
THE DESIGN OF A SIMULATION-BASED
FRAMEWORK FOR THE DEVELOPMENT OF

SOLUTION APPROACHES IN
MULTIDISCIPLINARY DESIGN

OPTIMIZATION

by

Kevin F. Hulme

A dissertation submitted to the
Faculty of the Graduate School of

State University of New York at Buffalo in partial
fulfillment of the requirements for the degree of

Doctor of Philosophy

January 20, 2000

ii

Acknowledgments

First and foremost, I would like to thank Dr. Christina L. Bloebaum for

introducing me to the field of MDO, and for more than five years of support, guidance,

advisement, and friendship.

I would next like to thank my parents, family, and friends for their constant

support and understanding.

I would further like to thank my committee members, Dr. Kemper Lewis, Dr.

Roger Mayne, and Dr. Rakesh Nagi, for their respective inputs to this dissertation.

I would also like to recognize my colleagues in the MODEL laboratory, in

particular, Ken English, Eliot Winer, Collin McCulley, Bryan Moulton, Chen-Hung

Huang, Mohamad Kasim Abdul-Jalil, Omar Conteh, and Yuji Nozaki. It has been a

privilege to work alongside each of you.

Last, but not least – a tip of the hat to lunchie.

iii

Table of Contents

Acknowledgements ii

List of Tables vi

List of Figures vii

Abstract x

1. Introduction 1

2. Background and Motivation 7

Optimization 7

System Decomposition 8

Sensitivity Analysis - Global Sensitivity Equations 11

Conventional Multidisciplinary Design Synthesis 15

Dependency Structure Matrix, Task Scheduling and Convergence 16

Coupling Suspension 19

Motivation and Research Goals 20

3. Multidisciplinary System Simulation 24

Literature Survey 24

CASCADE - System Construction 26

Example System - Analysis Representation 31

Parallelization of System Analysis 33

Sensitivity Analysis 35

CASCADE - Optimization Feature 36

iv

Example System - Optimization Problem Representation 38

CASCADE - Expanded Features and Robustness 39

4. Multidisciplinary Solution Strategies 45

Multiple-Discipline Feasible (MDF) 45

All-at-Once (AAO) 48

Individual-Discipline Feasible (IDF) 49

Alternate Terminology 51

Integration of CASCADE with the Primary Solution Strategies 52

Results 57

Discussion of Results 72

5. Multidisciplinary Analysis Convergence 80

Formal Analysis Convergence 80

Heuristic Analysis Convergence 86

Simulation Details and Results 96

Discussion 99

6. MDO Framework design and development: FACETS 103

Literature Survey and Background 103

Preliminary Conception 106

Motif 107

Modules of FACETS 111

Demonstration Usage of FACETS 120

v

7. Conclusions and Future Work 127

Conclusions 127

Future Work 133

References 138

Appendix I – DFAC CASCADE test systems 151

Appendix II – DFAC MDO Test Suite test systems 152

vi

List of Tables

Table 3.1: CASCADE test system - initial values 32

Table 3.2: First iteration results 32

Table 3.3: Overall convergence results 33

Table 4.1: Preliminary test system summary 57

Table 4.2: Solution summary for test systems #1 - #5 58

Table 4.3: Cost-based test system summary 64

Table 4.4: Cost scenarios 67

Table 4.5: Cost scenario results 68

Table 5.1: Formal analysis convergence 84

Table 5.2: Result summary 98

Table 6.1: Simulated cost values 121

Table 6.2: Optimization setting highlights 122

Table 6.3: Baseline solution strategy results 123

Table 6.4: Secondary result summary 125

vii

List of Figures

Figure 1.1: MDO principal conceptual components and their breakdowns 4

Figure 2.1: Subsystem input types 9

Figure 2.2: Hierarchic system model 10

Figure 2.3: Lateral couplings 10

Figure 2.4: Hybrid-hierarchic system model 10

Figure 2.5: Two-subsystem interaction 11

Figure 2.6: Concurrent Subspace Optimization flowchart 13

Figure 2.7: Hybrid-hierarchic design synthesis (MDF) 15

Figure 2.8: Four subsystem hybrid-hierarchic interaction 16

Figure 2.9: a. Randomly oriented DSM 17
b. Optimally oriented DSM

Figure 3.1: Generic coupling depiction for subsystem Y 28

Figure 3.2: Example input coupling structure 29

Figure 3.3: Example CASCADE system (system analysis) 31

Figure 3.4: Parallel analysis convergence via PVM 34

Figure 3.5: Example CASCADE system (booleans) 41

Figure 4.1: Hybrid-hierarchic aerospace system decomposition 46

Figure 4.2: The “Multiple-Discipline-Feasible” (MDF) strategy 47

Figure 4.3: The “All-at-Once” (AAO) strategy 49

viii

Figure 4.4: The “Individual-Discipline Feasible” (IDF) strategy 50

Figure 4.5: Three coupled subsystems 53

Figure 4.6: Structural schematic of test system #1 58

Figure 4.7: Test system #1 - Objective function value vs. evaluation number 59

Figure 4.8: Structural schematic of test system #2 59

Figure 4.9: Test system #2 - Objective function value vs. evaluation number 60

Figure 4.10: Test system #5 - final Objective function 62

Figure 4.11: Test system #5 - analysis evaluations 62

Figure 4.12: Test system #5 - objective function evaluations 62

Figure 4.13: Test system #5 - execution time (seconds) 63

Figure 4.14: Test system #1, cost scenario #1 69

Figure 4.15: Test system #1, cost scenario #2 70

Figure 4.16: Test system #1, cost scenario #3 70

Figure 4.17: Test system #2, cost scenario #3 71

Figure 4.18: Test system #3, cost scenario #3 71

Figure 5.1: Two coupled subsystems 83

Figure 5.2: The DFAC process flowchart 87

Figure 5.3: The DFAC algorithm 90

Figure 5.4: CASCADE test system structure 96

Figure 5.5: Comparison of convergence strategies 99

Figure 6.1: FACETS general structure 108

Figure 6.2: FACETS main window 109

ix

Figure 6.3: FACETS directory structure window 109

Figure 6.4: FACETS “Problem Definition” module 112

Figure 6.5: FACETS “Planning” module 114
a. Initial design point
b. Coupling information

Figure 6.6: FACETS “Optimization” module 115

Figure 6.7: FACETS “Solution Strategies” module 116

Figure 6.8: FACETS “Analysis Convergence” module 117

Figure 6.9: FACETS “Post Processing” module 119
a. Optimization feedback
b. Time and cost
c. Plotting

Figure 6.10: Demonstration coupled system 120

Figure 6.11: Demonstration optimization problem 121

Figure 6.12: Objective function vs. Iteration plots 124
a. MDF
b. IDF
c. AAO

x

Abstract

A primary goal of Multidisciplinary Design Optimization (MDO) is to decompose

a large multidisciplinary system into a related grouping of smaller, more tractable,

coupled subsystems. Often, the resulting decomposition is not fully hierarchical in nature

and thus requires iterative techniques to attain a converged system analysis and

associated optimal design solution. The optimal design of such multidisciplinary systems

as automobiles and aircraft might require hundreds or even thousands of iterative cycles

to attain numerical convergence. As might be expected, this high level of iteration is

both timely – the process might take months or years for a true multidisciplinary system –

and computationally costly. Broadly speaking, the goal of the present research is to

increase the efficiency associated with the design of large-scale, multidisciplinary

engineering systems. To accomplish this task, the current work contributes four areas of

unique research to the MDO community.

The first research area presents the design and continual development of the

CASCADE simulation tool, which generates analytical representations of coupled

multidisciplinary design problems corresponding to both the system analysis and the

optimization portions of a large-scale multidisciplinary design. Due to the lack of

availability of real-world multidisciplinary design data, there is a research need for a

capability to simulate the coupling structure and behavior of a decomposed engineering

system. CASCADE suits this research need - its simulations can be useful for testing a

variety of new tools and technologies in MDO.

xi

The second area of research contribution involves the development of a new

heuristic means for the convergence of a multidisciplinary analysis, called the Data

Fusion Analysis Convergence (DFAC) algorithm. This algorithm utilizes a neural

network scheme to model the input-output behavior of each subsystem output quantity.

Thereafter, gradient-based optimization is used to correct the errors in each of the

neurons, concurrently. As a means for coordination, a data fusion-based approach is then

implemented to intelligently blend together discrepant information resulting from the

error minimization process. Thereafter, a new estimate for each subsystem output is

formed, and the entire process repeats until convergence. The DFAC algorithm builds

upon the strengths of two well-known formal means for analysis convergence, Fixed-

point Iteration (FPI) and Newton’s Method (NM). Through preliminary testing using

CASCADE-based simulation, DFAC has shown itself to be more efficient than FPI in all

simulations thus far, and more reliable than NM, which tends to diverge in situations

where little is known about the starting solution point.

The third area of research contribution involves a large-scale comparison of three

popular means for posing and solving the entire MDO design cycle, the Multiple-

Discipline Feasible (MDF), All-At-Once (AAO), and Individual-Discipline Feasible

(IDF) approaches. A large-scale comparison of these strategies had not been possible

prior to this time, due to the deficiency of test problems in the MDO community. The

presence of the CASCADE simulator obviates this deficiency. Each strategy varies in

how it treats the system analysis and optimization portions of the MDO design cycle.

Initial results have shown that MDF is the most reliable strategy for attaining the greatest

overall design improvement, but at the largest associated cost, by far. AAO usually

xii

attains substantial design improvement at a much lower cost, and IDF typically attains a

solution whose characteristics are intermediate to these two extremes. The disparity in

performance between the solution strategies tends to increase with both problem size and

nonlinearity.

The fourth and final area of research contribution presents the development of a

computational MDO framework, entitled FACETS (Framework for the Analysis of

Coupled Engineering Techniques in Simulation), which provides designers with an all-

encompassing computational infrastructure. FACETS contains a multitude of MDO tools

and techniques intended for large-scale coupled system reduction. The ultimate purpose

of FACETS is to provide a preliminary design tool that can allow a design manager to

identify potential means for time and cost reduction within the elaborate multidisciplinary

design process, in a simulation-based setting. At present, the feature modules of

FACETS are the CASCADE simulator, a solution strategies (MDF/IDF/AAO) module,

and an analysis convergence (FPI/NM/DFAC) module. In so doing, FACETS brings

together the other three areas of research contribution into a single MDO environment.

FACETS also includes an optimization module, a system planning module, and an

elaborate post-processor for result verification.

1

Chapter 1

Introduction

__

Large-scale engineering design is a constantly evolving discipline. Design

managers are consistently trying to identify means for producing a “better” product in a

“shorter” period of time. The design of aircraft, spacecraft, automobiles, and others

demands a methodology that is more sophisticated and efficient than a traditional, serial

design approach. This approach is characterized by a sequential design cycle, with

respect to the participating design groups. A design is formulated in a given design group

and passed to the next group, who uses the previous groups’ output variables as input

variables. This “over the wall” design approach is intuitive to implement, but lacks the

sophistication, ingenuity, and efficiency required by the high-technology designs of the

forthcoming century. For this reason, the serial design approach is slowly becoming

obsolete in favor of a methodology known as Concurrent Engineering [11,31].

Concurrent Engineering is a systematic approach to the integrated, concurrent

design of products and their related processes, including manufacture and support. The

interaction of all participating engineering groups throughout a large-scale engineering

design cycle is a truly multidisciplinary effort. In the early 1980's, a field of research

2

emerged which inherently attempts to unite the concepts of Concurrent Engineering with

large-scale, multidisciplinary (coupled) engineering design. This emerging field has

since been coined Multidisciplinary Design Optimization, or MDO [74]. The general

MDO approach is intuitive: divide a single large task into a grouping of smaller,

interrelated (coupled), and more manageable sub-tasks. The large task is often referred to

as a system, and the smaller, interrelated tasks are often referred to as subsystems. Each

subsystem typically contains design variables, which are parameters that might change

during a formal optimization procedure. In addition, each subsystem typically also

contains additional unknown outputs, often referred to as behavior variables. It is these

variables that might change during a complex system analysis. Further, these variables

represent the coupling links between the subsystems.

Advantageous as the MDO approach might seem for engineering design, it does

contain numerous inherent drawbacks. Namely, the decomposition of the system rarely

yields a fully hierarchical breakdown of disciplinary subsystems. This means that the

design cycle must necessarily be iterative, which will add time and cost to the process.

Hence, it is the goal of many MDO researchers to identify means for reducing the time

and cost associated with the multidisciplinary design cycle. Broadly speaking, this is

the ultimate goal of the present research effort.

To accomplish this goal, the present research effort focuses on four specific areas

of MDO research. The first and most vital area is that of system simulation. The

development of new tools and techniques in MDO requires a safe and robust means for

testing the new technology, prior to its implementation on a “real world” product or

process. Analytical means have been devised for simulating the structure and semantics

3

of a multidisciplinary system. Such test systems can then be used for conducting

meaningful research relating to increasing the efficiency of MDO. The recent work of

McCulley [54,55], for instance, utilizes simulation-based procedures to determine the

optimum sequence of a series of input/output black boxes or “modules.” Such

information might be useful for determining the most efficient strategy to numerically

converge a system of nonlinear equations [56], for example. Such a procedure can take

place either sequentially or in parallel.

The second area of MDO research in this effort involves the complicated task of

posing and subsequently solving large-scale engineering design problems. During the

late 1980's and early 1990's, numerous researchers [26,27,14,15,3] have developed both

“conventional” and “alternative” solution strategies for accomplishing this very task.

Past studies have been limited to very simple application problems, mainly due to the

deficiency of test problems in the MDO community. Newly developed simulation tools

allow present-day researchers to overcome this deficiency, as is the case in the present

research.

The third area of MDO research in this effort focuses on the most costly aspect of

the multidisciplinary design cycle - the iterative system analysis. Because of the lack of

hierarchy that typically stems from the system decomposition, iteration becomes a

necessity. There exist numerous formal means for accomplishing this task, each of which

has associated strengths and weaknesses. In response to this, a heuristic convergence

methodology has been developed. This methodology hopes to provide a robust and

efficient alternative to formal convergence techniques in certain situations.

4

Finally, the fourth area of research in this effort discusses the development of an

all-encompassing computational MDO framework. This framework embodies all of the

aforementioned research concepts, and has been designed in an open-ended, modular

form so as to accommodate future MDO technologies as well. It is the goal of this

framework to provide the MDO design manager with a tool that can be used to build a

simulation-based representation of a true “real world” system. Thereafter, a variety of

solution techniques can be efficiently explored, which hopes to provide the user with

insight on how to proceed with the design and analysis of the true system.

Figure 1.1: MDO principal conceptual components and their breakdowns

The present research effort aims to address numerous research areas within the

field of MDO. The Figure 1.1 flowchart taken from [78] demonstrates the principal

conceptual components of Multidisciplinary Design Optimization, and their partial

breakdowns into more specified areas of research. It is clear that the four primary areas

of research addressed by the present research effort together embody a portion of all 7

sectors in this flowchart. Namely, the system simulation research encapsulates the

Optimization
Procedures

Human
Interface

Search
Algorithms

DecompositionDesign-
oriented
Analysis

Mathematical
Modeling

Approximations

MDO Computer / hardware

Neural
Networks

D.O.E.
(Taguchi)

Non-
Physical

Physical

Cost vs.
Accuracy

Inexpensive
re-analysis

Hierarchic

Hybrid-
Hierarchic

Stopping

Reformulating

•
•

•
•

•
•

•
•

•
•

5

Mathematical Modeling and Decomposition sectors, while the solution strategies research

encapsulates the Design-oriented analysis and Optimization Procedures sectors. Further,

the analysis convergence research encapsulates the Approximations and Search

Algorithms sectors, while the framework development research encompasses the Human

Interface sector, among others.

Chapter 2 presents an in-depth background discussion on the field of

Multidisciplinary Design Optimization. In so doing, this chapter explores the related

works of past researchers in MDO, provides a motivation for conducting the present

research, and concludes with a specific statement of the research goals of this work.

Chapter 3 presents a discussion of the continual design and development of

CASCADE [37,38,39], a multidisciplinary system simulation tool. The capabilities,

features, and robustness of this tool have necessarily been expanded for use in the present

research effort. The chapter begins with a formal discussion of past research efforts

relating to system simulation and benchmark MDO test problems.

Chapter 4 discusses numerous common and alternative approaches for posing and

subsequently solving multidisciplinary design problems. After a formal presentation of

these previously developed strategies, the CASCADE simulator is used to explore and

compare these solution strategies to an extent that had not before been possible.

Chapter 5 presents a discussion of analysis convergence. Formal convergence

techniques are presented initially, along with their inherent strengths and weaknesses. In

response to these, a new and heuristic convergence alternative technique is presented, and

demonstrated on numerous classes of test problems.

6

Chapter 6 discusses the continual development of FACETS [42], a computational

framework tool that encompasses all of the research concepts presented in this work.

FACETS provides an environment for simulating large-scale multidisciplinary design

problems, and allows the user to explore numerous techniques and methods for solution.

This chapter is preempted with a lengthy discussion of existing frameworks and problem

solving environments in the field of MDO.

Finally, Chapter 7 summarizes this research work, presents some concluding

remarks, and recommends numerous avenues for future work.

7

Chapter 2

Background and Motivation

__

Fundamental to the field of Multidisciplinary Design Optimization (MDO) is the

discipline of numerical optimization itself. A brief discussion of the terminology and the

mathematics behind a standard optimization problem is presented first. Thereafter, an in-

depth discussion of MDO and its many focal areas of research is offered, a majority of

which relate directly to the present research effort. This background presentation serves

to bring the motivation of the present research to the forefront, which is formally stated at

the end of this chapter.

Optimization

Optimization is a concept that has significance in most of our everyday lives. The

term “optimize” makes one think of similar terms such as “enhance”, “improve”, and

“increase”. In the context of engineering, we typically wish to “produce the best quality

of life, using the resources that are available” [84].

A formally stated optimization problem has numerous parameters. The objective

function is the cost function that is being either minimized or maximized. The design

variables are changeable parameters that signify a potential for change. The constraints

are limitations on the design space. Constraints can be of numerous forms, including

8

equality, inequality, and side constraints. A typical optimization problem has the

mathematical form of Equation 2.1.

Minimize: F(X) objective function

Subject to: gj(X) ≤ 0 j = 1, m inequality constraints

hk(X) = 0 k = 1, l equality constraints [2.1]

Xi
l ≤ Xi ≤ Xi

u i = 1, n side constraints

where: X = {X 1 X2 X3 .. Xn} design variables

With this general understanding of the discipline of optimization, the specialized

field of Multidisciplinary Design Optimization is now investigated in detail. This

discussion begins with the topic of System Decomposition.

System Decomposition

In the early 1980’s, Sobieski laid the foundations for a field that is now known as

Multidisciplinary Design Optimization, or MDO [74]. The fundamental objective of

MDO is to develop an improved design capability, while considering disciplinary

interactions for synergistic affects. The underlying principle of MDO is quite simple:

divide a large task into a sequence of smaller, interrelated (coupled) and more

individually manageable tasks. In engineering optimization problems, the large task is

commonly known as a system, and the smaller, interrelated tasks are known as

subsystems. Each subsystem contains independent input quantities in the form of design

variables, as well as additional dependent input quantities that are actually output

quantities from other subsystems. These are commonly referred to as behavior variables.

Refer to Figure 2.1. Shown in subsystem Y, which generates a single output Y1, and is a

function of two inputs, X and W.

9

Figure 2.1: Subsystem input types

Note that in an MDO context, the objective and constraint functions will likely be

a function of both the system design variables and the subsystem outputs, which are

typically referred to as behavior variables. Hence, it might be beneficial to restate

Equation [2.1] accordingly, as shown in Equation [2.2].

Minimize: F(X, Y) objective function

Subject to: gj(X, Y) ≤ 0 j = 1, m inequality constraints

hk(X, Y) = 0 k = 1, l equality constraints

Xi
l ≤ Xi ≤ Xi

u i = 1, n side constraints [2.2]

Yi
l ≤ Yi ≤ Yi

u i = 1, p side constraints

where: X = {X 1 X2 X3 .. Xn} design variables

Y = {Y 1 Y2 Y3 .. Yp} behavior variables

To accomplish the division of the system, Sobieski applied a linear decomposition

method [74] for large-scale multidisciplinary problems. This methodology is applicable

to hierarchic (top-down) systems, such as the one depicted in Figure 2.2. In such a

hierarchic system, there is a definite ordering to the execution of each module to produce

a final and exact result. A non-hierarchic system contains lateral (two-way) couplings,

which essentially means that the system has no discernable “starting point”. Between

many of the modules in a non-hierarchic system, there exist two-way couplings. In other

Subsystem Y

Dependent input W
(Behavior variable)

Independent input X
(Design variable) Dependent Output Y1

(Behavior variable)

10

words, the output of one module is the input to a second module, and vice-versa (refer to

Figure 2.3, which exhibits lateral coupling between subsystems Y and Z).

Figure 2.2: Hierarchic system model

Figure 2.3: Lateral couplings

The system analysis for a non-hierarchic system requires an initial guess to the magnitude

of each output module, and subsequent iteration to gain convergence. Most decomposed

engineering systems exhibit traits from both hierarchic and non-hierarchic systems, and

are called hybrid-hierarchic, as seen in Figure 2.4.

Figure 2.4: Hybrid-hierarchic system model

Y1

Z1

Y Z

11

The Global Sensitivity Equation (GSE) method was the first to successfully extend

Sobieski’s concept of hierarchic modularity to non-hierarchic systems, as early as 1988

[76,77].

Sensitivity Analysis - Global Sensitivity Equations

A sensitivity is defined as a change in an output value, with respect to a given

input value. System sensitivities are required in optimization to gain system

improvement by prescribing a change in the subsystem design variables. A sensitivity

analysis can be a computationally costly procedure, and must therefore be efficient. The

Global Sensitivity Equation (GSE) approach defines the total derivatives of the output

quantities in terms of local sensitivities. These local sensitivities are partial derivatives of

each subsystem's outputs with respect to its inputs. For continuous functions, local

sensitivities are computed analytically. For complex functions, numerical procedures

such as finite difference methods [72] are often required to attain these sensitivities.

To illustrate the mathematics of the GSE method, consider the two subsystem

schematic seen in Figure 2.5. Subsystem A could be thought of as the structures

discipline, and subsystem B, the aerodynamics discipline, of the design of an automobile,

for example. Subsystem A has two sets of inputs: design variables XA, and the output

(coupling) from subsystem B, YB . Similarly, subsystem B has design variables XB and

the output (coupling) from subsystem A, YA, serving as its inputs.

Figure 2.5: Two-subsystem interaction

YA

YB

Subsystem A Subsystem B

XA XB

12

This interaction can be expressed as follows:

YA = f(XA,YB)
[2.3]

YB = f(XB,YA)

Expanding equation [2.3] with a first order Taylor series gives:

[2.4]

Applying the chain rule to equation [2.4] gives:

[2.5]

Finally, expressing equations [2.4] and [2.5] in matrix form yields:

[2.6]

The leftmost square matrix on the left side of equation [2.6] is known as the

Global Sensitivity Matrix (GSM) and is comprised of the couplings between interacting

subsystems. In other words, the GSM is a matrix of the partial derivatives of all “output”

behavior variables with respect to all “input” behavior variables. The dimension of this

matrix is (p x p), where p is the total number of behavior variables in the system. The

matrix on the right hand side of the equation is a matrix of partial sensitivities of all

behavior variables with respect to all system design variables. The dimension of this

B

A

A

B

B

B

B

B

A

B

B

A

A

A

A

A

dX

dY

Y

Y

X

Y

dX

dY
dX

dY

Y

Y

X

Y

dX

dY

∗
∂
∂+

∂
∂=

∗
∂
∂+

∂
∂=

A

A

A

B

A

B

B

B

B

A

B

A

dX

dY

Y

Y

dX

dY
dX

dY

Y

Y

dX

dY

∗
∂
∂=

∗
∂
∂=

















∂
∂

∂
∂

=
































∂
∂−

∂
∂−

B

B

A

A

B

B

A

B

B

A

A

A

A

B

B

A

X

Y
X

Y

dX

dY

dX

dY
dX

dY

dX

dY

Y

Y
Y

Y

0

0

1

1

13

matrix is (p x n), where n is the total number of system design variables. The center

matrix (the rightmost matrix on the left-hand side of the equation) is the desired matrix of

total derivatives. These derivatives provide an indication of how a change in one or more

design variables will affect all of the behavior variable outputs of the system.

