
DEVELOPMENT OF A SIMULATION-BASED FRAMEWORK FOR EXPLOITING
NEW TOOLS AND TECHNIQUES IN

MULTIDISCIPLINARY DESIGN OPTIMIZATION

K.F. Hulme and C.L. Bloebaum
Multidisciplinary Optimization and Design Engineering Laboratory (MODEL)

Department of Mechanical and Aerospace Engineering
State University of New York at Buffalo - 1012 Furnas Hall

Buffalo, NY 14260 (USA)

Keywords: Multidisciplinary Design Optimization, Framework, Simulation, CASCADE

ABSTRACT
The primary goal of many Multidisciplinary Design
Optimization (MDO) researchers is to simplify or
shorten the design process in any of a number of ways.
To address this ongoing research need, a number of
previous research efforts have focused on the
development of computational "frameworks". There
appears to be a need for a framework which can exploit
many of the newly developed tools, strategies and
techniques in MDO. Another inter-related problem is
the lack of availability of design data and benchmark
(test) problems. Researchers must have a safe and
robust means for testing a newly developed strategy
prior to its implementation on an actual "real-world"
design. Hence, the development of a framework that is
focused on the incorporation of new MDO tools and
techniques should have a robust means for coupled
system simulation, both at the system analysis and
optimization levels, as its foundation. This paper will
discuss the design and development of an MDO
framework entitled FACETS. This research effort
further describes some of the modular components that
are being designed, implemented, and integrated within
FACETS, all of which hope to aide in the simplification
of some portion of the costly MDO design cycle.

MOTIVATION
Multidisciplinary Design Optimization (MDO) is an
emerging field of study which strives to promote
concurrency of operations amongst participating design
groups in a large scale engineering design. One of the
primary goals of MDO is decomposition; the
break-down of a large, complex engineering system
into a grouping of smaller and inter-related (coupled)
subsystems. An example of decomposition in design
engineering is the break-down of the design of an
aircraft into subsystems of design specialty, such as
aerodynamics, control systems, structure/materials,
propulsion, and so forth. Sobieski pioneered this
concept when he applied a linear decomposition

method for utilization in serial (hierarchic)
environments (Sobieszczanski-Sobieski, 1982).
However, the decomposition of a large, complex
engineering system is rarely 100% serial in nature,
thereby requiring that all subsystems transfer design
information in some non-serial fashion. Ultimately,
this requires that each subsystem take an "educated
guess" as to the information it will receive from other
subsystems, and thereafter formulate its design
accordingly, on the present design iteration. The more
accurate that the "educated guess" is, the fewer total
iterations that will be required to achieve a converged
design solution. The Global Sensitivity Equation
method (Sobieszczanski-Sobieski, 1990; Bloebaum et
al., 1990) extended the modularity concept of Sobieski's
approach to include applications in the non-serial
environments that typically exist in multidisciplinary
problems.

The design cycle associated with non-serial
multidisciplinary systems has often been referred to in
literature as the “Multiple-Discipline-Feasible”, or
MDF approach (Cramer, et al., 1992; Balling and
Sobieszczanski-Sobieski, 1994). Refer to Figure 1. The
design must first be initialized to some logical set of
starting values. Perhaps current design data is utilized
as the initial design, upon which improvements are
desired. Design initialization is typically followed by a
system analysis, which is typically an iterative and high
cost process. Subsequent to the system analysis is a
sensitivity analysis, which can be either numerical (i.e.
finite differencing) or analytical (i.e. Global Sensitivity
Equations) in nature. These sensitivities are then used
in a formal optimization procedure, during which the
converged behavior variables from the system analysis
are held constant, and the design variables, which were
held constant during the system analysis, are now
changeable parameters. After the optimization
procedure, the design variables have changed from their
starting values. Because the behavior variables are a

Fe edforward s

Fe edbacks

2

3

1

5

4

Module

Coup ling

function of these design variables, they will have
changed as well. The design is updated, a convergence
check is implemented, and the entire procedure repeats
itself until a converged solution is attained.

