Simulation-based development of heuristic strategies

for complex system convergence

C McCulley, K Hulme, and C L Bloebaum

Multidisciplinary Optimization and Design Engineering Laboratory (MODEL), Department
-of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo NY

The feasibility of system-level optimization in complex engineering design rests on the
capability to iteratively converge a system of coupled subprocesses in a reasonable amount
of time and at a reasonable cost. Each of these subprocesses, or modules, has an individual
time and cost to execute. Convergence strategies are systems of rules for executing through

the set of modules. Strategies can be developed which draw information from system -
characteristics to reduce the overall time and cost of converging the system.

A simulator has been created which combines automatic model building and sequencing
capability with an engine capable of running either sequential or parallel execution strate-
gies. Several first generation strategies, both sequential and parallel, are explored using this

technique.

INTRODUCTION

Complex system engineering, such as that undertaken for
the design and production of aircraft, is a highly
multidisciplinary process which is carried out as a collec-
tion of smaller independent efforts. The effect of the interac-
tions between disciplinary or subsystem components of a
design process upon the system-level characteristics of the
final system is often poorly understood. In addition, the large
nature of these systems have made coordinated system-wide
optimization infeasible. Traditional reliance has thus been
placed on trade studies of a small number of candidate de-
signs. The improvement of this situation is the purview of
the field of Multidisciplinary Design Optimization (MDO).

AnMDO process, as proposed by Sobieski[12] and oth-
ers, achieves system-level optimization, but at large cost
caused by the required iteration. A radical increase in the
efficiency of converging an iterative design or analysis pro-
cess is a fundamental step required to make system-level
optimization of complex systems, a highly iterative endeavor,
a more attractive option. Toward this end, it is useful to gather
heuristic information about the behavior of complex itera-
tive systems within an MDO framework. Simulation is an
important tool in this endeavor, allowing convergence data
generation from many systems of varying characteristics,
illuminating concepts that will form the basis of improve-
ments in the convergence processes of real systems.

The optimization process (see Figure 1), begins with
the design variables being set to initial values. The coupled
analysis of the system defined by these variables is solved.

which sets the values of behavior variables which are the
analysis outputs. This is an iterative process internal to the
optimization. Using both the design and behavior variables,
the total system sensitivity is calculated from local subprob-
lem sensitivities using the Global Sensitivity Equations
(GSE) [13]. This derivative information is used by the
optimizer to choose the next design point, and the process
repeats if it has not converged to an optimum.

The coupled analysis is rep-
resented by a Design Structure
Matrix (DSM), shown in Figure
2. The DSM was introduced by +
Steward[15] and adopted and ex-
tended by Rogers for DeMAID
(Design Managers Aide for Intel- +
ligent Decomposition) [9]. In a
DSM, boxes along the diagonal-
represent modules, which repre-
sent the individual subproblems +
into which the analysis is decom-
posed. The key feature of a mod-
ule is the fact that it takes data as
input and produces other data as
output. Thus, each module can be
considered, from the structural
standpoint, to be a black box. Each
of the modules is coupled through
its input-output data to other mod-

Initialize

Analysis

Sensitivity
Analysis

Optimizer

Figure 1. Optimization Procedure.

ules that either provide or require this data, respectively.

The modules along the diagonal are in a particular se-
quence. If one module passes information to another later in
the sequence, the coupling is termed a feedforward.
Feedforwards appear above the diagonal. If a module requires
information from one later in the sequence, the coupling is a
feedback. Feedbacks appear below the diagonal. Couplings
are represented by a dot or “bullet” in the appropriate loca-
tion connected to the respective modules by straight lines. A
coupling exists if and only if a bullet is present, so two lines
merely crossing.do not have an information flow between
them.

Each module can be executed with the most recent data
it has received to produce updated output which may then be
used by other modules. An iterative process is used to con-
verge the modules to a solution in nonhierarchic systems
where lateral couplings exist.

