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Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a national center
of excellence in advanced technology applications that is dedicated to the reduction of earthquake
losses nationwide. Headquartered at the State University of New York at Buffalo, the Center was
originally established by the National Science Foundation in 1986, as the National Center for
Earthquake Engineering Research (NCEER). '

Comprising a consortium of researchers from numerous disciplines and institutions throughout
the United States, the Center’s mission is to reduce earthquake losses through research and the
application of advanced technologies that improve engineering, pre-earthquake planning and
post-earthquake recovery strategies. Toward this end, the Center coordinates a nationwide
program of multidisciplinary team research, education and outreach activities.

MCEER’s research is conducted under the sponsorship of two major federal agencies, the
National Science Foundation (NSF) and the Federal Highway Administration (FHWA), and the
State of New York. Significant support is also derived from the Federal Emergency Management
Agency (FEMA), other state governments, academic institutions, foreign governments and
private industry.

The Center’s FHW A-sponsored Highway Project develops retrofit and evaluation methodologies
for existing bridges and other highway structures (including tunnels, retaining structures, slopes,
culverts, and pavements), and improved seismic design criteria and procedures for bridges and
other highway structures. Specifically, tasks are being conducted to:

» assess the vulnerability of highway systems, structures and components;

» develop concepts for retrofitting vulnerable highway structures and components;

» develop improved design and analysis methodologies for bridges, tunnels, and retaining
structures, which include consideration of soil-structure interaction mechanisms and their
influence on structural response;

» review and recommend improved seismic design and performance criteria for new high-
way structures. '

Highway Project research focuses on two distinct areas: the development of improved design
criteria and philosophies for new or future highway construction, and the development of
improved analysis and retrofitting methodologies for existing highway systems and structures.
The research discussed in this report is a result of work conducted under the existing highway
structures project, and was performed within Task 106-F-4.3.1(b), “Field Testing of a Seismically
Isolated Bridge” of that project as shown in the flowchart on the following page.

The overall objective of this task was to develop nonlinear models for use in seismic vulnerability
assessments of isolated bridges. The report describes the development of an optimized procedure
to perform such an assessment. To develop the procedure, the authors first identified the
properties of interest of the seismic isolators, then modeled the hysteretic characteristics of the
bridge-isolator system. An analytical solution for the response of a bilinear SDOF system to
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quick-release excitation was derived. Data from two different quick-release tests were used to test
the procedure. The predicted vs. observed test data were compared and showed good agreement.

Thus, the authors concluded that quick-release field test data could be successsfully used to
extract nonlinear hysteretic properties of seismically isolated bridges.
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ABSTRACT
A time domain system identification method is used to identify the hysteretic properties of lead-
rubber bearings installed in seismically isolated bridge systems. The longitudinal or transverse
motion of the superstructure is idealized as a single degree of freedom (SDOF) system, where the

total damping effect has been divided into two parts.

The most significant component of damping, which is caused by hysteretic behavior, is described
directly by the nonlinear models. The viscous damping component, which is assumed to be

proportional to the velocity of the mass, is described by the damping ratio.

Two theoretical models are used for modeling the force-displacement characteristics of the rubber-

lead bearings. These are the generalized Ramberg-Osgood model and the bilinear model.

A closed form solution for the response of a bilinear SDOF oscillator to quick release excitation was
derived and a step by step integration method is used for computing the displacement, velocity and
acceleration time histories of the nonlinear SDOF system numerically. The displacement and
acceleration time histories of the superstructure observed during quick release tests are compared
with theoretical ones in order to identify the important characteristics of the lead-rubber bearings

from field experiments.

Time histories recorded from field quick-release tests on two bridges are used for the examples
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presented herein. It is shown that this is a simple and efficient method to interpret the data from
quick-release field tests. The essential in-situ hysteretic characteristics of lead-rubber isolation

bearings can be obtained using this method.
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SECTION 1
INTRODUCTION

A notable change in conventional seismic design methods in past years has been the introduction of
the concept of ductility. The main purpose for introducing ductile elements in structures is to absorb
energy, thus avoiding collapse during major earthquakes. These highly yielded structures, however,
may not necessarily be repairable. A challenging task today is to find practical design technologies
which protect both life and structure with a minimum extra cost. Among the efforts toward this goal,

seismic isolation is one of the most promising concepts.

Seismic isolation is a passive seismic control technology which has developed rapidly in recent
years (Buckle et. al., 1990). The goal of reducing earthquake induced forces in isolated structures
is attained by introducing bearings, which are very flexible in the horizontal direction, between the
base of the structure and the foundation. The flexible bearings change the dynamic characteristics
of the structures in three ways. First, the fundamental frequency of the structure is reduced so that
it is much lower than the predominant frequency of the strong ground motion. Second, the flexible
bearings provide a special mode shape in which the distribution of the shear distortions are
concentrated in the bearings rather than distributed throughout the entire structure. The main
structure benefits from this special mode shape by reducing the overall shear forces in it. Third, the
resonant displacement associated with the fundamental isolation mode can be significantly reduced

by introducing a damping mechanism in the bearings.

The motion of higher modes in superstructures may not benefit from the damping of the bearings.
However, according to the linear model proposed by Kelly (1990), the higher modes are “highly
decoupled” from the high frequencies of earthquake ground motions. In bridge engineering, seismic
isolation is becoming an economic and efficient alternative to conventional design in protecting the
columns and superstructures from damage (Mayes, et al., 1992). Some successful examples of the
use of seismic isolation technology have been observed in Japan and the United States during the

Kobe and Northridge earthquakes. (Moehle, 1994, Asher et al., 1997). In the retrofitting process,



the supports are replaced by bearings made with special materials. One type of isolation bearing is
made of laminated rubber having a lead core. The basic characteristic of this type of bearing is that
it has a substantial stiffness in the vertical direction to carry the dead loads and a relatively small

shearing stiffness, which shifts the fundamental period in the structure.

