
1
American Institute of Aeronautics and Astronautics

DEVELOPMENT OF A “MONTY HALL” ANALOG FOR
HEURISTIC ALL-AT-ONCE OPTIMIZATION

K.F. Hulme
State University of New York at Buffalo

New York State Center for Engineering Design and Industrial Innovation (NYSCEDII)
5 Norton Hall

Buffalo, New York 14260-1810, USA

Keywords: Multidisciplinary Design Optimization, CASCADE, Monty Hall, heuristic optimization, simulated
annealing, All-at-Once, SAND

Abstract

Past studies in Multidisciplinary Design Optimization
(MDO) have shown that All-at Once (AAO)
optimization can be an extremely intuitive and useful
alternative means to approach the solution of a
multidisciplinary analysis and optimization
simultaneously. However, its utility has shown to
decrease for larger problems with higher degrees of
non-linearity and non-convexity. The present research
presents a new heuristic optimization algorithm
intended for solving coupled (multidisciplinary) design
problems posed in the form of an AAO optimization.
The hope is that the algorithm presented and developed
herein can be used to improve upon past findings where
conventional gradient-based optimization methods have
been found to fail. The algorithm is modeled after the
structure and decision process behind the famous
“Monty Hall” problem, which gained its name from the
host of the 1970’s TV show, “Let’s Make a Deal”. The
algorithm developed in this research has also been
modeled after numerous other popular heuristic
optimization algorithms which promote the concepts of
exploration as well as exploitation of the design space,
namely simulated annealing, tabu search, and genetic
algorithms. The algorithm will first be presented on a
small, simple, well-known test problem to most easily
demonstrate its characteristics and assess its
functionality. Thereafter, the algorithm will be
implemented on two additional multidisciplinary
system simulations of greater size and complexity, both
of which will be generated using the previously
developed CASCADE MDO simulation tool. For all
test systems, the performance of the new method will
be compared to other optimization approaches, such as
gradient-based methods (using MS Excel’s internal
solver), simulated annealing, and a pure random search.

* Research Associate, Member AIAA

Copyright © 2002 by K.F. Hulme. Published by the American
Institute of Aeronautics and Astronautics, Inc. with permission.

Introduction

Most large-scale engineering product and process
design is multidisciplinary in nature. Essentially, this
means that numerous inter-related design groups and/or
design tasks are involved in the process of the overall
final design. This process typically has numerous
computationally expensive stages (such as sensitivity
analysis, engineering analysis, and numerical
optimization, to name a few) during each design cycle,
each of which have their own internal stages of costly
iteration. In the early 1980’s, a field of research
emerged which inherently attempts to unite the
concepts of concurrent engineering with large-scale,
multidisciplinary engineering design. This emerging
field has since been coined Multidisciplinary Design
Optimization, or MDO17.

The general MDO approach is intuitive: divide a single
large task into a grouping of smaller, interrelated
(coupled), and more manageable sub-tasks. The large
task is often referred to as a system, and the smaller,
interrelated tasks are often referred to as subsystems.
Each subsystem typically contains design variables,
generically denoted as “X”, which are parameters that
might change during a formal optimization procedure.
In addition, each subsystem typically also contains
additional unknown outputs, often referred to as
behavior variables, generically denoted as “Y”. It is
these variables that might change during a complex
system analysis. Further, these variables represent the
coupling links between the subsystems.

Background

Few multidisciplinary system decompositions result in
a structure which is truly hierarchical (top-down) in
nature. This inherent lack of hierarchy requires that the
system analysis associated with the overall design cycle
be initialized to some set of values, and iteratively
converged thereafter. Subsequent to attaining a
converged analysis solution, a sensitivity analysis is
performed. The sensitivity analysis can be a numerical
procedure such as finite differencing or the Global

2
American Institute of Aeronautics and Astronautics

Sensitivity Equation (GSE) method 4,18. The sensitivity
analysis is required for the optimization of the overall
design. The optimization step itself will typically cause
certain optimization variables to change, which then
necessitates the re-convergence of the system analysis.
Hence, the entire design cycle repeats itself until a
converged solution is attained. A summary of such
non-hierarchic design synthesis, conventionally referred
to as “Multiple Discipline Feasible” (MDF) is
illustrated in Figure 1.

Figure 1: Non-hierarchic design synthesis -
The “Multiple-Discipline-Feasible” (MDF) strategy

More recently, researchers have focused on alternate
methods for posing and solving the multidisciplinary
design problem. An approach has been developed
which treats the entire multidisciplinary design cycle
seen in Figure 1 as a single large optimization problem.
This is accomplished by converting the system analysis
equations into equality constraints, and by treating both
system design variables and subsystem outputs
(behavior variables) as optimization variables. Such an
approach has been referred to in literature as both
“Simultaneous Analysis and Design” (SAND) and “All-
at-Once” (AAO) 5,6,1. The primary advantage of AAO
is the elimination of an iterative design cycle for
attaining an optimal design through the outright
elimination of costly iterative analysis evaluations. One
possible disadvantage of AAO is that a much more
complicated optimization problem results. More
optimization variables and more equality constraints are
present in the AAO formulation. These variables and
equations stem from the addition of the system analysis
equations to the optimization problem statement. A
second disadvantage is that disciplinary feasibility is
only attained at a relative or at an absolute extremum.

