Chapter I11

Plasmas

1. INTRODUCTION

The discussion in Chapter II was concerned primarily with the behavior
and properties of individual particles in a partially ionized gas. We wish
now to turn our attention to the macroscopic behavior of collections of
charged particles. These considerations will lead to the introduction of
two related fundamental parameters associated with the electrical properties
of a partially ionized gas, namely, the Debye length and the plasma
frequency. As noted in Sec. II 8, the collective behavior of neighboring
charged particles during a collision between two charged particles plays an
essential role in the calculation of the charged particle momentum transfer
collision cross section. The notion of shielding involved here also enters
the description of the ionized gas region, called a sheath, immediately
adjacent to a solid surface.

The last three sections of this chapter are concerned with several topics

which involve applications of the fundamental concepts introduced earlier.

We discuss first the classical theory of electrostatic probes and their use in
making measurements of the properties of low-pressure ionized gases. We
then discuss some of the concepts involved in the description of collision-
dominated ionized gases adjacent to solid surfaces. Finally, we discuss the
elementary theory of the propagation of electromagnetic radiation through
an ionized gas and how diagnostic information about ionized gases can be
inferred from experiments which employ electromagnetic waves.

2. FLECTRICAL NEUTRALITY—THE DEBYE LENGTH

A basic property of a partially ionized gas is its tendency towards electrical
neutrality. If over a macroscopic volume the magnitudes of the charge
densities of the negative and positive particles differed just slightly, very
large electrostatic forces would exist, for which the potential energy per
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particle would enormously exceed the mean thermal energy. Unless very
special mechanisms were involved to support such large potentials, the
charged particles would move rapidly in such a way as to reduce these
potential differences and thereby restore electrical neutrality.

To obtain a quantitative estimate of the dimensions over which deviations
from charge neutrality may occur, let us consider the following simplified
model. Let us suppose the gas is initially electrically neutral and that
the electrons and ions are uniformly distributed throughout space, as
indicated schematically in Fig. 1(a). Initially, the electron and ion number
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Figure 1. Work necessary to create a region of net positive charge.

densities have the common value n = n, = n;. We wish to calculate the work
necessary to displace the electrons bodily to the right through some
distance, d. This will then be the work necessary to create a region of net
positive charge density p° = ne between the planes y = 0 and y = d.

Let us suppose that y, represents some intermediate displacement of the
electrons, as shown in Fig. 1(b). The electric field E set up by a distribution
of charge density p° is determined quite generally by Gauss’ equation

v-E=". (2.1)
o

For the one dimensional distribution in Fig. 1(b), we have

dE,
y < 0, —d; =(0= Ey = 0, (223.)
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In obtaining the results expressed by equations (2.2), we have assumed
‘that the electric field is zero prior to the displacement and that E, is
continuous.

In the regio? to the. right of y,, the electric field acting on each
electron is E,(yo). The work necessary to move each electron an additional
distance dy, is | '

= AW = eEy(yo) dyo .

Therefore, the total work that must be done on each electron to produce a
total charge separation of distance d is
b o8 e el @R -
W= jery(J’o)dY EPREE » (2.3)
Iri,particuylal"‘,mif this enérgy, is to be derived from the mean thermal
energy in the y-direction kT /2, then the corresponding distance d=Apis
called the Debye length and is given by '

ne* iy _ kT
| 5, 2 27
or §
| (ke |
! ("ez) ShEERET : (242)
In MKS units,
T 1/2
A,,=69.0(-h-) m. (2.4b)

As an example, for the characteristic conditionsinan MHD generator T =

9500°K and n = 102% m™ 3, we have A ~ 3.4 x 10~7 m. This distance may .

be compared to the value of the electron mean free path [, ~ 1.3 x 107° m,
for the conditions specified in Exercise II 8.2. In this case, therefore, the
Debye length is about a factor of five less than the electron mean free

path. Values of the Debye length for various other conditions of interest
are shown in Fig. 12 of Chapter IL
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In 1929, Langmuir (1961) introduced the term plasma for a partially ionized
gas in which Ap is small compared to other macroscopic lengths of
importance (for exgmple, the macroscopic scale of change in electron number
density). Under such circumstances one may make the assumption of
electrical neutrality, i.e., n; ~ n, . The word plasma derives from a Greek word
meaning “to mold” and was suggested to Langmuir by his observations of
the manner in which the positive column of a glow discharge tended to
mold itself to the containing tube.

Exercise 2.1. Consider a neutral plasma of charged particle number
density n, = n; = 10'* cm™? and temperature 2500°K :

1. Suppose that in some manner all the electrons present in a sphere of
radiu§ 1 mm were suddenly removed. Calculate the resulting electric field
(in volts/m) at the sphere’s surface.

"2, Calculate the potential difference through which an electron would
need to be accelerated in order to acquire a kinetic energy corresponding
to the mean thermal energy of an electron in this plasma.

3. What is the maximum fraction of electrons that can be removed from
the sphere such that the resulting potential difference between the center and
the surface of the sphere shall not exceed the potential difference calculated
in part 2?7

4. Calculate the Debye length for this plasma.

3. SHEATHS

One of the most important situations in which charge neutrality does not
prevail is in the region of a partially ionized gas immediately adjacent to
a solid surface. Such regions are referred to as sheaths. The relevant
macroscopic scale here being the distance from the surface, we may anticipate
that the assumption of charge neutrality will be violated in a region whose
extent is of the order of A,. The detailed structure of sheaths may be
quite varied, depending on many factors. The discussion of this section will
be limited to the simplest of models and is aimed at bringing out the
salient features of sheaths most expeditiously.

An important aspect of the sheath problem concerns the disposition of
charged particles which strike the solid surface. For many situations where
the surface is cooled, it is possible to regard the surface as nonemitting and
catalytic. Under such conditions the incident charged particles are either
retained on the solid surface or they recombine and are returned to the gas
as neutral particles.

