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SOME ASPECTS OF DEFINING A SIMPLE GENERAL PURPOSE MODEL
FOR THE STUDY OF SEISMIC INELASTIC TORSIONAL COUPLING

Michel Bruneau' and Stephen A. Mahin’

SUMMARY

A wide variety of structural models and configurations have been used in past studies of
the seismic inelastic response of torsionally coupled structures. The minimal properties of a
simple general purpose model capable of capturing the essential features of the inelastic torsional
response of stuctures are sought. Factors responsible for the added complexity in structural
response due to the introduction of non-linear hysteretic models are reviewed. The indirect
promotion of least plan redundancy by building codes is demonstrated. The monosymmetric
two lateral-load-resisting-structural-element structure is proposed as an acceptable system for
the fundamental study of inelastic torsional coupling, and a simple comparison of static,
dynamic elastic and dynamic inelastic response is performed to support this proposition. The
usefulness of perfect geometric equivalence is evaluated. The importance of the rotational inertia
on the response of torsionally coupled structures is also presented. Finally, limitations of the
proposed model are discussed.

INTRODUCTION

The considerable difference in the seismic dynamic response between symmetric
structures and structures with stiffness and/or mass eccentricities in plan has long
been recognized. More than 50 years ago, based on dynamic response studies of
irregular building forms in small scale experiments, the fundamental concept of
structural torsional coupling was enunciated {1}, i.e. whenever the centres of rigidity
of a structure do not coincide with its centres of mass, translation in horizontal
directions will be accompanied by torsional movement in plan, whether or not there
is rotation in the ground motion. Fifteen years later, it was demonstrated (2] that,
for structures where plan eccentricity is created by a stiffness mismatch of shear walls
in the direction parallel to the earthquake excitation, dynamic analysis calculated
forces would exceed those otherwise obtained from static analysis. This, as well as
observation and analysis of buildings damaged by torsional oscillations during severe
earthquakes such as the 1957 Mexico City earthquake [3] led to the adoption of
building codes provisions for magnifying the calculated static eccentricity, and
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ensuring that some minimum eccentricity is considered during design. The introduction
of modern formulations of matrix theory and increased computer power further

fuelled research on torsionally coupled structures.

While many of aspects of the behaviour, analysis and design of such structures
have been studied since, as reflected by the long list of valuable contributions presented
elsewhere [4], considerable research efforts are still currently invested to improve the
understanding of both the linear elastic [5] and non-linear inelastic [6,7] response of
such structures. This paper is concerned with the non-linear inelastic aspects of this
response; an understanding of this behaviour is essential as these structures will be
excited near their ultimate strength/ductility capabilities during large and infrequent
earthquakes.

It is well established that equations of motion of torsionally coupled structures
are generally amenable to a format for which all structures sharing the same values
for a few key parameters encapsulating their structural characteristics, irrespectively
of their geometry, will share the same linear elastic response at a given reference point.
Unfortunately, the same cannot be said of non-linear inelastic structures; a complex
interdependence of the number, location, and hysteretic characteristics of structural
elements directly impact on the behaviour of these structures.

Consequently, a wide variety of structural models and configurations have been
recently used to investigate the inelastic response of torsionally coupled structures.
Kan and Chopra 18] replaced the physical structure by a single-element model having
an interaction surface mapping the shear-torsion space. Tso and Sadek [9] studied
the behaviour of a unisymmetric structure having four identical columns of circular
cross-section under bi-directional earthquake excitations. Bozorgnia and Tso [10]
investigated the behaviour of monosymmetric structures having three lateral load
resisting structural elements (LLRSE) sharing identical yield displacements and bilinear
hysteretic model under unidirectional earthquake excitations. Others [11,12,4,6] among
many concerned with various forms of inelastic response, including also that of
structures symmetric in the elastic sense, have used monosymmetric structures with
only two LLRSEs, considering various element models and types of dynamic
excitations. In most of these studies, LLRSEs perpendicular to the direction of
earthquake excitation were located such as not to contribute to the torsional resistance
of the structures. :

It is noteworthy that resulting observations on the effect of various parameters
on the inelastic response of torsionally coupled structures have generally not been
in agreement. This can be partly attributed to the diverse analytical assumptions and
approaches that were adopted in each study.



In this paper, it is demonstrated that a simple two LLRSE system can adequately
capture the essential non-linear behavioral characteristics of torsionally coupled
structures and be used in fundamental research on this seismic inelastic structural
response. Valuable information obtained from parametric studies conducted on such
simple two LLRSE systems has actually led to the development of a method, presented
elsewhere [7] to predict the inelastic response of torsionally coupled structures based
on the availability of elastic and inelastic response spectra for equivalent
single-degree-of-freedom (SDOF) systems.