The analysis must be repeatedly converged at different
design points to perform the optimization. For complex sys-
tems, analysis is itself large and expensive, both in terms of
time and cost. The efficiency of carrying out the analysis
procedure depends not only on the efficiency of the various
tasks being performed in the modules, but also to a great
extent on how the process is iterated. The question that arises
then is how best to execute the modules to reduce the time
and cost to get a converged solution to the behavior vari-
ables. Within that question arises others, such as how best 1o
take advantage of parallelism. In real terms, the answers to
such questions can help lead to better management of time
and resources in complex product development processes
which incorporate system-level optimization.

Simulation is an instrumental tool to help find these
answers. A simulator has been created for this purpose the
function of which is not unlike discrete event simulation. a
technique which has been used very successfully to model
and simulate industry production systems [11]. It is also find-
ing application in many other fields. Discrete event simula-
tion typically uses a time-slicing technique to model the ad-
vancement of processes in time. As time moves forward by
discrete steps, processes begin or end, material moves be-
tween processes. control decisions are made, etc. This is very
similar to the convergence process in decomposed
nonhierarchic design processes. Each subproblem can begin
or end, and requires a certain finite time to run. As they com-
plete, data moves between them. There are also some key

1 Feedforward

L]

Feedback

Figure 2. A design structure matrix.

differences. Generally, a discrete event simulation of a fac-
tory system is open-ended. The factory simulation can run
indefinitely in time while data is collected from the model.
The analysis process being modeled here completes when
the values of its output converges. Also, components of fac-
tory systems generally remain static in their input and out-
put. A given machine always receives one particular kind of
part and produces another particular kind of part from it.
The subproblems that make up the complex system analy-
sis, on the other hand, form a relationship between a chang-
ing input and output.

Building on previous work [5], the simulator created
for this study includes both model generation and the capa-
bility to sequence the DSM for selected characteristics. The
result is the ability to rapidly test the effects of structure and
semantics on the convergence process of a coupled system.

CONVERGENCE STRATEGIES

With large highly coupled systems, it is difficult to deter-
mine the way a system should be iterated simply by looking
at the data flows. A basic convergence strategy, made up of
rules which determine, based on the current state of the sys-
tem, what module or modules should run, simplifies this prob-
lem and renders it capable of being automated. Numerous
strategies are possible and intuitively acceptable with only
two constraints. The first is that a strategy must not let the
system become idle before it has converged. The second is
that every module must execute. Following are descriptions
of the strategies considered in this study.

Sequential Strategies

Sequential strategies require that only a single module can
be in a running state at any one time.

Random. Modules are executed in a random sequence, with
uniform probablility of any module being chosen next. Ran-
dom execution provides a worst-case baseline. It is reason- -
able to expect that any useful sequential strategy should pro-
duce convergence with less time and cost than can be
achieved randomly.

Straight-Through Execution (STE). The modules are ex-
ecuted directly in sequence starting from the top of the DSM
and proceeding to the bottom. This is repeated until conver-
gence has been achieved.

Branch at Feedbacks (BAF). In this strategy, at each feed-
back that is encountered, execution branches back from the
source of the feedback to the module requiring the input.
Innermost feedbacks are branched first. Several variations
on this theme are possible. Feedbacks in between the two
endpoint modules may either be ignored or internally
branched. The intervening modules may be executed once,
some prescribed number of times, or repeatedly until they
come to an interim convergence. The branching may be ap-

plied to all feedbacks or strong feedbacks only, where strength
of a feedback (or any coupling) is determined from a sensi-
tivity analysis of the converged system. For this study, mod-
ules inside the feedback loop are executed only once.

Queue when Updated (QWU). A first-in first-out queue is
maintained, and each module that receives updated infor-
mation after another module has executed is queued. To avoid
rampant expansion of the queue that could be caused by in-
puts from multiple modules, only one instance of any mod-
ule may exist on the queue at any one time. A variation of
this strategy not used here involves queuing a module that
has received a complete set of updated information (i.e. all
of the modules that provide input to that module have ex-
ecuted). This involves having an additional rule to deal with
the case where no module has a complete set of information.