The practice of seismic isolation concepts began in the 1970's in New Zealand (McKay, 1990). Other
work on this concept was conducted in Japan, Italy, France, Greece and China (Buckle et al., 1990,
Kelly, 1986). In the United States, a major factor for limiting the use of this technology was the lack
of a suitable code (Mayes, et al. 1992). As a key step, in 1991, AASHTO published a guide
specification for seismic isolation design (AASHTO, 1991). In the AASHTO design procedure, the
energy dissipation of the isolation system is expressed in terms of an equivalent viscous damping,
and the stiffness was expressed as an effective linear stiffness. The dynamic behavior of seismically
isolated structures is controlled by the hysteretic properties of the isolators, and is strongly
nonlinear. Starting in 1976 at the Earthquake Engineering Research Center at University of
California at Berkeley, a series of the theoretical and laboratory studies for the force-displacement

behavior of elastomeric rubber bearing were carried out (Kelly, 1981, 1987, Chen, et al, 1993).

The hysteretic characteristics of lead-rubber isolators have often been represented by a bilinear
model for the sake of simplicity. However, laboratory tests have shown that for strains of less than
about 100%, when the strain increases, the shear stiffness decreases in a smooth continuous manner;
but at larger strains, the shear stiffness begins to increase again. For the purposes of quick-release
testing, it is not anticipated that strains much greater than 100% will be required. In this strain range,
the generalized Ramberg-Osgood model proposed by Desai (1976) was found to be a more accurate
way of representing the hysteretic behavior of lead-rubber bearings. The generalized Ramberg-
Osgood model allows for a finite stiffness for large strains, while the backbone curve of the standard
Ramberg-Osgood model has a zero stiffness at large strains. Another convenient feature of the
generalized Ramberg-Osgood model is the fact that it can also be used to represent a bilinear
hysteretic model by choosing the power parameter to be large. Thus, the same basic hysteretic rule

can be used for both models within a computer program. It should also be noted that designers can



construct an equivalent bilinear model to describe the bearing behavior once the generalized

Ramberg-Osgood parameters have been defined for the particular case in question.

The dynamic characteristics of the lead-rubber bearings depend on many factors such as temperature,
aging and loads on the bearings. In the laboratory, only individual bearings can be tested. Dynamic
tests are difficult because of their large size. Different types of rubber bearings may be installed on
one bridge. The dynamic behavior of a bridge in-situ will be determined by the combined
characteristics of all the bearings installed in the bridge. Full scale quick-release tests provide a
practical way to obtain the dynamic properties of the entire bearing assemblage. The nonlinear
response can be obtained by pulling the structure past the yielding point. Since 1990, several full
scale quick-release tests on the highway bridges have been conducted in the United States (Douglas,
et. al., 1990, Gilani, et. al., 1995, and Wendichansky, 1996). The time histories from quick release
tests contain much information about the dynamic properties of the superstructures, bearings,
columns, and foundations. For seismically isolated bridges, however, the major interest is to obtain

the nonlinear properties of the isolators.

The important question is how to extract the physical parameters of the rubber bearings from the
quick-release time histories. For this purpose, we propose an iterative optimization procedure to
obtain the optimal parameters of the generalized Ramberg-Osgood model as well as the damping
ratio by fitting the calculated time histories to those obtained from the quick-release tests. We
assume that the motion of superstructure can be simulated by a single degree freedom (SDOF)
system. In the quick-release test, the bridge is usually pulled and then released in either the
longitudinal or the transverse direction. Several conditions are required for the SDOF model to be
a valid assumption. The twisting component of motion of the superstructure should be negligible.
The data should be dominated by the motion of the fundamental mode, or at least, the motion for
the fundamental mode must be separable from the higher mode motions. For purposes of identifying

the properties of the isolators, the flexural deformation of the substructure should be small.

In modeling the hysteretic characteristics of the bridge-isolator system, two models were used. The



generalized Ramberg-Osgood model was found to be a flexible and adequate model for representing
the hysteretic characteristics of the rubber-lead bearings if the strains in the bearings are not larger
than 100%. On the other hand, the simple bilinear model is a very useful equivalent model for
analysis and design purposes. Using a step by step numerical method, the nonlinear response of the
SDOF system was computed using the generalized Ramberg-Osgood hysteretic rules. For numerical
purposes, the generalized Ramberg-Osgood formulation can be made to solve the bilinear hysteretic
case with a suitable adjustment of the Ramberg-Osgood parameters. To find the hysteretic properties
of a seismically isolated bridge, an objective function was defined as the sum of the squares of the
differences between the computed time histories and the observed data, where both the displacement
and the acceleration time histories were used in the objective function. A direct search algorithm
proposed by Hooke and Jeeves (Hooke and Jeeves, 1961) was used to find the optimal solution,
which is defined as the solution which causes the objective function to have a global minimum.
Experience has shown that this is a simple, reasonably efficient method to minimize the objective

function (Vrontinos, 1994).

An analytical solution for the response of the bilinear SDOF system to quick-release excitation was
also derived. This solution is helpful for a better understanding of the behavior of a bilinear SDOF
oscillator. For example, the time at which the first yield point is reached after quick release, and the
time at which the oscillator returns to the initial stiffness can be calculated theoretically. It can also
be shown that significant nonlinear behavior such as the post yielding stiffness and the yield point
are contained in the first cycle of the time histories. These theoretical times can guide us in choosing
the analysis time window. In quick-release tests, it is desirable to produce as small a permanent
displacement as possible. Another useful result is that the initial release displacement required to
cause a zero permanent displacement can be found. This is a closed form equation for the case when
the damping ratio is zero. For the nonzero damping case, this information can only be obtained from
a numerical solution. It was found that the release displacement which causes a zero permanent
displacement is sensitive to the damping ratio. Due to the damping effect, larger release
displacements are required to cause a zero final displacement than the non-damping case. The

analytical solution can also be used to check the correctness of the computer code for the numerical



method.

