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Abstract

Past studies in Multidisciplinary Design Optimization 
(MDO) have shown that All-at Once (AAO) 
optimization can be an extremely intuitive and useful 
alternative means to approach the solution of a 
multidisciplinary analysis and optimization 
simultaneously.  However, its utility has shown to 
decrease for larger problems with higher degrees of 
non-linearity and non-convexity. The present research 
presents a new heuristic optimization algorithm 
intended for solving coupled (multidisciplinary) design 
problems posed in the form of an AAO optimization.  
The hope is that the algorithm presented and developed 
herein can be used to improve upon past findings where 
conventional gradient-based optimization methods have 
been found to fail.  The algorithm is modeled after the 
structure and decision process behind the famous 
“Monty Hall” problem, which gained its name from the 
host of the 1970’s TV show, “Let’s Make a Deal”.  The 
algorithm developed in this research has also been 
modeled after numerous other popular heuristic 
optimization algorithms which promote the concepts of 
exploration as well as exploitation of the design space, 
namely simulated annealing, tabu search, and genetic 
algorithms.  The algorithm will first be presented on a 
small, simple, well-known test problem to most easily 
demonstrate its characteristics and assess its 
functionality.  Thereafter, the algorithm will be 
implemented on two additional multidisciplinary 
system simulations of greater size and complexity, both 
of which will be generated using the previously 
developed CASCADE MDO simulation tool.  For all 
test systems, the performance of the new method will 
be compared to other optimization approaches, such as 
gradient-based methods (using MS Excel’s internal 
solver), simulated annealing, and a pure random search. 
_________________________
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Introduction

Most large-scale engineering product and process 
design is multidisciplinary in nature.  Essentially, this 
means that numerous inter-related design groups and/or 
design tasks are involved in the process of the overall 
final design.  This process typically has numerous 
computationally expensive stages (such as sensitivity 
analysis, engineering analysis, and numerical 
optimization, to name a few) during each design cycle, 
each of which have their own internal stages of costly 
iteration.  In the early 1980’s, a field of research 
emerged which inherently attempts to unite the 
concepts of concurrent engineering with large-scale, 
multidisciplinary engineering design.  This emerging 
field has since been coined Multidisciplinary Design 
Optimization, or MDO17.  

The general MDO approach is intuitive: divide a single 
large task into a grouping of smaller, interrelated 
(coupled), and more manageable sub-tasks.  The large 
task is often referred to as a system, and the smaller, 
interrelated tasks are often referred to as subsystems.  
Each subsystem typically contains design variables, 
generically denoted as “X”, which are parameters that 
might change during a formal optimization procedure.  
In addition, each subsystem typically also contains 
additional unknown outputs, often referred to as 
behavior variables, generically denoted as “Y”.  It is 
these variables that might change during a complex 
system analysis.  Further, these variables represent the 
coupling links between the subsystems.

Background

Few multidisciplinary system decompositions result in 
a structure which is truly hierarchical (top-down) in 
nature.  This inherent lack of hierarchy requires that the 
system analysis associated with the overall design cycle 
be initialized to some set of values, and iteratively 
converged thereafter.  Subsequent to attaining a 
converged analysis solution, a sensitivity analysis is 
performed.  The sensitivity analysis can be a numerical 
procedure such as finite differencing or the Global 
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Sensitivity Equation (GSE) method 4,18.  The sensitivity 
analysis is required for the optimization of the overall 
design.  The optimization step itself will typically cause 
certain optimization variables to change, which then 
necessitates the re-convergence of the system analysis.  
Hence, the entire design cycle repeats itself until a 
converged solution is attained.  A summary of such 
non-hierarchic design synthesis, conventionally referred 
to as “Multiple Discipline Feasible” (MDF) is 
illustrated in Figure 1.

Figure 1: Non-hierarchic design synthesis -
The “Multiple-Discipline-Feasible” (MDF) strategy

More recently, researchers have focused on alternate 
methods for posing and solving the multidisciplinary 
design problem.  An approach has been developed 
which treats the entire multidisciplinary design cycle 
seen in Figure 1 as a single large optimization problem.  
This is accomplished by converting the system analysis 
equations into equality constraints, and by treating both 
system design variables and subsystem outputs 
(behavior variables) as optimization variables.  Such an 
approach has been referred to in literature as both 
“Simultaneous Analysis and Design” (SAND) and “All-
at-Once” (AAO) 5,6,1.  The primary advantage of AAO 
is the elimination of an iterative design cycle for 
attaining an optimal design through the outright 
elimination of costly iterative analysis evaluations.  One 
possible disadvantage of AAO is that a much more 
complicated optimization problem results.  More 
optimization variables and more equality constraints are 
present in the AAO formulation.  These variables and 
equations stem from the addition of the system analysis 
equations to the optimization problem statement.  A 
second disadvantage is that disciplinary feasibility is 
only attained at a relative or at an absolute extremum.  

