Structural Optimization 14, 203-218 © Springer-Verlag 1997

Distributed computing for multidisciplinary design

optimization using Java

J.C. Becker, C.L. Bloebaum and K.F. Hulme

Multidisciplinary Optimization and Design Engineering Laboratory (MODEL), Department of Mechanical and Aerospace
Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA

Abstract The programming language Java (recently referred
to as the computer language of the Web) offers substantial possi-
bilities for the type of complex engineering problems typically en-
countered in multidisciplinary design optimization (MDO) prob-
lems. In order to demonstrate the potential uses of Java for MDO
problems, this paper presents the development of the Web Inter-
face for complex engineering design (WICKED) software, which
simulates the convergence of a decomposed complex system in a
distributed computing environment and computes the sensitivity
derivatives of the system with respect to the independent input
variables using the GSE method or the finite difference method.
In this application, one computer is desi »l_i;ated as the server and
sends out required inputs to i number. of ‘client subsystems over
the Internet. A number of client computers can connect to the
server and then receive the inputs necessary to calculate the so-
lution to their model. As the code necessary to solve the model
already exists at the client, only the inputs have to be sent over
the network. When the client has solved the calculation, it returns
the results to the server which processes the result to produce new
inputs.)

WICKED is written entirely in the Java programming langnage
which allows server and clients to exist on completely different
computer types and in heterogeneous, distributed networks. A
number of parametric studies on the behaviour of complex sys-
tems in a distributed environment are performed and the results
are reported in this paper. This research serves to identify po-
tential problems as well as advantages in using Java for MDO
applications.

1 Introduction

‘Many large engineering design problems are very well-suited
for a decomposition into a number of smaller and coupled
subproblems (Sobieszczanski-Sobieski 1982). Often, complex
problems inherently exist in a decomposed format, especially
when several different disciplines are involved in the problem.
For example, in the case of aircraft design, a number of de-
sign groups, such as aerodynamics, structures, and controls,
are all involved in the design process. Each of these groups
has a model which describes their particular subsystem in
their own computer environment and most likely the com-
puters of all the design groups are linked together in a local
area network (LAN). When the decomposition concepts of
multidisciplinary design optimization (MDO) are applied to
such a system, the use of the distributed computer platforms
to perform virtual parallel processing is desirable. However,
the different computer languages and computers that exist
within the various groups create substantial roadblocks to

such an implementation. This work presents an approach to

. solve MDO problems in a distributed computing environment

using the “language of the Web”, Java (Flanigan 1996).

2 WICKED

2.1 Motivation

The primary objective of this work is to demonstrate the
effectiveness of using the Internet as a communication tool by
building a computer application that simulates the analysis
and sensitivity processes: required in multidisciplinary design
optimization (MDO) problems. Also, some of the problems,
as well as advantages; of using this type of computational
infrastructure for MDO applications are explored.

As an example, consider a large aerospace company with
the functional groups of aerodynamics, structures and con-
trols. Each group has its own computer system,. different
types of hardware, and uses software that fits their individ-
ual needs. Each group has a model for their disciplinary
subsystem on their own computer platform. When one of
the departments proposes a change in their disciplinary de-
sign, the other departments have to recalculate the solution
to their models with the new input values on their own com-
puter systems. Then these new outputs are given in return
to the other groups. This iterative design process continues
and is considerably hampered by the missing intercomputer
comumunication.

Previous work has largely depended on the message pass-
ing tool PVM (Parallel Virtual Machine) and has resulted in
such frameworks as FIDO (Framework for Interdisciplinary
Design Optimization) (Weston 1994). This work introduces a
new concept that allows analysts and designers to use a net-
work of heterogeneous computers to solve an MDO problem
by effectively using distributed computing via the language
Java.

2.2 Introduction

The Web Interface for Complex Engineering Design
(WICKED) simulates the design process using distributed
computing. One computer is designated to be the server and
sends out the inputs to the subsystems over the Internet. A
number of client computers can connect to the server and
then receive the inputs necessary to calculate the solution to
their model. The code necessary to solve the model already
exists at the client. Hence, only the inputs must be sent over
the network. When the client has solved the calculation, it

204

returns the results to the server which then processes the
result to produce new inputs for the next iteration.
Considering the preliminary conditions given in the mo-
tivation, it should be possible that clients and possibly the
server exist on different computer environments. Taking this
into account, Java was chosen as the Internet computer lan-

guage.

2.8 The Java programming language

The most common programming languages for a software ap-
plications in the field of engineering are currently C, C++
and FORTRAN. In the past few years, there has been
a growth of multiple incompatible hardware architectures,
each supporting multiple incompatible operating systems,
with each platform operating with one or more incompatible
graphical user interface. In addition, the growth of the Inter-
net and the World-Wide Web have introduced even new di-
mensions of complexity into the development process of soft-
ware. Java was designed to meet these challenges of applica-
tion development in the context of heterogeneous, network-
wide distributed environments. Java enables the develop-
ment of secure, high-performance, and highly robust apph-
cations on multiple platforms in heterogeneous, distributed
networks. ’ :

One of the primary characteristics of the language is that
it is highly object-oriented, but still relatively simple. Object-
oriented means that the focus lies on the data in the appli-
cations and on the methods that manipulate the data. In

" an object-oriented system, a class is a collection of data and
methods that operate on that data. Taken together, the data

and the methods describe the state and the behaviour of an’

object. Classes are arranged in a hierarchy, so that subclasses
can inherit behaviour from a superclass. Inheritance is one
of the main features of object-oriented languages. C

- Java is a distributed language because it is specifically-

designed to support applications on networks. It supports
several levels of network connectivity through a package of
certain networking classes. It is an interpreted language and
its compiler generates byte-code rather than native machine
code. To actually run a Java program, the Java interpreter
is used to execute the compiled byte-code. Java byte codes

provide an architecture-neutral object file format. The code:

is designed to transport programs efficiently to multiple plat-
forms. A great advantage is that a Java program can be
run on any system that implements the Java interpreter and

the run-time system, thereby allowing for heterogeneous sys- -

‘tems. Collectively, the interpreter and run-time system im-
plement a virtual machine called the Java Virtual Machine.
The language is designed to write highly reliable, robust soft-
ware. Java is more strongly typed than other languages,
which allows extensive compile-time checking for potential
type-mismatch and other problems, which makes it relatively
robust. Java is also a multithreaded language, in that it pro-
vides support for parallel processing of muitiple threads of
execution. This is useful, for example, to run a graphical
user interface and perform several calculations at the same
time.

The Java programming language was developed by Sun
Microsystems and was first publicly released in January 1996.
The compiler and interpreter currently exist in their first ver-

sions for UNIX on Sun workstations, for Macintosh comput-
ers and for PC’s. New versions of Java, as well as enhanced,
just-in-time (JIT) compilers and Java implementations from
other companies will be released in the near future, making
the language even more widely used.

2.4 Description of WICKED

The objective of this work is to design and implement a
system to support virtual parallel processing for Multidisci-
plinary Design Optimization problems on a network of com-
puters. The system uses a server/client model as can be seen
in Fig. 1.

Salved
Subproblem

y

wickeDp | (WICkED|
Client |} Client tett

Fig. 1. WICKED system overview -

The server creates subproblems which are part of a large

- decomposed problem. For this work, it is assumed that the

problem is already decomposed into subproblems. The role
of the clients is to solve the subprobleins received from the
server and to send back the subproblem solutions. The server

. also has to incorporate the returned subproblem solutions

into the solution of the main problem. Only data (no code)
will migrate on the system as it is running. Hence, when a
node receives data (i.e. subproblem parameters or subprob-
lem solutions), it already has the code to process that data.
An overview over the construction of the server is given in
Fig. 2. .

