

ISSN 1088-3800

3D-BASIS-TABS: Computer Program for Nonlinear dynamic Analysis of Three Dimensional Base Isolated Structures

by

S. Nagarajaiah, C. Li, A.M. Reinhorn and M.C. Constantinou

Technical Report NCEER-93-0011 August 2, 1993

This research was conducted at the University at Buffalo, State University of New York and was supported in whole or in part by the National Science Foundation under grant number BCS 90-25010and the New York State Science and Technology Foundation under Grant No. NEC-91029.

NOTICE

This report was prepared by the University at Buffalo, State University of New York as a result of research sponsored by the National Center for Earthquake Engineering Research (NCEER) through a grant from the National Science Foundation, and other sponsors. Neither NCEER, associates of NCEER, its sponsors, the University at Buffalo, State University of New York nor any person acting on their behalf:

- a. makes any warranty, express or implied, with respect to the use of any information, apparatus, method, or process disclosed in this report or that such use may not infringe upon privately owned rights; or
- b. assumes any liabilities of whatsoever kind with respect to the use of, or the damage resulting from the use of, any information, apparatus, method, or process disclosed in this report.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of NCEER, the National Science Foundation, or other sponsors.

3D-BASIS-TABS: Computer Program for Nonlinear Dynamic Analysis of Three Dimensional Base Isolated Structures

by

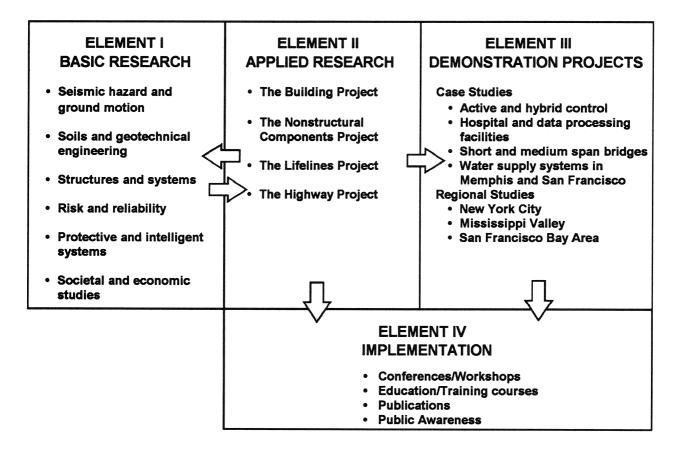
S. Nagarajaiah¹, C. Li², A.M. Reinhorn³ and M.C. Constantinou⁴

August 2, 1993

Technical Report NCEER-93-0011

NCEER Project Number 91-2102B CIRD Grant Number 92-5

NSF Master Contract Number BCS 90-25010 and NYSSTF Grant Number NEC-91029


- 1 Assistant Professor, Department of Civil Engineering, University of Missouri at Columbia; formerly Research Assistant Professor, Department of Civil Engineering, State University of New York at Buffalo
- 2 Graduate Research Assistant, Department of Civil Engineering, State University of New York at Buffalo
- 3 Professor, Department of Civil Engineering, State University of New York at Buffalo
- 4 Associate Professor, Department of Civil Engineering, State University of New York at Buffalo

NATIONAL CENTER FOR EARTHQUAKE ENGINEERING RESEARCH State University of New York at Buffalo Red Jacket Quadrangle, Buffalo, NY 14261

PREFACE

The National Center for Earthquake Engineering Research (NCEER) was established to expand and disseminate knowledge about earthquakes, improve earthquake-resistant design, and implement seismic hazard mitigation procedures to minimize loss of lives and property. The emphasis is on structures in the eastern and central United States and lifelines throughout the country that are found in zones of low, moderate, and high seismicity.

NCEER's research and implementation plan in years six through ten (1991-1996) comprises four interlocked elements, as shown in the figure below. Element I, Basic Research, is carried out to support projects in the Applied Research area. Element II, Applied Research, is the major focus of work for years six through ten. Element III, Demonstration Projects, have been planned to support Applied Research projects, and will be either case studies or regional studies. Element IV, Implementation, will result from activity in the four Applied Research projects, and from Demonstration Projects.

Research in the **Building Project** focuses on the evaluation and retrofit of buildings in regions of moderate seismicity. Emphasis is on lightly reinforced concrete buildings, steel semi-rigid frames, and masonry walls or infills. The research involves small- and medium-scale shake table tests and full-scale component tests at several institutions. In a parallel effort, analytical models and computer programs are being developed to aid in the prediction of the response of these buildings to various types of ground motion.

Two of the short-term products of the **Building Project** will be a monograph on the evaluation of lightly reinforced concrete buildings and a state-of-the-art report on unreinforced masonry.

The **protective and intelligent systems program** constitutes one of the important areas of research in the **Building Project**. Current tasks include the following:

- 1. Evaluate the performance of full-scale active bracing and active mass dampers already in place in terms of performance, power requirements, maintenance, reliability and cost.
- 2. Compare passive and active control strategies in terms of structural type, degree of effectiveness, cost and long-term reliability.
- 3. Perform fundamental studies of hybrid control.
- 4. Develop and test hybrid control systems.

The new computer program documented in this report, 3D-BASIS-TABS, is an enhanced version of 3D-BASIS, a special purpose program developed by NCEER for nonlinear dynamic analysis of base-isolated structures. One disadvantage associated with the original version is that the superstructure forces can not be computed directly. The superstructure member forces are computed in 3D-BASIS-TABS by back substitution, after the nonlinear time history analysis is completed, and peak member forces are output to facilitate the design of members. The verification of this enhanced version is presented in this report using two case studies. A comprehensive user's manual with input/output files is also presented.

ABSTRACT

The new computer program 3D-BASIS-TABS is a special purpose program developed for nonlinear dynamic analysis of three dimensional base isolated structures. The program can analyze base isolated structures with an elastic superstructure and inelastic/nonlinear isolation system. 3D-BASIS-TABS has three options for modeling the elastic superstructure: (i) option 1 - three dimensional shear building representation, in which case the stiffness matrix of the superstructure is constructed internally by the program followed by the dynamic analysis; and (ii) option 2 - full three dimensional representation, in which case the dynamic characteristics of the superstructure are obtained from a structural analysis routine followed by a dynamic condensation and dynamic step-by-step analysis with a final full recovery of maximum internal forces in structural elements; and (iii) option 3 - three dimensional building representation via stiffness matrix suplied by user, hence the superstructure is modeled at a global level by using either the story stiffnesses or the dynamic characteristics. The isolation system is modeled by representing the force displacement relationship of each individual isolator explicitly. The aforementioned approach yields global response results accurately as well as the history of elements response.

A previous version of this program, 3D-BASIS [Nagarajaiah, Reinhorn, and Constantinou, 1991b] had the disadvantage that superstructure forces could not be computed directly. Hence, the design of beam and column members should have been based on pseudostatic analysis using global response results. This report describes the development and verification of the new computer program 3D-BASIS-TABS, an enhanced version of 3D-BASIS, which includes linear beam, column, shear wall and bracing elements to model the elastic three dimensional superstructure and inelastic/nonlinear elements to model the isolation system. The superstructure member forces are computed in 3D-BASIS-TABS by back substitution, after the nonlinear time history analysis is completed, and peak member forces are output to facilitate the design of members. The verification of the program 3D-BASIS-TABS is presented in two case studies, i.e., three-story and eight-story buildings with various isolators. These case studies serve also as examples of use of this computer program. A comprehensive user's manual with input/output files is presented.

TABLE OF CONTENTS

SECTION TITLE

1	INTRODUCTION	1-1
2	OVERVIEW OF 3D-BASIS AND ETABS	2-1
2.1	Computer Program 3D-Basis	2-2
2.2	Salient Features of 3D-Basis	2-2
2.3	Superstructure Modeling in 3D-Basis	2-4
2.4	Isolation System Modeling in 3D-Basis	2-5
2.4.1	Linear Elastic Element	2-5
2.4.2	Linear Viscous Element	2-5
2.4.3	Model for Biaxial Isolation Elements	2-6
2.4.3.1	Biaxial Element for Sliding Bearings	2-7
2.4.3.2	Biaxial Model for Elastomeric Bearings and Steel Dampers	2-8
2.4.4	Model for Uniaxial Isolation Elements	2-8
2.4.5	Validity of the Biaxial Elements	2-9
2.4.6	Global System Assembly and Pseudoforce Solution Algorithm in 3D-BASIS	2-9
2.4.7	Validity of the Analytical Model and Solution Algorithm in 3D-BASIS	2-9
2.5	3D-BASIS Applications	2-14
2.6	Computer Program ETABS	2-15
2.7	Salient Features of ETABS	2-16
2.8	Superstructure Modeling in ETABS	2-17
2.9	Elements For Modeling Individual Members	2-17
2.10	Frame Substructure	2-18
2.11	Global Stiffness Matrix and Solution Algorithm	2-18
2.12	Concluding Remarks	2-19
3	3D-BASIS-TABS	3-1
3.1	Input Data	3-1
3.2	Superstructure Stiffness Assembly	3-1
3.3	Eigenvalue Analysis	3-3
3.4	Isolation System Modeling	3-3

TABLE OF CONTENTS (cont.)

SECTION TITLE

3.5	Global System Assembly	3-4
3.6	Loading Conditions	3-7
3.7	Solution For Global System Response	3-7
3.8	Backsubstitution	3-8
3.9	Output Data	3-8
4	VERIFICATION OF 3D-BASIS-TABS	4-1
4.1	Three Story Reinforced Concrete Base Isolated Building	4-2
4.1.1	Verification of Global Results	4-7
4.1.2	Verification of Member Force Computations	4-7
4.1.3	Time History Response	4-7
4.2	Case Study - Eight-Story Reinforced Concrete Base Isolated Building	4-9
4.2.1	Response to Bidirectional El Centro Earthquake	4-16
5	CONCLUDING REMARKS	5-1
6	REFERENCES	6-1
	APPENDIX A - 3D-BASIS-TABS PROGRAM USER'S GUIDE	A-0
	APPENDIX B - INPUT FILE FOR THREE STORY R/C SLIDING ISOLATED STRUCTURE	B-0
	APPENDIX C - OUTPUT FILE FOR THREE STORY R/C SLIDING ISOLATED STRUCTURE	C-0
	APPENDIX D - INPUT FILE FOR EIGHT STORY R/C BASE ISOLATED STRUCTURE	D-0
	APPENDIX E - OUTPUT FILE FOR EIGHT STORY R/C BASE ISOLATED STRUCTURE	E-0

LIST OF FIGURES

FIGURE TITLE

1-1	Asymmetric Base Isolated Structure Excited by Bidirectional Ground Motion	1-2
1-2	Multiple Building Base Isolated Structure	1-3
2-1	Validity of the Biaxial Sliding Element in 3D-BASIS:(a) Section of Teflon Disc Sliding Bearing; (b) Measured Biaxial Force - Displacement Response of Sliding Bearing; (c) Simulated Biaxial Force - Displacement Response of Sliding Bearing	2-10
2-2	Validity of the Biaxial Element for Steel Dampers in 3D-BASIS: (a) Section of Steel Damper; (b) Measured Biaxial Force - Displacement Response of Steel Damper; (c) Simulated Biaxial Force - Displacement Response of Steel Damper	2-11
2-3	Comparison of Simulated (3D-BASIS) and Measured Results of Bidi- rectional Shake Table Tests of a Sliding Isolated Structure with El Centro Excitation. \ddot{U}_{xs} - Superstructure Acceleration Response in XDir.; U_{xb} - Base Displacement Response in X Dir.; U_{yb} - Base Dis- placement Response in Y Dir	2-13
	Flow Chart of Major Steps in 3D_BASIS-TABS	3-2
3-1	Displacement Coordinates of the base isolated structures	3-5
4-1	Superstructure Member Configuration and Isolation System Configura- tion of the Three Story Reinforced Concrete Sliding Isolated Building. Note the Location of the structure Axis at the Center of Mass of the Base and the Location of the Column Lines 1, 14, 13, and 16	4-3
4-2	Cross Section of the Three story Reinforced Concrete Sliding Isolated Building (Left Extreme Column Line is 16 and Right Extreme Column Line is 13).	4-4
4-3	Plan of the Sliding Isolation System with Teflon - Steel Disc Sliding Bearings and Recentering Springs	4-5
4-4	Cross Sectional Plan of the Three Story Reinforced Concrete Sliding Isolated Building between Levels 2 and 3.	4-6
4-5	Response of Three Story Reinforced Concrete Structure to El Centro NS Earthquake: (a) X Dir. Roof Displacement; (b) X Dir. Base Displace- ment; and (c) X Dir. Force - Displacement Loop at Sliding Bearing No. 1 Located on Column Line 1	4-10
4-6	Eight Story Reinforced Concrete Base Isolated Building on Combined Sliding and Elastomeric Isolation System	4-11

LIST OF FIGURES (cont.)

FIGURE TITLE

4-7	Cross Sectional Plan of the Eight Story Reinforced Concrete Base Isolated Building between Levels 7 and 8	4-12
4-8	Plan of the Isolation System with Laminated Rubber Bearing and Teflon-Steel Disc Sliding Bearings	4-13
4-9	Envelope of Shear Force, Bending Moment and Axial Force in the Column on Column Line 1.	4-17

LIST OF TABLES

TABLE TITLE

PAGE

4-1	Comparison of Column Forces	4-8
4-2	Comparison of Beam Moments	4-8
4-3	Column Schedule	4-14
4-4	Beam Schedule	4-15

SECTION 1

INTRODUCTION

A comprehensive research effort for testing, analysis and design of base isolated structures with different isolation systems has been underway at the State University of New York at Buffalo. The objective of this research effort was: (i) to develop analysis capability and analytical models, calibrated using experimental results, and (ii) to use the analytical tool in-turn in experimental research and practical design applications. The result of this continued research effort was a comprehensive computational tool and computer program 3D-BASIS (Nagarajaiah, Reinhorn, Constantinou 1991a, 1991b; Tsopelas, Nagarajaiah, Constantinou, Reinhorn 1991).

Computer program 3D-BASIS has been specifically developed for analysis of base isolated structures (Fig. 1.1) with elastic superstructure and inelastic/nonlinear sliding and/or elastomeric isolation systems. The novelty of the analytical model and solution algorithm in 3D-BASIS was its capability to capture the highly nonlinear behavior of sliding isolation systems in plane motion. Biaxial and uniaxial models in 3D-BASIS can represent both elastomeric isolation bearings, sliding isolation bearings, various hysteretic devices, and viscous damping devices. The solution algorithm in 3D-BASIS, consisting of the pseudoforce method with iteration, is accurate and efficient.

Computer program 3D-BASIS-M (Tsopelas, Nagarajaiah, Constantinou, Reinhorn 1991), an enhanced version of 3D-BASIS, has been developed for analyzing multiple building base isolated structures (Fig. 1.2). The analysis of multiple buildings on a combined isolation system arises in long buildings which may consist of several buildings separated by narrow thermal expansion joints. The torsional characteristics of the combined isolation system

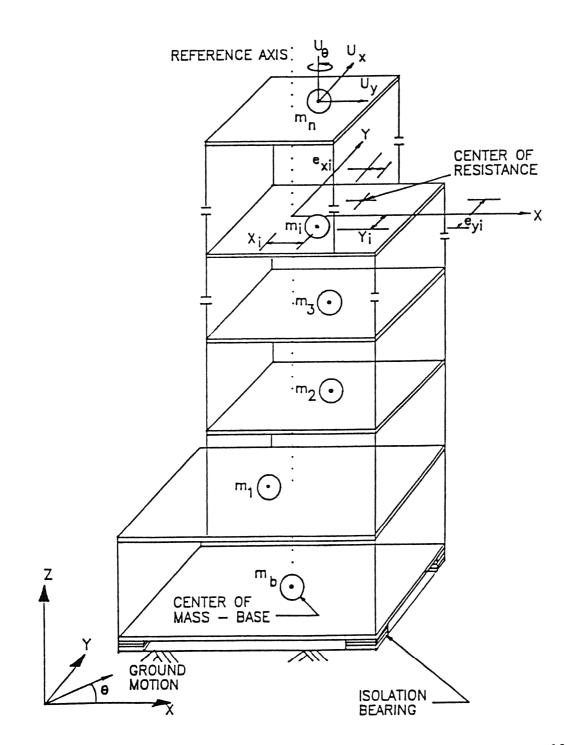


FIG. 1.1. Asymmetric Base Isolated Structure Excited by Bidirectional Ground Motion

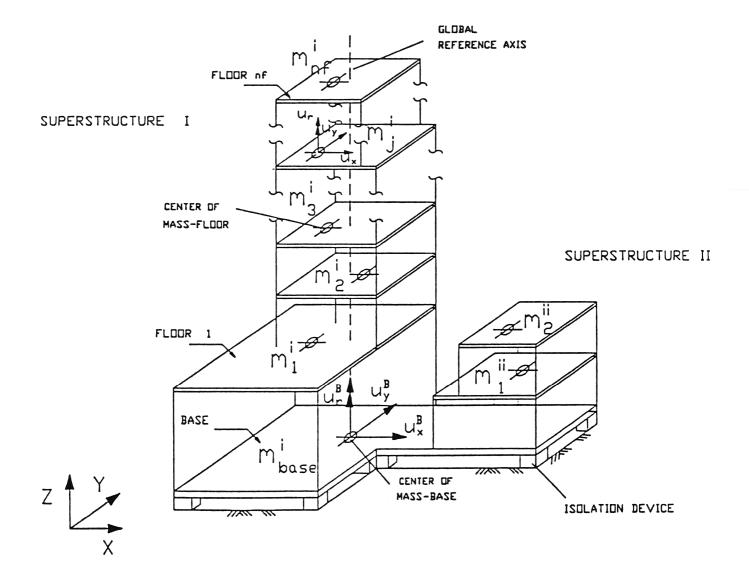


FIG. 1.2. Multiple Building Base Isolated Structure 1-3

and single basemat with multiple superstructure configuration can be significantly different than that of individual buildings on separate isolation systems. In such cases, 3D-BASIS-M can be used.

3D-BASIS has two options for modeling the elastic superstructure: (i) option 1 - three dimensional shear building representation, in which case the stiffness matrix of the superstructure is constructed internally by the program and the dynamic analysis is performed; and (ii) option 2 - full three dimensional representation, in which case the dynamic characteristics of the superstructure are obtained from other computer programs, such as ETABS (developed by Wilson et al. 1975 (i.e., the superstructure is modeled separately by ETABS to determine the frequencies and mode shapes) and imported into 3D-BASIS where the dynamic analysis is performed. Hence the superstructure is modeled at a global level by using either the story stiffnesses or the dynamic characteristics (i.e., beams, columns, etc. are not modeled explicitly in 3D-BASIS). However, the isolation system is modeled by representing the force displacement relationship of each individual isolator explicitly. The aforementioned approach yields global response results accurately and this approach is that the time history of super-structure member forces cannot be computed. Hence the design of beam and column members should be based on pseudostatic analysis using global response results.

This report describes the development and verification of a new computer program 3D-BASIS-TABS, an enhanced version of 3D-BASIS, which includes linear beam, column, shear wall and bracing elements to model the elastic three dimensional superstructure and inelastic/nonlinear elements to model the isolation system. The superstructure member forces are computed in 3D-BASIS-TABS by back substitution, after the nonlinear time history analysis is completed, and peak member forces are output to facilitate the design of members.

Verification of the program 3D-BASIS-TABS is presented. A case study analyzing an eight story base isolated structure is presented. A comprehensive user's manual with input/output files is presented.

The input format for the superstructure in 3D-BASIS-TABS has been retained in the same format as in ETABS [Wilson et al., 1975] to facilitate usage (since many engineers and researchers are familiar with the superstructure input requirements for ETABS). It is to be noted that some of the aforementioned beam, column, shear wall and bracing elements are adopted from the same computer program, ETABS. The substructure condensation, global assembly, and backsubstitution procedures used in ETABS are also adopted.

SECTION 2

OVERVIEW OF 3D-BASIS AND ETABS

In this section, the features of computer programs 3D-BASIS and ETABS are reviewed. The limitations of 3D-BASIS are pointed out and the advantages of enhancing the program 3D-BASIS are elucidated.

3D-BASIS was designed and developed according to the advantages of the modeling approach proposed by Wilson et al. (1975) for the 3D-superstructure in ETABS, i.e., frame substructures interconnected by rigid floor diaphragms, with three degrees-of-freedom per floor at the center of mass. The process of modeling the elastic superstructure in 3D-BASIS was simplified by using eigenvalues and eigenvectors obtained using programs such as ETABS. The tremendous computational advantages that can be gained by this modeling approach, adopted in 3D-BASIS for modeling the linear superstructure, coupled with: (i) modal reduction; and (ii) pseudoforce solution procedure with equilibrium iterations, makes the algorithm in 3D-BASIS highly efficient. The only disadvantage of using eigenvalues and eigenvectors for modeling the superstructure in 3D-BASIS is that superstructure member forces cannot be computed. Hence, the design of beam and column members should be based on pseudo-static analysis performed using the computed global time history response at the center of mass of the floors.

The program 3D-BASIS-TABS described in this report is designed to overcome this limitation. Linear elastic elements available in ETABS are adopted in 3D-BASIS-TABS to model the three dimensional superstructure. The condensation, global assembly and back substitution procedures from ETABS are also adopted. The time history of member forces are computed by back substitution, after the nonlinear time history analysis is completed, and peak member forces are output to facilitate the design of members.

2.1 COMPUTER PROGRAM 3D-BASIS

Computer program 3D-BASIS (Nagarajaiah et al. 1990,1991) is a special purpose program for nonlinear dynamic analysis of three dimensional base isolated structures. A typical multistory base isolated building that can be analyzed by 3D-BASIS, along with the relevant degrees of freedom, is shown in Fig. 1.1. The superstructure is modeled with three degrees of freedom attached to the center of mass of each floor. The base and floors are assumed to be rigid diaphragms. The 3D-superstructure is modeled as an elastic frame-shear wall structure and nonlinear behavior is restricted to the base. The isolation system is modeled with spatial distribution and explicit nonlinear force-displacement characteristics of individual isolation devices. Library of isolation elements includes linear spring element, linear viscous damper element, sliding bearing elements, elastomeric bearing element and steel damper element. The hysteretic model used to model the isolators is a differential equation model which can represent the nonlinear biaxial characteristics of the isolators. The time domain solution algorithm developed, consisting of the pseudoforce method with iteration, is suitable for the solution of stiff differential equations that arise in sliding systems due to stick-slip behavior.

2.2 SALIENT FEATURES OF 3D-BASIS

Salient features of 3D-BASIS which make it specially suitable for analysis of base isolated structures with different isolation systems are:

- Capability to analyze isolation systems that are a combination of elastomeric and sliding isolation systems;
- Unified model capable of representing the biaxial behavior of either elastomeric or sliding bearings and other isolation devices;
- (3) Capability to capture the highly nonlinear behavior of sliding isolation systems in plane motion;

- Pseudo-force solution algorithm for accurate and efficient solution of stiff differential equations that arise in sliding systems due to stick-slip behavior;
- (5) Solution algorithm with the accuracy of predictor-corrector methods and efficiency suitable for analyzing large base isolated structures;
- (6) Capability to model multistory base isolated buildings and capture the lateral-torsional behavior under bidirectional earthquake motion;
- (7) Simplicity of input requirements and execution on both main and microcomputers.

With the aforementioned capabilities, 3D-BASIS has become increasingly popular amongst both researchers and practicing engineers leading to several applications: (i) preliminary studies in preparation for shake table tests at SUNY-Buffalo and UC-Berkeley; (ii) evaluation of the important effects of nonlinear biaxial interaction between orthogonal lateral forces in isolation bearings, on the response of base isolated structures, by Nagarajaiah et al. (1990) and by Mokha et al. (1993); (iii) simulation of shake table test results using measured properties of the structure and the isolation system (Nagarajaiah et al. 1992); (iv) study of lateral torsional response of base isolated structures (Nagarajaiah et al. 1993a;1993b); (v) evaluation of SEAOC code provisions for base isolated structures (Constantinou et al 1993; Theodossiou et al. 1991; Winters et al. 1993); (vi) analysis of new base isolated buildings and existing buildings to be retrofitted using base isolation (Amin et al. 1993a; 1993b; Asher et al. 1993; Button et al. 1993; Cho et al. 1993; Nagarajaiah et al. 1993; Palfalvi et al. 1993); and (vi) post-earthquake evaluation studies of existing base isolated buildings in seismically active areas such as the region of San-Andreas fault (Clark et al. 1993, Mitsusaka et al. 1993).

2.3 SUPERSTRUCTURE MODELING IN 3D-BASIS

The 3D superstructure is modeled as an elastic frame-shear wall structure and nonlinear behavior is restricted to the base. Coupled lateral-torsional response is accounted for by maintaining three degrees of freedom per floor, i.e., two translational and one rotational degree of freedom attached to the center of mass. The base and the floors are assumed to be rigid diaphragms.

Two options exist for modeling the superstructure:

- (1) Three dimensional shear building representation in which the stiffness matrix of the superstructure is internally constructed by the program. It is assumed that the centers of mass of all the floors lie on a common vertical axis, floors and beams are rigid and walls and columns are inextensible.
- (2) Full three dimensional representation in which the dynamic characteristics of the superstructure, such as frequencies and mode shapes supplied by user. [determined by computer programs such as ETABS (Wilson et al. 1975) and imported to program 3D-BASIS]. In this way, the axial deformation of columns; bending and shear deformation of column and beam members; and arbitrary location of the center of mass are implicitly accounted for. However, the model for dynamic analysis still maintains three degrees of freedom per floor because the other joint degrees of freedom are condensed out.

In both options, the data needed for dynamic analysis are the mass and the moment of inertia of each floor, frequencies, mode shapes and associated damping ratios for a given number of modes. A minimum of three modes of vibration of the superstructure need to be considered.

2.4 ISOLATION SYSTEM MODELING IN 3D-BASIS

The isolation system is modeled with spatial distribution and explicit nonlinear force-displacement characteristics of individual isolation devices. The isolation devices are considered rigid in the vertical direction and individual devices are assumed to have negligible resistance to torsion.

The following elements are available for modeling the behavior of an isolation system:

- 1. Linear elastic element (spring).
- 2. Linear viscous element (damper).
- 3. Hysteretic element for elastomeric bearings and steel dampers.
- 4. Hysteretic element for sliding bearings.

2.4.1 Linear Elastic Element

The linear elastic element can be used to approximately simulate the behavior of elastomeric bearings along with the viscous element. All linear elastic devices of the isolation system specified are combined internally by the program, in global elements having the combined properties of all the elastic devices, and total translational stiffnesses, K_x and K_y , and the rotational stiffness, K_r , with respect to the center of mass of the base.

2.4.2 Linear Viscous Element

The linear viscous element can be used to simulate the viscous properties of the isolation devices. All linear viscous devices specified are combined, internally in the program, in global viscous elements having the combined properties, and total translational damping coefficients C_x and C_y and rotational damping coefficient C_r with respect to the center of mass of the base.

2.4.3 Model for Biaxial Isolation Elements

At a bearing undergoing plane motion with displacement components U_x and U_y and velocity components \dot{U}_x and \dot{U}_y in the X and Y directions, lateral forces develop and these forces exhibit biaxial interaction. In addition, a torsional moment develops at the bearing. The contribution of this torsional moment to the total torque exerted to the structure supported by several bearings is insignificant.

The direction of the resulting force at the bearing opposes the direction of the motion given by:

$$\theta = \tan^{-1} \left(\frac{\dot{U}_y}{\dot{U}_x} \right) \tag{2.1}$$

The model presented herein accounts for the direction and magnitude of the resulting hysteretic force.