Figure 2.6: Concurrent Subspace Optimization flowchart

Initialize X, t’s

System
Analysis

Converged? EXIT

GSE

Allocate X’s

SSO Initialize r’sUpdate X’s,
F, C

OSA

COP

Update r’s, t’s
Yes

No

14

The Concurrent Subspace Optimization (CSSO) method [75,6] takes the concept

of the GSE method one step farther. Refer to Figure 2.6. Both the sensitivity analyses

and the optimizations are performed at the subsystem level subsequent to the

decomposition of a large engineering system. During the CSSO procedure, design

variables X are allocated to the subspace upon which they are found to have the greatest

impact. (Note: A “subspace” is typically associated with the optimization portion of a

decomposed multidisciplinary system, while a subsystem is typically associated with the

analysis portion. The subspace and subsystem typically do not identically coincide).

This determination is made based upon the comparison of sensitivities of the system

objective function F with respect to a cumulative constraint function C, by means of a

K.S. function [30], for each subspace. Subsequent to design variable allocation,

temporarily decoupled optimizations (SSO’s) are performed in each subspace

concurrently. Realize that design variables will likely have an impact on many of the

other subspaces to which they were not allocated. Due to this decoupled nature of these

concurrent optimizations, a means for coordination between the subspaces, commonly

called the coordination optimization procedure (COP), must be performed thereafter. An

optimum sensitivity analysis (OSA) must be performed prior to this coordination

procedure. The OSA is based on the Kuhn-Tucker conditions [90], and provides

sensitivity information of the system objective function F, with respect to the parameters

used for coordination, which are typically denoted r and t. This overall cycle repeats

until convergence.

15

With the given background on engineering optimization, system decomposition,

and sensitivity analysis, the design synthesis for generic hybrid-hierarchic

multidisciplinary problems is presented.

Conventional Multidisciplinary Design Synthesis

The methodology for conventional multidisciplinary design synthesis is illustrated

in Figure 2.7.

Figure 2.7: Hybrid-hierarchic design synthesis (MDF)

The overall procedure is explained as follows. With a given set of design variables, the

system outputs (behavior variables) are initialized, which allows for an initial system

analysis involving all the decomposed subsystems. It is during the system analysis that a

converged set for the behavior variables Y is sought. Because the system decomposition

is assumed to have been hybrid-hierarchic in nature, the system analysis is highly

Update
Design

Converged ?

Approximations
And

Optimization

Initial Design

Coupled
System

Analysis

EXIT

Sensitivity
Analysis

Yes

No

16

iterative in nature. Note that during this procedure, the design variables X are held

constant. Analysis convergence is checked thereafter. If the system has not converged,

sensitivities are computed. The sensitivities are then used within a gradient-based

optimizer to improve the design by perturbing the system design variables. This updated

design is once again fed to the system analyzer. The process repeats itself until both the

design and behavior variables have achieved a desired level of convergence.

The procedure that has just been described is the most frequently implemented

and most intuitive approach for posing and solving design problems in MDO. Today,

this design cycle is commonly referred to as the Multiple-Discipline Feasible [14,15,3]

(MDF) solution strategy. This and other multidisciplinary solution strategies will be

discussed in greater detail in Chapter 4. For now, it is important for the reader to note the

potential for extremely high cycle time and computational cost associated with the MDF

strategy. One can see how a great deal of resources might be expended during numerous

phases of he MDF cycle, namely the sensitivity analysis and especially the nonlinear and

highly iterative system analysis. The next section discusses an area of research that is

related to increasing the efficiency of the costly system analysis.

Dependency Structure Matrix, Task Scheduling and Convergence

Figure 2.8: Four subsystem hybrid-hierarchic interaction

SS1

SS2 SS3

SS4

17

Consider the four subsystem hybrid-hierarchic decomposed system of Figure 2.8.

This coupled system can be represented as a square Dependency Structure Matrix

(DSM), (formerly called the Design Structure Matrix), wherein each of the subsystems is

denoted as a box along the diagonal [80]. Figure 2.9a depicts a randomly ordered DSM

for the system of Figure 2.8.

Figure 2.9: a. Randomly oriented DSM; b. Optimally oriented DSM

To understand this figure fully, one must refer to Figure 2.8. It is clear that subsystem 3

requires input information from subsystems 1, 2, and 4 and transmits output information

to subsystems 2 and 4. Now note the ordering of Figure 2.9a. This information is

translated to that figure as follows: subsystem 3 receives information in the form of

feedforwards from subsystems 4 and 2, and receives information in the form of a

feedback from subsystem 1. Similarly, subsystem 3 passes information to subsystems 2

and 4 in the form of feedbacks. From this example, it is clear that feedbacks represent

pieces of information, commonly referred to as “couplings”, that are required from

subsystems that are located downstream in the solution process. As a result, an initial

guess and an iterative framework are required to converge a system with feedbacks.

Feedbacks are the filled black squares located below the diagonal in Figure 2.9, and

represent a coupling link between two subsystems. An optimally arranged system would

2

1

3

4 1

2

3

4

18

have 100% feedforwards, which are filled back squares located above the diagonal in

Figure 2.9. Such a system ordering would not require any iteration whatsoever.

One area of interest within the field of MDO is known as task sequencing [54,55].

Optimal sequencing of a system is the result of reordering the sequence of boxes in the

DSM so as to maximize the efficiency of the iterative system analysis. This is

accomplished primarily by reducing the DSM feedbacks. Figure 2.9b is an illustration of

an optimally ordered DSM representation of the Figure 2.8 system. Here, the number of

feedbacks has been reduced from 5 to 3. This reduction will reduce the number of

analysis iterations required for system convergence on each MDF solution cycle.

During a multidisciplinary design cycle, a great deal of time and effort is often

expended in attempting to converge a large system of behavior variables. Task

sequencing has been found to have a profound impact on an inter-related field of research

- convergence strategy development. McCulley [55,56] defines a convergence strategy

as being “made up of rules which determine, based on the current state of the system and

its particular structure or content, what module or modules to execute.” McCulley has

developed both sequential and parallel convergence strategies that are based on

parameters such as: modular update requirements, computational resource limitations,

and prioritization of modular characteristics. He has also found that in addition to

sequencing, other factors that affect multidisciplinary convergence include both the

semantics and the degree of parallelism of the system.

Another benefit of task sequencing is to aid in identifying weak links. Once a

system has been optimally sequenced, the sensitivities of the couplings can be analyzed.

Those that are found to be comparatively weak can be suspended for a pre-determined

19

number of iterations of the convergence procedure, or eliminated outright. Rogers’

DeMAID tool [67,68] has been in development for many years and has been used

successfully for task sequencing, as well as (amongst numerous other features) the

identification of subsystem couplings found to be comparatively strong, and others found

to be comparatively weak. The process of identifying weak couplings is an important

area of research, but not a trivial one. Recent findings in this very sector of MDO are

presented next.

Coupling Suspension

The system designer needs to know the relative strength of all of the couplings

between disciplinary subsystems. This knowledge may allow for the temporary

suspension or the outright elimination of select couplings. Such could provide a less

costly and more computationally efficient iterative system analysis.

Bloebaum’s method for assessing coupling strength is based on local sensitivities

[7]. This method finds the numerical value of the sensitivity of every coupling using the

previously explained GSE method. These sensitivities are normalized, and then

compared. Modules that are found to have the smallest set of normalized sensitivities are

considered to be weak couplings. These couplings are then considered for temporary

suspension or outright elimination, providing that they do not have a substantial impact

further downstream. This determination is made based on downstream coupling

strengths.

Recall that many optimization problems have objective functions and constraint

functions that have outputs of complex systems -- behavior variables -- as their

optimization variables. Hence, the drawback of the local sensitivity method for

20

identifying weak couplings is that it does not relate the local coupling strengths to their

effect on the global problem, namely the objective function and constraints. A coupling

may have a relatively small normalized sensitivity, but may still have a large effect on the

objective function or constraints. This coupling may therefore have a major impact on

the accuracy of the design solution.

More recently, researchers have been looking for ways to assess coupling

strengths based on global sensitivities. English, Bloebaum, and Miller have developed

such a method [16,17]. Their analysis creates a separate coupling strength for the

objective function and each constraint. This work suggests that temporary suspension of

certain couplings only occur in staggered intervals, due to the difficulty in predicting

which constraints will be active during any given system analysis iteration. In addition,

this work suggests that the criterion for the total elimination of a coupling be based on a

user-defined percentage of the magnitude of the objective function.

Having discussed a great many of the areas of research within the field of MDO, a

motivation for the present research is now realized. In addition, a statement of the

specific goals that this research attempts to achieve is formally presented.

Motivation and Research Goals

Based on the background discussion presented thus far, which has dealt with

numerous specified areas of research in the field of MDO, one particular point should be

made clear. Namely, the primary goal of a majority of MDO research efforts is to

simplify or shorten the design process in any of a number of ways, without appreciably

sacrificing accuracy. In so doing, there is a great potential for savings in both design time

and cost (financial, computational, and otherwise). The present research is no exception.

21

To address this broadly-stated research goal, a number of previous efforts have

focused on the development of problem-solving computational environments, commonly

called frameworks, that are used for the solution process of some or all portions of a

multidisciplinary design problem. Many of the recently developed MDO frameworks

share a number of common strengths, but also suffer from a similar set of deficiencies.

Namely, there appears to be a need for a framework that can exploit many of the newly

developed tools, strategies and techniques in MDO. Such techniques include

optimization methods, approaches for sensitivity analysis, MDO solution strategies, task

sequencing strategies, coupling strength assessment, analysis convergence strategies, and

many others not explicitly presented in this background discussion.

An inter-related problem is the lack of availability of design data and benchmark

(test) problems. Researchers must have a safe and robust means for testing a newly

developed strategy prior to its implementation on an actual “real-world” design. Hence,

the development of a framework that is focused on the incorporation of new MDO tools

and techniques should have a robust means for coupled system simulation, both at the

system analysis and optimization levels, as its foundation.

This research provides an original contribution to the field of MDO by providing

a new means, in the form of a simulation-based computational framework, for aide in the

reduction of time and cost of the multidisciplinary design process. To accomplish this

ambitious objective, four specific research goals of the present research are stated as

follows:

• First, the continual design and development of the simulation tool, called CASCADE,

that is used to provide the multidisciplinary problem data for use within the

22

framework. This module provides the design manager a means for constructing a

robust analytical representation of a coupled multidisciplinary system. The system

will have a known structure, but unknown (randomly generated) coupling

characteristics, hereafter referred to as “semantics”. Because the framework is

simulation-based, CASCADE serves as the flagship module of the present research

effort.

• Second, the design and development of a framework module that focuses on means

for structuring and subsequently solving all aspects (system analysis, sensitivity

analysis, and optimization) of a multidisciplinary design problem. This module is

referred to at the Solution Strategies module throughout this research effort. This

module provides the design manager with means for solution alternative to that

depicted in Figure 2.7, which is the conventional MDF solution procedure.

• Third, the design and development of a framework module that focuses solely on the

most costly aspect of the multidisciplinary design cycle -- the system analysis. The

Analysis Convergence module provides the design manager with numerous means for

approaching the often highly iterative analysis that is associated with a

multidisciplinary design. Options within this module include formal convergence

means, and newly developed heuristic convergence means.

• Finally, the design and development of the computational framework tool itself,

entitled FACETS, which serves as a modular aide for exploring numerous techniques

in multidisciplinary design. The FACETS framework embodies each of the other

three primary accomplishments of the present research, bulleted above. FACETS

serves as a preliminary tool for a design manager, to be used on a simulated

23

representation of a real-world multidisciplinary system. Through the use of

simulation, FACETS hopes to provide insight to a design manager as to the

appropriateness of certain MDO techniques and strategies given a system with known

decomposition structure, but unknown semantic characteristics. This insight can then

aid a design manager in choosing the “best” overall solution approach for the true

multidisciplinary system.

An entire chapter shall be devoted to each of these four areas of specified research.

Chapter 3 begins with a presentation on multidisciplinary system simulation, and focuses

specifically on the development of the CASCADE simulation tool.

24

Chapter 3

Complex System Simulation

__

The present research makes extensive use of the CASCADE simulator for

generating analytical representations of real-world multidisciplinary systems. The initial

design of the CASCADE simulator began in 1994 and was coded using the Fortran 77

[36] computer language. This “baseline design” was completed in January of 1996 [37].

The simulator was re-coded in ANSI C [47,81] in 1997 for numerous reasons. The most

important reason was the need for dynamically allocating storage space for the great

many multi-dimensional arrays required to store the system data. This chapter presents

an overview of the design of the simulator, followed by an in-depth discussion of how the

simulator has been expanded to accommodate the needs of the present research work.

Before doing so, a brief literature survey of past-recent work relating to multidisciplinary

system simulation is presented.

Literature Survey

The initial motivation for the design of CASCADE stemmed from late 1980's

research that has been conducted at NASA Langley Research Center. Padula and Young

[61] first developed a computer simulator designed to simulate and improve multilevel

optimization research. Their effort utilized simple analytic functions to represent

25

complex engineering analyses in hopes of testing multilevel decomposition strategies in a

short period of time. A later work of Padula and Sobieski [62] furthered the application

of the simulator. For this work, the simulator was used for experimentation with a large

variety of candidate algorithms for multilevel design optimization methodologies.

Numerous research efforts pertaining to complex system simulation have

appeared subsequent to the design of the initial CASCADE simulator in 1994 and 1995.

The first of these also involves NASA Langley, specifically, their Test Suite for

benchmark MDO problems [63]. The test suite is a World Wide Web-based platform for

collecting, distributing and maintaining standard test problems in the field of MDO. The

test suite houses 3 classes of benchmark problems, ranging from simple Class I problems

to challenging Class III problems which generally have no known global solution. While

the test suite attempts to address the lack of commonly accepted and readily available

benchmark problems in the MDO community, many of it problems are difficult to

implement and/or manipulate for specified research needs.

A recent research effort pertaining to system simulation was published by Balling

and Wilkinson in 1997 [4]. This research work utilizes a class of synthetic problems for

testing MDO approaches, including single-level optimization, CSSO approaches, and

Collaborative Optimization (CO) [50] approaches. The test systems are created so as to

emulate the general form of numerous seminal equations in structural optimization, such

as the deflection and the bending of a beam. This adds to the realism of the semantics of

the simulations. The test problems that are generated are simple, analytical, convex

functions where known (exact) solutions are possible. This is advantageous in that the

success of an MDO method can be assessed and compared quickly and easily. However,

26

these test problems may prove insufficient for the simulation of highly complex and

nonlinear systems with “real world” characteristics.

The CASCADE simulator hopes to build upon the strengths and sidestep the

known weaknesses of these and other means for system simulation.

CASCADE - System Construction

CASCADE has been designed to allow the creation of analytical test systems of

user-prescribed size and structure, and randomly generated semantic characteristics. This

allows a design manager to generate a test system that has a coupling structure that is

similar to that of a “real world” system. This test system, however, will have behavioral

traits that are initially unknown to the design manager. In this way, a design manager can

generate numerous “instances” of a multidisciplinary system with fixed structural

characteristics, but randomly varying semantic characteristics. Using these test systems

will thus allow the design manager to safely assess the appropriateness of a given MDO

solution method over a wide range of possible system behavior. The knowledge and

insight gained from such simulations can then be used towards the design of the true

engineering system.

Prior to the execution of CASCADE to generate and converge a system of

analysis equations, the user must assign numerous input options. The user assigns a

variety of options, including the number of subsystems, design variables, and behavior

variables in the system, which is assumed to be hybrid-hierarchically decomposed. The

user assigns numerous additional options, including an initial seed value for random

number generation, the number of design variables per subsystem, and convergence

27

characteristics. Once these preliminaries are handled, the system of analysis equations is

constructed, term by term.

The terms that are generated and combined to create the coupled set of analysis

equations are of polynomial nature, and take the following general form:

[3.1]

Here, behavior variable yp is the pth output quantity of subsystem Y. In this example

case, subsystem Y has a total of k output quantities. This output is a function of two

types of input terms. The first type are independent input quantities x, which are the

subsystem design variables. Each of the n design variable terms has an associated

coefficient, a, which can be either positive or negative. Each design variable term also

contains an exponent e, which can presently take on one of three values: 1, 2, or 3. These

design variables remain constant during an iterative system analysis. The second type are

dependent input quantities y, which represent outputs (behavior variables) from the other

subsystems in the decomposed system. Like the design variable terms, each of the m

behavior variable terms has an associated coefficient, b, which can be either positive or

negative, and an exponent f, which can presently take on one of the same three values.

Refer to Figure 3.1 for an illustration.

p,1k,ybxay ji f
j

m

1j
j

e
i

n

1i
ik =+= ∑∑

==

28

Figure 3.1: Generic coupling depiction for subsystem Y

The system of equations is constructed as follows. First, the semantic nature of

every term in every behavior variable of the system is determined, as illustrated in

equation [3.1]. For each term in the system, the sign, coefficient and exponent are

randomly determined. (The magnitude of the randomly generated coefficient is likely

altered soon thereafter to guarantee a stable set of equations. This procedure is described

in detail shortly). Again, these properties constitute the semantics of the generated

system. The structure of the system; the decision as to which behavior variables serve as

inputs to each output behavior variable is pre-determined either randomly or by user-

specification, and stored in a boolean matrix. In essence, this matrix houses the

couplings of the system. A “1” represents a coupling between two behavior variables,

and a “0” signifies no coupling between two behavior variables. For instance, the design

manager might input the boolean matrix seen in equation [3.2] to represent the coupling

structure viewed in Figure 3.2.

[3.2]

Here, subsystem 1 receives input information from subsystems 2 and 3, but does not

receive input from subsystem 4. This is ascertained from the 1’s and 0’s seen in the first

0110

1001

1001

1100

Subsystem Y

yj, j=1, m

xi, i=1, n yk

29

column of the boolean matrix. Similarly, subsystem 2 receives input only from

subsystem 4, subsystem 3 receives input from subsystems 1 and 4, and subsystem 4

receives input from subsystem 1,2, and 3.

Figure 3.2: Example input coupling structure

Note that stability is a large issue when generating an arbitrary set of nonlinear

equations. To generate a set of equations that are to be well behaved within some set of

pre-determined bounds, one must incorporate some heuristic knowledge a priori.

Namely, a range must first be assigned for the maximum and minimum values for the

final values of each of the behavior variable output equations. This has been determined

to be ± 9999.0, somewhat arbitrarily. (This quantity is referred to as the maximum

equation magnitude (MEM) in the discussion that follows). Given this knowledge up

front, the terms in the system can be generated “safely” as described in the following

paragraph.

For each behavior variable in the system, the maximum magnitude is divided by

the total number of terms (both design and behavior variable) in that equation. This

quantity is designated as being the maximum term magnitude (MTM) for the given

behavior variable equation. Hence, all terms in a given behavior variable equation yk

must have a coefficient bj whose magnitude obeys the following:

SS1

SS2 SS3

SS4

30

[3.3]

Hence:

[3.4]

If the initially generated term coefficient is found to be larger than this threshold value,

then a new coefficient is randomly generated between 0 and this upper limit.

Having constructed a set of equations that are known to be of sufficient stability,

CASCADE then proceeds to identify a converged solution. This is accomplished by

initializing all subsystem design variables and all subsystem outputs (behavior variables)

to a randomly generated value between ± 9999. During the iterative system analysis, the

values of the design variables remain fixed. It is the converged solution to the behavior

variables that is sought. CASCADE uses and easy and robust technique to achieve the

initial converged solution, a procedure called Fixed-point Iteration [45]. This and other

means for numerical convergence of coupled equations will be formally discussed in

Chapter 5.

Upon identifying a converged solution, CASCADE generates numerous output

files pertaining to the system representation. These include a data file that stores, among

other parameters, the design variable magnitudes, and the initialized and converged

behavior variable magnitudes. Also generated is a file that contains the analysis

equations themselves, written using character strings. The output file is a compilable

ANSI C header “.h” file, and can be compiled and used with other computer codes.

MTM)MEM(b jf
j ≤

MEM

)MTM(
b

1
jf

j

−

≤

31

To summarize the functionality of CASCADE that has been described thus far, an

example system is now presented.

Example System - Analysis Representation

Figure 3.3 consists of a multidisciplinary system that has been hybrid-

hierarchically decomposed into four coupled subsystems.

Figure 3.3: Example CASCADE system (system analysis)

For the sake of review, note that the input boolean matrix that is used to generate this

coupling structure appears as follows:

[3.5]

Each subsystem has its own set of independent design variables as input (the “X’s”), as

well as dependent behavior variables - outputs from other subsystems - also serving as

input (the “V’s”, “W’s”, “Y’s”, and “Z’s”). One possible set of CASCADE-generated

0111

1000

1100

1110

Z

Y

W

V

ZYWV

V

Y Z

W

XY

XW

XV

XZ

32

analysis equations that exhibit the coupled behavior illustrated in Figure 3.3 might appear

as in equation [3.6]:

V = 0.22XV
1 + 4.5E-9Z3

W = -9.5E-6XW
2 -8.6E-6V2 + 5.6E-10Z3

Y = 3.6E-6XY
2 + 0.19W1 + 4.1E-6V2 + 0.03Z1

Z = 8.0E-10XZ
3 - 0.05V1 + 0.11W1 - 4.7E-10Y3

[3.6]

Once the equations are generated, the system can be converged by first initializing

the variables. Table 3.1 summarizes the initialized variable values for this test system.

Table 3.1: CASCADE test system - initial values

XV 811.71

XW -9054.2

XY 2112.0

XZ 5150.7

V 666.6

W 1984.23

Y -69.69

Z 312.92

Upon substituting these values into equation [3.6], the following “calculated” values for

behavior variables V, W, Y, and Z result after the first iteration:

Table 3.2: First iteration results

V W Y Z

178.7140 -782.6004 -123.1175 294.2527

These “calculated” values are the new initial guess for the next iteration. The iterative

process repeats until all variables converge to within some pre-specified criterion. This is

numerical process is the aforementioned Fixed-point Iteration convergence procedure.

For this example, an absolute convergence criterion of 0.01 will be enforced for all 4

33

behavior variable values. The overall convergence results from the given starting point

are summarized in Table 3.3.

Table 3.3: Overall convergence results

V W Y Z

0 666.6 1984.23 -69.69 312.92

1 178.7140 -782.6004 -123.1175 294.2527

2 178.6908 -779.0565 -123.0042 14.2963

3 178.5762 -779.0707 -131.4058 14.6873

4 178.5762 -779.0703 -131.3940 14.6917

5 178.5762 -779.0703 -131.3939 14.6917

Parallelization of system analysis

As discussed in Chapter 2, the decomposition of an engineering system will

typically result in a hybrid-hierarchic structure. This form of decomposition, where the

system variables and equations are decomposed, can be more specifically referred to as

model decomposition [18]. The goals of model decomposition are to reduce problem

sizes, provide a more convenient problem definition, and use specialized solution

methods within the subsystems. Similarly, the implementation of parallel processing can

be thought of as computational decomposition [18]. The benefit of this form of

decomposition is primarily a reduction in computational time. Very often, computational

decomposition is used in combination with model decomposition, where the independent

subproblems are solved in parallel.

This analysis convergence procedure is slightly modified to operate in a

distributed computing environment, via Parallel Virtual Machine, or PVM [21]. The

PVM system uses message passing to allow programmers to exploit distributed

computing, using any of a wide variety of computer types. A key concept in PVM is that

34

it makes a collection of individual computers (referred to as hosts) appear as one large

virtual machine.

A master machine enrolls in PVM, and performs preliminaries such as reading of

the input parameters and array declaration. The master then spawns slave tasks on each

of the host machines available on the virtual machine. The master then packs and sends

array data for one subsystem, to each slave. Each slave receives and unpacks the data

sent to it by the master. Thereafter, the slave performs the previously described analysis

procedure for the one subsystem that was sent to it. Each slave then sends the newly

computed data back to the master for a convergence check. The process repeats until the

system of analysis equations converges. Once convergence occurs, a process termination

signal is sent to each slave machine (refer to Figure 3.4).

Figure 3.4: Parallel analysis convergence via PVM

Subsystem 2

Subsystem nSubsystem 1

Master:

Slaves:

35

Unfortunately, the unaltered PVM results did not live up to expectations.

Solution times for parallel convergence of test systems were larger than those

corresponding to single machine convergence. Moreover, solution times per iteration

were larger, when a larger number of slave computers were used on the virtual machine.

It is hence probable that the time required to pass information from the master machine to

the slave machines is what dominated the convergence time for the PVM scenarios.