The WICKED server includes a SystemManager and a
ProblemManager. When a client connects to the server, the
SystemManager allocates the connection to the ProblemMan-
ager, which then initiates a SessionManager to handle the
connection. The SessionManager requests subproblems from
its ProblemManager to send to the client and returns sub-
problems when they are received back from the client. The
server is started by the ServerUserInterface which also has
control over the settings for the server. The ProblemSolver
can indicate the state of its operations through the display
of the ServerUserlnterface.

As seen in Fig. 3, the WICKED client has a SessionMan-
ager which receives subproblems from the server. Received
subproblems are assigned to the ProblemSolver which creates
a thread for the Subproblem to run in. Solved subproblems
are retrieved by the SessionManager and sent back to the
server. The ProblemSolver interacts with the ClientUserIn-

Fig. 2. WICKED server overview

terface which displays the progress as subproblems are solved.
The ClientUserInterface can also order the ProblemSolver to
stop processing subproblems and to close the network con-
nection.

Fig. 3. WICKED client overview

WICKED uses the software Webcrunch by C. Daly which

supplies the basic framework for solving problems using dis-

" tributed computing. WICKED incorporates the Multidisci-
plinary Design Optimization problem into this framework
and is designed to handle MDO problems which are already
decomposed into subproblems. The graph in Fig. 4 illustrates
bow the general code is extended to handle a specific MDO
problem.

Only three classes of the code (shaded in the graph) actu-
ally contain the specific application problem. The Abstract-
ProblemManager of the server is extended by the WICKED-
ProblemManager which contains the starting values for the
problem, a part which creates new subproblems when they
are requested by the SessionManager, and a part which in-
corporates the returned solutions into the construction of the
new problems. The WICkEDSubProblem contains informa-

" tion on how to send and receive subproblem inputs and re-
sults over the network and it also includes the algorithms

205

System
Manager

SERVER

Fig. 4. WICKED system extension for MDO

which are necessary to actually solve the problems. The
WICKEDSubProblem is known by both the server and the
client. The server uses its methods to send input data to the
client and the client uses the algorithm to solve the problem
and then returns it to the server. The WICKEDProblem-
Solver uses the algorithms contained in WICKEDSubProblem
as described above after it has identified the problem itself.

WICKED is used to solve a representative MDO prob-
lem in this work since we are particularly interested in the
application of Java to this class of problems. An extremely
important concern for MDO problems is the calculation of
sensitivities, as this is typically the most computationally -
expensive parts of the MDO process. The next section gives
an overview of the sensitivity analysis typically required for
MDQO problems. :

When a new MDO problem is implemented in
WICKED, the files WICKEdProblem.java, WICkEdProblem-
Manager.java, and WICKEdProblemSolver.java must all be
edited. These three files correspond to the shaded portions
of Fig. 4. In WICkEdProblem.java, the constants numSS
(the number of subsystems), numSSin (the number of sub-
system inputs), and numSSout (the of subsystem outputs)
must be changed in the class definition. The run method
must contain the equations that solve the subproblems.

In WICKEdProblemManager java, the contanats described
above must be changed. In addition, the initial values of the
system output variables must be defined in the method Ini-
tialize. The method QuickSubProblemConstructor contains
an algorithm that creates new subproblems and incorporates
the solutions of solved subproblems in the convergence pro-
cess. This should only be changed if the convergence algo-
rithm is altered. If the user desires additional or different
output data, it is in this file that such alterations must be
made.

Changes to WICKEdProblemSolver.java must only be
made if the problem name is changed. If changes are made to
any of these three files, they must be recompiled to produce
the updated class files.

206

3 Sensitivity analysis overview

The first step in the numerical analysis of a complex sys-
tem typically includes a discretization of the equations into
a model. The analysis generally requires the solution of al-
gebraic equations, differential equations, or eigenvalue prob-
lems. Determination of the sensitivities required in the op-
timization process involves the mathematical problem of ob-
taining the derivatives of those equations with respect to their
inputs.

Since the sensitivity analysis is typically the most expen-
sive part of the optimization, it is therefore important that
efficient approaches are used for this evaluation in the design
process. There are a number of different techniques avail-
able, with one of the most popular being the finite difference
approach due to its simplicity of execution. This approach is
bowever extremely computationally expensive and can lead
to errors when applied to complex systems. Other more tra-
ditional techniques that are commonly used are the analyt-
ical and semi-analytical approaches (Bloebaum 1989) . The
global sensitivity equations (GSE) method (Sobieszczanski-
Sobieski 1990) has significant advantages over these other
methods for complex engineering problems.

As this work uses both the finite difference approach and
GSE, both of these two methods are d&scnbed in more detail
in the following sections.

3.1 Sensitivity defermination using the finite difference ap-
proach

The finite difference approach is one of the most popular
techniques for the numerical determination of sensitivity in-
formation. It is easy to implement but it has the disadvan-
tage that it is computationally very expensive and, further,
accuracy problems may occur. The simplest finite difference
approximation is the first-order forward difference approxi-
mation. Given a function f(z) of the design variable z, the

approximation %l of the total derivative %5 is

o _Af _ fe+a2) - flz) W
iz~ Az Az

The flow chart for the finite difference approach can be
seen in Fig. 5a. The finite difference approach requires that
each design variable is perturbed separately by some pre-
scribed amount. Then the whole systern must be converged
again and the function values associated with the perturba-
tion are then calculated, after which the approximation of
the total derivative can be calculated. Accuracy problems
associated with this formulation are due to truncation and
condition errors. Also, it is possible that the effect of a small
perturbation may be lost when filtered through a large set
of system analyses in MDO applications. If large perturba-
tions are used, it is possible that nonlinearities of the system
lead to imprecise sensitivity information. This approach is so
expensive, as far as computation time is concerned, because
the system has to be reconverged after each perturbation of
a variable.

3.2 Sensilivily determination using the global sensitivity
equalions method

The global sensitivity equations (GSE) approach is also
a methodology for obtaining the total sensitivity of the

Coaverge
the system
inisiall
the system T
initially
Perturboach
- dosign variable
v soparatly Loop
overx
Perturb cach ' all
dosign varisble design
scpuatly Culculato the varisbles|
pastial derivat.
war.tdosign var.
y ¥
over l:
Converge all . 4
the sysicm m"’f"_‘ Perturb each
again output variable
separatly Loop
over
Y ¥ all
ouput
Calculate the Calculsts the variables
total derivative partial derivat.
W.I.L ouput var.
) —Y
Y
Calculate the
total derivatives

¥

Fig. 5. (a) and (b) Finite difference and GSE flowcharts

output response quantities of a coupled system with re-
spect to the system design variables and was introduced by
Sobieszczanski-Sobieski (1990). This dpproach defines the to-
tal derivatives of the output quantities in terms of the local
sensitivities, which are partial derivatives of each subsystem’s
output with respect to its input. The global sensitivity equa-
tions for a two subsystem coupled problem can be written

Y, dY, dYa
a{{ g iR 7
_B.
ava ! axy daXs
a4 g
aXA 2
Yy . (2)
0 X5

The first matrix in the equation is the global sensitivity
matrix (GSM), which is the matrix of the partial derivatives
of all output equations (i.e. Y 4, Y g) with respect to all other
output equations. These sensitivities represent the couplings
between interacting subsystems and can be computed within
each subsystem, eliminating the need to perform computa-
tionally expensive interdisciplinary calculations. The dimen-
sion of this matrix is n x n, where n is the total number of
output equations in the system. The matrix on the right-
hand side of the equation is the matrix of partial sensitivities
of all system outputs with respect to all design variables (i.e.
X 4, X). The dimension of this matrix is n X m, where m is
the number of system design variables. The middle matrix is
the desired matrix of the total derivatives. These derivatives
provide an indication of how a change in one or more design
variables will affect all of the system outputs.

