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Abstract efficiency of their design processes to meet time and
cost demands. The traditional serial design approach is
Industry is constantly pursuing faster andcharacterized by a sequential design cycle, where a
cheaper means for designing and manufacturing higtesign is formulated in a given design group and passed
quality goods and services. This becomes ever mor® the next group, who uses the previous groups' output
difficult as the complexity of the product increases.parameters as input parameters. Because of both
Much of the method development in the field of inefficiency and design system complexity, this
Multidisciplinary Design Optimization (MDO) attempts approach has largely become obsolete, in favor a
to simplify the design of a large, complex system, byconcurrent design approach.
dividing the system into a series of smaller, simpler, It is desired to achieve a systematic approach
and coupled subsystems. These methodologies requite the integrated, concurrent design of products and
extensive testing, either on analytical representations dheir related processes, including manufacture and
real-life systems, or on the actual system itself, prior tsupport. The interaction of all participating
implementation in order to verify their feasibility and engineering groups throughout the design cycle is a
robustness. Due to the complexity of these real-lifdruly multidisciplinary effort. Many of the recently
systems, however, it is not practical to performdeveloped capabilities to address concurrent design
methodology feasibility studies on the analytical andhave stemmed from the field of Multidisciplinary
numerical representations of the true system. Henc®&esign Optimization (MDO). The MDO approach is
some representative yet efficient means of determiningntuitive in that one often attempts to divide one large
the feasibility and robustness of MDO methods istask into a group of smaller, interrelated (coupled), and
crucial. This paper describes the design of a teshore manageable tasks [17]. The large task is often
simulator, CASCADE (Complex Application Simulator referred to as aystem and the smaller, interrelated
for the Creation of Analytical Design Equations), that istasks are calledubsystems Each subsystem contains
capable of randomly generating and then converging design variables as well as additional unknown
complex system of analytical equations, of user-outputs, often referred to @ghavior variables These
specified size. CASCADE-generated systems can bsubsystem variables are collectively referred to as
used to test sequencing and system reduction strategiespdulesof the system. Each subsystem can be thought
convergence strategies, and MDO methods, amongf as a participating design group of a large scale
others. Further, CASCADE has been designed talesign. An example would be thaerodynamics
operate in a distributed computing environment (usinglivision of the design of an aircraft. One goal of MDO
Parallel Virtual Machine), as the field of MDO itself is is to analyze these subsystems concurrently, thus
perfectly suited for such a setting. This paper describespeeding up the design time of the overall product.

the simulator and many of its applications. This method was first established by applying a linear
decomposition method to a hierarchical (top-down)
Background system [19,1].

Most design cycles contain participating
The design methodologies used in worldwidegroups that interact laterally. Such design cycles are
industry have been changing rapidly. United Stateshus non-hierarchic in nature. The Global Sensitivity
aircraft, automotive, and electronics industries, amondequation (GSE) method was the first approach to
others, are constantly searching for ways to improve thextend the concepts of the linear decomposition method
to non-hierarchical systems [19,1]. This method uses
local sensitivities (derivatives that are computed
within each subtask) to compute total system
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sequencing) the coupled subsystems. Scheduling istherefore, be convenient for these researchers to possess
methodology that reorders the design tasks (moduleg) simulator that is capable of generating, converging,
in a given system, to allow for maximum efficiency in and then further analyzing an analytical representation
the execution of the design [15]. The efficiency of aof a complex engineering system. The simulator
system can be increased if certain problem-dependeshould be robust and capable of representing a wide
parameters are minimized, such as cost, CPU timeange of complex systems. The simulation should
feedbacks, or crossovers. A feedback occurs when lkewise be arbitrary (random), as many design
system module requires information from anotherscenarios are often presented with issues that were
module that is located later in the design sequence. Hitially unpredicted. Lastly, the simulation should be
crossover occurs when the feedbacks of two modulesealistic, in that it should allow for a distributed
intersect, without any transfer of information. processing communication architecture.