In order to consider practical examples, two data sets from quick-release field tests were used to find
the optimal parameters representing the hysteretic characteristics of rubber-lead bearings. One set
is from the full scale quick-release tests carried out by the University of California at Berkeley
(Gilani et al., 1995), and another is the quick-release test conducted by the State University of New
York at Buffalo (Wendichansky, 1996). The hysteretic curves predicted by the optimized model
parameters using this field data were compared directly with the load-displacement data obtained
from laboratory tests on the same bearings. It was found that there was no significant disagreement
between these results. The result indicates that the optimization procedure proposed in this report

is a practical method for analyzing the data from quick-release tests.






SECTION 2
METHODOLOGY

There are two different ways to model the quick-release response of seismically isolated bridges.
One is to establish a detailed finite element multiple degree of freedom model, from which the
vibration of the entire system can be studied. This detailed model would include the rigid body
motion as well as the detailed behavior of the individual structural elements. Another way is to
utilize the features of the seismically isolated bridge to establish a simple SDOF model. One of the
important characteristics of seismically isolated bridges is that the shearing stiffness of the lead-
rubber bearings is significantly lower than the superstructure and columns. In quick release tests, the
major deformation occurs in the lead-rubber bearings only. The superstructure behaves almost as a
rigid body. For the quick-release test, the bridge is usually pulled and then released in either the
longitudinal or transverse direction. By careful design of the load application details, the twisting
component of the motion can be reduced to a negligible level. Thus, a single degree of freedom
(SDOF) model is suitable for this case. Based on a SDOF model, we propose a system identification
method for identifying the hysteretic properties of lead-rubber bearings installed in seismically

isolated bridges.

Typically, the displacement time histories for the isolated superstructure obtained in quick-release
tests contains two parts. The first cycle, which is dominated by the nonlinear response is the first
part. The second part consists of the decaying damped elastic oscillations. The decay of the elastic
oscillations implies a viscous damping mechanism. Thus, we assume that the total damping is caused
by both hysteretic and viscous damping. The hysteretic damping is described directly by the hysteric
force-displacement model. The viscous damping is represented by introducing the velocity

proportional term in the equation of motion for the SDOF model.

The displacement time history is usually dominated by fundamental mode. The experimental
acceleration time histories, however, may contain the motion of the higher modes. The high

frequency motions in the acceleration time histories are excited by the quick-release system. For



longitudinal quick-release tests, the accelerogram may have a large component associated with the
signal having a period equal to the time it takes for a wave to travel from one end of the
superstructure and reflect back. These high frequency signals might be reduced by designing a
quieter release system. For superstructures released transversely, the frequency related to the wave
traveling across the width of the deck is too high to be of concern. However, the mode related to the
flexural vibration of the superstructure may be dominant in the acceleration time histories. To reduce
the motion of the flexural vibration mode, it is better to pull and release the superstructure at multiple
points to keep the static release deformation shape as close to the rigid body deformation shape as
possible. Our interest is to extract the information for the hysteretic physical properties of the
isolators which is contained in the fundamental mode only. The higher mode properties, which
contain the other dynamic properties of the superstructure, are of no interest for our purpose. Thus,
for our study, a SDOF model is a simple and feasible model. The displacement time histories are
ideal data for this purpose, the acceleration time histories are more likely to be contaminated by
higher modes. A multiple degree of freedom model is required to accurately describe the complete
acceleration time histories. However, because the frequencies of the higher modes are usually well
separated from the fundamental mode, the high frequency signal contained in the accelerograms can
be removed by using a low pass filter. Therefore, the filtered acceleration time histories are still

useful for our purpose.



SECTION 3

ANALYTICAL SOLUTION FOR SDOF SYSTEM
WITH A BILINEAR HYSTERETIC SPRING

3.1 General

An analytical solution for the quick-release nonlinear dynamic problem is desirable for checking the
computer code used in the numerical method. The closed-form solution for the bilinear oscillator is
also helpful to better understand the dynamic behavior of bilinear isolators. In the optimization
problem, it also helps to reduce the time of computation. In this report, we provide an analytical
solution for quick-release response of the SDOF system having a bilinear hysteretic spring. The
typical hysteretic curve for the quick-release response of the bilinear model is shown in figure 3-1.
The whole SDOF response for a bilinear model can be obtained by solving a sequence of linear
problems. For simplicity, we assume that the total response curve is made up by three branches:
elastic branch (segment 3-6), yielding branch (segment 6-8), and elastic tail (8-11). Unless the
release displacement is very large, where five or more branches may be required to describe the
whole response, the response of quick-release tests usually contain only these three branches. The

general form of the equation of motion can be written as:

Mi(e) + Cv(t) +K(2) v(2) = p() (3-1)

_ K (branch 3-6 and 8-11.)
k@ = {K 4 (branch 6-8) (3-2)

-F(-ap+a+B-1) (3-6)
p = F(1-p)  (6-8) (3-3)
(Fy+Kl.v8)(1 -B) (8-11)

Here M, C, represent the mass and damping coefficient. K(f)and p(¢)are stiffness and equivalent

load. The value of K(#) and p(f) vary from branch to branch where F , is the yielding force, a andf3
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Force

a=Fy-Kd(Dm-Dy)
b=Fy+Kd(Dm-Dy)
c=a+Kd*0

Displacement

Figure 3-1 Definition of the Bilinear Model
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are two dimensionless parameter defined by:

_ Am

“'Xy (3-4)
_ Kd

B—? (3-5)

In the equations above, A is the release displacement, and Ay the yield displacement. K; andK,
are the initial and post yield stiffness respectively. The typical values of a for field tests may be

between 2 and 20 and the range of values J for typical lead-rubber bearings may be between 0.015
and 0.35.