Figure 1: Multiple-Discipline Feasible

The advantages of the MDF approach include its
commonality to most MDO researchers, and the
inherent nature of its optimization problem, which
treats only subsystem design variables as optimization
variables. The primary disadvantage of the MDF
approach is that it is potentially very time and cost
consuming. At each optimization iteration, complete
multidisciplinary feasibility is enforced. At each design
cycle, a great deal of time may be inefficiently spent
during the full re-convergence of the system analysis
portion of a design that is still very far from its optimal
solution. A large number of recent research efforts
have focused on increasing the efficiency of the most
costly component of the MDF design cycle, the
iterative system analysis, in the interest of reducing the
overall number of iterations expended per design cycle.
Design or task sequencing is the procedure of
re-ordering the subsystem modules in a way such that
the number of analysis iterations are minimized.
Steward's Design Structure Matrix concept (Steward,
1981) provides a graphical means for interpreting this
concept. Refer to Figure 2. The modules are typically
ordered such that the number of feedbacks (which
represent an exchange of data that is presently
unknown, and whose value requires an "educated
guess") are minimized. Complete elimination of
feedbacks would imply a truly serial collection of
modules, and iteration would be eliminated altogether.
Rogers' DeMAID is a computational task sequencing
tool (Rogers, 1989) that has been used extensively by
both academia and industry. A more recent work
(McCulley et al., 1997) saw the development of
convergence strategies based not only on module

sequence, but on the strength of the couplings between
the modules, quantified by locally computed sensitivity
information.

Figure 2: Design Structure Matrix

In an attempt to address these and other
deficiencies in the MDF approach, numerous recent
research efforts have focused on alternatives to MDF
for posing and subsequently solving the
multidisciplinary design problem. These include an
approach that has been termed both "Simultaneous
Analysis and Design" (SAND) and "All-At-Once"
(AAO) (Haftka, 1985; Cramer, et al., 1992), which
treats the entire multidisciplinary design cycle as a
single optimization problem. This is accomplished by
treating the system analysis equations as equality
constraints, and by treating both design and behavior
variables as changeable parameters (i.e. optimization
variables) during the optimization procedure. A second
alternate approach has been referred to as
"Individual-Discipline Feasible" (IDF) (Haftka et al.,
1992; Cramer, et al., 1992), which is intermediate to
both MDF and AAO in the following ways. Similar to
MDF, IDF does incorporate a system analysis of sorts,
though it is non-iterative in nature. In addition, IDF is
such that any behavior variable that promotes coupling
(i.e. is required by at least one other subsystem as input)
is promoted to being an optimization variable, similar
to AAO.

Clearly, there are many research avenues in the
field of MDO which ultimately strive to address to very
same research issue – the reduction of time and cost
within a multidisciplinary design cycle. To address this
seminal issue, numerous computational problem-
solving environments, commonly referred to as
“frameworks”, have been developed in recent years. A
framework has been loosely defined in literature as a
“hardware and software architecture that enables
integration, execution, and communication among
diverse disciplinary processes" (Rogers et al., 1998).
(Salas and Townsend, 1998) outlined many of the
essential requirements which a viable MDO framework
must contain. These include, but are not limited to the
aspects of: “architectural design” (i.e. the framework
should have an intuitive Graphical User Interface),
“problem formulation construction” (i.e. the framework
should support legacy and proprietary codes), “problem
execution” (i.e. the framework should automate the
execution of processes, and allow for parallel execution

Ini tia l
Desi gn

Sy stem
Anal ysis

Conver ged?

BV[0] = …

BV[1] = …

BV[n] = …

EXIT

Yes

Sens i tivit y
Anal ysis

Optimi zat ion

(vari abl es: al l
system de sign

variabl es)

Upda te
Desi gn

No

and user interaction), and “information access” (i.e. the
framework should provide visualization and monitoring
capabilities). Some recently developed frameworks in
MDO which incorporate some combination of these
characteristics include FIDO (Framework for
Interdisciplinary Design Optimization), which serves as
a general distributed computing system for executing
multidisciplinary computations on a heterogeneous
network or workstations. FIDO automates the
coordination of analyses by numerous design
disciplines into an integrated optimization scheme, and
allows for visualization and “steering” by the designer.
A number of other frameworks and/or problem solving
environments are presently under development. These
range from alternatives to FIDO which focus more on
exploiting distributed, heterogeneous computing, such
as Access Manager, developed by Boeing. Others
include commercial optimization toolkit environments
such as iSIGHT, which allows the user to flexibly
integrate analyses with optimization methods of all
forms (i.e. numerical, heuristic, Design of Experiments,
etc.) Finally, others include design tools that focus
more on data management within the design process,
such as IMAGE, which provides data management
utilities for use during design processes.

