
1
American Institute of Aeronautics and Astronautics

DEVELOPMENT OF CASCADE:
A MULTIDISCIPLINARY DESIGN TEST SIMULATOR

K. F. Hulme* and C. L. Bloebaum†

Multidisciplinary Optimization and Design Engineering Laboratory (MODEL)
Department of Mechanical and Aerospace Engineering

State University of New York at Buffalo

Abstract

Industry is constantly pursuing faster and
cheaper means for designing and manufacturing high
quality goods and services. This becomes ever more
difficult as the complexity of the product increases.
Much of the method development in the field of
Multidisciplinary Design Optimization (MDO) attempts
to simplify the design of a large, complex system, by
dividing the system into a series of smaller, simpler,
and coupled subsystems. These methodologies require
extensive testing, either on analytical representations of
real-life systems, or on the actual system itself, prior to
implementation in order to verify their feasibility and
robustness. Due to the complexity of these real-life
systems, however, it is not practical to perform
methodology feasibility studies on the analytical and
numerical representations of the true system. Hence,
some representative yet efficient means of determining
the feasibility and robustness of MDO methods is
crucial. This paper describes the design of a test
simulator, CASCADE (Complex Application Simulator
for the Creation of Analytical Design Equations), that is
capable of randomly generating and then converging a
complex system of analytical equations, of user-
specified size. CASCADE-generated systems can be
used to test sequencing and system reduction strategies,
convergence strategies, and MDO methods, among
others. Further, CASCADE has been designed to
operate in a distributed computing environment (using
Parallel Virtual Machine), as the field of MDO itself is
perfectly suited for such a setting. This paper describes
the simulator and many of its applications.

Background

The design methodologies used in worldwide
industry have been changing rapidly. United States
aircraft, automotive, and electronics industries, among
others, are constantly searching for ways to improve the

efficiency of their design processes to meet time and
cost demands. The traditional serial design approach is
characterized by a sequential design cycle, where a
design is formulated in a given design group and passed
to the next group, who uses the previous groups' output
parameters as input parameters. Because of both
inefficiency and design system complexity, this
approach has largely become obsolete, in favor a
concurrent design approach.

It is desired to achieve a systematic approach
to the integrated, concurrent design of products and
their related processes, including manufacture and
support. The interaction of all participating
engineering groups throughout the design cycle is a
truly multidisciplinary effort. Many of the recently
developed capabilities to address concurrent design
have stemmed from the field of Multidisciplinary
Design Optimization (MDO). The MDO approach is
intuitive in that one often attempts to divide one large
task into a group of smaller, interrelated (coupled), and
more manageable tasks [17]. The large task is often
referred to as a system, and the smaller, interrelated
tasks are called subsystems. Each subsystem contains
design variables, as well as additional unknown
outputs, often referred to as behavior variables. These
subsystem variables are collectively referred to as
modules of the system. Each subsystem can be thought
of as a participating design group of a large scale
design. An example would be the aerodynamics
division of the design of an aircraft. One goal of MDO
is to analyze these subsystems concurrently, thus
speeding up the design time of the overall product.
This method was first established by applying a linear
decomposition method to a hierarchical (top-down)
system [19,1].

Most design cycles contain participating
groups that interact laterally. Such design cycles are
thus non-hierarchic in nature. The Global Sensitivity
Equation (GSE) method was the first approach to
extend the concepts of the linear decomposition method
to non-hierarchical systems [19,1]. This method uses
local sensitivities (derivatives that are computed
within each subtask) to compute total system
sensitivities.

An MDO issue that is the focus of much
research today is the concept of scheduling (or

* Research Assistant.
† Associate Professor, Member AIAA.

Copyright © 1996 by K.F. Hulme and C.L. Bloebaum. Published by the
American Institute of Aeronautics and Astronautics, Inc. with permission.

2
American Institute of Aeronautics and Astronautics

sequencing) the coupled subsystems. Scheduling is a
methodology that reorders the design tasks (modules)
in a given system, to allow for maximum efficiency in
the execution of the design [15]. The efficiency of a
system can be increased if certain problem-dependent
parameters are minimized, such as cost, CPU time,
feedbacks, or crossovers. A feedback occurs when a
system module requires information from another
module that is located later in the design sequence. A
crossover occurs when the feedbacks of two modules
intersect, without any transfer of information.