This reduces the possibility of attaining a valid design
solution if the optimizer is unsuccessful in attaining the
global optimum solution. A generalized summary of
the AAO strategy is seen in Figure 2. Notice that the
“Residual Evaluator” has replaced the iterative System
Analysis seen in Figure 1. In the Residual Evaluator,
the analysis equality constraints are posed.

Figure 2: The “All-at-Once” (AAO) strategy

Clearly, the optimization component is a major aspect
in any solution strategy that is implemented, especially
the AAO approach, whose entire cycle is essentially
one all-encompassing optimization step. Though
gradient-based techniques are extremely useful in
certain situations, their applicability is limited to
situations in which a high degree of multi-modality is
not present. Unfortunately, most realistic optimization
applications involve design spaces that are clustered
with a multitude of local minima. For this reason, a
variety of non-gradient-based and heuristic
optimization algorithms have been in development over
the last 30 years, which are more suitable for a wide
range of real-world scale engineering optimization
applications.

Many of these algorithms, such as genetic algorithms
(GA) 10 and simulated annealing (SA) 14, are patterned
or modeled after real-world phenomena. Of the two
examples listed for example, the former emulates
biological selection, and the latter emulates the physical
annealing process of a material solid. Furthermore,
these methods rely heavily on random decisions and
probability, and it is this feature which gives these

Initial Design

Sensitivity
Analysis

Optimization

(Variables: All
system Design and

Behavior variables).

Update Design

E X I T

Converged?

Residual
Evaluator

SS[0] = 0

SS[1] = 0

Update Design

E X I T

Converged ?

 System
Analysis

SS[0] = 0

SS[1] = 0

Initial
Design

Optimization

(Variables: All
system Design

variables).

Sensitivity
Analysis

3
American Institute of Aeronautics and Astronautics

methods their hill-climbing behavior, and allows them
to escape local minima in their ultimate search for the
global minimum solution. In other words, these
methods attempt to temper exploitative searches with
some degree of exploration. Much like Tabu search,
the searches are allowed to not only intensify in regions
of the design space which are found to be
advantageous, but they are also allowed to diversify
into new regions of the design space 8.

Motivation

The inherent disadvantage of most heuristic
optimization algorithms is the poor performance that
stems from their inherent random/probabilistic nature.
Exploratory behavior is necessary to escape local
minima, but often leads the search into undesirable
sectors of the design space which might not be easily
retreated. For the present research, the ultimate
objective is to feed off the strengths of these methods
and develop either a brand new standalone heuristic
optimization algorithm, or alternatively a meta-heuristic
that might help to improve the existing bank of these
types of probabilistic- based optimization algorithms.

The underlying motivation of this research effort is to
eventually apply the methodologies developed in
situations where gradient-based optimization algorithms
have been found to fail – large scale, multi-modal,
multidisciplinary design optimization. In a recent
research effort 12, the author found that gradient-based
AAO works well in situations where problem size and
complexity are small, but not so well for more realistic
design problems. In a slightly earlier research effort 2,
an AAO implementation displayed very promising
results that were seen on small (3 subsystem) linear test
systems, with a priori known solutions. It is hoped that
the application of the Monty Hall heuristics, the details
of which are discussed in the next section, can show
improved performance for larger scale, higher
complexity AAO applications.

Method Implementation

The Monty Hall problem 16,7,3 is one of the most well-
known problems in statistics and probability. The
author’s interest in the problem is, in great part, what
inspired the present research effort. The Monty Hall
problem is stated in words as follows:

“You are a participant on Let's Make a Deal. Monty
Hall shows you three closed doors. He tells you that
two of the closed doors have a goat behind them and
that one of the doors has a new car behind it. You pick
one door, but before you open it, Monty opens one of
the two remaining doors and shows that it hides a goat.

He then offers you a chance to switch doors with the
remaining closed door. Is it to your advantage to do
so?”

The solution to this problem has been wildly debated
among mathematicians world-wide for years. The
reason for the debate, and the heated difference in
opinion, boils down to what, if anything, can be
assumed regarding Monty Hall’s motivation for
opening a curtain. Three distinct possibilities exist: 1.
He randomly opens doors. 2. He always opens the door
he knows contains nothing. 3. He only opens a door
when the contestant has picked the grand prize.

Seemingly, the most reasonable scenario is possibility
#2, which, if assumed, yields the following solution to
the problem, again stated in words:

“You know that Monty Hall isn't going to show you the
curtain with the car behind it. Therefore, by which
curtain he opens, he gives you information about the
problem. At the start, the car has an equal chance of
being behind each curtain. The following three
situations have equal probability:

Curtain 1 Curtain 2 Curtain 3
Scenario A Car Goat Goat
Scenario B Goat Car Goat
Scenario C Goat Goat Car

Table 1: 3 scenarios in the Monty Hall problem

The probability that your initial guess is correct is
therefore 1/3. Sticking to this guess keeps the
probability 1/3. Now, let’s see what happens supposing
that you switch your guess. There are three situations,
A, B, and C, with equal probability. Let’s say that your
original guess was curtain #1. It doesn’t matter which
one you pick first; it’s all the same. If A is true, then
Monty Hall will open up curtain #2, or curtain #3.
Assuming you switch, you’ll guess the other one, and
you’ll get a goat. That’s a loss. If B is true, then Monty
Hall must open curtain #3, because he won’t open one
with a car. If you switch, you’ll guess curtain #2, and
you’ll get a car. That’s a win. If C is true, then Monty
Hall must likewise open curtain #2. If you switch, you’ll
get the car. Win again. You have three situations, with
equal probability. Switching will give you a loss on one
of them, and a win on two. Therefore the probability of
a win if you switch is 2/3. Since this is better than the
probability of your initial guess of 1/3, it’s better to
switch.”

