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ABSTRACT : 
Resilience is defined as the ability of engineering and socio-economic systems to rebound after severe 
disturbances, or disasters, such as earthquakes.  This paper presents a comprehensive conceptual framework to 
quantify resilience including both technical and organizational aspects.  An organizational model (metamodel) 
describing the response of the hospital emergency department has been implemented.  The metamodel is able 
to estimate the hospital capacity and its dynamic response in real time and incorporate the influence of the 
facility’s damage in structural and non-structural systems on the organizational ones.  The waiting time, a 
measure of efficiency and capability to respond, it is used to evaluate seismic resilience of health care facilities.  
Its behavior is described using a double exponential function and its parameters are calibrated based on 
simulated data.  The metamodel has been designated to cover a large range of hospital configurations and takes 
into account hospital resources, in terms of staff and infrastructures, operational efficiency and possible 
existence of an emergency plan, maximum capacity and behavior both in pre-saturated and saturated conditions.   
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1. INTRODUCTION  
 
Health care facilities have been recognized as strategic buildings in hazardous events and play a key role in the 
disaster response and recovery; however no attempt was made so far to practically relate the structural and 
organizational damage on the performance of hospitals. There is an extensive literature on the definition of the 
main parameters of seismic resilience (see Bruneau et al., 2003; Bruneau and Reinhorn, 2007; Cimellaro et al., 
2008) for health care systems and on the definition of the general framework, however there is no information 
regarding the modeling and the measure of the organizational aspects of resilience.  Indeed, an organizational 
resilience model is needed, to be able to determine the response of the community to hazardous events, and 
evaluate the real loss in terms of healthy population and quality of care provided.  In this paper an 
organizational metamodel describing the response of the hospital’s emergency department (ED) has been 
implemented.  The model intends to offer a first approach to the problem and a more comprehensive evaluation 
of the multidimensional aspects of resilience. The metamodel is able to estimate the hospital capacity and 
incorporate the influence of the facility damage in structural and non-structural components on the 
organizational ones. 
 
 
2. ORGANIZATIONAL RESILIENCE 
 
The main purpose of this research is to relate the technical and organizational aspects of health care facilities, to 
obtain a measure of organizational resilience that has not been attempted so far.  The goal is to relate the 
measure of resilience to the quality of care (QC) provided and the eventual loss of healthy population, caused by 
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the performance of the health care facility during the disaster.  Resilience is defined in this paper as a function 
indicating the capability to sustain a level of functionality or performance for a given building, bridge, lifeline 
networks, or community, over a period TLC defined as the control time that is usually decided by owners, or 
society (usually is the life cycle, life span of the system etc.). This quantity is defined graphically as the 
normalized shaded area (Figure 1) underneath the functionality function Q(t) of a system and is defined 
analytically as follows:  
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where the functionality Q(t) ranges from 0 to 100%.  100% mean no reduction in performance, while 0% 
means total loss. In particular if an earthquake occurs at time tNE it could cause sufficient damage to the 
infrastructure such that the performance Q(t), is immediately reduced (Figure 1).  Then within a period called 
recovery period TRE, the system will be able to return to the same level of functionality before the extreme event.  
 

 
Figure 1 Schematic representation of seismic resilience  

 
The system diagram in Figure 2 identifies the key steps of the framework to quantify resilience. The left part of 
the diagram mainly describes the steps to quantify technical aspects of resilience while the right side describes 
the organizational aspects to quantify resilience.  The penalty factors PF that appear in the diagram describe 
the interaction between the technical and the organizational aspects and their evaluation is discussed in one of 
the following paragraph.  
 