3.2 Analytical Solution for Zero Damping

When viscus damping is zero, the solutions for displacement and velocity time histories are:

A [(1+aB-B)coswr~(1 +aB-B-0)] (O<t<t,)
W(t) = Ay[—2¢ﬁsinw\/ﬁ(r—t6)+(a—%—l)cosco\/B(t—tﬁ)+ 1;3 ] (t<tsty) (3-6)
d+(vg-d)cosw(t-ty) (1>1,)
—Aym(l +0f3 -P) sinw? (O<z<ty)
W) - —\/BcoAy[Z\/aTlcosm\/ﬁ(t—%H(a—%—l)sinm\/ﬁ(t—t(,)] (t,<1sty) 3-7)
-0(vg-d)sinw(t-ty) (1>t5)

11



d is the permanent displacement:

4=8, (-1 -fP@ 203 2B -0 1] (3-8)

vg 1s the displacement at point 8 (See figure 3-1):

A
b= (1B 203 2B o)1) (3-9)

t, and t, correspond to the times at which branch 6-8 and 8-11 are reached respectively. They are

determined from:

Ba-1)-1
te= warCCOS[B(a 1)+1] (3-10)
2By

t+ t <_+1

" m‘/_ﬁarcan[l “Bla _1)] (if a B )
t8=w (3-11)

t, + ——arctan([ 2Byo ]+ T (if a>l+1)
| wﬁ 1B D off p

For the zero damping case, equations (3-6) and (3-7) represent the quick-release response of the
bilinear oscillator if the permanent displacement d is the positive. When a is large enough to cause
a negative permanent displacement, more than three branches are required to represent the total

response.

12



3.3 Analytical Solution for the Damped Case

The solution for the displacement and velocity response:

Ay[B(a— D+1]e 'C“”(C—msincoDﬁcostt) + Ay(a+B-aB -1) (O<z<ty)
®p
ot A(1-
v(t)={e " "[Asino(t-1,) +Bcosw, (t-)] + (AP (te<<ty) (3-12)
d+(vg-de D Loing (1-1,) +cosw(t-1;)] (1>1y)
\ O)D
w? :
-A—I[B(a-1)+1]e“sinw,r  (O<t<ty)
®p ,
-Co(t-tg .
W1~ e ){A[—Z;oasm(oE(t—tﬁ)+0)EcoswE(t—t6)] (3-13)

-Blwgsino pE=1) -Cocosw(t-1)]}  (t<t< te)

2
—(vg—d)mD[(fo—"’) Hlsinoy(t-t) (1)
D

In equations (3-12) and (3-13), { is the damping ratio which is defined by:

C=—C— 3-14
2M® (3-14)

o and w,, are the elastic circular frequencies defined by:

K.
0): _l (3'15)
M

o, =0y1-¢ (3-16)
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o is the circular frequency corresponding to the yield branch:

=oyB-¢ (3-17)
t, andzy are determined from:
totg, (. _Bla-1)-1
e ( sin® . +CcosW,t,) = —————— .
\/—1-_C2 D'6 D%6 B(a-1)+1 (3-18)
o B | A -L{oB
te+ —arctan( £ ¢ (i i—c— >0)
O (oA + o, B (oA + o, B
fg =1 (3-19)
® {oB ® oB
I +—arctan( pA ¢ )+ — T (iff ———— £ ¢ <0)
k O (wA+wB oL (oA +o B
A and B are coefficients:
A Lo A w? .
= YC -1- Y__[B(a-1)+1]e C(’)t6sin(x)Dt6 (3-20)
Wp®p,
1
B=AyE[B(a—l)—l] (3-21)

d is the permanent displacement:

14



d=(A, +vg)(1-P) (3-22)

vg 1 the displacement at the point 8 which is determined from:

by = 0519 A(1-B)

" [Asinw (7 -1,) +Bcosm (1, -1 )] + (3-23)

When conducting quick-release tests on lead-rubber bearings systems it is desirable to release the
deformed system such that the final permanent displacement d is zero. We define o, to be that value
of a which results in a zero permanent displacement. By equating the energy stored under the
hysteretic loop in figure 3-1 defined by the points 3, 4 and 5 with the energy under the loop defined

by points 5, 6, 8 and 9 a closed form solution for a, for the zero damped case can be derived:

1]
1l

-3 (3-24)

[=]
= |

For the damped case, we used a numerical method to find o,. Figure 3-2 shows the relations
between o, and 8. We can see that when B<0.1, as { decreases, then o, increases rapidly. Thus a,

is very sensitive to the damping ratio when $<0.1.

There are three limiting cases for equations (3-12) and (3-13). The first case is when the response can
not reach the second branch. This is possible when  is large and a is small. Whena is smaller than
the right hand side of (3-25), then the quick-release response is confined entirely on branch 3-6 in
figure 3-1. This means that the viscous damping ratio is so large that the oscillator can not get to

branch 6-8. The condition for which the response requires three or more branches is:
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1 2
>—PpB-1+—m
a B(B )

T (3-25)
l+e V 1-¢

The second special case is when o is so large that more than three branches of the solution are
required. In order to insure that no more than 3 branches (equations (3-12) and (3-13) ) of the
solution are required, vy must satisfy equation (3-26):
1 2
vg2 -[1 +E(—_—§_ -DIA,

T (3-26)
l1+e V 1-¢

The third limiting case for solutions (3-12) and (3-13) is that the damping ratio {, which is defined
by (3-14), should be smaller than the critical damping ratio of 1. For bilinear model, the critical
damping is governed by the damping on yield branch (see (3-17) ). For example, with a value of

B=0.1, the critical damping ratio { would be about 30% on this branch of the hysteretic loop.