Another area of current research within the
field of MDO is the concept of system reduction,
through coupling suspension and elimination [3,17].
The decomposition of a large system results in a series
of smaller subsystems, that are interrelated through
couplings. Because of the enormity of many
engineering systems, there is a need to minimize the
complexities of the system, and thus the time for both
design system convergence and sensitivity analysis. It
is, hence, advantageous to find an analytical means for
quantifying the strengths of these couplings. Couplings
that are found to be weak can be suspended for a
portion of the system analysis, or eliminated outright.
This concept provides the foundation for system
reduction strategies.

Industry is primarily interested in the way that
the various participating design groups communicate.
An efficient and natural way for design groups to pass
information back and forth is via distributed
processing. The concept of distributed processing
assures that the system design tasks are computationally
distributed among the participating design groups. In
this way, distributed processing extends the principals
of MDO to a computer network. This methodology
allows for parallel communication between the design
groups, and hence provides greater efficiency than a
sequential computing approach. A modern day
approach that is used to achieve distributed processing
is the Parallel Virtual Machine (PVM) coding language
[9]. PVM uses library calls and message passing to
distribute tasks amongst the individual computer hosts
on the network.

Motivation for Creation of CASCADE

It is quite clear that the field of MDO has a
great deal of potential to provide methodologies that
can be used in industry. For this to happen, these MDO-
methodologies must be tested extensively. Researchers
must typically spend a great deal of time and effort to
develop complex systems to test their methodologies.
These systems are often quite large and
computationally expensive to deal with. It would,

therefore, be convenient for these researchers to possess
a simulator that is capable of generating, converging,
and then further analyzing an analytical representation
of a complex engineering system. The simulator
should be robust and capable of representing a wide
range of complex systems. The simulation should
likewise be arbitrary (random), as many design
scenarios are often presented with issues that were
initially unpredicted. Lastly, the simulation should be
realistic, in that it should allow for a distributed
processing communication architecture.

Given the above motivation, this paper
discusses the design and creation of an MDO-type
simulator, CASCADE (Complex Application Simulator
for the Creation of Analytical Design Equations).
CASCADE can be used to generate complex systems
comprised of analytical equations, of user specified
size. Thereafter, CASCADE employs a system analysis
to iteratively converge the generated system. To add
realism to the simulation, this process can be made to
take place in a distributed environment, using the PVM
coding language. After the system has converged,
CASCADE uses the GSE method to compute the total
sensitivities off all output responses, with respect to all
inputs (design variables). This sensitivity information
could potentially be used to analyze coupling strengths
for possible suspension/elimination or could be used in
an optimization implementation. CASCADE writes
each converged output (behavior variable) equation to a
separate subroutine. Researchers could potentially
experiment with this sequence of subroutines to further
investigate coupling strengths, sequencing issues,
convergence strategies, or optimization methods.

Programming Methodology of CASCADE

The CASCADE simulator is described by first
addressing the make-up of the coupled system and the
inputs required by the user, then discusses the means of
achieving a converged system, and finally addresses
post-convergence features.

System Construction
CASCADE has been designed to create

unpredictable, randomly generated systems of user-
prescribed size that will best represent the wide variety
of MDO problems that might be of interest to
researchers. For this reason, a random number
generator is used to make a number of system-related
decisions, such as the number of terms per behavior
variable (output equation), the value of the coefficient
associated with each term, and the number of design
variables per subsystem. Prior to executing CASCADE
to generate and converge a system, the user must

3
American Institute of Aeronautics and Astronautics

execute an input file to tell CASCADE the size of the
system to be generated and to specify a variety of other
options, pertaining both to file/screen writing and
convergence. Once these preliminaries are taken care
of, the system can be constructed, term by term.

The terms that are generated and combined to
create the coupled set of equations take the form:

 y i � aj� x j
bj

� ck� wk
dk

� ... [1]

where, yi is the ith output of the Y subsystem, and is a
function of i design variables x and output couplings
from other subsystems such as wk’s from subsystem W.
Further, each of these design variables and coupling
outputs can be raised to some power (bj and dk) and is
premultiplied by a coefficient (aj and ck).