 
2.1. Functionality of a hospital facility  
In order to define resilience it is necessary to define first the functionality Q of the hospital facility. 
Functionality is defined as the combination of two components: 

1. Qualitative functionality QQS related to the quality of service (QS); 
2. Quantitative functionality QLS related to the losses in healthy population; 

Qualitative functionality is related to the QS, as indicated by a relevant literature review reported in various 
references (Maxwell, 1984; Mc Carthy et al. 2000; Vieth and Rhodes, 2006). Therefore, if a measure of QS is 
found then it is possible to measure the functionality Q of the health care facility.  As it will be discussed in the 
following paragraph 2.2, the QS can be related to the waiting time (WT) spent by people in the emergency room 
while requiring care. The WT is the main parameter to valuate the response of the hospital during normal time 
and the hazardous event.  Analytically, qualitative functionality has been defined as: 
 

 ( ) ( ) ( ) ( ),1 ,21QS QS QSQ t Q t Q tα α= − +  (2.2) 
 
 that is a linear combination of two functions, QQS,1(t)and QQS,2(t), expressed in Eqn. (2.3) respectively, while α 
is a weight factor that combine the two functions describing the behavior in non saturated and saturated 
conditions.   
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Figure 2 Resilience framework (MCEER approach)  

 
In particular, in non saturated condition (λ ≤λU), and saturated conditions (λ ≥λU), the QS is described by the 
function QQS,1(t) and QQS,2(t) respectively 
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The qualitative functionality expressed in Eqn. (2.2) is showed in Figure 3a, while the weighting factor α 
ranging from 0 to 1.  Following the definition of qualitative functionality given in Eqn. (2.2), the hospital is 
fully functional when is able to absorb with a minimum delay all the patients requiring care.   
However, QS is a good indicator of functionality only in non saturated conditions.  When the hospital operates 
in saturated condition (when the maximum capacity of the hospital is reached) it is not able to guarantee the 
normal level of QS, because the main goal now is to provide treatment to the most number of patients. 
Therefore, in this case the number of patients treated NTR is a good indicator of functionality Q.  The 
quantitative functionality QLS(t) is then defined as a function of the losses L(t), which are defined as the total 
number of patients not treated NNTR versus the total number of patients requiring treatment Ntot.  In this case the 
functionality is defined as follows 
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 where the total number of patients requiring care Ntot and the total number of patients that do not receive 
treatment NNTR are given by the following formulas 
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The trend of the total number of patients going to the hospital right after an earthquake and the number of 
patients treated is shown in Figure 3b.  According to this definition, the hospital is fully functional when is able 
to treat all the patients going to the hospital.  If the number of patients treated is smaller than the number of 
patients requiring treatment, then the quantitative functionality QLS decreases as shown in Figure 3c.  Finally, 
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the total functionality Q(t) of the hospital is shown in Figure 3d and it is given by 
 

 ( ) ( ) ( )QS LSQ t Q t Q t= ⋅  (2.6) 
 
The global functionality Q of Eqn. (2.6) is shown in Figure 3d.  It is important to mention that QQS requires the 
estimation of WT and its estimation is given in the following paragraph.  
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Figure 3 Functionality of health care facility  

 
2.2. Waiting time as a measure of the quality of service  
The first issue to solve when approaching the problem of modeling of a health care system is defining the main 
parameter of response that can be used to measure the functionality of a hospital.  A well acknowledged study 
(Maxwell, 1984) has demonstrated that waiting time (WT) in an ED may be used as a key parameter in the 
quantification of the QS in health care settings; therefore it can be used as a measure of the accessibility, 
efficiency, and relevance of the outpatient service.  WT is defined as the time elapsed between the received 
request of care by the hospital and the provision of the care to the patient.  This parameter is related to the 
hospital resources (e.g. number of beds, B), in particular to those of the ED, such as stuff on duty, number of 
labs and operating rooms (OR) grade of utilization of the OR, but also to the degree of crowding of the ED.   
Many models are available in literature (see Cimellaro et al., 2008) to measure the WT of health care facilities. 
However, in this research we focus on discrete events simulation models (DES) and metamodels that will be 
described in detail in the following paragraph. Further details can be found in Cimellaro et al. (2008).  
 
