The loop in the figure below is in the x-y plane and $\vec{B}=\hat{z} B_{0} \sin \omega t$ with B_{0} positive. What is the direction of $\mathrm{I}(\hat{\phi}$ or $-\hat{\phi}$) at $\omega \mathrm{t}=0, \pi / 4$ and $\pi / 2$.

$$
V_{e m f}=-\frac{\partial}{\partial t} \int_{S} \vec{B} \cdot d \vec{S}=-\frac{\partial \Phi}{\partial t}
$$

Solution: $I=V_{\mathrm{emf}} / R$. Since the single-turn loop is not moving or changing shape with time, $V_{\mathrm{emf}}^{\mathrm{m}}=0 \mathrm{~V}$ and $V_{\mathrm{emf}}=V_{\text {emf }}^{\mathrm{t}}$. Therefore, from Eq. (6.8),

$$
I=V_{\mathrm{emf}}^{\mathrm{tr}} / R=\frac{-1}{R} \int_{S} \frac{\partial \mathrm{~B}}{\partial t} \cdot d \mathrm{~s} .
$$

If we take the surface normal to be $+\hat{\mathbf{z}}$, then the right hand rule gives positive flowing current to be in the $+\hat{\phi}$ direction.

$$
\begin{equation*}
I=\frac{-A}{R} \frac{\partial}{\partial t} B_{0} \sin \omega t=\frac{-A B_{0} \omega}{R} \cos \omega t \tag{A}
\end{equation*}
$$

where A is the area of the loop.
(a) A, ω and R are positive quantities. At $t=0, \cos \omega t=1$ so $I<0$ and the current is flowing in the $-\hat{\boldsymbol{\phi}}$ direction (so as to produce an induced magnetic field that opposes B).
(b) At $\omega t=\pi / 4, \cos \omega t=\sqrt{2} / 2$ so $I<0$ and the current is still flowing in the $-\hat{\phi}$ direction.
(c) At $\omega t=\pi / 2, \cos \omega t=0$ so $I=0$. There is no current flowing in either direction.