In the present research, the Monty Hall (MH) problem
will be paralleled into an analogous heuristic
optimization algorithm, also somewhat inspired by the
spirit of the SA, Tabu, and GA approaches. Here, one

4
American Institute of Aeronautics and Astronautics

design variable will be perturbed on each iteration of
the process. In the proposed approach, the MH
problem has been generalized from a three-curtain
arrangement to an “n” curtain arrangement. In the
initial implementation, only 3 curtains have been used,
as was the case on the TV show. Behind each curtain
lies one of the “p” design variables in the design. If
there are more curtains than design variables, then
duplicate instances of the design variables are placed
behind each curtain. If there are more design variables
than curtains, then “n” of the “p” design variables are
randomly chosen, and one each is placed behind the
available curtains. Here, the location of the “prize” is
set to be the design variable that is calculated to be the
most critical to the design. (Note: the “prize” design
variable is only placed behind a single curtain –
duplicate instances of this variable are not permitted to
exist, in situations where p > n). This determination is
made through the use of sensitivities and effectiveness
coefficients 9.

Effectiveness coefficients quantify the impact of a
particular design variable Xi on the design at a given
point in the design space, and can be defined as:

[1]

Here, F is the objective function, and gj, j=1,m are the
inequality constraints. Because there will likely be
more than one constraint present, there is a need to
assess a measure of sensitivity of a single, cumulative
constraint function, C, to each given design variable.
This measure C is formed by means of the K.S.
function 15, as follows:

[2]

Note that the value of ρ must be chosen carefully. A
smaller value of ρ allows more constraints to participate
in the constraint representation, while a larger value of
ρ allows the most critical constraints to dominate the
constraint representation. Clearly, one can expect some
methodologicial dependency on the choice of this
parameter. Once this cumulative constraint measure is
formulated, a single measure of effectiveness can be
formed for each design variable to the cumulative
constraint and the objective function:

[3]

The default setting is such that the “prize” variable is
assigned to be the variable with minimum computed
effectiveness. The user has the option of assigning the
“prize” variable to be the variable with maximum
effectiveness, or alternatively, the maximum absolute
value effectiveness, either of which might introduce
more exploratory traits into the search.

The player’s “guess” is simulated by a random choice
among the number of curtains present, behind which
lies one of the system design variables. Next, Monty
Hall’s “revealed curtain” is simulated by yet another
random choice among the remaining curtains – in other
words, this selection will not be the “prize” curtain, nor
will it be the initially “player chosen” curtain. Finally,
the player is given the option to switch from his initial
choice, to a different curtain, based on the information
conveyed by Monty’s revealed curtain. This process is
simulated by way of a user-defined “switch
percentage”, which can range from 0 (NEVER switch)
to 1 (ALWAYS switch). In the author’s estimation,
this behavior can add a bit of “unplanned randomness”
to the process, much in the spirit of the Mutation
operator from GA optimization.

Finally, the curtain is opened, revealing the variable
that is to be perturbed on the current design cycle. For
constrained optimization problems, a pseudo-objective
function is formed with the following general form:

Ffinal = F + rp*C [4]

Here, rp is the penalty parameter for the cumulative
constraint function; this can be a static or a dynamic
algorithm parameter. Once the variable to be altered is
chosen, the uni-variate search can proceed. The user
has 3 possible choices at this juncture: a. random
perturbation of the variable within the variable bounds,
b. steepest descent (using analytical or numerical
sensitivity) with a random step size, or c. a golden
section search.

The acceptance criterion for the proposed move is also
user-defined. The user can define a “minimum
improvement” threshold that must be overcome for a
trial design point to be accepted as the current best.
Alternatively, the user can dictate that any improved
points may be accepted, or like SA, some degree of
“hill-climbing” can be tolerated through the use of a
probabilistic acceptance criterion such as that
commonly used in a standard SA. Yet another “SA-
like” acceptance criterion that the user may choose is
that whenever the user chooses the “prize” variable
during the decision process, that move is automatically
accepted, regardless of the objective function
improvement (or lack thereof).

i

i

j

ij

dX

dF
dX

dg

e =

])gexp([ln
1

C
m

1j
j∑

=
⋅ρρ=

i

i
i

dX

dF
dX

dC

e =

5
American Institute of Aeronautics and Astronautics

In many realistic optimization problems, a large portion
of the design variables will be at their upper or lower
bound at a local or at the global optimum. Anticipating
this, the MH algorithm checks to see whether a given
design variable is at its bound, or near its bound within
some small tolerance, before choosing the “prize”
variable. Variables that are at their upper or lower
bound cannot be chosen to be the “prize” variable, even
if the effectiveness calculation dictates such. This
should promote a greater degree of exploration in the
design space, all the while successively exploiting the
most effective design variables.

Once selected, the new trial point is evaluated, and
compared to the current best. Then, the cycle counter is
decremented, and the process repeats until the user-
defined “min iteration” threshold is met or until known
convergence is attained. In most cases, the global
optimum will not be known to the user. If it is, then the
stopping criterion can be set to be some small tolerance
away from the known solution.