Another area of current research within the Given the above motivation, this paper
field of MDO is the concept of system reduction, discusses the design and creation of an MDO-type
through coupling suspension and elimination [3,17].simulator, CASCADE(Complex Application Simulator
The decomposition of a large system results in a serider the Creation of Analytical Design Equations).
of smaller subsystems, that are interrelated througRASCADE can be used to generate complex systems
couplings. Because of the enormity of manycomprised of analytical equations, of user specified
engineering systems, there is a need to minimize th&ize. Thereafter, CASCADE employs a system analysis
complexities of the system, and thus the time for botho iteratively converge the generated system. To add
design system convergence and sensitivity analysis. fealism to the simulation, this process can be made to
is, hence, advantageous to find an analytical means foake place in a distributed environment, using the PVM
quantifying the strengths of these couplings. Couplingsoding language. After the system has converged,
that are found to be weak can be suspended for @GASCADE uses the GSE method to compute the total
portion of the system analysis, or eliminated outright.sensitivities off all output responses, with respect to all
This concept provides the foundation for systeminputs (design variables). This sensitivity information
reduction strategies. could potentially be used to analyze coupling strengths

Industry is primarily interested in the way that for possible suspension/elimination or could be used in
the various participating design groups communicatean optimization implementation. CASCADE writes
An efficient and natural way for design groups to passach converged output (behavior variable) equation to a
information back and forth is via distributed separate subroutine. Researchers could potentially
processing. The concept of distributed processingxperiment with this sequence of subroutines to further
assures that the system design tasks are computationailiwestigate coupling strengths, sequencing issues,
distributed among the participating design groups. lrconvergence strategies, or optimization methods.
this way, distributed processing extends the principals
of MDO to a computer network. This methodology Programming Methodology of CASCADE
allows for parallel communication between the design
groups, and hence provides greater efficiency than a The CASCADE simulator is described by first
sequential computing approach. A modern dayaddressing the make-up of the coupled system and the
approach that is used to achieve distributed processirigputs required by the user, then discusses the means of
is the Parallel Virtual Machine (PVM) coding language achieving a converged system, and finally addresses
[9]. PVM uses library calls and message passing t@ost-convergence features.
distribute tasks amongst the individual computer hosts

on the network. System Construction
CASCADE has been designed to create
Motivation for Creation of CASCADE unpredictable, randomly generated systems of user-

prescribed size that will best represent the wide variety
It is quite clear that the field of MDO has a of MDO problems that might be of interest to

great deal of potential to provide methodologies thatesearchers. For this reason, a random number
can be used in industry. For this to happen, these MDQgenerator is used to make a number of system-related
methodologies must be tested extensively. Researchedscisions, such as the number of terms per behavior
must typically spend a great deal of time and effort tosariable (output equation), the value of the coefficient
develop complex systems to test their methodologiesassociated with each term, and the number of design
These systems are often quite large andsariables per subsystem. Prior to executing CASCADE
computationally expensive to deal with. It would, to generate and converge a system, the user must
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execute an input file to tell CASCADE the size of theheuristically based on a number of stochastic runs of
system to be generated and to specify a variety of othemarious systems.

options, pertaining both to file/screen writing and

convergence. Once these preliminaries are taken caystem Convergence

of, the system can be constructed, term by term. Once all equation magnitudes have been
The terms that are generated and combined tdetermined and found to be within an "acceptable"
create the coupled set of equations take the form: range, a convergence check takes place, in the
subroutineconverge The newly computed magnitudes
b. d . . . .
Vi =Zajle + 3 oWk + .. [1] of each behavior variable, on the present iteration, are

compared to the corresponding magnitudes from the

) ) . previous iteration. If the differences between these
where, yis the ith output of the Y subsystem, and is &5),es, for all behavior variables, are less than or equal