To reduce the impact of message passing, “sleep times” were introduced into the

convergence procedure. On both the single computer and distributed computing

scenarios, each subsystem analysis was performed and then followed by a user-specified

period of sleep. At 0.1 seconds of sleep time, the advantages of distributed computing

are first detected for all test systems examined, which ranged in size from 1000 to 5000

behavior variables. With 0.5 seconds of sleep time, the advantages of using a larger

number of slave machines for distributed computing start to become evident.

Subsequent to the convergence process of the system analysis equations is the

sensitivity analysis. In the present research, this is an analytical procedure, and is

discussed in the next section.

Sensitivity Analysis

Once the system has converged, CASCADE utilizes the GSE approach, equation

[2.6], to attain the total derivative matrix of the system that has been created, around the

converged solution point. The left and right hand side partial derivative matrices are

computed at the subsystem level. This is made possible by the CASCADE-generated test

systems as the sensitivity of each output equation of the system can be analytically

computed, with respect to both a) every input behavior variable and b) every subsystem

36

design variable. These matrices are then normalized, and an LU-Decomposition [65] is

used to attain the normalized total derivative matrix (the GSM). The total derivatives are

recovered by “un-normalizing” each element of the GSM.

The potential utilization of this GSM matrix depends on the specific research

needs of the user. This matrix could be of use to the design manager from several

vantage points. For instance, the matrix could be used to assess the coupling relations

that are weak relative to the others. It is possible that these weak couplings could be

eliminated from the system analysis, or at least suspended for part of it, allowing for

computational savings. These derivatives could also be used for a formal, gradient-based

system optimization procedure, such as that which was outlined in Figure 2.7.

CASCADE - Optimization Feature

The system analysis and sensitivity analysis features represented a strong

groundwork for the initial inception of CASCADE. However, a final necessary

component for a full-fledged MDO system simulator is the capability to simulate a

multidisciplinary optimization procedure. An optimization feature would thus allow for

the simulation of the entire MDO design cycle depicted in Figure 2.7. To utilize

CASCADE for conducting meaningful large-scale simulation-based multidisciplinary

research, this is a feature that must be present, and has since been added to the simulator

[39] for this very reason.

The present version of CASCADE allows the user to generate an optimization

problem whose variables are the coupled variables of the converged system analysis.

These variables include design variables, which were initialized and held constant for the

iterative system analysis, and behavior variables, which were initialized, iteratively

37

updated, and eventually converged. During the optimization portion of a

multidisciplinary design cycle, the behavior variables are treated as constants, and the

design variables are altered in search of the global optimum solution.

When designing a simulated set of optimization functions from scratch, certain

provisions must be made to guarantee that an optimum solution will exist for the problem

that is generated. A large concern would be the possibility of generating an over-

constrained design problem. A simple (albeit somewhat unrealistic) solution to this

problem is to allow CASCADE to only generate inequality constraint functions; no

equality constraint functions are generated. In an equality constrained problem, the

number of equality constraints “l” must be less than or equal to the number of design

variables “n”. This ensures that the number of unknown quantities is less than or equal to

the number of equations present. By eliminating the possibility of equality constraints in

the system simulation, a degree of realism is lost in favor of a high degree of robustness

gained.

As for the semantic nature of the constraints present, the computer simulator

development of Padula et al. [61,62] demonstrated that each constraint function must be

one of four forms. These forms are: (a) strictly decreasing (exponent: -1), (b) strictly

increasing (exponent: 1), (c) asymptotically increasing (exponent: 1/2), and (d) quadratic

(exponent: 2). It may be argued that these four polynomial types represent a large subset

of optimization functions encountered in engineering design applications. CASCADE

implements these heuristics by enforcing that the constraint term exponents be one of

these four types. Inequality constraints are posed at the subspace level within

CASCADE; no system level design constraints are posed.

38

Side constraints of [-9999, 9999] for each optimization variable are also

prescribed. The optimization functions are implicitly generated to behave within these

bounds. Further, the optimization problem is generated such that the converged design

point attained during the system analysis is a feasible point in the corresponding

optimization problem.

The objective function that is generated can be system-level in nature, or the user

can generate a distinct objective function for each subspace. The user can control the

state of the coupling between the subspaces for the latter objective function type. The

user can enforce that all design variables allocated to subspace i only appear in the

optimization functions belonging to subspace i. Alternatively, the user can simulate the

more realistic scenario: that design variables are required inputs to functions of numerous

subspaces. Such would be useful for CSSO-based research.

Example System - Optimization Problem Representation

Recall that the CASCADE-generated optimization problem is a function of the

same design and behavior variables that are found in the analysis equations. Hence,

pertaining to the example analysis equations represented by Figure 3.3 and equation

[3.6], a representative optimization problem might appear as follows:

Minimize F = 0.05XV - 4.4e-5XW
2 + 5.8e-10XY

3 - 0.88XZ +

2.3e-9V3 - 5.3e-5W2 - 0.46Y + 7.7e-9Z3

subject to gV1 = -0.48XV - 3.3e-5Z2 ≤ 0

gY1 = 6.6e-10XY
3 + 5.9e-10V3 - 0.23W + 0.18Z ≤ 0

gZ1 = -2.6e-4XZ
2 + 6.0e-5V2 - 9.8e-9W3 - 0.07Y3 ≤ 0

-9999 ≤ XV, XW, XY, XZ ≤ 9999 [3.7]

39

Here, subspaces V, Y, and Z have 1 inequality constraint each; subspace W is

unconstrained. Note that the objective function is system level, and is a function of every

design and behavior variable in the system. Further note that the constraint functions are

functions of the same variables as their corresponding analysis equations were. For

example, the constraint in subspace V is a function of both design variable XV, and

behavior variable Z, as governed by the boolean matrix in equation [3.5]. The simulator

was coded this way initially simply for the sake of convenience. Note however, that the

degree of realism in this initial arrangement is lacking. As mentioned in Chapter 2, the

subsystem and subspace variables typically do not identically coincide.

Lastly, recognize that in the problem formulation corresponding to the standard,

MDF design cycle (Figure 2.7), only the design variables X are treated as changeable

parameters in the optimization procedure. The side constraints reflect this fact

accordingly.

This chapter concludes on a discussion of some of the major features that have

been added to CASCADE for increased realism and usability.

CASCADE - Expanded Features and Robustness

The CASCADE simulator is in a continual process of design and development. in

order to generate test systems of sufficient realism and robustness, numerous

enhancement to the simulator were required. Some of these additions and changes have

already been incorporated into the discussion. Those that have not are presented now for

completeness sake.

One of the first modifications to CASCADE was the addition of “double

coupling” or interaction terms to the analysis and optimization functions. Numerous

40

researchers have suggested that the realism of CASCADE could be increased with the

presence of such terms. This is because the semantic of a given behavior variable will

likely not only be the summation of effects of its individual input variables, but also the

effect of dynamics between its input variables. To allow for interaction terms, the

generalized equation model of equation [3.1] is supplemented with the following terms:

[3.8]

Here, cij is the coefficient of the interaction term, ei and fj are the exponents of the

individual couplings, and generic symbol ψ is used to represent the couplings in the

interaction term. Realize that this couplings could be either a design variable (x) that

serves as input to the given behavior variable yk, or a behavior variable input term (ys),

where s ≠ k. Lastly, note that q and r correspond to the total number of coupling (design

or behavior) variables represented by ψi and ψj, respectively.

The second major modification to CASCADE involves the expansion of the

boolean capabilities for the analysis and the optimization. The initial version of

CASCADE only allowed the user to specify couplings between the subsystems, in the

form of a “Subsystem-Subsystem” (SS) boolean. This does not take into account the

number of outputs (behavior variables) per subsystem. For some researchers, this may be

sufficient. However, some researchers might need to specify the coupling nature of the

system analysis to a more specified level of decomposition. Hence, the capability of

creating a “Behavior variable-Behavior variable” (BV) boolean has been instituted.

Consider the system shown in Figure 3.4.

p,1k)(cy ji f
j

e
i

q

1i

r

1j
ijk =ΨΨ+= ∑ ∑

= =
ê

41

Figure 3.5: Example system (booleans)

The decomposed system has 3 subsystems, W, Y, and Z. Further, subsystem W has 2

behavior variables W1 and W2, subsystem Y has 4 behavior variables Y1, Y2, Y3, and Y4,

and subsystem Z has 3 behavior variables Z1, Z2, and Z3. The corresponding SS and BV

booleans appear in equations [3.9] and [3.10], respectively. At the subsystem level, the

system is fully coupled. At the behavior variable level, the system is NOT fully coupled.

[3.9]

[3.10]

011

101

110

Z

Y

W

ZYW

000111100

000111100

000000011

000000011

111000000

000000011

111000000

111000000

000111100

3

2

1

4

3

2

1

2

1

321432121

Z

Z

Z

Y

Y

Y

Y

W

W

ZZZYYYYWW

Subsystem W

Subsystem ZSubsystem Y

W1

Y2, Y4

Y1, Y3

Z2, Z3

Z1

W2

42

Another addition to the simulator is the feature that allows the user to create a

separate boolean matrix pertaining to the optimization functions. This is a necessary

addition, as the subsystem (analysis) and subspace (optimization) decompositions of an

engineering system will rarely, if ever, coincide identically. The user is thus given the

option to create a separate optimization boolean whose coupling structure does not

coincide with the analysis, or for simplicity sake, can still utilize the analysis boolean for

the optimization as well. Pertaining to Figure 3.4, assume that CASCADE is to generate

a subsystem-level objective function for each of the 3 subsystems, and that each

subsystem has 1 inequality constraint. The subspace boolean will have optimization

functions listed down the columns of the matrix, with the subspace objective functions

(F) listed first, followed by the subspace constraint functions (G). The behavior variable

couplings are listed across the rows. For the present example, this matrix would be of

dimensionality (9 x 6), and might appear as follows:

[3.11]

The third major addition to the CASCADE simulator involves the stability of the

analysis equations generated. Recall that the default equations are constructed in such a

way that stability of all variables within an implicit set of bounds is guaranteed. Refer to

001011

000011

000011

101101

001101

100101

101101

110110

110110

3

2

1

4

3

2

1

2

1

ZYWZYW

Z

Z

Z

Y

Y

Y

Y

W

W

GGGFFF

43

equations [3.3] and [3.4]. The trade off for this stability is that the systems that result

often converge in a relatively small number of fixed-point iterations, usually less than 10.

Certain types of MDO research might require test systems that are of an unstable nature

to a certain degree, or require a larger number of iterations to attain convergence, or both.

To allow for this, a user-defined parameter called “system volatility” has been introduced

into the CASCADE simulator. The user can pre-define the volatility (instability) of the

system prior to generating the analysis equations. The allowable range is 1 through 100.

A system volatility of 10 is set as the default value, at which a stable test system is

guaranteed. Any value below 10 will result in a highly stable system. Values greater

than 10 will result in increasingly more unstable and more oscillatory test systems.

CASCADE might not be able to create a system of a specified level of stability on

its first try. If this is the case, the structure of the desired system is retained, and the

semantics are randomly altered, and the entire process repeats itself. Many “system

construction” attempts could be required. The simulator allows the user to specify the

desired minimum number of iterations required to converge the system of specified

volatility. Because the process of identifying this system might be a lengthy one, the user

must also specify the maximum number of attempts to generate such a system, before

giving up.

Finally, recall that the parallelization of the analysis convergence procedure using

PVM demonstrated computational savings. However, this only occurred after the

CASCADE equation solutions were augmented with sleep times, to simulate longer

overall calculation times. Clearly, the raw solution times of the CASCADE-generated

equations are not, in most cases, sufficiently long for conducting “cost-based” MDO

44

research. Hence, a more sophisticated means to account for this disparity would be

desirable. For this reason, a cost module for both analysis and optimization function

evaluations has been added to the simulator. This module allows the user to assign a

generic “cost” quantity to each behavior variable function, and each optimization

function present in the system. These costs are then written to a data file. Whenever a

function evaluation takes place thereafter, be it during the system analysis or during an

optimization, the associated cost can be summed and accumulated.

These costs could be of tremendous use for MDO method comparison studies.

This will become evident in the next chapter, which presents a formal discussion of this

very topic.

45

Chapter 4

Multidisciplinary Solution Strategies

__

The present chapter presents a discussion and comparison of numerous

approaches in MDO for posing and subsequently solving multidisciplinary design

problems. The decomposition of a large engineering system is typically hybrid-

hierarchic in nature, thus necessitating a full iterative convergence of the analysis

equations, each and every MDO cycle. Hence, the primary motivation behind

identifying alternative approaches to the standard MDO solution cycle (illustrated in

Figure 2.7) is to reduce this large associated analysis cost. The standard MDF solution

strategy is presented first, followed by two of the most popular alternative solution

methods. Thereafter, a sample CASCADE system is generated, and the design problem

is then posed for each of the three solution strategies. Finally, the chapter concludes with

a presentation of results attained through the use of CASCADE for method comparison

study.

Multiple-Discipline Feasible (MDF)

Consider the decomposition of a generic aerospace system into a coupled

grouping of disciplinary subsystems, as shown in Figure 4.1. As alluded to previously,

for a true engineering system, the resultant decomposition grouping is typically hybrid-

46

hierarchic in nature, as seen in the figure. This inherent lack of hierarchy requires that

the system analysis associated with the overall design cycle be initialized to some set of

values, and iteratively converged thereafter. Subsequent to attaining a converged

analysis solution, a sensitivity analysis is performed. The sensitivity analysis can be a

numerical procedure such as finite differencing or the Global Sensitivity Equation (GSE)

method. The sensitivity analysis is required for a gradient-based optimization of the

overall design. The optimization procedure itself will typically cause certain variables to

change (hereafter referred to as optimization variables), which then necessitates the re-

convergence of the system analysis. Hence, the entire design cycle repeats itself until an

overall converged solution is attained. A summary of such hybrid-hierarchic design

synthesis is illustrated in Figure 4.2.

Figure 4.1: Hybrid-hierarchic aerospace system decomposition

Manufacturing
Subsystem

Heat Transfer
Subsystem

Controls
Subsystem

Propulsion
Subsystem

Aerodynamics
Subsystem

Structures
Subsystem

Aerospace
System

47

Figure 4.2: The “Multiple-Discipline-Feasible” (MDF) strategy

The design cycle that has just been described has been referred to in literature as

the “Multiple-Discipline-Feasible”, or MDF approach [14,15,3]. It has been

demonstrated more than any other approach on non-hierarchic multidisciplinary

examples. The advantages of the MDF approach include its commonality to most MDO

researchers, and its optimization problem, which treats only design variables (and not

behavior variables) as optimization variables. The primary disadvantage of the MDF

approach is that it is potentially very time and cost consuming. Complete

multidisciplinary feasibility is enforced at each optimization iteration. At each design

cycle, a great deal of time may be inefficiently spent while fully re-converging the system

analysis portion of a design that is still very far from its eventual, optimal solution.

Update
Design

Converged ?

Optimization

(Variables: All
system Design

variables).

Initial Design

System Analysis

BVq [0] = BVq-1 [0]

BVq [1] = BVq-1 [1]

.

.

BVq [n] = BVq-1 [n]

EXIT

Sensitivity
Analysis

48

All-at-Once (AAO)

More recently, researchers have focused on alternate methods for posing and

solving the multidisciplinary design problem. An approach has been developed which

treats the entire multidisciplinary design cycle seen in Figure 4.2 as a single large

optimization problem. This is accomplished by converting the system analysis equations

into equality constraints, and by treating both system design variables and subsystem

outputs (behavior variables) as optimization variables. Such an approach has been

referred to in literature as “All-at-Once” (AAO) [14,15,3].

The primary advantage of AAO is the elimination of the iterative design cycle for

attaining an optimal design. This occurs through the outright elimination of costly

iterative analysis evaluations. One possible disadvantage of AAO is that a much more

complicated optimization problem results. More optimization variables and more

equality constraints are present in the AAO optimization problem formulation. These

variables and equations stem from the addition of the system analysis equations to the

optimization problem statement. A second disadvantage is that disciplinary feasibility is

only attained at a relative or at an absolute extremum. Hence, if the optimizer is

unsuccessful in attaining the global optimum solution, the likelihood of completing the

solution cycle with a feasible design solution is reduced.

A generalized summary of the AAO strategy is seen in Figure 4.3. Notice that the

“Residual Evaluator” has replaced the iterative System Analysis seen in Figure 4.2. In

the Residual Evaluator, the analysis equality constraints are posed.

49

Figure 4.3: The “All-at-Once” (AAO) strategy

Individual-Discipline Feasible (IDF)

A second popular alternative to the classical MDF approach exhibits

characteristics which lie between the extremes of MDF and AAO. Recall that MDF

requires full disciplinary feasibility at each and every optimization iteration, while AAO

only enforces disciplinary feasibility at the final solution (a local or global optimum), if

attained. An intermediate approach is called “Individual-Discipline-Feasible” (IDF)

[27,14,15,3]. With IDF, each individual discipline (or subsystem) is independently

feasible at each optimization iteration. The optimizer eventually drives all of the

individual disciplines towards multidisciplinary feasibility by controlling the

interdisciplinary data. In this formulation, all coupling variables (behavior variables that

are required inputs to other subsystems) are promoted to being optimization variables.

Update
Design

Converged ?

Optimization

(Variables: All
system Design
and Behavior

variables).

Initial Design

Residual Evaluator

BVresid [0] = 0

BVresid [1] = 0

.

.

BVresid [n] = 0

EXIT

Sensitivity
Analysis

50

This takes place by temporarily substituting a replacement “surrogate” variable for each

coupling variable in the optimization problem statement. Auxiliary equality constraints

are added to the problem formulation to ensure that each and every behavior variable is

equal to its corresponding surrogate variable, at optimization convergence. These

constraints may be thought of as “equilibrium” constraints. A generalized summary of

the IDF strategy is seen in Figure 4.4. Notice that the “Analysis Solver” has replaced the

iterative System Analysis seen in Figure 4.2. In the Analysis Solver, two things take

place: the single analysis solution (non-iterative) of each and every behavior variable

equation, and the formulation of the equilibrium constraints.

Figure 4.4: The “Individual-Discipline Feasible” (IDF) strategy

It should be noted that the nomenclature used to describe the primary MDO

solution strategies in this research effort is not exclusive terminology used in the MDO

Update
Design

Converged ?

Optimization

(Variables: All
system Design
and Coupling

variables).

Initial Design

Analysis Solver

BV [0] = …

BV [1] = …

.

.

BV [n] = …

EXIT

Sensitivity
Analysis

51

community. The next section briefly discusses two of the more recently developed

alternate nomenclatures.

Alternate Terminology

Numerous researchers have developed related, but alternate naming schemes to

describe the methods. One of the first known researchers to implement the “SAND”

terminology and ideology was Haftka [26] for nonlinear structural analysis. In this study,

he treats all response variables and structural parameters as design variables in a unified

optimization formulation. In so doing, analysis and design are performed simultaneously.

Braun et al. [9] conducted a comparison of the MDF and AAO solution strategies for

launch-vehicle design. In this study, the MDF strategy is referred to as the “Iterative-

Loop Method”, and AAO is referred to as the “Sequential Compatibility Constraint

Method”.

Balling and Sobieski [3] have devised a nomenclature based on the control of the

variables at both the system and disciplinary levels. Simultaneous Analysis and Design

(SAND) implies that the disciplinary design and coupling variables are determined

simultaneously by the optimizer. Alternatively, Nested Analysis and Design (NAND)

implies that the optimizer determines only the disciplinary design variables, and requires

determination of the coupling variables each iteration. Hence, MDF has been termed the

“NAND-NAND” approach, with the first NAND corresponding to system level, and the

second NAND corresponding to the disciplinary level. Similarly, “AAO” has been

termed “SAND-SAND”, and IDF, the intermediate approach, has been termed “SAND-

NAND”.

52

In a recent research effort [2], a completely new taxonomy has been proposed,

which is based on the way that the formulation handles the design constraints. These

constraints can be one of three possible forms: a) disciplinary analysis constraints, which

are equality constraints implicit in disciplinary analyses; b) general nonlinear design

constraints, and c) interdisciplinary consistency constraints, introduced to relax

interdisciplinary coupling. Note that the latter form of constraints are analogous to the

aforementioned “equilibrium constraints”. The authors have used this nomenclature to

partition the classification of the solution methods as follows: a/b/c. For example, the

MDF approach has been termed CDA/OD/CIC, which stands for: Closed Disciplinary

Analysis/Open Design constraints/Closed Interdisciplinary Consistency constraints.

Similarly, AAO has been termed OA/OD/OIC, which stands for: Open Analysis/Open

Design constraints/Open Interdisciplinary Consistency constraints. Finally, the IDF

strategy has been termed CDA/OD/OIC, which stands for: Closed Disciplinary

Analysis/Open Design constraints/Open Interdisciplinary Consistency constraints.

The present research work recognizes the merits of these alternate nomenclature

schemes, but continues to make use of standardized terminology for the remainder of this

effort. With a fundamental understanding of each of the three primary solution strategies,

the next section presents an example CASCADE test system and a corresponding

multidisciplinary problem statement for each.

Integration of CASCADE with the Primary Solution Strategies

A number of previous research efforts involving the comparison of the MDF,

IDF, and AAO solution strategies have been extensive in theoretical detail. However,

many of these research efforts have limited their implementation of the theory to

53

“simple” 2-3 subsystem example problems [15,1], often with easily obtainable closed-

form solutions [4]. The importance of these past studies cannot be understated. In the

present work, it is desired to assess the utility of these solution strategies, side-by-side,

over a wide variety of system sizes and subsystem-level coupling densities. Through the

use of CASCADE to generate analytical test systems, the desired problem has a known

structure, and unknown (randomly generated) semantics. Moreover, the global optimum

solution of these test problems is unknown, a priori. It is only after such testing is

completed that heuristic rules can be developed which might help to govern the

appropriateness of a given solution strategy for a given set of coupled system

characteristics.

Figure 4.5 consists of a multidisciplinary system that has been decomposed into

three coupled subsystems.

Figure 4.5: Three coupled subsystems

Each subsystem has its own set of independent design variables as input (the “X’s”), as

well as dependent behavior variables - outputs from other subsystems - also serving as

input (the “W’s”, “Y’s”, and “Z’s”). The CASCADE-generated analysis equations that

exhibit the coupling structure illustrated in Figure 4.5 might appear as in equation [4.1]:

Subsystem W

Subsystem ZSubsystem Y

Y1

W1, W2

Y2

Z1

W2

XY
XZ

XW

54

W1 = 0.22XW
1 + 0.05Y2

3 - 0.46Z1
2 + 0.73(XWY2)

1

W2 =
 -0.96Y2

2 + 0.56Z1
3 - 0.03(XWY2)

2

W3 = 0.36XW
2 + 0.93(Z1Y2)

2

Y1 = 0.08XY
3 - 0.05W1

1 + 0.11W3
1 - 0.09(XYW1)

3

Y2 = 0.59W3
1 + 0.41W1

2 + 0.99(XYW3)
3

Z1 = -0.43XZ
2 - 0.88W2

2 + 0.25(W2XZ)2

[4.1]

Note that each behavior variable output equation is a polynomial function of both single-

coupling terms and interaction terms. The CASCADE-generated optimization problem is

a function of the same design and behavior variables that are found in the analysis

equations, and might appear as in Equations [4.2] and [4.3]:

Minimize:

F = .04XW
2 + .96XY

3 + .15XZ - .26W1
2 + .44W2 + .57W3

3 - .07Y1 + .68Y2
2 - .02Z1

3

[4.2]

Subject to:

gW = -578.9 + 0.36Y2
3 + 0.55 XW

1 + 0.09(XWZ1)
3 ≤ 0

gY = -226.7 + 0.26XY
3 + 0.51 W1

2 + 0.53(XYW3)
1 ≤ 0

gZ = -1095.1 + 0.33 Y2
2 + 0.47(XZW2)

1 ≤ 0
-9999.0 ≤ XW, XY, XZ ≤ 9999.0

[4.3]

Note again the presence of both single-coupling and interaction terms in the objective and

inequality constraint functions. Given this example problem, the problem formulations

corresponding to the three solution strategies are presented.

a. MDF

The MDF problem formulation for the present example system is described as follows:

• Optimization variables: XW, XY, and XZ

• Analysis: Equation [4.1]. Full iterative re-convergence every MDO cycle.

• Optimization: Equations [4.2] and [4.3].