Complex System Simulation Details

The testing of newly-developed optimization methods
requires the use of a wide variety of stable test systems.
For this reason, the CASCADE (Complex Application
Simulator for the Creation of Analytical Design
Equations) simulator has been used in this research for
the generation of analytical, multidisciplinary test
systems. A thorough description of CASCADE can be
found in past literature 11, and a brief overview will be
presented here for completeness.

CASCADE is a computer tool that generates a coupled
system representation that consists of analytical
equations of user-specified size, and has the capability
of generating equations that represent both a coupled
system analysis and its associated optimization
problem. The structure of the system is user-dictated;
the semantics are randomly generated. The analysis
portion consists of a band of nonlinear equations that
attempt to represent the structure of the coupled nature
of the subsystem outputs (behavior variables). Each
behavior variable is a polynomial function of both
independent inputs (design variables) and dependent
inputs (other behavior variables). In this research
effort, two different fully-coupled test systems are
generated by CASCADE.

Results and Discussion

{Note that the results that follow assume that the reader
has an appropriate background in simulated annealing,
and the basics of traditional zero-order/gradient based

optimization methods. For basics on the former, refer
to 14; for the latter, refer to 19.}

Problem #1
As of this writing, the proposed Monty Hall (MH)
algorithm is in its infancy stages. Thus far, the
algorithm has been tested on numerous problems, the
first of which is the famous 2 variable unconstrained
“banana” function, shown as follows:

Minimize:
F(X) = 10X1

4 – 20X1
2X2 + 10X2

2 + X1
2 – 2X1 + 5 [5]

The solution of this problem is X=[1 1]T, which yields
an objective function value of F(X) = 4. The design
space is plotted in Figure 3.

Figure 3: Design space for Test Problem #1

The MH algorithm has been implemented on this test
problem, and has been compared to a simple random
search (RS) method, a gradient-based (GB) optimizer by
way of MS Excel’s internal solver, and a baseline
simulated annealing (SA) code. One would hope that
for such a simple problem, the new MH algorithm
would prove itself to perform substantially better than
the non-intelligent random search, and at least
comparably to the slightly more intelligent simulated
annealing search. Preliminary results are indeed
promising, and are summarized in Appendix I. For this
simulation, the upper and lower bounds have been
assigned to be ± 25.0. The simulation has been set to
execute for 100000 evaluations, or when the best-found
objective function is found to be within εf = 0.01 of the
known optimal solution. Baseline methodological

6
American Institute of Aeronautics and Astronautics

settings for each of the four optimization methods are
summarized in Table 2.

Method Setting
1. RS Move limit: 100%
2. GB Linear model assumed? No

Variable scaling used? No
Finite difference derivatives: Central
Search technique: second order (Newton)
1-D search estimates: Quadratic

3. MH Acceptance criterion: improved designs only
Uni-variate search type: golden section
Effectiveness: max (dF/dX)
Number of curtains: 3
“Switch” percentage: 100%

4. SA Move limit: 40%
Initial temperature: 22000
Final temperature: 1.0
Decrement rule: 0.99
Iterations at each T to reach steady-state: 100

Table 2: baseline optimization settings

A total of 10 trial executions were performed for each
method. Clearly, each of the 4 optimization methods
has its strengths and weaknesses. The Gradient-based
solver attains the global optimum solution of 4.0 from 7
of the 10 starting points, and does so very quickly – in
10 or fewer optimization iterations. Due to the high
non-linearity of the design space, as seen in Figure 3,
the gradient-based solver solution path becomes trapped
in local minima for the other 3 trial runs. The random
search attained vastly improved designs for all 10 trial
runs, and found near optimal solutions in trial runs 1,7,
and 10. Note however the tremendous expense in
attaining these, and the other 7 inferior final design
points – 100000 total function evaluations. Similar, but
slightly improved results were attained using the
simulated annealing optimizer. A near optimum
solution was found on trial run 4, and consistently
“close to optimum” solutions were found on most of the
other 9 trial runs, but again, at the expense of many
function evaluations.

On this first test problem, the Monty Hall algorithm
shows definite promise. The exact optimum solution
(within the stated tolerance) was attained on all 10 trial
runs. The function evaluation counts were found to be
reasonable as well – 2 of the 10 runs had fewer than
100 cycle iterations, and all runs converged in fewer
than 5000 iterations. Though more iterations were
required than that required for the gradient-based
optimizer, global optimality was attained from every
starting point. The end user may wish to sacrifice some
degree of efficiency for “guaranteed” performance.
Figures 4 and 5 summarize the performance and
efficiency-related findings shown in Appendix I.

Test Problem #1 - performance

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10

Trial number

O
p

t.
 O

b
j.

fu
n

c.
 v

al
u

e

Series1

Series2

Series3

Series4

Figure 4: Problem #1 performance

Test Problem #1 - efficiency

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10
Trial number

L
o

g
10

 f
u

n
ct

io
n

 e
va

ls
.

Series1 Series2

Series3 Series4

Figure 5: Problem #1 efficiency

In these and all result plots that follow, the 4 series are
notes as follows: Series 1 (diamond) – GB, Series 2
(square) – RS, Series 3 (triangle) – MH, Series 4
(cross) – SA.