Finally it should be noted that the dynamic response of the bilinear hysteretic oscillator has a varying
frequency due to the nonlinear nature of the problem. We define the nominal natural frequency of the
system as the natural frequency (3-15) of the system during the elastic vibrations that take place on
branch 8-11 in figure 3-1. From equation (3-15) it can be seen that in order to back calculate the initial
stiffness K, from the natural frequency, the mass M must be known. Thus, in order to apply this
methodology, an accurate estimate of the dynamic mass must be made from the construction

drawings.
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SECTION 4

A GENERALIZED RAMBERG-0OSGOOD MODEL
AND ITS IMPLIED BILINEAR MODEL

4.1 Generalized Ramberg-Osgood Model
A generalized Ramberg-Osgood model proposed by Desai et al. (1976), which is found to be more
flexible than the bilinear model, is utilized to simulate the hysteretic curves for the lead-rubber type

isolators. The force-displacement relation of the Ramberg-Osgood model is described by:

F£:AA[n+__1 -] (Backbone)
o o a +|A|Y)7 4-1)
A,
F-F, A-A, 1
= [n+ ] (Other Branches)
F, A A-A, L (4-2)
(1 +Hl——=I")"

0

where F and A are load and displacement respectively. F, and A, represent the coordinates of the
most recent point on the hysteretic loop where the load changes direction (i.e. from increasing to
decreasing). F, and A, are the characteristic yield load and characteristic yield displacement
respectively. y is an exponent parameter. 1 is a parameter which is related to the final stiffness. The
Generalized Ramberg-Osgood model is defined by these four parameters, F,, A,, v and n. The
Generalized Ramberg-Osgood model becomes the standard Ramberg-Osgood model (Hibbeller,
1992) when 1) is equal zero. When 7 is greater than zero, and when vy is large, the model approximates
the bilinear model very well. When 1 is equal to zero, and when vy is large, the model approximates

the elasto-plastic model.
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4.2 Implied Bilinear Model

Figure 4-1 shows curves of the Generalized Ramberg-Osgood model having different y and the
implied bilinear model. The implied bilinear model is defined as the backbone of the Ramberg-
Osgood hysteretic loop obtained when yapproaches infinity. We see that when vy is large, the
Generalized Ramberg-Osgood model is a very close approximation of the bilinear model. The initial
stiffness K, post yielding stiffnessK,, yield displacement Ay and yield force Fy of the implied

bilinear model are related to the parameters F;;, A, and n as defined below:

By=2, (43)
k-0
i_Ky' (4-4)
F-_ b (4-5)
° (1)
_ B
15 (4-6)
K=K )

Figure 4-2 shows the load-deformation relations for the generalized Ramberg-Osgood model and it’s

implied bilinear model. Figure 4-3 shows the backbone branch of laboratory test data obtained at the
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State University of New York at Buffalo (Wendichansky, 1996) for a lead-rubber isolator, and the
generalized Ramberg-Osgood model obtained by fitting the data in the least squares sense. We can
see that the generalized Ramberg-Osgood model fits the hysteretic curve of the lead-rubber isolator
better than the bilinear model. Thus the generalized Ramberg-Osgood model is a more accurate model

than the bilinear model for our purpose.
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SECTION 5

IDENTIFICATION OF DYNAMIC PROPERTIES OF
SEISMICALLY ISOLATED BRIDGES FROM
THE QUICK-RELEASE TIME HISTORIES

5.1 Modeling for the Optimization Problem

The objective function for our problem is defined as follows:

f: () cag = () g 1° XN: V(D car = V(D g1
W(0LB.7,0,0) =W + (1-w)—— (5-1)
)y V(ti)ibs V(ti)zzrbs
i=1 i=1
where:
V() ol = Calculated acceleration time history.
V() s = Observed acceleration time history.
V() car = Calculated displacement time history.
V() s = Observed displacement time history.
N = Number of sample points.
w = Weighting parameter between zero and one.

The values of the calculated acceleration and displacement time histories are a function of the model
parameters o,f,y,®,{. Our goal is to find a set of parameters o, Bj,yj, o;, Cj which make the

objective function a global minimum:

Vonin = W(0,B,,7,,0,,C) (5-2)

The direct search algorithm proposed by Hooke and Jeeves (Hooke and Jeeves, 1961) was used to
find the optimal parameters o, Bj,yj,(oj , Cj. The Hooke and Jeeves’s search is started at some initial
point x,=x(0,,B,,7Y,,®,,5,) - As is the case with most optimization problems, it is advantageous to

choose the initial point in the space as close to the true solution as possible.

25



5.2 Numerical Procedure

A computer program was generated to solve for the parameters which minimize the objective function
y . This program optimizes the parameters by comparing the calculated time histories with those
which were obtained from full scale quick-release tests. The generalized Ramberg-Osgood and
bilinear models are used for calculating the theoretical response, since the bilinear model is a special
case for the Ramberg-Osgood model. Its solution was obtained by assigning a large number to the
parameter y in the generalized Ramberg-Osgood model. We assume that the mass of the SDOF can
be independently determined and the initial displacement can be measured directly during the test.
For the generalized Ramberg-Osgood model, there are five independent variables to be optimized.
(a,B,y,0,8) . For the bilinear model, there are only four variables (a,,®,() because vyis fixed at a large
number. Computational experience has shown that y =20 is large enough to simulate the bilinear
model. The three parameters o, B, ® are connected to the five physical parameters A , Ay, K.K, M

through equations (3-4), (3-5) and (3-15).