function of i design variables x and output couplingS, the initial convergence criteria, then the system is
from other subsystems such agsWrom subsystem W.  yetermined to be converged. If not, the process repeats,
Further, each of _these design variables and co.upllngnd the newly computed (and more accurate) behavior
outputs can be raised to some powera(id ¢) and is \5iaple magnitudes are used for the next iteration.
premultiplied by a coefficient (and ¢). "Convergence ease" parameters have been incorporated
The determsubroutine determines the nature jnig the program, such that the user can ease the
of every term in the system, on the first iteration of.,nyergence criteria by 1 and/or 2 decimal places after
execution. For each term in the system, the sign, \ser-defined number of iterations. This will take

exponent (one of a possible six choices), and couplingmCe if the system is having problems converging to
nature (coupling to either a design variable or t0 gnq initial convergence criteria.

behavior variable) of each term is determined, in this

subroutine. Next, the magnitudes of each term and thlgost-converqence features

sensitivity of each term are determined in timags Once the system has converged, CASCADE
subroutine. Design variablg ma.gr_1i.tudes are idemica‘%erforms a variety of post-convergence features, that
known as they are determined initially by the randomq, 4 pe greatly beneficial to an MDO-researcher. The
number generator. Hence, the magnitudes of desighynsybsubroutine uses character strings to write every
variable-coupled terms can be identically computed 0Rgerged behavior variable of the created system to a
the first iteration. ~ CASCADE generatés non-genarate subroutine. This process can take place in
hierarchical systems which require both initial giiher the FORTRAN or the ANSI C computer
guesswork of the behavior variable magnitudes a”ﬁjanguages. These subroutines could be used in a
iteration to converge. For this reason, the magnitude§ystem reduction analysis, to view the effects of the
of behavior variable-coupled terms cannot initially besuspension and/or elimination of relatively weak
computed identically, as the magnitudes of the behavio(goup"ngs_ Alternatively, each converged subroutine

variables are not initially known. The initial guess for .14 be optimally sequenced, and then re-converged
the magnitude of all behavior variables, on the firs, (ast sequencing or convergence strategies. Also,
iteration, is chosen to be 1.0. The magnitude of everyyace subroutines can be used to test distributed
term in the system is limited, so as to prevent %omputing approaches.

diverging behavior variable. This limitation process The derivs subroutine uses the GSE approach

takes place in theermmagsubroutine. Next, equation 4 aitain the total derivative matrix of the system that

magnitudes are computed by simply adding the,q heen created. The left and right hand side partial
magnitudes of every term, that_comprlses each equatiQfbrivative matrices seen in equation [2] can be

of the system. This magnitude (for all behavior.,mnted, as the sensitivity of each output equation of
variables) is indirectly limited by thetermmag o system can be computed, with respect to both a)

subroutine, and as a check, is directly limited by th&yery other behavior variable and b) every subsystem
egnrangesubroutine. An upper bound of 9999.0 hasdesign variable.

been set for every behavior variable, so as to prevent a

diverg@ng equa_ltion. A lower limit of 0.0 is set for every oYp TdYy dYa YA
behavior variable, so as to prevent undefined 1 - 0
exponentiations of fractional powers. (Three of the six oYe ?K(A ?K(B | OXA oy | [
exponent choices in thedeterm subroutine are |-—2EB 1 —8 =B =B
fractions). These various settings were determine YA dXa dXs XB
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These matrices are then normalized, and an LUper subsystem (ranging from 1 to 5), as well as the
Decomposition is used to attain the normalized totatoupling nature, coefficient, sign, and exponent of each
derivative matrix. The total derivatives are recoverederm in each equation. Assume that CASCADE has
by "un-normalizing" each element of this matrix. Thisdecided that subsystem 1 will have 4 design variables,
matrix can be used to assess the coupling relations thet, x,,, x,,, and x,, and that equation wof subsystem
are weak relative to the others. It is possible that thesE) will have 3 terms. Table 1 summarizes CASCADE's
weak couplings be eliminated from the system analysisiecisions that lead to the construction of equatipn w
Subsystem 1

or at least suspended for part of it. These derivatives
wil, w2 (Output - w) 71, 72, z3
A)’?’ WIM

could also be used for some form of formal system
y1,y2,y3, y4
—  »

optimization procedure. Finally, tigaramsubroutine
provides a statistical output listing of the constructed
system.  This subroutine provides the cpu times
required to both a) build and converge the system and
b) compute the total derivative matrix, and lists the
number of iterations required for convergence of the
created system. This file also provides a term by term
listing of the nature of each term in the system, as
determined earlier by thdetermsubroutine. This latter Table 1. CASCADE term generation for equation w