Problem 2:

The second test problem is a bit more realistic in size
and scope. It is a multidisciplinary test problem created
by the CASCADE simulator, and has 3 subsystems,
each of which has 1 output behavior variable, and 1
design variable. There are 2 inequality constraints
associated with each subsystem, making a total of 6
constraints for the problem. There is one system-level
objective function, which is to be minimized. The
semantics have been omitted for simplicity;
nonetheless, the structure of test problem 2 is denoted
as shown in equation [6] and Figure 6:

Minimize: F(X1, X2, X3,Y1, Y2, Y3)
Subject to: g1(X1, X2, X3,Y1, Y2, Y3) ≤ 0

g2(X1, X2, X3,Y1, Y2, Y3) ≤ 0
g3(X1, X2, X3,Y1, Y2, Y3) ≤ 0
g4(X1, X2, X3,Y1, Y2, Y3) ≤ 0
g5(X1, X2, X3,Y1, Y2, Y3) ≤ 0
g6(X1, X2, X3,Y1, Y2, Y3) ≤ 0
-9999 ≤ X1, X2, X3 ≤ 9999

[6]

7
American Institute of Aeronautics and Astronautics

Figure 6: Structure for Test Problem #2

The objective and constraints are non-linear, highly
non-convex polynomial functions of the design
variables X and the behavior (coupling) variables Y. In
a true MDO problem, there would also be non-linear
state equations associated with each of the behavior
variables Y. In the corresponding AAO problem
formulation, each of these equations would necessarily
result in an additional equality constraint. For the sake
of algorithmic development, these equations have been
omitted, and the process temporarily simplified by
treating the behavior variables as constant values,
obtained using an off-line fixed-point iteration
procedure 13 using the initialized values of the design
vector X.

Test Problem #2 - performance

-750

-700

-650

-600

-550
0 2 4 6 8 10

Trial number

O
p

t.
 O

b
j.

fu
n

c.
 v

al
u

e

Series1 Series2

Series3 Series4

Figure 7: Problem #2 performance

Numerous observations can be made regarding the
results of this test problem, which are summarized in
Appendix II. The gradient-based solver attained what I
speculate is the global optimum solution of –734.24 on
4 of its 10 trial runs. At this optimum, only the 6th

inequality constraint is active; the other 5 constraints
are satisfied but not active. For the other 6 trial runs,
the gradient-based solver attained vastly improved
solutions, but converged at a very stingy local optimum
(of value –581.55). At this design point, 4 of the 6

inequality constraints are active; the other 2 are
satisfied. Note however that all 10 trial runs attained
solutions in 10 or fewer iterations – this is very efficient
solution improvement. This problem does a nice job of
demonstrating that a gradient-based optimizer can fail
to attain global optimality in design spaces that are
highly volatile. The random search and simulated
annealing optimizers both do a good job of attaining
very near optimal solutions – consistently more so than
the gradient-based solver. Clearly, the drawback is the
computational expense – 100000 iterations for a full-
iteration exploration, and a full computational anneal,
respectively. Once again, the MH algorithm proves
itself to be a solid optimization alternative. In this
problem, the golden section uni-variate search was once
again used, but this time, due to the presence of 6 non-
linear constraints (and after initial testing difficulties),
one of the two bounds on the optimizer had to be
randomized on each optimization cycle, between 0 and
± bound. Once this bounding strategy was employed,
the suspected global optimum is converged upon during
all 10 trial runs. Once again, the iteration count is also
modest, being in the “mid hundreds” for all runs. This
is not nearly as efficient as the “ten or fewer” efficiency
of the gradient-based solver, but again, this might be a
small price to pay for “guaranteed” global optimality.
Figures 7 and 8 summarize the performance and
efficiency-related findings shown in Appendix II.

Test Problem #2 - efficiency

0

1

2

3

4

5

6

0 2 4 6 8 10
Trial number

L
o

g
10

 f
u

n
ct

io
n

 e
va

ls
.

Series1 Series2

Series3 Series4

Figure 8: Problem #2 efficiency

Problem 3:

The third test problem is a much larger and more
realistic multidisciplinary test problem, again created
by the CASCADE simulator. Here, there are 100
subsystems, 1 design variable and 1 behavior variable
per subsystem. There are a total of 10 inequality
constraints for the problem. There is one system-level
objective function, which is again to be minimized.
The semantics have again been omitted for simplicity;

Subsystem 1

Subsystem 2 Subsystem 3

X1

X2
X3

Y2

Y1

Y3

Y1

Y2Y3

8
American Institute of Aeronautics and Astronautics

nonetheless, the structure of test problem 3 is denoted
as shown in equation [7] and Figure 9:

Minimize:
F(X1, X2, X3, … X100, Y1, Y2, Y3, … Y100)

Subject to:
g1(X1, X2, X3, … X100, Y1, Y2, Y3, … Y100) ≤ 0
g2(X1, X2, X3, … X100, Y1, Y2, Y3, … Y100) ≤ 0
g3(X1, X2, X3, … X100, Y1, Y2, Y3, … Y100) ≤ 0
g4(X1, X2, X3, … X100, Y1, Y2, Y3, … Y100) ≤ 0
g5(X1, X2, X3, … X100, Y1, Y2, Y3, … Y100) ≤ 0
g6(X1, X2, X3, … X100, Y1, Y2, Y3, … Y100) ≤ 0
g7(X1, X2, X3, … X100, Y1, Y2, Y3, … Y100) ≤ 0
g8(X1, X2, X3, … X100, Y1, Y2, Y3, … Y100) ≤ 0
g9(X1, X2, X3, … X100, Y1, Y2, Y3, … Y100) ≤ 0
g10(X1, X2, X3, … X100, Y1, Y2, Y3, … Y100) ≤ 0
-9999 ≤ X1, X2, X3 … X100 ≤ 9999