55

• Comment: The problem is solved as posed in equations [4.1] through [4.3] and in a

cyclic manner similar to that seen in Figure 4.2.

b. IDF

The IDF problem formulation is described as follows:

• Optimization variables: XW, XY, XZ, and surrogate variables XW1, XW2, XW3, XY2,

and XZ1

• Analysis: A single non-iterative “solution” of Equation [4.1] on each cycle, modified

as follows. Note the presence of replacement “surrogate” variables on the right hand

side of the equations:

W1 = 0.22XW
1 + 0.05XY2

3 - 0.46XZ1
2 + 0.73(XWXY2)

1

W2 =
 -0.96XY2

2 + 0.56XZ1
3 - 0.03(XWXY2)

2

W3 = 0.36XW
2 + 0.93(XZ1XY2)

2

Y1 = 0.08XY
3 - 0.05XW1

1 + 0.11XW3
1 - 0.09(XYXW1)

3

Y2 = 0.59XW3
1 + 0.41XW1

2 + 0.99(XYXW3)
3

Z1 = -0.43XZ
2 - 0.88XW2

2 + 0.25(XW2XZ)2

[4.4]

• Optimization:

Minimize:

F = .04XW
2 + .96XY

3 + .15XZ - .26XW1
2 + .44XW2 + .57XW3

3 - .07XY1 + .68XY2
2 - .02XZ1

3

[4.5]

Subject to:

gW = -578.9 + 0.36XY2
3 + 0.55XW

1 + 0.09(XWXZ1)
3 ≤ 0

gY = -226.7 + 0.26XY
3 + 0.51XW1

2 + 0.53(XYXW3)
1 ≤ 0

gZ = -1095.1 + 0.33XY2
2 + 0.47(XZXW2)

1 ≤ 0
0 = XW1 - W1
0 = XW2- W2
0 = XW3 - W3
0 = XY2 - Y2
0 = XZ1- Z1
-9999.0 ≤ XW, XY, XZ, XW1, XW2, XW3, XY2, XZ1 ≤ 9999.0

 [4.6]

56

• Comment: Note that XY1 is not an optimization variable, since it is not used as input

by any subsystem in the analysis equations.

c. AAO

The AAO problem formulation is described as follows:

• Optimization variables: XW, XY, XZ, W1, W2, W3, Y1, Y2, and Z1

• Analysis: None. (“Analysis” is included in the optimization problem).

• Optimization:

Minimize:

F = .04XW
2 + .96XY

3 + .15XZ - .26W1
2 + .44W2 + .57W3

3 - .07Y1 + .68Y2
2 - .02Z1

3

[4.7]

Subject to:

gW = -578.9 + 0.36Y2
3 + 0.55 XW

1 + 0.09(XWZ1)
3 ≤ 0

gY = -226.7 + 0.26XY
3 + 0.51 W1

2 + 0.53(XYW3)
1 ≤ 0

gZ = -1095.1 + 0.15Y1
1 + 0.33 Y2

2 + 0.47(XZW2)
1 ≤ 0

0 = 0.22XW
1 + 0.05Y2

3 - 0.46Z1
2 + 0.73(XWY2)

1 - W1

0 = -0.96Y2
2 + 0.56Z1

3 - 0.03(XWY2)
2 - W2

0 = 0.36XW
2 + 0.93(Z1Y2)

2 - W3
0 = 0.08XY

3 - 0.05W1
1 + 0.11W3

1 - 0.09(XYW1)
3 - Y1

0 = 0.59W3
1 + 0.41W1

2 + 0.99(XYW3)
3 - Y2

0 = -0.43XZ
2 - 0.88W2

2 + 0.25(W2XZ)2 - Z1
-9999.0 ≤ XW, XY, XZ, W1, W2, W3, Y1, Y2, Z1 ≤ 9999.0

[4.8]

• Comment: All design and behavior variables are controlled by the optimizer.

With a general understanding of the three different means for posing the MDO

test systems that are generated by CASCADE, the results of several numerical

comparisons are seen in the next section.

57

Results

a. Preliminary Testing

For first phase testing, CASCADE has been used to generate a total of five

simulations of coupled multidisciplinary systems [40]. These five test systems vary in

size and coupling complexity. The ANSI-C translated version of Automated Design

Synthesis (ADS) [85] has been used as the optimization software for these MDO test

systems. The strategy - optimizer combination that has been used for the acquisition of

all the results in this section is Sequential Linear Programming - Method of Feasible

Directions. Internal finite difference methods have been used to attain gradient

information within ADS. All trial executions were performed on a SUN Ultra 1 Creator

3D workstation, under comparable network conditions. The primary characteristics of

the five test systems are summarized in Table 4.1. Recall that the number of coupling

variables for each solution strategy corresponds to the number of behavior variables that

are required as input by at least one other subsystem.

Table 4.1: Preliminary test system summary

Test
system
number

Number
of

subsystems

Number of
behavior
variables

Number of
design

variables

Number of
inequality
constraints

Number of
coupling
variables

Initial
objective
function

1 3 6 6 6 5 -678.71

2 5 9 11 10 8 -43.91

3 10 20 40 20 12 1622.74

4 15 45 45 90 43 -820.18

5 20 100 40 3 92 197.40

Test system #1 has 3 subsystems (W, Y, and Z), which have 2, 1, and 3 behavior

variables per subsystem, 3, 2, and 1 design variables per subsystem, and 1, 3, and 2

inequality constraints per subsystem, respectively. The initial value of the objective

58

function is -678.71. Figure 4.6 provides a detailed illustration of the coupling structure of

the first test system. Figure 4.7 compares the Test system #1 objective function histories

for all three solution strategies. Table 4.2 summarizes the “best” results attained (where

“best” implies lowest objective function) for the first test system, for each of the three

solution strategies, after numerous trial executions. All solution strategies achieve

approximately the same optimal design point, with the MDF strategy attaining the lowest

objective function value of -1711.79.

Table 4.2: Solution summary for test systems #1 - #5

Test
System

Solution
Strategy

Total
OV’s

Final
OF

Active
SC’s

Active
IC’s

Run
Time (sec.)

MDF 6 -1711.79 3 1 0.486
IDF 11 -1706.45 3 1 1.916

1

AAO 12 -1705.15 3 1 2.029
MDF 11 -3150.08 4 1 1.094
IDF 19 -3144.08 4 1 7.245

2

AAO 20 -3124.61 4 1 9.146
MDF 40 -11859.7 15 4 22.927
IDF 52 -11407.5 13 6 27.023

3

AAO 60 -11316.8 13 6 64.201
MDF 45 -10118.8 13 22 57.854
IDF 88 -8882.84 11 10 307.943

4

AAO 90 -8483.45 11 12 260.995
MDF 40 -12012.6 26 2 98.179
IDF 132 -10253.4 13 2 1892.150

5

AAO 140 -10980.8 14 2 3098.899
Notes: OV: Optimization variable; OF: Objective function;

SC: Side Constraint; IC: Inequality Constraint

Figure 4.6: Structural schematic of test system #1

Subsystem W

Subsystem Y Subsystem Z

XY

XW

XZ

W2

Y1

W2

Z1 Z3

Y1

Z2

59

Figure 4.7: Test system #1 - Objective function value vs. evaluation number

Test system #2 has 5 subsystems (U, V, W, Y, and Z), which have 1, 2, 1, 3, and 2

behavior variables per subsystem, 3, 2, 1, 2, and 3 design variables per subsystem, and 4,

0, 1, 2, and 3 inequality constraints per subsystem, respectively. The initial value of the

objective function is -43.91. Figure 4.8 provides a detailed illustration of the coupling

structure of the test system. Figure 4.9 compares the Test system #2 objective function

histories for all three solution strategies. Table 4.2 again summarizes the “best” results

attained for the second test system, for each of the solution strategies, after numerous trial

executions. Again, all solution strategies achieve approximately the same optimal design

point. Here, the MDF strategy attains the lowest objective function value of -3150.08.

Figure 4.8: Structural schematic of test system #2

04<33

04:33

04833

04633

04433

0<33

0:33

0833

3 83 433 483 533 583

0')
,')
$$2

Subsystem V

Subsystem Y Subsystem Z

Subsystem U Subsystem W

XV

XY XZ

XU XW

Y1 Y2
Z1 Z2

Y1 Y2 Y3

U1

V2 Z1

Y3
U1 Z1

Y2

V1V2

V1

U1

60

Figure 4.9: Test system #2 - Objective function value vs. evaluation number

Test system #3 has 10 subsystems, a total of 20 behavior variables, 40 design

variables, and 20 inequality constraints. For the final three test systems, detailed

coupling illustrations and objective function histories are omitted for brevity. The initial

value of the objective function is 1622.74. Table 4.2 again summarizes the “best” results

attained for the third test system, for each of the three solution strategies, after numerous

trial executions. Here again, all solution strategies achieve approximately the same

objective function value, but with varying active constraint sets at the final solutions. At

the MDF minima, 15 inequality and 4 side constraints are active. At the IDF and AAO

minima, 13 inequality and 6 side constraints are active. Numerical constraint “thickness”

[85] was set to be the ADS default range of -0.03 to 0.01 for all runs, and hence did not

bias any of the three solution approaches. Hence in this case, it is felt that two distinct

solution minima have been found. Again, the MDF strategy attains the lowest final

objective function value, of -11859.7.

Test system #4 has 15 subsystems, a total of 45 behavior variables, 45 design

variables, and 90 inequality constraints. The initial value of the objective function is -

820.18. Table 4.2 again summarizes the “best” results attained for the fourth test system,

06833

06333

05833

05333

04833

04333

0833

3

3 83 433 483 533 583 633 683 733 783

0')

,')

$$2

61

for each of the three solution strategies, after numerous trial executions. In this case, all

three solution strategies do not arrive at “equivalent” solutions. The MDF strategy attains

the lowest objective function value of -10118.8, which is approximately 10% lower than

the next best solution attained, by the IDF strategy.

Finally, test system #5 has 20 subsystems, a total of 100 behavior variables, 40

design variables, and only 3 inequality constraints. The initial value of the objective

function is 197.40. Table 4.2 again summarizes the “best” results attained for the fifth

test system, for each of the three solution strategies, after numerous trial executions.

Here again, there is a distinct difference between the final solutions reached by each of

the three solution strategies. This disparity is likely due to the growing numbers of

optimization variables in the IDF and AAO formulations, as the size of the system

analysis increases. MDF again achieves the lowest objective function value of -12012.6,

considerably lower than the next best solution attained, by the AAO strategy.

The final four figures of this sub-section specifically pertain to the results of test

system #5, and provide a visual interpretation of general trends that are evident in a

majority of the results that have been presented in this work. Figure 4.10 is a plot of final

objective function vs. solution strategy; Figure 4.11 is a plot of total analysis evaluations

vs. solution strategy; Figure 4.12 is a plot of total objective function evaluations vs.

solution strategy, and Figure 4.13 is a plot of total execution time vs. solution strategy.

62

046333

045733

044;33

044533

043933

043333

0<733 0') ,') $$2

Figure 4.10: Test system #5 - final Objective function

3

593333

853333

:;3333

4373333

4633333

0') ,') $$2

Figure 4.11: Test system #5 - analysis evaluations

3

5833

8333

:833

43333

45833

0') ,') $$2

Figure 4.12: Test system #5 - objective function evaluations

63

3
833
4333
4833
5333
5833
6333
6833

0') ,') $$2

Figure 4.13: Test system #5 - execution time (seconds)

b. Cost-based Testing

The primary theme of this sub-section of results is that of “trade-off”. The first

sub-section of results focused solely on the ability of each of the solution strategies to

achieve design improvement through a decrease in the system-level objective function.

However, design improvement is not the only characteristic that must be considered by

the design manager. Inevitably, the implementation of each of these solution strategies

will have an associated cost. This cost might stem from computational resources

expended (i.e. CPU time), from man hours invested in carrying through the solution

process of the given system as posed, or from any of a number of other sources. In this

research effort, separate simulated and generic cost amounts have been assigned to each

analysis evaluation, each objective function evaluation, and each constraint function

evaluation. The goal with this study is to arrive at a simulated total cost amount

associated with implementing each of the solution strategies [43]. These cost amounts

are then compared side by side. The design manager can weigh the gains obtained in the

optimized design versus the cost incurred in arriving there, for each of the solution

strategies. Three systems were tested for this phase of result acquisition; the

characteristics of these systems are summarized in Table 4.3.

64

Table 4.3: Cost-based test system summary

Test
System

of
SS’s

of
BV’s

of
DV’s

of
IC’s

of
CV’s

Initial
OF

1 10 10 10 20 9 -76.37
2 10 20 30 10 18 -577.26
3 10 50 50 5 47 -1436.3

Notes: SS = subsystem; BV = behavior variable; DV = design variable;
IC = inequality constraint; CV = coupling variable; OF = objective function

In this simulation the overall cost in implementing a solution strategy is a function

of three distinct components – analysis cost, objective function cost, and constraint

function cost. The objective function cost (OFC) is analogous for all three solution

strategies; it is the cost of the system objective function, or the sum of the costs of the

subsystem-level objective functions, summated every design cycle. The details of the

other two components differ slightly for each solution strategy. For the MDF strategy,

the analysis cost (AC) is the cost of an analysis evaluation for each behavior variable

multiplied by the number of iterations required to converge the system of coupled

analysis equations, summated every design cycle. The constraint function cost (CFC) is

the sum of the cost of each of the system inequality constraints, summated every design

cycle. For the IDF strategy, the analysis cost is the cost of an analysis evaluation for each

behavior variable, summated every design cycle. The constraint function cost is the sum

of the cost of each of the system inequality constraints, plus the sum of the cost for each

of the equilibrium constraints corresponding to each coupling variable, summated every

design cycle. For the AAO strategy, there is no explicit analysis evaluation cost. The

constraint function cost is the sum of the cost of each of the system inequality constraints,

plus the sum of the cost of each analysis equation (where here each analysis equation is

65

posed as an equality constraint), summated every design cycle. These associated costs

are seen in equations [4.9] through [4.12].

Total cost (TC) = OFC + AC + CFC

[4.9]

MDF (TC):

)tcosc(*numcycCFC

)tcosbv*numits(*numcycAC

)tcosof(*numcycOFC

n

1j
j

m

1i
iq

p

1k
k

∑

∑

∑

=

=

=

=

=

=

[4.10]

IDF (TC):

)tcosectcosc(*numcycCFC

)tcosbv(*numcycAC

)tcosof(*numcycOFC

m

1i
i

n

1j
n

m

1i
i

p

1k
k

∑∑

∑

∑

==

=

=

+=

=

=

[4.11]

AAO (TC):

)tcosaetcosc(*numcycCFC

0AC

)ofcost(*numcycOFC

m

1i
i

n

1j
j

p

1k
k

∑∑

∑

==

=

+=

=

=

[4.12]

66

In the above equations, “numcyc” is the total number of MDO cycles required for

system convergence, and “numitsq” is the number of iterative system analyses required

for convergence on MDO cycle q. Moreover, “ofcostk” is the evaluation cost associated

with the kth objective function, and “bvcosti” is the evaluation cost associated with the ith

system behavior variable. Further, “ccostj” is the evaluation cost associated with the jth

system inequality constraint, and “eccosti” is the evaluation cost associated with the ith

system behavior variable (posed as an equilibrium constraint). Finally, “aecosti” is the

evaluation cost associated with the ith system behavior variable (posed as an analysis

equality constraint). Here, “p” is the number of objective function associated with the

system design, “m” is the number of subsystem behavior variables, and “n” is the total

number of inequality constraints in the system.

Three “cost scenarios” are implemented in the presentation of the results. These

scenarios are summarized in Table 4.4. Cost scenario #1 is such that the cost of an

analysis evaluation is approximately equivalent to the cost of both an objective function

evaluation and an inequality constraint function evaluation. Here, the cost of all three

function evaluations are randomly chosen to be between 0 and 100 units. This is clearly

not a realistic cost scenario. The cost of an analysis evaluation (which, in a real system

might stem from the result of a costly FEM matrix inversion, for example) could be far

greater than the evaluation cost of the optimization functions, linear or non-linear. In

response to this line of thinking are more realistic cost scenarios, #2 and #3. Cost

scenario #2 represents a “semi-costly” analysis, where the costs of analysis evaluations

are randomly chosen to be between 0 and 500 units, and objective and inequality

constraint function costs are once again randomly chosen to be between 0 and 100 units.

67

Hence, on average, the analysis/optimization evaluation cost ratio is equal to 5.0 for cost

scenario #2. Cost scenario #3 represents a “costly” analysis, where the costs of analysis

evaluations are randomly chosen to be between 500 and 1000 units, and objective and

inequality constraint function costs are again randomly chosen to be between 0 and 100

units. Hence, on average, the analysis/optimization evaluation cost ratio is equal to 15.0

for cost scenario #3.

Table 4.4: Cost scenarios

Cost scenario Analysis
cost range

Optimization
cost range

Analysis/Optimization
cost ratio

1 (0,100) (0,100) 1.0
2 (0,500) (0,100) 5.0
3 (500,1000) (0,100) 15.0

Relative to all other cost quantities, the evaluation cost of the equilibrium

constraints (in the IDF solution strategy) could be considered negligible. However, in

this simulation, the cost of an equilibrium constraint function evaluation is set to be equal

to 10% of the evaluation cost of its associated analysis equation.

Table 4.5 presents a comparison of the three solution strategies for all three test

systems and cost scenarios. Consider first test system #1, cost scenario #1. Listed for

each solution strategy are five quantities: objective function improvement (OFI), analysis

evaluation cost (AC), objective function evaluation cost (OFC), constraint function

evaluation cost (CC), and total evaluation cost (TC). Figure 4.14 presents a plot of this

very same data. Note however, that each of these five quantities are plotted normalized,

and are normalized separately. (i.e. the three objective function improvements are

normalized against each other, the three analysis costs are normalized against each other,

the three objective function costs are normalized against each other, etc.) The general

68

trends of this first system are as follows: MDF achieves the greatest objective function

improvement, but has a huge analysis cost and by far the highest overall cost. AAO

attains substantial improvement in the objective function, has no iterative analysis cost

whatsoever, but has a large constraint cost, because the analysis equations are now posed

Table 4.5: Cost scenario results

TS CS Strategy OFI Analysis
cost

Objective
Function

cost

Constraint
cost

Total
cost

MDF 2337. 2.16E6 12247 3.40E5 2.51E6
IDF 1831. 1.69E5 8917 2.61E5 4.40E5

1

AAO 2324. 0 16354 7.64E5 7.81E5
MDF 2337. 1.08E7 12247 3.40E5 1.12E7
IDF 1831. 8.54E5 8917 3.21E5 1.18E6

2

AAO 2324. 0 16354 2.01E6 2.03E6
MDF 2337. 2.62E7 12247 3.40E5 2.65E7
IDF 1831. 2.06E6 8917 4.29E5 2.50E6

1

3

AAO 2324. 0 16354 4.22E6 4.23E6
MDF 7276. 7.20E6 37710 4.10E5 7.65E6
IDF 3349. 7.66E5 30915 3.98E5 1.19E6

1

AAO 3329. 0 27585 9.83E5 1.01E6
MDF 7276. 3.62E7 37710 4.10E5 3.67E7
IDF 3349. 3.85E6 30915 6.70E5 4.55E6

2

AAO 3329. 0 27585 3.73E6 3.76E6
MDF 7276. 1.00E8 37710 4.10E5 1.01E8
IDF 3349. 1.07E7 30915 1.28E6 1.20E7

2

3

AAO 3329. 0 27585 9.86E6 9.88E6
MDF 14581. 2.45E7 3828 2.00E5 2.47E7
IDF 3302. 2.19E6 2649 3.31E5 2.52E6

1

AAO 3106. 0 6063 5.33E6 5.33E6
MDF 14581. 1.24E8 3828 2.00E5 1.24E8
IDF 3302. 1.10E7 2649 1.18E6 1.22E7

2

AAO 3106. 0 6063 2.56E7 2.56E7
MDF 14581. 3.71E8 3828 2.00E5 3.71E8
IDF 3302. 3.31E7 2649 3.25E6 3.64E7

3

3

AAO 3106. 0 6063 7.61E7 7.61E7
Notes: TS = test system; CS = cost scenario; OFI = objective function improvement

as equality constraints. In this case, AAO has the largest associated objective function

cost. IDF attains substantial improvement (albeit the lowest of the three strategies) at a

69

low analysis cost, and at the lowest objective function, constraint, and total costs,

respectively.

Table 4.5 and Figures 4.15 and 4.16 present analogous results for the more

realistic cost scenarios #2 and #3, respectively, for test system #1. In comparing Figures

4.16 and 4.15 to Figure 4.14, the following observations are made. The objective

function improvements are the same, and the analysis and objective function costs are

higher, but proportionately so. In addition, the constraint cost for IDF grows to be larger

than that for MDF, and the proportion by which the total cost for MDF is larger than that

for AAO and IDF becomes larger. Table 4.5 presents analogous results for the 2nd and

3rd test systems, respectively.

Figure 4.14: Test system #1, cost scenario #1

����������
����������
����������
����������
����������
����������
����������
����������
����������

�������
�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

��������
��������
��������
��������
��������
��������

����������
����������
����������
����������
����������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MDF IDF AAO

2), $&
������
2)&

�����
&& 7&

70

Figure 4.15: Test system #1, cost scenario #2

Figure 4.16: Test system #1, cost scenario #3

Figures 4.17 and 4.18 are normalized plots of the cost scenario #3 data for the 2nd

and 3rd test systems, respectively. The second test system is typified by the following:

the objective function improvement of MDF doubles that of both IDF and AAO, and a

huge MDF analysis cost; ten times larger than that of IDF. In addition, the objective

function costs were comparable for all strategies, with that of MDF being the largest,

followed by IDF and then by AAO. The constraint cost is largest for AAO, followed by

����������
����������
����������
����������
����������
����������
����������
����������

��������
��������
��������
��������
��������
��������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

��������
��������

����������
����������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MDF IDF AAO

2), $&
�������
�������2)&

�������
�������&& 7&

����������
����������
����������
����������
����������
����������
����������
����������
����������

��������
��������
��������
��������
��������
��������
��������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

��������
��������

����������
����������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MDF IDF AAO

2), $&
������
������2)&

��������
��������&& 7&

71

IDF for the second and third cost scenarios (as was the case with the first test system).

Finally, MDF has the highest overall cost by an increasing proportion (as cost is

increased from cost scenario #1 to cost scenarios #2 and 3), followed by IDF, and

followed by AAO, which is the least costly solution strategy for the second test system.

Figure 4.17: Test system #2, cost scenario #3

Figure 4.18: Test system #3, cost scenario #3

The third test system is typified by the following: the objective function

improvement of MDF that nearly quintuples that of both IDF and AAO, and a huge MDF

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

����������
����������
����������
����������
����������
����������
����������
����������
����������

��������
��������

����������
����������
����������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MDF IDF AAO

2), $&

�����
�����2)&

�������
�������&& 7&

����������
����������
����������
����������
����������
����������
����������
����������

��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
����������������� ����������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MDF IDF AAO

2), $&
������
2)&

��������
&& 7&

72

analysis cost; ten times larger than that of IDF. In addition, the strategies exhibited

comparable (and comparatively miniscule) objective function costs, with that of MDF

being the largest, followed by AAO and then by IDF, and the constraint cost is largest for

AAO, followed by IDF for all three cost scenarios. Finally, MDF has the highest overall

cost by an increasing proportion (as cost is increased from cost scenario #1 to cost

scenarios #2 and 3), followed by AAO, and followed by IDF, which is the least costly

solution strategy for the third test system.

The next section will take a closer look at both sub-sections of results, and will

consequently make some heuristic observations regarding the utility of each of the

solution strategies.

Discussion of Results

a. General Observations

The first major point to be made regarding the results is that by having multiple

solution strategies to pose and solve the same coupled multidisciplinary design problem,

a design manager will arrive at three different problem statements, each with its own

“problem dynamic”. The solution path for each problem will likely be totally unique, and

highly dependent on the initial design point. Hence, having three separate means for

posing and solving an MDO problem can only be advantageous to a design manager.

This was clearly found to be the case in the present work. Several trial executions would

typically be performed on a given test problem using a given solution strategy. Often, the

solution that was initially attained appeared to be the “global” optimum solution.

Thereafter, numerous trial executions of the same test problem with a different solution

strategy would often result in an improved solution, hence revealing the initial “global”

73

optimum solution as being merely an improved local optimum solution. This type of

approach is similar in spirit to attempting the MDO procedure from a variety of different

starting design points.

The “problem dynamic” that is mentioned in the previous paragraph results from

the nature of each solution strategy; the means with which the multidisciplinary design

problem is posed for a given strategy. Problems that contain a large system analysis

portion (i.e. problems which have a large number of behavior variables) will result in a

large iterative system analysis for the MDF strategy. The same scenario will result in no

system analysis at all for AAO, but will instead result in a large number of non-linear

inequality constraints in the optimization. This same scenario results in an intermediate

state for IDF - an equilibrium equality constraint and a single analysis evaluation are

required for each behavior variable that promotes coupling.