The total damping effects of have been separated into two parts. The most significant damping in the
system is caused by the hysteretic behavior of the isolators. The viscus damping, which causes the
amplitude decay in the latter part of the time histories, has been defined by an independent parameter
. To determine all five physical parameters, we must know any two of them in advance. We assume
the mass M and the initial displacement A can be determined independently. In the solution
proposed here, we use both the observed accelerogram and the observed displacement time history

to define the objective function in order to find the optimized solution.

The objective function we used is the summation of the displacement term and the acceleration term
as shown in equation (5-1). Each term is defined by the sum of the square of differences between the
calculated and observed time histories. In the case where the displacement time history is not
available, we then substitute the displacement term with the square of differences between the
calculated and observed permanent displacement weighted by the number of samples as mentioned
above. We have found that the displacement term is necessary to fit the calculated permanent offset

to the observed one. A step-by-step integration method (Clough and Penzien, 1976) is used to
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calculate the theoretical time histories.

An example using the method is shown in figure 5-1. In this case we used a fictitious problem. First
we generated a solution to a nonlinear SDOF system using the generalized Ramberg-Osgood
hysteretic propérties shown in the middle line of the table. In this case, the o, and © terms are
derived from the implied backbone bilinear hysteretic curve in figure 4-3 associated with the
Ramberg-Osgood model having a power term v =2.5 which was chosen for this example. We then
used the optimization procedure to find the solution indicated in the third line of the table in figure
5-1. The initial values used to begin the optimization process are shown in line one of the table. The
weighting factor w used in the objective function (4-1) was 0.5. The optimized solution is plotted
as the solid line and the data to which it is being fit is the dashed line. The agreement between the
calculated results and the “fictitious” data is excellent as can be seen in the top two subfigures. The
Ramberg-Osgood force-displacement hysteretic curve that was found from the optimization process

is shown in the lower subfigure of figure 5-1.

We also conducted a parameter study to see if the algorithm is robust for the range of parameters
representing real isolation bearings. Clear limiting cases are represented by the 3 = 1 case which means
that the system always remains elastic, and the other limiting case of  =0. The =0 case represents
the elasto-plastic case or the case of a bearing with infinite initial stiffness. For these cases, the
algorithm we used breaks down. These are not serious limitations for the practical problem of real
bridges isolated with lead-rubber bearings. For all cases we tried where 0.025<<0.4, 1.5<0<40
the algorithm is robust and solution can be found. A total of 400 cases were studied in this parameter

investigation.
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5.3  Parameter Identification Using Data from Full Scale Quick-Release Tests
Conducted by University of California at Berkeley

In 1995 a full scale quick-release field tests for a seismically isolated bridge was carried out by the

University of California at Berkeley. A detailed report was published by Gilani and others (Gilani

et. al. 1995). The bridge tested is a four span seismically isolated viaduct in Walnut Creek, California.

The deck system is isolated from the bents by 15 twenty-five cm (10 inch) high lead-rubber bearings.

A sequence of field tests including individual column quick-release tests, forced vibration tests and
longitudinal quick-release tests of viaduct were conducted. Figure 5-2 shows the schematic of the
viaduct deck. Figure 5-3 shows the acceleration and displacement time histories recorded on the
viaduct during the quick release test which we used to estimate the hysteretic characteristics of the
total isolation bearing system. The top curve is original acceleration time history which is dominated
by a high frequency signal which is the longitudinal vibration mode of the superstructure (Gilani et.
Al., 1995). A second order low-pass Butterworth filter was utilized to remove much of the high
frequency contents. The phase shift caused by the filter processing was minimized by filtering the
acceleration time history two times, once in the forward direction once in the backward direction.
The middle curve in figure 5-3 shows the filtered acceleration time history. Comparing to the top
curve in figure 5-3 we can see that the high frequency signal can be removed significantly by the low

pass filter. The bottom curve in figure 5-3 is the displacement time history recorded during the test.

Figure 5-4 shows the optimization result using the generalized Ramberg-Osgood model, and figure
5-5 shows the optimization result using the bilinear model. By comparing the parameters obtained
by both models in figures 5-4 and 5-5 we see that the bilinear and the generalized Ramberg-Osgood
model give similar results. In figure 5-6, the triangle symbols show the experimental load deflection
curve measured by Gilani et al. (1995) during the loading sequence for their structure. The dashed
lines show the bilinear load deflection that Gilani et al. (1995) estimated from laboratory tests they
conducted on the isolation bearings prior to their installation in the bridge. This curve was obtained
by summing the load deflection curves of all the bearings installed in the bridge, and thus represents

the total stiffness of the isolation system. The solid line bilinear force deflection relation shown in the
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figure represents the result we obtained by using the bilinear hysteretic model in our optimization
calculations. This was generated from the solution shown in figure 5-5. Finally, the dot dashed curve
represents the backbone generalized Ramberg-Osgood curve we generated from the optimization

procedure, which was obtained from the results shown in figure 5-4.

The range of the viscus damping ratio we estimate for this problem is 5.6% to 8.4% depending upon
whether we use the Ramberg-Osgood model or the bilinear hysteretic model. Gilani and others (1995)
determined that viscus damping ratio was 7% in good agreement with our result. We find that the
natural frequency of the system in the elastic regime to be between 1.74 Hz and 1.97 Hz as
determined by the bilinear and Ramberg-Osgood models respectively. It should be noted that the
estimate of natural frequencies obtained from the bilinear model is probably more accurate than that
from the Ramberg-Osgood Model. This is so because the Ramberg-Osgood natural frequency is that
computed from the initial slope of the force deflection curve, while the bilinear model generate an
“average” straight line initial slope from which the natural frequency is calculated. If one computes
the natural frequency in the “elastic tail” of the Ramberg-osgood computation one finds that the
natural frequency is 1.8 Hz which is smaller than the 1.91 Hz estimated from the initial stage. And

it is in better agreement with the 1.74 Hz estimated from the bilinear model.

