem W

Subsystem Y Subsystem Z

Y2

W1   W3

Y2

W2

Z1
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� Optimization:

Minimize:
F = 0.04XW

2 + 0.96XY
3 + 0.15XZ

1 - 0.26XW1
2 +

0.44XW2
1 + 0.57XW3

3 - 0.07XY1
1 + 0.68XY2

2 - 0.02XZ1
3

Subject to:
gW = -578.9 + 0.36XY2

3 + 0.55XW
1 + 0.09(XWXZ1)

3 � 0
gY = -226.7 + 0.26XY

3 + 0.51XW1
2 + 0.53(XYXW3)

1 � 0
gZ = -1095.1 + 0.33XY2

2 + 0.47(XZXW2)
1 � 0

0 = XW1 - W1

0 = XW2- W2

0 = XW3 - W3

0 = XY2 - Y2

0 = XZ1- Z1

-9999.� XW, XY, XZ, XW1, XW2, XW3, XY2, XZ1 � 9999.

� Comment:  Note that XY1 is not an optimization
variable, since it is not used as input by any
subsystem in the analysis equations.

AAO

� Optimization variables:  XW, XY, XZ, W1, W2, W3,
Y1, Y2, and Z1

� Analysis:   None.  ("Analysis" is included in the
optimization problem).

� Optimization:

Minimize:
F = 0.04XW

2 + 0.96XY
3 + 0.15XZ

1 - 0.26W1
2 + 0.44W2

1

+ 0.57W3
3 - 0.07Y1

1 + 0.68Y2
2 - 0.02Z1

3

Subject to:
gW = -578.9 + 0.36Y2

3 + 0.55 XW
1 + 0.09(XWZ1)

3 � 0
gY = -226.7 + 0.26XY

3 + 0.51 W1
2 + 0.53(XYW3)

1 
� 0

gZ = -1095.1 + 0.15Y1
1 + 0.33 Y2

2 + 0.47(XZW2)
1 � 0

0 = 0.22XW
1 + 0.05Y2

3 - 0.46Z1
2 + 0.73(XWY2 )

1 - W1

0 = -0.96Y2
2 + 0.56Z1

3 - 0.03(XWY2)
2 - W2

0 = 0.36XW
2 + 0.93(Z1Y2 )

2 - W3

0 = 0.08XY
3 - 0.05W1

1 + 0.11W3
1 - 0.09(XYW1)

3 - Y1

0 = 0.59W3
1 + 0.41W1

2 + 0.99(XYW3)
3 - Y2

0 = -0.43XZ
2 - 0.88W2

2 + 0.25(W2XZ)2 - Z1

-9999. � XW, XY, XZ, W1, W2, W3, Y1, Y2, Z1 �  9999.

� Comment:  All design and behavior variables are
controlled by the optimizer.

With a general understanding of the three different
means for posing the MDO test systems that are
generated by CASCADE, the results of several
numerical comparisons are seen in the next section.

Results

CASCADE has been used to generate a total of five
simulations of coupled multidisciplinary systems.
These five test systems vary in size and coupling
complexity.  The ANSI-C translated version of
Automated Design Synthesis (ADS)16 has been used as
the optimization software for these MDO test systems.
The strategy - optimizer combination that has been used
for the acquisition of all the results in this section is
Sequential Linear Programming - Method of Feasible
Directions.  Internal finite difference methods have
been used to attain gradient information, within ADS.
All trial executions were performed on a SUN Ultra 1
Creator 3D workstation, under comparable network
conditions.  The primary characteristics of the five test
systems are summarized in Table 1.  (Recall that the
number of coupling variables for each solution strategy
corresponds to the number of behavior variables which
are required as input by at least one other subsystem).

Test system #1 has 3 subsystems (W, Y, and Z), which
have 2, 1, and 3 behavior variables per subsystem, 3, 2,
and 1 design variables per subsystem, and 1, 3, and 2
inequality constraints per subsystem, respectively.  The
initial value of the objective function is -678.71.  Figure
6 provides a detailed illustration of the coupling nature
of the first test system.  Figure 7 compares the Test
system #1 objective function histories for all three
solution strategies.  Table 2 summarizes the "best"
results attained (where "best" implies lowest objective
function) for the first test system, for each of the three
solution strategies, after numerous trial executions.  All
solution strategies achieve approximately the same
optimal design point, with the MDF strategy attaining
the lowest objective function value of -1711.79.