Let us consider the special case of a floating electrode suddenly immersed
‘into a stationary plasma. We shall assume, for simplicity, that the electron
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and heavy particle temperatures are equal and uniform. Initially, the-electron
flux to the electrode will considerably exceed that of the ions because of the
relation C, > C, between the electron and ion thermal speeds. In the steady-
state condition thére can be no net rate of charge accumulation on the
electrode. The electrode therefore quickly acquires a negative potential of
such a magnitude that the reduced electron flux is exactly balanced by the
ion flux. As illustrated in Fig. 2, the two major features of interest for this
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Figure 2. Steady-state potential distribution for a floating electrode.

problem are the magnitude of the floating potential ¢, and the spatial extent
of the potential distribution ¢(y) associated with the sheath. We shall
calculate each of these quantities separately.

To determine ¢, we need to calculate first the flux density of electrons
I'! striking the electrode. On the average, electrons striking the electrode
experience their last collision a distance approximately one mean free path
I, away from the electrode. We shall assume, somewhat arbitrarily, that the
electron velocity distribution f,(C) at this location is Maxwellian. In addition,
in order to keep the calculation simple, we shall assume that conditions are
such that the sheath thickness is less than I,. The latter assumption enables
us to regard the sheath itself as collisionless and means that n, ~ n; = nat the
location where f,(C) is Maxwellian. We shall see that this condition for a
collisionless, or free-fall, sheath is approximately equivalent to the require-
ment A, < [,.

With reference to Fig. 3, only those electrons with velocities directed
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Figure 3. Particle flux density incident on a surface.

towards the surface and with sufficient energy to overcome the potential
barrier will reach the electrode. The minimum y-component of velocity
required C,, is given by the equation

m, C2

_8—2‘1'2 = "‘e(bo. (3.1)

In accordance with equations (IT 6.18a) and (IT 6.20), the required one-way
electron flux density is given by the expression

1/2 oo
Tl =n fe(C)CydaC="[(i;?,;%) |

Y Cy>Cyo — 00

m Y2 0™ e 212kT 7 m, \"* ° 2okt \
= mely dC, |- e e~ LTI C .
[(ilnkT) J.Cyoe G, dc, | \2nkT J_w :

Noting that the brackets containing the dC, and dC, integrals have the
value unity, we obtain the result

e-—-mUC_\-:/ZkT dC } :
x

rl = '1% eB(bo/kT. (32)

Here C, = (8kT/nm,)!/? is the electron mean thermal speed [cf. equation

(I 6.34)]. The one-way ion flux density I striking the electrode may be

calculated in a similar manner, but since the ions are not impeded by the
floating potential, one obtains the result

nC,

="

4

i

(3.3)
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The floating potential is obtained from the condition

I} =r). (34)

For the case of eql’xal electron and ion temperatures, this condition yields
the result ‘
kT C, kT  _(m)\'7?

— = e ln — = e 1 — . 3.5

P e C; e n(me) 6.3)

We may note that ¢, is proportional to the temperature in eV, as would
be expected. However, the factor In(m;/m,)!/%, which has a minimum value
of 3.8 (corresponding to hydrogen ions), provides a significant amplification
of the temperature effect.

A more detailed analysis substantiates the result (3.2), but for an infinite
flat electrode, equation (3.3) should be changed (see Davison, 1957, p. 116)
to read

Fitz'—z-t:—',
2

A large fraction of the electrons moving toward the electrode from a
distance one mean free path away are reflected by the potential barrier and
return to this location. The electron distribution function is therefore nearly
isotropic in velocity space and can be closely approximated by a Maxwellian,
thereby justifying the assumption made in obtaining (3.2). On the other
hand, all of the ions which leave this location are captured by the electrode
so that the ion distribution function is highly nonisotropic in velocity
space, and the. assumption of a Maxwellian provides a rather crude
approximation.
- Turning now to the calculation of the potential distribution ¢(y) in the
sheath, we find that treating the ions accurately is made difficult for the
aforementioned reason. We may assume that the electrons in the sheath are
approximately in thermodynamic equilibrium and thus, in accord with
statistical mechanical considerations (see, for example, Tolman, 1938, p. 89),
have the Boltzmann distribution

n,(y) = ne®OVLT. (3.7)

We have used here the fact that the potential energy of an electron at the
position y is —e¢(y). [This result may also be regarded from a dynamical
point of view as a statement of conservation of momentum, the electric
field force being balanced by a gradient in momentum flux density—see
equations (7.4) and (7.6).] If the ions were also in thermodynamic
equilibrium, we would have

(3.6)

nyy) = ne” OV, . (3.8)
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This relation would describe the ions well if the electrode reflected all the
jons, but it is not a good description for a catalytic surface. However, for
simplicity, we shall use the relation (3.8), and we may anticipate that the
results will be approximately correct, particularly in view of the fact that
equations (3.3) and (3.6) differ only by a factor of two. This statement is
supported by more detailed calculations (see Thompson, 1962, p. 29; and
Tanenbaum, 1967, p. 210). -

The potential distribution for a steady-state problem is governed in general
by Poisson’s equation

(4

vip = L (3.9)

€o

In terms of ¢, the electric field is given by
E= -V (3.10)

The existence of such a potential is a consequence of Faraday’s equation
for a steady state, V X E =0 [cf. equation (VI 2.Ic)]. Poisson’s equation
results upon substituting for E in Gauss’ equation (2.1).

Employing equations (3.7) and (3.8) in' the relation p¢ = e(n; — n,), the
equation for ¢(y) becomes

£o_ _ne (o™ CPWIRT _ gestcT). (3.11)

dy.?. €o
Towards the plasma edge of the sheath where |e¢/kT'| < 1, the exponentials
may be expanded so that

4 2ne? 2
T S WU P
D

KT kT T kT

_6?)72‘ g
and therefore p
B(y) oc €™V, (3.12)

An exact integration of equation (3.11) subject to the boundary conditions
that p(0) = ¢, and that as y — oo, ¢ and d¢/dy - O, yields the result
e 1n(1 = tanh(e¢0/4kT)e—ﬂwn) ,
kT 1+ tanh(edo/4kT) e~ V2¥/*

Numerical comparison of equations (3.13) and (3.12) shows that the solution
for all y is well-represented by the relation

D) = boe™ 1. (3.14)

Our major conclusion from this result is to observe that the spatial extent
of the sheath is of the order of the Debye length, confirming what we had

(3.13)
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anticipated. The fact that the plasma attempts to adjust itself near the
electrode surface so as to shield the main body of the plasma from the
electric field is a general property of plasmas.

