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SUMMARY

This paper introduces an organizational model describing the response of the Hospital Emergency Depart-
ment (ED). The metamodel is able to estimate the hospital capacity and the dynamic response in real
time and to incorporate the influence of the damage of structural and non-structural components on the
organizational ones. The waiting time is the main parameter of response and it is used to evaluate the
disaster resilience index of healthcare facilities. Its behaviour is described using a double exponential
function and its parameters are calibrated based on simulated data. The metamodel covers a large range
of hospital configurations and takes into account hospital resources, in terms of staff and infrastructures,
operational efficiency and existence of an emergency plan, maximum capacity and behaviour both in
saturated and over-capacitated conditions. The sensitivity of the model to different arrival rates, hospital
configurations, and capacities and the technical and organizational policies applied during and before
the strike of the disaster has been investigated. This model becomes an important tool in the decision
process either for the engineering profession or for the policy makers. Copyright � 2010 John Wiley &
Sons, Ltd.
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INTRODUCTION

Recent events have shown how systems (regions, communities, structures, etc.) are vulnerable
to natural disasters of every type, such as human errors, systems failures, pandemic diseases
and malevolent acts, including those involving cyber systems and weapons of mass destruction
(chemical, biological, radiological). Hurricane Katrina [1] clearly demonstrated the necessity to
improve the local disaster management plans of different federal, state and private institutions.
In order to reduce the losses in these systems the emphasis has shifted to mitigations and preventive
actions to be taken before the extreme event happens. Mitigation actions can reduce the vulnerability
of a system; however, if there is insufficient mitigation or the event exceeds expectations, recovery
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is necessary to have a resilient function for the community. Therefore, there is also the need
for cost-effective mitigation of potential and actual damage from disruptions, particularly those
causing cascading effects capable of incapacitating a system or an entire region and of impeding
rapid response and recovery.

Healthcare facilities have been recognized as strategic buildings in hazardous events and play a
key role in the disaster rescues; however, no attempt to practically relate the structural damage on
the organizational aspects has been proposed so far. There is an extensive literature review (see in
[2, 3]) in the definition of the main parameters of disaster resilience for healthcare systems and in
the definition of the general framework, but no references have been found regarding the modeling
and the measure of the organizational aspects of resilience. Indeed, organizational resilience is
needed to evaluate the response of the community to hazardous events and to evaluate the real loss
in terms of healthy population and quality of care provided.

In this paper, an organizational model describing the response of the hospital Emergency Depart-
ment (ED) has been implemented. The model wants to offer a more comprehensive valuation of
the multidimensional aspects of resilience.

TECHNICAL AND ORGANIZATIONAL RESILIENCE

The main purpose of this study is to relate the technical and organizational aspects of healthcare
facilities to obtain a measure of organizational resilience that has not been attempted so far. The
goal is to relate the resilience index to the quality of care provided and the eventual loss of healthy
population, caused by the performance of the healthcare facility during the disaster.

Technical resilience is defined in Equation (1) as the integral of the normalized function Q(t)
indicating capability to sustain a level of functionality [4, 5], or performance over a control period
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of time TLC. In other words, it describes the ability to recover from disastrous events

R =
∫ tOE+TLC

tOE

Q(t)/TLC dt (1)

where t0E is the instant of time from which the index is measured. Technical aspects are combined
with organizational aspects and the formulation of organizational resilience for a hospital facility
is provided using a hybrid simulation analytical model (called ‘metamodel’) that is able to describe
the response of the ED during a hazardous event.

The system diagram in Figure 1 identifies the key steps of the framework to quantify resilience.
The left part of the diagram mainly describes the steps to quantify technical aspects of resilience
whereas the right part describes the organizational aspects to quantify resilience. The penalty factors
(PF) that appear in the diagram describe the interaction between the technical and organizational
aspects and their evaluation is discussed later in the paper.

FUNCTIONALITY OF A HOSPITAL

In order to define resilience it is necessary to define first the functionality Q of the hospital facility.
In this paper, the functionality is defined as the combination of a qualitative functionality related
to the quality of service (QS) and a quantitative functionality that is related to the losses in the
healthy population.

Qualitative functionality in normal operating conditions

The qualitative functionality is related to the QS and it can be defined using the waiting time (WT)
spent by patients in the emergency room (ER) before receiving care. The WT is the main parameter
to evaluate the response of the hospital during normal and hazardous event operating conditions.
Common sense, but also a relevant literature review reported in various references [6–8] indicates
that functionality of a hospital is definitely related to the QS. Therefore if a measure of QS is
found, then it is possible to measure the functionality Q of the healthcare facility. Maxwell [6]
identified several multidimensional aspects of the QS. In particular six dimensions were suggested,
such as the access to care, the relevance of need, the effectiveness of care, the equity of treatment,
the social acceptability and the efficiency and economy. Each dimension needs to be recognized
and requires different measures and different assessment skills.

In this study, the access to services is considered as the most important dimension to measure
the QS in emergency conditions and it should be assessed in terms of ambulance response time
and WT in the ED. Moreover, other researchers [7] pointed out the choice of the WT as an
indicator of QS. Therefore, based on the references above, the qualitative functionality has been
defined as

QQS(t)= (1−�)QQS,1(t)+�QQS,2(t) (2)

Equation (2) is a linear combination of two functions, QQS,1(t)and QQS,2(t), shown in Equation (3),
while � is a weight factor that combine the two functions describing the behaviour in saturated
and non-saturated conditions.