Parallel Strategies

Two simple parallel strategies have been implemented only
for the purposes of demonstrating the concept. To take ad-
vantage of the possibilities of parallelism, far more intelli-
gent strategies will be required.

One concern arises in parallel strategies which is not a
factor in sequential execution. This is the question of when
cost is incurred. For this study, cost is considered to be in-
curred when a module starts execution, and is incurred even
if that module’s completion is never achieved. This func-
tions as a wors(case scenario approximation.

Parallel Blitz (PB). Every module is started simultaneously.
As each module completes, it is immediately restarted with
the latest available information.

Start When Updated (SWU). The parallel cousin to QWU,
this strategy runs immediately any idle module which has
received updated information. If a module is already run-
ning when updated information is received, the command to
restart it is held in queue until the module completes.

FACTORS AFFECTING CONVERGENCE

Numerous factors which affect the convergence of complex
systems can be explored using simulation. This study will
address three.

Sequencing. Sequencing has been previously explored for
the reduction of convergence time and cost {5,6,8]. In cer-
tain convergence strategies, the particular sequence of mod-
ules along the diagonal of the DSM may be used to inform
the procedure, directly affecting the execution order. Of the
strategies above, this is the case for STE and BAF. Sequence
determines the layout of the couplings over which these strat-
egies must operate. Although STE does not directly interact
with the couplings the way BAF does, the layout affects the
way data is transmitted through the system during the proce-
dure. By contrast, QWU does not depend on sequence, be-

cause the execution order is determined by the moduie cou-
plings, which sequence does not affect. Neither are the two
above-mentioned parallel strategies affected by sequence.
Sequencing is performed to achieve one of several ob-
jectives. Systems are sequenced for minimum feedbacks,
minimum time estimate, minimum cost estimate, or some
combination. Sequencing to reduce feedbacks reduces the
amount of information which must be guessed during the
execution process, thereby speeding convergence by provid-
ing downstream modules with more accurate inputs. It is also
possible to sequence directly based on cost or time estimates
for the system. This estimate involves summing for each feed-
back the total cost and time of all of the modules in between,
and adding this result to the overall cost and time sum [9].
Direct factors such as time and cost to run individual mod-
ules of the analysis are important to the sequencing proce-
dure because iterations may be nested in a particular conver-
gence strategy, requiring inner loops to be executed repeat-
edly. The design manager may desire to find some way to
move particularly expensive modules out of such loops.

Effect of Structure. There are two components to a coupled
system, its structure and its semantics. Structure refers to the
externally observable characteristics of the system, such as
the number of modules and the way in which they are coupled
together. Semantics refers to the internal content of the mod-
ules. Two systems may possess the same structure and yet
have completely different semantics. Systems being many
and varied, the effect of semantics on system convergence is
difficult to generalize. The structure of a system is far more
accessible. How much of a system’s convergence behavior
can be predicted based on structural considerations alone?
Because the simulator can generate models to fit a given
structure, structure-related convergence characteristics can
be revealed by repeatedly reinstantiating the same structure.
This kind of test can be run on different systems of varying
structural characteristics, such as number of modules, cou-
pling density, and sequence. This study is more limited in
scope, presenting the variance caused by semantic differ-
ences in relatively few system structures.

Parallelism. The simulator makes it possible to simulate
strategies which involve parallel execution of modules. Be-
cause modules have different processing times, two mod-
ules started simultaneously may not finish together, and
modules may be started at any time during the convergence
process. The simulator is capable of tracking this complex-
ity and keeping the database correctly updated. This capa-
bility makes it possible to test parallel convergence strate-
gies along with sequential ones.