Subsystem 2
(Output - y)

Subsystem 3

71, 72, z3 (Output - 2)

Figure 1. System of 3 coupled subsysterhs.

feature could be easily modified to allow for the .

. . equation term 1 term 2 term 3
perturbation andre-entry of a previously generated W
system into any of a variety of system improvement !
software packages. This then assures that systems ¢an gjgn positive positive negative
be reproduced for method comparison studies.

coefficient 0.967 0.265 0.087

Extension to PVM

The above procedure was initially designed forf coupling design behavior | behavior
single computer operation, and was later modified t¢p nature | variable(x) | variable(y) | variable(z)
operate in a distributed computing environment, vig i
PVM. A mastermachine enrolls in PVM, and performs | €oupling 3 4 1
the preliminaries: namely, random number generatiorj, "Umber
and reading in the input file. The master then spawns exponent 5 1 1/3
slavetasks on the othdroststhat were detected on the

virtual machinethat is presently available. The master

then packs and sends array data for one subsystem, As a result, equation wvill appear as follows:
each slave. Each slave receives and unpacks the data
sent to it by the master, and then performsdékerm,
mags, termrangeand eqnrangesubroutines, for the

one subsystem that was sent to it. Each slave theDASCADE carries out a similar procedure for equation
sends the newly computed data back to the master forve, of the same subsystem, as well as equations "y" and
convergence check. The process repeats until th&" of subsystems 2 and 3, respectively. Upon creation
system converges. Post-convergence features také the system, iterative convergence procedures
place on the master machine, and the slaves exit theilommence, as previously described.

processes.

w, = +0.967x* + 0.265y" - 0.0877°  [3]

Outputs of CASCADE for varying
system sizes

Sample CASCADE system

In this sample system, the user has decided
that the system will have 3 subsystems. The user has Since the thrust of this work focuses on the
also decided that subsystem 1 has two outpufsafd  development of the CASCADE simulator, it is difficult
"w,", subsystem 2 has four outputg™y'y,", "y,", and  to discuss results in the traditional sense. The worth of
"y,", and subsystem 3 has three outputs, "z,", and  this simulator can only be measured in its use by the
"z, (Figure 1). MDO community. It should be noted, however, that

Recall that CASCADE will randomly CASCADE has already been used extensively for
determine the number of terms per output equatiomptimal sequencing and convergence strategy studies,
(ranging from 1 to 20), the number of design variablesas well as for system reduction and for MDO method
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testing. In this paper, however, the potentials ofupward trend in normalized clock time, with an
distributed computing using PVM are explored andincrease in system size, for all 3 scenarios (5, 10, and
discussed in some detail, with resulting computationaP4 slave machines). However, the clock times are

times presented. larger than those corresponding to the single machine
data of Figure 2 At first glance, this appears to be
Clock time normalized per iteration counter-intuitive. One would think that a system that is

The clock time required to build and converge solved by multiple machines would be constructed and
a complex system is a primary concern of a systeresonverged more quickly than a system that is analyzed
analyst. CASCADE has been used here to generateca one machine. This was not found to be the case.
wide variety of systems and to analyze the execution
times involved. This was done in an effort to better
understand the potential advantages, as well as th Clock time/lteration vs. System size
drawbacks of distributed computing. All execution Distributed computing results
times have been normalized by the number of iteration
that were required to converge the system to th
specified criterion of 1.0E-4. The first result is seen in
Figure 2, which plots the "single computer" results.
The computers that were used are called Moriarty an
EAS00; the former is a 12 processor mini-
supercomputer, and the latter is a Sun-Sparc