Exercise 3.1. Calculate the sheath thickness for a plasma adjacent to an
isolated material surface when the electrons and ions are in thermal
equilibrium at different temperatures T, and T;. Assume that the sheath
thickness is much less than a mean free path.

4. SHIELDED COULOMB POTENTIAL

Suppose we place a point charge g > 0 in a plasma and inquire as to the
steady-state distribution of charge that results in the neighborhood of 4.
As illustrated in Fig. 4, on the average there will be a surplus of negative

Figure 4. Shielding of a charge by a plasma.

charge in the immediate vicinity of g which gradually diminishes as the
radial distance r from q is increased. This distribution results from the
simultaneous tendency of g to attract electrons and repel positive ions. For
sufficiently large values of r, the plasma will return to a condition of
macroscopic electrical neutrality. The result of this redistribution of plasma
charge is to produce an electric field at distant points in the plasma which
completely cancels the electric field produced by g.

The shielded Coulomb potential ¢(r) which describes the net effect of the
charge g and the distributed plasma space charge is determined by
Poisson’s equation (3.9) in the form

V2 =~ [nlr) = )} @1)

Since the plasma near g is in thermodynamic equilibrium, we may use
relations (3.7) and (3.8), expressed in terms of the radial distance r, to
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write equation (4.1) as

1d{(,do ne :
S22 5T o T [ edtKT _ pedr)k
r? dr (r dr) €o [e f i, (42)
For large values of r where |e¢/kT| « 1 we have, as in Sec. 3,
1d{(,dp 2
——\rt =] 2= ¢. 4.
r? dr (r dr) FE (43)
To solve equation (4.3), one makes the substitution
r
5= 00)
y
whereupon the differential equation becomes
rg_2
PR
and therefore, for large r,
e~ V2rlip
3r) ~ (44)

For sufficiently small r the effects of shielding are negligible, and the
charge q must give rise to the usual Coulomb potential

o) =1 . (4.5)

For all values of r, we may take as an approximate solution of equation (4.2)

ge™Y2riip

o) =

(4.6)

dmeyr "

since this expression certainly has the correct limiting behavior for both
small and large values of .

We may conclude from equation (4.6) that the plasma in effect confines”
the electric field of the charge g to a distance of the order of i,. For
this reason, A, is sometimes called the Debye shielding distance. In discussing
charged particle collisions in Sec. 8 of Chapter II, we noted that the
momentum transfer cross section was infinite for interactions described by a
pure Coulomb potential. The result (4.6) provides a more accurate
representation of the effective interaction between charged particles in a
plasma and leads to the finite value (II 8.4) for the charged particle cross
section for momentum transfer.
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The factor /2 appearing in equation (4.6) is often absorbed into the
- definition of the Debye length so that instead of equation (2.4a), one finds

the shielding distance defined as

kT Y2 [(eokT\'?
7 NI LA 3 a0
’ [(ne+n,-)ez] (Zne ) (*.7)

For a stationary charge g, both ions and electrons participate equally in
" the shielding process and this definition of the shielding distance is quite

appropriate. In any dynamical situation, however, the ions and the electrons

will certainly contribute in different degrees to the shielding process. In
particular, for rapidly fluctuating phenomena, the ions, being more massive
than the electrons, will contribute only slightly to the shielding. To consider
such effects with any precision requires detailed study. For simplicity we take
the contribution only of the electrons to provide an approximate measure
of the shielding distance.

Exercise 4.1. Calculate the potential distribution in a quiescent plasma
in the vicinity of a stationary charge. The plasma consists of electrons at
a temperature T, and of two species of ions with charge numbers Z, and
Z, at a temperature T. If T, =T, is the shielding distance increased or
decreased, compared to the case where Z, = Z, = 1?

5. RESPONSE TIME—THE PLASMA FREQUENCY

Since any slight distortion of the plasma from a condition of electrical
neutrality gives rise to large restoring forces, the question may be raised as
to how fast these restoring forces act. For simplicity, let us suppose that on
the time scale of the response, the ions are sufficiently massive that they
do not move. Accordingly, the ions may be considered as providing a
background of uniform positive charge density ne. Consider a slab of
plasma, and suppose that each electron initially on a plane surface located
at y is displaced a distance £(y). We wish to calculate what happens when

- the electrons are released.

Because of the displacement imposed on the electrons the electron

number density will be changed to the value

ny(y) = n + on(y). (5.1)

The resulting space charge distribution —e én(y) will give rise to an electric
field which in turn will interact with the electrons. To relate dn(y) to &(y),
let us apply the condition of conservation of electrons to the slice of plasma
contained originally between the planes y and y, =y + Ay, as shown in
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Fig. 5. We then have
nAy = (n+on)[y; +&(y)] = [y + &0

~(n+ 5n){ [y, FE) + Ay Zﬂ v+ é(y)]} it 5n)(1 ; %) Ay,

and therefore, assuming |dé/dy| « 1

—ndéjdy  d
e nA & (5.2)
L+ déjdy dy
Ay
Before displacement
jV J’]
|
il
i g Ew) Ey)
After displacement 3

—————

Figure 5. One-dimensional space charge distribution produced by variable
electron displacement.

\\

The resulting electric field at y is determined by Gauss’ equation

dE, _edn _nedl

dy € € dy’ y

which integrates directly to give

E\(y) = —&(y)- (5-3)
€o
Finally, the equation of motion of the displaced electron at & is
d¢  _eE s ne? .
me CBi = —e ‘y(y + C) - _eEy(y) =T é (‘)'4)
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According to equation (5.4), when the electrons are released they will
execute simple harmonic motion® with the characteristic angular plasma
frequency

-

ne? \1/2 :
= . 5.5
o= (2] )
The value of the corresponding circular frequency in MKS units is
v, =22 — 8971/ sec™ ! (5.5b)
=, = 89Tn, . .