The primary shortcomings of many existing MDO
frameworks are that they tend to be hard-coded,
discipline or problem specific, and have limited
capabilities when it comes to the incorporation of new
technologies. There appears to be a need for a
framework which can exploit many of the newly
developed tools, strategies and techniques in MDO
which strive to “simplify” (i.e. reduce the time and cost
of) the design cycle associated with large, coupled
engineering design problems. Many of these tools and
techniques were outlined at the beginning of this
section. These and other computational techniques can
be viewed upon as "islands of research" in that they are
independently developed computer codes and concepts,
which are (at present) physically separated, yet
functionally related. A design manager may benefit
from an environment which allows the combination
and/or integration of such research islands, such that
related research concepts can be merged, and numerous
"what if?" scenarios can be explored quickly and easily.
An inter-related problem involving many of these
research islands, and MDO research in general, is the
lack of availability of design data and benchmark (test)
problems. Researchers must have a safe and robust
means for testing a newly developed MDO strategy
prior to its implementation on an actual "real-world"
design. Hence, the development of a framework that is
focused on the incorporation of new MDO tools and
techniques should have a robust means for coupled
system simulation, both at the system analysis and
optimization levels, as its foundation.

FACETS
The Framework that is presently under development at
SUNY Buffalo is called FACETS, which is an acronym
that stands for "Framework for the Analysis of Coupled
Engineering Techniques in Simulation". The original
concept for this research effort was to utilize the Java
programming language, an interpreted programming
language whose compiler uses byte-code rather than
native machine code, to program the exterior structure
of the framework. In doing so, the framework would
have taken strides towards being heterogeneous;
capable of execution on any architecture that has a Java
interpreter. Java programs that are written as applets
can be executed through the use of a web browser,
which are typically available on all computational
platforms (PC/Macintosh/Workstation) and operating
systems. Unfortunately, the shortcomings of using Java
as a large-scale MDO tool are numerous; namely,
security limitations on Java applets for both a.) reading
and writing files, as well as b.) instantiating system-
level commands. These are operations that are
fundamental to any large scale software tool that relies
on communication between related computer codes and
functions.

Figure 3: FACETS: general structure

As a result of this, the exterior front-end of the
FACETS framework has a Graphical User Interface
(GUI) that has been coded using the Motif toolkit.
Motif, which is coded in the ANSI C programming
language, was designed by the Open Software
Foundation. The OSF is a consortium of companies
such as Hewlett-Packard, IBM, Digital, and others,
whose charter calls for the "development of

FAC ETS main window

Pre-processing
(directory structure)

Problem Defi n iti on
(CAS CADE)

Plann ing
Opti mizat ion

Graph Morphi ng*

Solut i on Stra tegi es
Sequenci ng Strategies*

Coupl i ng Streng th*
Analysis C onvergence

Post Processing

technologies that will enhance interoperability between
computers from different manufacturers". Motif is
based on the X Windows System, which is a network-
based windowing system that has been implemented for
UNIX, DOS, Macintosh, and other operating systems,
and serves as a flexible foundation for GUI-based
programming (Heller and Ferguson, 1994). Each of the
modules within FACETS implements the easy to use
control “widgets” that are typical of all Graphical User
Interfaces. These include push buttons, scrollbars,
toggle (radio) buttons, textfields, and others. A generic
flowchart of the structural operability of FACETS is
seen in Figure 3. Note that the modules marked with an
asterisk (*) are not yet incorporated into FACETS. The
other modules will be discussed in the next section.

When the user instantiates FACETS, the main GUI
window appears as shown in Figure 4. Hereafter, the
user clicks on the FACETS name, which is in fact a
colored button. This event then brings up a window
which allows the user to establish his directory
structure; this window is shown in Figure 5. Here, the
user uses the textfields to prescribe the location of file
paths for each module. This is necessary because
FACETS makes use of quite a large number of
modules, each of which requires a number of input and
output files for successful operation. It is for this
reason that this "directory structure" window is the first
module presented to the user. This information must be
established prior to entering any of the feature modules
of FACETS.