The GSE method is implemented as shown in the
flowchart in Fig. 5b. The system is converged initially. Then
each design variable and input quantity is perturbed sepa-

Table 1. Results for simulation 1

Exp Sleep times No. of calc. | c‘:;cts total | mean sleep me:;‘:f e:‘,_‘l;nﬁme
SS [sec] time | time [sec]

3 1 Ix10 137 46 496 10 4.96
3 2 3 x50 137 46 2335 50 46.7
3 3 x 250 134 45 11282 250 45.1

3 4 1x301x201x10 141 47 978 20 48.9
3 5 1x301x201x10 126 42 1012 23.33 43.4
3 |61x901x301x10 150 50 2207 43.33 50.9

3 7 1x2501x501x10 150 50 5231 103.33 50.6
3 8 1x10001x1001 x10 157 51 18912 370 51.1
6 1 6x 10 382 64 867 10 86.7
6 2 6 x 50 361 60 3244 50 64.9
6 3 6 x 250 340 57 14827 250 59.3
6 4 2x302x202x10 401 61 1574 20 78.7
6 9 2x402x202x10 383 64 1721 23.33 73.8
6 [62x902x302x10 330 55 2597 43.33 59.9

6 7 2x2502x502x10 375 62 6655 103.33 64.4
6 8 2x 1000 2 x 100 2x 10 357 59 22193 370 60.0
9 1 9x 10 1217 135 2630 10 263
9 2 9 x 50 1083 120 7181 50 143.6
9 3 9 x 250 996 111 28828 250 114.3
9 4 3x303x203x10 1298 144 4104 20 205.2
9 5 3x403x203x10 1333 148 4705 23.33 201.7
9 6 3x903x303x10 1328 147 7641 43.33 176.3
9 7 33 x2503x503x10 1905 212 23905 103.33 2313
9 8 3 x 1000 3 x 100 3 x 10 1950 217 82133 370 222.0

207

rately for each subsystem and the partial derivatives for the
subsystem output equations are calculated. After all the par-
tial derivatives are calculated, the total derivatives can be
computed by solving the equation for the desired matrix.
The important difference between the finite difference and
GSE approaches is that the system does not have to be re-
converged again after each loop iteration in GSE since only
the partial derivatives of the subsystem equations with re-
spect to the design variables are calculated.

4 Server/client userinterfaces

The flowcharts in Figs. 5a and b are implemented in the
WICKEDProblemManager. In the case of a GSE-solution,
the program calculates the GSM-matrix and the partial-
derivative matrix and then uses an LU-Decomposition (Press
“et al. 1988) to solve for the total-derivative matrix. The
results, including the converged system and the total-
derivatives, are saved to a file after the program has finished.

The equations of the subproblems are coded in the
WICKEDSubProblem. The WICKEDProblemManager also
initializes the starting values for the design variables and the
system output equations.

The actual server and client are implemented using the
ServerUserInterface and the ClientUserlnterface. A picture
of the Server and the ClientUserInterface (UI) can be seen in
Figs. 6a and b.

The Server Ul includes a number of buttons on the left-
hand side. The first button sets the maximum number of
clients that can connect to the server. The task button
choices include conveiging the system, converging the system
and execute a finite difference calculation, or converging and

then do a GSE computation of the sensitivities. The next
button sets the convergence criteria for the system conver-
gence. The last button starts the server after all settings are
made. The displays show the name of the computer where
the server is located, the name of the problem and the num-
ber of clients that are currently connected to the server. The
right hand side display informs the user about incoming re-
sults and ongoing calculations. The Client UI has buttons for
selecting the client number, the computer where the server
is located and buttons for connecting and disconnecting to
server. Displays include the server location, the client loca-
tion, and the current state of the client as well as a display
for information on current calculations.

5 Simaulation of complex systems

5.1 Introduction
The motivation for doing parametric studies on MDO sys-
tems in a distributed computing environment is to gain
knowledge about the behaviour of these systems in such
an environment and to provide heuristics for future realis-
tic MDO applications. When the solutions to the subsys-
temns are computed in parallel rather than sequentially, the
convergence behaviour changes. The convergence process is
even more complicated when the computation times for the
individual subsystems are not equal but different for each
subsystem. Then, the order in which subsystem results are
received is not the same as the order in which the inputs are
sent out by the server.

Three major sets of experiments and some preliminary
studies were performed in this work. In the first case, any
client is able to solve any subsystem. Hence, as soon as a

208

Problemname:

max. Chents : - g} I

Task: GSE. '

Convergencs 10-6 ¢

CONVERGE. GSE & FO

Number of Cliants connected:

Start

—

27. Converging System. Result from §!
28, Converging System. Result from SS
29. Converging System. Result from $S
30. Converging System. Result from SS
31. Converging System. Result from SS
32, Converging System. Resuit from S$
33, Canverglng System. Result from SS
34. Converolng System. Result from SS
35. Converging System. Result from S5
36. Converging System. Result from 5S

WICKED Help
21. Converging System. Result from 55 0 Comp.Time: 10005
This Server is at 22. Converging System. Result from 5S 2 Comp.Time: 30053
WI C k E D 23, Converging System. Result from SS'S Comp.Time: 60007
tethys.eng.buffalo.edu 24, Converging System. Result from 55 0 Comp.Time: 10003
S 25. Converging System. Result from 5 3 Comp.Time: 40010
ERVER 26. Converging System, Result from s; Comp.Time: 20014

0
2
5
o
i
6 Comp.Time: 70006
0 Comp.Time: 10010
2 Comp.Time: 30047
4 Comp.Yime: 50015
7 Comp.Timae: 80007
1 Comp.Time: 20007
@ Comp.Time: 90013
0 Comp.Time: 10008
3 Comp-Time: 40012
S Comp.Time: 60015

|

e

Fig. 6a. WICKED ServerUserInterfaces

WICKED

Info

WICKED
CLIENT .

 Server: tethys 4

Client Number : [V I

The Server is at

tethys

This Ctient is

IN
NUm:
A}

a500.eng.buffalo.edy

Client Stats

INumber Solved :
INumber Solved ;
Number Solved :
INumber Soived :
INumber Solved :
INumber Solved:
[Number Solved :
[Number Solved :
er Solved :
Solved :
N er Solved :
mber Solved :

Solved :
N Solved :
\ Solved:
N Solved :

Connect Disconnect

| RUNNING

| Y D —— . oo

Fig. 6b. WICKED Client-Userlnterfaces

client has solved a problem and the result is received by the
server, the server sends out the next problem which should
be solved by this client. . In this case, the order on which
subproblems are worked is determined by the server. These
experiments are simpler but not as realistic as the next case.

For the second case, each client can work only on a specific
problem. This corresponds to a real situation where each
group has their own computer system with only their code(s).
As soon as a client has solved a problem, the server will send
out the next problem that can be solved by this client. The
order in this case is determined by the clients, not by the
server, as in the first case.