The response time of the plasma is then just the reciprocal of v,. As an
example, for n, ~ 102° m~3 (which is typical for an MHD generator) the
plasma frequency has the value v, ~ 8.97 x 10'° sec™!. This value may be

compared with a typical value for the average electron collision frequency

Ve~ 2 x 10" sec™ .

The concept of the plasma frequency applies locally in a plasma and is
not restricted to the planar geometry we have used to introduce this
quantity. Suppose for some reason a fluctuation in electron charge density
—e én develops in a plasma. Then this space charge sets up an electric
field determined by the equation ‘

E=_%" (5.6)
€o

This electric field in turn will cause the electron fluid to be accelerated
in accordance with the equation
Ju, ¢E

‘é‘t- = - ;;, (57)

where u,, the mean velocity of the electrons, is assumed small. The resulting
redistribution of electron density and mean velocity must be consistent with
the requirement of conservation of electron number density

on
o4V (neu) =0, (5.8)

U1 we write Ely) = & sin w, t, where &, is the amplitude of the oscillation, the total energy
of the electron is m,(&, ,)*/2. If we suppose this energy derives from the average thermal
energy kT/2 so that m,(£,w,)*> = kT, we obtain for the value of oscillation amplitude
&o = Ap. This result is in accord with the interpretation of 1, described in Sec. 2.

Section 5 ilesponse Time—The Plasma Frequency 139
which, when linearized, becomes

0 on

—aT+V (nu,) = 0. (5.9)
If we differentiate equation (5.9) with respect to time and employ equations
(5.6) and (5.7), we obtain the following equation for dn,

2
; on+V- ( ‘a—ug)=~~5n

ot

0
E=—_ 1 ) on=
pr iy "y. s on+ (Co me) sn=0, (5.10)

which again shows that the charge density fluctuation will oscillate with
frequency ,.

If we multiply equations (2.4a) and (5.5a), we obtain the following
relation between the Debye length and the plasma frequency,

kT 2\1/2 k 1/2 -
Ap, = (60 ne ) = (l:) ~C,, (5.11)

ne* eym, m

e

where C, is the mean thermal speed of the electrons. Suppose first we accept
the interpretation of w, ' as the local response time to charge fluctuations
in the plasma. Then on the basis of equation (5.11) we may develop an
interpretation of A, by the following reasoning: Let us imagine that the
electrons are moving initially within some region of extent r in such a
manner that if they continued to move freely, an excess of charge of one
sign would soon result. The time interval required for this charge excess
to build up is r/C,. However, this developing charge excess produces an
electric field which acts so as to impede the charge excess from increasing.
If the response time of the electrons is less than the time required for the
charge excess to build up, the charge fluctuation will be prevented or
reduced. We may therefore conclude that charge fluctuations are reduced in
regions of extent r satisfying the inequality

t<r/C,,
or, using equation (5.11), for
C.
r>—= AD'
CUp
This argument shows that the interpretation of 1, as a measure of the
extent within which deviations from charge neutrality may occur is quite
general and is really independent of the specialized model we used to
introduce the concept in Sec. 2.
If we start with the premise that the interpretation of A, is in hand,
then equation (5.11) may be used to obtain an interpretation of », as follows:
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According to equation (5.11), the electrons can move a distance Ap in a
time ;. Therefore, for any disturbance of lower frequency, the plasma
<an respond sufficiently fast so as to maintain charge neutrality.

Exercise 5.1. Assuming that the ions and electrons can both move,
calculate the oscillation frequency of the electron displacement relative to
that of the ions and compare the result with equation (5.5a).

6. ELECTROSTATIC PROBES

One of the earliest methods for obtaining spatially resolved measurements
of plasma properties was developed by Langmuir about 1924. A Langmuir
probe consists basically of a small electrode, frequently just a partially
exposed insulated wire, which is inserted into a plasma. A dc power supply
is attached to the probe and is usually arranged so that the potential of
the probe with respect to the plasma can be varied continuously over a

range of both negative and positive values. The current collected by the _f.:

probe is determined as a function of the biasing voltage, yielding a so-called
current-voltage (or I-¢) characteristic. It is from the shape of this
characteristic that one attempts to derive information concerning plasma
properties.

Although it is relatively simple experimentally to obtain an I-¢
characteristic, our present understanding of how probes behave is restricted
to rather special plasma conditions. The utility of an electrostatic probe
as a diagnostic device for other than these special kinds of plasmas is
dubious and is still the subject of active investigation. Useful reviews
concerning the theory and use of electrostatic probes have been written
by Chen (1965), by de Leeuw (1963), and by Schott (1968).

In this section we shall discuss several aspects of probe theory applicable
to plasma conditions similar to those prevailing in low-pressure discharges,
as studied by Langmuir. Important features of such discharges, as far as
probe theory is concerned, are that the plasma is nonmoving and the probe
is nonemitting. Also, the probe dimensions are much smaller than the mean
free paths of the plasma particles, so that the collection of charged particles
occurs under essentially collision-free conditions. In addition, the sheath
thickness is much less than the probe dimensions so that the sheath may be
treated as having plane symmetry. Our reason for discussing this theory
is that it is relatively simple and, at the same time, illustrates- many of
the features common to current collection from a plasma. We shall discuss
some of the aspects involved in describing the effects of collisions in the
following section.