TABLE 5-1 Summary of the Optimization Results Using
UC Berkeley’s Quick-Release Data

Total Final Ductility | Stiffness | Power Elastic Viscous
Models | Mass Disp. Ratio Ratio Factor | Frequency | Damping
(Ton) (cm) () (1) ) (0/2m, Hz) (©)
Bilinear | 1723.6 2.14 14.71 0.13 50 1.74 8.4%
(fixed)
amberg-| 1723.6 2.14 14.49 0.08 1.08 1.91 5.6%
Osgood

Finally, it should be noted that our results underestimate the experimental field result for the force

deflection curve in figure 5-6. It is our opinion that this is due to the fact that the hydraulic jack
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pressure dropped from 50 MPa to 35 MPa during the 30-40 minutes proceeding the time when the
structure was quick-released. This allowed the strain energy stored in the bearings to decay just prior
to the quick-release. The optimization results for both bilinear model and Ramberg-Osgood model

are summarized in Table 5-1.

5.4 Parameter Identification Using Data from State University of New York at Buffalo

Another quick-release field test was carried out in 1994 at the National Center for Earthquake
Engineering at the State University of New York at Buffalo. A detailed description for this test is
given by Wendichansky (1995, 1996). The tests were carried out on a pair of seismically isolated
highway bridges (one southbound and one northbound) over Cazenovia Creek in New York State.
Both bridges are typical three span slab on girder bridges with a small skew angle of about 10
degrees. A series of different tests were conducted on the bridges. As an example, we selected the
time histories recorded from a quick-release test on southbound bridge in the transverse direction.
Figure 5-7 shows the bridge elevation and section and the instrumentation locations for the data used
in our optimization. Figures 5-8 through 5-9 show the displacement and acceleration time histories
measured at the piers at the points shown in figure 5-7. These records contain a small amount of
twisting of the deck. We reduced the effect of the twisting component by averaging the time histories
measured on the north and south piers. Figure 5-10 shows the averaged acceleration and displacement
time histories respectively. Strictly speaking, the superposition method is not valid for a nonlinear
problem, but we used the averaging process because the twisting component is small compared to the

transverse motion.

Two different types of bearings were installed on the bridge. Rubber bearings having low energy
dissipation characteristics were installed over the two piers while high damping lead-rubber bearings
were installed at the abutments. By using the technique presented in herein, only the hysteretic
properties of the total isolation system consisting of all the bearings can be obtained. Figure 5-11
shows the optimization results using the generalized Ramberg-Osgood model. Figure 5-12 shows the

optimization results using bilinear model. In both cases we used the averaged acceleration and the

36



Displacement Observation Point Acceleration okservation Point

1478iy '

—

i

~—3581mm

'——18190 MM | 26210 mm | 16843 mm——‘
|

—
]

] w36XI50 Int. Girders N S Deck Thickness: 230 mm.

7980 mm 7720 mm

Sail_Level

U U U

North Abutment North Pier South Pier South Abutment

Figure 5-7 Plan and Side Views of Cazenovia Creek Bridge in New York State

37



(9)
0 0.1
o...,.,..J....,..'
i

-0.1

Acceleration Recorded at the North Pier (AP9)

2 4 6

Time (sec)

-2

Displacement Recorded at the North Pier (P7)

1 " . . 1

0 2 4 6

Time (sec)

Figure 5-8 Acceleration and Displacement Time Histories Measured at the North Pier

38



0.1

Tr T T

CK=)
~ =
3
ok
1t
[ Acceleration Recorded at the South Pier (AP16)
C " 1 1 1 n 1
0] 2 4 6
Time (sec)
~N
~N L
|
- Displacement Recorded at the South Pier (P14)
— l A l A #
0 2 4 6
Time (sec)

Figure 5-9 Acceleration and Displacement Time Histories Measured at the South Pier

39



(9)

O1ll'llll

(9

—
o

0.1 -0.1
TTT T T

-0.1
LI I L

3

Averaged Acceleration (AP9+AP16)/2
Unfiltered
L L L l A '

2

4 6

(sec)

Averaged Acceleration (AP9+AP16)/2
Low—pass Butterworth Filter. 3db point at 4 Hz
1 | . | 1 |
0 2 4 6

(sec)

- Averaged Displacement (P7+P14)/2
' L A ' A l
2

4 6

(sec)

Figure 5-10 Averaged Time Histories for the North and South Piers

40



Py

Z ! L ' _ _— Observed

} Q| Optimized i
o

N — Iteration=350

£ -~ W= .50

L

c O

.9

©

5 o |\ o B Y W ¢

g 9 Initial: 10.00 .10 2.00 10.00 .050 -

o |

<

Opﬁimized: (-40 .16 1.34 11l73 .067

ﬁ'r | | | |
N\
£
Em -
-+
S o
£
()]
O
- 4
Q
[2]
5 o -
| 1 | ]
0 1 2 3 4
Time (sec)
— ! T ]
)
23r :
N’
o ©F -
2 0
sof 1
T"# 1 L]
0 5 10

Displacement (cm)

Figure 5-11 Optimization Results Using the Generalized Ramberg-Osgood Model and the
Quick-Release Testing Data from State University of New York at Buffalo