This reduces the possibility of attaining a valid design 
solution if the optimizer is unsuccessful in attaining the 
global optimum solution.  A generalized summary of 
the AAO strategy is seen in Figure 2.  Notice that the 
“Residual Evaluator” has replaced the iterative System 
Analysis seen in Figure 1.  In the Residual Evaluator, 
the analysis equality constraints are posed.

Figure 2: The “All-at-Once” (AAO) strategy

Clearly, the optimization component is a major aspect 
in any solution strategy that is implemented, especially 
the AAO approach, whose entire cycle is essentially 
one all-encompassing optimization step.  Though 
gradient-based techniques are extremely useful in 
certain situations, their applicability is limited to 
situations in which a high degree of multi-modality is 
not present.  Unfortunately, most realistic optimization 
applications involve design spaces that are clustered 
with a multitude of local minima.  For this reason, a 
variety of non-gradient-based and heuristic 
optimization algorithms have been in development over 
the last 30 years, which are more suitable for a wide 
range of real-world scale engineering optimization 
applications.

Many of these algorithms, such as genetic algorithms 
(GA) 10 and simulated annealing (SA) 14, are patterned 
or modeled after real-world phenomena.  Of the two 
examples listed for example, the former emulates 
biological selection, and the latter emulates the physical 
annealing process of a material solid.  Furthermore, 
these methods rely heavily on random decisions and 
probability, and it is this feature which gives these 

Initial Design

Sensitivity 
Analysis

Optimization

(Variables:  All 
system Design and 

Behavior variables).

Update Design

E X I T

Converged?

Residual 
Evaluator

SS[0] = 0

SS[1] = 0

Update Design

E X I T

Converged ?

 System
Analysis

SS[0] = 0

SS[1] = 0

Initial 
Design

Optimization

(Variables: All 
system Design 

variables).

Sensitivity 
Analysis



3
American Institute of Aeronautics and Astronautics

methods their hill-climbing behavior, and allows them 
to escape local minima in their ultimate search for the 
global minimum solution.  In other words, these 
methods attempt to temper exploitative searches with 
some degree of exploration.  Much like Tabu search, 
the searches are allowed to not only intensify in regions 
of the design space which are found to be 
advantageous, but they are also allowed to diversify 
into new regions of the design space 8.

Motivation

The inherent disadvantage of most heuristic 
optimization algorithms is the poor performance that 
stems from their inherent random/probabilistic nature.  
Exploratory behavior is necessary to escape local 
minima, but often leads the search into undesirable 
sectors of the design space which might not be easily 
retreated.  For the present research, the ultimate 
objective is to feed off the strengths of these methods 
and develop either a brand new standalone heuristic 
optimization algorithm, or alternatively a meta-heuristic 
that might help to improve the existing bank of these 
types of probabilistic- based optimization algorithms.  

The underlying motivation of this research effort is to 
eventually apply the methodologies developed in 
situations where gradient-based optimization algorithms 
have been found to fail – large scale, multi-modal, 
multidisciplinary design optimization.  In a recent 
research effort 12, the author found that gradient-based 
AAO works well in situations where problem size and 
complexity are small, but not so well for more realistic 
design problems.  In a slightly earlier research effort 2, 
an AAO implementation displayed very promising 
results that were seen on small (3 subsystem) linear test 
systems, with a priori known solutions.  It is hoped that 
the application of the Monty Hall heuristics, the details 
of which are discussed in the next section, can show 
improved performance for larger scale, higher 
complexity AAO applications.

Method Implementation

The Monty Hall problem 16,7,3 is one of the most well-
known problems in statistics and probability.  The 
author’s interest in the problem is, in great part, what 
inspired the present research effort.  The Monty Hall 
problem is stated in words as follows: 

“You are a participant on Let's Make a Deal.  Monty 
Hall shows you three closed doors.  He tells you that 
two of the closed doors have a goat behind them and 
that one of the doors has a new car behind it.  You pick 
one door, but before you open it, Monty opens one of 
the two remaining doors and shows that it hides a goat.  

He then offers you a chance to switch doors with the 
remaining closed door.  Is it to your advantage to do 
so?”

The solution to this problem has been wildly debated 
among mathematicians world-wide for years.  The 
reason for the debate, and the heated difference in 
opinion, boils down to what, if anything, can be 
assumed regarding Monty Hall’s motivation for 
opening a curtain.  Three distinct possibilities exist: 1. 
He randomly opens doors. 2. He always opens the door 
he knows contains nothing. 3. He only opens a door 
when the contestant has picked the grand prize.  