A large factor that is affected by this topic of “problem dynamic” is the use of

allowable search move limits [7] within the optimizer. CASCADE has been known to

generate treacherous design spaces that are cluttered with a multitude of local minima,

any of which may contain the initial design point. Often times, very large move limits

are required to retreat such a scenario. Because MDF (and to a lesser degree, IDF) has a

distinct analysis step, large move limits must be handled with caution. If a design

manager allows the design variables to change by a large degree on a given optimization

iteration, the ensuing system analysis may see large changes in the behavior variable

magnitudes. This may cause the initial design on the subsequent optimization cycle to be

infeasible, from which the optimizer might not be able to recover, depending on the

74

degree of infeasibility. The trial executions of the test systems during both testing

solidified these statements.

b. Preliminary Testing

A major area of discussion involves the “goodness” of the results attained. The

primary figure of merit for the test results is the final value of the objective function.

Figures 4.7 and 4.9 plot the objective function histories of the first and second test

systems, respectively. In both of these test systems, the MDF strategy, which has the

fewest optimization variables, attains the lowest final objective function, and reaches its

final solution the most quickly. The AAO strategy, which has the largest number of

optimization variables, tends to lag towards its final solution much more slowly. Not

surprisingly, the IDF strategy tends to follow a path that is intermediate to the extremes

of the MDF and AAO strategies. In fact, the MDF strategy attains the lowest final

objective function value for test systems #3, 4, and 5 as well, as seen in Table 4.2. In all

but the fifth test system (where AAO slightly outperforms IDF), the IDF strategy attains

the next best final solution, followed closely by the final solution of the AAO strategy.

Seemingly, for the types of problems generated by CASCADE (highly non-linear

and non-convex), the solution strategy with the smaller number of optimization variables

tends to attain the greatest improvement in the objective function. This is likely because

the effectiveness of the optimizer tends to decline as its responsibility increases. With a

greater number of optimization variables, there are more gradients that have to be

calculated and considered, which creates more sources for error during a gradient-based

optimization procedure. This will likely lead the optimization search into an inescapable

75

local minima, especially in a highly nonlinear optimization problem where the starting

design point is unfavorable.

Total execution times for the five test systems tended to follow the same trend -

MDF attained its solution the fastest, followed by IDF and AAO. (Refer to Figure 4.13).

For the MDF solution strategy (FULL iterative system analysis), total execution times for

the five test problems were approximately 0.5, 1.1, 22.9, 57.9, and 98.2 seconds,

respectively, where the corresponding number of optimization variables for each test

problem is 6, 11, 40, 45, and 40, respectively. For the AAO solution strategy (NO system

analysis), total execution times were approximately 2.0, 9.1, 64.2, 261.0, and 3098.9

seconds for the five test systems, corresponding to 12, 20, 60, 90, and 140 optimization

variables, respectively. One must keep in mind that these execution times are clock times

required for multidisciplinary design simulations. To attain an understanding of the total

time required to attain a solution for a real-life system (of the same coupling structure

that is being simulated by CASCADE), one would have to factor in the relative times

required for analysis and objective function calculations for the real-life system itself.

Analysis calculations are likely to be the largest factor in terms of total execution time, by

a considerable margin, which is not being reflected in the CASCADE test problem

simulations. These issues were addressed earlier, and will be further discussed in the

next sub-section.

c. Cost-based Testing

Clearly, for the types of systems generated by CASCADE, the MDF solution

strategy has shown itself to be the most reliable, regardless of system size or system

volatility, for attaining the greatest design improvement. However, the cost-based results

76

demonstrate that the cost incurred in attaining this improvement is tremendous. Analysis

cost is typically ten times (or greater) larger for MDF than for IDF. In general, the factor

by which analysis cost for MDF exceeds that for IDF is a function of the number

iterations that are required to converge the system of coupled nonlinear analysis

equations each design cycle. To a lesser degree, this factor is also a function of the

percentage of the system behavior variables that are not coupling variables. When it

comes to analysis cost, AAO is undoubtedly the most attractive solution strategy – there

is absolutely no explicit analysis cost. As the average cost of an analysis evaluation

increases between the cost scenarios, the total analysis cost increases for MDF and IDF,

but does so in proportion.

Objective function cost tends to be comparable for all three solution strategies,

and small when compared to the other costs incurred during solution strategy

implementation. Being that AAO has the largest associated optimization problem, it

tends to incur the greatest objective function cost. This is not always the case; for test

system #2, AAO actually incurs the smallest objective function cost. The objective

function cost is clearly a function of the dynamic of the problem being solved - the

amount of design improvement that is possible by the particular solution strategy being

implemented. This is clearly a function of the initial starting design point. As the

average cost of an objective function evaluation increases between the cost scenarios, the

total objective function cost increases for all three solution strategies, but does so in

proportion.

Constraint function cost exhibits the most interesting and noteworthy behavior

when comparing the solution strategies and cost scenarios. For MDF, the constraint cost

77

is solely a function of inequality constraint evaluation cost, which remains constant for all

three cost scenarios. For IDF, the constraint cost is a function of both inequality

constraint evaluation cost (constant) and equilibrium constraint cost for each coupling

variable. Recall that the latter cost has been approximated to be equal to 10% of the

analysis cost for each analysis equation (behavior variable) that corresponds to each

coupling variable – this quantity changes between cost scenarios. Similarly, for AAO,

the constraint cost is a function of both inequality constraint evaluation cost (constant)

and the cost of each analysis equation posed as an equality constraint. Again, this latter

quantity changes between cost scenarios. Hence, constraint cost is the only of the three

cost quantities that changes disproportionately between the cost scenarios.

For example, for test system #1, cost scenario #1, AAO has the largest constraint

cost, followed by that of MDF, which is about half as large, followed by IDF, which is

about one-third as large as that of AAO. For cost scenario #2, where inequality

constraint cost remains constant but analysis cost (on average) increases five-fold over

cost scenario #1 (refer to Table 4.4), the AAO constraint cost becomes almost three times

larger (than its cost scenario #1 value). At the same time, MDF constraint cost remains

constant, and IDF constraint cost nearly matches that of MDF. Finally, for cost scenario

#3, the AAO constraint cost doubles from that of its cost scenario #2 value, MDF

constraint cost again remains constant, and IDF constraint cost overtakes that of MDF by

approximately 25%. For this cost scenario, the AAO constraint cost is almost ten times

larger than that of IDF, which has the second highest total constraint cost.

Total cost is a function of all three simulated costs that have been discussed thus

far. Total cost was found to be highest for all test systems and all cost scenarios for the

78

MDF strategy, and usually by a substantial margin. This is due almost entirely to the

enormous iterative analysis cost that is incurred every design cycle. Analysis cost is also

found in the IDF and AAO strategies. In the AAO strategy, the “analysis cost” is actually

a vast portion of the “constraint cost”, as the analysis equations are posed as equality

constraints in this formulation. However, recall that analysis cost is non-iterative in

nature in IDF and AAO, resulting in a lower summated final cost. Constraint cost was

the only cost quantity that increased disproportionately between the cost scenarios. As

explained previously, this is because the constraint cost for the IDF and AAO strategies is

a function of both the constant inequality constraint evaluation cost, and the non-constant

analysis evaluation cost, which appears by virtue of the equilibrium constraints and the

analysis-based equality constraints, respectively. Objective function cost was found to

have a miniscule effect on the total cost for all test problems and cost scenarios.

For the first and third test systems, total cost was higher for AAO than it was for

IDF. This initially came as a mild surprise, but upon closer observation, began to make

sense. For the first test system, MDF and AAO performed comparably in terms of

objective function improvement. IDF showed improvement, but substantially less than

that of the other two strategies. Hence, IDF likely converged upon its inferior solution

relatively quickly, with a great deal fewer function evaluations (both analysis and

optimization) expended. For the third test system, IDF slightly outperformed AAO in

terms of objective function improvement. Here again, it is suspected that IDF reached its

final solution (which appears to be a troublesome local optimum) rather quickly, and with

fewer total evaluations, than did AAO. Here, AAO achieved roughly the same final

solution, but its formulation has more optimization variables and a more complicated

79

design space than does IDF. In both cases outlined above, IDF would hence have a lower

associated total cost than would AAO.

A final observation to be made involves objective function cost, which appears to

be a good gauge for determining the solution strategy that will incur the lowest total cost.

For the first and third test systems, the objective function cost (and hence the total

number of objective function evaluations) for the AAO strategy is almost twice as large

as that for the IDF strategy. In both test systems, the total cost for the AAO strategy

approximately doubled that of the IDF strategy. For the second test system, the objective

function cost for the IDF strategy was slightly larger than that for the AAO strategy. For

this test system, the total cost of the IDF strategy was slightly larger than that for the

AAO strategy. As previously explained, MDF was found to have the largest total cost,

often by a substantial margin, regardless of the objective function cost.

This chapter has focused a great deal on the overall MDO cycle, specifically, the

manner in which a multidisciplinary design problem is posed and subsequently solved.

Through the use of simulated cost functions, a more realistic outlook is gained as to the

appropriateness and applicability of the various solution strategies with design systems of

varying size and complexity. The next chapter continues with the global theme of this

research effort – the reduction of time and cost within a multidisciplinary design – but on

a more localized scale. Chapter 5 deals exclusively with techniques for converging the

time and cost consuming system analysis, which is non-linear and hybrid-hierarchic for

systems of real-world scope.

80

Chapter 5

Multidisciplinary Analysis Convergence

__

The previous chapter demonstrated how costly the MDO design cycle can be for

simulated representations of real world engineering systems. By far, the costliest

component of the MDO cycle is the system analysis, which for the MDF procedure, is

highly iterative in nature. There are numerous, commonly used means for formal

convergence of nonlinear multidisciplinary systems. Each will be discussed in detail, and

shown to have numerous advantages and disadvantages. This chapter also presents the

design and development of a new heuristic strategy for multidisciplinary analysis

convergence, which hopes to build upon the strengths of the commonly used formal

procedures. This chapter concludes with a lengthy comparison study of formal and

heuristic convergence strategies, again using test simulations developed by the

CASCADE system simulator.

Formal Analysis Convergence

a. Background

The “system analysis” depicted in Figure 2.7 ultimately translates into the

solution of a large and complex system of nonlinear equations, in a “real world”

engineering design. In such an instance, the best case scenario is that the closed-form

81

relations between subsystem outputs and subsystem inputs are known to the designer,

complex as they might be. Often times, this exact relation is unknown to the managers of

the design, and must be approximated through the use of some form of Response Surface

Methodology (RSM) [8]. In either case, the numerical process of identifying a converged

relation or “mapping” between output and input is often the most time and

computationally cost-consuming portion of a multidisciplinary design process.

Through a quick survey of any Numerical Methods textbook, one clearly realizes

that there are many numerical approaches for convergence of a nonlinear system of

equations. Each has inherent advantages and drawbacks. Probably the two most widely

used techniques for iterative convergence of nonlinear equations in MDO are Fixed-point

Iteration [45] and Newton’s Method [64]. An overview of these classical numerical

approaches is presented as follows, starting with a presentation of the Fixed-point

Iteration technique.

b. Fixed-point Iteration

Many nonlinear equations are formulated as fixed-point problems:

y = K(y) [5.1]

Here, K is the fixed-point mapping between the output and input, and is nonlinear in

nature. A solution of [5.1] is denoted y* , and is called a “fixed-point” of the map K [46].

Fixed-point Iteration (FPI) is a convergence process that is denoted as follows:

yn+1 = K(yn) [5.2]

In words, FPI is a zero-order method that attains convergence by successively

substituting past estimates of a given variable towards the computation of a new estimate

for the given variable. In a nonlinear system of equations, estimates of a given variable

82

are made based on past estimates of the variables of which the given variable is a

function. This procedure gradually drives the variable in question towards convergence.

Clearly, FPI is easily implemented and quite robust, but is in general, an inefficient

means for numerical convergence.

c. Newton’s Method

A more efficient, and extremely well-known alternative for nonlinear numerical

convergence is called Newton’s Method (NM). NM is a derivative-based scheme that

results from the manipulation of a Taylor Series expansion about a design point yo:

l(y) = f(yo) + f′(yo)(y – yo) [5.3]

Analytically, it means that the linear function l(y) is close to the given function f(y) near

yo. At yo, the two functions l(y) and f(y) agree [13]. The manipulated Taylor Series

equation is then used to arrive at a new estimate for the variable in question as follows:

y1 = yo – [f(yo) / f′(yo)] [5.4]

When considering the simultaneous solution of a system of nonlinear equations, equation

[5.4] is extended to the following:

yn+1 = yn – F′(yn)
-1F(yn) [5.5]

Here, F′(yn) is the well-known Jacobian matrix, and notice that its inverse is required to

attain the new estimate of y.

NM is extremely efficient, but only when the initial design point is “sufficiently

close” to the converged design point. If it is not, a different (and perhaps undesirable)

root might be converged upon. Alternatively, outright divergence can often occur. As

previously noted, NM also requires a matrix inversion, which is often computationally

costly and difficult to achieve.

83

d. Formal Analysis Convergence – A Comparison

To illustrate these formal convergence concepts in the context of a

multidisciplinary system, an example is presented. Figure 5.1 demonstrates non-serial

coupling between subsystems A and B. Each subsystem requires independent input in

the form of design variables XA and XB. In addition, each subsystem requires dependent

input in the form of behavior variables YB or YA, each of which is an output quantity

computed by the other subsystem. In other words, the computation of YA requires YB,

and the computation of YB requires YA. For demonstration purposes, the following

polynomial equations can be used to represent the structure of the coupling between

subsystems A and B:

YA = 0.85XA - 6.6e-09YB
3

YB = -0.00042XB
2 + 0.000148YA

2

[5.6]

Subsystem A Subsystem B

XA XB

YA

YB

Figure 5.1: Two coupled subsystems

The equations are restated in an “equality constraint” form, whereby all non-zero variable

values are moved to the right-hand side of the equation. Away from a converged design,

the left-hand side values will equate to non-zero residuals. At convergence, these

residuals are reduced to zero, and the following statements of equality will hold:

84

BVresidA = 0 = 0.85XA - 6.6e-09YB
3 - YA

BVresidB = 0 = -0.00042XB
2 + 0.000148YA

2 - YB

[5.7]

Note that the system is pre-defined by CASCADE to behave within a set of implicit

bounds, [-9999, 9999]. In a real-world system, this restriction might be analogous to the

presence of physical or geometric limits on the variables themselves.

The design variables, which are independent variables that remain constant during

analysis convergence, have values of XA = 1123 and XB = 2645. A known solution for

YA and YB is 1093.514 and -2761.355, respectively. Our pre-defined convergence

criterion is that both equation residuals for YA and YB must be less than 0.01 at the end of

iteration k, where the equation residuals are defined as follows:

residual(A) = abs(YA
k - YA k-1)

residual(B) = abs(YB
k - YB k-1)

[5.8]

Table 5.1: Formal analysis convergence

Trial scenario #1 Trial scenario #2

FPI YA FPI YB NM Y A NM Y B FPI YA FPI YB NM Y A NM Y B

0 600. -2000. 600. -2000. -7834. 8321. -7834. 8321.

1 1007.350 -2885.051 1070.823 -2801.432 -2847.961 6144.660 -11491.471 14625.837

2 1113.041 -2788.147 1093.443 -2761.455 -576.669 -1737.920 -10254.145 12396.915

3 1097.601 -2754.979 1093.517 -2761.355 989.194 -2889.114 -10004.617 11866.124

4 1092.556 -2760.031 1093.517 -2761.355 1113.711 -2793.512 -9991.681 11837.033

5 1093.317 -2761.666 1098.428 -2754.758 -9991.645 11836.948

6 1093.564 -2761.420 1092.523 -2759.762 -9991.645 11836.948

7 1093.526 -2761.340 1093.276 -2761.677

8 1093.514 -2761.352 1093.565 -2761.433

9 1093.516 -2761.356 1093.528 -2761.340

10 1093.514 -2761.352

11 1093.516 -2761.351

85

For trial scenario 1, a design point “reasonably close” to the known converged solution is

chosen: YA = 600, and YB = -2000. From this design, Table 5.1 shows that FPI

converges in 9 iterations, and NM converges in 4 iterations. The iteration histories for

YA and YB are seen in the Table.

For trial scenario 2, a design point that is “reasonably far” from the converged

solution is chosen: YA = -7834, and YB = 8321. From this initial design, Table 5.1 shows

that FPI converges in 11 iterations, and NM “diverges” to a different solution point after

6 iterations. This alternate solution is not necessarily incorrect. In fact, it is a secondary

solution point that is closer to the initial point than is the “true” solution. However, the

deficiency associated with this alternate solution point is that it does not lie within the

pre-defined allowable [-9999, 9999] bounds. For this reason, this solution point must be

deemed infeasible, and unusable.

The convergence strategy proposed in the present study attempts to build upon

both the primary weakness of FPI (lack of efficiency) and the primary weakness of NM

(lack of robustness with respect to starting design point). In so doing, it is hoped that a

convergence strategy with “middle ground” characteristics (i.e. trade-off between

robustness and efficiency) will result. This convergence strategy is referred to here as

Data Fusion Analysis Convergence (DFAC) [41,44] from this point forward, and is

described in detail in the next section.

86

Heuristic Analysis Convergence

a. Algorithm Overview

This section presents a discussion on the specifics of the DFAC technique.

Before explaining details of the individual components of the algorithm, the overall flow

of the method is described. Figure 5.2 demonstrates that the convergence strategy has

four fundamental steps. First, each subsystem output (behavior variable) is modeled as a

neuron of a Neural Network [35,59]. Upon initialization, the input/output relation of

each neuron will have some degree of error, which must be minimized.

The second component of the convergence algorithm is the minimization

(correction) of these errors, through the use of gradient-based optimization. Once the

errors are minimized, each individual behavior variable equation will be satisfied.

However, numerous behavior variables might require the same behavior variable as

input, the values of which may not match at the end of the parallel optimization

procedures taking place. Hence, a procedure for coordinating or “fusing” these

discrepant numerical values is required.

This, in fact, is the third major step in the convergence algorithm – a procedure

that is loosely based on the procedure of Data Fusion [33,53]. Finally, based on the

results of the fusion process, a new predictive estimate for each behavior variable is

calculated. This is the fourth and final step of the DFAC algorithm. The Figure 5.2

flowchart constitutes one cycle of the convergence algorithm, and is repeated numerous

times until numerical convergence is attained.

87

Neural network model
for behavior variables

Sub-optimization
to minimize

equation residuals

Data Fusion model
fuses estimates of
behavior variables

New predictive estimate
of each behavior variable

is calculated

Figure 5.2: The DFAC process flowchart

As Figure 5.2 demonstrates, numerous optimization and MDO-based concepts

have been combined to construct this new technique. Each of these background concepts

is now presented, followed by a detailed discussion of how these concepts are used to

form a useful new algorithm. The background discussion begins with Neural Networks,

the structure of which is fundamental to the present research effort.

b. Neural Networks

In its most general form, a Neural Network (NN) is a “machine” that is designed

to model the way in which the brain performs a particular task or function of interest

[32]. NN’s typically perform useful computations through a process of learning. To

achieve good performance, NN's employ an interconnection of simple computing cells

that are commonly referred to as “neurons”. A neuron is an information processing unit

that is fundamental to the operation of a NN.

88

The model of a neuron can be extended to an MDO context by realizing that each

subsystem output (behavior variable) can be simulated as a neuron. The fixed inputs to

each neuron are the subsystem design variables, which are known quantities, and which

are held constant during the convergence procedure. The “non-constant” inputs to each

neuron are the input behavior variables, whose values are unknown. A corresponding

weight is defined for each input behavior variable, the values of which are initialized and

to be determined. Hence, a full MDO model requires n concurrent neuron models, where

n is the number of behavior variables in the multidisciplinary system.

On each iteration, the NN establishes a “computed” value for each of the behavior

variables in the system that will likely be different than the corresponding input value for

each. Hence, a sub-optimization problem is generated which will minimize the values of

the computed errors for each behavior variable to equal zero. This is accomplished by

altering the values of the weights corresponding to each input behavior variable, and is

typically referred to as “error-correction learning” [70] in NN theory. The specifics of

this sub-optimization problem will soon be discussed. First, the concept of Data Fusion

is presented.

c. Data Fusion

The Neural Network-based approach simultaneously attains prospective solutions

for each of the subsystem behavior variables. The problem is that behavior variables are

typically required as input by more than one subsystem. Hence, multiple subsystem NN's

will concurrently arrive at different values for the weights corresponding to the same

behavior variable, despite the fact that at convergence, ALL weights corresponding to the

same input quantity must be equal. As a result of this discrepancy, some means of

89

coordination must be devised to “blend” these non-equivalent weight values together to

form a single intelligent estimate for each behavior variable. This process of blending is

where data fusion comes into consideration.

Data Fusion techniques combine data from multiple “sensors” to achieve

improved accuracy and more specific inferences than could be achieved by the use of a

single sensor alone [29]. Applications of multisensor data fusion are many. Historically,

data fusion methods were developed primarily for military applications. Recent years

have seen the development of numerous civilian applications for data fusion, including

robotics and medical applications. Multisensory data fusion is naturally performed by

humans to achieve a more accurate assessment of the surrounding environment. For

example, a human cannot use vision alone to know what is around the corner of a wall.

However, the combined use of vision, hearing, and sense of smell can provide a greater

understanding of what is around that same corner. Clearly, this ideology can be extended

and implemented in a numerical/computational context – namely, for the

multidisciplinary analysis convergence problem at hand.

The impetus for the incorporation of Data Fusion concepts into MDO stems from

a preliminary investigation conducted during the summer of 1997, which focused on

increasing the efficiency of the entire MDF solution cycle by eliminating the requirement

and computational overhead of assigning design variables to individual subsystems. The

present approach also exploits sensitivity information to guide the convergence process

but diverts the attention away from the optimization cycle, and design variable allocation

altogether. The present effort utilizes the data fusion concept for intelligently blending

discrepant behavior variable information computed concurrently by different subsystems

90

during iterative analysis convergence, in order to increase the efficiency of this costly

process.

With all of the background components described, the specifics of the DFAC

algorithm can now be discussed.

d. DFAC Algorithm

The algorithm begins by modeling each subsystem output (behavior variable) as a

separate, concurrently executed neuron model (see Figure 5.3, which is divided into four

“segments”, (a), (b), (c), and (d)), each of which is now described.

Figure 5.3: The DFAC algorithm

Segment (a): Each neuron has fixed input in the form of design variables, and

“non-fixed” behavior variable inputs with corresponding variable weights. There is one

neuron for each "output" behavior variable. Note that each behavior variable equation is

91

re-stated in "equality constraint" form as was demonstrated in equation [5.7]. Hence,

unlike the FPI and NM convergence implementations, the representative equation

corresponding to each behavior variable need not be separable, which could be a

tremendous advantage. Because of this, each output behavior variable quantity also

serves as an input to the neuron, and has an associated weight, in the NN equation model.

This implies that the desired output of each neuron - the behavior variable equation

residual - is zero.

Segment (b): To reduce the residuals to zero, a sub-optimization problem is

created. Each neuron has an associated objective function and an associated equality

constraint function. The “duty” of the objective function is to keep the values of the

weights as close to their initial values as possible. The “duty” of the constraint function

is to ensure that at the end of the optimization cycle, the behavior variable equation

residual is equal to zero. The forms of the optimization functions used for achieving

error minimization are given as follows:

Minimize: F = Σ CO(CI(xi - µi))
2 i =1, n

subject to: g = Σ DO(DI(BVresid i))
2 i = 1, n

xlb ≤ xi ≤ xub i = 1, n

[5.9]

Here, CI, CO, DI, and DO are user-defined constants, xi is the fusion weight corresponding

to behavior variable i, BVresidi is the equation residual corresponding to behavior

variable i, and µi is the fusion estimate value corresponding to each fusion weight, which

was computed on the previous iteration. Clearly, n is the total number of behavior

variables that require convergence. The fusion weights are assigned to behave within

92

some set of lower and upper bounds, xlb and xub, respectively, which are user-defined.

The Automated Design Synthesis (ADS) [85] optimizer has been implemented to handle

the sub-optimizations. For all example problems presented in this study, an exterior

penalty function strategy is used, along with a DFP variable metric search, and a

combined Golden Section / Polynomial interpolation 1-D search.

Segment (c): Once all NN residuals have been reduced to zero, a data fusion

procedure is required. This is because each NN will arrive at conflicting values for the

weights that correspond to the same behavior variable. A converged system analysis

occurs when all weight “instances” corresponding to a given behavior variable are equal,

for all system behavior variables.