QQS,1(t) = max((WTcrit −WT(t)),0)

WTcrit
if ���u

QQS,2(t) = WTcrit

max(WTcrit,WT(t))
�>�u

(3)

where all the following quantities are defined analytically later in the paper:

�(t)= arrival rate of patients at the hospital;
�U = critical arrival rate of patients, when hospital reach the saturated conditions;
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WTcrit = critical waiting time at the hospital in saturated conditions, when �=�U ;
WT(t)= waiting time when �=�(t).

The qualitative functionality QQS is shown in Figure 2(a) for different weight factors.

Quantitative functionality in saturated conditions

In the literature the evaluation of the performance of the hospital in saturated condition is not
considered, when the maximum capacity of the hospital is reached. In this latter condition, the
hospital is not able to guarantee a normal level of QS, because the main goal now is to provide
treatment to the most number of patients. Therefore, in this case the number of patients treated
NTR is a good indicator of functionality Q. The quantitative functionality QLS(t) is then defined
as a function of the losses L(t), which are defined as the total number of patients not treated NNTR
vs the total number of patients requiring care Ntot. In this case the loss is given by the number of
patients who are not treated as follows:

QLS(t)=1−L(t) (4)

where the loss function is defined by the normalized patients not treated.

L(t)= NNTR(t)

Ntot(t)
(5)

The total number of patients requiring care, Ntot, and the total number of patients who do not
receive treatment, NNTR, are given by the following formula:

Ntot(t)=
∫ t0+t

t0
�(�)d�; NNTR(t)= Ntot − NTR(t)= Ntot −

∫ t0+t

t0
min(�(�),�u)d� (6)
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Figure 2. (a) Qualitative functionality for different � factors; (b) Number of patients treated;
(c) Quantitative functionality (500 beds, 15 OR, and 1200 classes of efficiency); and

(d) Combined functionality Q for different weighting factors.
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The quantitative functionality thus can be defined as

QLS(t)=1−L(t)=1− NNTR(t)

Ntot(t)
= NTR(t)

Ntot(t)
(7)

The number of patients waiting for care depends on the queue already present in the ER. Previous
patients control the delay between their arrival and the treatment. A hospital is fully functional
when it is able to absorb with minimum delay all the patients requiring care. When the number
of patients waiting is higher than the number of patients treated (Figure 2(b)) the functionality
decreases.

If the number of patients who can be treated is larger than the number of patients who arrive,
then the quantitative functionality, QLS, is equal to one, because the capacity of absorbing the flow
is higher than the actual arrival rate. If the treatment rate capacity is smaller than the arrival rate, the
quantitative functionality takes a value smaller than one. An example of quantitative functionality,
QLS, for a large size hospital (500 beds), high surgery capacity (15 operating rooms (OR)) and
highest class of efficiency (1200 operations per OR per year) is shown in Figure 2(c).

Combined functionality

The total functionality, Q(t), of the hospital that appeared in Equation (1) is given by the product
of the two functionalities defined above

Q(t)= QQS(t) · QLS(t) (8)

Equation (8) is the first-order approximated combination of these two correlated quantities (higher
terms should be considered for complete analysis). The combined functionality and the sensitivity
to the weighting factor of the qualitative part, QQS(t), is shown in Figure 2(d). It is important to
mention that both QQS and quantitative QLS functionalities require the estimation of the WT. The
importance of parameter WT and its quantitative evaluation is described in the next paragraph.

WT AS MEASURE OF THE QS

The first issue to solve when approaching the problem of modelling of a healthcare system is
defining the main parameter of response that can be used to measure the functionality of a hospital.
A well-acknowledged study by Maxwell [6] has demonstrated that the WT in an ED may be used
as a key parameter in the quantification of the QS in healthcare settings. WT is defined as the time
elapsed between the received request of care by the hospital and the provision of the care to the
patient.

Thompson et al. [9, 10] recognize that the WT is considered as an important determinant of
patient satisfaction, which results from meeting or exceeding patient expectations, but providing
information, projecting expressive quality, and managing WT perceptions and expectations may
be a more effective strategy to achieve improved patient satisfaction in the ED than decreasing
actual WT.

Later McCarthy’s research [7] demonstrates that outpatient satisfaction with clinical treatment
was not associated with WTs, but lengthy WTs in outpatient clinics are recognized as a challenge
to the quality of care. WT is related to the hospital resources, in particular to those of the ED, such
as stuff on duty, number of labs and OR, grade of utilization of the OR, and also to the degree of
crowding [8] of the ED.

Richards et al. [11] point out the main factors that may influence the WT are: (i) the arrival
mode, which is a statistically significant predictor (e.g. those who arrive by ambulance had the
shortest WT); (ii) the hospital staffing characteristics (patient/physician ratio and patient/triage
nurse staffing ratio), the race, ethnicity, payer source and (iii) the metropolitan location of the
hospital, triage category, gender, age, arrival time. They pointed that the WT may affect the state
of care of the patients already inside the hospital. When a disaster happens, in order to provide a
higher availability of beds and staff to new patients, the emergency strategy of the hospital may
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involve the premature discharge of those inpatients whose conditions are considered stable, but
who would have remained hospitalized in normal operational conditions.