Figure 6:  Schematic of Test System #1
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XY
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Figure 7:  Test system #1 -
Objective function value vs. evaluation number

Test system #2 has 5 subsystems (U, V, W, Y, and Z),
which have 1, 2, 1, 3, and 2 behavior variables per
subsystem, 3, 2, 1, 2, and 3 design variables per
subsystem, and 4, 0, 1, 2, and 3 inequality constraints
per subsystem, respectively.  The initial value of the
objective function is -43.91.  Figure 8 provides a
detailed illustration of the coupling nature of the second
test system.  Figure 9 compares the Test system #2
objective function histories for all three solution
strategies.  Table 3 summarizes the "best" results
attained for the second test system, for each of the three
solution strategies, after numerous trial executions.
Again, all solution strategies achieve approximately the
same optimal design point.  Here, the MDF strategy
attains the lowest objective function value of -3150.08.

Figure 8:  Schematic of Test System #2
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Figure 9:  Test system #2 -
Objective function value vs. evaluation number

Test system #3 has 10 subsystems, a total of 20
behavior variables, 40 design variables, and 20
inequality constraints.  (For the final three test systems,
detailed coupling illustrations and objective function
histories are omitted for brevity.)  The initial value of
the objective function is 1622.74.  Table 4 summarizes
the "best" results attained for the third test system, for
each of the three solution strategies, after numerous trial
executions.  Once again, all solution strategies achieve
approximately the same optimal design point.  The
MDF strategy attains the lowest objective function
value of -11859.7.

Test system #4 has 15 subsystems, a total of 45
behavior variables, 45 design variables, and 90
inequality constraints.  The initial value of the objective
function is -820.18.  Table 5 summarizes the "best"
results attained for the fourth test system, for each of the
three solution strategies, after numerous trial
executions.  In this case, all three solution strategies do
not arrive at "equivalent" solutions.  The MDF strategy
attains the lowest objective function value of -10118.8,
which is approximately 10% lower than the next best
solution attained, by the IDF strategy.

Finally, test system #5 has 20 subsystems, a total of 100
behavior variables, 40 design variables, and only 3
inequality constraints.  The initial value of the objective
function is 197.40.  Table 6 summarizes the "best"
results attained for the fifth test system, for each of the
three solution strategies, after numerous trial
executions.  Here again, there is a distinct difference
between the final solutions reached by each of the three
solution strategies.  MDF again achieves the lowest
objective function value of -12012.6, considerably
lower than the next best solution attained, by the AAO
strategy.
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Subsystem Y Subsystem Z

Subsystem U Subsystem W
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V2

Z1 Z2
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Y1Y2
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Y2
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Test
system
number

Number
of

subsystems

Number of
behavior variables

Number of
design

variables

Number of
inequality
constraints

Number of
coupling
variables

Initial
objective
function

1 3 6 6 6 5 -678.71

2 5 9 11 10 8 -43.91

3 10 20 40 20 12 1622.74

4 15 45 45 90 43 -820.18

5 20 100 40 3 92 197.40

Table 1:  Generalized summary of the five test systems

Strategy
Total

Optimization
variables

Final
objective
function

Active
side

constraints

Active
inequality
constraints

Number of
analysis

evaluations

Number of objective
function evaluations

Total
execution
time (sec.)

MDF 6 -1711.79 3 1 4260 120 0.486

IDF 11 -1706.45 3 1 3612 601 1.916

AAO 12 -1705.15 3 1 0 469 2.029

Table 2:  Solution summary for Test system #1

Strategy
Total

Optimization
variables

Final
objective
function

Active
side

constraints

Active
inequality
constraints

Number of
analysis

evaluations

Number of objective
function evaluations

Total
execution
time (sec.)

MDF 11 -3150.08 4 1 17037 265 1.094

IDF 19 -3144.08 4 1 5238 581 7.245

AAO 20 -3124.61 4 1 0 1009 9.146

Table 3:  Solution summary for Test system #2

Strategy
Total

Optimization
variables

Final
objective
function

Active
side

constraints

Active
inequality
constraints

Number of
analysis

evaluations

Number of objective
function evaluations

Total
execution
time (sec.)

MDF 40 -11859.7 15 4 255940 1887 22.927

IDF 52 -11407.5 13 6 35020 1750 27.023

AAO 60 -11316.8 13 6 0 2990 64.201

Table 4:  Solution summary for Test system #3

Strategy
Total

Optimization
variables

Final
objective
function

Active
side

constraints

Active
inequality
constraints

Number of
analysis

evaluations

Number of objective
function evaluations

Total
execution
time (sec.)

MDF 45 -10118.8 13 22 523845 1473 57.854

IDF 88 -8882.84 11 10 188325 4184 307.943

AAO 90 -8483.45 11 12 0 1821 260.995

Table 5:  Solution summary for Test system #4

Strategy
Total

Optimization
variables

Final
objective
function

Active
side

constraints

Active
inequality
constraints

Number of
analysis

evaluations

Number of objective
function evaluations

Total
execution
time (sec.)