Based on extensions of the equations of motion into the inelastic domain, the
additional geometric dependence necessary to ensure identical response for non-linear
inelastic structures are described in this paper. Factors found to steer designs towards
lesser redundancy, the influence of the rotational inertia on the inelastic response
of torsionally coupled structures, and limitations of the proposed model, are also
presented. In a companion paper (13] the effect of the type of eccentricity (mass
eccentric versus stiffness eccentric), strain-hardening for bilinear hysteretic model,
earthquake intensities, and plastic centroid, are examined to establish which modelling
considerations are most significantly affecting the non-linear inelastic response of
torsionally coupled structures.

EQUATIONS OF MOTION

The general equations of motion around the centre of mass for single-story
torsionally coupled structures are well known and have been derived by others. [14]
For monosymmetric structures (i.e. structures having one axis of symmetry) and
neglecting torsional seismic excitation, the equations along the y-axis (axis of
symmetry) are decoupled, and the resulting coupled translational-torsional equations
of motion are simplified to:
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Where K, and Ky are the system’s translational (along X) and rotational (around
6) stiffness for the resulting two degrees-of freedom system, and e is the static
eccentricity of this system, expressed by:
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The mass of the floor is m, its radius of gyration r, v, and j,_ are the translation
displacement and acceleration of the centre of mass in direction X, vg andijg arethe
rotational displacement and acceleration of the floor around a vertical axis, iigx is
the ground acceleration in direction x, y; and X; are the distances from elements i
and j to the centre of mass, and K, and K,, are the translational stiffness of elements
iand j in the x and y directions respectively. The translational and torsional uncoupled
frequencies, w, and wg, the corresponding uncoupled periods, T, and Ty and the
ratio of those uncoupled frequencies Q, are defined in Eqgs. (3) to (5). The actual
periods of vibration of these structures would be obtained from the eigensolution
of Eq. (2). The torsional stiffness of individual lateral load resisting elements is
neglected.

Obviously, from Eq. (2), in the linear elastic domain, all structures sharing the
same (e/T1), w, and Q will have the same response v, and rvg at their centre of mass.
As will be demonstrated later, this does not hold in the non-linear inelastic domain.
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Also, similar equations of motion could have been derived around any other
reference point, the centre of rigidity being another logical choice of coordinates origin
is often selected. Nonetheless, transformation functions can easily be developed, if
necessary, to relate the structure’s descriptive parameters and response around those
various centres of reference.

BUILDING CODES INDIRECT INFLUENCE ON TORSIONAL REDUNDANCY

It is noteworthy that many current building codes indirectly promote the reduction
of plan redundancy. This is illustrated in the short example following.

In an apparently symmetric building, the accidental eccentricity provision mandated
by the equivalent static seismic lateral force design method of most building codes
provides a minimum design eccentricity which is thought to account for uncertainties
in mechanical properties, mass distribution, and ground motion. This accidental
eccentricity is usually set by different codes to a small percentage of the maximum
plan dimension.

For the monosymmetric structures studied herein, should only two lateral load
resisting elements be present in the principal direction (Figure la), an accidental
eccentricity of 5% of the maximum plan dimensions will increase the design forces
in each element by 10%. Consequently, the design translational and torsional strength
will also increase by 10%. If, instead, four equally spaced elements with equal stiffness
are now considered (Figure 1b), the same accidental eccentricity requirements will
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Figure 1. Monosymmetric structures with (a) two LLRSEs and (b) four LLRSEs, for the study of building
codes’ indirect influence on torsional redundancy - Plan views.
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increase the design forces by 18% for the edge elements and by 6% for the inside
elements. The resulting design translational strength is thereby increased 12% and
the net torsional strength is increased 17%, and, therefore, the more redundant
structure is only achieved at a premium in material and labour. Consequently, strict
adherence to building codes’ seismic provisions could make the two element system
a more economical design alternative, which is apparently discordant with earthquake
engineering’s traditional wisdom that redundancy improves the ultimate seismic
resistance of structures.

In light of this least cost observation, the proposed two LLRSE monosymmetric
model shown in Figure 2 appears appropriate. In this model, all floor diaphragms
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Figure 2. Proposed simple general purpose model for the study of inelastic torsional coupling.
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are assumed to be infinitely rigid in their own plane, elements in the orthogonal
direction are ignored for the sake of simplicity (i.e. Eijsz = 0) and lateral load
resisting elements are assumed to be equidistant from the centre of mass. Nonetheless,
this simple general purpose model of minimal complexity must be able to capture
the essence of the particular behavioral features of seismic inelastic torsional coupling
in order to be acceptable.