[7]

Figure 9: Structure for Test Problem #3

Similar observations can be made regarding this third
test systems as those made in the first two, and results
are summarized in Appendix III. The gradient-based
optimizer attains vastly improved solutions with a
“small” cost (100 or fewer optimization iterations).
Clearly however, once we execute the other optimizers,
we quickly see that the best gradient-based converged
solutions are a substantial distance away from
numerous other found “best” solutions. This time,
fewer iterations were executed for the random search

and simulated annealing codes - 10000. The simulated
annealing code also had its minimum temperature
towered from 1.0 in previous runs to 0.001, for a longer
“near zero” anneal. Both method demonstrated
consistently better results than the gradient-based
searches, with results averaging around the mid –
3600.0 range, but again, at a substantially higher
computational cost. Again, the Monty Hall algorithm
shows promise. The suspected global optimum is
attained for all 10 runs: -3773.9. At this solution, 6 of
the 10 design constraints are active, and a vast majority
of the design variables converge to their upper or lower
bound. Note that this solution was not attained by any
of the other 3 algorithms on any of the trial runs. Once
again, the iteration count was found to be “reasonable”
for the MH algorithm (though decidedly greater than
the corresponding count for gradient-based
optimization), averaging around 1000 iterations per trial
run. In this case, this is the price paid for vastly
improved (and possible global optimum) performance.
Figures 10 and 11 summarize the performance and
efficiency-related findings shown in Appendix III.

Test Problem #3 - performance

-3900

-3700

-3500

-3300

-3100

-2900

-2700

-2500

0 2 4 6 8 10

Trial number

O
p

t.
 O

b
j.

fu
n

c.
 v

al
u

e

Series1 Series2

Series3 Series4

Figure 10: Problem #3 performance

Test Problem #3 - efficiency

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10
Trial number

L
o

g
10

 f
u

n
ct

io
n

 e
va

ls
.

Series1 Series2

Series3 Series4

Figure 11: Problem #3 efficiency

Subsystem 1

Subsystem 2 Subsystem 3

X1

X2
X3

Y2

Y1

Y3

Y1

Y2Y3

Subsystem 99 Subsystem 100

...
...

X99 X100Y2 Y3

Y99 Y100

9
American Institute of Aeronautics and Astronautics

Conclusions and Future Work

This paper has presented preliminary findings of the
development of a new heuristic optimization algorithm,
inspired by the famous “Monty Hall” problem. Similar
to numerous existing non-traditional optimization
algorithms that is modeled after (such as simulated
annealing and tabu search), the Monty Hall algorithm
attempts to conduct an exploitative search while
simultaneously in pursuit of global optimality by way
of a large degree of exploratory search behavior as well.
The motivation for the development of this algorithm is
to find more successful alternatives to solving large
scale multidisciplinary design problems using an all-at-
once optimization approach.

In this paper, 3 test problems were examined: the
famous 2-variable unconstrained “banana” problem,
and 2 constrained, multidisciplinary CASCADE-
generated simulations: one having 3 design variables, 3
behavior variables, and 6 constraints, and the second
having 100 design variables, 100 behavior variables,
and 10 constraints. Furthermore, for purposes of
comparison, 3 other optimization methods were
employed: gradient-based optimization by way of MS
Excel’s solver, a pure random search, and an
“intelligent random” search in the form of simulated
annealing. Preliminary findings have been very
promising. General observed trends are summarized as
follows. Excel’s internal gradient-based solver
consistently attained design improvement; often times
global optimality for the smaller two problems. Most
important to note is that it did so very quickly, as would
be expected with its inherent second-order calculus-
based intelligence. The problem using this gradient-
based solver is reliability – unless the starting point is
such that the global optimum is bounded, the solution
path will likely converge to a local minimum. This
happened frequently, especially in the case of the 100
variable problem. At the other extreme lies the random
search, which consistently attained vastly improved,
often near-global optima for all 3 test problems.
Clearly, the problem that was observed with this
approach is one of efficiency – thousands or millions of
iterations are typically required to find near-optimum
solutions in any optimization problem of realistic size
and scope. Much of the same can be said for simulated
annealing, which, with appropriate settings, and after a
full anneal (i.e. many iterations) often leads to near-
optimum solutions that can be superior to those attained
by a conventional random search. The Monty Hall
algorithm attempted to meet the best of both worlds –
global or near-global optimality attained in a
“reasonable” number of total optimization cycles. For
all 3 problems, and for all 10 test runs for each, the
suspected global optimum solution was attained, and

always with far fewer iterations required that that for
GB or SA optimization. This number of iterations was
typically greater than that required for GB optimization
convergence, but seemingly with a much higher level of
confidence that a superior final minima will be attained.