The determ subroutine determines the nature
of every term in the system, on the first iteration of
execution. For each term in the system, the sign,
exponent (one of a possible six choices), and coupling
nature (coupling to either a design variable or to a
behavior variable) of each term is determined, in this
subroutine. Next, the magnitudes of each term and the
sensitivity of each term are determined in the mags
subroutine. Design variable magnitudes are identically
known as they are determined initially by the random
number generator. Hence, the magnitudes of design
variable-coupled terms can be identically computed on
the first iteration. CASCADE generates non-
hierarchical systems which require both initial
guesswork of the behavior variable magnitudes and
iteration to converge. For this reason, the magnitudes
of behavior variable-coupled terms cannot initially be
computed identically, as the magnitudes of the behavior
variables are not initially known. The initial guess for
the magnitude of all behavior variables, on the first
iteration, is chosen to be 1.0. The magnitude of every
term in the system is limited, so as to prevent a
diverging behavior variable. This limitation process
takes place in the termmag subroutine. Next, equation
magnitudes are computed by simply adding the
magnitudes of every term, that comprises each equation
of the system. This magnitude (for all behavior
variables) is indirectly limited by the termmag
subroutine, and as a check, is directly limited by the
eqnrange subroutine. An upper bound of 9999.0 has
been set for every behavior variable, so as to prevent a
diverging equation. A lower limit of 0.0 is set for every
behavior variable, so as to prevent undefined
exponentiations of fractional powers. (Three of the six
exponent choices in the determ subroutine are
fractions). These various settings were determined

heuristically based on a number of stochastic runs of
various systems.

System Convergence
Once all equation magnitudes have been

determined and found to be within an "acceptable"
range, a convergence check takes place, in the
subroutine converge. The newly computed magnitudes
of each behavior variable, on the present iteration, are
compared to the corresponding magnitudes from the
previous iteration. If the differences between these
values, for all behavior variables, are less than or equal
to the initial convergence criteria, then the system is
determined to be converged. If not, the process repeats,
and the newly computed (and more accurate) behavior
variable magnitudes are used for the next iteration.
"Convergence ease" parameters have been incorporated
into the program, such that the user can ease the
convergence criteria by 1 and/or 2 decimal places after
a user-defined number of iterations. This will take
place if the system is having problems converging to
the initial convergence criteria.

Post-convergence features
Once the system has converged, CASCADE

performs a variety of post-convergence features, that
could be greatly beneficial to an MDO-researcher. The
eqnsubs subroutine uses character strings to write every
converged behavior variable of the created system to a
separate subroutine. This process can take place in
either the FORTRAN or the ANSI C computer
languages. These subroutines could be used in a
system reduction analysis, to view the effects of the
suspension and/or elimination of relatively weak
couplings. Alternatively, each converged subroutine
could be optimally sequenced, and then re-converged,
to test sequencing or convergence strategies. Also,
these subroutines can be used to test distributed
computing approaches.

The derivs subroutine uses the GSE approach
to attain the total derivative matrix of the system that
has been created. The left and right hand side partial
derivative matrices seen in equation [2] can be
computed, as the sensitivity of each output equation of
the system can be computed, with respect to both a)
every other behavior variable and b) every subsystem
design variable.

1 �
�YA

�YB

�
�YB

�YA
1

�

�

�
�
�
�

�

�

	
	
	
	

dYA

dXA

dYA

dXB
dYB

dXA

dYB

dXB

�

�

�
�
�
�

�

�

	
	
	
	

�YA

�X A
0

0
�YB

�X B

�

�

�
�
�
�

�

�

	
	
	
	

 [2]

4
American Institute of Aeronautics and Astronautics

These matrices are then normalized, and an LU-
Decomposition is used to attain the normalized total
derivative matrix. The total derivatives are recovered
by "un-normalizing" each element of this matrix. This
matrix can be used to assess the coupling relations that
are weak relative to the others. It is possible that these
weak couplings be eliminated from the system analysis,
or at least suspended for part of it. These derivatives
could also be used for some form of formal system
optimization procedure. Finally, the param subroutine
provides a statistical output listing of the constructed
system. This subroutine provides the cpu times
required to both a) build and converge the system and
b) compute the total derivative matrix, and lists the
number of iterations required for convergence of the
created system. This file also provides a term by term
listing of the nature of each term in the system, as
determined earlier by the determ subroutine. This latter
feature could be easily modified to allow for the
perturbation and re-entry of a previously generated
system into any of a variety of system improvement
software packages. This then assures that systems can
be reproduced for method comparison studies.

Extension to PVM
The above procedure was initially designed for

single computer operation, and was later modified to
operate in a distributed computing environment, via
PVM. A master machine enrolls in PVM, and performs
the preliminaries: namely, random number generation,
and reading in the input file. The master then spawns
slave tasks on the other hosts that were detected on the
virtual machine that is presently available. The master
then packs and sends array data for one subsystem, to
each slave. Each slave receives and unpacks the data
sent to it by the master, and then performs the determ,
mags, termrange, and eqnrange subroutines, for the
one subsystem that was sent to it. Each slave then
sends the newly computed data back to the master for a
convergence check. The process repeats until the
system converges. Post-convergence features take
place on the master machine, and the slaves exit their
processes.