The last case investigated looks at the situation where
more clients are available to those subsystem analyses which
are more computationally expensive than others. The fol-
lowing section describes how the experiments are made as
realistic as possible.

5.2 Creating realistic problems

The systems used for these parametric studies are complex
systems created by the MDO simulation software CASCADE
{Hulme and Bloebaum 1996). These systems are relatively
simple compared to real systems since they consist only of
a summation of several exponential functions with different
coefficients. The computing time for such equations is actu-
ally very short - in the millisecond range on a Sun Sparc-
station 4. In contrast, the time it takes to transport the
data (which is the necessary input for these equations) over

the network from the server to the client computer is much
longer. Depending on the size of the system and the speed of
the network connection, this time may be a few hundred mil-
liseconds and is therefore considerably longer than the actual
computing time.

2000

o 1750

E 1500

2 1250

1000

750

500 +
250

04 +

c 10

total timeislee|

30 40 SO 60 70

sleep time [sec]

20 80

Fig. 7. Finding the minimum sleep time

The computing time for a real world optimization problem
is considerably longer, probably ranging from several seconds
to minutes and often days or even weeks. In such a case the
computing time is much longer than the data transportation
time and the data transportation time may therefore be ne-
glected.

In order to simulate the behaviour of such a realistic sys-
tem, an artificial sleep time is incorporated in the subsystems,
which extends the actual computing time. This also makes it

Table 2. Resulis for simulation 2

209

| Exp Sleep times No. of calc. # calc. per client Total time
S5 times [sec] time time [sec]

3 1 3x10 132 Ix4 464
3 2 3 x50 135 3x45 2330
3 3 3 x 250 141 3 x 47 11796
3 4 1x301x201x10 148 1x311x421x%x75 957
3 5 1x401x201x10 223 1x371x651x121 1505
3 6 1x901x301x10 329 1x321x801x217 2906
3 7 1x2501x261x10 578 1x261x1001 x 452 6519
3 8 1x1000 1 x 100 1 x 10 2200 1x281x2151 x 1927 28024
6 1 6 x 10 360 6 x 60 830
6 2 6 x 50 360 6 x 60 3322
6 3 6 x 250 354 6 x 59 14959
6 4 2x302x202x%x10 380 2x432x572x90 1461
6 5 2x402x202x10 480 2x462x742x120 2021
6 6 2x902x302x10 578 2x352x782x175 3384
6 7 2x2502%x502x%x10 1192 2x352x121 2 x 440 8878
6 8 2x 1000 2 x 100 2 x 10 3926 2x352x 3342 x1695 35133
9 1 9x 10 1151 9 x 128 2437
9 2 9 x 50 1206 9 x 135 7943
9 3 9 x 250 1134 9 x 126 38992
9 4 3x303x203x10 1429 3 x1123 x 146 3 x 218 4292
9 5 3x403x203x10 1629 3 x 1083 x 173 3 x 262 5251
9 6 3x903x303x10 2602 3 x 108 3 x 253 3 x 507 11017
9 7 33x 2503 x503x10 6078 3 x 116 3 x 466 3 x 1444 30263
9 8 3 x 10003 x 100 3 x 10 ! ;

possible to investigate a number of combinations of different
subsystems by simulating different computing times for the
coupled subsystems within a system.

First, it is essential to find the minimal computing time
necessary for the simulation of a real system. In this case, a
Teal system is defined as a system where the minimum time
it takes to compute the output of the system is sufficiently
larger than the longest time it takes the input and output
data to travel over the network. The longest network trav-
eling time occurs when the amount of data sent over the
network is the largest. This is the case for the biggest sys-
tem simulated, which is a system consisting of ten subsystems
with ten output equations and five design variables each. Sev-
eral different sleep times for this system have been investi-
gated, with the sleep times being equal for all subsystems
within one system. Those systems were run with one client
only. The result is shown in Fig. 7, where the sleep time 1s
plotted on the X-axis and the total time it took to solve the
system divided by the individual sleep time is shown on the
Y -axis. For a system where the computing time is sufficiently
larger than the network traveling time, the total time it takes
to solve the system is linearly dependent on the sleep time.
In this case, the coefficient of total time over sleep time is es-
sentially constant. It can be seen that this occurs somewhere
between approximately 10 to 20 seconds.

5.8 Simulation I

From Fig. 7, it is seen that the coeflicient approaches a con-
stant value as the sleep time increases. From this graph, it
is assumed that a minimum computing time of 10 seconds is
sufficient to simulate a real system as described above and,
hence, this time is used in all following calculations.

Table 4. Selected sensitivity results for the structural design vari-
able of the CSI problem

Sensitivity | A=1in2 | A= 0.1 in?
_?’L 61.4558 61.4558
§¢z 61.1866 | 61.4558
éﬁf 614558 | 61.4558
g%’)g 60.3661 55.4331
g‘x‘f 104.912 104.912
dv,

:‘Hf 104.698 103.688
a4 61.4558 61.4558
éY‘ 60.2712 54.7283
?%,ﬁ' -0.112987 -1.4686
av,

N -0.455284 | -6.03167
gl}’(a -0.089751 | -1.2254
v’

d¥s 0.49505 | -6.73744

In this set of experiments, any client is able to perform
any subsystem calculation. As already noted, while this case
is not very realistic, it serves to provide a foundation for
comparison of other experiments. These simulations include
three different systems. The first system consists of three sub-
systems with three input and three output variables, respec-
tively. The second system has 6 subsystems with five input
and six output variables and the third system has 5 input and
nine output variables. In these simulations, the systems are
converged and then the total sensitivities for the systems are
computed using the GSE Method (Sobieszczanski-Sobieski
1990). ‘

210

Table 3. Results for simulation 3

1 Exp Sleep times No. of calc. # calc. per client Total time
SS times sec] time time [sec]
6 9 2x902x302x10 380 2x432x472x90 1461
6110 4x902x302x10 472 4x232x612x129 2274
6 | 11 6x902x302x10 582 6 x252x692x 146 2485
6 | 12 8x902x302x10 604 8x242x682x138 2443
6 13 10x902x302x10 648 10 %242 x 687 2 x 136 2513
61 9 2x2502x502x%10 1192 2x352x 121 2 x 440 8878
6 10 4x2502x502x10 1054 4x262x1062 x 369 6869
6 11 6 %250 2x502x10 778 6x192x782x 254 4857
6 12 8x2602x502x10 872 8x202x852x271 5534
6 13 10 x 250 2 x 50 2 x 10 822 10 x 18 2 x 80 2 x 240 4900
6 9 2x 1000 2 x 100 2 x 10 3926 2x 352 x 234 2 x 1695 35133
6 10 4 x 1000 2 x 100 2 x 10 1724 4x162x 108 2 x 722 17078
6 11 6 x10002x1002x10 1666 6 x 142 x 107 2 x 684 15079
6 12 8 % 1000 2 x'100 2 x 10 1332 8x122x 892 x 529 12086
6 13 { 10 x 1000 2 x 100 2 x 10 1724 10x 142 x 116 2 x 675 15109

The distribution of the sleep times for the different exper-
iments and the results of all simulations are shown in Tables
1 to 4. Table 1 shows the setups and results for all simula-
tions performed in this section. The upper part of the table
includes all data for the 3 subsystem problem. The third
column contains the distribution of the sleep times for the
particular experiment. For examiple, for 3 subsystems and
experiment 4, there is one subsystems with a sleep time of 10
seconds, one subsystems with 20 seconds, and one subsystems
with 30 seconds, where the sleep time corresponds to the cal-
culation time for the solution of one subproblem. For these
experiments, the number of clients connected to the system
is always equal to the number of subsystems. The total num-
ber of calculations for all subsystems is shown in the second
column, followed by the number of calculations divided by

the number of clients (which is the number of calculations -

that each client performed). The last three columns show
the total time required to solve the whole system, the mean
of all sleep times of the system, and the total time divided
by the mean sleep time.