Figure 4: FACETS: main window

As hinted upon previously, FACETS operates upon
the concept of "modularity"; each application or feature
of FACETS functions as an individual entity. This
flexibility allows for the addition of new technologies
to, or the removal of dated applications from the
framework at any time. The modules within FACETS
then "communicate" through numerous means.
Typically, simple numerical data is stored in data files
which can be written as output by one module, and read
in as input by another module. For example, the final

values of the constraint functions are written to a data
file by a given module, and are then read in by the post
processing module for presentation. Some modules
create output in the form of a compilable language file.
For example, the analysis equations generated by the
CASCADE simulator (explained in the next section)
are written in the form of ANSI C based functions, and
are all encapsulated within a single header file. At
present, all output files are written in ANSI C, but this
process could easily be extended to other languages,
such as Fortran, Java or even HTML. These language
files can then be compiled with other codes and fully
used by other modules. Any “command line” activity is
accomplished by FACETS via the UNIX-based
“system” command:

system(“command”); (1)
where “command” is a character string in the form of
an operating system command. For example, should
the user wish to compile two output files that are
located in the /tmp directory, the system command
might appear as follows:

system (“cc –o /tmp/out /tmp/out1.c /tmp/out2.c”); (2)
The system command is used primarily for compiling
and executing codes, and is triggered through a widget
event, namely the depression of a push button.

Figure 5: FACETS: directory structure window

Some additional general features of the FACETS
framework are worthy of mention. The user has the
power to interrupt the execution of a module prior to its
completion. This might be desirable if the user notices
that the solution process is proceeding into a
disadvantageous region. Eventually, FACETS will
allow the user to make some form of an adjustment
during the interrupt period, and then restart execution
after this alteration has been made. An additional
feature is data storage. The user may wish to save or
“store” result data after an execution of FACETS,
which can later be retrieved and “opened” for further
use. This process can take place before or after the
execution of any of the feature modules in FACETS.

The next section will address some of the specific
modules that have been or will soon be incorporated
into the FACETS framework.

MODULES OF FACETS
This section will discuss all of the modules that will
appear in the "first release" of the FACETS framework.
The modules that have already been developed by the
authors will be emphasized. It is envisioned that the
incorporation of future modules will include MDO
strategies developed by exterior researchers.

CASCADE
After instantiating the framework and establishing a
directory structure, the user must define the
multidisciplinary problem data. The long-range goal
for this framework is to accommodate "real world"
design data. At present, problem data is artificially
generated using the CASCADE simulator. CASCADE
is an acronym which stands for “Complex Application
Simulator for the Creation of Analytical Design
Equations”. A thorough description of CASCADE can
be found in past literature (Hulme and Bloebaum,
1997). A brief overview will be presented here for
completeness.

CASCADE is a computer tool that generates a
coupled system that consists of polynomial equations of
user-specified size. CASCADE has the capability of
generating equations whose structure can be thought to
represent both a coupled system analysis and an
associated coupled optimization problem. The analysis
portion consists of a band of nonlinear equations which
are meant to represent the coupled nature of the
subsystem outputs, sometimes called behavior
variables. The optimization portion consists of an
objective function, inequality constraint functions, and
side constraints. The CASCADE module allows the
user to custom-generate a multidisciplinary test system
to his needs. For the system analysis portion (shown),
the user defines the number of subsystems, behavior
and design variables per subsystem, convergence and
system volatility (stability) characteristics, and others.
For the optimization portion, the user defines the
"nature" of the objective function(s) (i.e. system level,
or subsystem level), the number of inequality
constraints per subsystem, and others. In addition,
associated generic evaluation costs can be defined for
the analysis behavior variables, and for the objective
function and inequality constraint functions. Such
information could be useful when comparing
multidisciplinary solution strategies. Being that the
FACETS framework is primarily interested in testing
MDO methods and strategies, CASCADE, which
ultimately provides the multidisciplinary problem data,
is truly its flagship module.

Planning
The Planning module was inspired by a similar (and
much more elaborate) module found in Rogers'
DeMAID program. This module allows the user to
visualize initial information about the problem being
solved. This module informs the user as to whether or
not there are a). behavior variables which are not
coupled (i.e. are not required as input by other behavior
variables), or b). behavior variables which do not
require any other behavior variables as input. Such
information could be useful when comparing strategies
for multidisciplinary analysis. The Planning module
also allows the user to visualize the initial value of the
system objective function (or the summed value of the
subsystem objective functions). At present, the user is
given the option to seek out an alternate initial feasible
starting design point by way of a random search.