The model for biaxial interaction is based on the following set of equations proposed by Park, Wen and Ang (1986):

$$\begin{pmatrix} \dot{Z}_{x} \\ \dot{Z}_{y} \end{pmatrix} = \frac{A}{Y} \begin{pmatrix} \dot{U}_{x} \\ \dot{U}_{y} \end{pmatrix} - \frac{1}{Y} \begin{pmatrix} Z_{x}^{2} (\gamma Sign(\dot{U}_{x}Z_{x}) + \beta) & Z_{x}Z_{y}(\gamma Sign(\dot{U}_{y}Z_{y}) + \beta) \\ Z_{x}Z_{y}(\gamma Sign(\dot{U}_{x}Z_{x}) + \beta) & Z_{y}^{2}(\gamma Sign(\dot{U}_{y}Z_{y}) + \beta) \end{pmatrix} \begin{pmatrix} \dot{U}_{x} \\ \dot{U}_{y} \end{pmatrix}$$

$$(2.2)$$

in which, Z_x and Z_y are hysteretic dimensionless quantities, Y is the yield displacement, A, γ and β are dimensionless quantities that control the shape of the hysteresis loop. The values of A = 1, $\gamma = 0.9$ and $\beta = 0.1$ are used in this report. When yielding commences, Eq. 2.2 has the following solution provided that $A/(\beta + \gamma) = 1$ (Constantinou et al. 1990):

$$Z_x = \cos\theta, \quad Z_y = \sin\theta$$
 (2.3)

 Z_x and Z_y are bounded by values ± 1 and account for the direction and biaxial interaction of hysteretic forces. The interaction curve given by Eq. 2.2 is circular.

2.4.3.1 Biaxial Element for Sliding Bearings

For a sliding bearing, the mobilized forces are described by the equations (Constantinou et al. 1990):

$$F_x = \mu_s W Z_x, \quad F_y = \mu_s W Z_y \tag{2.4}$$

in which, W is the vertical load carried by the bearing and μ_s is the coefficient of sliding friction which depends on the value of bearing pressure, angle θ and the instantaneous velocity of sliding \dot{U} :

$$\dot{U} = \left(\dot{U}_{x}^{2} + \dot{U}_{y}^{2}\right)^{1/2} \tag{2.5}$$

 Z_x and Z_y which are bounded by the values ± 1 , account for the conditions of separation and reattachment (instead of a signum function) and also account for the direction and biaxial interaction of frictional forces.

The coefficient of sliding friction is modeled by the following equation (Constantinou et al. 1990):

$$\mu_s = f_{\max} - \Delta f \cdot \exp(-\alpha |\dot{U}|) \tag{2.6}$$

in which, f_{\max} is the maximum value of the coefficient of friction and Δf is the difference between the maximum and minimum (at $\dot{U} \sim 0$) values of the coefficient of friction. f_{\max} , Δf and α are functions of bearing pressure and angle θ (Constantinou et al. 1990). To account for the effects of axial load, the parameters are adjusted based on experimental results (Mokha et al. 1993). The dependency on the angle θ is negligible and hence neglected.

2.4.3.2 Biaxial Model for Elastomeric Bearings and Steel Dampers

For an elastomeric bearing, the mobilized forces are described by the equations:

$$F_{x} = \alpha \frac{F^{y}}{Y} U_{x} + (1 - \alpha) F^{y} Z_{x}, \quad F_{y} = \alpha \frac{F^{y}}{Y} U_{y} + (1 - \alpha) F^{y} Z_{y}$$
(2.7)

in which, α is the postyielding to preyielding stiffness ratio, F^{γ} is the yield force and Y is the yield displacement. Z_x and Z_y account for the direction and biaxial interaction of hysteretic forces.

2.4.4 Model for Uniaxial Isolation Elements

The biaxial interaction can be neglected when the off-diagonal elements of the matrix in Eq. 2.2 are replaced by zeros. This results in a uniaxial model with two either frictional or bilinear independent elements in the two orthogonal directions. Eq. 2.2 collapses to the uniaxial model governed by the following equation (Wen, 1976):

$$\dot{Z}Y = A\dot{U} - |Z|^{\eta} (\gamma Sgn(\dot{U}Z) + \beta)\dot{U}$$
(2.8)

where $\eta = 2$ in the biaxial case and this parameter controls the transition from elastic range to the post yielding range. The value of this parameter can be increased to achieve near-bilinear behavior rather than smooth bilinear behavior. When the ratio $A/(\beta + \gamma) = 1$ the model reduces (Constantinou et al. 1990) to a model of viscoplasticity.

The interaction curve in the uniaxial case is effectively square. In the case of uniaxial sliding element the velocity used for calculation of the coefficient of friction from Eq. 2.6 is either \dot{U}_x or \dot{U}_y .

2.4.5. Validity of the Biaxial Elements

The validity of the biaxial elements was verified by comparison with the experimental results of: (i) tests on Teflon-steel sliding bearings under simultaneous compression and high velocity bidirectional motion (Mokha et al. 1993) shown in Fig. 2.1; and (ii) tests on steel rod dampers under bidirectional motion (Yasaka et al. 1988) shown in Fig. 2.2. The simulated and experimental results from Nagarajaiah et al. (1993a;1991b) shown in Fig. 2.1 and 2.2 indicate good agreement.

From the comparison with experimental biaxial force-displacement loops, the accuracy of the hysteretic model in 3D-BASIS is evident. Further verification of the hysteretic model in 3D-BASIS by comparison with test results can be found in Nagarajaiah et al. (1991;1990).

2.4.6 Global System Assembly and Pseudoforce Solution Algorithm in 3D-BASIS

The global system assembly, of the 3D-superstructure and the isolation system, has been described in Nagarajaiah et al. (1991). The incremental nonlinear force vector in the equations of motion is brought on to the right hand side and treated as a pseudoforce vector. The two step solution algorithm that was developed by Nagarajaiah et al. (1991) is as follows:

- 1. The solution of equations of motion using unconditionally stable Newmark's constant-average-acceleration method;
- 2. The solution of differential equations governing the behavior of the nonlinear isolation elements using unconditionally stable semi-implicit Runge-Kutta method suitable for solution of stiff differential equations.

2.4.7 Validity of the Analytical Model and Solution Algorithm in 3D-BASIS

The validity of the analytical model and solution algorithm used in 3D-BASIS was demonstrated further, by Nagarajaiah et al. (1993a), by comparison with experimental results from bidirectional shake table tests on a sliding isolated model by Hisano et al. (1988).

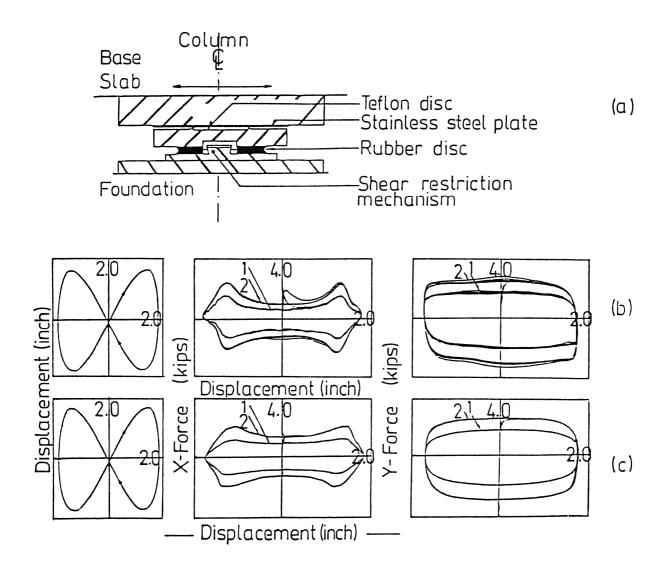


FIG. 2.1. Validity of the Biaxial Sliding Element in 3D-BASIS: (a) Section of Teflon Disc Sliding Bearing; (b) Measured Biaxial Force - Displacement Response of Sliding Bearing; (c) Simulated Biaxial Force - Displacement Response of Sliding Bearing

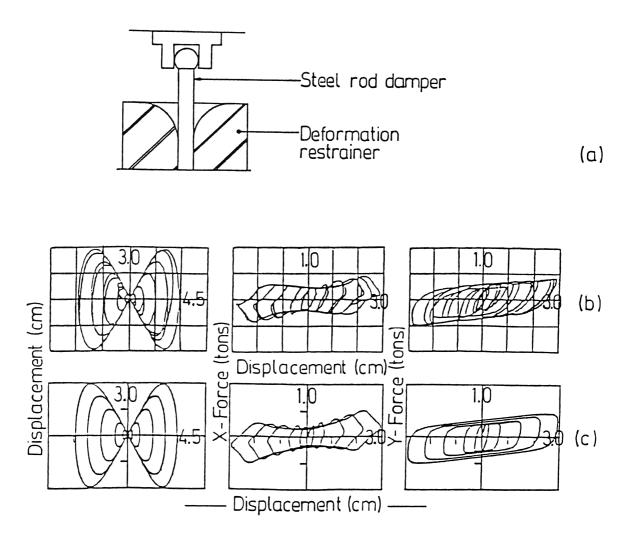


FIG. 2.2. Validity of the Biaxial Element for Steel Dampers in 3D-BASIS: (a) Section of Steel Damper; (b) Measured Biaxial Force - Displacement Response of Steel Damper; (c) Simulated Biaxial Force - Displacement Response of Steel Damper

The tested model was a 1/8 scale steel structure, 120 in (3048 mm) long and 90 in (2286 mm) wide, on a sliding isolation system consisting of 9 sliding bearings with 4 rubber springs. The model weighed 10.1 tons (101 kN), with 8.05 tons (80.5 kN) of superstructure weight and 2.05 tons (20.5 kN) of base weight. The radius of gyration was r = 0.29 L. The model had symmetric stiffness and mass properties. For the scaled superstructure, the uncoupled lateral period was 0.11 sec (corresponding to 0.3 sec in prototype) and the uncoupled torsional period was 0.07 sec (0.2 sec in prototype). The damping ratio measured in the superstructure was 1%. For the isolation system, the uncoupled lateral period was 0.35 sec (1.0 sec in prototype) and the uncoupled torsional period was 0.208 sec (0.588 sec in prototype). The diameter of the sliding bearings were between 2.75 in (69.85 mm) and 1.4 in (35.56 mm). The maximum bearing pressure during tests was 900 psi (6.21 MPa). The coefficient of friction was measured to vary between 0.10 and 0.15. The model structure was excited by time scaled accelerations of 1940 El Centro NS and EW components. The peak table acceleration in both the directions was scaled up by a factor of 1.5. Fig. 2.3 shows the measured and simulated frame acceleration and the base displacement in the NS direction, and the displacement orbit of the center of mass of the base. The historical accelerogram of 1940 El Centro motion scaled appropriately was used as the excitation for the analytical simulation, as the achieved shake table acceleration time history was not available. Despite this, a comparison between the measured and simulated results show good agreement, including major features of the displacement orbit.

From the above comparison with shake table test results, the accuracy of the analytical model and solution algorithm in 3D-BASIS is evident. Further verification of 3D-BASIS by comparison with unidirectional shake table test results and results from general purpose finite element computer programs such as ANSR (Mondkar et al. 1975) and DRAIN-2D (Kannan et al. 1975) has been presented by the authors (Nagarajaiah et al. 1991b).

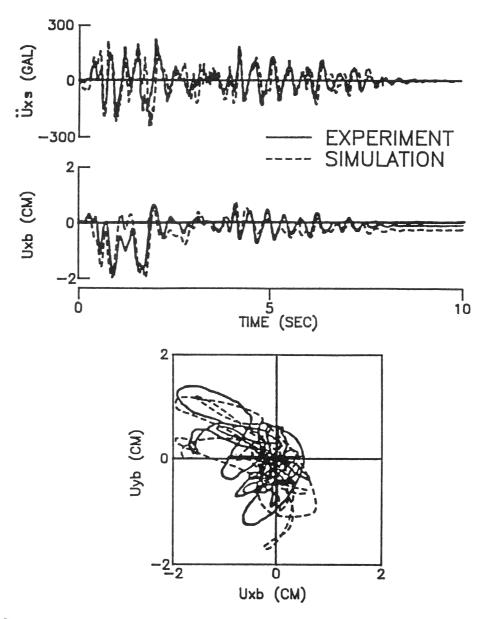


FIG. 2.3. Comparison of Simulated (3D-BASIS) and Measured Results of Bidirectional Shake Table Tests of a Sliding Isolated Structure with El Centro Excitation. \ddot{U}_{xs} - Superstructure Acceleration Response in X Dir.; U_{xb} - Base Displacement Response in X Dir.; U_{yb} - Base Displacement Response in Y Dir.

2.5 3D-BASIS APPLICATIONS

3D-BASIS is a useful tool for experimental studies, for response prediction and for postprocessing data. Among these applications was an analytical study of a shake table test performed on a six-story-steel-structure at SUNY-Buffalo with a sliding isolation system (Nagarajaiah et al. 1992). Applications at UC Berkeley include preliminary studies for a shake table test of a 1/2.5 scale reinforced concrete three-story-structure with three types of isolation systems (Aiken et al. 1993). 3D-BASIS has been also used to evaluate the important effects of nonlinear biaxial interaction, between orthgonal lateral forces in isolation bearings, on the response of base isolated structures, by Nagarajaiah et al. (1990), and by Mokha et al. (1993).

In a more recent application, 3D-BASIS has been used in the study of lateral-torsional response of base isolated structures. The important system parameters which influence the lateral-torsional of response of: (i) sliding isolated structures (Nagarajaiah et al. 1993a) and (ii) elastomeric isolated structures (Nagarajaiah et al. 1993b) were studied. It was shown that although small in magnitude significant torsional effects could occur in the total response depending on the system parameters.

3D-BASIS has been recently used in evaluation of SEAOC code provisions for base isolated structures (Constantinou et al. 1993; Theodossiou et al. 1991;Winters et al. 1993). These studies, conducted at SUNY-Buffalo, involved structures ranging from one to eight stories with different isolation systems and involved statistical evaluation. The structures were excited by historical strong ground motions and spectrum compatible simulated motions.

Another application is a post-earthquake evaluation study and performance evaluation of Foothill Communities Law and Justice Center, San Bernardino, California, and some other Japanese buildings under actual earthquakes (Clark et al 1993; Mitsusaka et al 1993). Some recent use of 3D-BASIS was in retrofit projects such as: (i) the Court of Appeals Building in San Francisco, by consulting firm Skidmore, Owings and Merrill and Associates (Amin et al. 1993a; 1993b); (ii) State of California Justice Building, San Francisco, and Hayward City Hall, Hayward, by Charles Kircher and Associates and (iii) Los Angeles County emergency operations center, by the consulting firm Daniel, Mann, Johnson & Mendenhall and Associates (Cho et al. 1993). In a recent application 3D-BASIS was used in the design verification of a new base isolated structure, the Martin Luther King Hospital in Los Angeles, by Office of Statewide Health Planning and Development, California.

Microcomputer PC-DOS/WINDOWS versions of 3D-BASIS and 3D-BASIS-M have also been developed and made available through the National Center for Earthquake Engineering and the National Information Service in Earthquake Engineering. This has greatly facilitated the usage of 3D-BASIS in design offices which have in-house microcomputers. The versatility of 3D-BASIS stems from the fact that it can analyze base isolated structures like sliding structures with great accuracy and yet complete the analysis in reasonable CPU time on a microcomputer. Furthermore, simplicity of input requirements and fast execution on microcomputers make the program attractive to the designers of base isolated structures.

2.6 COMPUTER PROGRAM ETABS

Computer program ETABS (Wilson et al. 1975) is a special purpose program for linear structural analysis of frame and shear wall structures subjected to both static and earthquake loadings. This program and its new PC based versions are widely used for several decades.

2.7 SALIENT FEATURES OF ETABS

Salient modeling and analysis features of ETABS are as follows (Wilson et al. 1975):

- Nonsymmetric, nonrectangular multistory buildings which have frames and shear walls located arbitrarily in plan can be modeled;
- (2) The structure is idealized as a system of frame and shear wall substructures interconnected by floor diaphragms which are rigid in their own plane;
- (3) Only three degrees of freedom, i.e., two translational and one rotational degree of freedom attached to the center of mass, are retained in the analysis after condensation of other frame-shear wall degrees of freedom;
- (4) Beam, column, shear wall and diagonal bracing elements can be included;
- (5) Axial deformation in columns and bending and shearing deformations in columns and beams can be included;
- (6) Finite column and beam widths or "rigid zone" can be specified;
- (7) Nonprismatic beams can be modeled;
- (8) Vertical static loads can be combined with seismic loads;
- (9) Time history or response spectrum analysis can be performed and peak member forces can be output.

Because of the aforementioned capabilities, ETABS is one of the most widely used programs by practicing engineers for analysis and seismic design of structures.

2.8 SUPERSTRUCTURE MODELING IN ETABS

The 3D superstructure is modeled as an elastic frame-shear wall structure. Coupled lateral-torsional response is accounted for by maintaining three degrees of freedom per floor, i.e., two translational and one rotational degree of freedom attached to the center of mass.

The complete structure composed of several frame and shear wall substructures is modeled with the assumption that these substructures are interconnected by floor diaphragms which are rigid in their own plane. Each joint in the structure is modeled with six degrees of freedom. Within each frame, three degrees of freedom (the two translations and one rotation in the floor plane) are transformed, using the assumption of rigid floor diaphragm, to the frame degrees of freedom at that floor level. The remaining three joint degrees of freedom are eliminated by static condensation before each frame substructure stiffness is added to the total structural stiffness. The total structural stiffness matrix corresponds to three degrees of freedom per floor at the center of mass.

The inherent assumptions in this approach, such as: (1) compatibility being not enforced with regard to displacements at joints which are common to more than one frame substructure; (2) approximate inclusion of the out-of-plane bending stiffness of the rigid floors while specifying beam properties; and (3) axial deformation of beams is not permitted because of rigid floor assumption, which has been described in detail by Wilson et al. (1975).

2.9 ELEMENTS FOR MODELING INDIVIDUAL MEMBERS

Beam, column, shear wall-panel and diagonal bracing elements in ETABS are linear elastic elements. Column elements are available for modelling prismatic column members only; however, beam elements are available and can either model prismatic or nonprismatic beam members; beam members must be symmetric about their vertical midplane. Axial deformation in columns and bending and shearing deformations in columns and beams can Finite column and beam widths or "rigid zone" are explicitly accounted for. The panel element available for modelling infill panels and discontinuous shear walls has two modelling options: (i) a "flexural" model which carries both bending and shear; and (ii) a "pure shear" model which is restricted to carrying only shear. The diagonal bracing element available is a truss element and can be placed in any arbitrary story of the frame. A complete description of the element stiffness matrices and modeling options can be found in Wilson et al. (1975).

2.10 FRAME SUBSTRUCTURE

The stiffness matrix of the frame substructure, planar or rectangular with arbitrary plan, is assembled first, following which, the global stiffness matrix of the whole structure is constructed by direct stiffness approach using individual frame substructure stiffness matrices. The frame reference axis and the reference lines, formed by column lines and floor levels, are used for describing connectivity. A complete description of the lateral frame stiffness matrix assembly and static condensation can be found in Wilson et al. (1975). Vertical loading is applied to the individual frames by means of sets of fixed end forces associated with each beam.

2.11 GLOBAL STIFFNESS MATRIX AND SOLUTION ALGORITHM

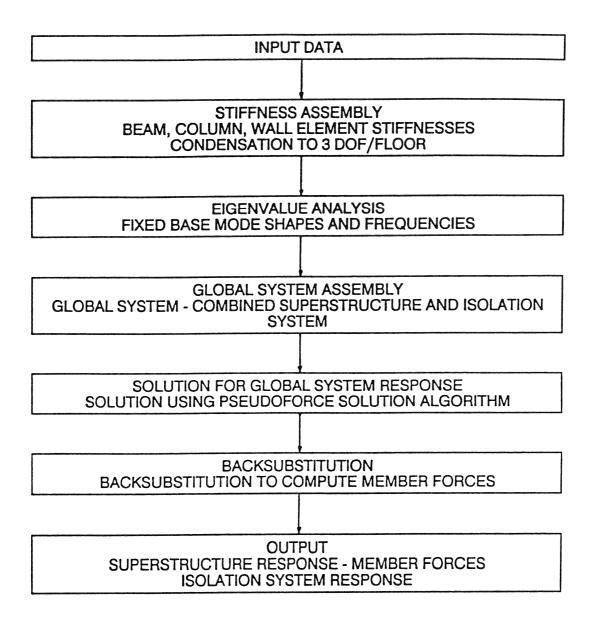
The global displacement coordinate system consists of two translations and one rotation in the floor plane attached to the center of mass; hence, the mass matrix is diagonal. The position of the center of mass at each story level may vary from story to story. The center of mass of each floor is defined with reference to global structure axes. The global stiffness matrix is assembled by transforming the frame substructure stiffness matrices to the global coordinate system. Gaussian elimination is used for solution in static load cases and step-by-step modal solution procedure is used for earthquake response. A complete description of the global stiffness matrix assembly and solution procedure can be found in Wilson et al. (1975).

2.12 CONCLUDING REMARKS

It is evident from the overview of 3D-BASIS and ETABS that the two programs have special features which can be integrated to develop a more comprehensive program for analysis of base isolated structures. The intent of 3D-BASIS-TABS is to integrate structural capabilities of ETABS with the nonlinear analysis of base isolations from 3D-BASIS. The subsequent sections describe these new developments.

SECTION 3

3D-BASIS-TABS


The structural model and the solution algorithm in 3D-BASIS-TABS are described in this section. The major steps in the solution algorithm are presented in the Flowchart 3.1. The detailed description of each step is described in the following sections.

3.1 INPUT DATA

The input format has been retained in the same format as in ETABS to facilitate usage (since many engineers and researchers are familiar with the superstructure input requirements for ETABS). The data in the form of beam, column, shear wall, and bracing member properties, connectivity, etc., need to be input. In addition the isolation system data in the form of isolator properties, connectivity, etc., need to be input. The data needed for the dynamic analysis also has to be input. The user's manual in APPENDIX A specifies the data input requirements.

3.2 SUPERSTRUCTURE STIFFNESS ASSEMBLY

3D-BASIS-TABS is designed to include three options for modeling the superstructure. Option 1 for 3D-shear building in which story shear stiffnesses are to be input. Option 2 for full 3D-building in which member properties for beam, column, etc., are to be input for detailed member by member representation of the superstructure. Option 3 for full 3D-building in which eigenvalues/eigenvectors (computed using ETABS) are to be input. Option 1 and Option 3 are cases which have been described in detail by the authors (Nagarajaiah et al., 1991) in 3D-BASIS. If Option 1 or 3 is used, member forces are not output, as no data for representing members is available.

FLOW CHART OF MAJOR STEPS IN 3D-BASIS-TABS

In Option 2, assembly of the stiffness matrix of the frame substructure described in Section 2.8 from ETABS is adopted. Each joint in the structure is modeled with six degrees of freedom. Within each frame joint three degrees of freedom (the two translations and one rotation in the floor plane) are transformed, using the rigid floor diaphragm, to the frame degrees of freedom at that floor level. The remaining three frame joint degrees of freedom are eliminated by static condensation before each frame substructure stiffness is added to the total structural stiffness. The global degrees of freedom retained after condensation are three degrees of freedom per floor. The global stiffness matrix of the superstructure in the fixed base condition is used for eigenvalue analysis.

3.3 EIGENVALUE ANALYSIS

An eigenvalue analysis is undertaken to determine the eigenvalues and eigenvectors, i.e., frequencies and mode shapes in the fixed base condition using the global stiffness matrix. The frequencies and mode shapes are used in the global system assembly. The frequencies and mode shapes obtained correspond to the condensed three degrees of freedom per floor model.

3.4 ISOLATION SYSTEM MODELING

The isolation system is modeled with spatial distribution and explicit nonlinear forcedisplacement characteristics of individual isolation devices. The isolation elements in 3D-BASIS described in Section 2.4, such as: (i) linear elastic element; (ii) linear viscous element; (iii) hysteretic element for elastomeric bearings and steel dampers; and (iv) hysteretic element for sliding bearings, can be specified.

3.5 GLOBAL SYSTEM ASSEMBLY

The formulation for global system assembly of the combined superstructure and the isolation system has been presented in detail by Nagarajaiah et al. (1991): hence, it is presented only briefly herein.

A typical base isolated multistory building and the displacement coordinates that will be used in the formulation are shown in Fig. 3.1 (U_i , U_b , U_g may be in X or Y direction). The superstructure is modeled as an elastic frame shear wall structure with three degrees of freedom per floor. The three degrees of freedom are attached to the center of mass of each floor and base. The floors and the base are assumed to be infinitely rigid inplane. The isolation system may consist of elastomeric and/or sliding isolation bearings, and other isolation series.

The equations of motion for the elastic superstructure are expressed in the following form:

$$\mathbf{M}_{nxn}\ddot{\mathbf{u}}_{nx1} + \mathbf{C}_{nxn}\dot{\mathbf{u}}_{nx1} + \mathbf{K}_{nxn}\mathbf{u}_{nx1} = -\mathbf{M}_{nxn}\mathbf{R}_{nx3}\{\ddot{\mathbf{u}}_{g} + \ddot{\mathbf{u}}_{b}\}_{3x1}$$
(3.1)

in which, n is three times the number of floors, M is the diagonal superstructure mass matrix, C is the superstructure damping matrix, K is the superstructure stiffness matrix and R is the matrix of earthquake influence coefficients i.e. the matrix of displacements and rotation at the center of mass of the floors resulting from a unit translation in the X and Y directions and unit rotation at the center of mass of the base with respect to global structure reference axis. Furthermore, \ddot{u} , \dot{u} and u represent the floor acceleration, velocity and displacement vectors relative to the base, \ddot{u}_b is the vector of base acceleration relative to the ground and \ddot{u}_g is the vector of ground acceleration.

The equations of motion for the base are as follows:

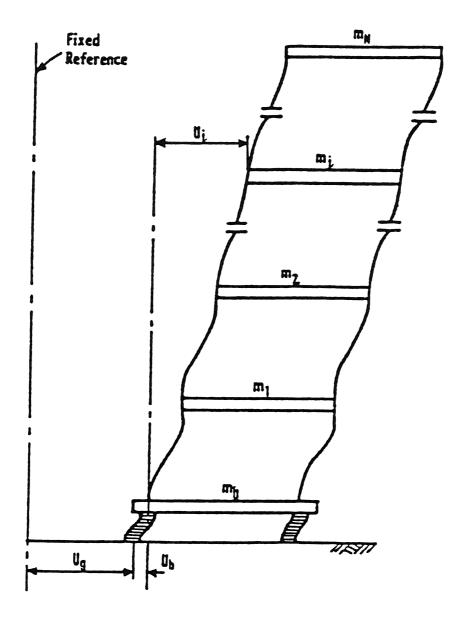


FIG. 3.1. Displacement Coordinates of the base isolated structure

$$R_{3xn}^{7}M_{nxn}\{\{\ddot{\mathbf{u}}\}+R\{\ddot{\mathbf{u}}_{b}+\ddot{\mathbf{u}}_{g}\}\}_{nxl}+M_{b\,3x3}\{\ddot{\mathbf{u}}_{b}+\ddot{\mathbf{u}}_{g}\}_{3xl}+C_{b\,3x3}\{\dot{\mathbf{u}}_{b}\}_{3xl}+K_{b\,3x3}\{\mathbf{u}_{b}\}_{3xl}+\{f\}_{3xl}=0$$
(3.2)

in which, M_b is the diagonal mass matrix of the rigid base, C_b is the resultant damping matrix of viscous isolation elements, K_b is the resultant stiffness matrix of elastic isolation elements and **f** is the vector containing the forces mobilized in the nonlinear elements of the isolation system. Employing modal reduction:

$$\mathbf{u}_n = \Phi_{nxm} \mathbf{u}_{mxl}^* \tag{3.3}$$

in which, Φ is the modal matrix normalized with respect to the mass matrix and \mathbf{u}^* is the modal displacement vector relative to the base and m is the number of eigenvectors retained in the analysis, and combining Eqs. 3.1 to 3.3 the following equation is derived:

$$\begin{pmatrix} [I] & [\Phi^{T}MR] \\ [R^{T}M\Phi] & [R^{T}MR+M_{b}] \end{pmatrix}_{(m+3)x(m+3)} \begin{pmatrix} \ddot{\mathbf{u}}^{*} \\ \ddot{\mathbf{u}}_{b} \end{pmatrix}_{(m+3)xl} + \begin{pmatrix} [2\xi_{i}\omega_{i}] & 0 \\ 0 & [C_{b}] \end{pmatrix}_{(m+3)x(m+3)} \begin{pmatrix} \dot{\mathbf{u}}^{*} \\ \dot{\mathbf{u}}_{b} \end{pmatrix}_{(m+3)xl} + \begin{pmatrix} 0 \\ f \end{pmatrix}_{(m+3)xl} = -\begin{bmatrix} \Phi^{T}MR \\ R^{T}MR+M_{b} \end{bmatrix}_{(m+3)x3} \ddot{\mathbf{u}}_{g_{3xl}}$$

$$(3.4)$$

in which, ξ_i = the modal damping ratio and ω_i = the natural frequency, of the fixed base structure in the mode i. In Eq. 3.4 matrices $[2\xi_i\omega_i]$ and $[\omega_i^2]$ are diagonal.