CASE COMPARISON OF STATIC, DYNAMIC ELASTIC AND DYNAMIC
INELASTIC RESPONSE

In an ideal design process, where the engineer has unrestrained freedom on the
structural layout and dimensioning, the LLRSEs can be proportioned such that the
centre of resistance will coincide with the centre of mass (unless the centre of mass
is not contained between the resisting elements, as would be the case for a building
with a single eccentric core). In the special case where only two structural elements
are provided for the lateral resistance system in the x direction, the resulting structure
is statically determinate, and, in consequence, the lateral shear force must be
distributed to the elements solely by the laws of equilibrium. In this case, a static
lateral force applied at the centre of mass will be distributed to the lateral load resisting
elements by geometric relations, and independently of the LLRSEs stiffness.
Unfortunately, this may not always be possible, either due to imposed architectural
constraints or to the detrimental structural consequences of added non-structural
components ignored during conception, like for example, the addition of
non-structural masonry infill in a steel frame structure.

Assessments of the consequence of a larger than anticipated stiffness can be
misleading if performed by traditional linear elastic analysis methods. Evaluation
of the changed condition by static analysis, as shown in Figure 3, reveals that the
displacements, while dramatically different than for the previous symmetric state,
are now of equal or lesser magnitude, indicating that the design remains safe. The
fallacy of this perception can be exposed by the simple example following where linear
elastic and non-linear inelastic analyses were conducted for the same structure having
two LLRSEs.

For these analyses, the N-S component of the 1940 El Centro earthquake record
is scaled such that the symmetric two-element system reaches a ductility of exactly
four from an inelastic step-by-step dynamic analysis. Then, the stiffness and strength
of one of the elements is increased by 50% as on Figure 3. Elements are modeled
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Figure 3. Effect of changed stiffness conditions using linear elastic stiffness analysis.

as bi-linear hysteretic with 0.5% strain hardening. The results for both the elastic
and inelastic analyses are presented in Figure 4. These results demonstrate the large
amplification of edge displacement produced by the inelastic torsional coupling of
the structure.

The large corresponding ductility demand on the weaker element obtained can not
be predicted from either the static analysis or the elastic. dynamic step-by-step analysis.
This increase in ductility demand can be explained by examining the instantaneous
state of the equation of motion.

INELASTIC STATUS OF EQUATIONS OF MOTION

During response to an earthquake excitation, the initiation of yielding in one of
the LLRSEs will affect the instantaneous properties of the physical system, such that
the equations of motion for the monosymmetric structure can be re-written as:
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where all variables remain as previously defined with the exception that the primes
() are used to represent instantaneous properties. It is noteworthy that the stiffness
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Figure 4. (a) Elastic and (b) Inelastic time history analyses of a two LLRSE structure with T, =01

seconds, Hopor = 4, Q = 1.6, and element stiffnesses of k (dotted line) and 1.5 k (solid Ime) Yield
displacement is 0.12 units.
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matrix is equivalent to a tangent stiffness in which not only the translational and
rotational stiffnesses (K,’ and Kp’) are modified by the initiation of yielding, but
also the value of the static eccentricity of the system (e’). Damping, if introduced
in this instantaneous equation of motion, would remain unaffected if selected of a
Rayleigh type, i.e., as a function of the mass and initial stiffness matrices, both
unchanged as.well.

Re-arranging the equations, as per the previous section, leads to instantaneous
values of Q’, w,’ and (¢’/r). Obviously, the aforementioned conditions necessary to
obtain equivalent elastic response v, and 1vg at the centre of mass are not sufficient
to ensure the same match in the inelastic domain. For two structures to share identical
inelastic response, their tangent stiffness properties must match throughout a given
earthquake excitation. This additional very restrictive condition makes the equivalence
of complex structures with simpler models, or structures with different types of LLRSE
models, virtually impossible, hence the incentive to select a simple general purpose
model which will lead to conservative assessments of the seismic inelastic response
of torsionally coupled structures. Toward that goal, selecting a two LLRSE system
will ensure very large reductions in K,” and Ky’, coupled with large increases in e’,
when yielding occurs in one of the LLRSE. Depending on its inelastic hysteretic model
stiffness characteristics, such a structure would nonetheless recover its original
properties when both LLRSE are yielding simultaneously.