Seemingly, the most reasonable scenario is possibility 
#2, which, if assumed, yields the following solution to 
the problem, again stated in words: 

“You know that Monty Hall isn't going to show you the 
curtain with the car behind it. Therefore, by which 
curtain he opens, he gives you information about the 
problem. At the start, the car has an equal chance of 
being behind each curtain. The following three 
situations have equal probability: 

Curtain 1 Curtain 2 Curtain 3
Scenario A Car Goat Goat
Scenario B Goat Car Goat
Scenario C Goat Goat Car

Table 1: 3 scenarios in the Monty Hall problem

The probability that your initial guess is correct is 
therefore 1/3. Sticking to this guess keeps the 
probability 1/3. Now, let’s see what happens supposing 
that you switch your guess. There are three situations, 
A, B, and C, with equal probability. Let’s say that your 
original guess was curtain #1. It doesn’t matter which 
one you pick first; it’s all the same. If A is true, then 
Monty Hall will open up curtain #2, or curtain #3. 
Assuming you switch, you’ll guess the other one, and 
you’ll get a goat. That’s a loss. If B is true, then Monty 
Hall must open curtain #3, because he won’t open one 
with a car. If you switch, you’ll guess curtain #2, and 
you’ll get a car. That’s a win. If C is true, then Monty 
Hall must likewise open curtain #2. If you switch, you’ll 
get the car. Win again. You have three situations, with 
equal probability. Switching will give you a loss on one 
of them, and a win on two. Therefore the probability of 
a win if you switch is 2/3. Since this is better than the 
probability of your initial guess of 1/3, it’s better to 
switch.”

In the present research, the Monty Hall (MH) problem 
will be paralleled into an analogous heuristic 
optimization algorithm, also somewhat inspired by the 
spirit of the SA, Tabu, and GA approaches.  Here, one 
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design variable will be perturbed on each iteration of 
the process.  In the proposed approach, the MH 
problem has been generalized from a three-curtain 
arrangement to an “n” curtain arrangement.  In the 
initial implementation, only 3 curtains have been used, 
as was the case on the TV show.  Behind each curtain 
lies one of the “p” design variables in the design.  If 
there are more curtains than design variables, then 
duplicate instances of the design variables are placed 
behind each curtain.  If there are more design variables 
than curtains, then “n” of the “p” design variables are 
randomly chosen, and one each is placed behind the 
available curtains.  Here, the location of the “prize” is 
set to be the design variable that is calculated to be the 
most critical to the design.  (Note: the “prize” design 
variable is only placed behind a single curtain –
duplicate instances of this variable are not permitted to 
exist, in situations where p > n).  This determination is 
made through the use of sensitivities and effectiveness 
coefficients 9.  

Effectiveness coefficients quantify the impact of a 
particular design variable Xi on the design at a given 
point in the design space, and can be defined as:

[1]

Here, F is the objective function, and gj, j=1,m are the 
inequality constraints.  Because there will likely be 
more than one constraint present, there is a need to 
assess a measure of sensitivity of a single, cumulative 
constraint function, C, to each given design variable.  
This measure C is formed by means of the K.S. 
function 15, as follows: 

[2]

Note that the value of ρ must be chosen carefully.  A 
smaller value of ρ allows more constraints to participate 
in the constraint representation, while a larger value of 
ρ allows the most critical constraints to dominate the 
constraint representation.  Clearly, one can expect some 
methodologicial dependency on the choice of this 
parameter.  Once this cumulative constraint measure is 
formulated, a single measure of effectiveness can be 
formed for each design variable to the cumulative 
constraint and the objective function:

[3]

The default setting is such that the “prize” variable is 
assigned to be the variable with minimum computed 
effectiveness.  The user has the option of assigning the 
“prize” variable to be the variable with maximum 
effectiveness, or alternatively, the maximum absolute 
value effectiveness, either of which might introduce 
more exploratory traits into the search. 

The player’s “guess” is simulated by a random choice 
among the number of curtains present, behind which 
lies one of the system design variables.  Next, Monty 
Hall’s “revealed curtain” is simulated by yet another 
random choice among the remaining curtains – in other 
words, this selection will not be the “prize” curtain, nor 
will it be the initially “player chosen” curtain.  Finally, 
the player is given the option to switch from his initial 
choice, to a different curtain, based on the information 
conveyed by Monty’s revealed curtain.  This process is 
simulated by way of a user-defined “switch 
percentage”, which can range from 0 (NEVER switch) 
to 1 (ALWAYS switch).  In the author’s estimation, 
this behavior can add a bit of “unplanned randomness” 
to the process, much in the spirit of the Mutation 
operator from GA optimization.  