The general appearance of an I-¢ characteristic is shown in Fig. 6. The
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Net electron current to the probe, I

I} |
L AR

Probe potential, ¢,

.G-—;—r-———-——-—-—-————-——-———————

Figure 6 Schematic of a typical probe current-voltage characteristic. The
inserts indicate the potential variation in the sheath for the two cases ¢, < ¢

and ¢, > ¢;.

conventional current I is defined as positive for flow from the electrode
into the plasma, and is thus equivalent to regarding the net electron current
as positive for flow from the plasma towards the electrode. The potential ¢

refers to the probe voltage relative to an arbitrary reference, often thg
anode or cathode for a discharge-produced plasma or a part of the plasma
container. The net current collected by the probe is zero when the probe
voltage is equal to the floating potential ¢ ,. As discussed in Sec. 3, most
of the electrons leaving the plasma are repelled by the probe at this condition
in order that the separate electron and ion currents reaching the probe just
balance. If ¢, is made negative with respect to ¢, more ions will reach
the probe than electrons, resulting in a negative net electron current to the
probe. If ¢, is sufficiently negative, all the electrons will be repelled, and
the current collected by the probe will attain a nearly constant magnitude
called the ion saturation current.
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When the probe potential somewhat exceeds the floating potential, more
electrons will be collected than ions, resulting in a positive value of I. As
¢, is increased, the electron current will continue to increase, resulting in
an increasing valué of I, until the probe voltage equals the plasma or space
potential ¢,. At this condition both the random electron and ion currents
from the plasma reach the probe unimpeded. For all ¢, < ¢, the probe
is surrounded by a positive sheath as indicated in Fig. 6. When ¢, exceeds
- ¢, some of the ions are prevented from reaching the probe, and thus the
nét electron current to the probe is again increased, but the probe is now
surrounded by a negative sheath. If ¢, is sufficiently positive, all the ions
will be repelled and the probe will collect the electron saturation current.
In practice, the probe current at either large negative or positive voltages
does not saturate at a constant value, but continues to increase slowly in
magnitude. This behavior is often attributable to an increasing sheath
thickness, which results in an increasing effective current collection area
for the probe.

In addition to the conditions previously discussed we shall assume, for
simplicity, a single temperature. For ¢, < ¢,, equations (3.2) and (3.3) may
be employed to obtain the expression

I=1I*exp [:f%l@] — I (6.12)
For ¢, > ¢, :
I=I-1If exp[:ﬂ%——(b—ﬂ. (6.1b)
Here
I* = AenC,/4, (6.2a)
I# = AenC/4, (6.2b)

and A denotes the current-collecting area of the probe. The theoretical
current-voltage characteristic given by equations (6.1) is in accord with
Fig. 6.

These results may be applied to obtain diagnostic information about
plasma conditions in the following way. The ion saturation current I} can
be measured directly by applying large negative bias voltages to the probe.
The electron temperature can then be determined by fitting a straight line
on semi-log graph paper to a plot of In(I + I¥).vs. ¢, for values of ¢, in
the transition regime (i.e., for ¢, near ¢ ). If the temperature is known, the
electron number density may be calculated from the measured value of If.

’ 2 = 1
I \
Iizl g
192
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In principle, the relation

kT [do,
—=1 [’EI_} n 6.3)

provides an alternative method for determining the temperature.

For charge neutrality to be maintained, an equal ion current must leave
the plasma to balance the electron current drawn by the probe. In effect,
the wall of the plasma container, or whatever other voltage reference is
being used, acts as a second electrode to complete the circuit carrying the
probe current. If the area of this effective electrode is too small, the value
of the saturation current of the probe at large positive bias voltages will
not be equal to the value I* predicted by equation (6.1b). To see in detail
how this comes about, and at the same time to discuss an alternative
probe method proposed by Johnson and Malter (1950), let us consider next
the two-electrode probe shown in Fig. 7.

*131”—%2 y A
b

by)

I 1% (fle'

I=1, — Iy

Figure 7. Currents and potential distribution for a double probe.

Let us denote properties associated with the two electrodes by the
subscripts 1 and 2, respectively, and let us suppose that 4, > A4,. We may,
if we wish, identify electrode number 1 with the single-electrode probe
discussed previously. If A, is not too much greater than A,, then as the
applied voltage (¢, — ¢,) is increased, ¢, will approach a constant value
while ¢, becomes more and more negative. The electron current into
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electrode 1 will be limited by the maximum ion current that electrode 2
will accept. Provided the ion saturation current for electrode 2 satisfies the
condition '

I < I3 — I, (6.4)
the potential ¢, will always remain less than the space potential ¢,. We
shall limit our discussion to this case. The current-voltage characteristic
for a double probe is shown schematically in Fig. 8.

IA

I3,

I, (6, — &,)

Figure8. Schematic of the current-voltage characteristic for an idealized double
probe with 4, > 4,.

To obtain a theoretical expression for the current-voltage characteristic,

we note first that for a specified net electron current flow I to electrode 1, -

the potential ¢, of this electrode is determined by the relation [cf. equation

(6.1a)]

(6.5)

I =1% cxp[M] — If.

kT

The potential ¢, of electrode 2 is then determined in terms of ¢, from

the requirement that the current be continuous, which leads to the equation
—e(ps— ¢ —e(ds —
I} — I, exp {—-(—k37r—~—g)] = I* exp {———(—’:—f—@} —I%.  (6.6)

Solving equation (6.6) for (¢, —¢,), the applied potential difference
(¢, — @) is given in terms of (¢, — ¢,) by the relation

exp [.(«k_:é_)] e [e(dn - qm] o [e«bs - ¢2)]

kT kT kT

 expleldy — 9/T]
If +If . Q{exp[e(d’l - ¢s)] '

I I kT
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From this equation (¢; — ¢,) may be obtained in terms of (¢, — ¢,), and
the result substituted into equations (6.5). One then obtains for the current-
voltage characteristic, the relation

1 = TBIE/I2) exple(d; — ¢,)/kT] — I}
(I%/1%,) exple(dy — po)/kT]+ 1~

For (¢; — ¢3) > — o0 we recover from equation (6.7) the same result as
forasingle probe, that I - —I%. However, for (¢, — ¢,) — o equation (6.7)
shows that I — I%, in contrast with the result I — I’*, for a single probe.
This behavior illustrates the need for caution in interpreting electron
saturation current data obtained with single probes.

In the limit A4, » A4,, and for currents I in the ion saturation and
transition regimes for electrode 1, one can show that the current-voltage
characteristic for a double probe is identical with that for a single probe.
For the conditions stated, the current collected by electrode 2 will be
negligible in comparison with I}, so that ¢, ~ ¢, and

I# ~ I exp[—e(¢s — d,)/kT]

Making these substitutions in equation (6.7) and neglecting the first term in
the denominator, which is justified since for the conditions stipulated
e(¢py — ¢2)/kT < 1, we obtain

I ~ I} exp[—e(¢, — $1)/kT] — I3 -

Comparison of this result with equation (6.1a) for a single probe shows
that the characteristics are indeed identical under the conditions stated.