Di Bartolomeo et al. [12] choose the pre-hospital time (PT) and the Emergency Department
disposition time (EDt) as possible process indicators (PIs) for trauma care. This choice is based
on the generally acknowledged principle that the time to receive care is an essential component
of the survival chain. Short WTs improve outcomes, imply patients at higher risk where care is
expedited all along the line and patients at lower risk where care runs naturally and easily fast.
On the other side, long WTs worsen outcomes, imply patients at lower risk where care is slowed
down, imply high-risk patients whose complexity inevitably prolongs time.

MODELING HEALTHCARE FACILITIES

DES model vs metamodel

Healthcare systems are inherently complicated, in terms of details, dynamic and organizational
aspects, because of the existence of multiple variables, which potentially can produce an enormous
number of connections and effects. The presence of relationships not obvious over time, the
difficulties (or impossibility) to quantify some variables (e.g. the quality and value of treatment,
the WT and patient expectation on emergency admission), are only few factors that affect the
error in the valuation of the actual response. Furthermore, in a disaster, the emergency adds more
complexity to the healthcare system. The increase of the patient flow, the consequent crowding
of the ED, the chaos and disorganization that may result from the resuscitation of a patient in
extremis are the most stressful conditions in a hospital. Several modeling methods are available in
the literature to represent these complex hospital operations that are summarized in the MCEER
report of Cimellaro et al. [3] . Among all, the discrete event simulation (DES) models are valuable
tools for modelling the dynamic operation of a complex system, and in particular the emergency
nature of a disaster can be easily incorporated in DES, for different types of hospitals. A DES
model usually deals with p deterministic input parameters, defined over a feasible region, �, and
q stochastic output variables such as

�= (�1,�2, . . .. . .,�p)
Y=Y (�)−→ Y = (Y1,Y2, . . .. . .,Yq ) (9)

In the single response optimization it is necessary to define a real function of Y , for example
C =C(Y ), that combines all the q output variables into a single stochastic one. The goal is to find
out which set of � variables optimizes the simulation response function F(�), such as

�= (�1,�2, . . .,�q ) : F(�)= E[C(Y (�))] (10)

The problem is that F(�) cannot be observed directly, but rather must be estimated. This may
require that multiple simulations run replications or long simulation runs. The stochastic nature of
the output from the simulation run complicates the optimization problem.

In Figure 3(a) is shown an example of a DES model of the ED of the Mercy Hospital located at
Buffalo, NY, that has been build using visual simulator software developed by Promodel Corpo-
ration [14]. However, although DES models are valuable tools for hospital modeling, they are
time-consuming because they require multiple simulation runs for the results to be acceptable
statistically due to the random nature of simulation experiments. Furthermore, it is not possible to
build DES models for all the available hospitals in the disaster area, which may vary in size after
the event occurs. On the other hand, metamodels are easier to manage and provide more insights
than DES models. A metamodel is a simple set of equations that does not require a long execution
time as in the case of DES models, therefore it becomes a good candidate for modeling operations
for any general hospital in disaster condition. The patient WT is the output variable of the simu-
lation with the metamodel that is a double exponential function defined later in Equation (37).
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Figure 3. (a) Discrete event simulation model of the Mercy hospital in Buffalo, NY and (b) metamodel [13].

An example of the shape of this function is given in Figure 3(b), where the dots are the patient
WT obtained from simulations with the DES model. The metamodel needs to be calibrated, and
the first problem to handle when dealing with disaster is the lack of data. This deficiency [15]
is related to the difficulties in collecting data during a disaster, because the emergency activity is
the first aim, and the registration of the patient is, of course, not done with the usual procedure.
Because of the above reasons, all parameters of the metamodel are regressed using outputs from
the DES model.

ANALYTICAL CONSTRUCTION OF THE METAMODEL

In this paper the hospital functionality during a disaster is indicated by how quickly it can treat the
injured patients, therefore it is directly correlated to the patient WT that is the response variable
of the metamodel and it indicates how busy the hospital is. The mathematical formulation for the
evaluation of WT is taken in analogy with the model of a manufacturing production line system
in Yi [13], because the transient behaviour of the hospital during a disaster resembles that of a
machine breakdown in a manufacturing production line. WT depends on internal and external
organizational factors. The internal factors are the number of beds (B), the number of OR, the
resources and staff productivity; the arrival rate � and the patient mix � are the external input that
can be defined as the percentage of patients who need the OR, which is the most critical resource
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in disaster condition. As regards the capacities of ER and Labs are assumed to be proportional
to the size of the hospital (i.e. the number of beds), and are not direct input of the simula-
tion model. The resources and staff productivity as well as the equipments/instruments are not
modelled explicitly, but with the efficiency factor E which provides the number of surgeries per OR
per year.