SIMULATOR COMPONENTS

The simulator is made up of three integrated components:
the simulator engine, CASCADE (Complex Application

Simulator for the Creation of Analytical Design Equations)
[4] and Gendes [7]. The simulator engine creates the struc-
ture of the system and sets the details of the particular vari-
able dependencies that will form a given semantic
instantiation of that structure. CASCADE methodology is
then applied to create a viable set of equations to form the
actual semantic instantiation. Once this is successful, the
simulator engine can run the system from some unconverged
point to convergence using one of the strategies described
above. The Gendes component can be used at any time to
sequence the DSM. How or whether sequences are used de-
pends on the convergence strategy.

The simulation process can be repeated in an automatic
fashion for different strategies, different instantiations and
different sequences while statistics on time and cost are col-
lected.

Data Structure and Object Function

The simulator is object oriented and is coded in C++. Figure
3 shows the basic building blocks of its data structure. Gray
boxes in the diagram are objects, referred to below in bold-
face. Other items are constituents of objects.

The processor object maintains the simulation clock and
the running tally of the cost. It acts as the executive of the
simulation, and is thus the storehouse of all the strategy code.
Additionally, it is where the sequence information is kept.

A processor creates and acts upon a system object.
which, as its name implies, stores all of the system-related
information. This includes a database, a module list, and a
DSM. The database object primarily keeps a list of data
objects, each of which has a current value, an iniual value,
and a converged value. and which is referred to by a unique
four-byte signature. The data objects also reference the mod-
ule objects which create them. The system keeps a Boolean
matrix which represents its DSM. The internal generation
routines make certain that the semantics of the generated
system match its structure correctly.

The system keeps a list of module objects. Each mod-
ule requires inputs and produces outputs. Modules have two
states, idle and running. They can be commanded by the pro-
cessor to begin running, and queried for their status. Once
commanded to run, a module requires a certain execution
time, and incurs a certain execution cost. The module’s in-
puts are kept as a linked list of input tag objects, each of
which points to exactly one data object which it represents.
Each module produces from one to three behavior variable
outputs. This differs from the previous study [5], in which
only one equation per module was allowed. Assigned out-
puts are kept as a linked list of output tag objects. Each
output-tag object points to exactly one data object which it
represents, and one equation object that produces that data.
Each also contains a linked list of input tag objects, which is
a subset of the module’s inputs, but are separate objects also
pointing to that data.

Each equation is made up of a set of terms, generated
and adjusted with the CASCADE methodology. Each term

contains a coefficient, a power, a sign, and a pointer to the
data object which is the input to that term.

CASCADE Methodology

CASCADE is a standalone code programmed in FORTRAN
whose methodology has been directly incorporated into the
simulator objects. CASCADE is used to generate a repre-
sentation of a complex system of user-specified size. It was
created to provide an efficient means of determining the fea-
sibility and robustness of MDO methodologies.

The representation that CASCADE generates is a
coupled set of nonlinear analytical equations, whose output
is a set of behavior variables. These equations take the form:

fx,y)= Zcix,f" + Zdjy;"
i J

Where ¢’s and d’s are coefficients, p’s and q’s are powers,
x’s are the design variables which do not change over the
course of the analysis, and y’s are the behavior variables,
which do. The CASCADE methodology, slightly modified,
has been split up and made a part of the simulator’s data
classes so that it acts within them. The basic procedures,
however, remain largely unchanged.

A set of CASCADE equations is constructed through a
series of steps. First, for each term in the system, the coeftfi-
cient, sign, exponent, and coupling nature (coupling to ei-
ther a design variable or to a behavior variable) is determined.
The initial coefficient ranges between zero and one, but is
greater than zero, and the exponent is chosen to be one of
1.0, 2.0, -1.0, 0.5, 0.25, or 0.3333. Next, the magnitude of
each term is determined. Design variable magnitudes are
known. Because CASCADE initializes a value for each de-
sign variable (between 0.0 and 10.0), and holds that value
constant throughout the convergence process, the magnitudes
of design variable terms can be exactly computed on the first
iteration. The magnitudes of the behavior variables are not
initially known, however, and the set of equations must be

Processor

DB

System‘

DSM

Figure 3. Simulator Data Structure.

iterated to convergence to find them. The initial guess for
the magnitude of all behavior variables, on the first itera-
tion, is chosen to be 1.0.