These results are also visualized in the following figures.
Fig. 8 shows the number of calculations per client for the
systems consisting of 3, 6 and 9 subsystems.

N
(%]
[~

E —e—3 Subsystermns
Lé 200 4 |—=—6 Subsystems i
o —a—9 Subsystems
s 150)
3 4
a
g 100 4
k]
é 50 — - a—— -
2 o + + + + +
1 2 3 4 S 6 7 8
number of experiment

Fig. 8. Number of calculations per client for simulation 1

This figure visualizes that the number of calculations per
client is about the same for all experiments for one subsytem.
Therefore, it can be assumed the number of calculations is
independent of the calculation times. Figure 9 proves, as

expected, that the total time necessary to solve the whole
system increases when the system size increases.

90000
'g' 80000 ‘+3 Stbsystems b
S 70000 { |—#—6 Subsystems
E 60000 § |—#—9 Subsystems

1 2 3 4 S 6 7 8
number of experiment

Fig. 9. Total calculation time for simulation 1

Figure 10 shows that the total calculation time divided
by the mean of all sleep times of the system always varies,
for the most part, around a constant value.

300
’ —e—3 Subsystems

E ° 250 L\—-—G Subsystems

= —&—9 Subsystems

=E 200} ki i

Sa

S8 150

L2

Sg 100}

S 2 »

8% so bmﬁ:b:t——_‘
0 + + + + 4 + —

1 2 3 4 S] 7 8
number of experiment

Fig. 10. Total calculation time over mean sleep time for simula-
tion 1

This constant value is specific for each problem. This can
also be seen by looking at the following equation:

. #clients FHcalc
tmeyoy5) = I Zelonts

————— x mean sleep time x -
subsystems P #clients

tlmeserver + tlmenetwork ~

#clients . #calc
- leep time x ————— .
#subsystems X mean sieep X #clients (3)

This equation describes how the total calculation time can be
computed. The number of clients connected to the server and
the number of subsystems in the system are know. The sleep
times are equal to the calculation times for a single subsystem
solution and therefore the mean sleep time is known after a
few calculations. In this case the sleep times are given. The
number of calculations per client is approximately constant
and independent of the sleep times. The computation time
of the server and the network travel time are in general much
smaller than the calculation times for the subsystem solutions
and may be neglected without a significant loss of accuracy.

It should be noted that there is some randomness in the
way the results are obtained because the convergence his-
tory for the systems may be different for every solution. The
inputs to the subsystems are always sent out by the server
in the same order. For example, for the system with three

subsystems the order is always 1- 2- 3 and will repeat as nec-

essary until the system is converged. In contrast, the order
in which the results are received is not necessarily constant.
‘For example, in one iteration, the result of a certain sub-
system may arrive at the server before the result of another

subsystem, and this order may be reversed the next itera--

tion. This may be due to a number of reasons. For example,
the network traveling time is not always constant but also
dependent on the load on the network. This also means that
the subsystem inputs are updated in a different order, which
" therefore changes the subsystem results the next time and
so on. The final results for a certain system are always the

. same, but the way these results are obtained may be differ-

ent every time because they are obtained by virtual parallel
computing (distributed computing).

5.4 Simulation 2

For this second set of simulations, each client can only work
on a specific subproblem. This is a more realistic setup com-
pared to the previous simulation case. In a company where
each discipline has their codes only on their computers, then
only a particular computer can be used to solve particular
subproblems. The server can assign subproblems only to
those clients which have the code to solve them. This setup
requires a much greater effort in terms of coordination on the
server side because subproblem inputs are not sent out in a
predetermined order. Immediately after a client has finished
a problem and the problem results have been returned to the
server, the server calculates the next set of inputs for this
client. It is also possible that more than one set of results
arrives at the server at almost the same time. Therefore,
the part of the server code which performs the incorporation
of incoming results into the solution of the global problem
must be synchronized. This means that this part of the code
cannot be executed simultaneously. Since Java is a multi-
threaded language, it usually allows multiple threads to run
which could modify objects simultaneously. This is prevented
by synchronizing this part of the code, which is the Quick-
SubProblemConstructor. The numerical results can be seen
in Table 2 in the Appendix.

For example in Table 2, 3 Subsystems and Experiment
No. 2 there is a sleep time of 50 sec for all three subsystems.

211

The total number of calculations it takes to solve the system
and to calculate the derivatives is 135 and each subsystem
calculation is performed 45 times. The total computing time
for this system is 2330 sec.

Figure 11 compares the results of these simulations to the
previous experiments. As expected, the comparison confirms
that there is no change in the results for those problems where
the calculation time is equal for all subproblems. This is the
expected result because in both cases the number of clients
is equal to the number of subproblems and all subproblems
have the same sleep time.

1400
1200 [a Simulation 1
T [|wSimulation 2

1000 {
800 |
600 |
400 |
200 |
04

9 stbsystems

total number of calculations

1 2 3 1 2 k I 2 3
number of experiment
Fig. 11. Comparison of simulation 2 to 1

Figures 12 to 14 display the Tesults for experiments 4 to
8, where the sleep times are different for all subproblems. In
these figures, a client set refers to all those clients tha_.t work
on problems with an equal sleep time. ‘

4 500 138

2

é 400 ¢

o

© 300 -

2

‘8 200

kS

§ 100

< 04 § i
4 S 6 7 8

number of experiment
Fig. 12. Results for 3 subsystems - simulation 2
1695

w= 500

2 o Client set 1

§ 400 4 |eClientset2

s m Client set 3

s 300 ¢

=)

o

S 200

s

é 100 1

0/
4 5 6 7 8

number of experiment

Fig. 13. Results for 6 subsystems - simulation 2

The most important result of these figures (Figs. 12-14)
is that the number of calculations for the clients with the

212

« 500 507 1444
& a Client set 1
3 400 Client set 2
<
o
S 300
2
8 200 ;
k]
é 100
E o)
4 5 6 7 8
number of experiment

Fig. 14. Results for 9 subsystems - simulation 2

longest calculation time is constant for a specific problem.
The subproblems which have the longest calculation time are
the determining factor for the convergence process. Each sub-
problems has to be solved a certain number of times (which
is specific for a particular problem).

For example, in Fig. 14, the Client Set 1 always requires
approximately 110 calculations. This is specific for this prob-
lem. Calculations of the subsystems with the shorter sleep
times are executed constantly. Due to this, the number of
calculations is extremely high for these subsystems. The sys-
tem with 6 subsystems for example, executed the subsystem

with the longest calculation time only around 40 times, while -

the number of calculations for the fastest subsystem in ex-
periment 8 was almost 1700.
_The longest computing time determines the total time as
can be seen in the following equation:
timegota) = #calepin % timejongest comp + timeserver+
timey et work ¥ #calcmin X "imelongest comp - 4
This result suggests that if possible, the most comput-

. ing power should be given to those subproblems which have .
the longest computing time. This leads to the next case of .

simulations, where more clients work on subsystems with the
longest calculation times than on the other subsystems.