Optimization
The FACETS framework presently makes use of the
Automated Design Synthesis (ADS) program
(Vanderplaats, 1985) as its sole optimization tool. ADS
allows the user to change a large number of options
corresponding to the gradient-based optimization
search. Such parameters relate to the optimization
strategy, optimization method, the one-dimensional
search method, move limits, constraint thickness, finite
difference parameters, variable scaling, and many
others. A module has been devoted to providing the
user with an easy means for assigning and altering such
options quickly and easily. This will allow for the
efficient execution of "what if?" scenarios within the
context of any MDO techniques which require
numerical optimization.

Solution Strategies
As discussed previously, there are numerous means for
posing and subsequently solving a multidisciplinary
design problem. The most popular and well known
strategy has been called Multiple-Discipline Feasible
(MDF). Two of the more popular alternate strategies
are called All-at-Once (AAO) and Individual-Discipline
Feasible (IDF). A FACETS module has been created
which allows the user to compare these solution
strategies within the context of the same
multidisciplinary design problem. Depending on the
strategy chosen, there are numerous implementation
issues to be considered. For example, if an explicit
system analysis is utilized in the solution strategy
chosen (MDF and IDF), there are numerous
convergence-related options to be assigned. Also, if
there are additional optimization variables introduced in
the solution strategy chosen (IDF and AAO),
corresponding side constraints must be defined. As a
baseline, Random Search is also included as an
available multidisciplinary solution strategy.

0

1

2

3

4

5

6

7

ADI AE OFE time

MDF IDF AAO

Analysis Convergence
As discussed previously, the system analysis tends to be
the most costly component of the multidisciplinary
design cycle. Hence, a module has been devoted to
allow for the comparison of strategies for approaching a
multidisciplinary analysis. These range from well-
known formal convergence strategies such as Fixed-
point Iteration which is based upon successive
substitution, and Newton's Method, which is derived
from a Taylor Series expansion. Both of these
techniques are available as analysis convergence
options within FACETS. Each of these techniques
have different strengths and weaknesses. Because of
this, alternative heuristic techniques are under
development. The authors have devised a scheme for
analysis convergence which implements a neural
network model - each subsystem output is modeled as
an output neuron. For coordination amongst the output
neurons, a systems-based procedure known as data
fusion is then utilized. Four fusion models have been
developed thus far, all of which are available as options
within the FACETS analysis convergence module.

Post Processing
Finally, a means for quantifying results is imperative.
FACETS post-processor provides the user with a
variety of means for result visualization. These include
an "optimization feedback" sub-module, which allows
the user to view the final value of the objective
function, as well as a color-coded means for visualizing
constraint status (active/violated/satisfied). The "time
and cost" sub-module allows the user to view the
overall CPU time and the generic cost associated with
the multidisciplinary solution cycle. Finally, a
"plotting" sub-module uses the XMGR (Turner, 1991)
routine to provide the user with 2D plots of iteration
convergence at the analysis level, objective function
convergence at the MDO-cycle level, and design and
behavior variable histories at both the analysis and
MDO-cycle levels.

The framework has been used to attain preliminary
results in two major research endeavors thus far. These
will be discussed briefly in the next section.

FRAMEWORK APPLICATION:
PRELIMINARY RESULTS

The first major application of the framework came in
the form of a large-scale comparison of
multidisciplinary solution strategies (Hulme and
Bloebaum, 1998). Clearly, many of the modules of
FACETS were required for this research endeavor:
CASCADE was used to generate the test systems; the
planning module was used to ascertain the initial design
point and the initial coupling status of the system; the
optimization module was used to assign the options for
the various optimizations associated with the different
implementations; the solution strategies module was
used to define the strategy of choice for each execution,

and the post-processing module was then used to view
convergence plots, evaluation costs, and constraint
activity. Many results were attained, and numerous
conclusions were drawn. Refer to Figure 6. The
general findings are described as follows for the
following test system:

Initial objective function: 197.40
Subsystems: 20
Behavior variables: 100
Design variables: 40
Inequality constraints: 3

Figure 6: Solution strategy comparison (log10)

For substantially large multidisciplinary systems,
MDF, IDF, and AAO are all useful for attaining an
improved solution. The MDF strategy, which often
attains the greatest design improvement (DI), suffers
from the fact that it requires a huge number of analysis
evaluations (AE) per MDO cycle. On the other hand,
AAO has a more complex optimization problem and
requires a large number of optimization function
evaluations (OFE), and typically takes the longest time
to execute. IDF usually shows itself to be a good
intermediate choice to the MDF/AAO extremes.