During this iteration process, the coefficients of the terms
of the equations are altered dynamically so that a viable set
of equations will result. The magnitude of every term in the
system is limited to between 1.0 and 500.0 for positive terms,
and between -0.25 and -100.0 for negative terms. Equation
(and thus behavior variable) magnitudes are indirectly lim-
ited by this term bounding process, and as a check, are di-
rectly limited to an upper magnitude bound of 9999.0 to pre-
vent divergence. A lower magnitude bound of 0.0 is set for
every behavior variable to prevent undefined fractional ex-
ponentiations. If these bounds are violated in any iteration,
corrective actions are applied. All aforementioned settings
were determined heuristically based on stochastic runs of
various systems.

Once the equation magnitudes have been computed and
found to be within an acceptable range, a convergence check
takes place. Because of the dynamic nature of the CASCADE
adjustments, it is possible that the resulting values are some
distance away from true convergence. Since the convergence
strategy simulation relies on a priori knowledge of the con-
verged value in its own convergence check, a post-CAS-
CADE convergence step is used. This step is also used to
test the viability of the system for simulation by restarting
the convergence process from initial guesses some distance
away (typically 30%) from the converged values. Should any
of the behavior variables become negative or result in other
computational problems, the instantiation is rejected. The
post convergence step runs the system for a long enough
time that the system will be converged well within any re-
quired precision.

System Creation and Instantiation

Each of the parts of a system are individually created. First
the DSM is created randomly to a chosen system size and
coupling density, with the one caveat that it must be fully
coupled. That is, every module will produce output required
by at least one other module, and will require input from at
least one other module. Next the system is built upon that
DSM. This means that the module objects are created and
assigned to the system’s module list. Each module is ran-
domly given an execution time and cost which is an integer
between 10 and 500. Finally the system is instantiated, which
means that a set of data (design and behavior variables) and
equations built upon that data is created to the specification
of the existing structure. This set of data and equations forms
the system’s semantic component. An established structure
can be reinstantiated with different sets of matching seman-
tics.

System instantiation is a multi-step process that starts
with creation of the data. First design variables are created
and set with values to CASCADE bounds (0.0 to 10.0). Next,
the number of equations (behavior variable outputs) for each
module is chosen (between 1 and 3). For each output a data

object is created and attached to the database. The initial
values are set to 1.0 as per CASCADE. The output tags as-
sociated with these outputs are attached to the module. Next,
inputs are assigned randomly to each module based on the
DSM. For each connection, the receiving module must have
at least one of the producing module’s outputs as an input.
Once the inputs have been assigned, each module is com-
manded by the system object to assign its inputs to its out-
puts, such that each input will be used in at least one of the
module’s equations. The module is then commanded to make
the equations.

The creation of the equations is accomplished with the
CASCADE methodology. For a given output of a given
module, a term is created as previously described for each of
the inputs that were assigned to the output tag. These terms
are added to that output tag’s equation object. When these
are completely created for all modules, the system is simul-
taneously converged and adjusted according to the CAS-
CADE method, and then post converged as described above.
If this procedure is successful, the system, with its set of
data and equations, is ready to be used in a simulation.

Gendes (Sequencing)

Gendes (from Genetic Design Sequencer) [6] operates
through a genetic algorithm (GA) to determine a sequence
of modules based on the characteristics of the DSM. Gen-
eral information on GA’s can be found from Goldberg [2]. It
will sequence for minimum feedbacks, minimum cost esti-
mate, minimum time estimate, or some combination of these.
Gendes was created with integration in mind, so its code
remains essentially unchanged as part of the simulator.