 
2.3. Discrete event simulation model vs. Metamodel  
Health care systems are inherently complicated, in terms of details, dynamic and organizational aspects, because 
of the existence of multiple variables, which potentially can produce an enormous number of connections and 
effects.  The presence of relationships not obvious over time, the difficulties (or impossibility) to quantify 
some variables (e.g. the quality and value of treatment, the WT and patient expectation on emergency 
admission), are only few factors that affect the error in the valuation of the actual response.  Furthermore, in a 
disaster, the emergency adds more complexity to the health care system.  The increase of the patient flow, the 
consequent crowding of the ED, the chaos and disorganization that may result from the resuscitation of a patient 
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in extremis are the most stressful conditions in a hospital.  Several modeling methods are available in literature 
to represent these complex hospital operations.  Among all, DES models are valuable tools for modeling the 
dynamic operation of a complex system, and in particular the emergency nature of a disaster can be easily 
incorporated in discrete event simulation, for different types of hospitals (Lowery, 1993).  A DES model 
usually deals with p deterministic input parameters, defined over a feasible region ψ, and q stochastic output 
variables such as: 
 

 ( ) ( )q
YY

p YYYY ,......,,,......,, 21
)(

21 =⎯⎯⎯ →⎯= = ψψψψψ  (2.7) 
 
In the single response optimization it is necessary to define a real function of Y, for example C=C(Y), that 
combines all the q output variables into a single stochastic one.  The goal is to find out which set of ψ variables 
optimizes the simulation response function F(ψ), such as: 
 

 ( ) ( ) ( )( )[ ]ψψψψψψ YCEFq == :,........,, 21  (2.8) 
 
The problem is that F(ψ) cannot be observed directly, but rather must be estimated.  This may require multiple 
simulations run replications or long simulation runs.  The stochastic nature of the output from the simulation 
run complicates the optimization problem.  
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(a) (b) 
Figure 4 (a) Discrete event simulation model of the Mercy hospital in Buffalo, NY; (b) Metamodel (Paul et al. 

2006) 
 
In Figure 4a is shown an example of a DES model of the ED of the Mercy Hospital located in Buffalo, NY, that 
has been build using visual simulator software developed by Promodel Corporation, (Promodel v 4.2, 1999).  
However, although DES models are valuable tools for hospital modeling, they are time-consuming because they 
require multiple simulation runs for the results to be acceptable statistically due to the random nature of 
simulation experiments. Furthermore, it is not possible to build DES models for all the available hospitals in the 
disaster area, which may vary in size after the event occurs.  On the other hand, metamodels are easier to 
manage and provides more insights than DES models.  A metamodel is simple set of equations that does not 
require a long execution time as in the case of DES models, therefore it becomes a good candidate for modeling 
operations for any general hospital in disaster condition.  The patient WT is the output variable of the 
simulation with the metamodel that is a double exponential function defined as follows: 
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where τ1 and τ1 are time constants that describe the time the system takes to reach the steady state condition. 
They are dependent on the arrival rate and they are determined with the least square method of estimation 
(Cimellaro et al. 2008). A, B, C and D are constants that depend on the particular hospital configuration.  The 
metamodel needs to be calibrated, and the first problem to handle when dealing with disaster is the lack of data. 
This deficiency (Stratton et al., 1996) is related to the difficulties in collecting data during a disaster, because 
the emergency activity is the first aim, and the registration of the patient is, of course, not done with the usual 
procedure.  Because of the above reasons, all parameters of the metamodel are regressed using outputs from 
DES model.  The advantage of the double exponential function with respect to the single exponential function 
is in the calibration of the constants that are obtained without the need for simulation runs for any patient arrival 
rate.  Simulations are only necessary for the lower bound (base case) and the upper bound (critical case) of the 
arrival rate (Paul et al., 2006).  An example of the shape of this function is given in Figure 4b, where the dots 
are the patient waiting time obtained from simulations with DES model.   
 