5.5 Simulation 3

This final set of experiments uses the system with six sub-
systems to investigate the use of a larger number of clients
for those subsystems which require the most computational
effort. Three different cases with a sleep time distribution
of (90,30,10) seconds, (250,50,10) seconds and (1000,100,10)
seconds, respectively, are examined.

Figures 15 and 16 display the total number of calcula-
tions and the total calculation time. For the system with the
largest variation in the sleep time distribution (1000,100,10),
there is a significant decrease in the number of calculations
as well as in the calculation time when two clients instead of
one client are used for each 1000 second subsystem. There
is also a gain for the system with the (250,50,10) second dis-
tribution, but for the system where the calculation times are
closest together (90,30,10), the system cannot be solved any
faster than before. It can be seen from these figures that
there is a point for each system where an increase in the
number of clients does not result in a faster solution of the
- task. This means that it does not always make sense to con-
tribute as much computing power as possible to the client
with the longest sleep time. The reason for this can be seen

nuﬁber of cdiéulatioﬁs for

=1
=
n
—
-3

4000
3500 ——90,30,10
3000 4 ——250,50,10

—a—1000,100,10

to@l number of calculations
N
=
(-]
[=)

1000 3
500 4 *
0 + 4 + 1
1 2 3 9 5
number of clients working on subsystem
with longest sleep time

Fig. 15. Total number of calculations - simulation 3

< 40000 .
& 35000 —e—90,30,10
‘s’ 30000 —=—250,50,10
§ 25000 —a—1000,100,10
£ 20000
s
3 15000 !
g 10000
§ 5000 3 . -— - —
2 ol 3 + +

t 2 3 4 5

number of clients working on subsystern with longest

sleep time
Fig. 16. Total calculation time - simulation 3

F-Y
o

—e—90,30,10
= 250,50,10

[
(1]

Q
8
[
g
‘5" 30 —a—1000,100,10
£ 25
sk
g 20
g 15
‘§ 10 4 + + + 1
n

1 2 3 4 S

number of clients working on subsystem
with longest sleep time

Fig. 17. Number of calculations for subsystem with longest sleep
time

An increase in the number of clients that work on the
same problem means that situations may occur where several
clients work on the same problem at the same time. This is
not desired because the results are updated when they are
received at the client, which means that the latest result re-
ceived at the client is the only one that counts. Therefore,
when two clients work on the same problem at exactly the
same time, only one of those two results can actually be used.
The situation may occur frequently but is especially undesir-
able when the client works on the largest problem.

Figure 17 shows that there is a minimurm number of calcu-
lations necessary to converge and solve a subsystem and this
number cannot be reduced even by contributing more com-
puting power to this subproblem. It can also be concluded
that it makes sense for systems of this size to double the com-
puting power for the subsystems with the longest computing

time. This is a general problem when doing parallel com-
puting for distributed systems and should be investigated
further. In order to save computing power, subsystem cal-
culations should only be executed when the there is actually
new input for the system, which means there will be a change
in the output. This is especially critical for system with large
differences in the computation times. There, the subsystems
with short computation times are executed unnecessarily for
a large number of times.

6 Application problem: structural and control op-
timization of a truss structure

6.1 Introduction

In this section, a more realistic multidisciplinary problem is
used to demonstrate the potential of distributed computing
using Java. Large structures in space are suspect to environ-
mental and onboard disturbances that can produce structural
vibrations. These disturbances may be caused by the crew,
the docking of other spacecraft, or other influences. Space
structures tend to have little inherent damping. The low mass
to surface ratio results in extremely high flexibility, thereby

‘requiring active controls. The integration of disciphines in the

optimization approach in order to achieve an optimal design
is desirable especially in aerospace design. The interactions
between the involved disciplines are represented more realis-
tically. In this application, a ten-bar truss structure is used
as an example.

-6.2 Optimization model

The ten-bar truss structure seen in Fig. 18 is the model used
to demonstrate the effectiveness of using Java to perform
the GSE method in the controls/structures interaction (CSI)
problem. '

C C

1 2 3
L

- <

c, Cs

Fig. 18. Truss structure with four controllers

The truss is equipped with active controllers at the free
nodes to limit the dynamic displacements to preassigned lev-
els. Two degrees of freedom (u and v) are permitted at each
of the six nodes, thus yielding a twelve degree-of-freedom sys-
tem for which four of these are constrained at the wall. The
truss is made of aluminum and is subject to static and dy-
namic loadings as seen in Fig. 19. The structural lateral dy-
namic displacements are controlled by hydraulic controllers

213

placed at nodes 2, 3, 5 and 6. The forcing function Fy(t) is
a ramp input that acts in the y-direction at node 3. There is
also a static force Fg acting at node 6.

Fa(t) f

360" |

10 || 360~

Fig. 19. Truss structure with static and dynamic loading
Fy(t)

A

1000+

5001+

1 - t [sec]
0.5 1

Fig. 20. Dynamic force function

6.3 Design problem statement

The design objective of the CSI problem is to find the mini-
mum weight structure subject to constraints. The constraints
may include static stresses, natural frequencies, static and
dynamic displacements. Here, only the dynamic displace-
ment constraints are included in this problem. The objective
function of the design synthesis problem is the total weight
contributed from the structures and the control system. This
function can be written as

F=Wsg+W¢c. y (5)
Traditionally, the weight of the control system (i.e. transduc-
ers, sensors, actuators, hydraulics, etc.) is either considered
negligible with respect to the structural weight or is arbi-
trarily assigned as some constant. However, when extremely
light, flexible, actively-controlled structures are considered
as in the case of space structures or ultra-light aircraft, the
weight of the control system can become significant. In this
work, the weight of the control system is considered to be a
function of the control input u. An empirical relation is used
to represent this weight relationship and is as follows:

Wc:ZKC\/lu,'[, (6)

=1

214

where m is the total number of actuators and K¢ is a pre-
scribed constant, which is 0.5 in this study. _

The total weight of all structural components is calculated
as

n
Ws= Y piAiL;, : (7
3=1
where n is the total number of truss members, p is the density
of the material used, A is the cross-sectional area and L the
length of each truss member.

The design variables are divided into structural design
variables and control design variables. The structural de-
sign variables Xg are the cross-sectional areas of the truss
elements

Xg = (A1,42,-.-,4A10)T . (8)

The control design variables X are the constants @ and 8

which determine the damping matrix of the structure

Xo=(@8). ©)
The control design variables influence the controls analysis
through the A matrix in the first-order state-space equation,
thus coniributing to the design of the control law.
The constraints for this optimization problem can be di-
" vided into structural and control system constraints. Here,
the structural constraints are taken as the static displace-
ments and are in the form of

G

where G;all is the prescribed allowable limit for each con- ‘

straint. Similarly, the control system constraints dictate lim-
itations on the dynamic displacements. There can also be
upper and lower bounds specified for the design variables.