Gendes works by coding a sequence directly into a vec-
tor by numbering the modules. For example, one such vec-
toris [3 142 5]. The coupling information is available to the
GA through the DSM for the system. A population of such
sequences is processed using three operators: selection, cross-
over, and mutation. The selection step retains with higher
probability those sequences with higher objective (fitness)
values. The crossover step exchanges information between
sequences to create new sequences. Gendes uses a position-
based crossover method whereby randomly selected posi-
tions from the first parent sequence are selected, and any
missing numbers are then filled in from the second parent in
the order in which they appear in that parent. The mutation
operator passes through the sequences with a small prob-
ability of swapping two positions in a sequence.

Running the Simulation

The code for any given strategy, resident in the processor
object, consists of basically the same procedure. First the
processor and system are reset. This means that the system
clock and cost accumulator are set to zero, and each data
object is reset to its initial value (typically 30% up or down
from the converged value). The processor then commands
one or more modules to start, and steps through time,

incrementing the system clock. At each time step each mod-
ule is queried. This query offers the opportunity for a run-
ning module to determine, based on the current system time,
if it should stop and update the data objects for the outputs it
produces. Next the processor decides, based on the resulting
system state, the DSM, the sequence or any other pertinent
factors relating to the strategy being used, which module or
modules (if any) should be commanded to begin running.
When a module is commanded to run, it executes its equa-
tions immediately and stores the result in a buffer to be re-
turned after the simulator has run through the right amount
of time. This is very important, because it allows simulation
of a parallel strategy to be possible. It would not be correct
for a module to use results generated after it had already
started running, which is possible if a shorter-running con-
tributing module is executed or any contributing module
completes execution during its run time. Thus a module must
be made to use the data in the state it existed when it started.

Of course, this issue is clearer in a real system, where it
actually does take a finite amount of time to produce the
output data. Were new data to become available in a real
system, two choices would exist: either complete the mod-
ule with the data with which it was started, or start over with
the new data. Exploring the results of these choices would
be an interesting problem, and is certainly capable of being
simulated, but for this study, the former choice is always
exercised.

RESULTS

The factors of structure and sequencing are considered to-
gether for the purposes of this study. Three system struc-

tures were chosen with 10, 20 and 30 modules respectively.
Each structure was instantiated five times and run with each
of the sequential strategies. For STE and BAF, the strategies
were run for each of the aforementioned sequences, as de-
scribed in the following key used in the figures:

STE-N, BAF-N Nominal (unsequenced) order.
STE-FB, BAF-FB Minimum feedbacks.

STE-T, BAF-T Minimum time estimate.
STE-C, BAF-C Minimum cost estimate.

STE-T/C, BAF-T/C Equal weighting on time and cost.
The modules retained their original execution time and cost
values through each instantiation. The convergence time and
cost results were collected for each of these runs.

Figures 4 and 5 show the time and cost results, respec-
tively, for the ten module system. To more easily read these
diagrams, keep in mind that for each instantiation the bars
proceed in the same order in which the strategies appear in
the legend with the random strategy to the left and QWU to
the right of each subgrouping.

Despite the unrelatedness of the values of cost and time
chosen for the modules, with potential differences as great
as a facor of fifty, the time and cost graphs show a marked
similarity of profile. Though the magnitudes are different,
the relative position of the bars compared within instantiations
remains largely the same.

While no one strategy is an across-the-board winner,
QWU has the best time in four of the cases, and the best cost
in three. Certain runs of STE capture the top place in the
other cases. The BAF strategy trails in almost every case
regardless of the sequencing used, failing to beat unsequenced

Random

STE-N

STE-FB

STE-T

STE-C

STE-T/C

3

Instantiation

BAF-N

BAF-FB

BAF-T
BAF-C

BAF-T/C

| Bl Enl EuE REl NEE RN

QWU

Figure 4. Time results for multiple instantiations of a ten module system.