The second major application of the framework
came in the form of a comparison of formal and
heuristic convergence strategies for multidisciplinary
analysis (Hulme and Bloebaum, 1999). Again, many of
the modules of FACETS were required for this research
endeavor: CASCADE was used to generate the test
systems; the optimization module was used to assign
the options for the various sub-optimizations associated
with the neural network error minimizations; the
analysis convergence module was used to define the
analysis strategy for each execution; and the post-
processing module was then used to view convergence
plots. Many results were attained, and numerous
conclusions were drawn. Refer to Figure 7. The
general findings are described as follows for the
following test systems:

0
10
20
30
40
50
60
70
80
90

100

SYS #1 SYS #2 SYS #3 SYS #4 SYS #5

FPI NM HCS

Systems 1, 2, and 3: 3 behavior variable equations
System 4: 8 behavior variable equations
System 5: 11 behavior variable equations

 � �

Figure 7: Analysis convergence comparison

Newton's Method (NM) was found to be the most
appropriate convergence strategy for three of the five
test systems. For the other two test systems, Newton's
Method diverged. In other words, the starting design
was not "sufficiently close" enough to the converged
design to allow for convergence. In these cases, the
"heuristic" (i.e. the previously described neural network
/ data fusion model) convergence strategy (HCS) was
found to be the superior convergence strategy. In fact,
the heuristic strategy outperformed Fixed-point
Iteration (FPI) for all five test systems.

These two implementations of FACETS have been
quite sequential in nature, in terms of modular usage.
For baseline testing, this is more than sufficient.
However, for future applications of FACETS, the
authors hope to implement more complex (i.e. non-
serial) combinations of its modular MDO tools and
technologies.

SUMMARY AND FUTURE WORK
This paper has presented a discussion of FACETS, a
new multidisciplinary design optimization framework
that is presently under development. FACETS differs
from other MDO frameworks in numerous ways.
Namely, it seeks to exploit new tools and technologies
in MDO which deal with large-scale, coupled
engineering design problems. Because of this,
FACETS uses simulation as its backbone. More
specifically, the CASCADE simulator has been
implemented as its means for generating benchmark
problem data upon which new MDO methodologies can
be tested. The structure of FACETS has been coded in
Motif, an X-Windows based toolkit for GUI
programming. In addition to the problem generation
simulator (CASCADE), numerous modules have been
incorporated into FACETS thus far. These include a
module for comparing MDO solution strategies, a

module for comparing convergence methods, and
planning, optimization, and post processing modules.
FACETS has already been extensively used for two
MDO method comparisons; future usage and modular
integration has already been planned for.

There are numerous research avenues that must be
pursued to further the FACETS framework. First and
foremost, exterior technologies shall be incorporated.
All of the major features that lie within the framework
have been developed and coded by the authors. The
next step will be to incorporate related research
technologies performed by other member of the SUNY
Buffalo MODEL laboratory team. These will include
graph morphing – a means for visualizing and
"steering" the multidisciplinary design anytime within
the design cycle (Winer and Bloebaum, 1997). In
addition, coupling suspension strategies – means for
identifying and responding to couplings between
subsystems which are found to be comparatively weak,
in the interest of reducing overall design time and cost
(English and Bloebaum, 1998). Eventually,
technologies developed by completely exterior
researchers shall also be incorporated. Secondly, more
optimization possibilities should be added to the
framework. Because optimization is the backbone of a
majority of the research that FACETS is involved with,
alternative options to ADS should be provided. These
might include heuristic optimization techniques such as
simulated annealing, or more recent traditional
optimization methods found in Vanderplaats' DOT
software package. Finally, the authors plan to
incorporate some degree of WWW technologies within
FACETS. Many of the initial (Java-based) aspirations
for this framework have not yet come to pass. The
authors feel that at the very least, web technologies can
be utilized during the result visualization (post
processing) phase of the framework. The automated
creation of HTML pages as output files can allow for
quick and easy global access of result data attained
through the usage of the framework.