N
o

# 5 slaves @ 10 slaves #8 24 slavesl

-
wn

Clock time per Iteration
=)

workstation. S
Clock time/lteration vs. System size o B ‘
Supercomputer and workstation results 0 2000 4000 6000 8000 10000

System size

Figure 3. Distributed computing clock time results.

a o

| = Moriarty @ EASQ0

e Upon comparing the three curves themselves
in Figure 3, one sees that for the most part, systems of
all sizes required roughly the same amount of time to
N S . N converge, regardless of the number of slave machines
being used. This again appears to be counter-intuitive.
It would seem likely that a system solved using

I

N

Clock time per Iteration
w

-

0 . — distributed computing techniques would converge
0 2000 4000 6000 8000 10000 faster, when using a greater amount of slave computers
System size on the virtual machine. This was not found to be the
Figure 2. Single computer clock time results. case. Clearly, the question then becomes - - "Why?".

As "complex" as the system of equations that
As expected, the supercomputer substantialflCASCADE generates are, the systems are not
outperforms the workstation. The supercomputecomplicated enough to fully exploit the strengths of
normalized clock times are at least twice as fast, fodistributed computingMessage passingominates the
most system sizes. Most systems require from 40-66lock time involved with converging a system when
iterations to converge, so the absolute clock times fousing distributed computing techniques. To explore
the supercomputer are on the order of 180 seconds, fthis situation further, "sleep" times were introduced into
a 10000 equation system. Moreover, there is a neamach subsystem analysis. In other words, each
linear correlation between normalized clock time andsubsystem analysis is performed (either in a sequential
system size, for both computer scenarios. or a distributed computing environment), and then the
From several points of view, the distributed program execution pauses for a user-specified number
computing data of Figure 3 does not live up toof seconds. This sleep time is used to simulate a
expectations. Here, 3 scenarios are investigated, witbomputation with a higher level of complexity.
5, 10, and 24 slave machines. Both the master and
slave machines were Sun Sparc 4 workstations, similar
in nature to EAS00. As expected, there is a general
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Effects of sleep time on each subsystem iteration Figure 6 is yet another plot of the same nature,
Sleep times were initially experimented with this time with a 0.1 sleep time. With this amount of
on the Moriarty supercomputer, the EASOOsleep time, the distributed computing scenarios clearly
workstation, and the 5 and 10 slave distributedovertake both Moriarty and EASOO, for the full range
computing scenarios. Figure 4 is a plot of clock timeof system sizes. However, there is still only minimal
vs. system size for all four scenarios, with a 0.0ldifferentiation between the 5 and 10 slave scenarios.

second sleep time.

Clock time/lteration vs. System size
0.10 second sleep time

Clock time/lteration vs. System size
0.01 second sleep time

oo}

(0]
o]

Ul

N

N
N

Clock time per Iteration
N

-

Clock time per Iteration
w

0 1000 2000 3000 4000 5000

0 t t + t + t + t ;
0 1000 2000 3000 4000 5000 System size
System size |I Moriarty @ EAS00 = 5slaves =& 10 slavesl

& Mori @EAS00 X5l F10sl : - - i
‘ oriarty Saves S avesl Figure 6. Normalized clock time - 0.10 sec sleep time.

Figure 4. Normalized clock time - 0.01 sec sleep time.
To see ifany numerical sleep time would have

This plot varies little from the results an impact on the variation between distributed
previously presented. Moriarty is still the fastest optioncomputing results with varying numbers of slave
for all system sizes, followed by EASOO, followed by machines, the sleep time was further increased to 0.5
both the 5 and 10 slave distributed computingseconds. The results are seen in Figure 7.
scenarios, which vary little from each other.