Finally, the curtain is opened, revealing the variable 
that is to be perturbed on the current design cycle.  For 
constrained optimization problems, a pseudo-objective 
function is formed with the following general form:

Ffinal = F + rp*C                           [4]

Here, rp is the penalty parameter for the cumulative 
constraint function; this can be a static or a dynamic 
algorithm parameter.  Once the variable to be altered is 
chosen, the uni-variate search can proceed.  The user 
has 3 possible choices at this juncture: a. random 
perturbation of the variable within the variable bounds, 
b. steepest descent (using analytical or numerical 
sensitivity) with a random step size, or c. a golden 
section search.  

The acceptance criterion for the proposed move is also 
user-defined.  The user can define a “minimum 
improvement” threshold that must be overcome for a 
trial design point to be accepted as the current best.  
Alternatively, the user can dictate that any improved 
points may be accepted, or like SA, some degree of 
“hill-climbing” can be tolerated through the use of a 
probabilistic acceptance criterion such as that 
commonly used in a standard SA.  Yet another “SA-
like” acceptance criterion that the user may choose is 
that whenever the user chooses the “prize” variable 
during the decision process, that move is automatically 
accepted, regardless of the objective function 
improvement (or lack thereof).
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In many realistic optimization problems, a large portion 
of the design variables will be at their upper or lower 
bound at a local or at the global optimum.  Anticipating 
this, the MH algorithm checks to see whether a given 
design variable is at its bound, or near its bound within 
some small tolerance, before choosing the “prize” 
variable.  Variables that are at their upper or lower 
bound cannot be chosen to be the “prize” variable, even 
if the effectiveness calculation dictates such.  This 
should promote a greater degree of exploration in the 
design space, all the while successively exploiting the 
most effective design variables.

Once selected, the new trial point is evaluated, and 
compared to the current best.  Then, the cycle counter is 
decremented, and the process repeats until the user-
defined “min iteration” threshold is met or until known 
convergence is attained. In most cases, the global 
optimum will not be known to the user.  If it is, then the 
stopping criterion can be set to be some small tolerance 
away from the known solution.

Complex System Simulation Details

The testing of newly-developed optimization methods 
requires the use of a wide variety of stable test systems.  
For this reason, the CASCADE (Complex Application 
Simulator for the Creation of Analytical Design 
Equations) simulator has been used in this research for 
the generation of analytical, multidisciplinary test 
systems.  A thorough description of CASCADE can be 
found in past literature 11, and a brief overview will be 
presented here for completeness.  

CASCADE is a computer tool that generates a coupled 
system representation that consists of analytical 
equations of user-specified size, and has the capability 
of generating equations that represent both a coupled 
system analysis and its associated optimization 
problem.  The structure of the system is user-dictated; 
the semantics are randomly generated.  The analysis 
portion consists of a band of nonlinear equations that 
attempt to represent the structure of the coupled nature 
of the subsystem outputs (behavior variables).  Each 
behavior variable is a polynomial function of both 
independent inputs (design variables) and dependent 
inputs (other behavior variables).  In this research 
effort, two different fully-coupled test systems are 
generated by CASCADE.

Results and Discussion

{Note that the results that follow assume that the reader 
has an appropriate background in simulated annealing, 
and the basics of traditional zero-order/gradient based 

optimization methods.  For basics on the former, refer 
to 14; for the latter, refer to 19.}

Problem #1
As of this writing, the proposed Monty Hall (MH) 
algorithm is in its infancy stages.  Thus far, the 
algorithm has been tested on numerous problems, the 
first of which is the famous 2 variable unconstrained 
“banana” function, shown as follows:

Minimize:
F(X) = 10X1

4 – 20X1
2X2 + 10X2

2 + X1
2 – 2X1 + 5      [5]                     

The solution of this problem is X=[1  1]T, which yields 
an objective function value of F(X) = 4.  The design 
space is plotted in Figure 3.    

Figure 3: Design space for Test Problem #1

The MH algorithm has been implemented on this test 
problem, and has been compared to a simple random 
search (RS) method, a gradient-based (GB) optimizer by 
way of MS Excel’s internal solver, and a baseline 
simulated annealing (SA) code.  One would hope that 
for such a simple problem, the new MH algorithm 
would prove itself to perform substantially better than 
the non-intelligent random search, and at least 
comparably to the slightly more intelligent simulated 
annealing search.  Preliminary results are indeed 
promising, and are summarized in Appendix I.  For this 
simulation, the upper and lower bounds have been 
assigned to be ± 25.0.  The simulation has been set to 
execute for 100000 evaluations, or when the best-found 
objective function is found to be within εf = 0.01 of the 
known optimal solution.  Baseline methodological 
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settings for each of the four optimization methods are 
summarized in Table 2.