By combining the potentiality of off-line simulation runs and the capability of metamodelling
to describe the transient behaviour of the system, a generic hospital model is built and cali-
brated, according to the ED patient volume, hospital size and operating efficiency considered. The
metamodel obtained in this way is built in two steps:

1. Off-line simulations (normal condition). In this phase, the calibration of the parameters of the
model is based on hospital steady-state behaviour (Figure 4) under constant arrival rate. The
initial parameters of the model are usually provided by numerical simulations and national
statistics. In particular, three steady-state conditions are considered:
(a) Normal operative condition: It is the steady state in which the hospital copes with the

normal arrival rate expected in a facility of that size, efficiency and normal duties of
nurses, doctors, physicians and anesthetists.

(b) Base case condition: It is the instant in which, after the disaster stroke, the hospital
activates the emergency plan (EP), calls all the physicians and the nurses on duty and
accedes to the emergency resources. It is assumed that there is a delay between acti-
vation of the EP and the highest flow of patients in the hospital, so it can be assumed
that the arrival rate in the base condition is equal to the normal arrival rate, as well
(Figure 4).

(c) Critical case condition: It is the steady state reached by the hospital in saturated condition,
in which all the resources are used and no further patients can be accepted. The hospital
works at full capacity and it would be over capacitated with any additional input.

2. Online simulations during the disaster condition. In this phase, the results of the off-line
simulation are used to built the response of the hospital in real time, when the disaster patient
flow reaches the ED.

In the following paragraphs are explained in detail the three steady-state conditions of the
off-line simulations and the steps to build the modified hospital metamodel.

Normal operating conditions

The normal operating condition also called pre-disaster steady-state condition is characterized
by the pre-disaster average daily patient arrival rate under normal hospital operations �0 which
is obtained from national statistics and by the pre-disaster average waiting time, WT0, which is
obtained from simulation data. The parametric form of quadratic nonlinear regression used for the
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arrival rate in normal operative condition is

�0 = const0 +a0 B +b0OR+c0 E +d0�+e0 B2 + f0OR2 +g0 E2

+h0�
2 +i0 BOR+ j0 B E +k0 B�+l0ORE +m0OR�+n0 E� (11)

where B is the number of beds, OR is the number of operating rooms, E is the effi-
ciency of the hospital; � is the patient mix and const0, a0, b0, a0, b0, c0, d0, e0, f0,
g0, h0, i0, l0, m0, n0 are nonlinear regression coefficients obtained by the statistical anal-
ysis of national data that in our case study has been obtained from the state of California
(http://www.oshpd.ca.gov/oshpdKEY/FindData.htm). The values of the coefficients used in Equa-
tion (11) are shown in Table AII (column 1) in the Appendix where it has been included the
influence of the patient mix �. The value of the normal arrival rate depends on all the parameters
considered in the metamodel. The parametric form of �0 in Equation (11) can be simplified
using linear regressions, where the linear regression coefficients are evaluated on the basis of
US statistical data [16] on ED visits prior to the disaster. The simplified expression is given in
Equation (12) [13], and it depends only on the class size of the hospital

�0 =6.1204+0.2520B (12)

The pre-disaster average waiting time, WT0, can be evaluated by the general parametric form
of nonlinear regression, as shown in Equation (13)

WT0 = const0 +a0 B +b0OR+c0 E +d0�+e0 B2 + f0OR2 +g0 E2

+h0�
2 +i0 BOR+ j0 B E +k0 B�+l0ORE +m0OR�+n0 E� (13)

where the values of the coefficients used in Equation (13) are shown in Table AII (columns 2–6
and 8) in the Appendix for different conditions.

If a linear regression of Equation (13) is assumed [13], without considering the influence of the
partial mix, the linear regression coefficients are given in Table AI where also the quality of fitting
is indicated by the R2 coefficient.

Base case conditions

The base case condition, also called lower case, corresponds to the instant in which, after the
disaster stroke, the hospital activates the EP (Figure 4). The base case is characterized by the lower
arrival rate during the disaster condition, �L , which is equal to the normal operative arrival rate,
�0, and by steady-state mean value of waiting time, WTL , in the system after a variation of initial
conditions (e.g. calling all the staff on duty, applying an EP, reducing the quality of care and the
time of care, etc.), under a given arrival rate equal to �L =�0. The parametric form of quadratic
nonlinear regression used for the arrival rate in the base case condition �L is the same as in the
normal operative condition that is shown in Equation (11). The WTL is calculated for each hospital
configuration, and it is given by the general parametric form of nonlinear regression, shown in
Equation (13), but the coefficients of the nonlinear regression are obtained by statistical analysis
of the data provided by the numerical simulations in Promodel, under a constant arrival rate equal
to �0, but in disaster condition. Three different cases of nonlinear regressions are considered that
are reported in Table AII. They correspond to the case when the patient mix � is not considered
(columns 2 and 5 in Table AII) and when it is taken in account (columns 3, 4, 6 and 8) considering
two levels of severity (2 and 3) that correspond to the ones reported in HAZUS.

Critical case conditions

The Critical Case, also called Upper Case, corresponds to the case when the system will become
over capacitated with any additional volume and it is characterized by the maximum arrival rate,
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�U , that the hospital is able to handle. It corresponds to the maximum number of patients that
the hospital can treat and the steady-state mean value of waiting time, WTU , in the system after
a variation of initial conditions, under a given arrival rate �U . These values are calculated for
each hospital configuration, and they can be evaluated as well with the formulas of nonlinear
regression given in Equations (11) and (13). The three sets of values of the regression coefficients
and the value of R2 are reported in Table AII and were obtained by statistical analysis of the data
provided by the numerical simulations in Promodel. Three different cases of nonlinear regressions
are considered and reported in the Appendix.