MDF 40 -12012.6 26 2 1255300 1559 98.179

IDF 132 -10253.4 13 2 572100 5720 1892.150

AAO 140 -10980.8 14 2 0 10999 3098.899

Table 6:  Solution summary for Test system #5
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The final four Figures relate to the results of Test
system #5 (Table 6), and provide a visual interpretation
of general trends that are evident in a majority of the
results that have been presented in this work.  Figure 10
is a plot of final objective function vs. solution strategy;
Figure 11 is a plot of total analysis evaluations vs.
solution strategy; Figure 12 is a plot of total objective
function evaluations vs. solution strategy, and Figure 13
is a plot of total execution time vs. solution strategy.

Figure 10:  Test system #5 - final Objective function

Figure 11:  Test system #5 - analysis evaluations

Figure 12:  Test system #5 - objective function evals.

0
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Figure 13:  Test system #5 - execution time (seconds)

The next section will take a closer look at the results
obtained from the five test systems, and will make some
heuristic observations regarding the utility of each of
the solution strategies.

Discussion

The first major point to be made regarding the results is
that by using the three solution strategies to pose the
same problem, a design manager will arrive at three
different problem statements, each with its own
"problem dynamic".  The solution path for each
problem will likely be totally unique, and highly
dependent on the initial design point.  Hence, having
three separate means for posing and solving an MDO
problem can only be advantageous to a design manager.
This was clearly found to be the case in the present
work.  The authors would typically perform several trial
executions on a given test problem using a given
solution strategy, and attain what appeared to be the
"global" optimum solution.  Thereafter, numerous trial
executions of the same test problem with a different
solution strategy would often result in an improved
solution, hence revealing the initial "global" optimum
solution as being just a good local optimum solution.

The "problem dynamic" that is mentioned in the
previous paragraph results from the nature of each
solution strategy; the means with which the
multidisciplinary design problem is posed for a given
strategy.  Problems which contain a large system
analysis portion (i.e.  problems which have a large
number of behavior variables) will result in a large
iterative system analysis for the MDF strategy.  The
same scenario will result in no system analysis at all for
AAO, but will instead result in a large number of non-
linear inequality constraints in the optimization.  This
same scenario results in an intermediate state for IDF -
an equilibrium equality constraint and a single analysis
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evaluation are required for each behavior variable that
promotes coupling.

A large factor that is affected by this topic of “problem
dynamic” is the use of move limits within the optimizer.
CASCADE has been known to generate treacherous
design spaces that are cluttered with a multitude of local
minima, any of which may contain the initial design
point.  Often times, very large move limits are required
to retreat such a scenario.  Because MDF (and to a
lesser degree, IDF) has a distinct analysis step, large
move limits must be handled with caution.  If a design
manager allows the design variables to change by a
large degree on a given optimization iteration, the
ensuing system analysis may see large changes in the
behavior variable magnitudes.  This may cause the
initial design on the subsequent optimization cycle to be
infeasible, from which the optimizer might not be able
to recover, depending on the degree of infeasibility.
The authors' trial executions of the five test systems
solidified these statements.

The second major area of discussion involves the
"goodness" of the results attained.  Thus far, the only
figure of merit that has been mentioned is the final
value of the objective function.  Figures 7 and 9 plot the
objective function histories of the first and second test
systems, respectively.  In both of these test systems, the
MDF strategy, which has the fewest optimization
variables, attains the lowest final objective function, and
reaches its final solution the most quickly.  The AAO
strategy, which has the largest number of optimization
variables, tends to lag towards its final solution much
more slowly.  Not surprisingly, the IDF strategy tends to
follow a path which is intermediate to the extremes of
the MDF and AAO strategies.

For all of the five test systems, the MDF solution
strategy attains the lowest objective function  --  but at
what expense?  Included in Tables 2 through 6 are
columns which report the analysis evaluations, objective
function evaluations, and total clock time required to
attain the final objective function, for each test problem
and solution strategy.  The general trend is that MDF is
the most reliable solution strategy for attaining the
lowest objective function, but at a huge cost in terms of
analysis evaluations.  For example, for test system #5,
the MDF solution strategy attained the lowest objective
function value by approximately 10%, but required over
1250000 analysis evaluations to attain its global
optimum solution.  Refer to Table 6 and Figures 10 and
11.  The IDF solution strategy showed the least
improvement in objective function value, but required
less than half as many analysis evaluations as MDF.

The final solution attained by the AAO solution strategy
was slightly superior to that attained by IDF, and AAO
required zero iterative analysis evaluations.  When one
thinks of a system analysis for a large scale design, one
envisions a series of complicated Finite Element
Method (FEM) and/or Computational Fluid Dynamic
(CFD) matrix algebra computations, which are typically
very timely and costly.  Hence, eliminating the need to
iteratively converge around the system analysis modules
could be extremely beneficial.