6.4 Determination of the sensitivity information

The behaviour sensitivity derivatives are required for the

piece-wise linear approximation to the nonlinear optimiza-

_tion process. The sensitivities are found by using the GSE
method. The interactions between the structural and con-
trols systems can be seen in Fig. 21. Each system has inputs
in form of design variables and outputs from the other sys-
tem. The analyses are written as

S[(XS’YC)YS] =0, S[(XC)YS)YC]= 0. (11)
The outputs can be rewritten in the explicit form.
Ys = fs(Xs,Ye), Yo = felXe Ys), (12)

and the following global sensitivity equations are obtained:

[1 _6YS ‘dYs dYg
17 £5) dXg dXo | _
e 0 || axs avé |-
L JdYg dXg dXg
Cavs
3’55 ovg |- (13)
! X

6.5 Subsystem analysis

6.5.1 Structures subsystem
The equation for the free vibration eigenvalue problem asso-
ciated with the structures subsystem is

(K - wM)g; =0, (14)

Y

Structurcs Yo Controls

—
il

Fig. 21. Structural/control interactions

where ¢ and w are the eigenvector and the eigenvalue for the
i-th mode, respectively; M and K are the mass and stiffness
matrices for the structure, which are computed in the struc-
tural analysis. The static structural analysis can be written
as
Kd=T1, (15)
where d is the displacement vector and f is the applied load
vector. .
6.5.2 Controls subsystem
The equation of motion for a structure with active controls
and undergoing forced vibration is
Mix + Cx+ Kx = Du, ' (16)
where M and K are again mass and stiffness matrices, C
is the damping matrix and D is the control influence ma-
trix. The damping matrix is traditionally represented by the
proportional relationship
C=aM+BK, _ (17)
where e and 3 are proportional constants which are the de-
sign variables of the controls subsystems.

The second-order differential equation is a finite element
representation of a structure in which the mass and stiffness

matrices are symmetric and positive definite or at least pos-

itive semi-definite. This equation can also be written as a
first-order state space equation '

z=Az+Bu, : (18)
where the state vector is defined as

zz(:) (19)

Further, the plant matrix is in the form

0 I
A= [-M-lk -M~lc] ’ (20)
where I is the identity matrix, and the control vector is

B =(velp) . @1)

The optimal control feedback control law (Junkins and Kim
1993) is obtained by minimizing a quadratic performance in-
dex J, which is a function of the state vector and the control
vector. The optimal control problem is therefore

o0
- % / 7Qz + uTRu] dt, (22)
0
subject to
z=AZ+ Bu, (23)

where the matrices Q and R are arbitrary weighting matrices
with the restriction that Q must be at least positive semi-
definite and R must be positive definite. The solution of this
optimal control problem results in the nonlinear algebraic
equation called the algebraic Ricatti equation (ARE) which
has the following form:

ATp-pPBR!BTP+PA+Q =0, (24)

where P is a symmetric positive definite matrix referred to
as the Ricatti matrix.

Once the Ricatti matrix is found from the ARE, the con-
trol gain matrix G can be determined as

c=rR"1BTP. (25)
The optimal state feedback control law then results in
u=-Gx. (26)

This relationship is substituted into the state equation to
obtain

z=[A - BG]z. (27)
This differential equation can be solved for the state vector
which is then used to calculate the optimal control vector u.

6.6 Numerical simulation

The optimization process for the coupled problem is shown
in Fig. 21. In this study, only the convergence of the sys-
tem and the sensitivity analysis is simulated using WICKED.
Once the sensitivity derivatives of the system are known, the
approximation and the optimization can be performed easily.

Table 5. Selected sensitivity results for the controls design vari-
ables of the CSI problem

Sensitivity | A=1in2 | A = 0.1 in2
dY,
d)g; 0 0

d A2 |-0.250897- | -0.612268

1Y, ”
11X :; 0 0
gjﬁ -0.592336 | -1.20878
b -0.196842 | -0.322637
dys
ED;’{ 0 0
%ﬁ -0.636311 | -1.28849
dY:,l‘ 0 0
%% -0.033273 | -0.012989
dY:;: 0 0
dY,. 0.135329 | 0.0308731
axs -)
f,l%}; -0.026832 | 0.000061
dy; 0 0
a cl
adY” -0.149817 | -0.023838
5}% © | -0.22672 | -0.612329
aclgga; -0.49417 | -1.20905
ac%’% -0.177599 | -0.323686
%{’% -0.529616 | -2.32838
;&f{:l. 0.000659 | 0.0129161
g}fu; 0.002367 | 0.0305255
g%% 0.000184 | -0.000045
ali)% -0.000167 | -0.024223

For this simulation, the given model is simplified further
by assuming that all truss members have the same cross-
sectional area, which is the structural design variable. The

215 °

lumped mass matrix and the stiffness matrix for the truss
structure are as follows:

M = pAL-
1432 0 0 0
0 1+%L4mg 0 0
0 0 1+3§§- 0
0 0 0 1+3§+mc2
0 0 0 0
0 0 0 0
0 0 0 0
|0 0 0 0
0 0 0 0]
0 0 0 0
0 0 0 0
0 0 0 0
3+v2 0 0 0 . (28)
0 3+vVZ+mg O 0
0 0 1432 0o
0 0 0 1+ §+mc4 b
T3 1 -1 0 0 0 /2 1/2]
1 2 0 0 o0 -1 1/2 1/2
: 1 -1 0 3/2-1/2 1/2 1/2 O 0}
k_EA|l 0 0 123217212 0 -1}
T o o 1/2 1/2 3 1 -1 0 |’
0 -1 1/21/2 1 2 0 0
0 -1 1/2 1/2 1 2 0 0O
/2 1/2 0 -1 0 0 1/2 3/2
(29)
.d = (ug vg u3z v3 ug vs ug vG)T. (30)

The following material constants are used: p = 0.1 lbgl/in3
=2.768 10% kg/m3, L = 360 in = 9.144 m, E = 10’ psi
= 7.0307 10% kg/m2. The starting value for the structural
design variable is

A=1in? =6.4516 10~% m?.

Using these matrices, the equations for the two subsys-
tems are implemented in WICKED. The design variables and
the output equations for the structures system and the con-
trols system are,

Xg=A, | (31)

Y¢s=MK, (32)
Xg=a,8, (33)
Yo =mg,mep,me3, meq (34)

where A is the cross-sectional area for all truss members, and
M and K are the mass and stiffness matrices associated with
the truss structure. These two structural output matrices
are the necessary input for the plant matrix A in the controls
problem. The controls design variables a and 8 are explained
in (9) and the output variables are the masses of each of
the control systems which are the input for the structures
subsystem. As pointed out previously, the mass of a control
system is a function of the control input u and in order to
calculate the control input it is necessary to solve the first-
order state space equation (27).

216

The solution to this equation is
t
z(t) = eAlzg + / A'BU(t) dt, (35)
0
where A = A — BG is the plant matrix of the closed loop
system. This equation is implemented in the controls subsys-
tem and is the computationally most expensive part of the
analysis.

In this numerical analysis, the gain matrix G is considered
to be constant. The gain matrix is calculated once with the
initial values for all design variables and this matrix is used
during the whole calculation. This does not eliminate the
coupling of the subsystems because a coupling exists through
the A matrix of the controls analysis.

WICKED was used to calculate the sensitivity derivatives
for the truss structure. The results can then be used to
perform an approximation and an optimization of the truss
structure as shown in Fig. 22.

Simulated N
with

Fig. 22. Coupled structural/controls design process

The Tables 4 and 5 show selected sensitivity results for
two different values of the cross-sectional area, which is the
structural design variable. Tables 6 and 7 show a comparison
of results obtained with the GSE method to those obtained
with the finite difference method. In these tables, Xg is the
cross-sectional area A and Yg) to Ygg are the elements on the
diagonal of the lumped mass matrix; X¢; and X9 are the
constants a and B which are used to form the damping matrix
C and Yy to Y4 are the masses of the four controllers.

The results show that WICKED is capable of converging
a realistic multidisciplinary design optimization problem. As
expected, the network traveling time does not have any im-
pact on the solution of a realistic problem. In this problem,
the computing time for the controls subsystem was around 20
sec on a Sun Ultra Sparc. This proves that the assumptions
in the Simulations Chapter are correct, considering that this
1s a relatively fast computer.