Modified continuous metamodel

As observed in the numerical simulation runs of the DES model, the higher the arrival rate, the
longer it takes the hospital to reach a steady state after the earthquake. Therefore, under the base
case condition (�L ,WTL ), the hospital will take the shortest time to reach a steady-state condition
while the opposite happens under the critical case condition (�U ,WTU ). During the transient, when
the system is shifting from a base to a critical case condition, the system will take a WT in between
the boundary steady-state conditions (lower base case and upper critical case) (Figure 4). This
assumption is true in non-saturated condition (with grade of utilization ��1, where � is defined
as ratio �/�U ), under the hypothesis that the arrival rate does not exceed the upper bound imposed
by the critical case and therefore, it is assumed that the system is able to reach a new equilibrium,
working at full capacity. The flowchart of the procedure to calibrate the dynamic model is shown
in Figure 5.

The simulation results of Yi [13] show that WT grows nearly exponentially with the increase
in arrival rate, therefore during the transient the WT is given by

WT=eA+B� (14)

where the constants A and B are obtained by the boundary conditions. In the base case (or lower
bound) and in the critical case Equation (14), respectively, becomes

WTL =eA+B�L ; WTU =eA+B�U (15)

Figure 5. Flowchart of the calibration of the single exponential function.
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After some mathematical manipulations of Equation (15), the coefficients A and B are deter-
mined as

A= �U log(WTL )−�L log(WTU )

�U −�L
; B = log(WTU )− log(WTL )

�U −�L
(16)

Back substituting the parameters A and B of Equation (16) in Equation (14) the following
expression is obtained:

WT(t)=e
�U log(WTL )−�L log(WTU )+(log(WTU )−log(WTL ))�

�U −�L (17)

that describes the exponential relationship between the WT and the arrival rate for any given
hospital configuration where the parameters are obtained from regression analysis based on the
two boundary conditions. Rewriting Equation (17), the WT during the transient is described
by the following function, which holds for the system running between the base and the
critical case

WT(t)=WTL +(WTU −WTL ) ·(1−e
t0−t

� ) (18)

where t0 is the instant in which the disaster strikes, while � is a time constant which depends on the
time that the system takes to reach the steady-state condition. The constant �(�, B,OR, E) depends
on the time it takes the system to reach the steady state and it needs to be calibrated on a given
hospital configuration (B,OR, E) and arrival rate � (Figure 5). Although the single exponential
function in Equation (18) describes the WT for a given hospital adequately, no common, underlying
function that can represent a relationship between the time constant � and arrival rate � for all the
hospital configurations exist (i.e. �=�(�)). Therefore, instead of using a single exponential function,
a double exponential function that allows generic modelling of transient WT is considered. The
procedure to calibrate the double exponential function is described below, while a flowchart of
the procedure to calibrate the function is shown in Figure 6. The constant � for a given hospital
configuration is different according to the arrival rate considered (�L and �U ), and it is determined
with the least square method of estimation. In particular, for the base case �L is determined such that

minimize F(�L )=
n∑

i=1
[WtLi −WTLi(�L )]2

subjected to constraint �L�0

(19)

where WtLi is the waiting time obtained from the numerical simulations in the DES model with
�=�L , WTLi(t) is the waiting time obtained from the analytical model in Equation (19) and n is
the total number of points considered. Therefore, Equation (19) becomes

WTLi(t)=WTL +(WTU −WTL ) ·(1−e
t0−t
�L ) (20)

For the critical case �U is determined such that

minimize F(�U )=
n∑

i=1
[WtUi −WTUi(�U )]2

subjected to constraint �U �0

(21)

where Wt2i is the waiting time obtained from the numerical simulations in the DES model with
�=�U , whereas WT1i (t) is the waiting time obtained from the analytical model in Equation (18).
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Figure 6. Flowchart of double exponential function (��1).

Therefore, Equation (18) becomes

WTUi(t)=WTL +(WTU −WTL ) ·(1−e
t0−t
�U ) (22)

The final solution is built as a linear combination of the two exponential functions, with a weighting
factor p that combines the base case and the critical case as follows:

WT(t)= (1− p)WTLi + pWTUi (23)

and back substituting Equation (20) and (22) in Equation (23) the following expression is
obtained:

WT(t)=WT0+(1−p)(eA+B�U −eA+B�L ) ·(1−e
teq−t
�L )+p(eA+B�U −eA+B�L ) ·(1−e

teq−t
�U ) (24)