For diagnostic applications, corresponding to equation (6.3) for a single
probe, one may show from equation (6.7) that for a double probe

KT I [dy — )
e 1+ (A,/A,) I |i—o

(6.7)

6.8)

Double probes are usually used with 4, = A, in which case equation (6.7)
can be written in the simplified form

I = I}, tanh[e(¢, — ¢,)/2kT].

To conclude this section, it should be pointed out that the measured
potential of an electrode differs from the effective potential at the surface
by a so-called contact potential, or work function. As long as the contact
potential is uniform over the probe surface and does not change with time,
the shapes of the probe characteristics discussed above remain unaltered.
Under some experimental conditions, variations in contact potential can be
important, and steps must be taken to minimize their effects.
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Exercise 6.1. Derive the relations (6.3) and (6.8).

Exercise 6.2. Discuss the theory of double probe characteristics when
the condition (6.4) does not apply.

7. AMBIPOLAR DIFFUSION

For collision-dominated partially ionized gases, the diffusion of charged
particles is determined not omly by the electric field, as discussed in
Sec. 11 13, but also by gradients in plasma properties. Thus, in place of
equation (II 13.6a), the electron diffusion velocity may be written

m=—m@+wj (113
en,
Here p, = n kT, is the electron pressure, and p, is the electron mobility.
As shown by equation (II 13.6b), y, = e/m,V,q. (In this section we shall
take the magnetic field as zero, and thus E' = E. The effects of a magnetic
field are discussed in Sec. IV 8.) Equation (7.1a) is obtained in Sec. IV 8
using an approach based on fluid conservation equations, and it is derived
more rigorously in Chapter VIII on the basis of kinetic theory. The
conditions for the validity of this expression are discussed in detail in
Chapter VIIL Briefly, the use of equation (7.1a) requires that the effects
of thermal diffusion be small and that the electron velocity distribution
function be approximately Maxwellian. The expression for U, is often
written in the more general form
U, = —p,E—D, P (7.1b)
Pe
where D, is the electron diffusion coefficient. For the conditions of validity
of equation (7.1a),

D.ju, = kT,/e. (7.2)

This result is frequently referred to as the Einstein relation.
The ion diffusion velocity for a weakly ionized gas, and for approximately
uniform total pressure, may be written

[L==u{E-—ij. USa):

en;

Here p, = m; kT is the ion pressure, T is the heavy particle temperature,
and p; is the ion mobility. For a three-species gas p; ~ e/m;,V;, in
accordance with equation (II 13.13). Equation (7.3a) may be derived on
the basis of fluid conservation equations, as described in Exercise IV 8.3,
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and it is discussed in greater detail in Chapter VIII in the context of
kinetic theory. In analogy with equation (7.1b), one may also express U;
in the more general form

U= wE - D; zl‘)“i, (7.3b)
where D; is the ion diffusion coefficient. For our present purposes, we
shall assume that D, and p; satisfy the Einstein relation Dy/p; = kT/e.

Let us consider first the case of gas in a steady state adjacent to a solid
surface, where the surface draws no net current, and let us suppose there is
no applied electric field. If the surface is nonemitting and catalytic, as
discussed in Sec. 3, it will act as a sink for charged particles, and thus
gradients in n, and n; will be established in the gas adjacent to the surface.

' In accordance with equations (7.1a) and (7.3a) these gradients will cause

electrons and ions to diffuse toward the wall. If no net current is drawn
from the gas, the electron and ion diffusion velocities normal to the wall
must be equal (assuming, for simplicity, a single species of singly ionized
jons). However, g, » ;, and so a space charge electric field must be
established which will impede the diffusion of electrons. This field may be
obtained approximately from equation (7.1a) as

E~ — P (74)

The corresponding common diffusion velocity for the charged particles is
obtained from equation (7.3a) as

v Vp;
m:u:-%pumﬂ. (7.5)
en, en;
If we write E = —V¢ and assume that T, is uniform, equation (7.4) may
be integrated to obtain the relation [cf. equation (3.7)]
e
e pl—) 7.6
He OC exp(kTe) (7.6)

The preceding results may be derived more precisely as follows.
Eliminating E between equations (7.1a) and (7.3a), we obtain

A% Vp;
m&+mu=_mmk&+£ﬁ
en, em
For the condition U, = U;, which is commonly referred to as ambipolar
diffusion, it follows that
" \Y} Vp:
U 210, e (1’ o), (27)
(He + ) \en, — en;
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Substituting equation (7.7) into either equation (7.1a) or (7.3a), we obtain

. e+ 1y en, g+ py emy
With p, > p;, equation (7.7) reduces to equation (7.5), and equation (7.8)

(7.8)

reduces to equation (7.4). In the region of gas beyond the sheath, n, ~n,, -

and it is customary to write equation (7.7) in the form

V(p. + p) ‘ '
U =U,=—-p & _ "¢ .
e i a 2pi 2 (7 9)
where
2kT popy
D,=———"—~2D 7.10
e U, + i : : ’ ( . )

is the ambipolar diffusion coefficient. The form of equation (7.9) suggests
that the diffusion of electrons and ions in a plasma to a noncurrent-
collecting surface may be viewed as analogous to the diffusion of neutral
particles (where the electric field E plays no role) provided one selects for
the diffusion coefficient the value D, .

In general, the distributions of n, and n; in a nonmoving collision-
dominated gas are governed by the species conservation equations

V- (nU,)=n,, (7.11a)
and
V- mU) =, (7.11b)

where i, and #; = 1, are the net rates of electron and ion production per
unit volume. For a weakly ionized gas, U, and Uj are given by equations
(7.1a) and (7.3a). The potential distribution is governed by Poisson’s
equation

p('

vip= - (7.12)

€o

Equations (7.11) and (7.12) provide three nonlinear coupled equations for
n,, n;, and ¢. The electric field is determined by the relation E = —V¢.