Sample CASCADE system
In this sample system, the user has decided

that the system will have 3 subsystems. The user has
also decided that subsystem 1 has two outputs "w1"and
"w2", subsystem 2 has four outputs "y1", "y2", "y3", and
"y4", and subsystem 3 has three outputs "z1", "z2", and
"z3" (Figure 1).

Recall that CASCADE will randomly
determine the number of terms per output equation
(ranging from 1 to 20), the number of design variables

per subsystem (ranging from 1 to 5), as well as the
coupling nature, coefficient, sign, and exponent of each
term in each equation. Assume that CASCADE has
decided that subsystem 1 will have 4 design variables,
x11, x12, x13, and x14, and that equation w1 (of subsystem
1) will have 3 terms. Table 1 summarizes CASCADE's
decisions that lead to the construction of equation w1.

Subsystem 1
(Output - w)w1, w2

y1,y3

z1, z2, z3

w1, w2

y1, y2, y3, y4
Subsystem 2
(Output - y)

Subsystem 3
(Output - z)z1, z2, z3

Figure 1. System of 3 coupled subsystems.

Table 1. CASCADE term generation for equation w1

equation
w1

term 1 term 2 term 3

sign positive positive negative

coefficient 0.967 0.265 0.087

coupling
nature

design
variable(x)

behavior
variable(y)

behavior
variable(z)

coupling
number

3 4 1

exponent 2 -1 1/3

As a result, equation w1 will appear as follows:

 w1 = + 0.967x13

2 + 0.265y4
-1 - 0.087z1

1/3 [3]

CASCADE carries out a similar procedure for equation
w2 of the same subsystem, as well as equations "y" and
"z" of subsystems 2 and 3, respectively. Upon creation
of the system, iterative convergence procedures
commence, as previously described.

Outputs of CASCADE for varying
system sizes

Since the thrust of this work focuses on the
development of the CASCADE simulator, it is difficult
to discuss results in the traditional sense. The worth of
this simulator can only be measured in its use by the
MDO community. It should be noted, however, that
CASCADE has already been used extensively for
optimal sequencing and convergence strategy studies,
as well as for system reduction and for MDO method

5
American Institute of Aeronautics and Astronautics

testing. In this paper, however, the potentials of
distributed computing using PVM are explored and
discussed in some detail, with resulting computational
times presented.

Clock time normalized per iteration
The clock time required to build and converge

a complex system is a primary concern of a system
analyst. CASCADE has been used here to generate a
wide variety of systems and to analyze the execution
times involved. This was done in an effort to better
understand the potential advantages, as well as the
drawbacks of distributed computing. All execution
times have been normalized by the number of iterations
that were required to converge the system to the
specified criterion of 1.0E-4. The first result is seen in
Figure 2, which plots the "single computer" results.
The computers that were used are called Moriarty and
EAS00; the former is a 12 processor mini-
supercomputer, and the latter is a Sun-Sparc 4
workstation.

Figure 2. Single computer clock time results.

As expected, the supercomputer substantially
outperforms the workstation. The supercomputer
normalized clock times are at least twice as fast, for
most system sizes. Most systems require from 40-60
iterations to converge, so the absolute clock times for
the supercomputer are on the order of 180 seconds, for
a 10000 equation system. Moreover, there is a near
linear correlation between normalized clock time and
system size, for both computer scenarios.

From several points of view, the distributed
computing data of Figure 3 does not live up to
expectations. Here, 3 scenarios are investigated, with
5, 10, and 24 slave machines. Both the master and
slave machines were Sun Sparc 4 workstations, similar
in nature to EAS00. As expected, there is a general

upward trend in normalized clock time, with an
increase in system size, for all 3 scenarios (5, 10, and
24 slave machines). However, the clock times are
larger than those corresponding to the single machine
data of Figure 2. At first glance, this appears to be
counter-intuitive. One would think that a system that is
solved by multiple machines would be constructed and
converged more quickly than a system that is analyzed
on one machine. This was not found to be the case.

Figure 3. Distributed computing clock time results.

Upon comparing the three curves themselves
in Figure 3, one sees that for the most part, systems of
all sizes required roughly the same amount of time to
converge, regardless of the number of slave machines
being used. This again appears to be counter-intuitive.
It would seem likely that a system solved using
distributed computing techniques would converge
faster, when using a greater amount of slave computers
on the virtual machine. This was not found to be the
case. Clearly, the question then becomes - - "Why?".