Method Setting
1. RS Move limit: 100%
2. GB Linear model assumed?  No

Variable scaling used?  No
Finite difference derivatives: Central
Search technique: second order (Newton)
1-D search estimates: Quadratic

3. MH Acceptance criterion: improved designs only
Uni-variate search type: golden section
Effectiveness: max (dF/dX)
Number of curtains: 3
“Switch” percentage: 100%

4. SA Move limit: 40%
Initial temperature: 22000
Final temperature: 1.0
Decrement rule: 0.99
Iterations at each T to reach steady-state: 100

Table 2: baseline optimization settings

A total of 10 trial executions were performed for each 
method.  Clearly, each of the 4 optimization methods 
has its strengths and weaknesses.  The Gradient-based 
solver attains the global optimum solution of 4.0 from 7 
of the 10 starting points, and does so very quickly – in 
10 or fewer optimization iterations.  Due to the high 
non-linearity of the design space, as seen in Figure 3, 
the gradient-based solver solution path becomes trapped 
in local minima for the other 3 trial runs.  The random 
search attained vastly improved designs for all 10 trial 
runs, and found near optimal solutions in trial runs 1,7, 
and 10.  Note however the tremendous expense in 
attaining these, and the other 7 inferior final design 
points – 100000 total function evaluations.  Similar, but 
slightly improved results were attained using the 
simulated annealing optimizer.  A near optimum 
solution was found on trial run 4, and consistently 
“close to optimum” solutions were found on most of the 
other 9 trial runs, but again, at the expense of many 
function evaluations.

On this first test problem, the Monty Hall algorithm 
shows definite promise.  The exact optimum solution 
(within the stated tolerance) was attained on all 10 trial 
runs.  The function evaluation counts were found to be 
reasonable as well – 2 of the 10 runs had fewer than 
100 cycle iterations, and all runs converged in fewer 
than 5000 iterations.  Though more iterations were 
required than that required for the gradient-based 
optimizer, global optimality was attained from every 
starting point.  The end user may wish to sacrifice some 
degree of efficiency for “guaranteed” performance.  
Figures 4 and 5 summarize the performance and 
efficiency-related findings shown in Appendix I. 
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Figure 5: Problem #1 efficiency

In these and all result plots that follow, the 4 series are 
notes as follows: Series 1 (diamond) – GB, Series 2 
(square) – RS, Series 3 (triangle) – MH, Series 4 
(cross) – SA.

Problem 2:

The second test problem is a bit more realistic in size 
and scope.  It is a multidisciplinary test problem created 
by the CASCADE simulator, and has 3 subsystems, 
each of which has 1 output behavior variable, and 1 
design variable.  There are 2 inequality constraints 
associated with each subsystem, making a total of 6 
constraints for the problem.  There is one system-level 
objective function, which is to be minimized.  The 
semantics have been omitted for simplicity; 
nonetheless, the structure of test problem 2 is denoted 
as shown in equation [6] and Figure 6:  

Minimize: F(X1, X2, X3,Y1, Y2, Y3)
Subject to: g1(X1, X2, X3,Y1, Y2, Y3) ≤ 0

g2(X1, X2, X3,Y1, Y2, Y3) ≤ 0
g3(X1, X2, X3,Y1, Y2, Y3) ≤ 0
g4(X1, X2, X3,Y1, Y2, Y3) ≤ 0
g5(X1, X2, X3,Y1, Y2, Y3) ≤ 0
g6(X1, X2, X3,Y1, Y2, Y3) ≤ 0
-9999 ≤ X1, X2, X3 ≤ 9999

[6]
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Figure 6:  Structure for Test Problem #2

The objective and constraints are non-linear, highly 
non-convex polynomial functions of the design
variables X and the behavior (coupling) variables Y.  In 
a true MDO problem, there would also be non-linear 
state equations associated with each of the behavior 
variables Y.  In the corresponding AAO problem 
formulation, each of these equations would necessarily 
result in an additional equality constraint.  For the sake 
of algorithmic development, these equations have been 
omitted, and the process temporarily simplified by 
treating the behavior variables as constant values, 
obtained using an off-line fixed-point iteration 
procedure 13 using the initialized values of the design 
vector X. 
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Figure 7: Problem #2 performance

Numerous observations can be made regarding the 
results of this test problem, which are summarized in 
Appendix II.  The gradient-based solver attained what I 
speculate is the global optimum solution of –734.24 on 
4 of its 10 trial runs.  At this optimum, only the 6th

inequality constraint is active; the other 5 constraints 
are satisfied but not active.  For the other 6 trial runs, 
the gradient-based solver attained vastly improved 
solutions, but converged at a very stingy local optimum 
(of value –581.55).  At this design point, 4 of the 6 