The full formulation of the problem, as described above, is actually
needed only in the sheath region and is applicable there only if the sheath
is collision dominated. Outside the sheath region we may write n, ~n;,
and equations (7.11) then suffice to provide a closed formulation for n,
and ¢, viz.,

V- (~ugneE—-%Vpe) = He, (7.13a) ’

V- (uineE - %—Vpi) =1,. (7.13b)
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 For simplicity, let us take p, and p; as constant. Then we may eliminate

E between equations (7.13) and arrive directly at the result

V- {——ne D, YQ%JQ] =5, (7.14)
Equation (7.14) governs the electron distribution in what is frequently called
the ambipolar region (although there is no restriction here on the relation
petween U, and U,). Once n, is determined, we may return to either of
equations (7.13), or a combination thereof, to obtain the potential distribu-
tion. A useful form of these equations for this purpose is obtained by
subtracting equation (7.13a) from (7.13b), thereby constructing the equation
v+ J =0, or equivalently,

V- (0E + pu.Vp, — 1;Vp;) = 0. (7.15)

Here ¢ = en,(u, + 1) is the electrical conductivity, as defined by equation
(II 13.15b).

To illustrate an application of these ¢quations, let us assume that T, = T
and that the temperature is uniform. Let us suppose also that the ionization-
recombination process is the three-body reaction ¢ + A —e¢ + A" + ¢, for
which the electron production rate is given by equation (II 11.15). With
these assumptions, equation (7.14) may be written in the form

.
ne n-e ne
wv(ia) =Gl - () |

Here n* is the equilibrium electron number density that would be attained
in the body of the plasma at sufficiently large distances away from the
influence of boundaries. The length Iy is defined by the relation

2 Do
=

(7.16)

. 7.17
e (7.17)
Here a = n*B(T) is the recombination rate coefficient, as discussed in con-
junction with equation (II 11.13a), evaluated at equilibrium conditions. In
accordance with equation (II 5.3), the characteristic time for an ion to
recombine is given in terms of a by the relation

T(recomb) o (njoc)“l.

To obtain a physical interpretation of Iy, we may rewrite the right-hand
side of equation (7.17) as follows:

2. kT 2kT (recomb) | =2 . (recomb) {recomb)
P a e A T AN (1 v——)l?. (7.13)

* 5. 452 ol
eng o My Vin 4vin v in

Here [, ~ (n,0,)” ! is the mean free path of an ion [cf. equation (I1 5.8)].
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The ratio (t*°™/¥;, 1) is the average number of collisions an ion experiences,
before it recombines. Thus, in accordance with equation (II 5.9), we may
interpret I as the average distance traversed by an ion before it recombines.
(For atmospheric pressure potassium-seeded argon, Iz ~1 mm-—see
Exercise II 5.4.) For situations which have a characteristic geometric
dimension L, nondimensionalization of the distance coordinate leads to a
factor (Ig/L)? on the left-hand side of equation (7.16). For (Ig/L) « 1, the
“left-hand side of equation (7.16) may be replaced by zero, and we obtain
the equilibrium limit solution; for (Ig/L) >»1, the right-hand side of
equation (7.16) may be replaced by zero, and the resulting equation defines
the solution in the “frozen” limit. :

In the remainder of the section, we shall discuss the problem of a plasma
adjacent to a plane infinite plate. If the coordinate normal to the plate .
is denoted by y, the nondimensional form of equation (7.16) describing
the electron density in the ambipolar region may be written

(7.19)

Heren = n,(y)/n*, andy = ﬁ y/lg. Since this problem has no characteristic
geometric length, the presence of the plate will produce a disturbance in -
the plasma extending a distance of the order of Iy from the plate. The
domain of applicability of equation (7.19) is

Py <Y < 0, (7.20a)
where y, denotes the distance from the plate of the lower boundary of the
ambipolar region. The domain

0<y<y (7.20b)
defines the sheath region. There is of course no sharp separation between
these regions in reality, and so the model we have developed is somewhat
artificial in this respect. More refined mathematical treatments are possible,
but the essential physical elements of the problem are brought out with
sufficient accuracy by the present approach. (See for example, Lam, 1964,
who discusses the case in which the sheath and ambipolar regions are both

collision dominated and the fluid may be in motion.)
To integrate equation (7.19) we may write

i _ 4 (dm)®
&y~ dn\dy)
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Employing the boundary condition that dnfdy -0 as n—1, and the
requirement that dri/dy > 0, we obtain

dn (1 —w?
P ’“5,—) (7.21)

Using the formula j 2 dn/(1 — #*) = 1n[(1 + n)/(1 — )], we may then show
that

= (147) = (1 =) exp — (7 = 3)
Q+m)+(1—-n)exp—(—¥)

(7.22)

Here 1, denotes the value of 7 at the boundary of the ambipolar region
adjacent to the plate. The dependence of # on y is shown in Fig. 9 for
the case 7, ~ 10~ *.

0T
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Nondimensional eiectron number density, 7

0.7 — —
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ol L 1ty
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Nondimensional distance from the wall, j’

Figure 9. Electron number density profile resulting from ambipolar diffusion.
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To obtain the potential distribution we may use equation (7.15). For
the problem being considered, equation (7.15) states that the y-component
of the current density J is a constant. The first integral of equation (7.15)
may then be written

¢ KT (u,— ) d J
dy e (uﬁm)dy e o (7.23)

and thus the potential distribution is given by the relation

_ . _kT (. ; )
P) — by =~ (;e T Z,) nney ny,, a(y)’

The second term on the right-hand side of equation (7.24) represents the

usual Ohmic potential variation associated with current flow in a resistive

medium. The first term describes the potential drop associated with

ambipolar diffusion and is present even in the absence of current flow. The

total potential drop associated with ambipolar diffusion alone has the value
kT

* .
[ ¢b]amb = ‘—“1 n ) = - —;- ln n,, (7.25)

(7.24)

Employing equation (7.21), the resistive part of the potential variation may
be written

[6()) = Dol = —/2 J l"ji . dn

o* 1—mn?)