41



@ - ! ' ' _ _— OBserved

o o Optimized -
N — lteration=272

£ 7\ W= .50

3}

N

c o

.0

© /

5 o |\ o B 04 w ¢
g °© Initial: 10.00 .08 50.00 10.00 1.000 -
o | Op?iimized: ?.31 .21 50.00 10.85 .082
< ] I

< F ] | 1 | -
N\
£
Em 4
)

S o
£
()
(8]
O - n
Q.
2
8 o -
| | | |
0 1 2 3 4
Time (sec)

- [ T T
> 0L -
2 o
N
o ©F -
S
2 QT -

T h . -

0 5 10

Displacement (cm)

Figure 5-12 Optimization Results Using Bilinear Model and the Quick-Release Testing
Data from State University of New York at Buffalo

42



displacement time histories as showing in figure 5-10. The averaged acceleration time history used
in both case was filtered two times, once in the forward direction and once in the reverse direction
using a second order low pass Butterworth Filter. The weighting factor w in the objective function
(4-1) was taken to be 0.5 for both cases. Due to the twisting motion and the flexural deformation of
the superstructure, the acceleration time history does not represent a single degree of freedom
response at the beginning of the record. The twisting component of the superstructure can be seen by
calculating the difference of the acceleration and displacement time histories measured at the north
and south piers. It was found that the twisting motion is concentrated in the first one second of the
signal and dies down rapidly thereafter. In the first second of the displacement record, the amplitudes
of the twisting component of is about two percent of the amplitude of the transverse component. In
this same initial time interval, the amplitudes of twisting component of the acceleration time history
is about 25 percent of the transverse component. Therefore the first 1 second of accelerogram was
ignored during the calculation of objective function (4-1) to remove the contamination by the twisting
component. In figures 5-11 and 5-12 the optimized solution can be seen to fit the displacement and

acceleration time history quite well except at the initial part of the acceleration record.

In the table in figure 5-11 the numerical values of the generalized Ramberg-Osgood model which
were obtain are listed. The initial release displacement was 7.4 times the nominal yield displacement
of the implied bilinear model associated with the Ramberg-Osgood model. The stiffness K, was
found to be 16% of K, and the natural frequency of the elastic vibrations was 1.86 Hz. This compares
reasonably with (1.96 Hz) found by Wendichansky (1996) using the Fourier spectrum of the elastic
portion of the acceleration time histories. The viscous damping ratio we found were 8.2% for bilinear
model and 6.7% for Ramberg-Osgood model. Using the logarithm decrement method. Wendichansky
(1996) found the average value of the damping ratio for the third and fourth cycles of the
displacement time histories at the north and south abutment to be 8%, which compares well with our

result for the bilinear model. The optimization results are summarized in Table 5-2.

In Table 5-2, the total mass was estimated by calculating the weight of steel girders and deck. The

permanent displacement was obtained by averaging the residual displacements recorded at the north

43



and south piers which was given by Wendichansky (Table 2-IX, Wendichansky, 1996). We have
found that the permanent displacement is a very important value for our optimization method. The

power factor for bilinear model was fixed at 50.

TABLE 5-2 Summary of the Optimization Results
Using NCEER Quick-Release Testing Data

Total Final Ductility | Stiffness | Power Elastic Viscous
Models | Mass Disp. Ratio Ratio Factor | Frequency | Damping
(Ton) (cm) (0) B ) (w/27, Hz) (9
Bilinear | 689 0.406 8.31 0.21 50 1.72 8.2%
(fixed)
amberg-| 689 0.406 7.4 0.16 1.34 1.86 6.7%
Osgood

The bottom subfigure of figure 5-11 shows the load- displacement curve for the generalized Ramberg-
Osgood model defined by the parameters given in the table in the figure 5-11. Figure 5-13 shows the
total force displacement relationship constructed from laboratory test data (Wendichansky, 1996)
obtained for the individual bearings prior to their installation in the bridge. To construct the curve
represented by the solid line in the figure we summed the hysteretic loops obtained from these
laboratory tests for both types of bearings which were installed in the bridge to generate the composite
hysteretic loop shown in figure 5-13. We then generated the dashed line hysteretic loop from the
model we obtained in figure 5-11 using the actual field test data. The agreement between the two is

good.
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SECTION 6

CONCLUSIONS

Based upon the two examples presented in this report, we have shown that quick-release field test
data can be used to accurately extract the nonlinear hysteretic properties of seismically isolated
bridges by using nonlinear SDOF models. Quick-release field test data was successfully used in
conjunction with an optimization algorithm discussed in the report to identify the in-situ hysteretic
properties of the isolated bridge system as well as the viscous damping coefficient and the

fundamental frequency of the system during the elastic part of the response regime.

In order to implement the method, the dynamic mass of the system must be obtained by independent
means from the construction drawings and field observations. In addition, both the acceleration and
displacement time history responses must be measured. The high frequency content of the

accelerogram contributed by the higher modes can be filtered out using a lowpass filter.

The generalized Ramberg-Osgood hysteretic rule was found to be an effective efficient nonlinear
constitutive relationship for the purpose of investigating the SDOF behavior of bridges isolated with
combinations of rubber and lead-rubber bearings. It is convenient because either the generalized
Ramberg-Osgood rule or the bilinear hysteretic rule can be chosen for use in the analytical model by
simply changing the power parameter of the rule. The final slope of the implied bilinear rule is taken
to be the same as that of the Ramberg-Osgood rule when the displacement is infinity. This is not the
same as the bilinear rule usually used by designers. The more usual design bilinear rule is generated
by requiring that the area under the experimental hysteretic loops for the bearings be the same as the
that obtained from the test data. This gives a different initial slope than the implied bilinear rule
associated with the Ramberg-Osgood relationship. It should be noted that a “design” bilinear rule can
be constructed from the generalized Ramberg-Osgood rule once it has been obtained from the quick

release field data.
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