ACKNOWLEDGEMENT
The authors would like to acknowledge the partial
funding support of The National Science Foundation
from the following Presidential Faculty Fellow (PFF)
grant: NSF DMI9553210.

REFERENCES
Balling, R.J., and Sobieszczanski-Sobieski, J.,
“Optimization of Coupled Systems: A Critical
Overview of Approaches.” AIAA Paper 94-4339,
September, 1994.

Bloebaum, C.L., Hajela, P., and
Sobieszczanski-Sobieski, J., "Non-Hierarchic System
Decomposition in Structural Optimization." Third
USAF/NASA Symposium on Recent Advances in
Multidisciplinary Analysis and Optimization, San
Francisco, CA, September, 1990.

Cramer, E.J. et al., “On Alternative Problem
Formulations for Multidisciplinary Design
Optimization.” Fourth AIAA /NASA /ISSMO
Symposium on Multidisciplinary Analysis and
Optimization, Cleveland, OH, September, 1992.

English, K., and Bloebaum, C.L., “Development of
Multiple Cycle Coupling Suspension in Complex
System Optimization”, Seventh
AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, St. Louis,
MO, September 1998.

Haftka, R.T., “Simultaneous Analysis and Design.”
AIAA Journal, Volume 23, Number 7, July, 1985.

Haftka, R.T., Sobieszczanski-Sobieski, J., and Padula,
S.L., “On Options for Interdisciplinary Analysis and
Design Optimization.” Structural Optimization,
Volume 4, Number 2, June 1992. pp. 65-74.

Heller, D., and Ferguson, P.M., "Motif Programming
Manual – Volume 6A." O'Reilly & Associates, Inc,
California, 1994.

Hulme, K.F., and Bloebaum, C.L., “Development of a
Multidisciplinary Design Optimization Test Simulator.”
Structural Optimization, Volume 14, Number 2-3,
October, 1997.

Hulme, K.F., and Bloebaum, C.L., "A Comparison of
Solution Strategies for Simulation-based
Multidisciplinary Design Optimization." Seventh
AIAA/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, St. Louis, Missouri,
September, 1998.

Hulme, K.F., and Bloebaum, C.L., "A Comparison of
Formal and Heuristic Strategies for Convergence of a
Coupled Multidisciplinary Analysis. Accepted for
presentation at the 3rd World Congress on Structural
and Multidisciplinary Optimization, Amherst, NY,
May, 1999.

McCulley, C., Hulme, K.F., and Bloebaum, C.L.,
"Simulation-based Development of Heuristic Strategies
for Complex System Convergence", Applied
Mechanics Review, Vol. 50, November 11, 1997.

Rogers, J.L., "DeMAID — A Design Manager's Aide
for Intelligent Decomposition: User's Guide." NASA
Technical Memorandum 101575, March, 1989.

Rogers, J.L., Salas, A.O., and Weston, R.P., “A Web-
Based Monitoring System for Multidisciplinary Design
Projects.” Seventh AIAA/NASA/ISSMO Symposium
on Multidisciplinary Analysis and Optimization, St.
Louis, Missouri, September, 1998.

Salas, A.O., and Townsend, J.C., “Framework
Requirements for MDO Application Development.”
Seventh AIAA/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, St. Louis,
Missouri, September, 1998.

Sobieszczanski-Sobieski, J., "A Linear Decomposition
Method for Optimization Problems - Blueprint for
Development," NASA Technical Memorandum 83248,
1982.

Sobieszczanski-Sobieski, J., "The Sensitivity of
Complex, Internally Coupled Systems," AIAA Journal,
Volume 28, No. 1, 1990, pp. 153-160.

Steward, D.V., "System Analysis and Management."
Petrocelli Books, New York, 1981.

Turner, P.J. "XMGR – XY plotting tool for
workstations using X." (internet documentation)
Portland, OR, 1991-1995.

Vanderplaats, G., “ADS - A FORTRAN Program for
Automated Design Synthesis Version 1.10” (user’s
manual), University of California, Santa Barbara,
California, 1985.

Winer, E., and Bloebaum, C.L., “Design Visualization
by Graph Morphing for Multidisciplinary Design
Optimization”, Conference Proceedings of First
International Conference on Engineering Design and
Automation (EDA '97), Bangkok, Thailand, 1997.