Four data fusion models have been developed in the present research effort. The

data fusion technique that has had the greatest success thus far is referred to as

“derivative-based” fusion. In this scheme, derivatives of each equation residual are taken

with respect to each behavior variable weight found in that respective equation. These

derivative quantities are denoted “BVsens” in equation [5.10] below. Recognize that this

is analogous to taking the derivative of an equality constraint equation with respect to its

design variables. Here, the weights associated with a behavior variable equation whose

sensitivity was found to be the largest will be weighted proportionally larger than those of

a behavior variable equation whose sensitivity was found to be smaller. The relationship

developed here is written:

93

∑
=

∑
==µ

n

1k
)BVsens(

))BVsens(*
n

1j
w(

k

jij

i
 i = 1, n

[5.10]

Here, “i” represents the fusion variable for which this computation is taking place, “j”

and “k” are generic indices, and “n” is the total number of behavior variables (output

neurons) in the system. Clearly, “wij” is the weight corresponding to a coupling term in

equation i that is coupled to another subsystem, by virtue of behavior variable j.

Before proceeding, the three alternate data fusion models that have been

developed in this research effort are presented. The simplest of these is called “mean-

based” fusion. As the name implies, the fusion estimate for a given behavior variable is

based solely on the numerical mean of all weights corresponding to that variable. This

relationship is represented as follows:

p

)
n

1j
w(ij

i

∑
==µ i = 1, n

[5.11]

Here, all parameters are as they were initially defined in equation [5.10]. Quantity “p” is

an integer, and represents the total number of behavior variable equations which are a

function of behavior variable i. Note that the weight wij corresponding to a given

behavior variable i of which behavior variable equation j is NOT a function will have a

value of 0.0.

A slightly more sophisticated fusion algorithm is called “residual-based” fusion.

This algorithm gives precedence to weights that correspond to couplings that correspond

94

to behavior variables that are “farthest away” from being converged, this having the

largest equation residual, “BVresid”, on a given convergence iteration. This relationship

is represented as follows:

∑
=

∑
==µ

n

1k
)BVresid(

))BVresid(*
n

1j
w(

k

jij

i
 i = 1, n

[5.12]

Finally, the most sophisticated fusion model is presented. However, note that this

model did not quite exhibit the success of the “derivative-based” model during

preliminary testing. This final model attempts to blend the concepts of equation [5.10]

and [5.12] and is called “derivative/residual-based” fusion. This relationship is

represented as follows:

∑
=

∑
==µ

n

1k
))BVsens(*)BVresid((

))BVsens(*)BVresid(*
n

1j
w(

kk

jjij

i
 i = 1, n

[5.13]

The “derivative-based” model seen in equation [5.10] is used as the fusion model

for all results attained in this chapter, due to its success during numerous preliminary test

cases. It is suspected that the other three fusion models are still useful in certain

situations, and deserve future consideration. Their general forms have hence been

provided for sake of completeness.

Segment (d): Once a “fused” weight is calculated for each of the system behavior

variables, a new estimate of each behavior variable is calculated. This is accomplished

95

by multiplying the input value of a given behavior variable (on a given NN cycle) by the

corresponding calculated fused weight, for all system behavior variables:

BVnewi = BVoldi * µI , i =1, n

[5.14]

These new estimates on analysis cycle “k” are compared to their corresponding values on

analysis cycle “k-1”. If, for all behavior variables, the difference between “BVk” and

“BV k-1” is less than some convergence threshold, then the DFAC algorithm has

converged. If not, the entire process repeats itself until convergence is achieved, or until

some predetermined number of cycles are executed.

The DFAC algorithm is not wholly deterministic, as some additional parameters

contribute to the convergence procedure which contain some degree of uncertainty.

These include a [0,1] “randomness factor” which pre-multiplies the relative finite

difference coefficient in the optimizer. In addition, the user can assign a “decimal

improvement” parameter, which decides the degree of improvement that must be attained

on each iteration of the convergence procedure to accept the new fusion-generated move.

A default value of 1.0 implies that any reduction in the sum of the behavior variable

residuals over the corresponding sum (on the previous iteration) will be accepted. A

value of 1.25 implies that the residual sum would be allowed to increase by as much as

25%, and the data fusion-based move would still be accepted. Hence, DFAC acts like

certain heuristic optimization techniques such as Simulated Annealing [48]. Namely,

there is some probability of accepting a design point with an “inferior” solution

alternative, in hopes of escaping any local minima that reside within the solution space.

96

The DFAC algorithm has been compared with the formal convergence strategies

through the implementations of two different forms of coupled test problems. These test

problem classifications are now described.

Simulation Details and Results

a. Test Problem Descriptions

In this research effort, three different fully-coupled test systems have been

generated by CASCADE, each having three subsystems, and one behavior variable

(output) per subsystem, and one design variable per behavior variable. Figure 5.4

illustrates the coupling structure of all three test systems, each of which will have

differing semantic characteristics. The specific equations for these three test systems are

found in Appendix I.

Y2Subsystem 0

Subsystem 1 Subsystem 2

Y0

Y1

X0 Y0

X1 X2

Y2 Y1

Figure 5.4: CASCADE test system structure

Though the use of CASCADE-generated test systems is seminal for this research

effort, a secondary means for testing the DFAC algorithm is desired. These secondary

problems should be less generic in nature, and should demonstrate characteristics of a

“real-world” MDO problem. Moreover, these problems would ideally be a bit larger in

size, and not necessarily fully coupled in nature. The obvious choice for the source of

such problems is the MDO Test Suite at NASA Langley [63]. For this effort, two

problems from Class I were chosen -- the “Heart Dipole (HD)” and the “Combustion of

Propane (COP)” problems. Both problems are, in their simplest form, a series of n

97

nonlinear equations and n unknowns, where n is equal to 8 for the HD problem, and 11

for the COP problem. Figures 5.5 and 5.6 illustrate the coupling structure of the HD and

COP systems, respectively.

These test problems have been modified slightly from their original form so that

they could be used for the research purposes of the present effort. The systems of

equations were modified to be separable in each of the n unknowns, which allowed for

the comparison of the DFAC algorithm to formal convergence techniques that require

separability. Further modifications have been made such that the equations demonstrated

some degree of stability from numerous starting points. The modified versions of these

equations are seen in Appendix II.

b. Hybrid Strategy Convergence Approach

The approach used for attaining all results in this study is a “hybrid” strategy. By

this is meant the following: the DFAC algorithm is first implemented to reduce the initial

equation residuals down to a near-zero value. Thereafter, the FPI convergence technique

is implemented to finish off the convergence process. Clearly a large research issue that

stems from the current effort is the ability to identify the threshold point at which the

DFAC algorithm is “turned off” and FPI is “turned on” to finish the job. For the present

research effort, it was discovered through preliminary testing that in general, an

appropriate number of preliminary iterations of the DFAC algorithm is to be

approximately k/2. Here, k is the number of iterations required to converge the system

using straight FPI (for every iteration) from the given starting point.

98

Note that NM or another formal convergence algorithm could be used to complete

the convergence process, instead of FPI. FPI has been chosen for the acquisition of the

results in this study, mainly for its high level of robustness.

c. Results

Table 5.2 provides the following information for each of the five test systems.

First, the initial sum of equation residuals (row a), and the final sum of equation residuals

after application of the DFAC algorithm (row b). Next is the number of applied iterations

of the DFAC algorithm (row c), and the subsequent number of FPI iterations required to

fully converge the system to one decimal place (row d). Finally, the total number of

hybrid iterations (row e) required for convergence is shown. For reference, the number

of iterations required to converge the same system using the FPI (row f) and the NM (row

g) techniques are also supplied. Note that italicized rows b, c, d, and e apply to the

DFAC algorithm.

Table 5.2: Result summary

CASCADE 1 CASCADE 2 CASCADE 3 HD COP
a. Initial residual sum 10.27 9.51 29013.76 6.194 18.996
b. Final residual sum 0.007 0.012 0.111 0.031 0.084
c. Iterations of DFAC algorithm 15 12 35 25 20
d. Subsequent FPI iterations 15 6 1 12 34
e. Total “hybrid” iterations to 30 18 36 37 54
f. FPI iterations to converge 37 24 77 60 72
g. NM iterations to converge diverges 7 5 7 diverges

 Figure 5.5 is a chart that summarizes the results for all five test systems side by

side. The convergence techniques are abbreviated FPI, NM, and DFAC. Plotted on the

y-axis is the number of iterations required to converge the system to the appropriate

number of decimal places, as outlined in the previous sub-sections. Note again that NM

99

diverges (denoted by “∞”) for the first CASCADE system and for the MTS COP system.

A discussion of these results follows.

 ∞ ∞

Figure 5.5: Comparison of convergence strategies

Discussion

The DFAC algorithm has proven successful for all three CASCADE-based test

systems. Here, “success” is measured by the fact that straight FPI iteration was bettered

by the DFAC algorithm by an appreciable amount for every test case. For test system #1,

15 iterations of the DFAC algorithm were implemented, followed by 15 more iterations

of straight FPI to converge the system. Hence, this hybrid strategy converged the system

in a total of 30 iterations - 7 iterations (18.9%) fewer than straight FPI. Recall that NM

diverged from the given starting point, for the first test system. For test system #2, 12

iterations of the DFAC algorithm were implemented to reduce the initial residuals,

followed by 6 iterations of straight FPI to achieve full convergence. Hence, this hybrid

strategy converged the system in a total of 18 iterations - 6 iterations (25%) fewer than

straight FPI. NM converged in a mere 7 iterations for this test system. Finally, for test

���
���
���
���
���
���

���������
���������
���������
���������
���������
���������

�����������

�����
�����
�����
�����

�������
�������
�������
�������

���������

����
����
����
����
����
����
����
����
����
����
����

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

������������

������
������
������
������
������
������
������
������
������

��������
��������
��������
��������
��������
��������
��������
��������
��������

����������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���������
���������

0

10

20

30

40

50

60

70

80

90

100

CASC #1 CASC #2 CASC #3 MTS HD MTS COP

��������
FPI NM DFAC

100

system #3, 35 iterations of the DFAC algorithm were implemented to reduce the initial

residuals, followed by only 1 iteration of straight FPI to achieve full convergence. Here,

it is clear that the DFAC algorithm nearly converged the system on its own accord.

Ultimately, the hybrid strategy converged the system in a total of 36 iterations - 41

iterations (53.2%) fewer than straight FPI. NM converged in a mere 5 iterations for this

test system.

A large degree of success was also seen for the two “non-CASCADE” systems,

though after many experimental hours of testing and re-testing the algorithm. For the

modified HD system, 25 iterations of the DFAC algorithm were implemented to reduce

the initial residuals, followed by 12 iterations of straight FPI to achieve full convergence.

Hence, this hybrid strategy converged the system in a total of 37 iterations - 23 iterations

(38.3%) fewer than straight FPI. NM converged in a mere 7 iterations for this test

system. For the COP system, 20 iterations of the DFAC algorithm were implemented to

reduce the initial residuals, followed by 34 iterations of straight FPI to achieve full

convergence. Hence, this hybrid strategy converged the system in a total of 54 iterations

- 18 iterations (25.0%) fewer than straight FPI. NM diverged for this test system.

After preliminary testing, a few general observations can be made. The DFAC

algorithm is seemingly very good at reducing large equation residuals down to values

close to zero, where straight FPI can then be implemented to drive the near-zero residuals

down to zero. The general trend seen in the experimental testing is that for “accurate”

starting points that turn out to be “close enough” to the true solution, a formal derivative

based convergence scheme such as NM is clearly the convergence strategy of choice.

NM is reliable in cases where the analysis solution space is known to be convex. In

101

many realistic MDO applications, this will rarely be the case. Alternatively, when the

starting point is known to be a “substantial distance” from the converged solution, or if a

relation between the initial and final solutions cannot be estimated (proving NM to be an

unsafe choice for iterative convergence), the DFAC algorithm has shown itself to be

reliable for reducing large residuals. DFAC can then be supplemented with numerous

iterations of FPI to achieve full convergence. This hybrid strategy has shown to be more

efficient than straight FPI in all five test cases.

The DFAC algorithm involves numerous concepts and procedures, and is clearly

more complicated and computationally intensive than is FPI. The ideal application of

this technique is envisioned to be a large-scale MDO problem, where iteration time is

known to be substantial (i.e. on the order of “hours/days” as opposed to

“seconds/minutes”). Hence the implementation of the DFAC algorithm will see an

increase in time and computational cost per iteration, in the hopes of decreasing the total

number of iterations to attain a converged design. NM is clearly more computationally

intensive than FPI, as it requires derivative computations and a matrix inversion, which is

typically a high cost endeavor. It is suspected that the computational cost of the DFAC

algorithm is also larger than that of the NM implementation. While the DFAC results

have not yet shown to be as efficient as those attained by NM, the technique has shown to

exhibit the robustness of FPI, which is a large shortcoming of NM.

The last two chapters have discussed, in great detail, specific applications for the

use of the CASCADE simulations to identify various means for time and cost reduction

of the elaborate MDO design cycle. Chapter 6 presents the design and development of

102

FACETS, the MDO framework that encompasses all of the independently developed

areas of MDO research that have been presented in the present work.

103

Chapter 6

MDO Framework design and development: FACETS

__

The current chapter discusses the design and continual development of a new

computational framework in the field of MDO, entitled FACETS. The primary purpose

of FACETS is to bring together the numerous MDO tools and techniques that are

available to a design manager into a single, all-encompassing infrastructure. Such a tool

can provide an MDO design manager with a powerful means for identifying possibilities

for time and cost reduction within an existing multidisciplinary design. There are

numerous distinctions between FACETS and other MDO frameworks, and each will be

discussed within the body of this chapter. The primary difference is that FACETS is a

preliminary design tool, rooted in simulation; hence, CASCADE is a vital feature in this

framework. Prior to presenting a lengthy discussion on the FACETS framework, a

literature survey and background discussion of existing, large-scale MDO computer tools

is presented.

Literature Survey and Background

Clearly, as the preceding chapters of this dissertation have demonstrated, there are

many research avenues within the field of MDO which ultimately strive to address to

very same research issue – the reduction of time and cost within the multidisciplinary

104

design cycle. To address this seminal issue, numerous computational problem-solving

environments, commonly referred to as “frameworks”, have been developed in recent

years. A framework has been loosely defined in literature as a “hardware and software

architecture that enables integration, execution, and communication among diverse

disciplinary processes” [69].

Some recently developed frameworks in MDO which incorporate some

combination of these characteristics include FIDO (Framework for Interdisciplinary

Design Optimization) [87], which serves as a general distributed computing system for

executing multidisciplinary computations on a heterogeneous network or workstations.

FIDO automates the coordination of analyses by numerous design disciplines into an

integrated optimization scheme, and allows for visualization and “steering” by the

designer.

A number of other frameworks and/or problem solving environments are

presently under development. These range from alternatives to FIDO which focus more

on exploiting distributed, heterogeneous computing, such as Access Manager [66],

developed by Boeing. Others include commercial optimization toolkit environments

such as iSIGHT [82], which allows the user to flexibly integrate analyses with

optimization methods of all forms; numerical, heuristic, design of experiments (DOE)

[58], and others. A similar optimization toolkit environment is LMS-Optimus [24],

which provides the user with DOE and RSM methods in addition to conventional

nonlinear programming techniques.

Finally, there are other existing design tools that focus more on data and

information flow within the design process, such as IMAGE [28], which provides object-

105

oriented data management utilities for use during design processes. Another such

example is the DARWIN [49] project, which seeks to reduce design cycle time by

improving access to experimental data.

In reference [71], Salas and Townsend outline four of the essential requirements

that a viable MDO framework must contain. These include, but are not limited to the

following aspects:

1. First, architectural design - the framework should have an attractive front-end, such

as an intuitive Graphical User Interface.

2. Second, problem formulation construction - the framework should support legacy and

proprietary codes.

3. Third, problem execution - the framework should automate the execution of

processes, and allow for parallel execution and user interaction.

4. Finally, information access - the framework should provide visualization and

monitoring capabilities.

The primary shortcomings of many existing MDO frameworks are that they tend

to be hard-coded, discipline or problem specific, and have limited capabilities when it

comes to the incorporation of new technologies. There appears to be a need for a

framework which can exploit many of the newly developed tools, strategies and

techniques in MDO which strive to “simplify”, and ultimately reduce the time and cost of

the design cycle associated with large, coupled engineering design problems.

Many of these tools and techniques have been outlined in the preceding chapters

of the present work. These and other computational techniques can be viewed upon as

“islands of research” in that they are independently developed computer codes and

106

concepts, which are (at present) physically separated, yet functionally related [42]. A

design manager may benefit from an environment which allows the combination and/or

integration of such research islands, such that related research concepts can be merged,

and numerous “what if?” scenarios can be explored quickly and easily. An inter-related

problem involving many of these research islands, and MDO research in general, is the

lack of availability of design data and benchmark (test) problems. Researchers must have

a safe and robust means for testing a newly developed MDO strategy prior to its

implementation on an actual “real-world” design. Hence, the development of a

framework that is focused on the incorporation of new MDO tools and techniques should

have a robust means for coupled system simulation, both at the system analysis and

optimization levels, as its foundation.

Preliminary Conception

The MDO Framework that is presently under development is called FACETS

[42], which is an acronym that stands for “Framework for the Analysis of Coupled

Engineering Techniques in Simulation.” The original concept for this research effort was

to utilize the Java programming language [19] to program the exterior structure of the

framework. Java is an interpreted programming language whose compiler uses byte-code

rather than native machine code. In doing so, the framework would have taken strides

towards being heterogeneous; in other words, capable of execution on any architecture

that has a Java interpreter. Java programs that are written as applets can be executed

through the use of a web browser, which are typically available on all computational

platforms (PC/Macintosh/Workstation) and operating systems. Unfortunately, the

shortcomings of using Java as a large-scale MDO tool are numerous; namely, there are

107

security limitations on implementing Java applets for both reading and writing files, and

instantiating system-level commands. These are operations that are fundamental to any

large-scale software tool that relies on inter-communication between related computer

codes and functions. These weaknesses, coupled with Java’s slow execution speed in the

context of numerical computations deemed the use of the language infeasible for the task

at hand.

Motif

As a result of the numerous shortcomings of Java, the exterior front-end of the

FACETS framework has a Graphical User Interface (GUI) that has been coded using the

Motif toolkit [34]. Motif, which utilizes the ANSI C programming language, was

designed by the Open Software Foundation (OSF). The OSF is a consortium of

companies such as Hewlett-Packard, IBM, Digital, and others, whose charter calls for the

“development of technologies that will enhance interoperability between computers from

different manufacturers” [34]. This line of thinking is clearly parallel with the necessary

aspirations of any useful MDO computer tool.

Motif is based on the X-Windows System, which is a network-based windowing

system that has been implemented for UNIX, DOS, Macintosh, and other operating

systems, and serves as a flexible foundation for GUI-based programming. Each of the

modules within FACETS implements the easy to use control “widgets” that are typical of

all Graphical User Interfaces. These include push buttons, scrollbars, toggle (radio)

buttons, textfields, and others. A generic flowchart of the structural operability of

FACETS is seen in Figure 6.1. Note that the modules marked with an asterisk (*) are

“future modules” that are not yet incorporated into FACETS.

108

FACETS main window

Pre-processing
(directory structure)

Problem Definition
(CASCADE)

Planning
Optimization

Graph Morphing*

Solution Strategies
Sequencing Strategies*

Coupling Strength*
Analysis Convergence

Post Processing

Figure 6.1: FACETS general structure

When the user instantiates FACETS, the main GUI window appears as shown in

Figure 6.2. Hereafter, the user clicks on the FACETS name, which is in fact a colored

button. This event then brings up a window that allows the user to establish a directory

structure; this window is shown in Figure 6.3. Here, the user utilizes the textfields to

prescribe the location of file paths for each module. This is necessary because FACETS

makes use of numerous modules, each of which requires a number of input and output

files for successful operation. It is for this reason that this “directory structure” window

109

is the first module presented to the user. This information must be established prior to

entering any of the feature modules of FACETS.

Figure 6.2: FACETS main window

Figure 6.3: FACETS directory structure window

As hinted upon previously, FACETS operates upon the concept of “modularity”.

In other words, each application or feature of FACETS functions as its own individual

entity. This flexibility allows for the addition of new technologies to, or the removal of

dated applications from the framework at any time. The modules within FACETS can

then “communicate” through numerous means. Typically, simple numerical data is

110

stored in data files that can be written as output by one module, and read in as input by

another module. For example, the final values of the constraint functions are written to a

data file by a given module, and are then read in by the post-processing module for visual

presentation.

Some modules create output in the form of a compilable language file. For

example, the analysis equations generated by the CASCADE simulator are written in the

form of compilable ANSI C based functions, and are all encapsulated within a single

header file. At present, all output files are written in ANSI C, but this process could

easily be extended to other languages, such as Fortran, Java or even HTML [60]. These

language files can then be compiled with other codes and fully used by other modules.

Any “command line” activity is accomplished by FACETS via the UNIX-based

“system” command:

system(“command”); [6.1]

where “command” is a character string in the form of an operating system command. For

example, should the user wish to compile two files “out1.c” and “out2.c” that are located

in the /tmp directory, and subsequently write the executable to a file named “out” located

in the same directory, the system command might appear as follows:

system (“cc –o /tmp/out /tmp/out1.c /tmp/out2.c”); [6.2]

The system command is used primarily for compiling and executing codes, and is

triggered through a widget event, namely the depression of a push button.

Some additional general features of the FACETS framework are worthy of

mention. The user has the power to interrupt the execution of a module prior to its

completion. This might be desirable if the user notices that the solution process is

111

proceeding into a disadvantageous region of the solution space. Eventually, FACETS

will allow the user to make some form of an adjustment during the interrupt period, and

then restart execution after this alteration has been made. An additional feature involves

data storage. The user may wish to save or “store” result data after an execution of

FACETS, which can later be retrieved and “opened” for subsequent usage. This process

can take place before or after the execution of any of the feature modules in FACETS.

The next section addresses some of the specific modules that have been or will

soon be incorporated into the FACETS framework structure.

Modules of FACETS

This section discusses all of the modules that appear in the “first release” of the

FACETS framework. The modules that have already been developed by the authors are

emphasized. It is envisioned that the incorporation of future modules will include MDO

strategies developed by exterior researchers.

a. CASCADE

After instantiating the framework and establishing a directory structure, the user

must define the multidisciplinary problem data. The long-range goal for this framework

is to accommodate “real world” design data in addition to simulated design data. At

present, the framework serves solely as a preliminary design tool. Hence, problem data is

artificially generated using the CASCADE simulator.

 The FACETS framework contains a “Problem Definition” module that houses

the CASCADE simulator. The corresponding FACETS window is shown in Figure 6.4.

This module contains three sub-modules. The first is the “system analysis” sub-module,

which allows the user to define the structure of the analysis equations to be generated. As

112

shown in the figure, the user manipulates simple widgets to define the number of

subsystems, design variables, and behavior variables in the system to be generated.

Additionally, the user assigns parameters relating to convergence, system volatility, and

others.

The second is the “optimization” sub-module, which is triggered by clicking the

corresponding radio button near the center of the window. Here, the user assigns options

pertaining to the optimization portion of the simulation, such as the number of inequality

constraints per subsystem, and the nature of the objective function (system or subsystem-

level).

The third is the “evaluation cost” sub-module, and is triggered by pressing the

corresponding radio button near the right-center of the window. It is here that associated

generic evaluation costs are defined for both the analysis behavior variables and for the

objective function and inequality constraint functions. Such information is useful when

comparing multidisciplinary solution strategies, as was discussed in Chapter 4.

Figure 6.4: FACETS “Problem Definition” module

113

The FACETS framework is primarily interested in testing MDO methods and

strategies on a simulation-based level. It is because of this that CASCADE, which

ultimately provides the multidisciplinary problem data, is truly the flagship module of the

framework.

b. Planning

The development of the Planning module was inspired by a similar (and much

more elaborate) module found in Rogers’ DeMAID [67] program. This module allows

the user to visualize initial information about the problem being solved. Currently, this

“pre-processing” module serves two primary functions. The first is to allow the user to

visualize the initial value of the system objective function (or the summed value of the

subsystem objective functions). This information provides a baseline measure to quantify

future design improvements against. Recall that CASCADE generates the optimization

simulation around the system analysis in such a way that the converged starting point is a

feasible one. At present, the user is given the option to seek out an alternate initial

feasible starting design point by way of a random search. Such a procedure could easily

be expanded to allow for a more elaborate search procedure, as well. This sub-module of

the Planning module is seen in Figure 6.5a.