inequality constraints are active; the other 2 are 
satisfied.  Note however that all 10 trial runs attained 
solutions in 10 or fewer iterations – this is very efficient 
solution improvement.  This problem does a nice job of 
demonstrating that a gradient-based optimizer can fail 
to attain global optimality in design spaces that are
highly volatile.  The random search and simulated 
annealing optimizers both do a good job of attaining 
very near optimal solutions – consistently more so than 
the gradient-based solver.  Clearly, the drawback is the 
computational expense – 100000 iterations for a full-
iteration exploration, and a full computational anneal, 
respectively.  Once again, the MH algorithm proves 
itself to be a solid optimization alternative.  In this 
problem, the golden section uni-variate search was once 
again used, but this time, due to the presence of 6 non-
linear constraints (and after initial testing difficulties), 
one of the two bounds on the optimizer had to be 
randomized on each optimization cycle, between 0 and 
± bound.  Once this bounding strategy was employed, 
the suspected global optimum is converged upon during 
all 10 trial runs.  Once again, the iteration count is also 
modest, being in the “mid hundreds” for all runs.  This 
is not nearly as efficient as the “ten or fewer” efficiency 
of the gradient-based solver, but again, this might be a 
small price to pay for “guaranteed” global optimality. 
Figures 7 and 8 summarize the performance and 
efficiency-related findings shown in Appendix II.
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Figure 8: Problem #2 efficiency

Problem 3:

The third test problem is a much larger and more 
realistic multidisciplinary test problem, again created 
by the CASCADE simulator.  Here, there are 100 
subsystems, 1 design variable and 1 behavior variable 
per subsystem.  There are a total of 10 inequality 
constraints for the problem.  There is one system-level 
objective function, which is again to be minimized.  
The semantics have again been omitted for simplicity; 

Subsystem 1

Subsystem 2 Subsystem 3

X1

X2
X3

Y2

Y1

Y3

Y1

Y2Y3
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nonetheless, the structure of test problem 3 is denoted 
as shown in equation [7] and Figure 9:  

Minimize: 
F(X1, X2, X3, … X100, Y1, Y2, Y3, … Y100)

Subject to:
g1(X1, X2, X3, … X100, Y1, Y2, Y3, … Y100) ≤ 0
g2(X1, X2, X3, … X100, Y1, Y2, Y3, … Y100) ≤ 0
g3(X1, X2, X3, … X100, Y1, Y2, Y3, … Y100) ≤ 0
g4(X1, X2, X3, … X100, Y1, Y2, Y3, … Y100) ≤ 0
g5(X1, X2, X3, … X100, Y1, Y2, Y3, … Y100) ≤ 0
g6(X1, X2, X3, … X100, Y1, Y2, Y3, … Y100) ≤ 0
g7(X1, X2, X3, … X100, Y1, Y2, Y3, … Y100) ≤ 0
g8(X1, X2, X3, … X100, Y1, Y2, Y3, … Y100) ≤ 0
g9(X1, X2, X3, … X100, Y1, Y2, Y3, … Y100) ≤ 0
g10(X1, X2, X3, … X100, Y1, Y2, Y3, … Y100) ≤ 0
-9999 ≤ X1, X2, X3 … X100 ≤ 9999

[7]

Figure 9:  Structure for Test Problem #3

Similar observations can be made regarding this third 
test systems as those made in the first two, and results 
are summarized in Appendix III.  The gradient-based 
optimizer attains vastly improved solutions with a 
“small” cost (100 or fewer optimization iterations).  
Clearly however, once we execute the other optimizers, 
we quickly see that the best gradient-based converged 
solutions are a substantial distance away from 
numerous other found “best” solutions.  This time, 
fewer iterations were executed for the random search 

and simulated annealing codes - 10000.  The simulated 
annealing code also had its minimum temperature 
towered from 1.0 in previous runs to 0.001, for a longer 
“near zero” anneal.  Both method demonstrated 
consistently better results than the gradient-based 
searches, with results averaging around the mid –
3600.0 range, but again, at a substantially higher 
computational cost.  Again, the Monty Hall algorithm 
shows promise.  The suspected global optimum is 
attained for all 10 runs: -3773.9.  At this solution, 6 of 
the 10 design constraints are active, and a vast majority 
of the design variables converge to their upper or lower 
bound.  Note that this solution was not attained by any 
of the other 3 algorithms on any of the trial runs.  Once 
again, the iteration count was found to be “reasonable” 
for the MH algorithm (though decidedly greater than 
the corresponding count for gradient-based 
optimization), averaging around 1000 iterations per trial 
run.  In this case, this is the price paid for vastly 
improved (and possible global optimum) performance. 
Figures 10 and 11 summarize the performance and 
efficiency-related findings shown in Appendix III.

Test Problem #3 - performance
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Test Problem #3 - efficiency
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Figure 11: Problem #3 efficiency
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Conclusions and Future Work

This paper has presented preliminary findings of the 
development of a new heuristic optimization algorithm, 
inspired by the famous “Monty Hall” problem.  Similar 
to numerous existing non-traditional optimization 
algorithms that is modeled after (such as simulated 
annealing and tabu search), the Monty Hall algorithm 
attempts to conduct an exploitative search while 
simultaneously in pursuit of global optimality by way 
of a large degree of exploratory search behavior as well.  
The motivation for the development of this algorithm is 
to find more successful alternatives to solving large 
scale multidisciplinary design problems using an all-at-
once optimization approach.