As "complex" as the system of equations that
CASCADE generates are, the systems are not
complicated enough to fully exploit the strengths of
distributed computing. Message passing dominates the
clock time involved with converging a system when
using distributed computing techniques. To explore
this situation further, "sleep" times were introduced into
each subsystem analysis. In other words, each
subsystem analysis is performed (either in a sequential
or a distributed computing environment), and then the
program execution pauses for a user-specified number
of seconds. This sleep time is used to simulate a
computation with a higher level of complexity.

6
American Institute of Aeronautics and Astronautics

Effects of sleep time on each subsystem iteration
Sleep times were initially experimented with

on the Moriarty supercomputer, the EAS00
workstation, and the 5 and 10 slave distributed
computing scenarios. Figure 4 is a plot of clock time
vs. system size for all four scenarios, with a 0.01
second sleep time.

Figure 4. Normalized clock time - 0.01 sec sleep time.

This plot varies little from the results
previously presented. Moriarty is still the fastest option
for all system sizes, followed by EAS00, followed by
both the 5 and 10 slave distributed computing
scenarios, which vary little from each other.

Figure 5 is a similar plot, but the sleep time
has been increased to 0.05 seconds. From this plot,
important results can be seen. For smaller system
sizes, the distributed computing scenarios outperform
both Moriarty and EAS00. However, the
differentiation between the 5 and 10 slave scenarios is
still minimal. For large system sizes, Moriarty and
(barely) EAS00 overtake the distributed computing
scenarios and outperform them.

Figure 5. Normalized clock time - 0.05 sec sleep time.

Figure 6 is yet another plot of the same nature,
this time with a 0.1 sleep time. With this amount of
sleep time, the distributed computing scenarios clearly
overtake both Moriarty and EAS00, for the full range
of system sizes. However, there is still only minimal
differentiation between the 5 and 10 slave scenarios.

Figure 6. Normalized clock time - 0.10 sec sleep time.

To see if any numerical sleep time would have
an impact on the variation between distributed
computing results with varying numbers of slave
machines, the sleep time was further increased to 0.5
seconds. The results are seen in Figure 7.

Figure 7. Normalized clock time - 0.5 sec sleep time.

Finally, the 5 and 10 slave machine curves
split apart, with the 10 slave scenario clearly
outperforming the 5 slave scenario. This trend is
further accentuated in Figure 8, which plots similar
results with a full 1 second of sleep time.

Hence, the subsystem analyses of the
CASCADE-generated systems were forced to require a
half to one second longer so that the benefits of

7
American Institute of Aeronautics and Astronautics

distributed computing could be fully demonstrated.
This is an extremely important point for those who
wish to use CASCADE to simulate a distributed
computing environment. It is necessary to have
sufficiently large sleep times so that message passing
does not dominate and skew results. Of additional
interest is the calculation of system derivatives, which
can be used in a variety of MDO applications.

Figure 8. Normalized clock time - 1.00 sec sleep time.

Effects of Normalization on GSE solution
The sensitivity analysis of the converged

system can be very useful to system-reduction
researchers. The matrix of total derivatives provides an
indication as to how sensitive each system output is to
each system input. Normalization techniques are often
used, so as to improve the numerical condition of the
left and right hand side matrices that are used in the
LU-decomposition, to attain the total derivative matrix.
The benefits of this procedure can be seen from Figure
9.

Figure 9 is a plot of the clock time required to
compute the total sensitivity matrix vs. the size of the
system. For smaller systems, the clock times of the
normalized and not-normalized systems are
comparable. As the system size increases, the clock
time required to compute the sensitivity matrix is
slightly shorter for the normalized matrices than for the
not-normalized matrices. This reduction in clock time
is likely attributable to the numerical conditioning
provided by the normalization procedure.

Table 2 lists condition number vs. system
size, for both normalized and not-normalized scenarios.
(The condition number provides a general indication as
to how well-conditioned the partial derivative matrices
were, when used to attain the total derivative matrix.
Thus, the condition number reflects the reliability of the
numerical estimate that was attained, for the total

derivative matrix. A low condition number is
desirable). The differences in magnitude are
astounding. The normalized data has matrix condition
numbers that are far lower than those for the not-
normalized data. Using not-normalized data, a total
derivative solution could not be found for the 990
equation system example, as depicted in the table. For
this system size, the condition number is infinite, for all
intents.

Figure 9. Sensitivity CPU times vs. system size.