Thus, a minimal structural system with two LLRSE can apparently be useful in
acquiring a fundamental understanding of how various parameters are afecting the
inelastic torsional response. Again, conservatively, LLRSE oriented perpendicularly
to the unidirectional earthquake excitation can be neglected; it is the authors’
experience that those are not always located favourably to improve the torsional
resistance.

It is noteworthy that for linear elastic symmetric structures (e = 0), the equations
of motion become uncoupled, and the torsional response would typically not be
calculated due to the absence of torsional excitation in the above formulation. This
uncoupling would persist until dissymmetric yielding of the LLRSEs occurs, at which
point a transient state of torsional coupling is established. This special case has been
discussed elsewhere [4].

GEOMETRIC EQUIVALENCE OF NON-LINEAR INELASTIC STRUCTURES

In spite of the very restrictive aforementioned conditions necesary to produce
equivalent torsionally coupled structures through their inelastic response, some simple
geometric constraints can still be established to define equivalent structures of similar
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plan layout but of different scale. For example, equivalent structures each with two
LLRSE of equal strength are shown in Figure 5.
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Figure 5. Geometrically equivalent non-linear inelastic structures

Assuming that LLRSEs have a hysteretic bi-linear model with no strain hardening
(elastic-perfectly plastic), for those two structure of different geometry to share the
same w,, w,’, wg wp’, (e/1) and (e’/r), at all times, it implies that:
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waZ‘ =K,/ M, = “’xxg,, = K3/ My (11)
Thus
Kia /M, = K5/ M, (12)
and
Kin /M, = Ky / M, 13)

Also w,, = Wy implies
(K5 + K,p) 7 M) [dp/rp? = (K, + K, 7/ M,1 [d, /1, 14)

and therefore

dy/r, = dg/rg = D = constant (15)

where the subscripts A and B correspond to geometry A and B on Figure 5, and d
is the distance from a LLRSE to the centre of mass (equidistant elements in this
example). Thus, two LLRSE systems with the same w,, Q, (e/r), and same ratio
(d/r) = D can be of different geometry and still have the same element response,
i.e., identical element time histories and ductility demands can be obtained from a
wider structure with a larger radius of gyration as long as the geometric ratio (d/r)
is preserved. This ratio fixes the proportional geometric configuration of a structure
as scaled by its radius of gyration. It is more restrictive than the (e/r) ratio. Numerical
examples of this special case are presented elsewhere (4).

Should both LLRSE be of same stiffness and strength, but not equidistant to the
centre of mass, different values of d/r) = D, will exist, i being index for i-th
element. Whereas it is possible to have structures with various types of eccentricity
sharing the same w,, Q and (e/r) values, if their D;’s are different, their inelastic
response will not be the same. Since (e’/r) values will not agree either in this case,
the same conclusion could have been reached without considering the (d,/r) ratios.
Nonetheless, D, values being calculated from initial properties only, are simpler to
evaluate than all possible values of e’.

For multi-LLRSE systems, the geometric non-dimensional form derived above
remains applicable, and again, all constants (dy/r) = D, must be the same between
two structures for their response to be similar. From those observations, all structures
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with the same D,’s, w,, Q, and (e/r), and implicitly sharing damping, earthquake
excitations, element hysteretic models and model inter-relation between different
elements, will have the same element inelastic response.

For a structure with two LLRSE equidistant to the centre of mass and given w,
Q, and (e/r), only one geometric pattern D is possible, but for a multi-LLRSE system
there are many possible values for D;’s, even if the elements are equidistant to the
centre of mass in pairs. For example, in that last case, in a plan layout with four
LLRSEs, structures with very stiff inside LLRSEs and very weak outside LLRSEs
can be elastically equivalent to more balanced structures while inelastically dissimilar.
Similar relationships could be developed for an infinity of plan layouts without
benefiting much the design process. While it is important to realize the additional
constraints necessary for equivalencing inelastic structures, it is instead more
productive to demonstrate that findings on the behaviour of relatively simple structures
can be safely generalized to more complex structures. This approach has been adopted
elsewhere [7] using the simple model formulated here and in the companion paper [13].

CONSIDERATION OF ROTATIONAL INERTIA

The influence of the rotational inertia on the inelastic torsional response is best
described when considering initially symmetric structures, i.e., structures where the
normalized eccentricity (e/r) is zero. In this case, it is the Q factor that reflects the
significance of r, the radius of gyration of the floor plan, here taken around the centre
of mass. This dimensional parameter, a physical representation of the
mass-distribution around the centre of mass, is related to the selected floor plan
configuration; although this groperty in practice is mostly inalterable by the engineer,
the effects of variation in radius of gyration on the response of the structures at hand
are of interest.

