Name (Last, First)

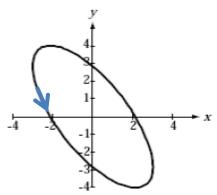
The electric field phasor of a uniform plane is given by $\,\widetilde{E}=\hat{y}10e^{j0.2z}\,$ $\,$ $\,$ $(V/m)\,.$

1. Find the magnetic field phasor \tilde{H} .

$$\widetilde{\mathbf{H}} = \frac{1}{\eta}(-\hat{\mathbf{z}}) \times \widetilde{\mathbf{E}} = \frac{1}{\eta}(-\hat{\mathbf{z}}) \times \hat{\mathbf{y}} \mathbf{10} e^{j\mathbf{0}.2z}$$

2. Find the magnetic field \vec{H} .

$$\vec{H}(z,t) = \hat{x} \frac{10}{\eta} e^{j0.2z}$$


For a wave characterized by the electric field $\vec{E}(z,t) = \hat{x}3\cos(\omega t - kz) + \hat{y}4\cos(\omega t - kz - 135^{\circ})$

- 1. Identify the polarization state
- 2. Sketch the locusof E(0,t).

$$\psi_0 = \tan^{-1}(a_y/a_x),$$

 $\tan 2\gamma = (\tan 2\psi_0)\cos \delta$
 $\sin 2\chi = (\sin 2\psi_0)\sin \delta$

I	∂_X	ay	δ	Ψ0	γ	χ	Polarization State
	3	4	−135°	53.13°	−56.2°	−21.37°	Right elliptical

Right elliptical