The p factor is obtained from the least square method of estimation

minimize F(p)=
n∑

i=1
[WTi −WT(t)]2

subjected to constraint 0�p�1

(25)

where WT is the transient waiting time at a given instant of time t given in Equation (24) and
WTi is obtained from numerical simulation runs or experimental data with different �i .
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Yi [13] found a relationship between the patient arrival rates � and p, testing different hospital
configurations that are given by the following logarithmic function:

ln(p)=C + D� (26)

where C and D are the constants that need to be determined for a particular hospital. These
coefficients can be determined using the ‘base case’ (p=0 and �=�L ) and critical case values
(p=1 and �=�U ), for any specific hospital. When p=0, ln(p) does not exist, however Yi [13]
showed that as p approaches 0, ln(p) approaches −3.2, therefore ln(0)=−3.2 is used as satisfactory
approximation in the calculation. Therefore from the boundary conditions for the base case and
the critical case in Equation (26), the following coefficients are determined:

base case �=�L ; p=0; C + D�L ≈−3.2 (27)

critical case �=�U ; p=1; C + D�L =0 (28)

Therefore

C = 3.2�U

�L −�U
; D = 3.2

�U −�L
(29)

Yi [13] also assumed that if the arrival rate is a continuous function of time namely �(t), then the
transient WT of Equation (24) is given by the following equation expressed in discrete form:

WT(ti ) = WT(ti−1)+(1−eC+D�(ti ))(eA+B�(ti ) −WT(ti−1))(1−e
− t1−t0

�1 )

+eC+D�(ti )(eA+B�(ti ) −WT(ti−1))(1−e
− ti −t0

�2 ) (30)

Considering a small time interval �t , and writing the derivative in discrete form the following
expression is obtained after some mathematical calculations:

WT(t)= lim
�t→0

[
WT(ti+�t)−WT(ti )

�t

]
=(eA+B�(t)−WT(t)) ·

(
1

�1
+ 1

�2
eC+D�(t)− 1

�1
eC+D�(t)

)
(31)

By integrating Equation (31) the following corrected continuous expression of WT is obtained:

WT(t) =
[

WT(0)+
∫ t ′

0

1

�1�2

{
(�1 −�2)exp

{
1

�1�2

[
A�1�2 + B�(t)�1�2

−
∫ t ′

0
(−�1eC+D�(t) −�2 +�2eC+D�(t))dt +C�(t)�1�2 + D�1�2

]}

+�2 exp

{
1

�1�2

[
A�1�2 + B�(t)�1�2 −

∫ t ′

0
(−�1eC+D�(t) −�2 +�2eC+D�(t))dt

]}}
dt

]

exp

[∫ t ′

0

(
−eC+D�(t)

�2
− 1

�1
+ eC+D�(t)

�1

)
dt

]
(32)
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where WT(0) is the initial waiting time at time 0 and the coefficients A, B, C , D, �L and �U
are all functions of the number of beds B, number of operating rooms OR, and the efficiency E .
In saturated condition (�=�U ), the solution is equal to WTcrit, which is the maximum allowable
WT under the maximum arrival rate feasible

WTcrit =WTL +WTU 1−e
− TLC

�2 ) (33)

where TLC is the observation time. In particular for an observation time TLC =∞, we have

WTcrit = lim
TLC→+∞

[WTL +WTU (1−e
− TLC

�2 )]=WTL +WTU (34)

The advantage of the double exponential function with respect to the single exponential function
is in the calibration of the constants that are obtained without the need for simulation runs for any
patient arrival rate. Simulations are only necessary for the lower bound (base case) and the upper
bound (critical case) of the arrival rate [13].

The dynamic hospital model given in Equation (32) is valid only for the systems that are never
over capacitated with ��1. When �>1 the equilibrium is not satisfied and the system is over-
capacitated. During a disaster it can happen that the hospital has to cope with a long period of
over-capacitated condition (�>1), in which the assumption of steady-state condition is not valid.
The ED can be compared with a production line chain and the overflow of patients in saturated
condition can be associated to the effect of a sudden machine breakdown. This dynamic event in
a multi-server machine assembly line will result in an increase in production time as well as the
number of assemblies in the system. Similarly, it is assumed that when the hospital saturates it
starts to work in steady-state condition and can process only a volume of assemblies (patients)
given by the critical arrival rate �U . The processing time or WT for the compound assembly is
then given by the sum of the steady-state time WT(t,�=�U ), and the disturbance �WT(t), which
represents the impact of the overflow (�−�U ) on the equilibrated condition �=�U , and can be
expressed by the following equation:

WT(t)=WT(t,�=�U )+�WT(t) if ���U (35)

The first term can be calculated using Equation (32) with �=�U , while the second term describes
the over-capacitated condition, in which the inflow is greater than the outflow. In extensive form
Equation (35) can be written as follows:

WT(t)=WT(t,�=�U )+
(

�(t)−�U

�U

)
i
·(t − t�U ) if ���U (36)

Figure 7. Response of the modified continuous metamodel under Northridge arrival rate.
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Therefore, the final expression of the WT for a hospital facility is given by

WT(t)=

⎧⎪⎨
⎪⎩

Equation (32) if ���U

WT(t,�=�U )+
(

�(t)−�U

�U

)
i
·(t − t�U ) if �>�U

(37)

The modified continuous metamodel (MCM) in Equation (37) has been tested with different
shapes of arrival rates in order to supply the reader about its dynamic behaviour.

When the hospital has to cope with an arrival rate beyond that which is able to cope with in
saturated conditions, the WT increases proportionally to the difference between the actual arrival
rate and the critical arrival rate (Figure 7). In this case, the hospital is not able to cope with the
increased volume and it needs additional resources to be able to absorb all the patients.