There does not seem to be any correlation
between condition number and system size. A large
condition number will result when coupling complexity
is high. The coupling nature of these systems is
random, hence systems of high complexity (and hence,
high condition number) can arise for any system size.

Table 2. Condition number comparison of normalized /
non-normalized data

number of

system

equations

condition number

normalized

sensitivities

condition number

Non-normalized

sensitivities

100 40.06 60634.

200 21.41 37663.

300 37.10 101310.

400 81.06 46630.

500 390.70 101182

600 24.99 107055

700 60.09 58305.

800 53.48 259539.

900 60.32 68528.

990 345.83 47565084.**
** : no solution attained

8
American Institute of Aeronautics and Astronautics

Summary and Discussion

The field of Multidisciplinary Design
Optimization inherently has great potential for
becoming an industrial standard for the design of large,
complex systems. The basic methodology is simple:
divide a large task or system into numerous smaller and
inter-related subtasks. These subtasks can be divided
among the participating design groups and solved
simultaneously, in a non-hierarchic manner. The
analysis of a complex system must take place on a
powerful computer. Hence, it is clear that the MDO
methodology lends itself well to distributed computing
environments, in which one large computational task is
divided among numerous computers, connected on a
network.

The motivation for MDO is to reduce the time
and cost required for the design process. Most complex
systems are non-hierarchic in nature, and require an
iterative scheme (and initial approximations) to
converge. Task sequencing researchers attempt to find
the optimal sequence (order) in which to analyze the
system modules, to gain the converged solution in the
least amount of time. System reduction researchers
seek to effectively reduce the size of a complex system,
with a minimal loss in accuracy. Researchers have
attempted to temporarily suspend and/or permanently
eliminate output couplings that were comparatively
found to be less substantial.

Before these MDO-strategies can be
implemented in the design process of such large
systems as automobiles and aircraft, they must be
tested. A method for analytically simulating real-life,
large system couplings is necessary. The simulation
should be able to predict the output sensitivities of the
system; the change in the system outputs with respect to
a prescribed change in the design variables of the
system. The simulation should also lend itself well to a
distributed computing environment. The numerous
design tasks of a large system design should be
computationally distributed among the participating
design groups. The simulation should be robust; it
should accommodate a wide range of system sizes and
complexities. Finally, the simulation here is random in
that it creates design scenarios that may have been
initially unforeseen by the system analysts. To this
end, the author has designed a computer program,
coded in FORTRAN, and called CASCADE (Complex
Application Simulator for the Creation of Analytical
Design Equations).

CASCADE accepts user inputs to randomly
construct and then converge a large system of complex
equations. This system of equations should be viewed

as an analytical representation to a real-life design
scenario. After the user tells CASCADE the desired
size of the system, the nature (the initial coefficient, the
sign, the coupling, and the exponent) of each term, of
each equation, of each subsystem of the system is
determined randomly, using a random number
generator. The non-hierarchic system is constructed on
the first iteration, and converged on iterations
thereafter, after having initialized each and every
output equation to a value of unity. This procedure was
first implemented on a single computer format, cycling
though all of the subsystems in the system, one-by-one,
in a sequential manner. The procedure was later
modified for solution in a distributed computing
environment, using Parallel Virtual Machine (PVM). A
virtual machine is constructed, consisting of numerous
local workstations. Each subsystem in the constructed
system is then sent to a separate computer for analysis,
such that the number of subsystems being analyzed at
one time is equal to the number of computers on the
virtual machine. Inherently, this appears to be more
efficient, and more realistic.

Once the system is constructed and converged,
either in a single computer or distributed computing
manner, CASCADE offers numerous post-convergence
features. The Global Sensitivity Equation method can
be used to compute the total sensitivities of the system
outputs, with respect to the inputs. This is done by first
computing sensitivities on a local level. The matrices
from which the total derivatives are computed can
either be normalized or not. Normalized matrices offer
a higher likelihood of an accurate solution. A second
important feature is the option to write each equation of
the converged system to a separate subroutine. This
could be beneficial to sequencing researchers. Again,
these researchers might perturb the design variables of
the converged system, and then analyze the various
ordering possibilities of the subroutines to see which
sequence would attain a new converged solution most
quickly. A final important feature is the option to write
the converged system to a parameters file. This file
provides a comprehensive listing of the nature of each
term in the system that has been constructed, as well as
other system statistics.