For all five of the test systems, MDF required the fewest
objective function evaluations within ADS, (usually)
followed by IDF, and then AAO.  (Refer to Figure 12,
which plots test system #5 data).  This makes sense, in
that more function evaluations are required for the
problem statement which has the greater number of total
optimization variables.  Total execution times for the
five test systems tended to follow the same trend - MDF
attained its solution the fastest, followed by IDF and
AAO.  (Refer to Figure 13, which plots test system #5
data).  For the MDF solution strategy (FULL iterative
system analysis), total execution times for the five test
problems were approximately 0.5, 1.1, 22.9, 57.9, and
98.2 seconds, respectively, where the corresponding
number of optimization variables for each test problem
is 6, 11, 40, 45, and 40, respectively.  For the AAO
solution strategy (NO system analysis), total execution
times were approximately 2.0, 9.1, 64.2, 261.0, and
3098.9 seconds for the five test systems, corresponding
to 12, 20, 60, 90, and 140 optimization variables,
respectively.  While the system analysis simulations
have some impact on the total execution time, it is clear
from the above data that an increase in the number of
total optimization variables will have a profound, non-
linear effect on the execution time spent within the
optimizer.

One must keep in mind that these execution times are
clock times required for multidisciplinary design
simulations.  To attain an understanding of the total
time required to attain a solution for a real-life system
(of the same coupling nature that is being simulated by
CASCADE), one would have to factor in the relative
times required for analysis and objective function
calculations for the real-life system itself.  Analysis
calculations are likely to be the largest factor in terms of
total execution time, by a considerable margin, which is
not being reflected in the CASCADE test problem
simulations.

The third and final area of discussion presents some
general closing observations.  It is the authors' theory
that for any given MDO problem at some initial starting
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point, an improved local (or hopefully global) optimum
solution can be found, regardless of the solution
strategy that is applied.  The real issue is the "ease" with
which the best found solution is attained, with each of
the strategies.  To this end, MDF consistently arrived at
the "best found" design point on one of the first few
trial executions, and with minor modifications of the
default optimizer settings, or no modifications at all.
The IDF and AAO solution strategies were quite the
contrary - many more trial executions were required to
attain the corresponding "best found" solution for each
of these strategies.  Moreover, substantial modifications
to the default optimizer settings were required.   Some
of the default optimizer parameters which were
commonly adjusted include:  relative move limits,
relative and absolute finite difference step sizes, the
value of the penalty parameter for equality constraints
(IDF and AAO only), maximum iterations and
convergence criteria at both the optimizer and strategy
levels, and the binary switch for variable scaling.
Variable scaling worked consistently well for the MDF
solution strategy, whose optimization variables consist
solely of design variables.  Often times, the IDF and
AAO strategies required that variable scaling not be
used, likely because these strategies have both design
and behavior variables acting as optimization variables
and numerous additional equality constraints resulting
from the analysis equations.

Conclusions

This research effort has presented a numerical
comparison of the MDF, IDF, and AAO solution
strategies across simulated multidisciplinary design
systems of varying size and complexity.  The
multidisciplinary test systems have been generated by
CASCADE, a robust simulation tool.  From the results
that have been attained, some general conclusions can
be drawn. Given the ability to pose a multidisciplinary
design problem three different ways, a design manager
has three distinct means for solving the design problem,
which should only be to his or her advantage.  Each of
the three solution strategies exemplifies a unique
problem dynamic, greatly dependent on the initial
design point, and in most cases, on the settings of the
optimizer.  Numerous figures of merit must be
considered when choosing an appropriate solution
strategy.  The MDF strategy has been found to arrive at
the "best found" solution for all of the test problems in
this effort, but always at a high cost in terms of analysis
evaluations.  AAO usually attains final solutions that are
vastly improved (over the initial design) without any
form of costly iterative system analysis, but at the

expense of a complex design space that is cluttered with
non-linear equality constraints.  IDF has shown itself to
be a good trade-off between the extremes of MDF and
AAO; fewer analysis evaluations than MDF, and
(equilibrium) equality constraints that are simpler, and
usually fewer in quantity than those of AAO, depending
on the coupling nature of the system.  The reader must
realize that the results that have been presented
represent MDO problem simulations, and must be
interpreted as such.  In a real-world MDO problem,
total solution times for the MDF strategy would likely
have been the longest by a considerable margin (due to
the many costly iterative analysis evaluations that it
requires), followed by IDF (fewer, non-iterative
analysis evaluations) and AAO (no iterative analysis
evaluations).  Finally, the authors reason that an
improved local (or hopefully global) optimum solution
can be found, regardless of the solution strategy used.
The ultimate goal of the design manager is to utilize the
solution strategy which will achieve the "best found"
design with the least difficulty.  To this end, the MDF
strategy was found to constantly achieve its "best
found" solution with minimal modification of optimizer
settings, and with the smallest number of trial
executions.
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