Figure 5 is a similar plot, but the sleep time Clock time/lteration vs. System size
has been increased to 0.05 seconds. From this plg 0.5 second sleep time
important results can be seen. For smaller syster 19
sizes, the distributed computing scenarios outperforn ¢ ®5slaves @ 10slaves
both Moriarty and EASOO. However, the |§ 8| o
differentiation between the 5 and 10 slave scenarios {2 O
still minimal. For large system sizes, Moriarty and| g
(barely) EASO0 overtake the distributed computingg T
scenarios and outperform them. =
S ol e
- - . ()
Clock time/lteration vs. System size
0.05 second sleep time ) ) ) )
6 0 T T T T T
0 1000 2000 3000 4000 5000
5 1 System size

Figure 7. Normalized clock time - 0.5 sec sleep time.

B

Finally, the 5 and 10 slave machine curves
split apart, with the 10 slave scenario clearly
outperforming the 5 slave scenario. This trend is
] further accentuated in Figure 8, which plots similar
0 1000 2000 3000 4000 5000 results with a full 1 second of Sleep time.

System size Hence, the subsystem analyses of the
CASCADE-generated systems were forced to require a
half to one second longer so that the benefits of

N

-
'

Clock time per lteration
w

‘I Moriarty @ EASO0 ¥ 5slaves X 10 slavesl

Figure 5. Normalized clock time - 0.05 sec sleep time.
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distributed computing could be fully demonstrated.derivative matrix. A low condition number is
This is an extremely important point for those whodesirable). The differences in magnitude are
wish to use CASCADE to simulate a distributed astounding. The normalized data has matrix condition
computing environment. It is necessary to havenumbers that are far lower than those for the not-
sufficiently large sleep times so that message passimgprmalized data. Using not-normalized data, a total
does not dominate and skew results. Of additionatlerivative solution could not be found for the 990
interest is the calculation of system derivatives, whichequation system example, as depicted in the table. For

can be used in a variety of MDO applications. this system size, the condition numbeininite, for all
intents.
Clock time/lteration vs. System size
1 second sleep time Sensitivity Clock time vs. System size
16 Normalized and not-Normalized data
514,,I5slaves 0105Iaves| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 140
g2l T 120 +-m@ g 5
o2 5 Normalized
Fo L > £100 @ [ S
8 § .
% g8l T ;3, 80 | Not-normalized | ./ /
§ O T e £ 60
§ 4 e <
O 2l L QA0 S
0+ : . : t : . : . : © 20 e g
0 1000 2000 3000 4000 5000 04 ‘ , ‘
System size 0 200 400 600 800 1000
Figure 8. Normalized clock time - 1.00 sec sleep time. System size

Figure 9. Sensitivity CPU times vs. system size.
Effects of Normalization on GSE solution

The sensitivity analysis of the converged There does not seem to be any correlation
system can be very useful to system-reductiorhenyeen condition number and system size. A large
researchers. The matrix of total derivatives provides apyngition number will result when coupling complexity
indication as to how sensitive each system output is tg high. The coupling nature of these systems is
each system input. Normalization techniques are OfteFandom, hence systems of high complexity (and hence,

used, so as to improve the numerical condition of thgyighy condition number) can arise for any system size.
left and right hand side matrices that are used in the

LU-decomposition, to attain the total derivative matrix.
The benefits of this procedure can be seen from Figur

gable 2. Condition number comparison of normalized /
non-normalized data

9.

Figure 9 is a plot of the clock time required to number of condition number condition number
compute the total sensitivity matrix vs. the size of the system normalized Non-normalized
system. For smaller systems, the clock times of the| equations sensitivities sensitivities
normaliztta)(ld 2nd A not—norma.lizeq systemsh e:re 100 40.06 60634.
comparable. As the system size increases, the cloc 200 2141 37663,
time required to compute the sensitivity matrix is
slightly shorter for the normalized matrices than for the 300 37.10 101310.
not-normalized matrices. This reduction in clock time 400 81.06 46630.
is likely attributable to the numerical conditioning 500 390.70 101182
provided by the nqrmahzaqqn procedure. 600 24.99 107055