INTERDEPENDENCIES BETWEEN TECHNICAL AND ORGANIZATIONAL RESILIENCE

Structural and non-structural damages cause reduction of functionality of the hospital at the
organizational level. However, the hospital is affected more by non-structural damage than struc-
tural damage, because if water power and medical resources are damaged, they can render the
hospital useless. MCM is able to incorporate the effect of structural and non-structural damages
on the organizational model by incorporating a PF that is used to update the available ERs,
OR and bed capacity of the hospital (Figure 1). Its value is determined by the fragility curve
of each structural and non-structural components inside the hospital. Fragility curves are func-
tions that represent the conditional probability in which a given structure’s response to various
seismic excitations exceeds given performance limit state [17]. The compact form assumed is
given by

FY (y)=�

[
1

�
ln

(
y

ϑy

)]
y�0 (38)

where � is the standardized cumulative normal distribution function , �y is the median of y and
� is the standard deviation of the natural logarithm of y [18]. From fragility curves it is possible
to evaluate PFs that are applied to all the internal parameters of the hospital (i.e. B, OR, E).
The penalty factors PFi for each structural or non-structural component are given by the linear
combination of the conditional probabilities of having certain levels of damage. Four levels of
damage are traditionally considered: P1 slight, P2 moderate, P3 extensive and P4 complete, which
are obtained from the fragility curves provided for each structural and non-structural components.
The total PF affecting each component analyzed is given by

PFi =a ·(P1 − P2)+b ·(P2 − P3)+c ·(P3 − P4)+d · P4 (39)

where the coefficients a, b, c and d are obtained by normalized response parameters (e.g. drifts,
accelerations, etc.) that define the thresholds of Slight, Moderate, Extensive and Complete damage
states. For example if a drift sensitive non-structural component is considered, the coefficient a is
defined as a=driftslight/driftcomplete. A complete list of damage state drift ratios for all building
types and heights are provided in HAZUS [19].

The total penalty factor, PFtot, affecting all the organizational parameters of the hospital is given
by a linear combination of the individual PFs using weight factors obtained as ratio between the
cost of each component and the overall cost of the building

PFtot =w1PFstr +
n∑

i=2

(1−w1)

n
PFi�1 (40)

where w1 is the weighting factor of the structural component of the building; PFstr is the penalty
factor of the structural component of the hospital; PFi is the penalty factor of the non-structural
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components considered and n is the number of non-structural components. The proposed model
incorporating facility damage can be used to identify the critical facilities, which would need
increased capacities based on the casualties and it can be used to plan for any future expansion
and reduction.

CASE STUDY: STATISTICAL HOSPITAL MODEL OF A CALIFORNIAN HOSPITAL

The hospitals of interest in disaster are those that treat all general types of injury and have ER
and OR. Specialty hospitals (e.g. cancer and cardiac centers) are not considered to contribute
significantly to the treatment of injuries resulting from a disaster. Therefore, only non-specialty
hospitals are included in the formulation. In detail, the example shows a generic statistical hospital
model, representative of a typical configuration of a Californian hospital (Figure 8). Three levels
for each of the following parameters, the number of beds (B), the number of operating rooms
(OR) and the efficiency (E) are used. They are

• Number of beds: small size=100B, medium size=300B, large size=500B;
• Number of operating rooms, OR: 5, 10 and 15;
• OR efficiency index E: 600, 900 and 1200.

A total of 27 combinations are possible, but small hospitals with a high number of OR, as well
as large ones with low surgery capacity (only five OR) are considered as unfeasible combinations
and were not taken in account, so in total 21 combinations were considered [3].

If we consider the California Statistics (http://www.oshpd.ca.gov/oshpdKEY/FindData.htm), the
composition of healthcare facilities according to the size is reported in Figure 8.

The medium size hospital (300 beds) is the largest representative type; therefore these data
partly justify the selection of the configurations in the case study.

The parameters of the metamodel are calibrated from the statistical analysis of data obtained on
a set of simulation runs performed by Yi [13], using a DES model during the post-earthquake event.
Regression equations are obtained for both pre-earthquake and post-earthquake WTs using average
daily patient arrival rates calculated from national statistics and results are shown in Tables AI
and AII in the Appendix.

For the case of patient inflow to an ED during an earthquake the only data available are those
collected during the Northridge Earthquake that are the ones used in this example. The choice of
this earthquake intensity as a representative case study is not only dictated by the available data,
but also with the fact that an average of 120 earthquakes per year worldwide in the magnitude
range of 6.0–6.9 (like the Northridge and Kobe—17 January 1995—events) have occurred since
1900. For the past decade, the annual number of M =6.0−6.9 shocks worldwide has ranged from
79 in 1989 to 141 in 1993. These numbers confirm that events like those affecting the urban areas
of Northridge and Kobe are typical, and that we should be prepared for such shocks wherever
cities and towns are located in seismically active areas [20].

Medium Size
300 B
55%

Small Size
100 B
39%

Large Size
500 B
6%

Figure 8. Composition of Californian hospitals.
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Figure 9. Increments of resilience index vs different internal parameters B, OR and E .
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Figure 10. Sensitivity of the emergency plan.