The previous section analyzed the results of
numerous executions of CASCADE on a global level.
The single computer results saw an increase in CPU
time with an increase in system size. As expected,
systems that were solved using the Moriarty
supercomputer solved much faster than those solved on
the local EAS00 workstation. Unfortunately, the
unaltered PVM results did not live up to their high
expectations. The CPU times for the parallel machine-
generated systems were larger than those for the single

9
American Institute of Aeronautics and Astronautics

computer systems. Moreover, CPU times per iteration
were larger, when a larger number of slave computers
were used on the virtual machine. It is probable that
the time required to pass information from the master
machine to the slave machines is what dominated the
convergence time for the PVM scenarios. This
information that was passed included large, statically
dimensioned, multi-dimensional arrays, that could only
be sent from machine to machine matrix element by
matrix element.

To reduce the impact of message passing,
sleep times were introduced into the convergence
procedure. On both the single computer and distributed
computing scenarios, each subsystem analysis was
performed, and then followed by a user specified period
of sleep. At 0.01 seconds of sleep time, the advantages
of distributed computing were first detected. At 0.05
seconds of sleep time, the use of distributed computing
becomes more advantageous than the use of the
Moriarty supercomputer for building and converging
systems, for all system sizes. With 0.5 seconds of sleep
time, the advantages of using a larger number of slave
machines for distributed computing start to become
evident. The bottom line is that the CASCADE-
generated systems, complex as they are, are not by
themselves complex enough to exploit the benefits of
distributed processing.

Matrix normalization was found to be
beneficial, for the computation of the total derivative
matrix by using the GSE method. The condition
number of the solution matrix was lower when using
normalization techniques. This is an indication of a
more reliable numerical estimate. The CPU times
required to attain the normalized derivative matrix were
also lower, than those required to attain not-normalized
derivative matrices.

Future Work

The first step that should be taken for the
advancement of this research would be to improve the
results associated with distributed computing and PVM.
A method must be found to more effectively pass the
large array data from the master to the slave. Message
passing was found to be the dominating factor in the
time taken to build and converge the systems, while
using distributed processing techniques. An interface is
required that will enable the PVM message passing to
bypass select network layers and avoid performance
degradation due to communication through the
operating system and a transport layer protocol (as in
Figure 10).

This desired interface allows PVM to execute
the application (CASCADE), and bypass the protocol

overhead of UDP and IP, and communicate directly to
the low-level network interface. For this preliminary
work, the low-level network has been Ethernet-based.
Eventually, however, a conversion to an ATM-based
network is foreseen. Further time-related improvement
could be made by setting up a virtual machine whose
hosts consist of the numerous processors on a multi-
processor supercomputer.

Application

PVM

TCP/UDP

IP

AAL5

ATM

Application

PVM

TCP/UDP

IP

802.2

802.3API API

desired
interface

Figure 10. Direct message passing to Network layer.

The size of systems created by CASCADE has
been limited by the static dimensioning allowances of
the FORTRAN programming language. If this were
overcome, systems of infinite size could potentially be
constructed and converged. This would prove that the
principals of MDO could be extended to systems of any
imaginable size, with couplings having any imaginable
complexity.

A final concept is to physically combine the
CASCADE package with the other MDO-related
program methodologies that have been discussed, such
as task sequencing software and coupling suspension
software. An MDO-framework is envisioned, in which
a complex system could be randomly built and
converged, then optimally altered and re-converged.
This framework could make use of Virtual Reality
techniques, to provide the user with a 3-dimensional
representation of a design, and virtual foresight to the
effects that result from and hypothetical changes made
to the design.

Acknowledgments

The authors wish to acknowledge partial support of this
work under grant 150-82350 of the UB
Multidisciplinary Seed Pilot Project Program and NSF
PFF Grant DMI 9553210.

