Problem \# 1 (25 Points) 6.2

The loop in the figure is in the $x-y$ plane. $\vec{B}=\hat{z} B_{0} \cos \omega t$ with B_{0} positive. What is direction of I $\left(\begin{array}{lll}\hat{\phi} & \text { or } & -\hat{\phi}\end{array}\right)$ at $\omega t=\pi / 6$.

Problem \# 2 (25 Points) 6.25

The Electric field in a dielectric material is given by $\vec{E}(y, t)=\hat{x} 2 \sin (\omega t+\pi y)$. Find associated magnetic field \vec{H}.

Problem \# 3 (25 Points) 7.12

The Electric field in air is given by

$$
\vec{E}(z, t)=\hat{x} 2 \sin \left(\omega t+\pi z-45^{\circ}\right)-\hat{y} 2 \cos (\omega t+\pi z) \quad(V / m)
$$

Determine the polarization angles (γ, χ) and the direction of dfrotation.

Problem \# 4 (25 Points) 8.2b