Eq. 3.4 can be written as follows:

$$\tilde{\mathbf{M}}\ddot{\mathbf{u}}_{t} + \tilde{\mathbf{C}}\dot{\mathbf{u}}_{t} + \tilde{\mathbf{K}}\tilde{\mathbf{u}}_{t} + \mathbf{f}_{t} = \tilde{\mathbf{P}}_{t}$$
(3.5)

At time $t + \Delta t$

$$\tilde{\mathbf{M}}\,\tilde{\mathbf{U}}_{t+\Delta t} + \tilde{\mathbf{C}}\,\tilde{\mathbf{U}}_{t+\Delta t} + \tilde{\mathbf{K}}\,\tilde{\mathbf{U}}_{t+\Delta t} + \mathbf{f}_{t+\Delta t} = \tilde{\mathbf{P}}_{t+\Delta t} \tag{3.6}$$

Written in incremental form

$$\tilde{\mathbf{M}} \Delta \ddot{\mathbf{u}}_{t+\Delta t} + \tilde{\mathbf{C}} \Delta \dot{\mathbf{u}}_{t+\Delta t} + \tilde{\mathbf{K}} \Delta \tilde{\mathbf{u}}_{t+\Delta t} + \Delta \mathbf{f}_{t+\Delta t} = \tilde{\mathbf{P}}_{t+\Delta t} - \tilde{\mathbf{M}} \ddot{\mathbf{u}}_{t} - \tilde{\mathbf{C}} \dot{\mathbf{u}}_{t} - \tilde{\mathbf{K}} \tilde{\mathbf{u}}_{t} - \mathbf{f}_{t}$$
(3.7)

In which, $\tilde{\mathbf{M}}$, $\tilde{\mathbf{C}}$, $\tilde{\mathbf{K}}$ and $\tilde{\mathbf{P}}$ represent the reduced mass, damping, stiffness and load matrices (see Eq. 3.4). Furthermore, the state of motion of modal superstructure and base is represented by vectors $\ddot{\mathbf{u}}_t$, $\ddot{\mathbf{u}}_t$ and $\tilde{\mathbf{u}}_t$ (see Eq. 3.4).

3.6 LOADING CONDITIONS

Vertical static loading conditions for representing dead loads, and earthquake loading conditions for representing seismic excitation, can be specified. The vertical loading conditions can include up to three independent vertical load distributions (I, II, III) and these distributions are combined to form load cases for the complete building. For earthquake loading conditions, bidirectional lateral ground motions can be specified.

3.7 SOLUTION FOR GLOBAL SYSTEM RESPONSE

The incremental nonlinear force vector $\Delta f_{t+\Delta t}$ in Eq. 3.7 is unknown. This vector is brought on to the right hand side of Eq. 3.7 and treated as a pseudo-force vector. The two step solution algorithm developed is as follows:

(i) The solution of equations of motion using unconditionally stable Newmark's constantaverage-acceleration method (Newmark 1959); (ii) The solution of the differential equations governing the behavior of the nonlinear isolation elements using unconditionally stable semi-implicit Runge-Kutta method (Rosenbrock 1964) suitable for solution of stiff differential equations. Furthermore, an iterative procedure consisting of corrective pseudo-forces is employed within each time step until equilibrium is achieved. Detailed explanation of the solution algorithm can be found in Nagarajaiah et al. (1991a;1991b).

3.8 BACKSUBSTITUTION

The time history of member forces are computed by backsubstitution, after the nonlinear time history analysis is completed, and the peak member forces are output to facilitate the design of members. The backsubstitution procedure described in section 2.11 (from ETABS) is adopted.

3.9 OUTPUT DATA

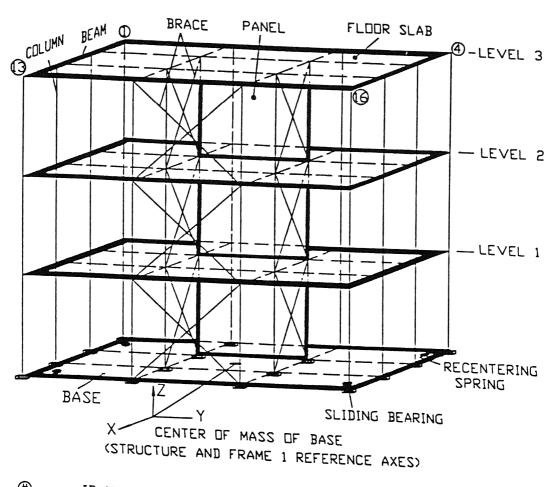
The output data consists of three sets: (i) input data for the structure and isolation system; (ii) dynamic characteristics of the structure; (iii) peak response results in the form of maximum response quantities; (iv) time history of response. The dynamic characteristics of the structure output are frequencies and mode shapes. The peak response results of member response and isolator response is output. The time history of isolator response, and other response quantities of interest are also output. A full range of options for output are available, the details of which can be found in the user's manual in APPENDIX A.

SECTION 4

VERIFICATION OF 3D-BASIS-TABS

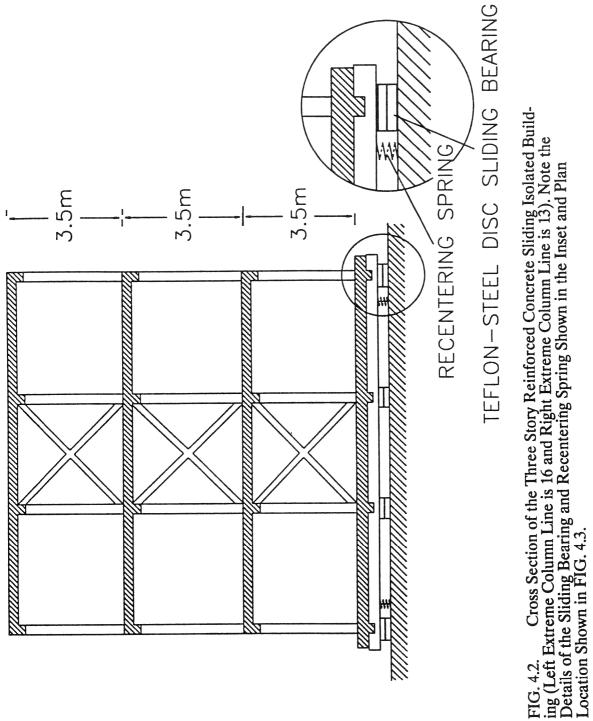
A sliding isolated structure and a structure supported on a combined slidingelastomeric isolation system are considered as case study since the novelty of 3D-BASIS-TABS (as well as 3D-BASIS) is that it can capture the highly nonlinear behavior of sliding isolation systems in plane motion accurately. The verification of 3D-BASIS-TABS was performed in two stages by dynamic analysis of a three story reinforced concrete building with a sliding isolation system.

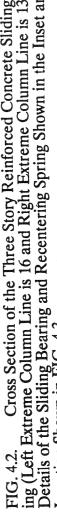
The first stage verification was accomplished by comparing global results (results at the center of mass) of the program 3D-BASIS-TABS, modeling the superstructure explicitly element-by-element, with the results of the program 3D-BASIS (Nagarajaiah et al. 1991b) using the dynamic characteristics of the superstructure i.e., frequencies and mode shapes. The first stage verified the global results.


The second stage was accomplished by comparing the dynamic analysis results of the program 3D-BASIS-TABS, in the form of peak member forces at a chosen instant of time during the time history, with the results of a pseudo-static analysis using commercially available finite element program STAAD, which can analyze 3D - linear structures. The pseudo-static analysis using STAAD consisted of the application of lateral forces or inertial forces at the center of mass of the three floors at the same instant of time as chosen in 3D-BASIS-TABS time history analysis. The lateral forces or inertial forces were extracted from the dynamic analysis using 3D-BASIS-TABS. The second stage verified the member force computations in the program 3D-BASIS-TABS.

4.1 THREE STORY REINFORCED CONCRETE BASE ISOLATED BUILDING

A three story reinforced concrete building designed based on code provisions is considered. The building is square in plan and consists of three bays in each direction as shown in Fig. 4.1. The dimensions of the various members shown in Fig. 4.1 are: (i) beams 300×400 mm; (ii) interior columns 300×400 mm; (iii) exterior columns 300×300 mm; (iv) R/C bracing members 300×300 mm; and (v) shear wall or panel of 100 mm thickness. The floor slab is 150 mm thick. The floor masses are: (i) translational mass of 108317 kg (119.4 ton) and (ii) mass moment of inertia 2985.6kN-m. The modulus of elasticity of the concrete is assumed to be $E_c = 29862560 \text{kN/m}^2$. The damping ratio in the superstructure is assumed to be 5% of critical.


The building is base isolated using a sliding isolation system as shown in Fig. 4.2. The sliding isolation system consists of 16 sliding bearings placed concentrically under each column and 4 recentering springs placed at the four corners of the building as shown in Fig. 4.3. Design of the isolation system is based on appropriate code provisions. The sliding isolation bearings are made of unfilled Teflon and polished stainless steel plates. The sliding bearings have a coefficient of friction $f_{\text{max}} = 0.10$ and $f_{\text{min}} = 0.07$. The recentering helical springs are designed to provide an isolation period $T_b = 3$ sec. The sliding bearings and helical springs are shown in Fig. 4.2 in greater detail (see the enlarged detail in Fig. 4.2).


3D-BASIS-TABS is used to analyze the base isolated building excited by El Centro NS earthquake. The input file and the output file for the three story base isolated building is given in Appendix B and C. The details about bay numbers and I.D. numbers of column lines are shown in Fig. 4.4 and should be read in conjunction with the input file in Appendix B.

ID NUMBER OF COLUMN LINE

FIG. 4.1. Superstructure Member Configuration and Isolation System Configuration of the Three Story Reinforced Concrete Sliding Isolated Building. Note the Location of the Structure Axis at the Center of Mass of the Base and the Location of the Column Lines 1, 4, 13 and 16 (Refer to the Input File given in Appendix B)

4-4

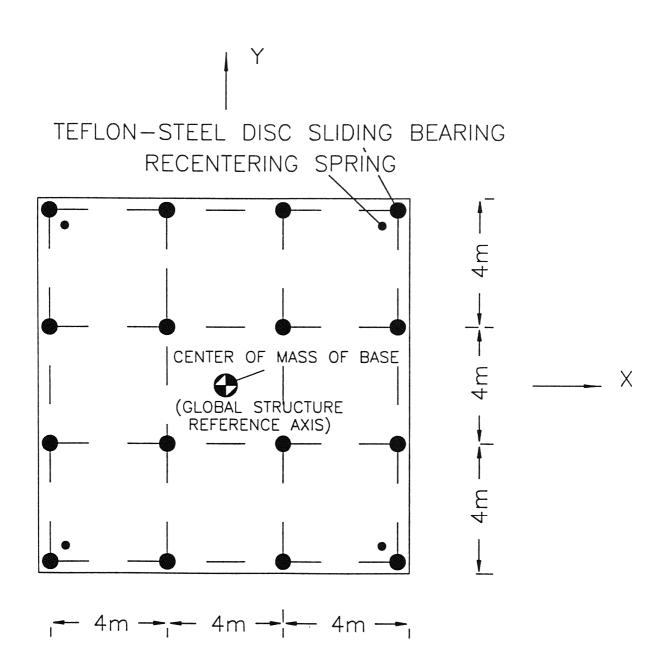


FIG. 4.3. Plan of the Sliding Isolation System with Teflon - Steel Disc Sliding Bearings and Recentering Springs

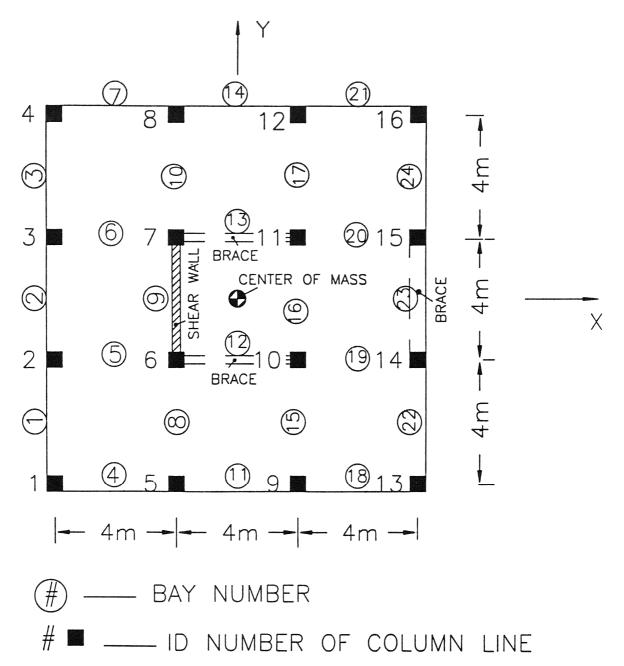


FIG. 4.4. Cross Sectional Plan of the Three Story Reinforced Concrete Sliding Isolated Building between Levels 2 and 3. Note the Location of the Column Lines and Bay Numbers (Refer to the Input File given in Appendix B)

4.1.1 Verification of Global Results

In order to verify the global response computed by 3D-BASIS-TABS i.e., at the center of mass of the floors, the same building was analyzed using 3D-BASIS (Nagarajaiah et al. 1991) with eigenvalues and eigenvectors of the three story building as the input for superstructure dynamic characteristics. A comparison of the results showed identical results in both cases, indicating the global response computed by 3D-BASIS-TABS to be accurate.

4.1.2 Verification of Member Force Computations

The local response results, in the form of peak member forces at a chosen instant of time (t = 3.05 sec) during the time history analysis of 20 secs under El Centro ground motion, were verified by comparing the results of 3D-BASIS-TABS with the results of a pseudo-static analysis using commercially available finite element program STAAD. The pseudo-static analysis using STAAD consisted of application of lateral forces or inertial forces at the center of mass of the three floors at the same instant of time as chosen in 3D-BASIS-TABS time history analysis. The lateral forces or inertial forces were extracted from the dynamic analysis using 3D-BASIS-TABS. A comparison between the member forces computed in 3D-BASIS-TABS and STAAD is shown in Table 4-1 and 4-2. Table 4-1 shows the column moments and forces. Table 4-2 shows the beam moments. It is evident from this comparison of results, obtained using 3D-BASIS-TABS and STAAD, that the member force computations in 3D-BASIS-TABS are accurate.

4.1.3 Time History Response

The time history of base displacement, roof displacement, and force displacement response of bearing no. 1, are shown in Fig. 4.5. Identical time history response was obtained by using 3D-BASIS-TABS and 3D-BASIS.

Forces
Column
0 F
Comparison
4-1
Table

Floor	Member ID		3D-BA	3D-BASIS-TABS	BS			ST	STADDIII		
		MOM-X (kn-m)	MOM-Y (kn-m)	SH-X (kN)	SH-Y (KN)	SH-X SH-Y AXIAL MOM-X (kN) (kN) (kN) (kN-m)	MOM-X (KN-m)	(m-V) (kn-m)	SH-X (KN)	SH-X SH-Y (kN)	AXIAL (KN)
	COL.#1(TOP)	9.75	0.06		0.03	7.43 0.03 23.43	7.73	0.06	7.42	7.42 0.03	23.41
lst	COL.#1(BOT.)	13.29	0.03	7.43	0.03	7.43 0.03 23.43	13.28	0.03		7.42 0.03	23.41
	COL.#1(TOP)	9.63	0.11	6.19	0.07	6.19 0.07 14.33	9.62	0.10	6.18	0.06	14.30
2nd	COL.#1(BOT.)	9.61	0.10	6.19	0.07	14.33	9.61	0.09		6.18 0.06	14.30
	COL.#1(TOP)	10.26	0.21	6.15	0.12	5.06	10.24	0.20		6.14 0.11	5.03
3rd	COL.#1(BOT.)	8.82	0.16	6.15	0.12	6.15 0.12 5.06	8.81	0.15	6.14	0.11	5.03

Table 4-2 Comparison of Beam Moments

Floor	Member ID	3D-BAS	3D-BASIS-TABS	STADDIII	DIII
		(m-NA) MOM-I	J-MOM (KN-m)	I-MOM (KN-m)	J-MOM (KN-m)
lst	BEAM AT BAY #4	18.95	15.69	18.94	15.68
2nd	BEAM AT BAY #4	18.50	15.58	18.48	15.56
3rd	3rd BEAM AT BAY #4	10.29	8.26	10.28	8.25

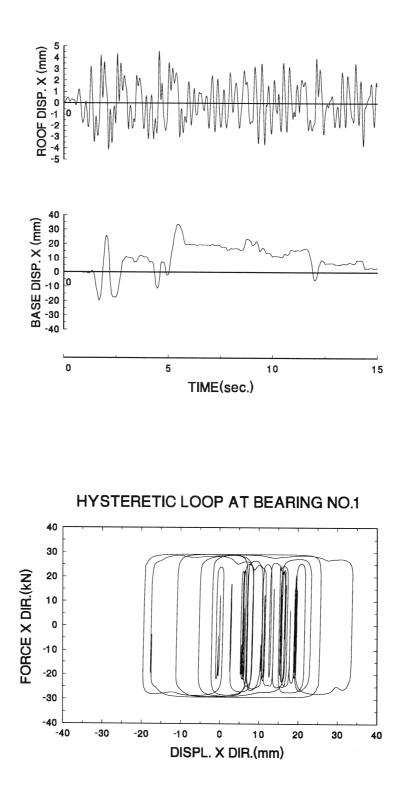


FIG. 4.5. Response of Three Story Reinforced Concrete Structure to El Centro NS Earthquake: (a) X Dir. Roof Displacement; (b) X Dir. Base Displacement; and (c) X Dir. Force - Displacement Loop at Sliding Bearing No. 1 Located on Column Line 1

4.2 CASE STUDY - EIGHT-STORY REINFORCED CONCRETE BASE ISOLATED BUILDING

An eight-story reinforced concrete base isolated structure shown in Fig 4.6 is considered. The structure consists of three bays in the transverse direction and eight bays in the longitudinal direction, as shown in Figure 4.7. The typical floor height is 147 inches.

A complete description of member properties, such as beam and column properties; is given in Table 4-3 and Table 4-4. The slab thickness is 102 mm in all floors and roof. The modulus of elasticity of the concrete is assumed to be 22183098 kN/m^2 (3150 k/in^2). The damping ratio in the superstructure is assumed to be 5% critical.

The isolation system consists of 28 sliding bearings and eight recentering springs, as shown in Fig. 4.8. The sliding bearings are made of unfilled Teflon and polished stainless steel plates. The sliding bearings have a coefficient of friction $f_{\text{max}} = 0.08$. and $f_{\text{min}} = 0.04$. The recentering helical springs are designed to provide an isolation period $T_b = 3 \text{ sec}$.

3D-BASIS-TABS is used to analyze the base isolated structure. The structure is excited by bidirectional El Centro earthquake, since bidirectional/biaxial interaction is of importance (Nagarajaiah et.al. 1990; Mokha et al., 1993).

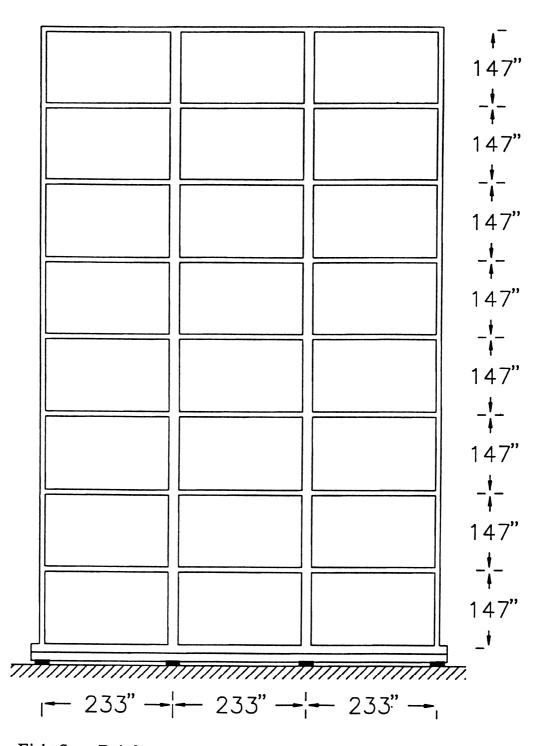


FIG. 4.6. Eight Story Reinforced Concrete Base Isolated Building on Combined Sliding and Elastomeric Isolation System

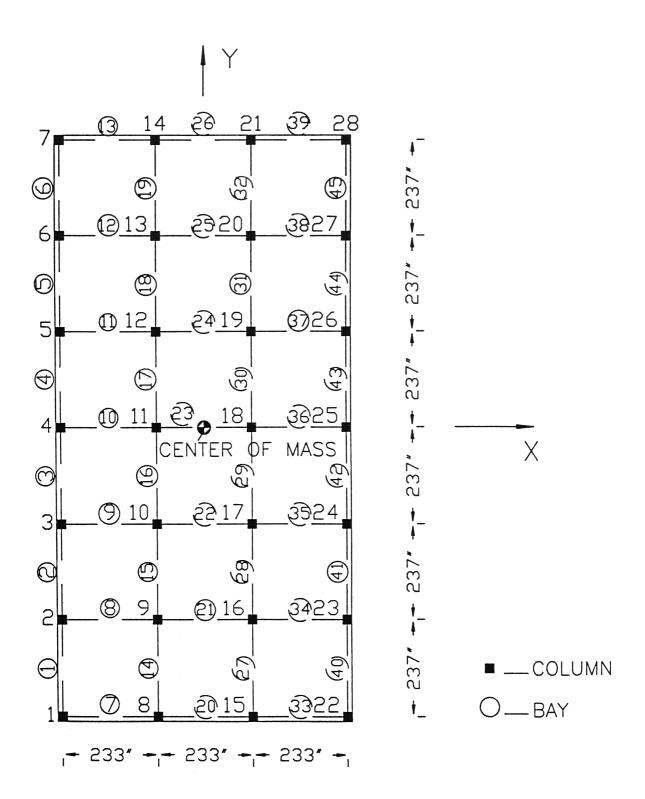


FIG. 4.7. Cross Sectional Plan of the Eight Story Reinforced Concrete Base Isolated Building between Levels 7 and 8. Note the Location of the Column Lines and Bay Numbers (Refer to the Input File given in Appendix D)

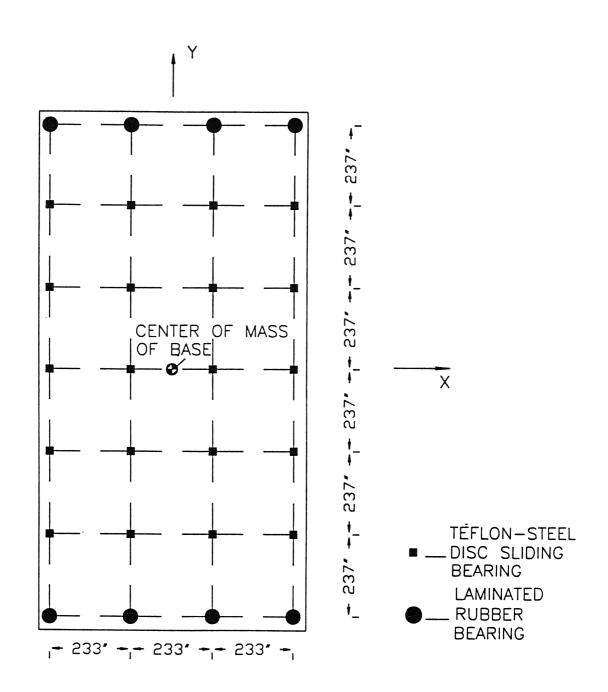


FIG. 4.8. Plan of the Isolation System with Laminated Rubber Bearings and Teflon -Steel Disc Sliding Bearings

COL. ID	1st fl.	2nd fl.	3rd fl.	4th fl.	5th fl.	6th fl.	7th fl.	8th fl.
1	3*	3	3	3	3	3	3	3
2	7	7	7	7	7	7	7	7
3	7	7	7	7	7	7	7	7
4	2	7	7	7	7	7	7	7
5	5	3	3	2	2	2	1	1
6	5	3	3	2	2	2	1	1
7	3	3	3	3	3	3	3	3
8	7	7	7	7	. 7	7	7	7
9	5	5	3	3	2	2	1	1
10	6	6	4	4	2	2	1	1
11	6	6	4	4	2	2	1	1
12	6	6	4	4	2	2	1	1
13	6	6	4	4	2	2	1	1
14	7	7	7	7	7	7	7	7
15	7	7	7	7	7	2	7	7
16	6	6	4	4	2	2	1	1
17	6	6	4	4	2	2	1	1
18	6	6	4	4	2	2	1	1
19	6	6	4	4	2	2	1	1
20	6	6	4	4	2	2	1	1
21	7	7	7	7	7	7	7	7
22	3	3	3	3	3	3	3	3
23	2	7	7	7	7	7	7	7
24	2	7	7	7	7	7	7	7
25	2	7	7	7	7	7	7	7
26	2	7	7	7	7	7	7	7
27	2	7	7	7	7	7	7	7
28	3	3	3	3	3	3	3	3

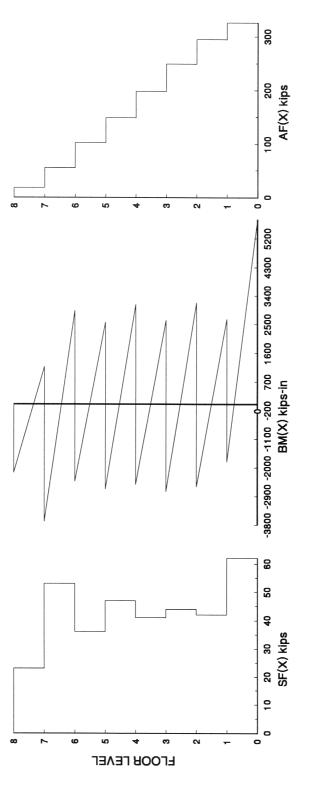
Table 4-3 - Column Schedule

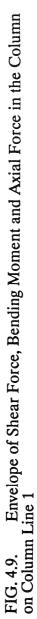
[•]Column types:

TYPE	1	2	3	4	5	6	7
bxh (inxin)	18x18	24x24	26x26	24x28	28x28	24x32	18x24

Bay #	1st fl.	2nd fl.	3rd fl.	4th fl.	5th fl.	6th fl.	7th fl.	8th fl.
1	13*	13	9	9	6	6	3	11
2	13	13	9	9	6	6	3	11
3	13	13	9	9	6	6	3	11
4	12	12	12	12	6	6	Ġ	2
5	12	12	12	12	6	6	6	2
6	12	12	12	12	6	6	6	2
7	11	11	11	11	5	5	3	2
8	12	12	12	12	6	6	6	2
9	11	11	11	11	5	5	3	2
10	12	12	12	12	6	6	6	2
11	12	12	12	12	6	6	6	11
12	12	12	9	9	6	6	6	11
13	12	12	9	9	6	6	6	11
14	12	12	9	9	6	6	6	11
15	10	10	2	2	4	4	2	11
16	10	10	2	2	4	4	2	1
17	10	10	2	2	4	4	2	1
18	9	9	6	6	3	3	2	1
19	9	9	6	6	3	3	2	
20	9	9	6	6	3	3	2	
21	8	8	5	5	3	3	2	
22	9	9	6	6	3	3	2	
23	9	9	6	6	3	3	2	
24	12	12	9	6	6	6	6	
25	12	12	9	6	6	6	6	
26	12	12	9	6	6	6	6	
27	12	12	9	6	б	6	6	
28	12	12	9	6	6	6	6	

Table 4-4 - Beam Schedule


Beam types:


TYPE	1	2	3	4	5	6	7	8	9	10	11	12	13
bxh	12x	16x	18x	14x	20x	20x	16x	22x	22x	18x	24x	24x	26x
(inxin)	22	24	24	22	22	24	22	22	24	22	22	24	26

4.2.1 Response to Bidirectional El Centro Earthquake

Figure 4.9 shows the envelope of axial forces, shear forces, and moments in Column 1. The results presented in Fig. 4.9, such as member forces, illustrate the capability of 3D-BASIS-TABS to provide useful information for the design of members.