STE in most cases. In three of the instantiations, some of the
sequenced BAF trials fail to beat the random strategy in ei-
ther time or cost. Note, however, that except for one
instantiation, sequencing produces significant gains over
unsequenced BAF.

From these trials, it is not possible to clearly pick a se-
quencing method which is best for either STE or BAF. In
various cases, different sequences produce the best overall
result for this strategy. For STE, sequencing for minimum
feedbacks always produces a time and cost drop in the ten
module system. This is consistent with previous results [5],
however this does not hold true for the other systems.

In the interest of space, only time results are shown for
the twenty and thirty module systems in figures 6 and 7 re-
spectively. As with the ten module system, the cost results
closely parallel these in relative magnitude with a few scat-
tered anomalies. Additionally, since the BAF strategy shows
similar poor results for the other systems, it is left off of
these graphs in the interest of clarity.

Looking collectively at the QWU results across the sys-
tems, it is possible to see that, while this strategy may or
may not produce the best achieved result, it is never far above
it in cost or time.

Parallel Strategies

To demonstrate the parallel strategies, three systems, again
of 10, 20 and 30 modules (though different from the above)
were generated with the simulator. Each of these systems
was then converged with both PB and SWU, using QWU as
areference, These results are presented in Table 1. Note from
the values that for each of the systems, using a parallel strat-
egy results in a marked drop in processing time, with paral-

TABLE 1. Results for perallel strategies.

System Strategy Time Cost

10 module QWU 10600 16949
PB 2240 80954
Swu 3237 15516

20 module QWU 44191 47491
PB 6604 321549
SWuU 14135 232931

30 module QWU 128417 119176
PB 13494 781635
SWU 23141 431703

lel blitz showing the best time results. Just the opposite is
true for cost, however, and it appears that the parallel strate-
gies trade off cost for speed.

From observation of the running sequence, SWU rap-
idly deteriorates into PB as the queue becomes saturated.
This is caused by the fact that completed modules queue
multiple dependent modules faster than those modules can
be cleared.

CONCLUSIONS

It is not possible to draw absolute across-the-board conclu-
sions about a “best” strategy from these proof-of-concept
runs because there are exceptions to every trend. Further and
more complete exploration is needed to determine what tech-
niques are universally best for complex system convergence.
It is, however, possible to spot trends among this first gen-
eration of strategies. Sequencing does, in general, improve
the performance of those strategies it affects. The BAF strat-
egy may be ruled out as viable unless it receives some con-
siderable alteration. The QWU strategy appears to be a “safe

80000

Ll il

70000

30000

20000

10000

Instantiations

Figure 5. Cost results for muitiple instantiations of a ten module system.

160000 =

1996.

[6] McCulley, C.: Bloebaum, C. L.
(1996) A Genetic Tool for Optimal
Design Sequencing in Complex En-

Random

140000

gineering Systems. Structural Optimi-

STE-N
zation, Vol. 12, No. 2/3, Oct. 1996,

120000

100000

p.186-201.
[7] McCulley, C.; Bloebaum, C. L.;
(1994) Optimal Sequencing for Com-

STE-FB

80000

plex Engineering Systems Using Ge-
netic Algorithms. Proc. of the Fifth
AIAA/USAF/NASA/OAI Symposium

STE-T

Time

60000 |-

STE-C

on Multidisciplinary Analvsis and Op-
timization, Panama City, FL, Septem-

ber 1994.
[8] Rogers, J. L.; Bloebaum, C. L.;
(1994) Ordering Design Tasks Based

STE-T/C

40000

20000

Instantiations

Figure 6. Time results for muitiple instantiations of a 20 module system.

bet” choice among the sequential strategies explored since it
consistently produces good, if not the best, results. Parallel
strategies trade high cost for significantly reduced times.