6.7 Simulation using the CSI problem

In this section, the Controls/Structures Interaction Problem
is used for one set of simulations in order to substantiate the
results reported in the previous chapter. These simulations
correspond to Simulation #3 of the previous section, where
a larger number of clients is used for the subsystem which
requires the most computational effort.

In the CSI problem, the controls subsystem is much more
computational expensive than the structures. Therefore this

Sensitivity | GSE | F.D.
‘—*r‘é;} 61.455 | 61.455
3[31 61.186 | 61.330
355 | 61455 | 61455
d¥,;
9 | 60.366 | 60.949
%& 10491 | 104.91
a5 | 10469 | 10481
St | 61455 | 61.455
dfe | 60271 | 60.905
S |-0.11298 | -0.12517
9%z | 045528 | -0.50594
453 [-0.08975 | -0.09989
et | -0.49505 | -0.55001
__ 900
§ 600 4
7004
E s00
s soo 4
S 4004 >— >
2 3001
8 200}
FRUZ
0 + +
1 2 ’ 3 4

Table 6. Comparison of GSE and finite difference results for the
structural design variable

number of clients working on controis subsystem
Fig. 23. Total calculation time - CSI problem

number of calcs. of controls ss
per client
=

1 2 3 4
number of clients working on controls subsystem
Fig. 24. Number of calculations for controls subsystem - CSI
problem

subsystem is solved by more than one client. The results are
reported in Figs. 23 and 24.

It was found that the results obtained by the simulation
of the CSI problem correspond to those that were obtained
previously in Simulation 3. As can be seem in Figure 23,
the total computation time is reduced efficiently when the
number of clients working on the controls problem is raised
from one client to two clients. Raising the number of clients
further does not improve the computing time. The reason for
this is that there are too many clients doing the same work in
parallel. Therefore some of the computing power is wasted.

Figure 24 shows that the number of computations of the

Table 7. Comparison of GSE and Finite Difference for the con-
trols design variables

Sensitivity | GSE F:D.
Y,
Pt 0 0
<U{.«z -0.25089 | -0.33416
1
dY’s 0 0
iV
<J{-i -0.59233 | -0.94207
dY,s 0 0
i
ey oy -0.19684 | -0.26755
dY; 0 1]
177
d 8 -0.63631 | -1.01553
dYs 0 0
a1
q
E) o4 -0.03327 | -0.10692
dY:3 0 0-
d%;l
517“ -0.13532 | -0.44616
1
cl]?:s 0 0
< cl
gjgm -0.02683 | 0.08987
av
[t
L -0.14981 | -0.48675
d gccll -0.22672 | -0.33416
;"gcz -0.49417 | -0.94207
Y
d‘(csl -0.17759 | -0.26755
s%’:t -0.52961 | -1.01533
W
. 0.00065 | -0.10692
Za
d¥a 0.00236 | -0.44616
aYs
agz;:t 0.00018 | -0.08987
d
b o1 -0.00016 | -0.48675

clients working on the controls problem only changes signifi-
cantly when the number of clients for the controls subsystem
is increased from one to two. Again, this corresponds to the
previously obtained results.

In this chapter, it has been demonstrated using the CSI
example, that Java has substantial potential for enabling vir-
tual parallel computing for MDO applications.

7 Concluding remarks

This paper presented the Web Interface for Complex Engi-
neering Design (WICKED) tool, which simulates the conver-
gence of complex engineering systems in a distributed com-
puting environment and also computes the sensitivities of
those systems using the GSE or the finite difference method.
Both of the above processes are well-suited for decomposition,
and subsequent distribution to a parallel computing environ-
ment; hence their incorporation into this research work. As
an extension of this work, it may be beneficial to attempt
to extend the Java-based distributed computing methodolo-
gies to include a formal optimization procedure as well. Such
an extension would finalize an “outer-loop” for a complete
MDO design synthesis. However, it would likely be difficuit

217

to port established optimization codes (many of which are
written in Fortran) that were designed to run in a sequential
environment, to a Java-based parallel architecture.

A number of simulations solving different complex sys-
temns were performed and the convergence behaviour of those
systems was analysed. The results obtained demonstrated
that the subsystems with the longest computational times
dominate the convergence process and that the most com-
putational power should be assigned to those systems. It
was exhibited that more than one computer can be used to
work on a subsystem and that this is especially useful for
the subsystem with the longest time. It was shown on the
other hand, that too many computers working on the same
problem at the same time produce results that cannot be used
because they do not contain new information. The derivative
calculation for a ten-bar truss problem was performed as an
application problem in order to show the ability of WICKED
to solve real problems.

It was further demonstrated that the programming lan-
guage Java holds great promise for industrial MDO applica-
tions. Numerous areas for future work exist. Two of these in-
clude improving the speed of the calculations and the message

passing over the network and the application of WICKED to . - -

more complex and more realistic problems. Also, subsystem
calculations should only be performed when necessary in or-
der to save computing power.

Acknowledgements '

The authors. wish to gratefully acknowledge partial support of this

" . work under NSF PFF grant DMI 9553210 and NSF REG grant .

DMI 9622314.

References

Bloebaum, C.L. 1989: Global sensitivity analysis in control-
augmented structural synthesis. AIAA-Paper No. 89-0844

Bloebaum, C.L. 1991: Formal and heuristic system decomposition
methods in multidisciplinary synthesis. Ph.D. Thesis, University
of Florida, Gainsville, FL

Bloebaum, C.L. 1995: Coupling strength-based system reduction
for complex engineering design. Struc. Optim. 10, 113121

Bloebaum, C.L.; Hajela, P.; Sobiesz-cza.nski-Sobieski, J. 1993: De-
composition methods for multidisciplinary synthesis. Control &
Dynamic Systems 57

Flanigan, D. 1996: Java in a nutshell Sebastopol, CA: O’Reilly
& Associates

Hulme, K.; Bloebaum, C.L. Development of CASCADE - A mul-
tidisciplinary design test simulator. ALAA-Paper No. 96-4029

Junkins, J.L.; Kim Y. 1993: Dynamics and controls of flexible
structures. Washington, DC: AIAA

Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P.
1988: Numerical recipes in C: The art of scientific computing.
Cambridge, UK: Cambridge University Press

Sobieszczanski-Sobieski, J. 1982: A linear decomposition method
for large optimization problems - Blueprint for development.
NASA Technical Memorandum 83248

218

Sobieszczanski-Sobieski, J. 1988: Optimization by decomposition:
A step from hierarchic to non-hierarchic systems. 2nd NASA/Air
Force Symp. on Recent Advances in Multidisciplinary Analysis
and Optimization (held in Hampton, VA)
Sobieszczanski-Sobieski, J. 1990: Sensitivity of complex, internally
conpled systems. ATAA J. 28, 153-160

Sobieszczanski-Sobieski, J.; Bloebaum, C.L.; Hajela, P. 1991: Sen-
sitivity of control-augmented structure obtained by a system de-

Received March 14, 1997
Revised manuscript received June 11, 1997

composition method. AIAA J. 29, 264-270

Sun Microsystems 1995a: The JAVA language environment, a
white paper. Mountain View, CA

Sun Microsystems 1995b:
Mountain View, CA

Westor, R.P.; Townsend, J.C.; Eidson, T.M.; Gates, R.L. 1994:
A distributed computing environment for multidisciplinary design.
AIAA 94-4372-CP

The JAVA lenguage specification.