4

4-17

SECTION 5

CONCLUDING REMARKS

3D-BASIS was designed to emphasize the advantages of the modeling approach proposed by Wilson et al. (1975) for the 3D-superstructure in ETABS. The developments described in this report have led to the incorporation of the modeling approach for the 3D-superstructure of ETABS into 3D-BASIS, resulting in the enhanced version 3D-BASIS-TABS. New features, such as multidirectional excitation capabilities, have been incorporated into 3D-BASIS-TABS. The program 3D-BASIS-TABS has been verified by comparison with other program and previous versions.

Microcomputer PC - DOS/WINDOWS version of 3D-BASIS-TABS has also been developed. The PC version of 3D-BASIS-TABS can be used with desktop microcomputers running MS-DOS or WINDOWS environments. The versatility of 3D-BASIS-TABS (as well as 3D-BASIS) stems from the fact that it can analyze base isolated structures like sliding isolated structures with great accuracy and yet complete the analysis in reasonable CPU time on a microcomputer. 3D-BASIS-TABS has been designed keeping in view the concerns and feedback from practicing engineers and it is envisaged that further improvements can be made.

Finally, 3D-BASIS-TABS will be enhanced in the near future to incorporate nonlinear dampers, failsafe devices, displacement restraints and hybrid control which has been developed by several researchers (Reinhorn, et al. 1987; 1993; Feng, et al. 1993; Nagarajaiah, et al. 1993c, 1993d; Riley, et al. 1993; Soong, et al 1993; Subramaniam, et al. 1993; Yang, et al. 1992). Hybrid control involves augmentation of the passive isolation system with a active hydraulic devices.

SECTION 6 REFERENCES

Aiken, I.D., Clark, P.W., Kelly, J.M., Kikuchi, M., Saruta, M. and Tamura, K. (1993). "Design- and ultimate-level earthquake tests of a 1/2.5-scale base-isolated reinforced concrete building." *Proceedings ATC-17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control*, Vol. 1, 281-292.

Amin, N., Mokha, A. and Fatehi, H. (1993). "Seismic isolation retrofit of the U.S. court of appeals building." *Proceedings ATC-17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control, Vol. 1, 185-196.*

Asher, J.W. and Hussain, S.M. (1993). "Structural engineering perspective on the design and construction of base isolated buildings." *Proceedings ATC-17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control*, Vol. 1, 95-104.

Buckle, I. G. and Mayes, R. L. (1990). "Seismic isolation: history, application, and performance - A world overview." *Earthquake Spectra*, 6(2), 161-202.

Buckle, I.G. and Liu, H. (1993). "Stability of elastomeric seismic isolation systems." *Proceedings ATC-17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control,* Vol. 1, 293-306.

Buckle, I.G. (1993). "Future Directions in Seismic Isolation, Passive Energy Dissipation and Active Control." *Proceedings ATC-17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control, Vol. 2, 825-830.*

Button, M.R. (1993). "Story shear distributions in seismically isolated structures." Proceedings ATC-17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control, Vol. 1, 307-318.

Cho, D.M. and Retamal, E. (1993). "The Los Angeles County Emergency Operations Center on high damping rubber bearings to withstand an earthquake bigger than the "big one." *Proceedings ATC-17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control, Vol. 1, 209-220.*

Clark, P.W., Whittaker, A.S., Aiken, I.D. and Egan, J.A. (1993). "Performance considerations for isolation systems in regions of high seismicity." *Proceedings ATC-17-1 Seminar* on Seismic Isolation, Passive Energy Dissipation, and Active Control, Vol. 1, 29-40.

Constantinou, M.C., Mokha, A. and Reinhorn, A. M. (1990b). "Teflon bearings in base isolation II: Modeling." J. Struct. Engrg. ASCE, 116(2), 455-474.

Constantinou, M.C., Winters, C.W. and Theodossiou, D. (1993). "Evaluation of SEAOC & UBC analysis procedures, Part 2: Flexible superstructure." *Proc. ATC-17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control,* Vol. 1, 161-172.

Feng, M.Q., Shinozuka, M. and Fujii, S. (1993). "A friction controllable sliding isolation system." J. of Engrg. Mech., ASCE, (in print).

Hanson, R.D., Aiken, I., Nims, D.K., Richter, P.J. and Bachman, R. (1993). "State-of-the-art and State-of-the-practice in seismic energy dissipation." *Proceedings ATC-17-1* Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control, Vol. 2, 449-472.

Hisano, M. et al. (1988). "Study of sliding isolation system: Triaxial shaking table test and its simulation." *Proc. of Ninth World Conf. on Earthquake Engrg.*, Japan, V, 741-746.

Kan, C. L. and Chopra, A. K. (1977). "Elastic earthquake analysis of torsionally coupled multistory building." Earthquake Engrg. and Struct. Dyn., 5(4), 395-412.

Kannan, A. M. and Powell, G. H. (1975). "DRAIN-2D: a general purpose computer program for dynamic analysis of inelastic plane structures with users guide." *Report No. UCB/EERC-73/22*, Earthquake Engrg. Res. Ctr., University of California, Berkeley, Calif.

Kelly, J. M. and Beucke, K. E. (1983). "A friction damped base isolation system with fail safe characteristics." Earthquake Engrg. and Struct. Dyn., 11(1), 33-56.

Kelly, J.M. (1993) "State-of-the-art and state-of-the-practice in base isolation." "Proceedings ATC-17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control, Vol. 1, 9-28.

Lashkari, B. and Kircher, C.A. (1993). "Evaluation of SEAOC & UBC analysis procedures, Part 1: Stiff superstructure." *Proceedings ATC-17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control,* Vol. 1, 149-160.

Mitsusaka, Y., Nagarajaiah, S., Reinhorn, A.M., Buckle, I.G., and Miyazaki, M. (1993). "Post-earthquake evaluation study and performance evaluation of Foothill Communities Law and Justice Center." *Report No. NCEER-93-X.* National Center for Earthquake Engineering Research, State University of New York at Buffalo, NY (in print).

Mokha, A., Constantinou, M. C. and Reinhorn, A. M. (1993). "Verification of friction model of Teflon bearings under triaxial load." J. Struct. Engrg, ASCE, 119(1) 240-261.

Mondkar, D. P. and Powell, G. H. (1975). "ANSR-general purpose program for analysis of nonlinear structural response." *Report No. UCB/EERC-75/37*, Earthquake Engrg. Res. Ctr., University of California, Berkeley, Calif.

Mostaghel, N. and Khodaverdian, M. (1988). "Seismic response of structures supported on R-FBI system." Earthquake Eng. Struct. Dyn. ,16(6), 839-854.

Nagarajaiah, S., Reinhorn, A. M. and Constantinou, M. C. (1990). "Analytical modeling of three dimensional behavior of base isolation devices." *Proc. Fourth U. S. Nat. Conf. on Earthquake Engrg.*, Earthquake Engrg. Res. Inst., 3, 579-588.

Nagarajaiah, S., Reinhorn, A. M. and Constantinou, M. C. (1991a). "Nonlinear dynamic analysis of 3D-Base isolated structures." J. Struct. Engrg., ASCE, 117(7), 2035-2054.

Nagarajaiah, S., Reinhorn, A. M. and Constantinou, M. C. (1991b). "3D-BASIS: Nonlinear dynamic analysis of three-dimensional base isolated structures - Part II." *Report No. NCEER-91-0005*, Nat. Ctr. for Earthquake Engrg. Res., State University of New York, Buffalo, N.Y. Nagarajaiah, S., Reinhorn, A. M. and Constantinou, M. C. (1992). "Experimental study of sliding isolated structures with uplift restraint." *J. Struct. Engrg.*, ASCE, 118(6), 1666-1682.

Nagarajaiah, S., Tsopelas, P., Li, C., Reinhorn, A.M. and Constantinou, M.C. (1993a). "3D-Basis: A class of computer programs for nonlinear dynamic analysis of base isolated structures." *Proceedings ATC-17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control*, Vol. 1, 173-184.

Nagarajaiah, S., Reinhorn, A.M. and Constantinou, M.C. (1993b). "Torsion in Base Isolated Structures." *Proceedings ATC-17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control, Vol. 1, 331-338*

Nagarajaiah, S., Reinhorn, A. M. and Constantinou, M. C. (1993c). "Torsional coupling in sliding base isolated structures." J. Struct. Engrg., ASCE, 119(1), 130-149.

Nagarajaiah, S., Reinhorn, A. M. and Constantinou, M. C. (1993d). "Torsion in base isolated structures with elastomeric systems." J. Struct. Engrg., ASCE, 119(10) 2932-2951.

Nagarajaiah, S., Riley, M.A. and Reinhorn, A.M. (1993e). "Control of sliding isolated bridges with absolute acceleration feedback." *J. Engrg. Mech.*, ASCE, 119(11).

Nagarajaiah, S., Feng, M.Q. and Shinozuka, M. (1993f). "Active control of structures with friction controllable isolation bearings." *J. Soil Dyn. and Earthquake Engrg.*, Vol. 12,(2) 103-112.

Newmark, N. M. (1959). "A method of computation for structural dynamics." J. Engrg. Mech. Div. ASCE, 85(EM3), 67-94.

Palfalvi, B., Amin, N., Mokha, A., Fatehi, H. and Lee, P. (1993). "Implementation issues in seismic isolation retrofit of government buildings." *Proceedings ATC-17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control*, Vol. 1, 257-264.

Park, Y. J., Wen, Y. K. and Ang, A. H. S. (1986). "Random vibration of hysteretic systems under bidirectional ground motions." *Earthquake Engrg. Struct. Dyn.*, 14(4), 543-557.

Reinhorn, A. M., Rutenberg, A. and Gluck, J. (1977). "Dynamic torsional coupling in asymmetric building structures." *Building and Environment*, 12(4), 251-261.

Reinhorn, A. M., Manolis, G.D. and Wen, C.Y. (1987). "Active control of inelastic structures." J. Engrg. Mech., ASCE, 113(3), 315-333.

Reinhorn, A.M., Nagarajaiah, S., Riley, M.A. and Subramaniam, R. (1993). "Hybrid control of sliding isolated structures." *Proc. Structures Congress* 1993, LA, 766-771.

Riley, M.A., Subramaniam, R., Nagarajaiah, S. and Reinhorn, A.M. (1993). "Hybrid Control of Sliding Base Isolated Structures." *Proceedings ATC-17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control,* Vol. 2, 799-810.

Rosenbrock, H. H. (1964). "Some general implicit processes for the numerical solution of differential equations." *Computer J.*, 18, 50-64.

Su, L., Ahmadi, G. and Tadjbakhsh, I. G. (1989). "A comparative study of performance of various base isolation systems, Part I: Shear beam structures." Earthquake Engrg. Struct. Dyn., 18(1), 11-32.

Subramaniam, R., Reinhorn, A.M. and Nagarajaiah, S. (1993). "Application of fuzzy set theory to the active control of base isolated structures." *Proc. Second IEEE International Conf. on Fuzzy Systems (FUZZ-IEEE-93)*, San Francisco, CA, 223-231.

Tarics, A. G., Way, D. and Kelly, J. M. (1984). "The implementation of base isolation for the foothill communities law and justice center." *Report to the National Science Foundation*.

Tajirian, F.F. (1993). "Seismic isolation of critical components and tanks." Proceedings ATC-17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control, Vol. 1, 233-244.

Theodossiou, D. and Constantinou, M. C. (1991). "Evaluation of SEAOC design requirements for sliding isolated structures." *Report No. NCEER-91-0015*, Nat. Ctr. for Earthquake Engrg. Res., State University of New York, Buffalo, N.Y.

Tsopelas, P. C., Nagarajaiah, S., Constantinou, M. C. and Reinhorn, A. M. (1991). "Nonlinear dynamic analysis of multiple building base isolated structures program 3D-BASIS-M." *Report No. NCEER-91-0014*, Nat. Ctr. for Earthquake Engrg. Res., State University of New York, Buffalo, N.Y.

Tsopelas, P. C., Nagarajaiah, S., Constantinou, M. C. and Reinhorn, A. M. (1993). "Nonlinear dynamic analysis of multiple building base isolated structures." *Computers and Structures* (in print).

Wen, Y.K. (1976) "Method of random vibration of hysteretic systems." J. Engrg. Mech. Div. ASCE, 102(EM2), 249-263.

Wilson, E. L., Hollings, J. P. and Dovey, H. H. (1975). "ETABS-Three dimensional analysis of building systems." *Report No. UCB/EERC-75/13*, Earthquake Engrg. Res. Ctr., University of California, Berkeley, Calif.

Wilson, E. L. (1980). "SAP-80 Structural analysis programs for small or large computer systems." *CEPA 1980 Fall Conf. and Annual Meeting*, California, 13-15.

Winters, C. and Constantinou, M.C., (1993) "Evaluation of static and response spectrum analysis procedures of SEOAC/UBC for seismic isolated structures." *NCEER Report No. 93-x*, National Center for Earthquake Engrg. Research, State University of New York, Buffalo, NY (in print).

Yang, J.N., Li, Z., Danielians, A. and Liu, S.C. (1992). "Aseismic hybrid control of nonlinear hysteretic structure." *J. Engrg. Mech.*, ASCE, 118(7), 1423-1440.

Yasaka, A. et al. (1988). "Biaxial hysteresis model for base isolation devices." Summaries of technical papers of annual meeting, Architectural Institute of Japan, Tokyo, Japan, 1, 395-400.

Zayas, V., Low, S. and Mahin, S. (1987). "The FPS earthquake protection system: Experimental report." *Report No. UCB/EERC-87/01*, Earthquake Engrg. Research Center, University of California, Berkeley, CA.

APPENDIX A

3D-BASIS-TABS PROGRAM USER'S GUIDE

APPENDIX A 3D-BASIS-TABS PROGRAM USER'S GUIDE

A.1 INPUT FORMAT

The input will be specified in a main file BASTABS.DAT accompanied by wave motion data files WAVEX.DAT, WAVEY.DAT.

Dynamic arrays are used. Double precision is used in the program for accuracy. Common block size has been set to 100,000 and should be changed if the need arises.

A free format is used to read all input data. Hence, conventional delimiters (commas, blanks) may be used to separate data items. Standard FORTRAN variable format is used to distinguish integers and floating point numbers. Input data must therefore, conform to the specified variable type. All values are to be specified in the input file unless mentioned otherwise. No blank cards are to be specified in the input file.

Note: Provision is made for a line of text between each set of data items. Refer to the sample data files accompanying this manual. No blank lines are to be specified in the input file.

A.2 PROBLEM TITLE

TITLE TITLE upto 80 characters.

A.3 UNITS

UNITS UNITS up to 80 characters.

A.4 CONTROL PARAMETERS

A.4.1 General Control Information

USER_TEXT Reference information: upto 80 characters of text. ISEV,NST,NFQ,NP,LOR

(1)	ISEV = 1 for option 1 - Data for 3D-shear building
	story shear stiffnesses to be specified in the input file.

 ISEV = 2 for option 2 - Data for full 3D-building member properties for beams, columns etc. to be specified in the input file.

*Notes: 1. For explanation of the option 1, option 2 and option 3 refer to section 3.2. If option 2 or 3 is used then member forces are not output.

2. Number of eigenvectors/eigenvalues to be retained in the analysis should be in groups of three - the minimum being one set of three modes.

3. Number of bearings refers to the total number of bearings which could be a combination of linear elastic elements, viscous elements, lead-rubber bearings, steel dampers, sliding bearings.

A.4.2 Superstructure Control Information (for ISEV=2 only; skip this to A4.3 if ISEV=1 or 3)

USER TXT Reference information; upto 80 characters of text.

NDF,NTF,NLD,NAT

(1)*	NDF = Number of frames with different properties or different vertical loading
(1)	NTF = Total number of frame or shear wall elements in the structure
(2)	NLD = Total number of load conditions
(3)	NAT = Analysis type code:

EQ.1; Static load analysis + mode shapes and frequencies + Lateral earthquake response and peak response printout only

EQ.2; Static load analysis + mode shapes and frequencies

- + Lateral earthquake response and time history printout
- *Notes: 1. Input data for frames with identical properties and vertical loading are given only once see also section A.5.1.2.10 on Frame Location.

2. Load conditions are defined as combinations of the four load cases - see section A.9 on Load Case Definition.

3. Allowable story degrees of freedom are restricted to three degrees of freedom per floor.

A.4.3 Integration Control Parameters

USER_TXT Reference information; upto 80 characters of text. TSI,TOL,FMNORM,MAXMI,KVSTEP

(1)*	TSI = Time step of integration. (If TSI>TSR then TSI set = TSR; refer to A.4.5 for details about TSR)
(2)	TOL = Tolerance (error) for the nonlinear force vector computation.
(3)	FMNORM = Reference moment at the center of mass of the base used for computing convergence.
(4)	MAXMI = Maximum number of iterations within a time step.
	KVSTEP = Index for time step variation.
	KVSTEP = 1 for constant time step.
	KVSTEP = 2 for variable time step.

*Note: 1. The time step of integration cannot exceed the time step of earthquake record given in A.4.5.

2. Tolerance for force computation may be 0.001.

3. The reference moment at the center of mass of the base can be calculated approximately by multiplying the base shear by one half the maximum dimension at the base (may require some iterations).

4. If MAXMI is exceeded the program is terminated with an error message.

A.4.4 Newmark's Method Control Parameters

USER_TXT	Reference information; upto 80 characters of text.
GAM,BET	GAM = Parameter which produces numerical damping within a time step.
(1)	(Default value = 0.5)
	BET = Parameter which controls the variation of acceleration within a time step.
(1)	(Default value = 0.25)

1. Default values are assigned only when both GAM and BET are zero.

A.4.5 Earthquake Control Parameters

USER_TXT Reference information; upto 80 characters of text.

INDGACC, TSR, XTH, ULF

(1)a* (1)b	INDGACC = 1 for a single lateral earthquake record at an angle of incidence XTH.INDGACC = 2 for two independent lateral earthquake records along the X and Y axes.
(2)	TSR = Time step of the earthquake record(s).
	XTH = Angle of incidence of the earthquake with respect to the X axis in anticlockwise direction (for INDGACC = 1).
(3)	ULF = Load factor.

*Notes: 1. Three options are available for the earthquake record input:

a) INDGACC = 1 refers to a single earthquake record input at any angle of incidence XTH with respect to the X axis. Input only one earthquake record (read through a single file WAVEX.DAT). Refer to A.7.1 for wave input information.

b) INDGACC = 2 refers to two independent earthquake records input in the X and Y directions, eg. El Centro N-S along the X direction and El Centro E-W along the Y direction. Input two independent earthquake records in the X and Y directions (read through two files WAVEX.DAT and WAVEY.DAT). Refer to A.7.1 and A.7.2 for wave input information.

2. The time step of earthquake record and the length of earthquake record has to be the same in X, Y and Z directions for INDGACC = 2 and 3.

3. Load factor is applied to the earthquake records in X, Y and Z directions.

A.5 SUPERSTRUCTURE DATA

Go to A.5.1 for option 2 of A.4.1 - Full three dimensional representation of the superstructure.

Go to A.5.2 for option 1 - three dimensional shear building representation of the superstructure.

Go to A.5.3 for option 3 of A.4.1 - Eigenvalues/Eigenvectors for three dimensional representation of the superstructure.

A.5.1 THREE DIMENSIONAL BUILDING (for ISEV = 2)

USR TXT Reference information; upto 80 characters of text

Note: The sections A.5.1.1 to A.5.1.3 to follow are based on the input requirements of ETABS.

A.5.1.1 Story Data

Repeat the following block of data according to the number of stories (NST).*

USR TXT Reference information; upto 80 characters of text.

(SD(N,I) I = 2,6), N = 1,NST)

SD(N,2) = Story height [distance from the floor (or roof)level to the floor (or base) level below].

SD(N,3) = Translational mass.

- SD(N,4) = Rotational mass moment of inertia about a vertical axis through the center of mass.
- SD(N,5) = X-distance to the center of mass measured from the STRUCTURE REFERENCE AXIS.
- SD(N,6) = Y-distance to the center of mass measured from the STRUCTURE REFERENCE AXIS.

*Note: Input one set per story from the top story to the bottom story of the superstructure. (1) The Global STRUCTURE REFERENCE AXIS has to be a vertical axis at the center of mass of the base.

A.5.1.2 Frame Data

Repeat the following block of data according to number of different frames (NDF).

USR_TXT Frame data information; up to 80 characters

A.5.1.2.1 Frame Control Parameters

USR TXT	Reference information; upto 80 characters of text.
	interest and anterination, ap to oo enaracters of text.

M,NS,NC,NB,NCP,NBP,NFEF,NPAN,NTRU

(1)*	M = Frame identification number.
(2)	NS = Number of story levels above the base.
(3)	NC = Number of vertical column lines in the frame.
	NB = Number of bays in the frame.
(4)	NCP = Number of sets of different column properties.
(5)	NBP = Number of sets of different beam properties.
(6)	NFEF = Number of sets of different fixed end moments and shears to be applied as vertical loads to beams
(7)	NPAN = Number of infill shear panels in the frame.
(8)	NTRU = Number of bracing elements in the frame.

*Note: One set of data must be entered for each different frame. Frames with different locations but identical properties and vertical loading need be entered only once (see also section A.5.1.3 on Frame location cards).

1. Frame identification numbers must be entered in numerical sequence beginning with number one (1). This frame may be located (repeated) at different positions in the structure.

2. If a frame does not extend the full height of the building, then only those story levels actually existing in the frame are to be specified in the input file.

3. An isolated shear wall is a single column line frame. For this case all data pertaining to beams is meaningless an must be omitted in the data input section to follow.

4. Column properties may be referenced to any number of columns in the frame. The number of column property sets control A.5.1.2.3.

5. The number of beam property sets control the number sets of data to be read in section A.5.1.2.4.

6. If no vertical static loads act on the structure, then input zero, and skip section A.5.1.2.5.

7. If no panel elements are included in this frame, then input zero, and skip section A.5.1.2.8.

8. If no bracing elements are included in this frame, then input zero, and skip section A.5.1.2.9.

A.5.1.2.2 Vertical Column Line Coordinates

USR_TXT Reference information; upto 80 characters of text.

(M,(CLN(J,I),I=I))	,2),J=1,NC)
$(1)^{*}$	M = Column line identification number
(2)	CLN(J,1) = X-distance to J th column line from frame reference point. CLN(J,2) = Y-distance to J th column line from frame reference point.

*Note: 1. One set of vertical column line coordinates have to be specified in the input file for each column line in the frame. For frames with a single column line a second column should be specified to define the major axis for column properties entered in section A.5.1.2.7.

2. Coordinates of column lines are measured from the frame (local) axis.

A.5.1.2.3 Column Properties

USR_TXT	Reference information; upto 80 characters of text.
(M, (CP(J,I), J=1,9), I=1, NCP)	
$(1)^{*}$	M = Identification number for this column property set
	CP(1,I) = Modulus of Elasticity, E.
	CP(2,I) = Axial Area A.
(2)	CP(3,I) = Shear area associated with shear forces in major axis direction.
(2)	CP(4,I) = Shear area associated with shear forces in minor axis direction.

CP(5,I) = Torsional inertia.

	CP(6,I) = Flexural inertia for bending in the major axis direction.
	CP(7,I) = Flexural inertia for bending in the minor axis direction.
(3)	CP(8,I) = Rigid zone depth at the top of column (for both axis). DT.
(4)	CP(9,I) = Rigid zone depth at the bottom of column. DB.

*Note: One set of data must be supplied for each different column in this frame.

1. Property set identification numbers must be in increasing numerical sequence beginning with one (1).

2. Shearing deformations are ignored if shear areas are zero.

3. The rigid zone depth is used to reduce the effective length of the column about both axis.

4. Usually zero unless beam extends above the floor level.

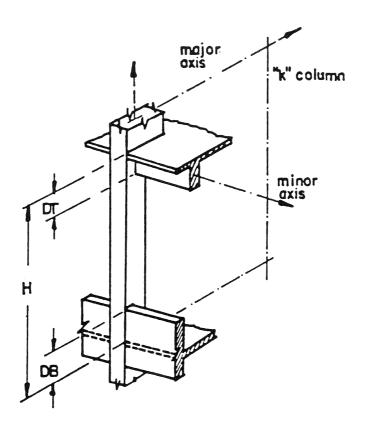


Fig. A-1 - Typical Column Model.

A.5.1.2.4 Beam Properties

USR_TXT	Reference information; upto 80 characters of text.
(M,(BP(J,I),J=1,9	9),I=1,NBP)
(1)*	M = Identification number for this beam property set
	BP(1,I) = Modulus of Elasticity, E.
(2)	BP(2,I) = Shear Area SA.
	BP(3,I) = Torsional inertia.
	BP(4,I) = Flexural inertia, I.
	BP(5,I) = K_{II} - stiffness factor (eg. 4)
	BP(6,I) = K_{JJ} - stiffness factor (eg. 4)
	BP(7,I) = K_{IJ} - stiffness factor (eg. 2)
(3)	BP(8,I) = Rigid zone depth at the I side of beam.
	BP(9,I) = Rigid zone depth at the J side of beam.

*Note: One set of data must be supplied for each different beam in the frame; skip this input if the frame has only one column line.

1. Property set identification numbers must be input in increasing numerical sequence beginning with one (1).

2. Shearing deformations are ignored if shear areas are zero.

3. The beam rigid zone lengths are used to reduce the effective length of the beam.

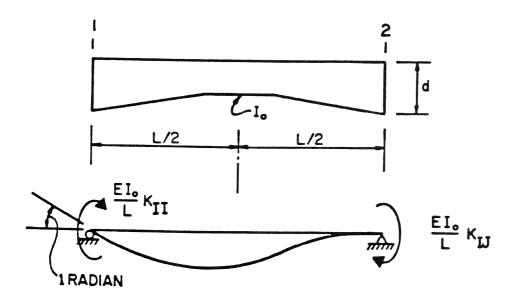


Fig. A-2 - Typical Notation of Beam Stiffness Coefficients

A.5.1.2.5 Fixed-End Beam Loads

(See A.5.1.2.1 If NFEF = 0, skip this.)

USR_TXT Reference information; upto 80 characters of text.

(M,IFEF(I),(FEF(J,I),J=1,5),I=1,NFEF)

(1)* M = Identification number for this vertical loading set

IFEF(I) = Index:

EQ. 0; Fixed-end forces are applied at the column faces

EQ. 1; Fixed-end forces are applied at the column centerlines

*Note: One set of data must be supplied for each different type of vertical beam loading; omit this data set if this is a single column line frame

1. Load set numbers must be input in sequence.

2. Reactions act on the beam ends and are positive as shown in the sketch.

3. Additional fixed-end forces due to the uniform load - w, are calculated using:

 $M = w l^2 / 12; V = w l / 2$

and are added to any specified fixed-end reactions. The forces due to w are exact only for prismatic beams.

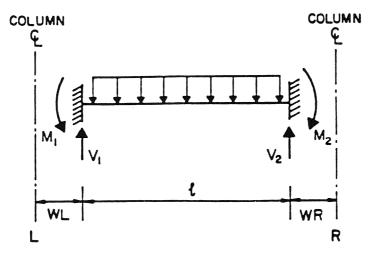


Fig. A-3 - Typical Beam Loading

A.5.1.2.6 Beam Location, Properties and Loads

USR_TXT	Reference information; upto 80 characters of text.
[{ I,(LB(N,M,L),	$L=1,3$,K,(LDB(N,M,L),L=1,3)},N=1,NS],M=1,NB
	I = Bay identification number for this beam.
(1)*	LB(N,M,1) = Column line number at end I.
	LB(N,M,2) = Column line number at end J.
(2)	LB(N,M,3) = Beam property set identification number for this beam.
(3)	K = Number of beams in sequence below to be generated having the same properties and vertical loading as this beam.
(4)	LDB(N,M,1) = Vertical loading set identification number for vertical load case I.
	LDB(N,M,2) = Vertical loading set identification number for vertical load case II.
	LDB(N,M,3) = Vertical loading set identification number for vertical load case III.

*Note: One set of data must be input from top to bottom and from bay to bay in the frame (unless the data generation option is used)

1. Position of I and J ends defines local coordinate axis with local "y" positive from I to J and local "z" positive vertically upwards. A right hand screw rule sign convention applies.

2. Beams with zero stiffness (missing beams) may be input as having a property set number of zero; if the beam has finite stiffness, the set number must reference an existing property set defined previously is section A.5.1.2.4.

