Name (Last, First)

The loop in the figure below is in the x-y plane and $\vec{B} = \hat{z}B_0 \sin \omega t$ with B₀ positive. What is the direction of I ($\hat{\phi}$ or $-\hat{\phi}$) at ωt = 0, $\pi/4$ and $\pi/2$.

$$V_{emf} = -\frac{\partial}{\partial t} \int_{S} \vec{B} \cdot d\vec{S} = -\frac{\partial \Phi}{\partial t}$$

Solution: $I = V_{\text{emf}}/R$. Since the single-turn loop is not moving or changing shape with time, $V_{\text{emf}}^{\text{m}} = 0 \text{ V}$ and $V_{\text{emf}} = V_{\text{emf}}^{\text{tr}}$. Therefore, from Eq. (6.8),

$$I = V_{\text{emf}}^{\text{tr}}/R = \frac{-1}{R} \int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{s}.$$

If we take the surface normal to be $+\hat{z}$, then the right hand rule gives positive flowing current to be in the $+\hat{\phi}$ direction.

$$I = \frac{-A}{R} \frac{\partial}{\partial t} B_0 \sin \omega t = \frac{-AB_0 \omega}{R} \cos \omega t \quad (A),$$

where A is the area of the loop.

- (a) A, ω and R are positive quantities. At t = 0, $\cos \omega t = 1$ so I < 0 and the current is flowing in the $-\hat{\phi}$ direction (so as to produce an induced magnetic field that opposes B).
- (b) At $\omega t = \pi/4$, $\cos \omega t = \sqrt{2}/2$ so I < 0 and the current is still flowing in the $-\hat{\phi}$ direction.
 - (c) At $\omega t = \pi/2$, $\cos \omega t = 0$ so I = 0. There is no current flowing in either direction.