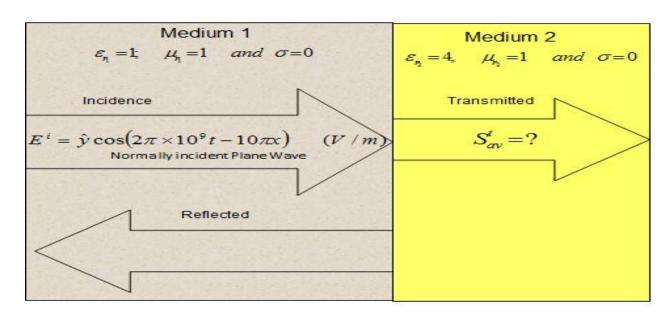

(Closed Book Exam) 60 Minutes

Problem # 1 (25 Points) 6.2

The loop in the figure is in the x-y plane. $\vec{B} = \hat{z}B_0 \cos \omega t$ with B_0 positive. What is direction of I $(\hat{\phi} \quad or \quad -\hat{\phi})$ at $\omega t = \pi/6$.

Problem # 2 (25 Points) 6.25

The Electric field in a dielectric material is given by $\vec{E}(y,t) = \hat{x}2\sin(\omega t + \pi y)$. Find associated magnetic field \vec{H} .


Problem #3 (25 Points) 7.12

The Electric field in air is given by

$$\vec{E}(z,t) = \hat{x}2\sin(\omega t + \pi z - 45^{\circ}) - \hat{y}2\cos(\omega t + \pi z) \qquad (V/m)$$

Determine the polarization angles (γ, χ) and the direction of dfrotation.

Problem #4 (25 Points) 8.2b