3. The generation option can only be used to define girders within the current bay; a new bay must be started with a new beam card.

4. The vertical loading sets defined in section A.5.1.2.5, are applied to the beams defined herein. Three independent vertical load distributions (I,II,III) are allowed, and these distributions are combined to form load cases for the complete building; see section A.9.

A.5.1.2.7 Column Location and properties

USR_TXT	Reference information; upto 80 characters of text.
[{ KK,(LC(N,M,)	I),I=1,2),K } ,N=1,NS],M=1,NC
	KK = Column line identification number for this column.
(1)*	LC(N,M,1) = Column property set identification number.
(2)	LC(N,M,2) = Column line number defining direction of major axis.
(3)	K = Number of columns in sequence below to be generated having the same properties as this column member.

*Note: One card per column must be input from top to bottom and from column line to column line of the frame (unless the data generation option is used).

1. Missing columns may be input as having a property set number of zero (0); if the column has finite stiffness, then the set number referenced must correspond to one of the property sets defined previously in section A.5.1.2.3, above.

2. Defines direction on local "y" axis; local "z" axis is in the vertical plane with positive upwards. A right hand screw rule convention applies.

3. Generation is allowed only within the current column line; begin a new column line with a new column card.

A.5.1.2.8 Panel Properties

USR_TXT	Reference information; upto 80 characters of text.
(LP(1,I),LP(2,I),	LP(3,I),(PP(J,I),J=1,5),I=1,NPAN)
(1)*	LP(1,I) = Level identification number at the top of this panel.
	LP(2,I) = Column line number at the I side of this panel.
	LP(3,I) = Column line number at the J side of this panel.
	PP(1,I) = Modulus of elasticity, E.
	PP(2,I) = Gross sectional area, A.
(2)	PP(3,I) = Moment of inertia, I.
	$PP(4,I) = Effective shear area, A_v$
	PP(5,I) = Shear modulus, G.

*Note: Input one set of data per panel in any order; no generation is allowed.

1. Base is defined as level zero, and the roof level number is equal to the total number of stories in the building.

2. A zero (0) value for the moment of inertia selects the pure shear deformation panel model. The pure shear panel uses the gross sectional area, not the effective area, to calculate stiffness and stress values.

A.5.1.2.9 Bracing Properties

USR_TXTReference information; upto 80 characters of text.(LT(1,I),LT(2,I),LT(3,I),TP(1,I),TP(2,I),I=1,NTRU)LT(1,I) = Level identification number at the top of this brace.LT(2,I) = Column line number at the upper end of this brace.LT(3,I) = Column line number at the lower end of this brace.TP(1,I) = Modulus of elasticity, E.TP(2,I) = Cross sectional area, A.

*Note: Input one set of data per brace in any order; no generation is allowed.

A.5.1.3 Frame location cards

USR TXT Reference information; upto 80 characters of text.

IF,IFC,X1,Y1,ANG

$(1)^{*}$	IF = Frame identification number
(2)	IFC = Force calculation code;
	EQ. 0; Frame forces will be calculated and printed.
	EQ. 1; Frame forces will not be calculated.
(3)	$X1 = Distance, X_1.$
	$Y1 = Distance, Y_1.$

- (4) ANG = Angle between the frame x axis and the structure (global) X axis (anti-clockwise from X to x).
- *Note: One set of data must be entered in this section for each frame (or single column) in the building; the total number of frame locations to be read is controlled by the entry in section A.4.2.

1. Frame identification numbers may be repeated, but location data set must be input in frame identification number sequence.

2. A frame force calculation code of one (1) will suppress output for the frame.

3. Distance from structure (global) axis to origin of frame (local) axis.

Structure reference axis has to be at the center of mass of the base.

4. Angle is input in degrees and decimal fractions eg. 15° 30' input as 15.5.

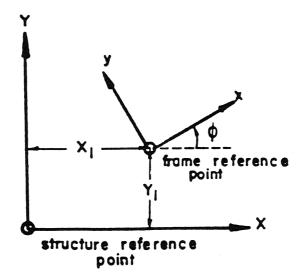


Fig. A-4 - Typical Coordinate Systems.

A.5.2 Shear Stiffness Data for Three Dimensional Shear Building (for ISEV = 1)

USR_TXT	Reference information; upto 80 characters of text	
A.5.2.1 Shear Stiffnes	ss - X, Y and Torsional Stiffness in Θ Direction	
USR_TXT	Reference information; upto 80 characters of text.	
SX(I),I=1,NF	SX(I) = Shear stiffness of story I in the X direction.	
SY(I),I=1,NF	SY(I) = Shear stiffness of story I in the Y direction.	
ST(I),I=1,NF	ST(I) = Torsional stiffness of story I in the θ direction about the center of mass of the floor.	

Note: Input shear stiffness in the X and Y direction and torsional stiffness in the θ direction of <u>each individual story</u> starting from the top story to the first story.

A.5.2.2 Eccentricity Data - X and Y Direction

USR_TXT	Reference information; upto 80 characters of text.
EX(I),I=1,NF	EX(I) = Eccentricity of center of resistance from the center of mass of the floor I.
EY(I),I=1,NF	EY(I) = Eccentricity of center of resistance from the center of mass of the floor I.

Note: Input eccentricity at each individual story in the X and Y direction starting from the top story to the first story. If both the eccentricities are zero, a default value of 0.0001 is used to facilitate eigensolution.

A.5.2.3 Superstructure Translational Mass and Rotational Mass (Mass moment of Inertia)

USR_TXT	Reference information; upto 80 characters of text.
CMX(I),I=1,NF	CMX(I) = Translational mass at floor I.
CMT(I),I=1,NF	CMT(I) = Mass moment of inertia of floor I about the center of mass.

Note: Input from the top floor to the first floor.

A.5.3 Eigenvalues and Eigenvectors for Three Dimensional Building (for ISEV = 3)

USR	TXT	Reference	information	upto 80	characters of text

A.5.3.1 Eigenvalues

USR_TXT	Reference information; upto 80 characters of text.
W(I),I=1,NFQ	W(I) = Eigenvalue of mode I

Note: Input from the first mode to the NFQ mode given in section A.4.1.

A.5.3.2 Eigenvectors

USR_TXT Reference information; upto 80 characters of text.

E(3*NF,I),I=1,NFQ

E(3*NF,I) = Eigenvector of mode I.

Note: Input from the first mode to the NFQ mode given in section A.4.1.

A.5.4 Superstructure Damping

USR	TXT	Reference	information;	upto 80	characters of text.
-----	-----	-----------	--------------	---------	---------------------

DR(I), I = 1, NE

DR(I) = Damping ratio corresponding to mode I.

Note: Input from the first mode to the NE mode.

A.5.5 Eccentricities of center of mass

USR TXT Reference information; upto 80 characters of text.

XN(I), YN(I), I = 1, NF

XN(I) = Distance of the center of mass of the floor I from the center of mass of the base in the X direction.

YN(I) = Distance of the center of mass of the floor I from the center of mass of the base in the Y direction. (If ISEV = 1 then XN(I) and YN(I) set = 0)

Note: Input from the top floor to the first floor. A.5.6 Height of Different Floors and the Base

USR TXT Reference information; upto 80 characters of text.

H(I), I = 1, NF + 1

H(I) = Height from the ground to the floor I.*

*Note: Input heights of floors ordered from the top floor to the base.

A.6 ISOLATION SYSTEM DATA

USR TXT Isolation data text: up to 80 characters of text.

A.6.1 Stiffness Data for Linear Elastic Isolation System

USR TXT Reference information; upto 80 characters of text.

SXE,SYE,STE,EXE,EYE

SXE = Resultant stiffness of the linear elastic isolation system in the X direction.

SYE = Resultant stiffness of the linear elastic isolation system in the Y direction.

STE = Resultant torsional stiffness of the linear elastic isolation system in the θ direction about the center of mass of the base.

EXE = Eccentricity of the center of resistance of the linear elastic isolation system in the X direction from the center of mass of the base.

EYE = Eccentricity of the center of resistance of the linear elastic isolation system in the Y direction from the center of mass of the base.

Note: Data for linear elastic elements can also be input individually (refer to A.6.4.1).

A.6.2 Mass Data of the Base

USR_TXT	Reference information; upto 80 characters of text.	
СМХВ,СМТВ	CMXB = Mass of the base in the translational direction.	
	CMTB = Mass moment of Inertia of the base about the center of mass of the base.	
A.6.3 Global Dampin	g Data of the Base	
USR_TXT	Reference information; upto 80 characters of text.	
CBX,CBY,CBT,E	CX,ECY	
	CBX = Resultant global damping coefficient in the X direction.	
	CBY = Resultant global damping coefficient in the Y direction.	
	CBT = Resultant global damping coefficient in the θ direction about the center of mass of the base.	
	 ECX = Eccentricity of the center of global damping of the isolation system in the X direction from the center of mass of the base. ECY = Eccentricity of the center of global damping of the isolation system in the Y direction from the center of mass of the base. 	

Note: 1. Data for viscous elements can also be input individually (refer to A.6.4.2).

A.6.4 Isolation Element Data

(i). Data for NP isolation elements to be given using the library of various elements types given in the subsequent subsections.

(ii). The following indices are used in the following subsections to identify the element types in the isolation system. INELEM(NP,2) described below:

INELEM(K,1:2) = Indices for the isolation element K indicating its type and whether it is a uniaxial or biaxial element, as follows below:

INELEM(K,1) = 1 for a uniaxial element
in the X direction
INELEM(K,1) = 2 for a uniaxial element
in the Y direction
INELEM(K,1) = 3 for a biaxial element

INELEM(K,2) = 1 for a linear elastic element INELEM(K,2) = 2 for a viscous element INELEM(K,2) = 3 for a hysteretic element for elastomeric bearing or steel damper INELEM(K,2) = 4 for a hysteretic element for sliding bearing

A.6.4.1 Linear Elastic Element

USR_TXT	Reference information; upto 80 characters of text.
INELEM(K,1:2)	INELEM(K,1) can be either 1,2 or 3 INELEM(K,2) = 1 (Refer to A.6.4 for further details).

PS(K,1),PS(K,2)

PS(K,1) = Shear stiffness in the X direction for biaxial element or uniaxial element in the X direction (leave blank if the uniaxial element is in the Y direction only).

PS(K,2) = Shear stiffness in the Y direction for biaxial element or uniaxial element in the Y direction (leave blank if the uniaxial element is in the X direction only).

Note: Biaxial element means elastic stiffness in both X and Y directions (no interaction between forces in the X and Y direction).

A.6.4.2 Viscous Element

USR_TXT	Reference information; upto 80 characters of text.
INELEM(K,1:2)	INELEM(K,1) can be either 1,2 or 3 INELEM(K,2) = 2 (Refer to A.6.4 for further details).
PC(K,1),PC(K,2)	
	 PC(K,1) = Damping coefficient in the X direction for biaxial element or uniaxial element in the X direction (leave blank if the uniaxial element is in the Y direction only). PC(K,2) = Damping coefficient in the Y direction for biaxial element or

uniaxial element in the Y direction (leave blank if the uniaxial element is in the X direction only).

Note: Biaxial element means damping in both X and Y directions (no interaction between forces in the X and Y direction).

A.6.4.3 Hysteretic Element for Elastomeric Bearings/Steel Dampers

USR_TXT Reference information; upto 80 characters of text.

INELEM(K,1:2) INELEM(K,1) can be either 1,2 or 3 INELEM(K,2) = 3 (Refer to A.6.4 for further details).

ALP(K,I), YF(K,I), YD(K,I), I = 1,2

ALP(K,1) = Post-to-preyielding stiffness ratio; YF(K,1) = Yield force; YD(K,1) = Yield displacement; in the X direction for biaxial element or uniaxial element in the X direction (leave blank if the uniaxial element is in the Y direction only).

ALP(K,2) = Post-to-preyielding
stiffness ratio;
YF(K,2) = Yield force;
YD(K,2) = Yield displacement;
in the Y direction for biaxial element or uniaxial
element in the Y direction
(leave blank if the uniaxial element
is in the X direction only).

A.6.4.4 Hysteretic Element for Sliding Bearings

USR_TXT	Reference information; upto 80 characters of text.
INELEM(K,1:2)	INELEM(K,1) can be either 1,2 or 3 INELEM(K,2) = 4 (Refer to A.6.4 for further details).
(FMAX(K,I),DF(K,I),PA(K,I),YD(K,I),I=1,2),FN(K)	
	FMAX(K,1) = Maximum coefficient of sliding friction; DF(K,1) = Difference between the maximum and minimum coefficient of sliding friction; PA(K,1) = Constant which controls the transition of coefficient of sliding friction from maximum to minimum value; YD(K,1) = Yield displacement of Friction Interface; in the X direction for biaxial element or uniaxial element in the X direction (leave blank if the uniaxial element is in the Y direction only).
	 FMAX(K,2) = Maximum coefficient of sliding friction; DF(K,2) = Difference between the maximum and minimum coefficient of sliding friction; PA(K,2) = Constant which controls the transition of coefficient of sliding friction from maximum to minimum value; YD(K,2) = Yield displacement of Friction Interface; in the Y direction for biaxial element or uniaxial

element in the Y direction (leave blank if the uniaxial element is in the X direction only).

FN(K) = Initial normal force at the sliding interface.

A.6.5 Coordinates of Isolation Elements

USR_TXT Reference information; up to 80 characters of text.

XP(I), YP(I), I = 1, NP

XP(I) = X Coordinate of isolation element I from the center of mass of the base.

YP(I) = Y Coordinate of isolation element I from the center of mass of the base.

A.7 EARTHQUAKE DATA

This information is to be specified in additional files outside the main input data file.

A.7.1 Unidirectional Earthquake Record

USR_TXT Frame data information; up to 80 characters

File:WAVEX.DAT

X(I),I=1,LOR X(I) = Unidirectional acceleration component.

Note: 1.If INDGACC as specified in A.4.5 is 1, then the input will be assumed at an angle XTH specified in A.4.5. If INDGACC as specified in A.4.5 is 2, then X(LOR) is considered to be the X component of the bidirectional earthquake.

A.7.2 Earthquake Record in the Y Direction for the Bidirectional Earthquake

File:WAVEY.DAT (Input only if INDGACC = 2)

Y(I),I=1,LOR Y(I) = Acceleration component in the Y direction.

A.8 OUTPUT INFORMATION DATA

A.8.1 Output Parameters

USR TXT Reference information; upto 80 characters of text.

LTMH,KPD,IP1,IP2,IP3,IP4,

LTMH = 0 for both the time history and peak response output. LTMH = 1 for only peak response output.

KPD = No. of time steps before the next response quantity is output.

IP1,IP2, IP3, IP4 = Bearing numbers of four bearings at which the peak response values and the force - displacement time history response is desired.

A.8.2 Interstory drift output

USR_TXT Reference information; up to 80 characters of text.

CORDX(K), CORDY(K), K = 1,6

CORDX(K) = X coordinate of the column line K at which the interstory drift is desired.

CORDY(K) = Y coordinate of the column line K at which the interstory drift is desired.

Note: 1. The coordinates of the column lines are with respect to the reference axis at the center of mass of the base. Six column lines can be specified.

A.9 LOAD CASE DEFINITION:

USR_TXT	Reference information; upto 80 characters of text.	
[XM(1,L),XM(2,L),XM(3,L),XM(4,L), L=1,NLD]		
	XM(1,L) = Multiplier for vertical load case I	
	XM(2,L) = Multiplier for vertical load case II	
	XM(3,L) = Multiplier for vertical load case III	

Note: Load cases for the complete building are defined as a combination of vertical load conditions (I,II,III), and earthquake loading. One card must be entered in this section for each different building load case; the total number of building load cases is controlled by the control information in section A.4.2.

XM(4,L) = Multiplier for earthquake response

APPENDIX B

INPUT FILE FOR THREE STORY R/C SLIDING ISOLATED STRUCTURE (Refer to Section 4.1)

THREE STORIES BLDG IN ITALIA UNIT KN-METER-SEC GENERAL CONTROL INFORMATION 2 3 9 16 750 SUPERSTRUCTURE CONTROL INFORMATION 1 1 1 4 0 INTEGRATION CONTROL PARAMETER 0.01 0.005 1000 20 1 NEWMARK METHOD CONTROL PARAMETER (DEFAULT VALUES: 0.5 AND 0.25) 0 0 Superstructure control information
indications
in

```
1 11 7 43280000 0.016

3 6 10 43280000 0.016

2 6 10 43280000 0.016

2 6 10 43280000 0.016

1 6 10 43280000 0.016

1 6 10 43280000 0.016

1 10 6 43280000 0.016

3 14 15 43280000 0.01

2 14 15 43280000 0.01

2 15 14 43280000 0.01

1 14 15 43280000 0.01

1 14 15 43280000 0.01

1 15 14 43280000 0.01

1 15 14 43280000 0.01

1 15 14 43280000 0.01

1 15 14 43280000 0.01

1 15 14 43280000 0.01

5 0.01

1 0 0 0 0

SUPERSTRUCTURE DAMPING

0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

ECCENTRICITYIES OF CENTER OF MASS

0 0
                                          Õ
                                                                Ö
  0 0

0 0

HEIGHT OF FLOORS

10.5 7 3.5 0

** BASE ISOLATION SYSTEM DATA **

STIFFNESS DATA FOR LINEAR ELASTIC BEARING

2092.64 2092.64 602680.32 0 0

MASS OF BASE

119.4 2985.6

GLOBAL DAMPING

0.1 0.1 0.1 0.0.

BEAPROC DATA
          BEARNG DATA
                                        3 4
0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85
3 4
                                     0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85
0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85
  9.4 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 29
  COORDINATES OF BEARING

-6 -6

-6 -2

-6 -2

-6 -2

-6 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 -2

-2 
                                          ŏŏ
             LOAD CASE DATA
```

APPENDIX C

OUTPUT FILE FOR THREE STORY R/C SLIDING ISOLATED STRUCTURE (Refer to Section 4.1)

PROGRAM 3D-BASIS-TABS ... A GENERAL PROGRAM FOR THE NONLINEAR DYNAMIC ANALYSIS OF THREE DIMENSIONAL BASE ISOLATED BUILDINGS DEVELOPED BY ... SATISH NAGARAJAIAH CHEN LI ANDREI M. REINHORN AND MICHALAKIS C. CONSTANTINOU DEPARTMENT OF CIVIL ENGINEERING STATE UNIV. OF NEW YORK AT BUFFALO VAX VERSION AND PC VERSION, DEC. 1992 NATIONAL CENTER FOR EARTHQUAKE ENGINEERING RESEARCH STATE UNIVERSITY OF NEW YORK, BUFFALO THIS PROGRAM HAS BEEN DEVELOPED USING: (1) PROGRAM 3D-BASIS DEVELOPED BY ... SATISH NAGARAJAIAH ANDREI M. REINHORN AND MICHALAKIS C. CONSTANTINOU DEPARTMENT OF CIVIL ENGINEERING STATE UNIV. OF NEW YORK AT BUFFALO, VAX VERSION, 1990 (2) PROGRAM FTARS STATE UNI... (2) PROGRAM ETABS DEVELOPED BY ... E. L. WILSON H. H. DOVEY AND J. P. HOLLIN, DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF CALIFORNIA, BERKELEY, SEPTEMBER 1974, REVISED MARCH 1979 UNIVERSITY OF CALIFORNIA, BERKELEY, SEPTEMBER 1974, REVISED MARCH 1979 ******** MIRROR OF INPUT DATA ******* THREE STORIES BUILDING IN ITALY UNIT KN-METER-SEC GENERAL CONTROL INFORMATION 2 3 9 16 750 SUPERSTRUCTURE CONTROL INFORMATION 1 1 2 0 INTEGRATION CONTROL PARAMETERS 0.01 0.005 1000 20 1 NEWMARK METHOD CONTROL PARAMETERS (DEFAULT VALUES: 0.5 AND 0.25) 0 0 FARTHOUAKE CONTROL PARAMETERS 0 EARTHQUAKE CONTROL PARAMETERS 1 0.02 0 9.8 SUPERSTRUCTURE INFORMATION THIRD STORY-GENERAL DATA 3.5 119.4 2985.6 0 0 0 0 SECOND 3.5 119.4 2985.6 0 0 0 0 FIRST 3.5 119.4 2985.6 0 0 0 0 FIRST FRAME DATA FIRST FRAME 1 3 16 24 2 1 0 3 18 COLUMN LINE COORDINATES 1 -6 -6 COLUMN PROPERTIES 1 29862560 0.096 0.0018 0.0016 4 4. 2 0.15 0.15

	OUTPUT	FOR CA
15 9 10 1 2 0 0 0 16 10 11 1 2 0 0 0 17 11 12 1 2 0 0 0 18 9 13 1 2 0 0 0 20 11 15 1 2 0 0 0 20 11 15 1 2 0 0 0 21 12 16 1 2 0 0 0 23 14 15 1 2 0 0 0 23 14 15 1 2 0 0 0 24 15 16 1 2 0 0 0 COLUMN LOCATION 1 15 2 2 1 6 2 3 1 7 2 4 1 8 2 5 1 9 2 6 2 10 2 7 2 11 2 8 1 12 2 9 1 13 2 10 2 14 2 11 2 15 2 12 1 6 2 3 1 7 2 4 1 8 2 5 1 9 2 6 2 10 2 7 2 11 2 8 1 12 2 9 1 13 2 10 2 14 2 11 2 15 2 12 1 16 1 2 0 9 1 13 2 16 2 7 2 11 2 8 1 12 2 9 1 13 2 16 1 12 2 9 2 16 2 7 2 11 2 16 1 12 2 9 2 16 2 7 2 11 2 16 1 12 2 9 2 16 2 7 2 11 2 17 1 16 2 18 7 29862560 0.37 0.42 0.31 119450 1 6 7 29862560 0.37 0.42 0.31 119450 1 6 7 29862560 0.37 0.42 0.31 119450		
15 9 10 1 2 0 0 0 16 10 11 1 2 0 0 0 17 11 12 1 2 0 0 0 18 9 13 1 2 0 0 0 19 10 14 1 2 0 0 0 20 11 15 1 2 0 0 0 21 12 16 1 2 0 0 0 22 13 14 1 2 0 0 0 23 14 15 1 2 0 0 0 24 15 16 1 2 0 0 0 COLUMN LOCATION 1 1 5 2 2 1 6 2 3 1 7 2 4 1 8 2		
20 11 15 1 2 0 0 0 21 12 16 1 2 0 0 0		
22 13 14 1 2 0 0 0 23 14 15 1 2 0 0 0 24 15 16 1 2 0 0 0		
COLUMN LOCATION 1 1 5 2		
2 1 6 2 3 1 7 8 2 4 5 1 9 2 6 2 11 2 6 2 11 2 9 1 12 2 9 1 14 5 10 2 11 2 1 5 12 1 9 14 1 10 14 1 12 15 1 12 16 1 16 1 16 1 16 1 16 1 16 2 16 2 17 8 17 8		
4 0 2 5 1 9 2 6 2 10 2		
7 2 11 2 8 1 12 2		
9 1 13 2 10 2 14 2 11 3 15 3		
12 1 16 2 13 1 9 2		
14 1 10 2 15 1 11 2		
16 1 12 5 PANEL INFORMATION 3 6 7 29862560 0.37 0.42 0.31 119451 2 6 7 29862560 0.37 0.42 0.31 119451 1 6 7 29862560 0.37 0.42 0.31 119451 BRACE INFORMATION 3 7 11 43280000 0.016 2 11 7 43280000 0.016 1 7 11 43280000 0.016 1 7 11 43280000 0.016 3 6 10 43280000 0.016 3 6 10 43280000 0.016 3 6 10 43280000 0.016 3 10 6 43280000 0.016 1 0 6 43280000 0.016 1 10 6 43280000 0.016 1 10 43280000 0.016 3 14 15 43280000 0.016 3 14 15 43280000 0.016 1 14 15 43280000 0.01 2 15 14 43280000 0.01 1 14 15 43280000 0.01 1 15 14 43280000 0.01 1 15 14 43280000 0.01 1 15 14 43280000 0.01 1 0 0 0 0	024	
3 6 7 29862560 0.37 0.42 0.31 119450 2 6 7 29862560 0.37 0.42 0.31 119450 1 6 7 29862560 0.37 0.42 0.31 119450	024 024	
BRACE INFORMATION 3 7 11 43280000 0.016 3 11 7 43280000 0.016		
3 11 7 43280000 0.016 2 7 11 43280000 0.016 2 11 7 43280000 0.016		
2 11 7 43280000 0.016 1 7 11 43280000 0.016 1 11 7 43280000 0.016 3 6 19 43280000 0.016 3 6 19 43280000 0.016		
3 11 7 43280000 0.016 2 7 11 43280000 0.016 2 11 7 43280000 0.016 1 7 11 43280000 0.016 3 6 10 43280000 0.016 3 6 10 43280000 0.016 2 6 10 43280000 0.016 2 10 6 43280000 0.016 1 6 10 43280000 0.016 3 14 15 43280000 0.01 3 15 14 43280000 0.01 2 15 14 43280000 0.01 2 15 14 43280000 0.01 1 15 14 43280000 0.01		
2 6 10 43280000 0.016 2 10 6 43280000 0.016 1 6 10 43280000 0.016 1 10 6 43280000 0.016		
2 6 10 43280000 0.016 2 10 6 43280000 0.016 1 6 10 43280000 0.016 1 10 6 43280000 0.016 3 14 15 43280000 0.01 3 15 14 43280000 0.01 2 14 15 43280000 0.01		
3 15 14 43280000 0.01 2 14 15 43280000 0.01 2 15 14 43280000 0.01		
1 14 15 43280000 0.01 1 15 14 43280000 0.01 FIRST FRAME LOCATION		
SUPERSTRUCTURE DAMPING		
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.05	
HEIGHT OF FLOORS 10.5 7 3.5 0		
** BASE ISOLATION SYSTEM DATA ** STIFFNESS DATA FOR LINEAR ELASTIC BEARING 2092.64 2092.64 602680.32 0 0		
119.4 2985.6		
GLOBAL DAMPING		
3 4 0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.1	000254 2	92.85
<u>3</u> <u>4</u> <u>0.1</u> 0.03 23.6 0.000254 0.1 0.03 23.6 0.		
$ \begin{array}{c} 3 & 4 \\ 0.1 & 0.03 & 23.6 & 0.000254 & 0.1 & 0.03 & 23.6 & 0.1 \\ 3 & 4 \\ \end{array} $	000254 2	92.85
0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0. 3 4		
$0.1 \ 0.03 \ 23.6 \ 0.000254 \ 0.1 \ 0.03 \ 23.6 \ 0.1$		
0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0. 3.4 0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.		
0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.		
$ \begin{array}{c} 3 & 4\\ 9 & 1\\ 0 & 1\\ \end{array} $	000254 2	92.85
$ \begin{array}{c} 3 & 4 \\ 0.1 & 0.03 & 23.6 & 0.000254 & 0.1 & 0.03 & 23.6 & 0.1 \\ 3 & 4 & 0.03 & 0.000254 & 0.1 & 0.03 & 0.000254 \\ \end{array} $	000254 2	92.85
0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.		
0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.03 23.6 0.1 0.03 23.6 0.1 0.03 23.6 0.1 0.03 23.6 0.1 0.03 23.6 0.1 0.03 23.6 0.1 0.03 23.6 0.1 0.03 23.6 0.1 0.1 0.03 23.6 0.03 23.6 0.03 23.6 0.03 23.6 0.03 23.6 0.03 23.6 0.03 23.6 0.03 23.6 0.03 23.6 0.03 23.6 0.03 23.6 0.03 23.6 0.03 23.6 0.03 23.6 0.03 23.6 0.03 23.6 0.03 23.6 0.03 23.6 0.03 23.6 0.03 23.6 0.03 23.0 0.03 23.0 0.03 23.0 0.03 23.0 0.03 23.0 0.03 23.0 0.03 23.0 0.03 23.0 0.03 23.0 0.03 23.0 0.03 23.0 0.03 23.0 0.03 23.0 0.03 23.0 0.03 23.0 0.03 23.0 0.03 23.0 0.03 23.0		
0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0. 3 4 0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.		
3 4 0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.		
3 4	_	