Using simulation as a guiding technique, it will be pos-
sible to design and test more intelligent strategies. It should
be possible with effort to maintain the time benefit of paral-
lelism while driving down the cost to competitive levels. The
use of coupling strengths derived from sensitivity informa-
tion may enhance the convergence process. Concepts behind
the influence of semantics on the system convergence, and
possibly controls, may be discovered.

ACKNOWLEDGMENTS

Support for this work under NASA Langley Research
Center grant NAG 11800 and NSF PFF grant
DMI9553210 is gratefully acknowledged. The authors
would also like to thank James L. Rogers of NASA
Langley for his assistance.

REFERENCES

[1] Bloebaum, C. L.; (1995) Coupling Strength-Based System Re-
duction for Complex Engineering Design. Structural Optinu-
zation, Vol. 10. No. 2, Oct. 1995, p. 113-126.

[2] Goldberg, D.: (1989) Genetic Algorithms in Search, Optimiza-
tion. and Machine Learning. Addison-Wesley Publishing Co.,
New York. 1989.

[3] Hajela, P.; Bloebaum. C. L.; Sobieski. J.: (1990) Application of
Global Sensitivity Equations in Multidisciplinary Aircraft Syn-
thesis. Journal of Aircraft, Vol. 27, No. 12, 1990, p. 1002-1010.

[4] Hulme, K. F.: Bloebaum. C. L.: (1996) Development of CAS-
CADE: A Multidisciplinary Design Test Simulator. Proceed-
ings of the sixth AIAA/USAF/NASA/OAI Symposium on
Multdisciplinary Analvsis and Optimizarion, Seattle, WA, Sep-
tember 1996. To appear in Structural Optimization.

[5] McCulley. C.: Bloebaum. C. L.: (1996) Complex System De-
sign Task Sequencing for Cost and Time Considerations. Proc.
of the Sixth AIAA/USAF/NASA/QAI Symposium on

Time

Multidisciplinary Analysis and Optimization, Seattle, WA, September

250000
200000
150000
100000

50000

OmROMEDO MmO

QWU on Coupling Strengths. Proc. of the
Fifth AIAA/USAF/NASA/OAI Sympo-
sium on Multidisciplinary Analysis
and Optimization, Panama City, FL,
September 1994.

[9] Rogers, J. L.; McCulley, C.;

Bloebaum, C. L.; (1996) Integrating

a Genetic Algorithm Into a Knowl-

edge-Based System for Ordering

Complex Design Processes. Proceed-
ings of the International Conference on Al in Design, Stanford, CA,
June 1996.

[10] Rogers, J.L.. (1989) A Knowledge-Based Tool for Multilevel Decom-
position of a Complex Design Problem, NASA TP 2903.

[11] Shewchuk, J.P.; Chang, T.C.: (1991) An approach to object-oriented
discrete event simulation of manufacturing Systems. Proceedings Winter
Simulation Conference, Phoenix, AZ, 1991.

{12] Sobieski. J.: (1993) Multidisciplinary Design Optimization: An Emerg-
ing New Engineering Discipline. NASA Technical Memorandum
107761.

[13] Sobieski. J.; (1990) Sensitivity of Complex. Internaily Coupled Sys-
tems. AJAA Journal, Vol. 28, No. 1.

[14] Starkweather, T.; McDaniel, S.; Mathias. K.; Whitley. D.; Whitley, C.;
(1991) A Comparison of Genetic Sequencing Operators. Proc. of the
Fourth International Conference on Genetic Algorithms.. Proceedings
published by Morgan Kaufmann.

[15] Steward. D.V.. (1981)System Analysis and Management. Petrocelli
Books. New York, 1981.

[16) Syswerda. G.: (1990) Schedule Optimization Using Genetic Algorithms.
Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York,
1990.

bedo L 1

1 2 3 4 5

Instantiations

Figure 7. Time results for multiple instantiations of a 30 module system.