In this paper, 3 test problems were examined:  the 
famous 2-variable unconstrained “banana” problem, 
and 2 constrained, multidisciplinary CASCADE-
generated simulations: one having 3 design variables, 3 
behavior variables, and 6 constraints, and the second 
having 100 design variables, 100 behavior variables, 
and 10 constraints.  Furthermore, for purposes of 
comparison, 3 other optimization methods were 
employed: gradient-based optimization by way of MS 
Excel’s solver, a pure random search, and an 
“intelligent random” search in the form of simulated 
annealing.  Preliminary findings have been very 
promising.  General observed trends are summarized as 
follows.  Excel’s internal gradient-based solver 
consistently attained design improvement; often times 
global optimality for the smaller two problems.  Most 
important to note is that it did so very quickly, as would 
be expected with its inherent second-order calculus-
based intelligence.  The problem using this gradient-
based solver is reliability – unless the starting point is 
such that the global optimum is bounded, the solution 
path will likely converge to a local minimum.  This 
happened frequently, especially in the case of the 100 
variable problem.  At the other extreme lies the random 
search, which consistently attained vastly improved, 
often near-global optima for all 3 test problems.  
Clearly, the problem that was observed with this 
approach is one of efficiency – thousands or millions of 
iterations are typically required to find near-optimum 
solutions in any optimization problem of realistic size 
and scope.  Much of the same can be said for simulated 
annealing, which, with appropriate settings, and after a 
full anneal (i.e. many iterations) often leads to near-
optimum solutions that can be superior to those attained 
by a conventional random search.  The Monty Hall 
algorithm attempted to meet the best of both worlds –
global or near-global optimality attained in a 
“reasonable” number of total optimization cycles.  For 
all 3 problems, and for all 10 test runs for each, the 
suspected global optimum solution was attained, and 

always with far fewer iterations required that that for 
GB or SA optimization.  This number of iterations was 
typically greater than that required for GB optimization 
convergence, but seemingly with a much higher level of 
confidence that a superior final minima will be attained.

Having explored this topic enough to see that there is 
enough potential to explore this research further, the 
author has numerous ideas for future work.  First and 
foremost, the algorithm must be put to the test on larger 
and more complex problems.  Particularly, these 
problems should be “true” multidisciplinary in nature, 
with analysis variables (and the AAO equality 
constraints that result) included in the final problem 
formulation.  Now that the author has a degree of 
confidence that the algorithm can produce desirable 
results for challenging problems, it will be beneficial to 
return to the very same multidisciplinary test problems 
which demonstrated degrading performance in the 
AAO solution strategy with increased problem size 
(Hulme and Bloebaum, 1998).  All of these test 
problems utilized a gradient-based optimizer 
exclusively; the author speculates that the hybrid 
heuristic/derivative-based approaches inherent in the 
MH algorithm will result in improved performance for 
AAO multidisciplinary optimization.

Many of the inherent dynamics in the overall “Monty 
Hall” decision process have thus far gone under-
explored.  Namely, the author looks forward to 
investigate the impact (if any) on varying the “user 
switch” percentage on a given problem.  Remember 
that in a 3 curtain arrangement, remaining with your 
initial choice gives the user a 1/3 chance of choosing 
the prize, while switching ones choice gives the user a 
2/3 chance of winning.  Does this decision problem 
have any impact on the Monty Hall optimization 
analog?  This question begs another – what effects (if 
any) would a larger curtain arrangement have?  In this 
research, 3 curtains were used, as was the case on the 
TV show.  It might make more sense (to avoid the 
“underrepresented variable” scenario that arises on any 
problem with more than 3 design variables) to exactly 
match the number of curtains to the number of total 
design variables.  Clearly however, this means that the 
percentage of times that the “prize” (highest 
effectiveness) variable is chosen will necessarily 
decrease, resulting most likely in a far more 
exploratory, and less efficient search.  These however, 
are the decisions that are likely ver problem and 
situation dependent, and are best left to the discretion of 
the end user(s) solving the problem at hand.  
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Appendix I – Problem #1 result summary

Trial GB 
initial 
F(X)

GB 
final 
F(X)

GB 
Func.
evals.

RS 
initial 
F(X)

RS 
final 
F(X)

RS 
Func.
evals.

MH 
initial 
F(X)

MH 
final
F(X)

MH
Func. 
evals.

SA
Initial
F(X)

SA
Final
F(X)

SA
Func.
Evals.