For a given floor translational mass m, a reduction in r will reduce the mass moment
of inertia, mr2, and will simultaneously produce an increase in Q, as

Q= wp/w, = (Kgm) / (mr K)) = Kg/(K 1) (16)

An initially symmetric structure will respond in a purely translational manner until
yielding of one of the LLRSE, at which time the mass moment of i inertia of the floor
plan will provide an effective inertia (or resistance) against the introduction of torsional
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movement during that interval when the instantaneous physical properties of the
structure provide a temporary mismatch between the centre of stiffness and centre
of mass. If the mass moment of inertia is very small (large Q), it is easy to produce
a rotational movement as there is little resistance to the induction of angular motion.
In the opposite fashion, if the mass moment of inertia is large (small Q), considerable
inertial resistance to angular motion exists and very little of it may develop.

This phenomenon is illustrated in Figures 6(a) to 6(g). In that case, a number of
initially symmetric structures of uncoupled translational frequency T, = 0.1
seconds, having one LLRSE yielding at 80% of the reference yield strength Fy, and
the other at Fy, have been analyzed under the N-S component of the 1940 El Centro
earthquake record scaled such as to produce a ductility demand of 4 on the equivalent
SDOF. The bilinear hysteretic element model with 0.5% strain hardening was selected
in this study, and Rayleigh-type damping was set to be 2% at each of the fundamental
periods of the selected structures. Time history translational, Figure 6(b)-6(d), and
rotational, Figures 6(e)-6(g), responses are presented for structures having € values
of 0.4, 1.0 and 1.6, along with the time history response of the equivalent SDOF,
Figure 6(a), for comparison purposes. Note that plots of angular motion time histories
are at different amplitude scales.

Not only is it obvious from this Figure that the structures with lower radii of
gyration (thus lower mr? and higher Q) are excited into a larger angular motion, but
the transient nature of the inelastic torsional response of initially symmetric structures
is well illustrated. Torsional motions are rapidly damped out once the structure returns
to a state of balanced yielding or non-yielding, and the torsional frequency and
damping characteristics of the structure greatly influence the rapidity with which those
movements are attenuated.

LIMITATIONS OF THE PROPOSED MODEL

In most cases, the simple general purpose two LLRSE model proposed will provide
a conservative estimate of the response, partly because of the absence of plan
redundancy and partly because LLRSEs in the direction perpendicular to the
earthquake excitation have been neglected. While a normalization procedure presented
elsewhere [4,7] addresses this first concern satisfactorily, it remains that perpendicular
LLRSE, when properly located, can indeed contribute positively to the torsional
resistance. An assessment of this favourable contribution would require further
research.

Also, under very large earthquake excitations, both LLRSE of the simple proposed
structure can yield almost simultaneously, with only a small transition time during
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which the instantaneous coupling properties hold their most critical values; this
particular effect is further studied in the companion paper [13].

It is noteworthy that the proposed simple general purpose model has been used
by the authors in a comprehensive investigation of the behaviour of torsionally coupled
structures [4,7] conducted according to a special normalization procedure. Although
the details of that study are beyond the scope of this paper, extensions of that
parametric study to monosymmetric structures having a large number of LLRSE in
plan, or to more complex LLRSE hysteretic models, such as the elastic buckling brace
element model and the physical brace element model, have confirmed that a structure
with two LLRSE can be used reliably to predict the inelastic torsionally coupled
response of structures sharing identical hysteretic element model.

Finally, the proposed model being of single story, may be unsuitable for the study
of complex multistory structures without some modifications, especially in the case
where ductility demand tends to concentrate on a few weaker stories; Analogous
limitations also exist for ideal-symmetric structures. Additional research is needed.

CONCLUSION

A simple general purpose model has been proposed for the study of seismic inelastic
torsional coupling. The building code indirect influence in lessening torsional
redundancy, as well as the necessity to satisfactorily capture the non-linear inelastic
behaviour of torsionally coupled structures, have dictated the minimal characteristics
required of this model. A simple model to conservatively estimate structural response
is an acceptable alternative considering the stringent and impractical geometric and
parametric requirements required if identical structural response is to be ensured in
the non-linear inelastic range. The proposed two LLRSE structure is used to illustrate
the major influence of the rotational inertia on the inelastic torsional response. The
influence of other modelling considerations will be addressed in a companion paper
[13].
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