The second primary feature of the Planning module involves the coupling

structure of both the system analysis and optimization equations generated. Namely, this

sub-module informs the user as to whether or not there are a). behavior variables which

are not coupled (i.e. are not required as input by other behavior variables), or b). behavior

variables which do not require any other behavior variables as input. Analogous

information is provided for the optimization functions as well. Namely, are there c).

114

behavior variables which are not coupled (i.e. are not required as input by any

optimization functions), or d.) optimization functions which do not require any behavior

variables as input. Such information could be useful when comparing strategies for

multidisciplinary analysis and optimization. This sub-module of the Planning module is

seen in Figure 6.5b.

Figure 6.5: FACETS “Planning” module
a. Initial design point

b. Coupling information

115

c. Optimization

The FACETS framework presently makes use of the Automated Design Synthesis

(ADS) program [85] as its sole optimization tool. ADS allows the user to change a large

number of options corresponding to the gradient-based optimization search. Such

parameters relate to the optimization strategy, optimization method, the one-dimensional

search method, move limits, constraint thickness, finite difference parameters, variable

scaling, and many others. A module has been devoted to providing the user with an easy

means for assigning and altering such options quickly and easily. This allows for the

efficient execution of “what if?” scenarios within the context of any MDO techniques

that require numerical optimization. The “optimizer settings” module main window is

shown in Figure 6.6.

Figure 6.6: FACETS “Optimization” module

d. Solution Strategies

As discussed in Chapter 4, there are numerous means for posing and subsequently

solving a multidisciplinary design problem. The most popular and well-known strategy

has been called Multiple-Discipline Feasible (MDF). Two of the more popular alternate

116

strategies are called All-at-Once (AAO) and Individual-Discipline Feasible (IDF). An

entire FACETS module has been created which allows the user to compare these solution

strategies within the context of the same multidisciplinary design problem. Depending

on the strategy chosen, there are numerous implementation issues to be considered. For

example, if an explicit system analysis is utilized in the solution strategy chosen (as in

both MDF and IDF), there are numerous analysis convergence-related options to be

assigned. Also, if there are additional optimization variables introduced in the solution

strategy chosen (as in both IDF and AAO), corresponding side constraints must be

defined. As a baseline solution strategy, Random Search [91] is also included as an

available multidisciplinary solution strategy. The main window for Solution Strategy

assignment is shown in Figure 6.7.

Figure 6.7: FACETS “Solution Strategies” module

e. Analysis Convergence

As discussed in Chapter 5, the system analysis tends to be the most costly

component of the multidisciplinary design cycle. Hence, an entire module has been

devoted to allow for the comparison of strategies for the convergence of a

117

multidisciplinary analysis. These range from well-known formal convergence strategies

such as Fixed-point Iteration that is based upon successive substitution, and Newton's

Method, which is derived from a Taylor Series expansion. Both of these techniques are

available as analysis convergence options within FACETS. Each of these techniques has

different strengths and weaknesses. As a result of this, the DFAC convergence algorithm

presented in Chapter 5 is also available within FACETS as a possible convergence

alternative. Four “fusion models” have been developed thus far, all of which are

available as options within the FACETS analysis convergence module. The main

window for Analysis Convergence assignment is shown in Figure 6.8.

Figure 6.8: FACETS “Analysis Convergence” module

f. Post Processing

Finally, a means for quantifying results is imperative in any multidisciplinary

design framework. FACETS post-processor provides the user with a variety of means for

result interpretation and visualization. These include an “optimization feedback”

sub-module, which allows the user to view the final value of the objective function, as

118

well as a color-coded means for visualizing constraint status (active/violated/satisfied).

This sub-module is shown in Figure 6.9a.

The “time and cost” sub-module allows the user to view the overall CPU time and

the generic cost associated with the multidisciplinary solution cycle. This sub-module is

shown in Figure 6.9b. Finally, a “plotting” sub-module uses the XMGR [83] UNIX-

based routine to provide the user with 2D plots of iteration convergence at the analysis

level, objective function convergence at the MDO-cycle level, and design and behavior

variable histories at both the analysis and MDO-cycle levels. This sub-module is shown

in Figure 6.9c.

119

Figure 6.9: FACETS “Post Processing” module
a. Optimization feedback

b. Time and cost

c. Plotting

120

The framework has been used for numerous MDO applications. The next section

presents a verbal demonstration run through of FACETS, where the “Solution strategies”

module is the primary feature utilized. In so doing, the utility of most of the current

features of FACETS is demonstrated.

Demonstration Usage of FACETS

In this demonstration, the user wishes to gain insight as to the overall MDO

solution strategy that is most appropriate for a given complex system. The system in

question has 5 subsystems, once decomposed, which are fully coupled (Figure 6.10).

Each subsystem has one output behavior variable (Y). In the analysis, the design

variables (X) are subsystem-dependent. This coupled system also has an associated

optimization, characterized by a system-level objective function, 5 subspaces, and 2

inequality constraints per subspace (Figure 6.11). In the optimization, the design

variables are subspace-independent. Simulated evaluation costs have been defined for

each behavior variable (random, between 500 and 999), the objective function (a fixed

cost of 250), and each constraint function (random, between 0 and 100). The exact

values for each function are shown in Table 6.1.

Figure 6.10: Demonstration coupled system

Subsystem 1

Subsystem 2 Subsystem 3

Subsystem 4 Subsystem 5

X1

X2 X3

X5X4

121

Figure 6.11: Demonstration optimization problem

Table 6.1: Simulated cost values

Function: Evaluation Cost:
Y1 582
Y2 514
Y3 731
Y4 685
Y5 510
F 250

g11 3
g12 53
g21 68
g22 41
g31 20
g32 48
g41 92
g42 84
g51 72
g52 44

The user is presented with the “Title window” module upon entering FACETS, as

seen in Figure 6.2. After proceeding to the “Directory structure” module (Figure 6.3) and

assigning the path structure for file I/O, the user next proceeds to the “Problem

Subspace 1 Subspace 2 Subspace 3 Subspace 4Subspace 5

System-level Objective Function

Minimize F(Z) = F(X1, X2, X3, X4, X5, Y1, Y2, Y3, Y4, Y5) = …

g11(Z) = … ≤ 0
g12(Z) = … ≤ 0

g21(Z) = … ≤ 0
g22(Z) = … ≤ 0

g31(Z) = … ≤ 0
g32(Z) = … ≤ 0

g41(Z) = … ≤ 0
g42(Z) = … ≤ 0

g51(Z) = … ≤ 0
g52(Z) = … ≤ 0

122

Definition” module (Figure 6.4). Here, the user assigns the desired structure of the

simulation of the true system; the semantics are randomly generated. Once the simulated

system is generated, the user proceeds to the “Planning” module (Figure 6.5), where basic

information about the initial design point is surmised. In this case, the initial objective

function has a value of –447.325, and the initial design is feasible. The user next

proceeds to the “Optimizer settings” module (Figure 6.6), where optimization settings are

assigned in relation to the ADS optimizer. For the present execution, these settings are

assigned to a set of “trusted” values and not changed thereafter, for sake of simplicity.

The highlights of these settings are seen in Table 6.2.

Table 6.2: Optimization setting highlights

Solution characteristic: Setting:
Optimization strategy Sequential Linear Programming
Optimization method Method of Feasible Directions

Optimization 1-D search Golden Section Method
Variable scaling? No

Relative move limit factor 0.75
Equality constraints – Penalty multiplier 2.5

Minimum finite difference change (absolute) 0.1
Required convergence iterations (strategy level) 12

Constraint push-off factor 1.75

After assigning optimization options, the user is finally able to conduct some

meaningful research, and proceeds to the “Solution strategies” module (Figure 6.7).

Here, the user attempts to solve the MDO problem from the same starting point by way

of each of the three primary solution strategies, MDF, IDF, and AAO. The baseline

results are seen in Table 6.3. The user can note by viewing the color-coded (shown in

gray-scale, here), “Post processing” optimization feedback sub-module that the lowest

value of the objective function is attained by the AAO strategy, but that the design point

123

associated with this value is not feasible (Figure 6.9a). Further, one can see the high cost

associated with the MDF strategy, which is the price paid for attaining the largest

(feasible) decrease in the objective function (Figure 6.9b). The plotting sub-module

(Figure 6.9c) of the post-processor provides objective function vs. Iteration plots, care of

XMGR, for each of the three solution strategies. These plots are seen in Figure 6.12.

Notice that each solution strategy completes with a different final objective function

value, and the paths taken to reach the respective optima are quite distinct.

Table 6.3: Baseline solution strategy results

MDF IDF AAO
Initial Objective Function -447.325 -447.325 -447.325
Final objective function -1025.134 -836.431 -1260.01

Active inequality constraints 4 1 2
Active side constraints 2 2 3

Active equality constraints n/a 5 2
Violated constraints 0 0 3

Analysis cost 5128334 924732 0
Objective function cost 58000 76250 68250
Constraint function cost 121800 251930 968331

Total cost 5308134 1252912 1036581

At this point, the user has generated a system and has attained a set of baseline

results. Typically, the user will view these results, make some intelligent adjustments

based on these results, and then attain a new (and hopefully improved) set of results. For

instance, the user might wish to verify the validity of the results attained by returning to

the “Planning” module to generate a new feasible starting design. In this example, a new

feasible design has been generated, and the associated objective function value is

194.334, which is larger than was the initial value. Thereafter, each of the three solution

strategies is implemented once again. In this particular setting, the MDF strategy attained

124

nearly the same solution, IDF attained an infeasible solution, and AAO attained the

lowest improvement, but with a feasible final design. This information is summarized in

Table 6.4.

Figure 6.12: Objective function vs. Iteration plots: a. MDF

b. IDF

125

c. AAO

Table 6.4: Secondary result summary

MDF IDF AAO
Initial Objective Function 194.334 194.334 194.334
Final objective function -1047.413 -478.366 -136.571

Active inequality constraints 1 2 1
Active side constraints 2 0 0

Active equality constraints n/a 2 5
Violated constraints 0 3 0

This demonstration usage of FACETS has exemplified how the FACETS

framework can be useful to an MDO researcher during the preliminary stages of a

multidisciplinary design, in a general sense. Namely, FACETS allows the user to quickly

simulate the structure of a real-life coupled system, view its initial characteristics,

perform some meaningful baseline calculations in simulation, and then view the initial

results. Thereafter, the user can make judgements and subsequent modifications based on

these results, and can quickly and easily re-run a new simulation in hopes of attaining

126

“better” results and more useful insight to the true problem. The heuristic observations

made through executing such preliminary simulations may then be put to use during the

later phases of the design process. Specifically, these solution heuristics can be

implemented when the multidisciplinary design cycle is performed while using the actual

system data, as opposed to the simulated design data that is used within FACETS.

The seventh and final chapter of this dissertation presents a multitude of

concluding observations, and presents numerous possible avenues for related future

research work.

127

Chapter 7

Conclusions and Future Work

__

Conclusions

This dissertation has presented an in-depth look at several research developments

within the emerging field of Multidisciplinary Design Optimization. While the general

procedure of system decomposition - breaking down a large engineering system into a

coupled grouping of subsystems - seems like an intuitive approach for engineering

design, it has numerous inherent weaknesses. Namely, the structure of the design process

that results, though intelligently partitioned, is still a lengthy and costly one. Because of

this, many MDO researchers spend a great deal of time designing and developing new

strategies for reducing and/or simplifying the MDO process in some way. Many of these

techniques were discussed formally in the Background discussion presented in Chapter 2.

The primary motivation for this research effort is to reduce the time and cost associated

with the multidisciplinary design cycle in any of a number of ways. This research goal

was formally stated in Chapter 1, and re-emphasized at the end of the second chapter, as

well.

128

To address this broad and daunting research goal, the present effort has been

divided into four primary areas of contribution, which were discussed in detail in

Chapters 3-6, respectively. First, the continual design and development of a computer

tool called CASCADE, which is used to generate an analytical simulation of a

multidisciplinary system. Second, the utilization of CASCADE for the large-scale

comparison of numerous popular approaches in MDO for posing and subsequently

solving multidisciplinary design problems. Such a comparison had not before been

conducted, or even possible. Third, the utilization of both CASCADE and the MDO Test

Suite for the comparison of formal and a newly developed heuristic approach for the

convergence of a multidisciplinary analysis. The latter approach is entitled Data Fusion

Analysis Convergence (DFAC), and is outlined extensively in this work. Fourth and

finally, the development of the computational infrastructure that bonds all of these (and

other) MDO concepts together: the FACETS framework. Both a summary and

conclusions from each of these individual areas of research contribution are now

presented.

a. Multidisciplinary System Simulation

Before MDO-based research strategies can be implemented in the design process

of such large engineering systems as automobiles and aircraft, they must be tested. A

method for analytically simulating real-life, coupled, large engineering systems is

necessary. To this end, Chapter 3 presented a discussion of the development of the

CASCADE simulator. CASCADE accepts user inputs to randomly construct and then

converge a large system of coupled equations. This system of equations can be viewed as

an analytical representation to a real-life design scenario. The system has known

129

structural characteristics, and randomly generated semantic characteristics. The

simulator first generates the “system analysis” portion of the design, and then implements

Fixed-point Iteration to identify a converged analysis solution. The simulator then builds

the optimization problem around this converged design in such a way that the starting

design point is feasible. Additional features are continuously being added to the

simulator to add to its realism. These include the “system volatility factor”, which allows

the user to vary the stability of the equations generated. Another new feature is the cost

sub-module, which allows the user to assign artificial costs associated with the evaluation

of all functions generated by CASCADE.

Once the system is constructed and converged, CASCADE offers numerous post-

convergence features. Each of these features is written to an output data or language file,

and can be used by other simulation modules downstream. For example, an initial set of

total derivatives are computed via the GSE and written to an output file. All of the

numerics concerning the final solution point, (namely, the converged values of the design

and behavior variables, and the initial values of all optimization functions), are written to

a data file. In addition, all equations (analysis behavior variables, objective function(s),

and inequality constraints) are written to output files by way of character strings. The

output files themselves are ANSI C header files, and can be compiled and linked with

other codes such that meaningful research can be conducted.

b. Multidisciplinary Solution Strategies

Chapter 4 presented a numerical comparison of the MDF, IDF, and AAO solution

strategies across simulated multidisciplinary design systems of varying size and

complexity. The CASCADE simulation tool generated the multidisciplinary test systems.

130

From the results, some general conclusions can be drawn. Given the ability to pose a

multidisciplinary design problem three different ways, a design manager has three

distinct means for solving the design problem. This should be viewed as an advantage.

Each of the three solution strategies exemplifies a unique problem dynamic, greatly

dependent on the initial design point, and in most cases, on the settings of the optimizer.

Numerous figures of merit must be considered when choosing an appropriate

solution strategy; the primary of which is design improvement. The MDF strategy has

been found to arrive at the “best found” solution for a vast majority of the test problems

in this effort. AAO usually attains final solutions that are vastly improved over the initial

design without any form of costly iterative system analysis, but at the expense of a

complex design space that is cluttered with non-linear equality constraints. IDF has

shown itself to be a good trade-off between the extremes of MDF and AAO; fewer

analysis evaluations than MDF, and (equilibrium) equality constraints that are simpler,

and usually fewer in quantity than those of AAO, depending on the coupling nature of the

system. The IDF strategy was typically found to outperform the AAO strategy in terms

of objective function improvement.

The reader must realize that the results that have been presented represent MDO

problem simulations, and must be interpreted as such. In a real-world MDO problem,

total solution times for the MDF strategy would likely have been the longest by a

considerable margin (due to the many costly iterative analysis evaluations that it

requires), followed by IDF (fewer, non-iterative analysis evaluations) and AAO (no

iterative analysis evaluations). The cost-based testing supports this line of speculation.

MDF was found to be the most costly solution strategy in all three cost-based test

131

systems, usually by a factor of ten or more. The cost comparison between IDF and AAO

is not straightforward. AAO was found to be twice as costly as IDF for two of the three

cost-based systems tested, and outperformed IDF (in terms of objective function

improvement) in one of these two systems. AAO was found to be slightly less costly

than IDF in one cost-based test system, but was slightly outperformed by IDF in this test

system.

Finally, it can be reasoned that an improved local (or hopefully global) optimum

solution can be found, regardless of the solution strategy used. The ultimate goal of the

design manager is to utilize the solution strategy that will achieve the “best found” design

with the least difficulty. To this end, the MDF strategy was found to constantly achieve

its “best found” solution with minimal modification of optimizer settings, and with the

smallest number of trial executions.

c. Multidisciplinary Analysis Convergence

Chapter 5 demonstrated the mathematical details behind a brand new convergence

technique for nonlinear, multidisciplinary analysis. This DFAC algorithm is based upon

the principals of both Data Fusion and Neural Network theory. The chapter further

showed that the DFAC convergence technique was found to be extremely useful for

reducing large equation residuals, but not efficient at attaining tight convergence on its

own accord. FPI was implemented to supplement the proposed algorithm after a

“sufficient” number of iterations had elapsed. This “hybrid” convergence scheme has

shown to increase efficiency over the use of conventional FPI by a substantial percentage.

Note that due to the comparatively large computational expense of the DFAC

convergence technique, it will only be useful in “true” multidisciplinary designs, where

132

the overall design time is known to be substantially long. In such situations, an increase

in computational overhead each iteration will turn out to be beneficial, as it is hoped that

the overall number of iterations will be reduced by a sufficient factor, outweighing the

added expense.

The general trend seen in the experimental testing is that for “accurate” starting

points that turn out to be “close enough” to the true solution, a formal derivative based

convergence scheme such as NM is clearly the convergence strategy of choice. NM is

reliable in cases where the analysis solution space is known to be convex, which will

rarely be the case in most realistic MDO applications. Alternatively, when the starting

point is known to be a “sufficiently far” from the converged solution, or if a relation

between the initial and final solutions cannot be identified, the DFAC algorithm has

shown to be reliable for reducing large residuals. Thereafter, it can be supplemented with

numerous iterations of FPI (or conceivably NM) to achieve full numerical convergence,

thus forming a “hybrid” convergence strategy.

d. MDO Framework Design and Development: FACETS

Chapter 6 presented a discussion of FACETS, a new multidisciplinary design

optimization framework that is presently under development. FACETS differs from

other MDO frameworks in numerous ways. Namely, it seeks to exploit new tools and

technologies in MDO which deal with large-scale, coupled engineering design problems.

Because of this, FACETS uses simulation as its backbone. More specifically, the

CASCADE simulator has been implemented as its means for generating benchmark

problem data upon which new MDO methodologies can be tested. The structure of

FACETS has been coded in Motif, an X-Windows based toolkit for GUI programming.

133

In addition to the problem generation simulator (CASCADE), numerous feature

modules have been incorporated into FACETS thus far. These include a module for

comparing MDO solution strategies, a module for comparing analysis convergence

methods, as well as secondary modules such as planning, optimization, and post

processing. Globally speaking, FACETS strives to encompass numerous areas of

research in the MDO community, which can provide an “all-in-one” infrastructure for

preliminary investigation of MDO solution methods. FACETS has already been

extensively used for numerous MDO method comparisons, one of which was presented at

the end of the preceding chapter. The benefit of FACETS is that it allows the user to

quickly simulate the structure of a real-life coupled system, view its initial characteristics,

perform some meaningful baseline calculations in simulation, and then view the initial

results. Thereafter, the user can then make judgements and subsequent modifications

based on these results, and can quickly and easily re-run a new simulation in hopes of

attaining “better” results and more useful insight to the true problem.

Future Work

Improvements and enhancements to the CASCADE simulator are constantly

being made. The next phase of its development should attempt to enhance the realism of

the equation semantics. Currently, the equations generated are relatively simple, however

extremely stable polynomial equations. The addition of logarithmic and trigonometric

terms might add to the realism of the simulator, at the possible expense of its stability.

The concept initialized by Balling and Wilkinson [4] of generating random equations

around a “well-known” structure might be worth expanding upon. In addition to using

classical equations from structural optimization, one could conceivably create random

134

equations using the structure of seminal equations from other engineering disciplines

(electrical, aerodynamics, heat transfer, control systems, etc.) as well. Another

possibility is the creation of randomly generated differential equations instead of zeroth

order polynomial equations. Such equations might represent the semantic behavior of

real systems more realistically, and would be sufficiently challenging to solve by either

numerical or analytical means.

Minor improvements could be made to the solution strategies module. Three of

the primary solution strategies are presently included in the module, along with the

“random search” feature that provides a baseline. Numerous variations of these

approaches exist, and could be incorporated as explicit solution possibilities. More

recently developed large-scale solution strategies such as BLISS [79] and Collaborative

Optimization [50,10] could also be incorporated.

The analysis convergence module could also be improved in numerous ways. At

present, there are two means in place for conducting a formal iterative convergence

procedure: FPI and NM. Countless other algorithms exist, and could be added to the

module as options. Examples are the Generalized Gauss-Seidel [25] and the Generalized

Jacobi [23] procedures, which have been applied to both systems of algebraic equations

and to systems of partial differential equations. In addition, the DFAC algorithm is in its

early stages of development, and is constantly undergoing changes. The heuristics of the

algorithm must be improved upon so as to supply a solution much more quickly and

efficiently. Four fusion algorithms have been developed for the present work. The

development of new fusion algorithms based on system characteristics other than

sensitivities and equation residuals is envisioned.

135

There are numerous research avenues that must be pursued to further the

FACETS framework. First and foremost, exterior technologies shall be incorporated. All

of the major features that lie within the framework at present have been developed and

coded exclusively by the author. The next logical step is to incorporate related research

technologies performed by other members of the University at Buffalo MODEL

laboratory team. These include graph morphing – a means for visualizing and “steering”

the multidisciplinary design anytime within the design cycle [88,89]. In addition,

coupling suspension strategies – means for identifying and responding to couplings

between subsystems which are found to be comparatively weak, in the interest of

reducing overall design time and cost [17]. Eventually, technologies developed by

completely exterior researchers shall also be incorporated.

Secondly, more optimization possibilities should be added to the framework.

Because optimization is the backbone of a majority of the research that FACETS is

involved with, alternative options to ADS should be provided. These might include

heuristic optimization techniques such as simulated annealing [48], or more recent

traditional optimization methods found in Vanderplaats' DOT software package [86].

Some degree of WWW technology shall be incorporated within FACETS. Many

of the initial (Java-based) aspirations for this framework have not yet come to pass. At

the very least, web technologies can be utilized during the result visualization (post

processing) phase of the framework. The automated creation of HTML pages as output

files can allow for quick and easy global access of result data attained through the usage

of the framework.

136

Finally, a mention is made regarding the immediate plans for the application and

expansion of certain aspects of the present research into a parallel-computing context, for

which it is inherently well suited. Namely, the DFAC algorithm is to be parallelized

through the use of the PVM [21] message-passing paradigm. The sub-optimizations that

are required to reduce the behavior variable residuals to a value of zero on each cycle are

easily extended to a parallel-computing scheme. This investigation hopes to improve

upon the initial PVM analysis convergence investigation conducted in 1996 [38,39], and

discussed in Chapter 3, when Fixed-point Iteration was used as the sole means for system

convergence. Recall that the results attained for that investigation demonstrated positive

characteristics only after the system equations were augmented with artificial sleep times.

This necessity was thought to be due mainly to the inefficiency of passing large arrays

element-by-element in Fortran. The complexity of the DFAC algorithm is known to be

much higher, and hence much better suited for parallel solution. Moreover, the DFAC

algorithm is coded in ANSI C, which lends itself much more advantageously to array

passing by virtue of pointer usage.

Initial parallel investigations are to be executed on a sub-network of computers

connected via Asynchronous Transfer Mode, or ATM [51,57]. ATM is a relatively new

networking technology whereby information is carried on an fiber-optical network, as

opposed to a conventional digital signal. Theoretically, transfer rates on optical networks

have shown to be “several orders or magnitude” faster than those of their digital

counterparts. Though ATM has been designed primarily for the transfer of multimedia-

related data (i.e. audio/video), it is theorized that this paradigm can be implemented to

enhance the transfer rates associated with numerical data as well. Preliminary

137

investigations [52,12] have proven ATM to be a favorable alternative to the Ethernet

network standard, though actual transfer rates have not yet achieved the performance

levels that were initially theorized. First phase testing will conduct a parallel

implementation of the DFAC algorithm utilizing both PVM and Fore Systems’ built-in

ATM API (Application Programming Interface) [20] as means for exchanging data. This

investigation will take place on a sub-network of computers consisting of at least two

platform types: SUN and SGI workstations.