Having explored this topic enough to see that there is
enough potential to explore this research further, the
author has numerous ideas for future work. First and
foremost, the algorithm must be put to the test on larger
and more complex problems. Particularly, these
problems should be “true” multidisciplinary in nature,
with analysis variables (and the AAO equality
constraints that result) included in the final problem
formulation. Now that the author has a degree of
confidence that the algorithm can produce desirable
results for challenging problems, it will be beneficial to
return to the very same multidisciplinary test problems
which demonstrated degrading performance in the
AAO solution strategy with increased problem size
(Hulme and Bloebaum, 1998). All of these test
problems utilized a gradient-based optimizer
exclusively; the author speculates that the hybrid
heuristic/derivative-based approaches inherent in the
MH algorithm will result in improved performance for
AAO multidisciplinary optimization.

Many of the inherent dynamics in the overall “Monty
Hall” decision process have thus far gone under-
explored. Namely, the author looks forward to
investigate the impact (if any) on varying the “user
switch” percentage on a given problem. Remember
that in a 3 curtain arrangement, remaining with your
initial choice gives the user a 1/3 chance of choosing
the prize, while switching ones choice gives the user a
2/3 chance of winning. Does this decision problem
have any impact on the Monty Hall optimization
analog? This question begs another – what effects (if
any) would a larger curtain arrangement have? In this
research, 3 curtains were used, as was the case on the
TV show. It might make more sense (to avoid the
“underrepresented variable” scenario that arises on any
problem with more than 3 design variables) to exactly
match the number of curtains to the number of total
design variables. Clearly however, this means that the
percentage of times that the “prize” (highest
effectiveness) variable is chosen will necessarily
decrease, resulting most likely in a far more
exploratory, and less efficient search. These however,
are the decisions that are likely ver problem and
situation dependent, and are best left to the discretion of
the end user(s) solving the problem at hand.

10
American Institute of Aeronautics and Astronautics

Acknowledgement

The author would like to acknowledge the partial
funding support of Sheldon Silver and the New York
State Assembly for their support of NYSCEDII, the
research organization for which the present work was
performed.

References

1 Balling, R. J., and Sobieszczanski-Sobieski, J.,
“Optimization of Coupled Systems: A Critical
Overview of Approaches.” AIAA Paper 94-4339,
September, 1994.

2 Balling, R.J., and Wilkinson, C.A., “Execution
of Multidisciplinary Design Optimization Approaches
on Common Test Problems.” AIAA Journal, Vol. 35,
No. 1, January, 1997, pp. 178-186.

3 Barbeau, E., “The Problem of the Car and
Goats.” College Mathematics Journal, Volume 24,
Number 2, Mar 1993, page 149.

4 Bloebaum, C.L., Hajela, P., and
Sobieszczanski-Sobieski, J., “Non-Hierarchic System
Decomposition in Structural Optimization.” Third
USAF/NASA Symposium on Recent Advances in
Multidisciplinary Analysis and Optimization, San
Francisco, CA, September, 1990.

5 Cramer, E.J. et al., “On Alternative Problem
Formulations for Multidisciplinary Design
Optimization.” Fourth AIAA /NASA /ISSMO
Symposium on Multidisciplinary Analysis and
Optimization, Cleveland, OH, September, 1992.

6 Cramer, E.J. et al., “Problem Formulation for
Multidisciplinary Optimization.” SIAM Journal of
Optimization, No. 4, pp. 754-776, November, 1994.

7 Gillman, L., “The Car and the Goats.”
American Mathematical Monthly, Volume 99, Number
1, Jan 1992, page 3.

8 Glover, F., “Tabu Search, Part I.” ORSA
Journal on Computing 1:3, 1989, pages: 190-206.

9 Hajela, P., Sobieszczanski-Sobieski, J., “The
Controlled Growth Method – A Tool for Structural
Optimization”, Proceedings of the
AIAA/ASME/ASCE/AHS 22nd Structures, Structural
Dynamics, and Materials Conference, 1981.

10 Holland J.H., “Adaptation in Natural and
Artificial System.” Ann Arbor, The University of
Michigan Press, 1975.

11 Hulme, K.F., and Bloebaum, C.L.,
“Development of a Multidisciplinary Design
Optimization Test Simulator.” Structural Optimization,
Volume 14, Number 2-3, October, 1997.

12 Hulme, K.F., and Bloebaum, C.L., “A
Comparison of Solution Strategies for Simulation-based
Multidisciplinary Design Optimization.” Seventh
AIAA/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, St. Louis, MO, September,
1998, pp. 2143-2153.

13 Istratescu, V.I., “Fixed Point Theory. An
Introduction.” Math. and Its Applications, D. Reidel
Publishing Co., Dordrecht, 1981.

14 Kirkpatrick, S., Gelatt, C., and Vecchi, M.,
“Optimization by Simulated Annealing.” Science, 220
(1983) pp. 671-680.

15 Kreisselmeier, G. and Steinhauser, R.,
“Systematic Control Design by Optimizing a Vector
Performance Index.” International Federation of Active
Control Symposium on Computer-Aided Design of
Control Systems, Zurich, Switzerland, August, 1979.

16 Selvin, S., “A Problem in Probability.”
American Statistician, Volume 29, Number 1, February
1975, page 67.

17 Sobieszczanski-Sobieski, J., “A Linear
Decomposition Method for Optimization Problems -
Blueprint for Development.” NASA Technical
Memorandum 83248, 1982.

18 Sobieszczanski-Sobieski, J., “The Sensitivity
of Complex, Internally Coupled Systems.” AIAA
Journal, Volume 28, No. 1, 1990, pp. 153-160.