Table 2 listscondition number vs. system
size, for both normalized and not-normalized scenarios. 700 60.09 58305.
(The condition number provides a general indication as 800 53.48 259539.
to how well-conditioned the partial derivative matrices 900 60.32 68528.
were, when used to attain the total derivative matrix. 990 345.83 47565084 %

Thus, the condition number reflects the reliability of the

. . . ** : no solution attained
numerical estimate that was attained, for the total
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Summary and Discussion as an analytical representation to a real-life design
scenario. After the user tells CASCADE the desired
The field of Multidisciplinary Design size of the system, theature(the initial coefficient, the
Optimization inherently has great potential for sign, the coupling, and the exponent) of each term, of
becoming an industrial standard for the design of largegach equation, of each subsystem of the system is
complex systems. The basic methodology is simpledetermined randomly, using a random number
divide a large task or system into numerous smaller angenerator. The non-hierarchic system is constructed on
inter-related subtasks. These subtasks can be dividéde first iteration, and converged on iterations
among the participating design groups and solvedhereafter, after having initialized each and every
simultaneously, in a non-hierarchic manner.  Theoutput equation to a value of unity. This procedure was
analysis of a complex system must take place on frst implemented on a single computer format, cycling
powerful computer. Hence, it is clear that the MDOthough all of the subsystems in the system, one-by-one,
methodology lends itself well to distributed computingin @ sequential manner. The procedure was later
environments, in which one large computational task ignodified for solution in a distributed computing
divided among numerous computers, connected on @nvironment, using Parallel Virtual Machine (PVM). A
network. virtual machine is constructed, consisting of numerous
The motivation for MDO is to reduce the time local workstations. Each subsystem in the constructed
and cost required for the design process. Most complexystem is then sent to a separate computer for analysis,
systems are non-hierarchic in nature, and require asuch that the number of subsystems being analyzed at
iterative scheme (and initial approximations) toone time is equal to the number of computers on the
converge. Task sequencing researchers attempt to findrtual machine. Inherently, this appears to be more
the optimal sequence (order) in which to analyze thefficient, and more realistic.
system modules, to gain the converged solution in the Once the system is constructed and converged,
least amount of time. System reduction researcher@ither in a single computer or distributed computing
seek to effectively reduce the size of a complex systenianner, CASCADE offers numerous post-convergence
with a minimal loss in accuracy. Researchers havéatures. The Global Sensitivity Equation method can
attempted to temporarily suspend and/or permanentlpe used to compute the total sensitivities of the system
eliminate output couplings that were comparativelyoutputs, with respect to the inputs. This is done by first
found to be less substantial. computing sensitivities on a local level. The matrices
Before these MDO-strategies can befrom which the total derivatives are computed can
implemented in the design process of such largé€ither be normalized or not. Normalized matrices offer
systems as automobiles and aircraft, they must ba higher likelihood of an accurate solution. A second
tested. A method for analytically simulating real-life, important feature is the option to write each equation of
large system couplings is necessary. The simulatiofhe converged system to a separate subroutine. This
should be able to predict the output sensitivities of theould be beneficial to sequencing researchers. Again,
system; the change in the system outputs with respect taese researchers might perturb the design variables of
a prescribed change in the design variables of ththe converged system, and then analyze the various
system. The simulation should also lend itself well to éordering possibilities of the subroutines to see which
distributed computing environment. The numeroussequence would attain a new converged solution most
design tasks of a large system design should beuickly. A final important feature is the option to write
computationally distributed among the participatingthe converged system to parametersfile. This file
design groups. The simulation should tmbust it provides a comprehensive listing of the nature of each
should accommodate a wide range of system sizes af@rm in the system that has been constructed, as well as
complexities. Finally, the simulation hereremdomin  other system statistics.
that it creates design scenarios that may have been The previous section analyzed the results of
initially unforeseen by the system analysts. To thisnumerous executions of CASCADE on a global level.
end, the author has designed a computer progranihe single computer results saw an increase in CPU
coded in FORTRAN, and called CASCADE (Complex time with an increase in system size. As expected,
Application Simulator for the Creation of Analytical systems that were solved using the Moriarty
Design Equations). supercomputer solved much faster than those solved on
CASCADE accepts user inputs to randomlythe local EASOO workstation.  Unfortunately, the
construct and then converge a large system of complexnaltered PVM results did not live up to their high
equations. This system of equations should be vieweéxpectations. The CPU times for the parallel machine-
generated systems were larger than those for the single
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computer systems. Moreover, CPU times per iteratiomverhead of UDP and IP, and communicate directly to
were larger, when krger number of slave computers the low-level network interface. For this preliminary
were used on the virtual machine. It is probable thatvork, the low-level network has been Ethernet-based.
the time required to pass information from the masteEventually, however, a conversion to an ATM-based
machine to the slave machines is what dominated theetwork is foreseen. Further time-related improvement
convergence time for the PVM scenarios. Thiscould be made by setting up a virtual machine whose
information that was passed included large, staticalljhosts consist of the numerous processors on a multi-
dimensioned, multi-dimensional arrays, that could onlyprocessor supercomputer.