 
3. INTERACTION OF TECHNICAL AND ORGANIZATIONAL RESILIENCE 
 
Structural and non–structural damage cause reduction of functionality of the hospital at the organizational level.  
The metamodel is able to take into account the effect of damage on the organizational model by incorporating 
penalty factors.  The penalty factors PFi for each structural or non structural component are given by the linear 
combination of the conditional probability P of having a certain level of damage.  Four levels of damage are 
traditionally considered: P1 slight, P2 moderate, P3 extensive and P4 complete.  The total penalty factor affecting 
each component analyzed is given 
 

 ( ) ( ) ( )1 2 2 3 3 4 40.25 0.50 0.75 1iPF P P P P P P P= ⋅ − + ⋅ − + ⋅ − + ≤  (2.10) 
 
The total penalty factor PFtot affecting all the organizational parameters of the hospital is given by linear 
combination of the individual penalty factors taking into account the cost of each component on the overall cost 
of the building 
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where w1 is the weighting factor of the structural component of the building; PFstr is the penalty factor of the 
structural component of the hospital; PFi is the penalty factors of the non structural components considered and 
n is the number of non structural components. 
 
 
4. CASE STUDY: STATISTICAL HOSPITAL MODEL 
 
The example showed is a statistical hospital model, representative of a typical configuration of a Californian 
hospital (Figure 5).  The parameters of the metamodel are calibrated from the statistical analysis of data 
obtained on a set of simulation runs performed by Yi (2005) and Paul et al. (2006), using a DES model during 
the post earthquake event. Regression equations are obtained for both pre-earthquake and post-earthquake 
waiting times using average daily patient arrival rates calculated from national statistics.  For the case of 
patient inflow to an ED during an earthquake the only data available are those collected during the Northridge 
Earthquake that are the one that will be used in this example.  The sensitivity of resilience to the main 
parameters that characterize the organizational metamodel is investigated. In Figure 6a is keep constant the 
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efficiency (E=900) and the number of operating room (OR=10), while the number of beds is increased.  Plot 
shows that the number of beds does not have a relevant effect on improvement of resilience for this type of 
configuration. Increasing the efficiency E for medium size hospitals does not have a relevant impact either 
(Figure 6b).  On the other hand, Figure 6c shows that for a medium size hospital (B=300) the best way to 
improve the organizational resilience of the hospital is to increase the number of operating rooms OR. The 
weighting factor α used for the qualitative functionality in Eqn. (2.2) is equal to 0.8.   
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Figure 5 Composition of California hospitals  
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Figure 6 Sensitivity to different parameters of the metamodel  

 
During a disaster, a hospital can apply the so called ‘surge in place response’.  It can increase its capability 
(availability of beds and staff) to new patients with a premature discharge of those inpatients whose conditions 
are considered stable, but who would remain hospitalized in normal operational conditions.  It also can adapt 
the existing surge capacity, organizing temporary external shelters.  The discharge function is not an exact 
science, and there is no mathematical formulation however usually 10 – 20 % of operating bed capacity can be 
mobilized within a few hours and the availability of OR can increase of 20 – 30 %.   
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Figure 7 Sensitivity of the Emergency Plan  

 
In Figure 7 the effect of the application of the emergency plan on the values of resilience has been 
investigated.  It is assumed that the emergency plan increases the number of beds of 10 % and the surgery 
capacity (number of OR) of 30%.  Resilience is plot as function of the delay in the time of application of 
the emergency plan, which acts as a sudden increase in the values of the organizational parameters (in this 
case number of beds and number of operating room) with a certain delay from the stroke of the earthquake 
(0, 4, 8 or 16 and 24 hours).  The emergency plan has a benefic effect only in the case of medium and 
large size hospitals, with a medium high surge capacity (10 – 15 OR) as shown in Figure 7c. 
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5. CONCLUDING REMARKS  
 
When a resilient organization is developed, such as a hospital, it is not only “hardened” to withstand disruptions 
from multiple hazards, but it is also more efficient on day-to-day functions.  When an extreme event affects an 
entire region, resilient hospitals will bounce back to functionality rapidly which could improve response of 
entire community.  This paper presents a comprehensive conceptual framework to quantify resilience including 
both technical and organizational aspects.  A double exponential model with parameters estimated from 
regression analysis is used as a substitute of a complex discrete model to describe the transient operations in the 
hospital that are globally represented by the patient “waiting time”.  The effect of facility damage, as well as 
the resources influencing functionality, is also included in the organizational model to allow the evaluation of 
the hospital resilience.  The framework has been applied to a typical hospital facility located in California.   
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