19 Vanderplaats, G. N., “Numerical Optimization
Techniques for Engineering Design: with
Applications.” McGraw Hill, New York, N.Y., 1984.

11
American Institute of Aeronautics and Astronautics

Appendix I – Problem #1 result summary

Trial GB
initial
F(X)

GB
final
F(X)

GB
Func.
evals.

RS
initial
F(X)

RS
final
F(X)

RS
Func.
evals.

MH
initial
F(X)

MH
final
F(X)

MH
Func.
evals.

SA
Initial
F(X)

SA
Final
F(X)

SA
Func.
Evals.

1 207589. 4.037 < 10 1845299. 4.036 100000 2568844. 4.010 3557 267618. 5.414 100000

2 442671.8 4.138 < 10 770792.9 8.901 100000 191677.2 4.010 3528 58536.0 4.241 100000

3 8.1855 4.0 < 100 589534.8 10.282 100000 12495.76 4.010 3203 178718.2 4.567 100000

4 3568.00 4.0 < 100 204851.1 8.739 100000 1291636. 4.010 3489 89.276 4.032 100000

5 47.242 4.0 < 100 4516.76 16.755 100000 630681.2 4.010 154 1598442. 5.042 100000

6 3127325. 4.038 < 10 1181789. 4.651 100000 133395.5 4.010 3574 2536.18 5.242 100000

7 51158.14 5.675 < 10 73854.62 4.051 100000 3047727. 4.010 3669 1261240. 4.377 100000

8 84.812 4.0 < 100 22292.23 6.511 100000 3928390. 4.010 43 331363.8 8.146 100000

9 1785015. 16.489 < 10 3132936. 12.209 100000 58454.9 4.010 3537 674944.7 5.174 100000

10 190609.7 4.073 < 10 964.411 4.039 100000 53628.8 4.010 44 122.43 4.369 100000

Appendix II – Problem #2 result summary

Trial GB
initial
F(X)

GB
final
F(X)

GB
Func.
evals.

RS
initial
F(X)

RS
final
F(X)

RS
Func.
evals.

MH
initial
F(X)

MH
final
F(X)

MH
Func.
evals.

SA
Initial
F(X)

SA
Final
F(X)

SA
Func.
Evals.

1 -6.72 -581.55 < 10 -159.32 -734.10 100000 229.38 -734.24 255 33.54 -731.45 100000

2 170.27 -581.55 < 10 -198.35 -734.00 100000 -347.48 -734.24 197 101.21 -731.20 100000

3 -511.73 -581.55 < 10 209.68 -733.99 100000 -9.70 -734.24 174 201.61 -729.38 100000

4 -229.96 -734.24 < 10 202.99 -734.13 100000 206.72 -734.24 175 -25.29 -732.78 100000

5 -579.98 -581.55 < 10 -161.20 -734.11 100000 298.00 -734.24 172 -157.90 -726.31 100000

6 -119.20 -734.24 < 10 -42.08 -733.91 100000 314.87 -734.24 182 245.19 -733.37 100000

7 58.32 -734.24 < 10 171.00 -734.02 100000 -702.56 -734.24 174 113.77 -731.56 100000

8 -168.83 -734.24 < 10 108.85 -734.08 100000 29.06 -734.24 180 -180.54 -733.03 100000

9 141.27 -581.55 < 10 19.45 -734.14 100000 -138.44 -734.24 169 -181.02 -731.80 100000

10 -480.39 -581.55 < 10 -70.63 -733.82 100000 -57.99 -734.24 166 -179.95 -730.10 100000

Appendix III – Problem #3 result summary

Trial GB
initial
F(X)

GB
final
F(X)

GB
Func.
evals.

RS
initial
F(X)

RS
final
F(X)

RS
Func.
evals.

MH
initial
F(X)

MH
final
F(X)

MH
Func.
evals.

SA
Initial
F(X)

SA
Final
F(X)

SA
Func.
Evals.

1 526.5 -3530.2 < 100 561.63 -3637.7 10000 -330.11 -3773.9 295 528.32 -3677.0 10000

2 -176.2 -2748.1 < 100 562.76 -3673.4 10000 -108.82 -3773.9 1069 564.51 -3671.1 10000

3 -25.72 -2830.7 < 100 529.29 -3632.3 10000 -527.29 -3773.9 1403 527.78 -3679.2 10000

4 -31.24 -3035.3 < 110 569.06 -3647.4 10000 149.02 -3773.9 1658 520.72 -3662.8 10000

5 171.9 -3461.6 < 120 527.21 -3595.9 10000 278.92 -3773.9 406 529.34 -3678.9 10000

6 -55.63 -3628.4 < 100 580.97 -3610.2 10000 -332.87 -3773.9 681 557.28 -3659.8 10000

7 -135.20 -3626.7 < 100 496.39 -3635.5 10000 -262.08 -3773.9 823 470.83 -3684.3 10000

8 209.21 -2569.8 < 100 466.17 -3624.9 10000 20.24 -3773.9 853 518.71 -3670.8 10000

9 109.16 -2751.7 < 100 525.86 -3646.5 10000 -169.84 -3773.9 550 587.00 -3678.8 10000

10 -351.33 -2688.0 < 100 555.68 -3646.4 10000 285.64 -3773.9 1962 527.01 -3683.6 10000