10
American Institute of Aeronautics and Astronautics

References

[1] Bloebaum, Christina L., "Global Sensitivity
Analysis in Control-Augmented Structural Synthesis,"
AIAA Student Journal, Summer 1989.
[2] Bloebaum, Christina L., "Formal and Heuristic
System Decomposition Methods in Multidisciplinary
Synthesis," Ph.D. Thesis, University of Florida,
Gainsville, FL, 1991.
[3] Bloebaum, C. L., "An Intelligent
Decomposition Approach for Coupled Engineering
Systems". Fourth AIAA/USAF/NASA/OAI
Symposium on Multidisciplinary Analysis and
Optimization, Cleveland, OH, September, 1992.
[4] Cheney, Ward, and Kincaid, David, Numerical
mathematics and computing, Brooks/Cole Publishing
company, Pacific Grove, California, 1985.
[5] Codenotti, Bruno and Leoncini, Mauro,
Introduction to Parallel Processing, Addison-Wesley,
Wokingham, England, 1992.
[6] Eason, Ernest D. and Wright, Joyce E.,
"Implementation of Non-Hierarchic Decomposition for
Multidisciplinary System Optimization." Fourth
AIAA/USAF/NASA/OAI Symposium on
Multidisciplinary Analysis and Optimization,
Cleveland, OH, September, 1992.
[7] Eschenauer, Hans A. and Weinert, Matthias,
"Approximation Concepts for the Decomposition-
Based Optimization of Complex Mechanical Structures
on Parallel Computers," Advances in Design
Automation Vol. II, ASME Pub. DE-Vol. 65-2, 337-
345, 1993.
[8] Flannery, Brian P., Teukolsky, Saul A., and
Vetterling, William T., Numerical Recipes - the art of
scientific computing, Cambridge University Press,
Cambridge, 1986.
[9] Geist, A., Beguelin, A., Dongerra, J.,
Weicheng, J., Mancheck, R., and Sunderam, V., PVM:
Parallel Virtual Machine - A user's guide and tutorial
for networked parallel computing, The MIT Press,
Cambridge, Massachussets, 1994.
[10] Hajela, P., Bloebaum, Christina L., and
Sobieszczanski-Sobieski, Jaroslaw, "Application of
Global Sensitivity Equations in Multidisciplinary
Aircraft Synthesis," Journal of Aircraft, Volume 27,
No. 12, 1990, pp. 1002 - 1010.
[11] Huddleston, John V., Introduction to
Computers, FORTRAN version, Exchange Publishing
Division, Buffalo, NY, 1988.
[12] Hulme, Kevin F., “Development of
CASCADE - A Multidisciplinary Design Optimization
Test Simulator for use in Distributed Computing
Environments”, Masters Thesis, University of Buffalo,
Buffalo, NY, 1996.

[13] Lakshminarayan, Krishnan, "ATM
Networking and Multimedia - A White Paper," Sun
Microsystems Computer Corporation, Revision X,
August, 1993.
[14] Maliniak, L., "Teamwork is the Key to
Concurrent Design," Electronic Design, January 1991,
pp. 41-54.
[15] McCulley, C. and C. L. Bloebaum, "Optimal
Sequencing for Complex Engineering Systems Using
Genetic Algorithms." Fifth AIAA/USAF/NASA/OAI
Symposium on Multidisciplinary Analysis and
Optimization, Panama City, FL, September, 1994.
[16] McCulley, Collin M., "A Genetic Tool for
Optimally Sequencing the Design of Complex
Engineering Systems," Masters Thesis, University Of
Buffalo, Buffalo, NY, 1995.
[17] Miller, Erik, "Coupling Suspension and
Elimination in Multidisciplinary Design Optimization,"
Masters Thesis, University of Buffalo, Buffalo, NY,
1995.
[18] Rogers, J.L., "DeMAID -- A Design
Manager's Aide for Intelligent Decomposition: User's
Guide." NASA Technical Memorandum 101575,
March, 1989.
[19] Sobieszczanski-Sobieski, Jaroslaw, "A Linear
Decomposition Method for Optimization Problems -
Blueprint for Development," NASA Technical
Memorandum 83248, 1982.
[20] Sobieszczanski-Sobieski, Jaroslaw,
"Multidisciplinary Systems Optimization by Linear
Decomposition," Symposium on Recent Experiences in
Multidisciplinary Analysis and Optimization, Hampton,
VA, 1984.
[21] Sobieszczanski-Sobieski, Jaroslaw, "The
Sensitivity of Complex, Internally Coupled Systems,"
AIAA Journal, Volume 28, No. 2, pp. 153-160.
[22] Sobieszczanski-Sobieski, Jaroslaw,
"Optimization by Decomposition: A Step from
Hierarchic to Non-Hierarchic Systems," Second
NASA/Air Force Symposium on Recent Advances in
Multidisciplinary Analysis and Optimization, Hampton,
VA, September, 1988.
[23] Sobieszczanski-Sobieski, Jaroslaw, Bloebaum,
Christina L., and Hajela, P., "Sensitivity of Control-
Augmented Structure obtained by a System
Decomposition Method," AIAA Journal, Vol. 29, No.
2, February, 1991.
[24] Steward, D.V., System Analysis and
Management. Petrocelli Books, New York, 1981.
[25] Vanderplaats, G. N., Numerical Optimization
Techniques for Engineering Design: with Applications,
McGraw Hill, New York, NY, 1984.