0.1 0.03 23.6 0.000254 0.1 0.03 23.6 0.000254 292.85 COORDINATES OF BEARING U U 0 0 LOAD CASE DATA 0 0 0 1 ********* END OF MIRROR OF INPUT ******** ******** START OF PROCESSED DATA ******* THREE STORIES BUILDING IN ITALY POINTER WITHIN MASTER ARRAY... MAX STORAGE = 3978 SUPERSTRUCTURE CONTROL INFORMATION UNIT KN-METER-SEC TOTAL NUMBER OF STORIES-- 3 NUMBER OF DIFF. FRAMES--- 1 TOTAL NUMBER OF FRAMES--- 1 NUMBER OF LOAD CONDITIONS 1 TYPE OF ANALYSIS------- 2 EQ.1-STATIC LOAD ANALYSIS+MODE SHAPES AND FREQUENCIES +LATERAL EARTHQUAKE RESPONSE AND PEAK RESPONSE PRINTOUT EQ.2-STATIC LOAD ANALYSIS+MODE SHAPES AND FREQUENCIES +LATERAL EARTHQUAKE RESPONSE AND TIME HISTORY PRINTOUT NUMBER OF FREQUENCIES---- 9 STORY TRANSLATION CODE--- 0 NO. OF FLOORS(EXCL. BASE).....= NO. OF BEARINGS....= NO. OF EIGEN VECTORS CONSIDERED....= INDEX FOR SUPERSTRUCTURE STIFFNESS DATA= 3 16 9 2 INDEX = 1 FOR 3D SHEAR BUILDING REPRES. INDEX = 2 FOR FULL 3D REPRESENTATION TIME STEP OF INTEGRATION (NEWMARK).....= INDEX FOR TYPE OF TIME STEP.....= 0.0100 INDEX = 1 FOR CONSTANT TIME STEP INDEX = 2 FOR VARIABLE TIME STEP GAMA FOR NEWMARKS METHOD...... BETA FOR NEWMARKS METHOD...... TOLERANCE FOR FORCE COMPUTATION..... REFERENCE MOMENT OF CONVERGENCE...... MAX NUMBER OF ITERATIONS WITHIN T.S.... INDEX FOR GROUND MOTION INPUT...... 0.50 0.25 0.050 1000.0 INDEX = 1 FOR UNIDIRECTIONAL INPUT INDEX = 2 FOR BIDIRECTIONAL INPUT TIME STEP OF RECORD ____ LENGTH OF RECORD.____ LOAD FACTOR.____ ANGLE OF EARTHQUAKE INCIDENCE.....= 0.020 750 9.80 0.00

STORY DATA

LEVEL NO. ID THIRD STORY-GEN	HEIGHT	MASS(M)	MR**2	X(M)	Y(M)	K-X	K-Y
3 SECOND	3.50	119.40	2985.60	0.00	0.00	0.00	0.00
2 FIRST	3.50	119.40	2985.60	0.00	0.00	0.00	0.00
1	3.50	119.40	2985.60	0.00	0.00	0.00	0.00
				C-3			

STRUCTURE LA LEVEL NO. 3 2 1	ATERAL LOADS. FX-A 0.00 0.00 0.00 0.00	FY-A FY-A 0.00 0.00 0.00 0.00	DB MOM-A 0.00 0.00 0.00	FX-B 0.00 0.00 0.00 0.00	FY-B 0.00 0.00 0.00	MOM-B 0.00 0.00 0.00	XA 0.0 0.0 0.0	YA 0.0 0.0 0.0	XB YB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NUMBER OF S NUMBER OF CO NUMBER OF B NUMBER OF D NUMBER OF D NUMBER OF D	MBER TORY LEVELS OLUMN LINES AYS IFF. COL. PRO IFF. BEAM PRO IFF. FEF ANEL ELEMENTS RACING ELEMEN	3 16 24 P- 2 P- 1 0 3							
22 BEAM ID	COORD INATES X -6.00 -6.00 -2.00 -2.00 -2.00 -2.00 2.00 2.00 2.	Y -6.00 -2.00 6.000 -2.00 6.000 -2.00 6.00 -2.00 -2.00 6.00 -2.00 -2.00 6.00 -2	MAJ SA 0.07 0.10 TORS I 0.00	MIN SA 0.07 0.10 FLEX I 0.00	TORS I 0.00 0.00 KII 4.00	MAJ I 0.00 0.00 KJJ 4.00	MIN I 0.00 0.00 KIJ 2.00	RIGID TOP 0.20 0.20 RIGID I 0.15	RIGID BOT 0.20 0.20 RIGID J 0.15
BEAM LOCATE 2 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 20 3 21 3 22 3 23 3 24 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GEN VL1 2 0 2 0 1 2 0 1 2 0 1 2 0	VL2 0 VL3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						

or									c	UTPU	t fof	CAS	E ST	UDY	#1										
GENER. STORY	ATED E	BEAM L	OCATI 3 4	ONS 5	6	7	8	91	0 11	12	13	14	15	16	17	18	19	20	21	22	23	24			
3 2 1	1 1 1	1	$\begin{array}{c}1&1\\1&1\\1&1\end{array}$	1 1 1	1	1	1 1 1	1 1 1	1 1 1 1 1 1		1	1	1	1	1	1	1	1	1	1	1	1			
	N LOCA LINE 1	TIONS	LEV		CID 1		KC 5	OL	GE		•	·	•	•	•		'	'	'	ı	1	,			
	2		3		1		6		2																
	3		3		1		7		2																
	4 5		3 3		1 1		8 9		2																
	6		3		2		10		2																
	7 8		3		2		11		2																
	9		3 3		1 1		12 13		2																
	10		3		2		14		2																
	11 12		3 3		2		15		2																
	13		3		1 1		16 9		2																
	14		3		1		10		2																
	15 16		3 3		1 1		11 12		2 2																
			5		•		12		2																
GENERA STORY	TED CO	OLUMN 2	LOCAT	IONS 5	6	7	8	9 10	0 11	12	13	14	15	16											
3 2 1	1 1			1 1	222	222	1		2222	1	1	1	1	1											
1	1	1 '	1 1	1	2	2	1	1	2 2	1	1	1	i	1											
PANEL	CARDS																								
LEVEL																									
3	6	COL] 7	2986	2560	E.00			A 0. <u>37</u>			۲ 0.4	2			SA 0.31		1194	5024	G .00					
2 1	COL I 6 6 6	COL .	7	2986 2986 2986	2560 2560 2560	00 00 00			A 0.37 0.37 0.37			0.4 0.4 0.4	2222			SA 0.31 0.31 0.31		1194 1194 1194	5024 5024	.00					
BRACIN	G ELEN		7	2986 2986 2986	2560. 2560. 2560.	00 00 00			A 0.37 0.37 0.37			I 0.4 0.4	2222			SA 0.31 0.31 0.31		1194	5024 5024	.00					
3 1 BRACIN LEV	6 6 G ELEN UC 7	T T TENT C LC	CARDS	E	2560. 2560. 2560.	00 00 00		A 01600	1			I 0.4 0.4	2222			SA 0.31 0.31 0.31		1194	5024 5024	.00					
3 2 1 BRACIN	G ELEN	T T TENT C LC	CARDS	E	2560. 2560. 2560.	E 00 00	0. 0.	01600				I 0.4 0.4	2222			SA 0.31 0.31 0.31		1194	5024 5024	.00					
S 2 1 BRACIN LEV 3 2 2 1	6 6 6 9 8 9 9 11 7 11 7 11 7 11	T T TENT C LC	CARDS	E	2560. 2560. 2560.	00 00 00	0. 0. 0.	01600 01600 01600 01600 01600				I 0.4 0.4	2222			SA 0.31 0.31 0.31		1194	5024 5024	.00					
S 2 1 BRACIN LEV 3 2 2 1	6 6 6 0 0 7 11 7 11 7 11 11 6 10 6	T T TENT C LC	CARDS	E	2560. 2560. 2560.	00 00 00	0.00.00.00.00.00.00.00.00.00.00.00.00.0	01600 01600 01600 01600 01600 01600 01600 01600				0.4 0.4	2222			SA 0.31 0.31 0.31		1194	5024 5024	.00					
S 2 1 BRACIN LEV 3 2 2 1	6 6 6 0 11 7 11 7 11 7 11 60 60 10	T T TENT C LC	CARDS	E	2560. 2560. 2560.			01600 01600 01600 01600 01600 01600 01600 01600 01600					2222			SA 0.31 0.31 0.31		1194	5024 5024	.00					
S 2 1 BRACIN LEV 3 2 2 1	6 6 6 0 11 7 11 7 11 7 11 60 60 10	T T TENT C LC	CARDS	E	2560. 2560. 2560.	E 000 000		01600 01600 01600 01600 01600 01600 01600 01600 01600				I 0.4 0.4	2222			SA 0.31 0.31 0.31		1194	5024 5024	.00					
3 1 BRACIN LEV	6 6 6 0 0 7 11 7 11 7 11 11 6 10 6	T T TENT C LC	CARDS	E	2560. 2560. 2560.	E 000 000		01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01000 01000 01000				I 0.4 0.4	222			SA 0.31 0.31 0.31		1194	5024 5024	.00					
S 21 BRACIN LEV 3221 133221 133221 133221 133221	666 ELEN G UC7117116060604154545115	AENT C 44444444444444444444444444444444444	ARDS 32800	E 00.00	2560. 2560. 2560.	E 00 200 200		01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01000 01000				I 0.4 0.4	2222			SA 0.31 0.31 0.31		1194	5024 5024	.00					
5 2 1 BRACIN LEV 1 3 3 2 2 1 3 3 2 2 1 3 3 2 2 1 1 3 3 2 2 1 1 3 3 2 2 1 1 3 3 2 2 1 1 3 3 2 2 1 1 8 8 2 1 1 8 8 8 2 1 1 8 8 8 2 1 1 8 8 8 9 8 9 1 8 9 8 9 1 8 9 1 8 9 1 1 8 9 1 1 8 9 1 1 8 9 1 1 8 9 1 1 8 9 2 1 1 1 8 9 2 2 1 1 1 8 9 2 2 1 1 1 8 9 2 2 1 1 1 8 9 2 2 1 1 1 8 9 2 2 1 1 1 8 9 2 2 1 1 1 8 9 2 2 1 1 1 8 9 2 2 1 1 1 8 9 2 2 1 1 1 8 9 2 2 1 1 1 8 9 2 2 1 1 1 3 3 2 2 1 1 1 3 3 2 2 1 1 1 8 9 2 1 1 1 8 9 2 2 1 1 1 3 3 2 2 1 1 1 3 3 2 2 1 1 1 3 3 2 2 1 1 1 3 3 2 2 1 1 1 3 3 2 2 1 1 1 3 3 2 2 1 1 1 3 3 3 2 2 1 1 1 1	6 6 6 6 0 7 11 7 11 7 11 7 11 7 11 6 10 6 10	1ENT C 44444444444444444444444444444444444	ARD S 32800 32800 32800 32800 32800 32800 32800 32800 32800 32800 32800 32800 32800 32800 32800 32800 32800 32800 ND L0	E 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00	22560 22560 22560 22560 22560 2000 000 000 000 000 000 000 000 000	000000000000000000000000000000000000000		01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01000 01000 01000				I 0.4 0.4				SA 0.31 0.31 0.31		1194	5024 5024	.00					
BRACIN LEV 1 33221 1 33221 1 33221 1 33221 1 33221 1 1 8 BEAM PR BAY PI	6 6 6 6 7 17 17 17 17 17 17 17 17 10 10 10 10 10 10 10 15 14 15 14 15 14 15 14 15 14 5 14	AENT C 44444444444444444444444444444444444	ARDS 32800 328	E 00.00 00	22560 22560 22560 22560 22560 2000 000 000 000 000 000 000 000 000	000 000 000 000 000 000		01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01000 01000 01000	I 0000	4.	11 000	0.4	KII		K	0.31		ut	5024 5024	.00	1 <u>75</u>		VERT1	VE	RT2
BRACIN BRACIN LEV 332211 13322211 13322211 13322211 13322211 13322211 13322211 13322211 1 1 1	6 6 6 6 7 1 1 7 1 7 1 7 1 7 1 7 1 7 1 7	4E LC177 C 444444444444444444444444444444444	ARDS 32800 30800 328000 328000 32800 328000 32800 32800 32800 32800 32800	E 00.000000	22560 22560 22560 22560 2000 000 000 000 000 000 000 000 000	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00		01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01000 01600 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 00	I 00 000 000	4. 4. 4.	00 00 00	0.4	4.00 4.00		K 2.0 2.0	0.31 1J 00 00		WI 0.15 0.15	5024 5024	.00 .00 .00			0 0 0	:	0 0 0
BRACIN BRACIN LEV 332211 13322211 13322211 13322211 13322211 13322211 13322211 13322211 1 1 1	6 6 6 6 7 1 1 7 1 7 1 7 1 7 1 7 1 7 1 7	4E LC177 C 444444444444444444444444444444444	ARDS 32800 30800 328000 328000 32800 328000 32800 32800 32800 32800 32800	E 00.00 000000	22560 22560 22560 22560 2000 000 000 000 000 000 000 000 000	000 000 000 000 000 000 000 000 000 00		01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01600 01000 00	I 000 000 000 000 I 000000	4. 4. 4. 4.	00 00 00 11 00 00		KJJ 4.00 4.00 KJJ 4.00		K 2.(2.(2.(2.(0.31 1000 1000 1000		WI 0.15 0.15	5024 5024	.00 .00 .00			0 0 VERT1 0	VE	0 0 0 RT2
BRACIN BRACIN LEV 33221133222113322211332221133222113322211332221133222111133222111111	6 6 6 6 6 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	4E L1777 C 444444444444444444444444444444444	ARDS 32800 30800 328	E 00.000 00.000 00.0000 00.0000 00.0000 00.0000 00.000000	22560 22560 22560 000 000 000 000 000 000 000 000 000	000 000 000 000 000 000 000 000 000 00		016000 01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01600 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 000 01000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 0000	I 000 000 000 000 000 000 000	44 44 44 44 44	00 00 00 00 00 00 00		KJJ KJJ KJJ		K 2 2 2 2 2 2 2 2 2	IJ 000 000 1J 000 000 1J		UI 194	5024 5024	.00 .00 .00 .00 .00 .00 .00 .00 .01 0.1 0.	1J 5 5 5		0 0 0 VERT1 0 0	VE	0 0 0 RT2 0 0 0
BRACIN BRACIN LEV 33221133222113322211332221133222113322211332221133222111133222111111	6 6 6 6 6 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	4E L1777 C 444444444444444444444444444444444	ARDS 328000 32800 32800 3280000 3280000000000	E 00.00 000000	22560 22560 22560 000 000 000 000 000 000 000 000 000	000 000 000 000 000 000 000 000 000 00		01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01600 01000 00		4. 4. 4. 4. 4. 4. 4. 4. 4.	00 00 00 11 00 00 00 11 00 00		4.000 4.000 4.000 4.000 4.000		K 2 2 2 2 2 2 2 2 2	IJ 000 000 1J 000 000 1J		U1944	5024 5024	.00 .00 .00 .00 .00 .00 .00 .01 0.1 0.1	N555		0 0 0 VERT1 0 0 0 VERT1 0 0	VE	0 0 RT2 0 0 0 RT2
BRACIN BRACIN LEV 33221133222113322211332221133222113322211332221133222111133222111133222111133222111133222111133222111133222111133222111133222111133222111133222111133222111133222111133222111133222111133222111133222111133222111133222111111	6 6 6 6 6 7 117 117 117 116 10 6 10 14 15 145 15 15 145 15 15 145 15 15 145 15 15 15 15 15 15 15 15 15 15 15 15 15	4E L1777 C 444444444444444444444444444444444	ARDS 328000 32800 32800 3280000 3280000000000	E 00.000 000.0000 000.0000 000.000000	22560 22560 22560 000 000 000 000 000 000 000 000 000	000 000 000 000 000 000 000 000 000 00		016000 01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01600 01000 01000 01000 01000 01000 01000 01000 01000 01600 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 0000		444 44 44 44 44 4	00 00 00 11 00 00 00 00 00 00 00 00		KJJ 4.000 4.000 4.000 4.000 4.000		K 2.0 2.0 2.0 2.0 2.0 2.0 2.0	IJ 000 000 1J 000 000 1J		UI 194	5024 5024	.00 .00 .00 .00 .00 .00 .00 .01 0.1 0.1	N555		0 0 0 VERT1 0 0 0 VERT1	VE	0 0 0 RT2 0 0 0

OUTPUT FOR CASE STUDY #1

BAY NUMBERS 4 LEVEL E 3 29862560.00 2 29862560.00 1 29862560.00	SA 0.10 0.10 0.10	TORS I 0.00 0.00 0.00	FLEX I 0.00 0.00 0.00	KII 4.00 4.00 4.00	KJJ 4.00 4.00 4.00	KIJ 2.00 2.00 2.00	WI 0.15 0.15 0.15	WJ 0.15 0.15 0.15	VERT1 O O O	VERT2 0 0 0	VERT3 0 0 0
BAY NUMBERS 5 LEVEL E 3 29862560.00 2 29862560.00 1 29862560.00	SA 0.10 0.10 0.10 0.10	TORS I 0.00 0.00 0.00	FLEX I 0.00 0.00 0.00	KII 4.00 4.00 4.00	KJJ 4.00 4.00 4.00	KIJ 2.00 2.00 2.00	WI 0.15 0.15 0.15 0.15	WJ 0.15 0.15 0.15	VERT1 0 0 0	VERT2 0 0 0	VERT3 0 0 0
BAY NUMBERS 6 LEVEL E 3 29862560.00 2 29862560.00 1 29862560.00	SA 0.10 0.10 0.10	TORS I 0.00 0.00 0.00	FLEX I 0.00 0.00 0.00	KII 4.00 4.00 4.00	KJJ 4.00 4.00 4.00	KIJ 2.00 2.00 2.00	WI 0.15 0.15 0.15	WJ 0.15 0.15 0.15	VERT1 0 0 0	VERT2 0 0 0	VERT3 0 0 0
BAY NUMBERS 7 LEVEL E 3 29862560.00 2 29862560.00 1 29862560.00	SA 0.10 0.10 0.10	TORS I 0.00 0.00 0.00	FLEX I 0.00 0.00 0.00	KII 4.00 4.00 4.00	KJJ 4.00 4.00 4.00	KIJ 2.00 2.00 2.00	WI 0.15 0.15 0.15 0.15	WJ 0.15 0.15 0.15	VERT1 0 0 0	VERT2 0 0 0	VERT3 0 0 0
BAY NUMBERS 8 LEVEL E 3 29862560.00 2 29862560.00 1 29862560.00	SA 0.10 0.10 0.10	TORS I 0.00 0.00 0.00	FLEX I 0.00 0.00 0.00	KII 4.00 4.00 4.00	KJJ 4.00 4.00 4.00	KIJ 2.00 2.00 2.00	WI 0.15 0.15 0.15	WJ 0.15 0.15 0.15	VERT1 0 0 0	VERT2 0 0 0	VERT3 0 0 0
BAY NUMBERS 9 LEVEL E 3 29862560.00 2 29862560.00 1 29862560.00	SA 0.10 0.10 0.10	TORS I 0.00 0.00 0.00	FLEX I 0.00 0.00 0.00	KII 4.00 4.00 4.00	KJJ 4.00 4.00 4.00	KIJ 2.00 2.00 2.00	WI 0.15 0.15 0.15	WJ 0.15 0.15 0.15	VERT1 0 0 0	VERT2 0 0 0	VERT3 0 0 0
BAY NUMBERS 10 LEVEL E 3 29862560.00 2 29862560.00 1 29862560.00	SA 0.10 0.10 0.10	TORS I 0.00 0.00 0.00	FLEX I 0.00 0.00 0.00	KII 4.00 4.00 4.00	KJJ 4.00 4.00 4.00	KIJ 2.00 2.00 2.00	WI 0.15 0.15 0.15	WJ 0.15 0.15 0.15	VERT1 0 0 0	VERT2 0 0 0	VERT3 0 0 0
BAY NUMBERS 11 LEVEL E 3 29862560.00 2 29862560.00 1 29862560.00	SA 0.10 0.10 0.10	TORS I 0.00 0.00 0.00	FLEX I 0.00 0.00 0.00	KII 4.00 4.00 4.00	KJJ 4.00 4.00 4.00	KIJ 2.00 2.00 2.00	WI 0.15 0.15 0.15	WJ 0.15 0.15 0.15	VERT1 0 0 0	VERT2 0 0 0	VERT3 0 0 0
BAY NUMBERS 12 LEVEL E 3 29862560.00 2 29862560.00 1 29862560.00	SA 0.10 0.10 0.10	TORS I 0.00 0.00 0.00	FLEX I 0.00 0.00 0.00	KII 4.00 4.00 4.00	KJJ 4.00 4.00 4.00	KIJ 2.00 2.00 2.00	WI 0.15 0.15 0.15	WJ 0.15 0.15 0.15	VERT1 0 0 0	VERT2 0 0 0	VERT3 0 0 0
BAY NUMBERS 13 LEVEL E 3 29862560.00 2 29862560.00 1 29862560.00	SA 0.10 0.10 0.10	TORS I 0.00 0.00 0.00	FLEX I 0.00 0.00 0.00	KII 4.00 4.00 4.00	KJJ 4.00 4.00 4.00	KIJ 2.00 2.00 2.00	WI 0.15 0.15 0.15	WJ 0.15 0.15 0.15	VERT1 0 0 0	VERT2 0 0 0	VERT3 0 0 0
BAY NUMBERS 14 LEVEL E 3 29862560.00 2 29862560.00 1 29862560.00	SA 0.10 0.10 0.10	TORS I 0.00 0.00 0.00	FLEX I 0.00 0.00 0.00	KII 4.00 4.00 4.00	KJJ 4.00 4.00 4.00	KIJ 2.00 2.00 2.00	WI 0.15 0.15 0.15	WJ 0.15 0.15 0.15	VERT1 0 0 0	VERT2 0 0 0	VERT3 0 0 0
BAY NUMBERS 15 LEVEL E 3 29862560.00 2 29862560.00 1 29862560.00	SA 0.10 0.10 0.10	TORS I 0.00 0.00 0.00	FLEX I 0.00 0.00 0.00	KII 4.00 4.00 4.00	KJJ 4.00 4.00 4.00	KIJ 2.00 2.00 2.00	WI 0.15 0.15 0.15	WJ 0.15 0.15 0.15	VERT1 0 0 0	VERT2 0 0 0	VERT3 0 0 0
BAY NUMBERS 16 LEVEL E 3 29862560.00 2 29862560.00 1 29862560.00	SA 0.10 0.10 0.10	TORS I 0.00 0.00 0.00	FLEX I 0.00 0.00 0.00	KII 4.00 4.00 4.00	KJJ 4.00 4.00 4.00	KIJ 2.00 2.00 2.00	WI 0.15 0.15 0.15	WJ 0.15 0.15 0.15	VERT1 0 0 0	VERT2 0 0 0	VERT3 0 0 0
BAY NUMBERS 17 LEVEL E 3 29862560.00 2 29862560.00 1 29862560.00	SA 0.10 0.10 0.10	TORS I 0.00 0.00 0.00	FLEX I 0.00 0.00 0.00	KII 4.00 4.00 4.00	KJJ 4.00 4.00 4.00	KIJ 2.00 2.00 2.00	WI 0.15 0.15 0.15	WJ 0.15 0.15 0.15	VERT1 0 0 0	VERT2 0 0 0	VERT3 0 0 0
BAY NUMBERS 18 LEVEL E 3 29862560.00 2 29862560.00 1 29862560.00	SA 0.10 0.10 0.10	TORS I 0.00 0.00 0.00	FLEX I 0.00 0.00 0.00	KII 4.00 4.00 4.00	KJJ 4.00 4.00 4.00	KIJ 2.00 2.00 2.00	WI 0.15 0.15 0.15	WJ 0.15 0.15 0.15	VERT1 0 0 0	VERT2 0 0 0	VERT3 0 0 0
BAY NUMBERS 19 LEVEL E 3 29862560.00 2 29862560.00 1 29862560.00	SA 0.10 0.10 0.10	TORS I 0.00 0.00 0.00	FLEX I 0.00 0.00 0.00	K11 4.00 4.00 4.00	KJJ 4.00 4.00 4.00	KIJ 2.00 2.00 2.00	WI 0.15 0.15 0.15	WJ 0.15 0.15 0.15	VERT1 0 0 0	VERT2 0 0 0	VERT3 0 0 0
BAY NUMBERS 20 LEVEL E 3 29862560.00 2 29862560.00 1 29862560.00	SA 0.10 0.10 0.10	TORS I 0.00 0.00 0.00	FLEX I 0.00 0.00 0.00	KII 4.00 4.00 4.00	KJJ 4.00 4.00 4.00	KIJ 2.00 2.00 2.00	WI 0.15 0.15 0.15	0.15 0.15 0.15 0.15	VERT1 0 0 0	VERT2 0 0 0	VERT3 0 0 0
BAY NUMBERS 21 LEVEL E 3 29862560.00 2 29862560.00 1 29862560.00	SA 0.10 0.10 0.10	TORS I 0.00 0.00 0.00	FLEX I 0.00 0.00 0.00	KII 4.00 4.00 4.00	KJJ 4.00 4.00 4.00	KIJ 2.00 2.00 2.00	WI 0.15 0.15 0.15	WJ 0.15 0.15 0.15	VERT1 0 0 0	VERT2 0 0 0	VERT3 0 0 0
BAY NUMBERS 22 LEVEL E 3 29862560.00 2 29862560.00 1 29862560.00	SA 0.10 0.10 0.10	TORS I 0.00 0.00 0.00	FLEX I 0.00 0.00 0.00	KII 4.00 4.00 4.00	KJJ 4.00 4.00 4.00	KIJ 2.00 2.00 2.00	WI 0.15 0.15 0.15	WJ 0.15 0.15 0.15	VERT1 0 0 0	VERT2 0 0 0	VERT3 0 0 0
BAY NUMBERS 23 LEVEL E 3 29862560.00 2 29862560.00	SA 0.10 0.10	TORS I 0.00 0.00	FLEX I 0.00 0.00	KII 4.00 4.00	KJJ 4.00 4.00	KIJ 2.00 2.00	0.15 0.15	WJ 0.15 0.15	VERT1 0 0	VERT2 0 0	VERT3 0 0