Second-phase testing will make use of the more commonly used MPI (Message

Passing Interface) [73] standard for parallel computing. In a recent comparison between

the performance of PVM and MPI [22], it was shown that each has its inherent strengths

and weaknesses. Ultimately, PVM is better for applications that will be run over a

heterogeneous network of computers; it has good interoperability between hosts, which

may reside on multiple platforms. Conversely, MPI is expected to be faster within a

large multiprocessor. For this very reason, this second phase of testing will return to the

Ethernet networking platform, and will make use of a large, parallel cluster of SUN

workstations located at the University at Buffalo Center for Computational Research

(CCR).

138

References

__

[1] Alexandrov, N.M, and Kodiyalam, S., “Initial Results of an MDO Method

Evaluation Study.” Seventh AIAA/USAF/NASA/ISSMO Symposium on

Multidisciplinary Analysis and Optimization, St. Louis, MO, September 1998, pp.

1315-1327.

[2] Alexandrov, N.M., and Lewis, R.M., “Comparative Properties of Collaborative

Optimization and Other Approaches to MDO.” First ASMO UK/ISSMO

Conference on Engineering Design Optimization, Ilkley, West Yorkshire, United

Kingdom, July, 1999, pp. 39-46.

[3] Balling, R. J., and Sobieszczanski-Sobieski, J., “Optimization of Coupled

Systems: A Critical Overview of Approaches.” AIAA Paper 94-4330-CP,

September, 1994, pp. 753-773.

[4] Balling, R.J., and Wilkinson, C.A., “Execution of Multidisciplinary Design

Optimization Approaches on Common Test Problems.” AIAA Journal, Vol. 35,

No. 1, January, 1997, pp. 178-186.

[5] Bloebaum, C. L., “An Intelligent Decomposition Approach for Coupled

Engineering Systems.” Fourth AIAA/USAF/NASA/OAI Symposium on

Multidisciplinary Analysis and Optimization, Cleveland, OH, September, 1992,

pp. 1177-1187.

139

[6] Bloebaum, C.L., Hajela, P., and Sobieszczanski-Sobieski, J., “Non-Hierarchic

System Decomposition in Structural Optimization.” Engineering Optimization,

Vol. 19, pp. 171-186, 1992.

[7] Bloebaum, C.L., “Coupling Strength-based System Reduction for Complex

Engineering Design.” Structural Optimization, Vol. 10, pp. 113-121, 1995.

[8] Box, G.E. and Draper, N.R., “A Basis for the Selection of a Response Surface

Design.” Journal of the American Statistical Association, Vol. 54, pp. 622-654,

September, 1959.

[9] Braun, R.D. et al., “Comparison of Two Multidisciplinary Optimization Strategies

for Launch-Vehicle Design.” Journal of Spacecraft and Rockets, Vol. 32, No. 3,

May-June 1995, pp. 404-410.

[10] Braun, R.D., and Kroo, I.M., “Development and Application of the Collaborative

Optimization Architecture in a Multidisciplinary Design Environment.”

Multidisciplinary Design Optimization: State of the Art, SIAM, N. Alexandrov

and M. Y. Hussaini, editors, SIAM, 1996.

[11] Carter, D. E. and B. S. Baker, “Concurrent Engineering: The Product

Development Environment for the 1990’s.” Addison-Wesley Publishing

Company, New York, NY, USA, 1991.

[12] Chang, S., Du, D., Hsieh, J., et al., “Enhanced PVM Communications over a

High-Speed Local Area Network.” IEEE Parallel & Distributed Technology, Fall

1995, pp.20-32.

[13] Cheney, W., and Kincaid, D., “Numerical Mathematics and Computing.” Brooks

/ Cole Publishing Company, Pacific Grove, 1985.

140

[14] Cramer, E.J. et al., “On Alternative Problem Formulations for Multidisciplinary

Design Optimization.” Fourth AIAA /NASA /ISSMO Symposium on

Multidisciplinary Analysis and Optimization, Cleveland, OH, September, 1992,

pp. 518-530.

[15] Cramer, E.J. et al., “Problem Formulation for Multidisciplinary Optimization.”

SIAM Journal of Optimization, No. 4, pp. 754-776, November, 1994.

[16] English, K., Miller, E., and Bloebaum, C.L., “Total Derivative-based Coupling

Suspension for System Reduction in Complex Design.” Sixth

AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and

Optimization, Bellevue, WA, September, 1996, pp. 284-294.

[17] English, K, and Bloebaum, C.L., “Development of Multi-cycle Coupling

Suspension in Complex System Optimization.” Seventh AIAA/NASA/ISSMO

Symposium on Multidisciplinary Analysis and Optimization, St. Louis, Missouri,

September, 1998, pp. 107-117.

[18] Eschenauer, Hans A. and Weinert, Matthias, “Approximation Concepts for the

Decomposition-Based Optimization of Complex Mechanical Structures on

Parallel Computers.” The ASME Design Technical Conferences – 19th Design

Automation Conference, Vol. 65-2, pp. 337-345, September, 1993.

[19] Flanagan, D. “Java in a Nutshell, Deluxe Edition.” O'Reilly & Associates,

Cambridge, Massachusetts, 1997.

[20] Fore Systems, Inc. “ForeRunner SBA-200 ATM SBus Adapter User’s Manual”,

1993.

141

[21] Geist, A., Beguelin, A., Dongerra, J., Weicheng, J., Mancheck, R., and Sunderam,

V., “PVM: Parallel Virtual Machine - A user's guide and tutorial for networked

parallel computing.” The MIT Press, Cambridge, Massachusetts, 1994.

[22] Geist, G.A., Kohl, J.A., and Papadopoulos, P.M., “PVM and MPI: a Comparison

of Features.” Calculateurs Paralleles Vol. 8 No. 2, June, 1996, pp. 137-150.

[23] Gourlay, A.R., and Watson, G.A., “Computational Methods for Matrix

Eigenproblems.” John Wiley & Sons, New York, N.Y., 1973.

[24] Guisset, P., and Tzennetakis, N., “Numerical Methods for Modeling and

Optimization of Noise Emission Applications.” American Society of Mechanical

Engineers, Noise Control and Acoustics Division (Publication) NCA, 1997,

Vol.24, pp. 315-322.

[25] Hackbusch, W., “Iterative Solution of Large Sparse Systems of Equations.”

Springer-Verlag, New York, 1994.

[26] Haftka, R.T., “Simultaneous Analysis and Design.” AIAA Journal, Volume 23,

Number 7, July, 1985, pp. 1099-1103.

[27] Haftka, R.T., Sobieszczanski-Sobieski, J., and Padula, S.L., “On Options for

Interdisciplinary Analysis and Design Optimization.” Structural Optimization,

Volume 4, Number 2, June 1992. pp. 65-74.

[28] Hale, M.A., and Craig, J.I, “Preliminary Development of Agent Technologies for

a Design Integration Framework.” Fifth AIAA/NASA/ISSMO Symposium on

Multidisciplinary Analysis and Optimization, Panama City, FL, September, 1994,

pp. 413-422.

142

[29] Hall, David L., and Llinas, James, “An Introduction to Multisensor Data Fusion.”

Proceedings of the IEEE, Vol. 85, No. 1, January, 1997, pp. 6-23.

[30] Hajela, P., “Techniques in Optimum Structural Synthesis with Static and

Dynamic Constraints.” Ph.D. Dissertation, Stanford University, 1982.

[31] Hartley, J. R., “Concurrent Engineering. Shortening Lead Times, Raising

Quality, and Lowering Costs.” Productivity Press, Cambridge, MA, USA, 1992.

[32] Haykin, Simon, “Neural Networks - A Comprehensive Foundation.” Macmillan

College Publishing, New York, 1994.

[33] Heading, A.J.R., and Bedworth, M.D., “Data Fusion for Object Classification.”

IEEE Conference on Systems, Man and Cybernetics, Charlottesville, VA,

October, 1991.

[34] Heller, D., and Ferguson, P.M., “Motif Programming Manual – Volume 6A.”

O’Reilly & Associates, Inc, California, 1994.

[35] Hertz, J., Krogh, A., and Palmer, R.G., “Introduction to the Theory of Neural

Computation.” Addison-Wesley Publishing Company, New York, N.Y., 1991.

[36] Huddleston, John V., “Introduction to Computers, FORTRAN version.”

Exchange Publishing Division, Buffalo, NY, 1988.

[37] Hulme, K.F., “Development of CASCADE - A Multidisciplinary Design

Optimization Test Simulator for Use in Distributed Computing Environments.”

Masters Thesis, State University of New York at Buffalo, February, 1996.

143

[38] Hulme, K.F., and Bloebaum, C.L., “Development of CASCADE - A

Multidisciplinary Design Test Simulator.” Sixth AIAA/NASA/ISSMO

Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WA,

September, 1996, pp. 438-447.

[39] Hulme, K.F., and Bloebaum, C.L., “Development of a Multidisciplinary Design

Optimization Test Simulator.” Structural Optimization, Volume 14, Number 2-3,

October, 1997, pp. 129-137.

[40] Hulme, K.F., and Bloebaum, C.L., “A Comparison of Solution Strategies for

Simulation-based Multidisciplinary Design Optimization.” Seventh

AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and

Optimization, St. Louis, Missouri, September, 1998, pp. 2143-2153.

[41] Hulme, K.F., and Bloebaum, C.L., “A Comparison of Formal and Heuristic

Strategies for Iterative Convergence of a Coupled Multidisciplinary Analysis.”

Third World Congress on Structural and Multidisciplinary Optimization,

Amherst, NY, May, 1999 (CD Proceedings).

[42] Hulme, K.F., and Bloebaum, C.L., “Development of a Simulation-based

Framework for Exploiting New Tools and Techniques in Multidisciplinary

Design Optimization.” First ASMO UK/ISSMO Conference on Engineering

Design Optimization, Ilkley, West Yorkshire, United Kingdom, July, 1999, pp.

179-186.

144

[43] Hulme, K.F., and Bloebaum, C.L., “A Simulation-based Comparison of

Multidisciplinary Design Optimization Solution Strategies using CASCADE.”

Publication pending in “Structural Optimization”, 2000 (submitted January,

1999).

[44] Hulme, K.F., and Bloebaum, C.L., “A Data Fusion-based Approach for Coupled

Multidisciplinary Analysis.” Publication pending in “Design Optimization”, 2000

(submitted June, 1999).

[45] Istratescu, V.I., “Fixed Point Theory. An Introduction.” Math. and Its

Applications, D. Reidel Publishing Co., Dordrecht, 1981.

[46] Kelley, C.T., “Iterative Methods for Linear and Nonlinear Equations.” Society

for Industrial and Applied Mathematics, Philadelphia, 1995.

[47] Kernighan, B.W., and Ritchie, D.M., “The ANSI C Programming Language, 2nd

Edition.” Prentice Hall, Englewood Cliffs, N.J., 1988.

[48] Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P., “Optimization by Simulated

Annealing.” Science, Vol. 220, pp. 671-680, 1983.

[49] Korsmeyer, D.J., and Walton, J.D., “DARWIN v2 - A Distributed Analytical

System for Aeronautical Tests.” 20th AIAA Advanced Measurement and Ground

Testing Technology Conference, Albuquerque NM, June 1998. AIAA Paper 98-

2724.

[50] Kroo, I., Altus, S., Braun, R., Gage, P., and Sobieski, I., “Multidisciplinary

Optimization Methods for Aircraft Preliminary Design.” Fifth

AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and

Optimization, Panama City, FLA, September, 1994, pp. 697-707.

145

[51] Lakshminarayan, Krishnan, “ATM Networking and Multimedia - A White

Paper.” Sun Microsystems Computer Corporation, Revision X, August, 1993.

[52] Lin, M., and Hsieh, J., et al., “Distributed Network Computing over Local ATM

Networks.” IEEE Journal on Selected Areas in Communications, Special Issue of

ATM LANs: Implementations and Experiences with a Emerging Technology,

Vol. 13, No. 4, May 1995, pp.733-748.

[53] Markin, M.S., Harris, C., Bernhardt, M. Austin, J., et al., Data Fusion and Data

Processing - The Report of the Defense and Aerospace Foresight Working Party,

ISBN 1 85768 0685, May 1997.

[54] McCulley, C., Bloebaum, C. L., “A Genetic Tool for Optimal Design Sequencing

in Complex Engineering Systems.” Structural Optimization, Volume 12, Number

2/3, October 1996, pp. 186-201.

[55] McCulley, C., Hulme, K.F., and Bloebaum, C.L., “Simulation-Based

Development of Heuristic Strategies for Complex System Convergence.”

Applied Mechanics Review, Volume 50, Number 11, Part 2, 1997, pp. S117-

S124.

[56] McCulley, C., “Simulation-based Comparison and Development of Heuristic

Convergence Strategies for Multidisciplinary Analysis.” Ph.D. Dissertation, State

University of New York at Buffalo, 1998.

[57] McDysan, D.E. and Spohn, D.L., “ATM Theory and Application.” McGraw Hill,

Inc., New York, N.Y., 1994.

[58] Montgomery, D. C., “Design and Analysis of Experiments, 3rd. ed.” John Wiley

and Sons, New York NY, 1981.

146

[59] Müller, B., Reinhardt, J. and Strickland, M., “Neural Networks -- An

Introduction, 2nd ed.” Springer Verlag, Heidelberg, 1995.

[60] Musciano, C., Kennedy, B., and Loukides, M., “HTML: The Definitive Guide.”

O’Reilly & Associates, Cambridge, Massachusetts, 1998.

[61] Padula, S.L., and Young, K.C., “Simulator for Multilevel Optimization

Research.” NASA Technical Memorandum, Hampton, VA, June, 1986.

[62] Padula, S.L., and Sobieszczanski-Sobieski, J., “A Computer Simulator for

Development of Engineering System Design Methodologies.” NASA Technical

Memorandum, Hampton, VA, February, 1987.

[63] Padula, S.L., Alexandrov, N., and Green, L.L., “MDO Test Suite at NASA

Langley Research Center.” Sixth AIAA/NASA/ISSMO Symposium on

Multidisciplinary Analysis and Optimization, Bellevue, WA, September, 1996,

pp. 410-420.

[64] Peak, D. and Frame, M., “Chaos Under Control.” W.H. Freeman and Co., New

York, pp. 285-295, 1994.

[65] Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., “LU

Decomposition and Its Applications.” §2.3 in “Numerical Recipes in FORTRAN:

The Art of Scientific Computing, 2nd ed.” Cambridge University Press,

Cambridge, England, pp. 34-42, 1992.

[66] Ridlon, S.A., “A Software Framework for Enabling Multidisciplinary Analysis

and Optimization.” Sixth AIAA/NASA/ISSMO Symposium on Multidisciplinary

Analysis and Optimization, Bellevue, WA, September, 1996, pp. 1280-1285.

147

[67] Rogers, J.L., “DeMAID -- A Design Manager's Aide for Intelligent

Decomposition: User's Guide.” NASA Technical Memorandum 101575, March,

1989.

[68] Rogers, J.L., “DeMAID/GA – An Enhanced Design Manager’s Aid for Intelligent

Decomposition.” Sixth AIAA/NASA/ISSMO Symposium on Multidisciplinary

Analysis and Optimization, Bellevue, WA, September, 1996, pp. 1497-1504.

[69] Rogers, J.L., Salas, A.O., and Weston, R.P., “A Web-Based Monitoring System

for Multidisciplinary Design Projects.” Seventh AIAA/NASA/ISSMO

Symposium on Multidisciplinary Analysis and Optimization, St. Louis, Missouri,

September, 1998, pp. 35-43.

[70] Rumelhart, D., Hinton, G. and Williams, R., “Learning Internal Representations

by Error Propagation.” Parallel Distributed Processing: Explorations in the

Microstructures of Cognition, Vols. I and II, pp. 318-362, MIT Press, Cambridge,

Massachusetts, 1986.

[71] Salas, A.O., and Townsend, J.C., “Framework Requirements for MDO

Application Development.” Seventh AIAA/NASA/ISSMO Symposium on

Multidisciplinary Analysis and Optimization, St. Louis, Missouri, September,

1998, pp. 261-271.

[72] Smith, G.D., “Numerical Solution of Partial Differential Equations: Finite

Difference Methods.” Oxford University Press, 1985.

[73] Snir, M., Otto, S., et al., “MPI: The Complete Reference (Vol. 1) - 2nd Edition.

Volume 1 - The MPI Core.” The MIT Press, Cambridge, Massachusetts, 1998.

148

[74] Sobieszczanski-Sobieski, J., “A Linear Decomposition Method for Optimization

Problems - Blueprint for Development.” NASA Technical Memorandum 83248,

1982.

[75] Sobieszczanski-Sobieski, J., “Optimization by Decomposition: A Step from

Hierarchic to Non-Hierarchic Systems.” Recent Advances in Multidisciplinary

Analysis and Optimization, NASA CP 3031, 1988.

[76] Sobieszczanski-Sobieski, J., “The Sensitivity of Complex, Internally Coupled

Systems.” AIAA Journal, Volume 28, No. 1, 1990, pp. 153-160.

[77] Sobieski, J., Bloebaum, C. L., and Hajela, P., “Sensitivity of Control-Augmented

Structure Obtained by a System Decomposition Method.” AIAA Journal, Volume

29, Number 2, 1991, pp. 264-270.

[78] Sobieszczanski-Sobieski, J., “Multidisciplinary Design Optimization: An

Emerging, New Engineering Discipline.” Advances in Structural Optimization,

pp. 483-496, Kluwer Academic, 1995.

[79] Sobieszczanski-Sobieski, J., Agte, J.S., and Sandusky Jr., R.R., “Bi-Level

Integrated System Synthesis (BLISS).” Seventh AIAA/NASA/ISSMO

Symposium on Multidisciplinary Analysis and Optimization, St. Louis, Missouri,

September, 1998, pp. 1543-1557.

[80] Steward, D.V., “System Analysis and Management”. Petrocelli Books, New

York, N.Y., 1981.

[81] Swan, T., “Mastering Borland C++.” Sams Publishing, Indianapolis, IN, 1992.

149

[82] Tong, S.S., Powell, D., and Goel, S., “Integration of Artificial Intelligence and

Numerical Optimization Techniques for the Design of Complex Aerospace

Systems.” AIAA Paper 92-1189, February, 1992.

[83] Turner, P.J. “XMGR – XY plotting tool for workstations using X”, Internet

Documentation. Portland, OR, 1991-1995.

[84] Vanderplaats, G. N., “Numerical Optimization Techniques for Engineering

Design: with Applications.” McGraw Hill, New York, N.Y., 1984.

[85] Vanderplaats, G., “ADS - A FORTRAN Program for Automated Design

Synthesis Version 1.10”, User's Manual. University of California, Santa Barbara,

California, 1985.

[86] Vanderplaats, G., “Design Optimization Tools (DOT) – User’s Manual v5.0.”

Vanderplaats Research and Development, Colorado Springs, 1999.

[87] Weston, R.P., Townsend, J.C., et al, “A Distributed Computing Environment for

Multidisciplinary Design.” Fifth AIAA/NASA/ISSMO Symposium on

Multidisciplinary Analysis and Optimization, Panama City, FL, September, 1994,

pp. 1091-1097.

[88] Winer, E., and Bloebaum, C.L., “Design Visualization by Graph Morphing for

Multidisciplinary Design Optimization”, Conference Proceedings of First

International Conference on Engineering Design and Automation (EDA '97),

Bangkok, Thailand, 1997 (CD Proceedings).

[89] Winer, E., and Bloebaum, C.L., “N-Dimensional Design Visualization via Graph

Morphing for Large-Scale Optimization.” Second World Congress of Structural

and Multidisciplinary Optimization, Zakopane, Poland, 1997, pp. 911-916.

150

[90] Zangwill, Willard I., “Nonlinear Programming: A Unified Approach.” Prentice-

Hall, Englewood Cliffs, N.J., 1969.

[91] Zhigljavsky, A.A., “Theory of Global Random Search.” Kluwer Academic

Publishers, Dordrecht / Boston / London, 1991.

151

Appendix I - DFAC CASCADE test systems

__

Test System Design Variables Behavior variable
equations

Initial guess

X0 X1 X2 Y0 Y1 Y2
y0 = -2.167e-09x0

3 +
6.013e-01y1

1 +
5.975e-01y2

1

y1 = +4.012e-09x1
3 +

2.773e-09y0
3 +

4.164e-01y2
1

CASCADE
#1

8132.73 8510.5 5275.96

y2 = +2.609e-05x2
2 +

6.021e-01y0
1 +

1.460e-02y1
1

9664.56 3542.43 3978.78

y0 = x0 + 0.25y1 +
0.0015y2

2

y1 = x1 - 7.5e-7y0
3 -

0.095y2

CASCADE
#2

250.0 325.0 87.5

y2 = -x2 + 0.00095y0
2 -

3.8e-06y1
3

-822.0 47.0 629.0

y0 = +7.695e-01x0
1 -

6.779e-01y1
1 +

9.191e-02y2
1

y1 = +9.176e-09x1
3 +

1.260e-04y0
2 +

7.707e-05y2
2

CASCADE
#3

6873.39 11.29 4506.99

y2 = +7.285e-05x2
2 -

1.124e-04y0
2 +

3.124e-09y1
3

8830.29 1194.64 6283.55

152

Appendix II – DFAC MDO Test Suite test systems

__

Design
Variables

Constants Behavior variable
equations

Initial
guess

x0 = 0.4285 c0 = 0.2372 y0 = c0(k0 - y1) y0 = 0.567
x1 = 0.3203 c1 = 0.5446 y1 = c1((k1 + (y3y7(y7

2 - 3y5
2)) - (y2y6(y6

2 -
3y4

2)) - (y4
2 - 3y6

2)) / (x5q1))
y1 = 0.144

x2 = 0.7332 c2 = 0.1754 y2 = c2(k2 - y3) y2 = 0.591
x3 = 0.0770 c3 = 0.8407 y3 = c3((k3 + (y1y7(y7

2 - 3y5
2)) + (y0y6(y6

2 -
3y4

2)) - (y2y4(y4
2 - 3y6

2))) / (x5q1))
y3 = 0.144

x4 = 0.3376 c4 = 0.2124 y4 = c4((k4 + (2y3y5y7) - (y1(y5
2 - y7

2)) -
(y0q0)) / (-2x2x6))

y4 = 0.529

x5 = 0.7378 c5 = 0.0822 y5 = c5((k5 + (y7y3) + (y6y2) - (y4y0)) / x1) y5 = 0.045
x6 = 0.5415 c6 = 0.0203 y6 = c6((k6 - (2y1y5y7) - (y3(y5

2 - y7
2)) -

(y2q0)) / (2x0x4))
y6 = 0.499

Heart
Dipole

ki = 1.0, i=1,8
q0 = x4

2 - x6
2

q1 = x5
2 - 3x7

2

x7 = 0.0737 c7 = 0.2626 y7 = c7((k7 - (y5y3) - (y4y2) - (y6y0)) / x1) y7 = 0.506
����������������������������������
���������������������������������� k0 = 0.2345 y0 = k0(- y3 + 3) y0 = 0.055����������������������������������
���������������������������������� k1 = 0.4527 y1 = k1(- y4 - (y5/2) - (y6/2) + 4) y1 = 0.980����������������������������������
���������������������������������� k2 = 0.5174 y2 = k2(- (y8/2) + (2R)) y2 = 0.728����������������������������������
���������������������������������� k3 = 0.1247 y3 = k3(-(2y0) - y1 - y6 - y7 - y8 - (2y9) + R) y3 = 0.153����������������������������������
���������������������������������� k4 = 1.0 y4 = (k4y1y3)/y0 y4 = 0.412����������������������������������
���������������������������������� k5 = 1.0 y5 = (k5y1

0.5y3
0.5) / (y0

0.5(P / y10)
0.5) y5 = 0.145����������������������������������

���������������������������������� k6 = 1.0 y6 = (k6y0
0.5y1

0.5) / (y3
0.5(P / y10)

0.5) y6 = 0.907����������������������������������
���������������������������������� k7 = 0.1 y7 = (k7y0) / (y3(P / y10)) y7 = 0.408����������������������������������
���������������������������������� k8 = 1.0 y8 = (k8y0y2

0.5) / (y3(P / y10)
0.5) y8 = 0.292����������������������������������

����������������������������������
k9 = 0.1 y9 = (k9y0

0.5) / (y3
2(P / y10)) y9 = 0.219

Combustion
of Propane

P = 40.0
R = 10.0

����������������������������������
��
����������������������������������

���������������������������������
��
��������������������������������� y10 = y0 + y1 + y2 + y3 + y4 + y5 + y6 + y7 +

y8 + y9

y10 = 0.660