J n 1 1—-7n?

b

Using the relations (7.21) and (7.23), the diffusion velocities may be
written in the form

Uy=—_Ffe = _a’ (7.27a)

J D,d
P el (7.27b)
He + pyen,  n, dy

i

These expressions exhibit explicitly the transition from the condition
|U,| »|U;| in the body of a plasma to a condition where |U,| and |U;|
can be of the same order near a boundary.

To complete the solution of the problem we have been considering, it is
still necessary to specify the value of the electron number density n,, at

the boundary of the ambipolar region. This value will depend on the structure . §
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of the sheath region. For simplicity we shall assume a free-fall sheath, as
discussed in Secs. 3 and 6. In terms of our present discussion this means
that we may identify the distance of the ambipolar region from the plate y,
with the particle mean free path [,. (We shall assume [, = [;.)

In accordance with equation (3.2) the microscopic flux densities of
electrons and ions striking the plate may be written

I‘z = e A,,Z-__ e s (7283.)
and
= 'fs'i_(;i ) (7.28b)

The negative sign is required here because our sign convention has been to
regard flux from the plate to the gas as positive. The functions h, and h;
[cf. equation (6.1)] are defined as follows: For ¢, — ¢, =

( b p)
_eldy— ¢ . 7.2
h, = exp % hy =1, (7.29a)
and for ¢, — ¢, <0,
= - f(_ ‘75.!1_-_‘15'12 o
h; = exp ’ , h, = 1. (7.29b)

By continuity, the macroscopic expressions for the flux densities (7.1a) and
(7.3a) evaluated at y = y, must equal the corresponding microscopic values
given by equations (7.28). Therefore

C,h kT (dn,
—ee . E, e 7.30¢
4 He Ep enEb (lV ( '1)
and
C;h; 1 kT (dn,
N E (ki 7.30b
4 = MLy — en, ( dy) ( )
Eliminating E, between equations (7.30), we obtain the following boundary
condition for n, :
dn,
- ) 7.31¢
(dy) Q ‘eb ( d)

Here
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In nondimensional form equation (7.31a) becomes

an =
i —\| =0n,, 7.31b
| (), =" (7-310)
where
g-2__le (9— b+ S h,). (7.32)
\/i ﬁSkT He Hi

Employing equation (7.21), we obtain for the value of 1,

m,=—0+.0 +1 (7.33)

To obtain an estimate for Q, we may rewrite Q in the form

g-_ln (E‘fﬂ’ﬂh)hu L L (7.34)

\/in: I, m; \/in_l;
Thus, Q is a weak function of the potential difference (¢, — ¢,), and it is
of order (Ig/l,), which is usually a large number. For Q > 1,

= 1 n 1,
nb’_‘_’-—=

0" fale
and thus 7, is usually small. Referring to equation (7.25), we see that the
ambipolar potential drop can thus become quite significant relative to (kT'/e).

The complete procedure for determining n,(y) and ¢(y) may now be
summarized as folllows: The potential drop across the sheath (¢, — ¢,) is
first assumed. This drop fixes the value of n,,, and the ambipolar equations
then yield n,(y). The current density collected by the plate is calculated
next from the free-fall sheath equations [cf. equations (6.1)]

(7.35)

éen

J = 4eb (C.h, — C;h). (7.36)

With the value of J specified, the ambipolar equations serve to determine
¢(y) — @, The potential with respect to the plate is then obtained by adding

[6(y) — ¢s] to [¢s — &,]-

Exercise7.1. Using the results of Exercise IV 8.3, show that the ambipolar
diffusion velocity for a gas of arbitrary degree of ionization is given
approximately by the expression

Vp. . Vpi
o en, en;
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Exercise 7.2. Discuss the voltage-current characteristic for a collision-
dominated gas contained between two parallel flat plates. Assume the plates
are separated by a distance which is large compared with the ion
recombination length l5. Sketch the potential distribution between the

plates. (The general case of arbitrary separation between the plates is
discussed by McKee, 1967.)

8. PROPAGATION OF ELECTROMAGNETIC WAVES

The propagation of electromagnetic radiation is governed by Maxwell’s
equations. These equations are discussed in Sec. 2 of Chapter VI. As shown
in Sec. VI 4, a fundamental solution of Maxwell's equations in a vacuum
corresponds to the existence of plane, transverse traveling waves which can
transport energy. In this section we wish to describe how the propagation
of such waves is modified by the presence of a plasma and how one may
derive diagnostic information about the plasma from this fact. We shall limit
our discussion to the case of a uniform, unbounded, and nonmoving plasma,
characterized by an electron number density n, and average collision
frequence v, . We shall neglect compressibility effects. In this section, to
simplify notation, we shall write v = v,.

In a plasma, the magnetic induction B and the magnetic intensity H
are almost always treated by the same constitutive relation B = uoH
[cf. equation (VI 2.1f)] as in free space. [See the discussion preceding
equations (IV 2.12).] To account for the polarizability associated with the
bound electrons of the neutral particles and of the ions, one may write in
place of equation (VI 2.1e) the relation D = ¢E. Taking the time derivative
of the Maxwell-Ampere equation (VI 2.1d) and employing Faraday’s
equation (VI 2.1c), we then obtain the following equation for the electric
field:

, oJ 52
VIE —V(V-E) = jto -+ e ‘gf (8.1)

Since the plasma is assumed stationary, the total current density j is equal
to the conduction current density J.

The generalized Ohm’s law for a partially ionized gas given by equation
(I'V 8.17) serves to relate J to E. For our present purposes we will suppose
that there is no applied B field. There is thus no possibility of ion slip, and
equation (IV 8.17) can be shown to have the same form as equation (IV 8.9),
which was derived for a fully ionized gas. For a plane transverse electro-
magnetic wave in a vacuum, the magnitude of B is given by equation
(VI 4.5b) as |B| = |E|/c, where ¢ = (¢ 1) /? is the speed of light in a
vacuum. The ratio of the force on an electron resulting from B as compared