C-6

				OUTPUT FOR	CASE STUDY	r #1					
1 29862560.00 BAY NUMBERS 24 LEVEL E	0.10 SA	0.00	0.00	4.00	4.00	2.00	0.15	0.15	0	0	0
3 29862560.00 2 29862560.00 1 29862560.00	0.10 0.10 0.10	TORS I 0.00 0.00 0.00	FLEX I 0.00 0.00 0.00	KII 4.00 4.00 4.00	KJJ 4.00 4.00 4.00	KIJ 2.00 2.00 2.00	WI 0.15 0.15 0.15	UJ 0.15 0.15 0.15	VERT1 0 0 0	VERT2 0 0 0	VERT3 0 0 0
COLUMN PROPERTIES										·	Ŭ
COLUMN LINE NO. 1 LEVEL E	A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB			
3 29862560.00 2 29862560.00	0.09	0.07	0.07	0.00	0.00	0.00	0.20	0.20			
1 29862560.00 COLUMN LINE NO. 2 LEVEL E	0.09	0.07	0.07 0.07	0.00	0.00	0.00	0.20 0.20	0.20 0.20			
3 29862560.00	A 0.09	MAJ SA 0.07	MIN SA 0.07	TORS I 0.00	MAJ I 0.00	MIN I 0.00	DT 0.20	DB 0.20			
2 29862560.00 1 29862560.00 COLUMN LINE NO. 3	0.09 0.09	0.07 0.07	0.07 0.07	0.00			0.20 0.20 0.20	0.20			
LEVEL E 3 29862560.00	A 0.09	MAJ SA 0.07	MIN SA	TORS I	MAJ I	MIN I	DT	DB			
2 29862560.00 1 29862560.00	0.09	0.07	0.07 0.07 0.07	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.20 0.20 0.20	0.20 0.20 0.20			
COLUMN LINE NO. 4 LEVEL E	A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB			
3 29862560.00 2 29862560.00 1 29862560.00	0.09 0.09 0.09	0.07 0.07 0.07	0.07 0.07 0.07	0.00 0.00 0.00	0.00	0.00	0.20	0.20			
COLUMN LINE NO. 5 LEVEL É	A	MAJ SA	MIN SA	TORS I	0.00 Maj i	0.00 MIN I	0.20 DT	0.20 DB			
3 29862560.00 2 29862560.00 1 29862560.00	0.09	0.07	0.07	0.00	0.00	0.00	0.20	0.20 0.20			
1 29862560.00 COLUMN LINE NO. 6 LEVEL E	0.09 A	0.07 MAJ SA	0.07 MIN SA	0.00 TORS I	0.00 MAJ I	0.00 MIN I	0.20 DT	0.20 DB			
3 29862560.00 2 29862560.00 1 29862560.00	0.12	0.10	0.10	0.00	0.00	0.00	0.20	0.20			
2 29862560.00 1 29862560.00 COLUMN LINE NO. 7 LEVEL É	0.12	0.10	0.10	0.00	0.00	0.00	0.20	0.20 0.20			
3 29862560.00	A 0.12 0.12	MAJ SA 0.10	MIN SA 0.10	TORS I 0.00	MAJ I 0.00	MIN I 0.00	DT 0.20	DB 0.20			
2 29862560.00 1 29862560.00 COLUMN LINE NO. 8	0.12	0.10 0.10	0.10 0.10	0.00	0.00	0.00	0.20	0.20			
LEVEL E 3 29862560.00	A 0.09	MAJ SA 0.07	MIN SA 0.07	TORS I 0.00	MAJ I	MIN I	DT	DB			
2 29862560.00 1 29862560.00 COLUMN LINE NO. 9	0.09 0.09	0.07 0.07	0.07	0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.20 0.20 0.20	0.20 0.20 0.20			
LEVEL E	A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB			
3 29862560.00 2 29862560.00 1 29862560.00	0.09 0.09 0.09	0.07 0.07 0.07	0.07 0.07 0.07	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.20 0.20 0.20	0.20			
COLUMN LINE NO. 10 LEVEL E	A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	0.20 DB			
3 29862560.00 2 29862560.00 1 29862560.00	0.12 0.12 0.12	0.10	0.10		0.00	0.00	0.20 0.20 0.20	0.20			
COLUMN LINE NO. 11 LEVEL É	A	0.10 MAJ SA	0.10 MIN SA	0.00 TORS I	0.00 MAJ I	0.00 MIN I	0.20 DT	0.20 DB			
3 29862560.00 2 29862560.00	0.12	0.10 0.10	0.10 0.10	0.00	0.00	0.00	0.20	0.20			
1 29862560.00 COLUMN LINE NO. 12 LEVEL E	0:12 A	0.10 Maj sa	0.10 MIN SA	0.00	0.00	0.00	0.20	0.20			
3 29862560.00 2 29862560.00 1 29862560.00	0.09	0.07	0.07	TORS I 0.00 0.00	MAJ I 0.00	MIN I 0.00	DT 0.20 0.20	DB 0.20			
COLUMN LINE NO. 13	0.09	0.07	0.07 0.07	0.00 0.00	0.00	0.00	0.20	0.20			
LEVEL E 3 29862560.00	A 0.09	MAJ SA 0.07	MIN SA 0.07	TORS I 0.00	MAJ I 0.00	MIN I	DT	DB			
2 29862560.00 1 29862560.00 COLUMN LINE NO. 14	0.09	0.07	0.07 0.07		0.00	0.00 0.00 0.00	0.20 0.20 0.20	0.20 0.20 0.20			
LEVEL E	A 0.09	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB			
1 29862560.00	0.09	0.07 0.07 0.07	0.07 0.07 0.07	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.20 0.20 0.20	0.20 0.20 0.20			
COLUMN LINE NO. 15 LEVEL E	A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB			
3 29862560.00 2 29862560.00	0.09 0.09	0.07 0.07	0.07 0.07	0.00 0.00	0.00 0.00	0.00 0.00	0.20 0.20	0.20 0.20			
				C-3	7						

				OU	TPUT FOR	CASE STUD	Y #1		
1 29862560. COLUMN LINE NO.		.09	0.07	0.07	0.00	0.00	0.00	0.20	0.20
LEVEL E				N SA	TORS I	MAJ I	MIN I		
3 29862560. 2 29862560. 1 29862560.	00 0).09).09).09	0.07 0.07 0.07	0.07 0.07 0.07	0.00 0.00 0.00	$0.00 \\ 0.00 \\ 0.00$	0.00 0.00 0.00	0.20	0.20 0.20 0.20
FIRST FRAME LOO		,	0.07	0.07	0100	0100			
FRAME POSITION									
	CE CODE)	(1	Y1	ANG	~~			
1 1	0		`o.oo	0.00	0.	00			
SUPERSTRUC MODE SHAPE	CTURE DAME	PING. PING RATIO	Ď [°] (%)						
1	5	5.0							
23456789		5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0							
5 6 7		5.0 5.0							
8 9		5.0							
HEIGHT									
FLOOR	HEIGH								
3 2 1	10. 7. 3.	0							
Ó	0.0	Ō							
******	**** ISOL	ATION SYS	TEM DATA	*****	***				
BASEMAT M	HT TA 224	E CENTER	OF MASS O	F THE RAS	F				
BASEMAT	TRANSL		ROTATINAL						
			2005	~~~					
MASS	1	19.400	2985.0	500					
			2985.0 ONE: EQU		LOBAL DE	VICE PROP	ERTIES		
	ATION DAT	A: OPTION	ONE: EQU	IVALENT G				ECX	ECY
BASE ISOL	ATION DAT. OLATION D. IFFNESS[F	A: OPTION AMPING AT /L]	ONE: EQU	IVALENT G ER OF MAS 2092	S OF THE		. 00	ECX 0.0000 0.0000	ECY 0.0000 0.0000
BASE ISOL GLOBAL IS LINEAR ST	ATION DAT OLATION D IFFNESS[F AMPING[F/	A: OPTION AMPING AT /L] L/T]	ONE: EQU THE CENT 2092.6400 0.1000	IVALENT C ER OF MAS 2092	SS OF THE Y 2.6400 0.1000	BASE R 602680.32 0.10	. 00	0.0000	0.0000
BASE ISOL GLOBAL IS LINEAR ST VISCOUS D BASE ISOL	ATION DAT. OLATION D IFFNESS[F AMPING[F/ ATION DAT	A: OPTION AMPING AT /L] L/T] A: OPTION	ONE: EQU THE CENT X 2092.6400 0.1000 TWO: IND	IVALENT C ER OF MAS 2092 IVIDUAL 1	SS OF THE 2.6400 0.1000	BASE R 502680.32 0.10 ELEMENTS	. 00	0.0000 0.0000	0.0000 0.0000 NORM. FORCE
BASE ISOL GLOBAL IS LINEAR ST VISCOUS D BASE ISOL SLIDING B BEARING	ATION DAT. OLATION D. IFFNESSIF AMPINGIF/ ATION DAT EARING PA FMAX X 0 100	A: OPTION AMPING AT /L] L/T] A: OPTION RAMETERS. FMAX Y 0.100	ONE: EQU THE CENT 2092.6400 0.1000 TWO: IND DF X	IVALENT C ER OF MAS 2092 IVIDUAL 1 DF Y	SY OF THE 2.6400 0.1000 ISOLATION PA X	BASE 502680.32 0.10 ELEMENTS PA Y	00 00 Y.DIS.X	0.0000 0.0000 Y.DIS.Y 0.00025	0.0000 0.0000 NORM. FORCE
BASE ISOL GLOBAL IS LINEAR ST VISCOUS D BASE ISOL SLIDING B BEARING	ATION DAT. OLATION D. IFFNESSIF AMPING[F/ ATION DAT EARING PA FMAX X 0.100 0.100 0.100 0.100	A: OPTION AMPING AT /L] L/T] A: OPTION RAMETERS. FMAX Y 0.100 0.100 0.100	ONE: EQU THE CENT 2092.6400 0.1000 TWO: IND DF X	IVALENT C ER OF MAS 2092 IVIDUAL 1 DF Y	SY OF THE 2.6400 0.1000 ISOLATION PA X	BASE 502680.32 0.10 ELEMENTS PA Y	00 00 Y.DIS.X	0.0000 0.0000 Y.DIS.Y 0.00025	0.0000 0.0000 NORM. FORCE
BASE ISOL GLOBAL IS LINEAR ST VISCOUS D BASE ISOL SLIDING B BEARING	ATION DAT. OLATION D. IFFNESSIF AMPING[F/ ATION DAT EARING PA FMAX X 0.100 0.100 0.100 0.100	A: OPTION AMPING AT /L] L/T] A: OPTION RAMETERS. FMAX Y 0.100 0.100 0.100 0.100	ONE: EQU THE CENT 2092.6400 0.1000 TWO: IND DF X	IVALENT C ER OF MAS 2092 IVIDUAL 1 DF Y	SY OF THE 2.6400 0.1000 ISOLATION PA X	BASE 502680.32 0.10 ELEMENTS PA Y	00 00 Y.DIS.X	0.0000 0.0000 Y.DIS.Y 0.00025	0.0000 0.0000 NORM. FORCE
BASE ISOL GLOBAL IS LINEAR ST VISCOUS D BASE ISOL SLIDING B BEARING	ATION DAT. OLATION D. IFFNESSIF AMPING[F/ ATION DAT EARING PA FMAX X 0.100 0.100 0.100 0.100	A: OPTION AMPING AT /L] L/T] A: OPTION RAMETERS. FMAX Y 0.100 0.100 0.100 0.100	ONE: EQU THE CENT 2092.6400 0.1000 TWO: IND DF X	IVALENT C ER OF MAS 2092 IVIDUAL 1 DF Y	SY OF THE 2.6400 0.1000 ISOLATION PA X	BASE 502680.32 0.10 ELEMENTS PA Y	00 00 Y.DIS.X	0.0000 0.0000 Y.DIS.Y 0.00025	0.0000 0.0000 NORM. FORCE
BASE ISOL GLOBAL IS LINEAR ST VISCOUS D BASE ISOL SLIDING B BEARING	ATION DAT. OLATION D IFFNESSIF AMPING[F/ ATION DAT EARING PA FMAX X 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	A: OPTION AMPING AT /L] L/T] A: OPTION RAMETERS. FMAX Y 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	ONE: EQU THE CENT 2092.6400 0.1000 TWO: IND DF X	IVALENT C ER OF MAS 2092 IVIDUAL 1 DF Y	SY OF THE 2.6400 0.1000 ISOLATION PA X	BASE 502680.32 0.10 ELEMENTS PA Y	00 00 Y.DIS.X	0.0000 0.0000 Y.DIS.Y 0.00025	0.0000 0.0000 NORM. FORCE
BASE ISOL GLOBAL IS LINEAR ST VISCOUS D BASE ISOL SLIDING B BEARING	ATION DAT. OLATION D IFFNESSIF AMPING[F/ ATION DAT EARING PA FMAX X 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	A: OPTION AMPING AT /L] L/T] A: OPTION RAMETERS. FMAX Y 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	ONE: EQU THE CENT 2092.6400 0.1000 TWO: IND DF X	IVALENT C ER OF MAS 2092 IVIDUAL 1 DF Y	SY OF THE 2.6400 0.1000 ISOLATION PA X	BASE 502680.32 0.10 ELEMENTS PA Y	00 00 Y.DIS.X	0.0000 0.0000 Y.DIS.Y 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025	0.0000 0.0000 NORM. FORCE
BASE ISOL GLOBAL IS LINEAR ST VISCOUS D BASE ISOL	ATION DAT. OLATION D. IFFNESSIF AMPINGIF/ ATION DAT EARING PA FMAX X 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	A: OPTION AMPING AT /L] L/T] A: OPTION RAMETERS. FMAX Y 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	ONE: EQU THE CENT X 2092.6400 0.1000 TWO: IND	IVALENT C ER OF MAS 2092 IVIDUAL 1	SS OF THE 2.6400 0.1000	BASE R 502680.32 0.10 ELEMENTS	- 00 00	0.0000 0.0000 Y.DIS.Y 0.00025	0.0000 0.0000 NORM. FORCE
BASE ISOL GLOBAL IS LINEAR ST VISCOUS D BASE ISOL SLIDING B BEARING 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 BEARING L	ATION DAT. OLATION D IFFNESSIF AMPINGIF/ ATION DAT EARING PA FMAX X 0.100	A: OPTION AMPING AT /L] L/T] A: OPTION RAMETERS. FMAX Y 0.100	ONE: EQU THE CENT 2092.6400 0.1000 TWO: IND DF X	IVALENT C ER OF MAS 2092 IVIDUAL 1 DF Y	SY OF THE 2.6400 0.1000 ISOLATION PA X	BASE 802680.32 0.10 ELEMENTS PA Y 23.600 23.	00 00 Y.DIS.X	0.0000 0.0000 Y.DIS.Y 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025	0.0000 0.0000
BASE ISOL GLOBAL IS LINEAR ST VISCOUS D BASE ISOL SLIDING B BEARING 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 BEARING L BEARING L	ATION DAT. OLATION D IFFNESSIF AMPINGIF/ ATION DAT EARING PA FMAX X 0.100	A: OPTION AMPING AT /L] L/T] A: OPTION RAMETERS. FMAX Y 0.100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000000	ONE: EQU THE CENT 2092.6400 0.1000 TWO: IND 	IVALENT C ER OF MAS 2092 IVIDUAL 1 DF Y	SY OF THE 2.6400 0.1000 ISOLATION PA X	BASE 802680.32 0.10 ELEMENTS PA Y 23.600 23.	00 00 Y.DIS.X	0.0000 0.0000 Y.DIS.Y 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025	0.0000 0.0000 NORM. FORCE
BASE ISOL GLOBAL IS LINEAR ST VISCOUS D BASE ISOL SLIDING B BEARING 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 BEARING L BEARING L	ATION DAT. OLATION D IFFNESSIF AMPING[F/ ATION DAT EARING PA FMAX X 0.100 0.000	A: OPTION AMPING AT /L] L/T] A: OPTION RAMETERS. FMAX Y 0.100 0.	ONE: EQU THE CENT 2092.6400 0.1000 TWO: IND DF X 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030	IVALENT C ER OF MAS 2092 IVIDUAL 1 DF Y	SY OF THE 2.6400 0.1000 ISOLATION PA X	BASE 802680.32 0.10 ELEMENTS PA Y 23.600 23.	00 00 Y.DIS.X	0.0000 0.0000 Y.DIS.Y 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025	0.0000 0.0000 NORM. FORCE
BASE ISOL GLOBAL IS LINEAR ST VISCOUS D BASE ISOL SLIDING B BEARING 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 BEARING L BEARING L	ATION DAT. OLATION D IFFNESSIF AMPINGIF/ ATION DAT EARING PA FMAX X 0.100 0.10	A: OPTION AMPING AT /L] L/T] A: OPTION RAMETERS. FMAX Y 0.100 0.	ONE: EQU THE CENT 2092.6400 0.1000 TWO: IND DF X 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030	IVALENT C ER OF MAS 2092 IVIDUAL 1 DF Y	SY OF THE 2.6400 0.1000 ISOLATION PA X	BASE 802680.32 0.10 ELEMENTS PA Y 23.600 23.	00 00 Y.DIS.X	0.0000 0.0000 Y.DIS.Y 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025	0.0000 0.0000 NORM. FORCE
BASE ISOL GLOBAL IS LINEAR ST VISCOUS D BASE ISOL SLIDING B BEARING 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 BEARING L	ATION DAT. OLATION D IFFNESSIF AMPING[F/ ATION DAT EARING PA FMAX X 0.100 0.000 0.00000000	A: OPTION AMPING AT /L] L/T] A: OPTION RAMETERS. FMAX Y 0.100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000000	ONE: EQU THE CENT 2092.6400 0.1000 TWO: IND DF X 0.030	IVALENT C ER OF MAS 2092 IVIDUAL 1 DF Y	SY OF THE 2.6400 0.1000 ISOLATION PA X	BASE 802680.32 0.10 ELEMENTS PA Y 23.600 23.	00 00 Y.DIS.X	0.0000 0.0000 Y.DIS.Y 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025	0.0000 0.0000 NORM. FORCE

10 11 12 13 14 15 16	2.00 2.00 2.00 6.00 6.00 6.00 6.00	-2.00 2.00 6.00 -6.00 -2.00 2.00 6.00						
TIME HISTOR INDEX = 0 INDEX = 1	FOR TIME H	ISTORY E HISTO	DUTPUT RY OUTPU	= Г		1		
NO. OF TIME OUTPUT IS D FORCE-DISPL AT BEARINGS	ESIRED ACEMENT TI			=	1	1	3	,
COORDINATES COL, LINE 1 2 3 4 5 6		LINES /	AT WHICH CORD. 0.00 0.00 0.00 0.00 0.00 0.00 0.00	INTERS	•	-	-	4 Desired
*****	******	OUTPUT	******	******	****	*****		

MODE SHAPES

1

LEVEL	ID	DIRN	1	2	3	4	5	6	7	8
3 3 3 3		X Y ROTN	0.000000 0.028814 0.012811	-0.070705 0.000000 0.000000	0.000000 0.068441 -0.005789	0.000000 0.017460 0.009780	0.051357 0.000000 0.000000	0.000000 0.044028 -0.003318	0.000000 0.008113 0.005265	0.027174 0.000000 0.000000
2		X	0.000000	-0.052181	0.000000	0.000000	-0.037300	0.000000	0.000000	-0.065277
2		Y	0.020758	0.000000	0.044503	-0.013985	0.000000	-0.041217	-0.021198	0.000000
2		ROTN	0.009659	0.000000	-0.004117	-0.006752	0.000000	0.002711	-0.012361	0.000000
1		X	0.000000	-0.025556	0.000000	0.000000	-0.065927	0.000000	0.000000	0.058101
1		Y	0.009895	0.000000	0.018832	-0.023792	0.000000	-0.060575	0.021215	0.000000
1		ROTN	0.004814	0.000000	-0.001939	-0.012291	0.000000	0.004938	0.010762	0.000000

		•	
LEVEL	ID	DIRN	9
3		X	0.000000
3		Y	-0.023486
3		ROTN	0.001717
2		X	0.000000
2		Y	0.060167
2		ROTN	-0.004355
1		X	0.000000
1		Y	-0.056896
1		ROTN	0.004091

MODE NUMBER PERIOD

0.269144 0.267683 0.205015 0.090896 0.090021 0.062462 0.058352 0.057300 0.037163

MAX	K. REL. DISP.	AT THE CENTER O	F MASS OF	FLOORS
FLOOR	X DISP.	(WITH RESP Y DISP. R	DTN.(rad)	BASE)
3 2 1	0.0046 0.0030 0.0014	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	
MA) STORI	(INTERSTORY D (X DST.	RIFT Y DST.	TIME	X DRIFT,

	RA	X DST.	Y DST.	TIME	X DRIFT/FL. HT.(%)	TIME
--	----	--------	--------	------	--------------------	------

Y DRIFT/FL. HT.(%)

			OL.	ITPUT FOR CAS	E STUDY #1	
3 2 1	0.00 0.00 0.00	0.00 0.00 0.00	4.57 4.56 2.58	0.04 0.05 0.04	10.79 7.48 6.61	0.00 0.00 0.00
3 2 1	0.00 0.00 0.00	0.00 0.00 0.00	4.57 4.56 2.58	0.04 0.05 0.04	10.79 7.48 6.61	0.00 0.00 0.00
3 2 1	0.00 0.00 0.00	0.00 0.00 0.00	4.57 4.56 2.58	0.04 0.05 0.04	10.79 7.48 6.61	0.00 0.00 0.00
3 2 1	0.00 0.00 0.00	0.00 0.00 0.00	4.57 4.56 2.58	0.04 0.05 0.04	10.79 7.48 6.61	0.00 0.00 0.00
3 2 1	0.00 0.00 0.00	0.00 0.00 0.00	4.57 4.56 2.58	0.04 0.05 0.04	10.79 7.48 6.61	0.00 0.00 0.00
3 2 1	0.00 0.00 0.00	0.00 0.00 0.00	4.57 4.56 2.58	0.04 0.05 0.04	10.79 7.48 6.61	$0.00 \\ 0.00 \\ 0.00$
MAX. D X DISP	ISP. AT THE CE . Y DISP.	NTER OF MASS ROTN				
0	.034 0.	000 0.	.000			
MAX RE TIME	SULTANT DISP. RES. DISP.	AT THE CENTER X CON	ROF MASS OF MP. YC	BASE DMP.		
5.440	0.034	0.034	ι Ο	.000		
MAX RE BEARIN		MAX. DIS		H X AXIS		
1 2 3 4	5.440 5.440 5.440 5.440	0.034 0.034 0.034 0.034 0.034	0.000 0.000 0.000 0.000 0.000			
MAX BE BEARIN	ARING DISP. IN IG TIME	IX MAX.DI	SP X			
1 2 3 4	5.440 5.440 5.440 5.440	0.034 0.034 0.034 0.034				
MAX BE BEARIN	ARING DISP. IN IG TIME	IY MAX.DI	SP Y			
1 2 3 4	10.260 10.260 10.260 10.260	0.000 0.000 0.000 0.000				
MAX. T FLOOR	OTAL ACCL. AT	CENTER OF MA	SS OF FLOORS ACCL. R			
3 2 1	-3.632259 -2.292641 2.342419	0.000000 0.000000 0.000000	0.000000 0.000000 0.000000			
MAX ST STORY	ORY SHEAR TIME	X SHEAR	TIME	Y SHEAF	ł	
3 2 1	2.550 4.550 2.570	-433.692 -540.764 -525.501	10.790 7.480 10.700	0.000 0.000 0.000		
MAX. 5 FORCE -525.50						
MAX. E FORCE	BASE SHEAR (BE) X FORCE		NT			
511.87	7 0.0	0.	00			
LOAD CONDIT LOAD	TION DEFINITION I		III RESPO	NSE C-11	0	

				OUTPUT FOR CASE STUDY #1
1	0.00	0.00	0.00	1.00

MEMBER	FORCE	Es	. FRAME ID FIF	RSTFRAME L	ACO.	FRAME TYPE 1				
COLUM	FORCE	ES	LEVEL NO 1	LEVEL	ID					
0 LINE			TORSIONAL MOMENT	MAJOR TOP MOMENT	BOT MOMENT	AXIAL FORCE	MINOR A	BOT MOMENT	MAJOR SHEAR	MINOR SHEAR 0.0278
1	1	MAX MIN	0.0000	9.7447 -9.7447	13.2903 -13.2903	23.4319 -23.4319	0.0562	0.0300	7.4306 -7.4306	0.0278 -0.0278
2	1	MAX MIN	0.0000 0.0000	10.9553 -10.9553	13.9376 -13.9376	33.5534 -33.5534	0.0401 -0.0401	0.0215 -0.0215	8.0300 -8.0300	0.0199 -0.0199
3	1 1	MAX MIN	0.0000 0.0000	10.9553 -10.9553	13.9376 -13.9376	33.5534 -33.5534	0.0401 -0.0401	0.0215 -0.0215	8.0300 -8.0300	0.0199 -0.0199
4	1 1	MAX MIN	0.0000	9.7447 -9.7447	13.2903 -13.2903	23.4319 -23.4319	0.0562 -0.0562	0.0300 -0.0300	7.4306 -7.4306	0.0278
5	1 1	MAX MIN	0.0000 0.0000	13.1817 -13.1817	15.1279 -15.1279	2.0934 -2.0934	0.4076 -0.4076	0.2179 -0.2179	9.1321 -9.1321	0.2018 -0.2018
6	1 1	MAX MIN	0.0000 0.0000	21.7100 -21.7100	30.5115 -30.5115	144.4236 -144.4236	0.3892 -0.3892	0.2081 -0.2081	16.8456 -16.8456	0.1927 -0.1927
7	1 1	MAX MIN	0.0000 0.0000	21.7100 -21.7100	30.5115 -30.5115	144.4236 -144.4236	0.3892 -0.3892	0.2081 -0.2081	16.8457 -16.8457	0.1927 -0.1927
8	1 1	MAX MIN	0.0000	13.1817 -13.1817	15.1279 -15.1279	2.0934 -2.0934	0.4076 -0.4076	0.2179 -0.2179	9.1321 -9.1321	0.2018 -0.2018
9	1	MAX MIN	0.0000 0.0000	13.1944 -13.1944	15.1347 -15.1347	1.5861 -1.5861	0.9571 -0.9571	0.5117 -0.5117	9.1384 -9.1384	0.4738 -0.4738
10	1	MAX Min	0.0000	22.2053 -22.2053	30.7727 -30.7727	325.1292 -325.1292	0.8851 -0.8851	0.4732 -0.4732	17.0897 -17.0897	0.4382 -0.4382
11	1	MAX Min	0.0000	22.2053 -22.2053	30.7727 -30.7727	325.1291 -325.1291	0.8851 -0.8851	0.4732 -0.4732	17.0897 -17.0897	0.4382 -0.4382
12	1 1	MAX MIN	0.0000 0.0000	13.1944 -13.1944	15.1347 -15.1347	1.5861 -1.5861	0.9571 -0.9571	0.5117	9.1384 -9.1384	0.4738 -0.4738
13	1	MAX MIN	0.0000	9.7744 -9.7744	13.3062 -13.3062	23.3867 -23.3867	0.0880 -0.0880	0.0471 -0.0471	7.4454	0.0436 -0.0436
14	1	MAX Min	0.0000	11.4165 -11.4165	14.1842 -14.1842	36.1179 -36.1179	0.0573 -0.0573	0.0307 -0.0307	8.2583 -8.2583	0.0284 -0.0284
15	1	MAX MIN	0.0000	11.4165 -11.4165	14.1842 -14.1842	36.1179 -36.1179	0.0573 -0.0573	0.0307 -0.0307	8.2583 -8.2583	0.0284 -0.0284
16	1 1	MAX MIN	0.0000 0.0000	9.7744 -9.7744	13.3062 -13.3062	23.3866 -23.3866	0.0880 -0.0880	0.0471 -0.0471	7.4454 -7.4454	0.0436 -0.0436
BEAM F	ORCES									
BAY 1	LOAD 1 1	MAX MIN	TORS MOMENT 0.2765 -0.2765	I MOMENT 0.0895 -0.0895	J MOMENT 0.1043 -0.1043					
2	1 1	MAX MIN	0.0000 0.0000	0.0371 -0.0371	0.0371 -0.0371					
3	1 1	MAX MIN	0.2765 -0.2765	0.1043 -0.1043	0.0895 -0.0895					
4	1	MAX MIN	0.0756 -0.0756	18.9457 -18.9457	15.6913 -15.6913					
5	1 1	MAX MIN	0.0542 -0.0542	22.5194 -22.5194	24.1013 -24.1013					
6	1	MAX MIN	0.0542	22.5194 -22.5194	24.1013 -24.1013					
7	1 1	MAX MIN	0.0756 -0.0756	18.9457 -18.9457	15.6913 -15.6913					
8	1	MAX MIN	0.8504 -0.8504	1.5123 -1.5123	1.6192 -1.6192					
9	1	MAX MIN	0.0000 0.0000	0.2697 -0.2697	0.2697					
10	1	MAX MIN	0.8504 -0.8504	1.6192 -1.6192	1.5123					
11	1	MAX	0.2937 -0.2937	12.7435	12.7298					
12	1		0.2057	16.5341	16.3104					

					OUTPUT FOR CASE	STUDY #1
	1	MIN	-0.2057	-16.5341	-16.3104	
13	1	MAX MIN	0.2057 -0.2057	16.5341 -16.5341	16.3104 -16.3104	
14	1 1	MAX Min	0.2937 -0.2937	12.7435 -12.7435	12.7298 -12.7298	
15	1	MAX MIN	0.8015 -0.8015	3.1751 -3.1751	3.4460 -3.4460	
16	1 1	MAX MIN	0.0000 0.0000	0.6135 -0.6135	0.6135 -0.6135	
17	1	MAX MIN	0.8015 -0.8015	3.4460 -3.4460	3.1751 -3.1751	
18	1 1	MAX MIN	0.1870 -0.1870	15.7039 -15.7039	18.9403 -18.9403	
19	1	MAX MIN	0.1305	25.9289 -25.9289	24.0846 -24.0846	
20	1 1	MAX MIN	0.1305 -0.1305	25.9289 -25.9289	24.0846 -24.0846	
21	1	MAX MIN	0.1870 -0.1870	15.7039 -15.7039	18.9403 -18.9403	
22	1 1	MAX MIN	0.3923 -0.3923	0.0725 -0.0725	0.1009 -0.1009	
23	1	MAX Min	0.0000	0.0530 -0.0530	0.0530 -0.0530	
24	1 1	MAX MIN	0.3923 -0.3923	0.1009	0.0725-0.0725	