In Figure 9 the sensitivity of resilience to the main parameters that characterize the organizational
metamodel is investigated, while the weighting factor � used for the qualitative functionality in
Equation (2) is set to 0.8.

In Figure 9(a) the efficiency (E =900) and the number of OR (OR=10) are kept constant,
while the number of beds, B, is increased. Plot shows that the number of beds does not have a
relevant effect on improvement of resilience for this type of configuration. Increasing the efficiency
E for medium size hospitals does not have a relevant impact either (Figure 9(b)). On the other
hand, Figure 9(c) shows that for a medium size hospital (B =300) the best way to improve
the organizational resilience of the hospital is to increase the number of operating rooms, OR.
The metamodel can consider also the capabilities of the staff and the existence of an EP during the
disaster. During a disaster, a hospital can apply the so-called ‘surge in place response’. It can
increase its capability (availability of beds and staff) to new patients with a premature discharge
of those inpatients whose conditions are considered stable, but who would remain hospitalized in
normal operational conditions. It also can adapt the existing surge capacity, organizing temporary
external shelters [21]. A large portion of in-patient can be discharged within 24–72 h in the event of
mass casualty accident. The discharge function is not an exact science, and there is no mathematical
formulation; however, usually 10–20% of operating bed capacity can be mobilized within a few
hours and the availability of OR can increase 20–30%. The external shelters can provide additional
room for the triage and first aid of the injured, reducing the pressure on the hospital, allowing the
staff to concentrate on the non-ambulatory staff.

Triage and initial treatment at the site of injury, the so-called ‘off-site patient care’ [21] can
relieve pressure on the emergency transportation and care system or when the local health care is
damaged. It is assumed that doctors’ skills may increase the efficiency of the hospital up to 20%.
On the other side the existence of the EP, which can be applied with a certain delay, can increase
the number of OR and the number of beds, respectively, of 10 and 20%.

In Figure 10 the effect of the application of the EP on the values of resilience has been
investigated. It is assumed that the EP increases the number of beds of 10% and the surgery
capacity (number of OR) of 30%. The values of the PFs before and after the application of the
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EP for the three size classes considered are reported in Table AIII in the Appendix. Resilience
is plotted as function of the delay in the time of application of the EP, which acts as a sudden
increase in the values of the organizational parameters (in this case number of beds and number
of OR) with a certain delay from the stroke of the earthquake (0, 4, 8 or 16 and 24 h). The EP
has a benefic effect only in the case of medium and large size hospitals, with a medium high
surge capacity (10–15 OR) as shown in Figure 10(c), where the performance in terms of hospital
resilience increases up to 20%.

CONCLUDING REMARKS

The purpose of this study is to relate the technical and organizational aspects of healthcare facilities
to obtain a measure of organizational resilience that has not been attempted so far. The resilience
index is directly related to the quality of care, measured through the waiting time, and to the
eventual loss of healthy population, caused by the performance of the healthcare facility during
an extreme event. An organizational metamodel for healthcare facilities (e.g. hospitals) has been
defined and implemented. This hybrid simulation/analytical model is able to measure the hospital
capacity and the dynamic response of the hospital ED in real time using a single parameter: the WT
before the service can be received. The WT is described using a double exponential function that
has been opportunely modified to take into account the behaviour of the ED in over-capacitated
conditions. Furthermore, the effect of damage of structural and non-structural components inside
the hospital is incorporated in the organizational model using the penalty factors. The metamodel
has been designated to cover a large range of hospital configurations and takes into account hospital
resources, in terms of staff and infrastructures, operational efficiency and possible existence of
an EP, maximum capacity and behaviour both in saturated and over-capacitated conditions. In
order to show the methodology, an example of a statistical hospital model, representative of a
typical Californian hospital has been implemented. The model has been calibrated on the only
real data collected during the Northridge earthquake. The sensitivity of the model to different
patients’ ‘arrival rates’, ‘patient mix’, ‘hospital configurations and capacities’, and the technical and
organizational policies applied during and before the strike of the disaster, has been investigated.
Results based on the example show that for a medium size hospital of 300 beds the most significant
way to improve the performance of the ED during a disaster is to increase the number of OR. The
presence of an EP has a beneficial effect only in the case of medium and large size hospitals.

APPENDIX A

This appendix includes the coefficients of the non-linear regressions described in the paper
(Tables AI–AIII).

Table AI. Coefficients of linear regression for WT0 and WTL without the influence of the patient mix �,
WTU and �U with the influence of the patient mix � [13].

WT0 WTL
Severity 2

Coeff w/o patient mix w/o patient mix WTU �U

const 13.0659 6.3000 136.4097 −0.0699
a 0.0067 0.0033 0.0533 0.0001
b −3.4069 −0.4470 −9.7421 0.0124
c 0.0435 0.0010 0.0743 0.0001
R2 (%) 0.82 0.72 0.61 0.95
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Table AIII. Penalty factors before and after the application of the emergency plan.

Without EP With EP

B PFB PFOR PFeff PF′
B PF′

OR PF′
eff

100 0.540 0.540 0.540 0.594 0.702 0.540
300 0.561 0.561 0.561 0.617 0.729 0.561
500 0.612 0.612 0.612 0.673 0.796 0.612
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