Problem \# 1 (25 Points) HW5, Problem 3.19

Transform the vector $\vec{E}=-\hat{r}+\hat{\phi}$ from cylindrical into spherical coordinates and then evaluate it at the point $P=\left(3, \frac{\pi}{2}, \pi\right)$.

Problem \# 2 (25 Points) HW 6, Problem 3.40
For the scalar function $V=x y$, determine its directional derivative along the direction of vector $\vec{A}=\hat{x}+\hat{y}$ and the evaluate it at $\mathbf{P}=(\mathbf{1}, \mathbf{- 1 , 2})$.

Problem \# 3 (25 Points) HW 7, Problem 4.27

An infinitely long cylindrical shell extending between $r=1 \mathrm{~m}$ and $r=3 \mathbf{m}$ contains a uniform charge density ρ_{0}. Apply Gauss's law to find \vec{D} in all regions

Problem \# 4 (25 Points) Exercise 5.12

With reference to figure below, determine the angle between \vec{H}_{1} and $\hat{n}_{2}=\hat{z}$ if $\vec{H}_{2}=(\hat{x} 3+\hat{z} 2)(A / m), \mu_{r_{1}}=2$, and $\mu_{r_{2}}=8$, and $\vec{J}_{s}=0$