be sent from machine to machimeatrix element by

matrix element

. . pplication pplication
To reduce the impact of message passing,
sleep times were introduced into the convergencésied PVM PVM
. LS interfac
procedure. On both the single computer and distribute
computing scenarios, each subsystem analysis was TCP/UDP TCP/UDP
performed, and then followed by a user specified period
of sleep. At 0.01 seconds of sleep time, the advantages P 1P
of distributed computing were first detected. At 0.05
seconds of sleep time, the use of distributed computing - [ 802.2 | AALS
becomes more advantageous than the use of the AP! 8023 API ATM

Moriarty supercomputer for building and converging
systems, foall system sizesWith 0.5 seconds of sleep
time, the advantages of using a larger number of slave .
machines for distributed computing start to becomeb i Th%stl)ze ﬁf syst(.amZ.creat(.ad by C'Al‘ISCADE hai
evident. The bottom line is that the CASCADE- eer::c')rlg'_ﬁ?ANyt N statlc_ |m|enS|on|ng algwr?nces 0
generated systems, complex as they are, are not Bye programming fanguage this were

themselves complex enough to exploit the benefits o ercome, systems of infinite size could potentially be
distributed processing constructed and converged. This would prove that the

Matrix normalization was found to be Principals of MDO could be extended to systems of any
beneficial, for the computation of the total derlvatlve'm""g'n"’lbIe size, with couplings having any imaginable

matrix by using the GSE method. The conditioncomplex'gy%, | . hvsicall bi h
number of the solution matrix wdewer when using inal concept is to physically combine the

normalization techniques. This is an indication of aCASCADE package with the other MDO-related

more reliable numerical estimate. The CPU timed?rogram methodologies that have been discussed, such
required to attain the normalized derivative matrix were as task sequencing software and coupling suspension

also lower, than those required to attain not- normahzeéOftWare An MDO-framework is envisioned, in which
derivative matrices. a complex system could be randomly built and

converged, then optimally altered and re-converged.
Future Work This framework cogld make use .of Virtuql Rea}lity
- techniques, to provide the user with a 3-dimensional
representation of a design, and virtual foresight to the
gffects that result from and hypothetical changes made
to the design.

Figure 10. Direct message passing to Network layer.

The first step that should be taken for the
advancement of this research would be to improve th
results associated with distributed computing and PVM.
A method must be found to more effectively pass the
large array data from the master to the slave. Message
passing was found to be the dominating factor in the
time taken to build and converge the systems, while The authors wish to acknowledge partial support of this

using distributed processing techniques. An interface Igvork under grant 150-82350 of the UB
required that will enable the PVM message passing tg/lultld|SC|pI|nary Seed Pilot Project Program and NSF
bypass select network layers and avoid performanchF Grant DMI 9553210.
degradation due to communication through the
operating system and a transport layer protocol (as in
Figure 10).
This desired interfacallows PVM to execute
the application (CASCADE), and bypass the protocol
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