1 207589. 4.037  < 10 1845299. 4.036 100000 2568844. 4.010 3557 267618. 5.414 100000

2 442671.8 4.138 < 10 770792.9 8.901 100000 191677.2 4.010 3528 58536.0 4.241 100000

3 8.1855 4.0 < 100 589534.8 10.282 100000 12495.76 4.010 3203 178718.2 4.567 100000

4 3568.00 4.0 < 100 204851.1 8.739 100000 1291636. 4.010 3489 89.276 4.032 100000

5 47.242 4.0 < 100 4516.76 16.755 100000 630681.2 4.010 154 1598442. 5.042 100000

6 3127325. 4.038 < 10 1181789. 4.651 100000 133395.5 4.010 3574 2536.18 5.242 100000

7 51158.14 5.675 < 10 73854.62 4.051 100000 3047727. 4.010 3669 1261240. 4.377 100000

8 84.812 4.0 < 100 22292.23 6.511 100000 3928390. 4.010 43 331363.8 8.146 100000

9 1785015. 16.489 < 10 3132936. 12.209 100000 58454.9 4.010 3537 674944.7 5.174 100000

10 190609.7 4.073 < 10 964.411 4.039 100000 53628.8 4.010 44 122.43 4.369 100000

Appendix II – Problem #2 result summary

Trial GB 
initial 
F(X)

GB 
final 
F(X)

GB 
Func.
evals.

RS 
initial 
F(X)

RS 
final 
F(X)

RS 
Func.
evals.

MH 
initial 
F(X)

MH 
final
F(X)

MH
Func. 
evals.

SA
Initial
F(X)

SA
Final
F(X)

SA
Func.
Evals.

1 -6.72 -581.55 < 10 -159.32 -734.10 100000 229.38 -734.24 255 33.54 -731.45 100000

2 170.27 -581.55 < 10 -198.35 -734.00 100000 -347.48 -734.24 197 101.21 -731.20 100000

3 -511.73 -581.55 < 10 209.68 -733.99 100000 -9.70 -734.24 174 201.61 -729.38 100000

4 -229.96 -734.24 < 10 202.99 -734.13 100000 206.72 -734.24 175 -25.29 -732.78 100000

5 -579.98 -581.55 < 10 -161.20 -734.11 100000 298.00 -734.24 172 -157.90 -726.31 100000

6 -119.20 -734.24 < 10 -42.08 -733.91 100000 314.87 -734.24 182 245.19 -733.37 100000

7 58.32 -734.24 < 10 171.00 -734.02 100000 -702.56 -734.24 174 113.77 -731.56 100000

8 -168.83 -734.24 < 10 108.85 -734.08 100000 29.06 -734.24 180 -180.54 -733.03 100000

9 141.27 -581.55 < 10 19.45 -734.14 100000 -138.44 -734.24 169 -181.02 -731.80 100000

10 -480.39 -581.55 < 10 -70.63 -733.82 100000 -57.99 -734.24 166 -179.95 -730.10 100000

Appendix III – Problem #3 result summary

Trial GB 
initial 
F(X)

GB 
final 
F(X)

GB 
Func.
evals.

RS 
initial 
F(X)

RS 
final 
F(X)

RS 
Func.
evals.

MH 
initial 
F(X)

MH 
final
F(X)

MH 
Func. 
evals.

SA
Initial
F(X)

SA
Final
F(X)

SA
Func.
Evals.

1 526.5 -3530.2 < 100 561.63 -3637.7 10000 -330.11 -3773.9 295 528.32 -3677.0 10000

2 -176.2 -2748.1 < 100 562.76 -3673.4 10000 -108.82 -3773.9 1069 564.51 -3671.1 10000

3 -25.72 -2830.7 < 100 529.29 -3632.3 10000 -527.29 -3773.9 1403 527.78 -3679.2 10000

4 -31.24 -3035.3 < 110 569.06 -3647.4 10000 149.02 -3773.9 1658 520.72 -3662.8 10000

5 171.9 -3461.6 < 120 527.21 -3595.9 10000 278.92 -3773.9 406 529.34 -3678.9 10000

6 -55.63 -3628.4 < 100 580.97 -3610.2 10000 -332.87 -3773.9 681 557.28 -3659.8 10000

7 -135.20 -3626.7 < 100 496.39 -3635.5 10000 -262.08 -3773.9 823 470.83 -3684.3 10000

8 209.21 -2569.8 < 100 466.17 -3624.9 10000 20.24 -3773.9 853 518.71 -3670.8 10000

9 109.16 -2751.7 < 100 525.86 -3646.5 10000 -169.84 -3773.9 550 587.00 -3678.8 10000

10 -351.33 -2688.0 < 100 555.68 -3646.4 10000 285.64 -3773.9 1962 527.01 -3683.6 10000