PANEL FORCES

FLEXURA I COL 6	L PAN LOAD 1 1	ELS MAX MIN	TOP-MOMENT 0.0001 -0.0001	BOT-MOMENT 0.0001 -0.0001	AXIAL-FORCE 394.4139 -394.4139	SHEAR-FORCE 0.0000 0.0000
BRACING T-COL 7	ELEM LOAD 1 1	ENTS MAX MIN	- LISTED IN SAME AXIAL-FORCE 130.5494 -130.5494	SEQUENCE AS	INPUT	
11	1 1	MAX Min	120.0116 -120.0116			
6	1 1	MAX MIN	130.5494 -130.5494			
10	1 1	MAX Min	120.0116 -120.0116			
14	1 1	MAX MIN	2.2338 -2.2338			
15	1 1	MAX MIN	2.2338 -2.2338			

 MEMBER FORCES
 FRAME ID
 FIRS T FR AME
 LOCA
 FRAME TYPE
 1

 LEVEL NO
 2
 ...
 LEVEL ID
 0
 0
 INFORCES
 0
 NINOR AXIS
 MINOR AXIS
 MINOR AXIS
 MINOR AXIS
 NINOR AXIS
 0.0000
 9.6309
 9.6128
 14.3279
 0.0022
 0.1082

0	LINE 1	LOAD	MAX MIN	TORSIONAL MOMENT 0.0000	MAJOR TOP MOMENT 9.6309	BOT MOMENT 9.6128	AXIAL FORCE 14-3279	MINOR TOP MOMENT 0.1082	BOT MOMENT 0.0979	MAJOR SHEAR 6.1944	MINOR SHEAR 0.0665
		1	MIN	0.0000	-9.6309	-9.6128	-14.3279	-0.1082	-0.0979	-6.1944	-0.0665
	2	1 1	MAX MIN	0.0000 0.0000	11.5751 -11.5751	11.5917 -11.5917	21.2851 -21.2851	0.0863 -0.0863	0.0748 -0.0748	7.4731 -7.4731	0.0520 -0.0520
	3	1 1	MAX MIN	0.0000 0.0000	11.5751 -11.5751	11.5917 -11.5917	21.2851 -21.2851	0.0863 -0.0863	0.0748 -0.0748	7.4731 -7.4731	0.0520 -0.0520
	4	1 1	MAX MIN	0.0000 0.0000	9.6309 -9.6309	9.6128 -9.6128	14.3279 -14.3279	0.1082 -0.1082	0.0979-0.0979	6.1944 -6.1944	0.0665 -0.0665
	5	1	MAX MIN	0.0000	14.5563 -14.5563	14.6782 -14.6782	0.7632 -0.7632	0.8084 -0.8084	0.7233 -0.7233	9.4305 -9.4305	0.4941 -0.4941
	6	1 1	MAX MIN	0.0000 0.0000	20.3872 -20.3872	20.3207 -20.3207	80.8200 -80.8200	0.7781 -0.7781	0.6939 -0.6939	13.0215 -13.0215	0.4748 -0.4748
	7	1	MAX MIN	0.0000	20.3872 -20.3872	20.3207 -20.3207	80.8201 -80.8201	0.7781 -0.7781	0.6939 -0.6939	13.0215 -13.0215	0.4748 -0.4748
	8	1 1	MAX MIN	0.0000 0.0000	14.5563 -14.5563	14.6782 -14.6782	0.7632 -0.7632	0.8084 -0.8084	0.7233 -0.7233	9.4305 -9.4305	0.4941 -0.4941

					OUTPUT FOR CA	SE STUDY #1				
9	1		0.0000	14.5937 -14.5937	14.7102 -14.7102	2.1275	1.8674 -1.8674	1.6819	9.4528 -9.4528	1.1449
10	1 1		0.0000 0.0000	21.4273 -21.4273	21.3795 -21.3795	180.5946 -180.5946	1.7662 -1.7662	1.5764 -1.5764	13.7375 -13.7375	1.0782 -1.0782
11	1 1	MAX MIN	0.0000 0.0000	21.4273 -21.4273	21.3795 -21.3795	180.5945 -180.5945	1.7662 -1.7662	1.5764 -1.5764	13.7375 -13.7375	1.0782 -1.0782
12	1		0.0000 0.0000	14.5937 -14.5937	14.7102 -14.7102	2.1275 -2.1275	1.8674 -1.8674	1.6819 -1.6819	9.4528 -9.4528	1.1449 -1.1449
13	1 1		0.0000 0.0000	9.6903 -9.6903	9.6756 -9.6756	14.2844 -14.2844	0.1624 -0.1624	0.1497 -0.1497	6.2361 -6.2361	0.1007 -0.1007
14	1	MAX MIN	0.0000	12.6877 -12.6877	12.5982 -12.5982	23.3447 -23.3447	0.1246 -0.1246	0.1075 -0.1075	8.1567 -8.1567	0.0749 -0.0749
15	1 1		0.0000 0.0000	12.6877 -12.6877	12.5982 -12.5982	23.3447 -23.3447	0.1246 -0.1246	0.1075 -0.1075	8.1567 -8.1567	0.0749 -0.0749
16	1 1	MAX MIN	0.0000 0.0000	9.6903 -9.6903	9.6756 -9.6756	14.2844 -14.2844	0.1624 -0.1624	0.1497 -0.1497	6.2361 -6.2361	0.1007 -0.1007
BEAM F	ORCES									
BAY 1	LOAD 1 1	MAX MIN	TORS MOMENT 0.2794 -0.2794	I MOMENT 0.1856 -0.1856	J MOMENT 0.1979 -0.1979					
2	1 1	MAX MIN	0.0000	0.0599	0.0599					
3	1 1	MAX MIN	0.2794 -0.2794	0.1979 -0.1979	0.1856 -0.1856					
4	1 1	MAX MIN	0.1103 -0.1103	18.4991 -18.4991	15.5767 -15.5767					
5	1 1	MAX MIN	0.0781 -0.0781	23.4172 -23.4172	25.2585 -25.2585					
6	1 1	MAX MIN	0.0781 -0.0781	23.4172 -23.4172	25.2585 -25.2585					
7	1 1	MAX MIN	0.1103 -0.1103	18.4991 -18.4991	15.5767 -15.5767					
8	1 1	MAX MIN	0.8299 -0.8299	2.4599 -2.4599	2.6105 -2.6105					
9	1	MAX MIN	0.0000 0.0000	0.3951 -0.3951	0.3951 -0.3951					
10	1	MAX Min	0.8299 -0.8299	2.6105 -2.6105	2.4599 -2.4599					
11	1	MAX MIN	0.4188 -0.4188	13.3385 -13.3385	13.3123 -13.3123					
12	1 1	MAX MIN	0.3007 -0.3007	11_4809 -11_4809	11.1505 -11.1505					
13	1	MAX MIN	0.3007 -0.3007	11.4809 -11.4809	11.1505 -11.1505					
14	1 1	MAX MIN	0.4188 -0.4188	13.3385 -13.3385	13.3123 -13.3123					
15	1	MAX Min	0.7591 -0.7591	5.2267 -5.2267	5.5832 -5.5832					
16	1 1	MAX Min	0.0000 0.0000	0.8962 -0.8962	0.8962					
17	1 1	MAX MIN	0.7591 -0.7591	5.5832 -5.5832	5.2267 -5.2267					
18	1 1	MAX Min	0.2669 -0.2669	15.6282 -15.6282	18.5343 -18.5343					
19	1 1	MAX MIN	0.1885 -0.1885	28.5609 -28.5609	26.3066 -26.3066					
20	1 1	MAX MIN	0.1885 -0.1885	28.5609 -28.5609	26.3066 -26.3066					
21	1 1	MAX MIN	0.2669 -0.2669	15.6282 -15.6282	18.5343 -18.5343					

0.1960 -0.1960 C-13

0.2157 -0.2157

0.0868 -0.0868

22

23

24

1 MAX 1 MIN

1 MAX 1 MIN

1 MAX 1 MIN

0.4427 -0.4427

0.0000

0.4427 -0.4427

0.1960 -0.1960

0.0868 -0.0868

0.2158 -0.2158

PANEL FORCES

FLEXUR/ I COL 6	AL PAN LOAD 1 1	ELS MAX MIN	TOP-MOMENT 0.0002 -0.0002	BOT-MOMENT 0.0001 -0.0001	AXIAL-FORCE 220.7157 -220.7157	SHEAR - FORCE 0.0000 0.0000
BRACING T-COL 7	G ELEM LOAD 1 1	ENTS MAX MIN	- LISTED IN SAME AXIAL-FORCE 131.3472 -131.3472	SEQUENCE AS	INPUT	
11	1	MAX MIN	124.0436 -124.0436			
6	1	MAX MIN	131.3472 -131.3472			
10	1	MAX MIN	124.0436 -124.0436			
14	1	MAX MIN	1.4438 -1.4438			
15	1	MAX MIN	1.4438 -1.4438			

MEMBEI	R FORCE	es	. FRAME ID FIR	STFRAME L	-OCA	FRAME TYPE 1				
COLUM	N FORCE	S	LEVEL NO 3	LEVEL	ID					
O LINI 1	E LOAD 1 1	MAX MIN	TORSIONAL MOMENT 0.0000 0.0000	MAJOR TOP MOMENT 10.2558 -10.2558	AXIS BOT MOMENT 8.8238 -8.8238	AXIAL FORCE 5.0615 -5.0615	MINOR TOP MOMENT 0.2061 -0.2061	AXIS BOT MOMENT 0.1660 -0.1660	MAJOR SHEAR 6.1547 -6.1547	MINOR SHEAR 0.1200 -0.1200
2	1 1	MAX MIN	0.0000	13.0322 -13.0322	11.2294 -11.2294	8.2814 -8.2814	0.1350 -0.1350	0.1185 -0.1185	7.8263 -7.8263	0.0818 -0.0818
3	1	MAX MIN	0.0000	13.0322 -13.0322	11.2294 -11.2294	8.2814 -8.2814	0.1350 -0.1350	0.1185 -0.1185	7.8263 -7.8263	0.0818 -0.0818
4	1 1	MAX MIN	0.0000	10.2558 -10.2558	8.8238 -8.8238	5.0615 -5.0615	0.2061 -0.2061	0.1660 -0.1660	6.1547 -6.1547	0.1200 -0.1200
5	1 1	MAX MIN	0.0000	14.1216 -14.1216	13.1272 -13.1272	0.4156 -0.4156	1.2315 -1.2315	1.0801 -1.0801	8.7899 -8.7899	0.7457 -0.7457
6	1	MAX MIN	0.0000	-19.7117 -19.7117	17.0956 -17.0956	23.4223 -23.4223	1.1612 -1.1612	1.0279 -1.0279	11.8733 -11.8733	0.7062
7	1 1	MAX MIN	0.0000	19.7117 -19.7117	17.0956 -17.0956	23.4223 -23.4223	1.1612 -1.1612	1.0279 -1.0279	11.8733 -11.8733	0.7062 -0.7062
8	1 1	MAX MIN	0.0000	14.1216 -14.1216	13.1272 -13.1272	0.4156 -0.4156	1.2315 -1.2315	1.0801 -1.0801	8.7899 -8.7899	0.7457 -0.7457
9	1 1	MAX MIN	0.0000	14.1795 -14.1795	13.1785 -13.1785	1.2844 -1.2844	2.9232 -2.9232	2.5310 -2.5310	8.8252 -8.8252	1.7594 -1.7594
10	1	MAX MIN	0.0000	21.6602 -21.6602	18.7282 -18.7282	51.6728 -51.6728	2.6375 -2.6375	2.3335 -2.3335	13.0285 -13.0285	1.6036 -1.6036
11	1	MAX MIN	0.0000	21.6602 -21.6602	18.7282 -18.7282	51.6727 -51.6727	2.6375 -2.6375	2.3335 -2.3335	13.0285 -13.0285	1.6036 -1.6036
12	1	MAX MIN	0.0000	14.1795 -14.1795	13.1785 -13.1785	1.2844 -1.2844	2.9232 -2.9232	2.5310 -2.5310	8.8252 -8.8252	1.7594 -1.7594
13	1	MAX MIN	0.0000	10.4033 -10.4033	8.9356 -8.9356	4.9866 -4.9866	0.3304 -0.3304	0.2590	6.2383 -6.2383	0.1901 -0.1901
14	1	MAX MIN	0.0000	14.8121 -14.8121	12.7581 -12.7581	9.2394 -9.2394	0.1945 -0.1945	0.1710 -0.1710	8.8936 -8.8936	0.1179 -0.1179
15	1	MAX MIN	0.0000	14.8121 -14.8121	12.7581 -12.7581	9.2394 -9.2394	0.1945 -0.1945	0.1710 -0.1710	8.8936 -8.8936	0.1179 -0.1179
16	1	MAX MIN	0.0000	10.4033 -10.4033	8.9356 -8.9356	4.9866 -4.9866	0.3304 -0.3304	0.2590	6.2383 -6.2383	0.1901 -0.1901
BEAM F	ORCES									
BAY 1	LOAD	MAX	TORS MOMENT	I MOMENT 0.0610	J MOMENT 0.1202					

BAY 1	LOAD 1 1	MAX MIN	TORS MOMENT 0.4491 -0.4491	I MOMENT 0.0610 -0.0610	J MOMENT 0.1202 -0.1202
2	1 1	MAX MIN	0.0000 0.0000	0.0927 -0.0927	0.0927 -0.0927
3	1	MAX MIN	0.4491 -0.4491	0.1202 -0.1202	0.0610 -0.0610

4	1	MAX MIN	0.1617 -0.1617	10.2858 -10.2858	8.2604 -8.2604
5	1	MAX	0.1166	13.7971	17.0252
	1	MIN	-0.1166	-13.7971	-17.0252
6	1	MAX Min	0.1166 -0.1166	13.7971 -13.7971	17.0252 -17.0252
7	1	MAX	0.1617	10.2858	8.2604
	1	MIN	-0.1617	-10.2858	-8.2604
8	1	MAX MIN	0.774 <u>3</u> -0.7743	2.0371 -2.0371	2.2897 -2.2897
9	1	MAX	0.0000	0.5936	0.5936
	1	MIN	0.0000	-0.5936	-0.5936
10	1	MAX	0.7743	2.2897	2.0371
	1	MIN	-0.7743	-2.2897	-2.0371
11	1	MAX	0.6701	7.0700	7.0305
	1	MIN	-0.6701	-7.0700	-7.0305
12	1	MAX	0.4524	3.1352	2.9438
	1	MIN	-0.4524	-3.1352	-2.9438
13	1	MAX	0.4524	3.1352	2.9438
	1	MIN	-0.4524	-3.1352	-2.9438
14	1	MAX	0.6701	7.0700	7.0305
	1	MIN	-0.6701	-7.0700	-7.0305
15	1	MAX	0.6445	4.0078	4.6902
	1	MIN	-0.6445	-4.0078	-4.6902
16	1	MAX	0.0000	1.3490	1.3490
	1	MIN	0.0000	-1.3490	-1.3490
17	1	MAX	0.6445	4.6902	4.0078
	1	MIN	-0.6445	-4.6902	-4.0078
18	1	MAX	0.4152	8.2397	10.1910
	1	MIN	-0.4152	-8.2397	-10.1910
19	1	MAX	0.2831	19.7375	15.8604
	1	MIN	-0.2831	-19.7375	-15.8604
20	1	MAX	0.2831	19.7375	15.8604
	1	MIN	-0.2831	-19.7375	-15.8604
21	1	MAX	0.4152	8.2397	10.1910
	1	MIN	-0.4152	-8.2397	-10.1910
22	1	MAX	0.7128	0.0476	0.0674
	1	Min	-0.7128	-0.0476	-0.0674
23	1	MAX	0.0000	0.1333	0.1333
	1	Min	0.0000	-0.1333	-0.1333
24	1	MAX Min	0.7128 -0.7128	0.0674 -0.0674	0.0476 -0.0476

PANEL FORCES

FLEXURA I COL 6	L PANI LOAD 1 1	ELS MAX MIN	TOP-MOMENT 0.0002 -0.0002	BOT-MOMENT 0.0002 -0.0002	AXIAL-FORCE 63.9652 -63.9652	SHEAR-FORCE 0.0001 -0.0001
BRACING T-COL 7	ELEMI LOAD 1 1	ENTS - MAX MIN	LISTED IN SAME AXIAL-FORCE 96.4841 -96.4841	SEQUENCE AS	INPUT	
11	1 1	MAX MIN	94.3960 -94.3960			
6	1 1	MAX MIN	96.4841 -96.4841			
10	1 1	MAX MIN	94.3959 -94.3959			
14	1 1	MAX MIN	0.5714 -0.5714			
15	1	MAX MIN	0.5714 -0.5714			
******	* END	OF OU	ITPUT *******			

APPENDIX D

INPUT FILE FOR EIGHT STORY R/C BASE ISOLATED STRUCTURE (Refer to Section 4.2)

EIGHT STORIES R/C BUILDING IN CALIFORNIA UNIT KIPS-IN-SEC GENERAL CONTROL INFORMATION 2 8 12 28 3000 SUPERSTRUCTURE CONTROL INFORMATION 1 1 2 0 INTEGRETION CONTROL PARAMETERS 0.005 0.001 5000 200 1 NEWMARK METHOD CONTROL PARAMETERS 0.5 0.25 EARTHOUAKE CONTROL PARAMETERS U.5 0.25 EARTHQUAKE CONTROL PARAMETERS 2 0.01 0 386.22 ***** SUPERSTRUCTURE INFORMATION **** EIGHTH STORY-GENERAL INFORMATION 147 2.819 589802 421.5 SEVENTH 147 3.529 738351 421 5 639 0 0 147 SIXTH 147 FIFTH 147 FORTH 147 THIRD 147 639 0 0 3.529 738351 421.5 639 0.00 0.00 3.529 738351 421.5 639 0.00 0.00 3.529 738351 421.5 639 0.00 0.00 147 3.555 743790 421.5 639 0.00 0.00 SECOND 3.555 743790 421.5 639 0.00 0.00

 147
 3.555

 FARE DATA
 1.555

 FRAME DATA
 2.555

 FRAME DATA
 2.855

 EXTERNAL FRAME
 2.828

 1
 0
 0

 2
 0.0
 0

 3
 0.0
 0

 4
 0
 71

 5
 0
 948

 6
 0
 114

 7
 0.33
 0.0

 4
 0
 71

 5
 0
 948

 6
 0
 114

 8
 233
 0

 10
 233
 0

 11
 233
 0

 12
 233
 0

 13
 233
 0

 14
 233
 0

 15
 466
 0

 16
 466
 0

 20
 466
 1

 22
 699
 0

 23
 699
 0

 23
 699
 0

 24
 699
 0

 25
 699< 743790 421.5 639 0.00 0.00 13 Ω 0 0 8748 12.0 1 27648 12.0 38081 12.0 32256 12 51221 12.0 36864 12.0 11664 12.0 14762 46656 64262 75866 86436 80179 25369 8748 27648 38081 43904 51221 65536 20736 12.0 12.0 12.0 12 12 12.0 12.0 12.0 10648 18432 20736 12423 17747 23040 14197 19521 25344 15972 21296 27648 29952 12.0 12.0 12.0 12.0 12.0 12.0 12 14 14 13 14 14 14

10171717178888889999992020201115151516161717188899920222222888888333334444555566666777788888 L

9123691236912369123691236913691762762762762762762136937692169216921692169216921692162 01210111122

11 3 12 1 12 1 13 1 12 2 13 1 12 3 13 1 13 1 14 1 13 2 14 1 13 5 14 1 14 7 16 7 16 1 17 1 16 3 17 1 16 3 17 1 16 3 17 1 16 5 17 1 17 3 18 1 17 3 18 1 17 3 18 1 18 1 19 1 18 3 19 1 18 3 19 1 18 5 19 1 19 3 20 7 23 7 24 7 25 7 24 7 25 7 26 7 27 7 28 7 28 3 27 7 28 3 27 7 28 7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
13 5 14 1 14 7 13 7	
15 / 16 / 16 <u>1</u> 1 <u>7</u> 1	
16 2 17 1 16 3 17 1	
16 5 17 1 17 1 18 1	
17 2 18 1 17 3 18 1	
19 1 20 1 19 2 20 1	
19 3 20 1 19 5 20 1	
20 1 21 1 20 2 21 1	
20 3 21 1 20 5 21 1	
24 / 25 / 25 7 26 7	
20 / 2/ / 27 7 28 7	
28 3 27 7 FRAME 1 LOCATION	
1 0 0 0 0 SUPERSTRUCTURE DAMPING	
SUPERSTRUCTURE DAMPING 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	5 0.05
0 0	
FRAME 1 LOCATION 1 0 0 0 SUPERSTRUCTURE DAMPING 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	
1176 1029 882 735 588 441 294 147 0 **** BASE ISOLATION SYSTEM DATA **** STIFFNESS DATA FOR LINEAR ELASTIC BEARING 136.73 136.73 87155787 0 0	
STIFFNESS DATA FOR LINEAR ELASTIC BEARING 136.73 136.73 87155787 0 0	
MASS OF BASE 3.581 749231	
STIFFNESS DATA FOR LINEAR ELASTIC BEARING 136.73 136.73 87155787 0 0 MASS OF BASE 3.581 749231 GLOBAL DAMPING 0 0 0 0 PEADING DATA	
BEARING DATA	
ថ្មី.ហ្គី8 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430	
oj.j8 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430	
0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430	
3 4	
0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430	
0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430	
0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430	
0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430	
0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430	
0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430	
0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430	
0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430	
0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430	
0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430	
0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430	
0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430	
0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430	
0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 0.08 0.04 0.6 0.01 0.08	
0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 0.08 0.04 0.6 0.01 0.08	
0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430	
0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 0.08 0.04 0.6 0.01 0.08	

APPENDIX E

OUTPUT FILE FOR EIGHT STORY R/C BASE ISOLATED STRUCTURE (Refer to Section 4.2)

************* PROGRAM 3D-BASIS-TABS ... A GENERAL PROGRAM FOR THE NONLINEAR DYNAMIC ANALYSIS OF THREE DIMENSIONAL BASE ISOLATED BUILDINGS DEVELOPED BY ... SATISH NAGARAJAIAH CHEN LI ANDREI M. REINHORN AND MICHALAKIS C. CONSTANTINOU DEPARTMENT OF CIVIL ENGINEERING STATE UNIV. OF NEW YORK AT BUFFALO VAX VERSION AND PC VERSION, DEC. 1992 NATIONAL CENTER FOR EARTHQUAKE ENGINEERING RESEARCH STATE UNIVERSITY OF NEW YORK, BUFFALO THIS PROGRAM HAS BEEN DEVELOPED USING: (1) PROGRAM 3D-BASIS DEVELOPED BY ... SATISH NAGARAJAIAH ANDREI M. REINHORN AND MICHALAKIS C. CONSTANTINOU DEPARTMENT OF CIVIL ENGINEERING STATE UNIV. OF NEW YORK AT BUFFALO, VAX VERSION, 1990 (2) PROGRAM FTARS (2) PROGRAM ETABS (2) PROGRAM EIABS DEVELOPED BY ... E. L. WILSON H. H. DOVEY AND J. P. HOLLIN, DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF CALIFORNIA, BERKELEY, SEPTEMBER 1974, REVISED MARCH 1979 *************** ****** MIRROR OF INPUT DATA ******* EIGHT STORIES R/C BUILDING IN CALIFORNIA UNIT KIPS-IN-SEC GENERAL CONTROL INFORMATION 2 8 12 28 3000 SUPERSTRUCTURE CONTROL INFORMATION 1 1 1 2 0 INTEGRETION CONTROL PARAMETERS 0.005 0.001 5000 200 1 NEWMARK METHOD CONTROL PARAMETERS 0.5 0.25 EARTHQUAKE CONTROL PARAMETERS 2 0.01 0 386.22 **** SUPERSTRUCTURE INFORMATION **** EIGHTH STORY-GENERAL INFORMATION **** EIGHTH STORY-GENERAL INFORMATION 147 2.819 589802 421.5 639 SEVENTH 0 0 SEVENTH 3.529 738351 421.5 639 0 0 147 SIXTH 147 FIFTH 147 500TH 3.529 738351 421.5 639 0.00 0.00 3.529 738351 421.5 639 0.00 0.00 FORTH 3.529 738351 421.5 639 0.00 0.00 THIRD 147 3.555 743790 421.5 639 0.00 0.00 SECOND 3.555 743790 421.5 639 0.00 0.00 147 3.555 743790 FIRST 147 3.555 743790 FRAME DATA EXTERNAL FRAME 1 8 28 45 7 COLUMN LINE COORDINATES 421.5 639 0.00 0.00 13 0 0 0 1234567891112345678901234567 0.0 Ō 237 474 ŏ.ŏ 711 948 1185 1422 22 0 237 474 711 948 1185 1422 0 237 474 711 948 1185 1422 0 237 474 711 948 1185

28 699 142	22	OUTPUT FOR CASE STODT	
28 699 142 COLUMN PROPERTIES 1 3150 324 26 2 3150 576 47 3 3150 676 56 4 3150 672 55 5 3150 784 65 6 3150 768 63 7 3150 432 35	S 269 14762 59 269 14762 78 478 46656 51 561 64262 58 75866 51 51 86436 37 57 637 80179 59 359 25369	8748 8748 12.0 12.0 27648 27648 12.0 12.0 38081 38081 12.0 12.0 43904 32256 12 12 51221 51221 12.0 12.0 65536 36864 12.0 12.0 20736 11664 12.0 12.0)
BEAM PROPERTIES 1 3150 219 86 2 3150 319 15 3 3150 359 25 4 3150 365 26 5 3150 365 26 6 3150 292 16 8 3150 402 36 9 3150 402 36 9 3150 329 36 10 3150 329 36	696 10648 4 4 9268 18432 4.0 5369 20736 4.0 2073 12423 4.0 5400 17747 4.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
11 3150 438 12 3150 478 13 3150 518 BEAMS LOCATION	21331 21296 4 46656 27648 4 53914 29952 4	4 2 14 14 4 2 14 14 4 2 14 14	
1 1 1 1 0 1 1 0 0 1 1 0			
18 12 13 7 0 18 12 13 10 1	U 0 0 0 0 0		

1100111100111102M001M001M001M02M0011110011100111001110011100111001110011100111001110011100M02M02M02M02M02M02M02

GLOBAL DAMPING 0 0 0 0 0 BEARING DATA 5 4 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 3 4 3 4 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 3 4 3 4 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 3 4 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 3 4 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 3 4 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 3 4 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 3 4 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 $\begin{array}{c} 3 & 4 \\ 0.08 & 0.04 & 0.6 & 0.01 & 0.08 & 0.04 & 0.6 & 0.01 & 430 \\ 0.08 & 0.04 & 0.04 & 0.6 & 0.01 & 0.08 & 0.04 & 0.6 & 0.01 & 430 \\ 0.08 & 0.04 & 0.04 & 0.04 & 0.04 & 0.08 & 0.04 & 0.04 & 0.08$ 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 3 4 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 3 4 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 .08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 0 3 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 3 4 .08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 õ. 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 3 4 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 3 4 3 4 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 3 4 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 3 4 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 3 4 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 3 4 0.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 COORDINATES OF BEARING -349.5 711 -349.5 237 -349.5 -237 -349.5 -237 -349.5 -237 -349.5 -711 -116.5 474 -116.5 -711 116.5 -711 116.5 -711 116.5 -711 116.5 -711 116.5 -711 116.5 -711 116.5 -711 116.5 -711 116.5 -711 116.5 -711 349.5 237 116.5 -474 116.5 -711 349.5 237 116.5 -474 116.5 -237 116.5 -474 116.5 -711 349.5 237 349.5 -237 349. ថ្មី.08 0.04 0.6 0.01 0.08 0.04 0.6 0.01 430 -349.5 -711 0 0 0 0 0 0 0 0 LOAD CASE DATA 0 0 0 1

******* START OF PROCESSED DATA ******	
EIGHT STORIES R/C BUILDING IN CALIFORNIA	
POINTER WITHIN MASTER ARRAY MAX STORAGE = 13262	
SUPERSTRUCTURE CONTROL INFORMATION	
UNIT KIPS-IN-SEC	
TOTAL NUMBER OF STORIES 8 NUMBER OF DIFF. FRAMES 1 TOTAL NUMBER OF FRAMES 1 NUMBER OF LOAD CONDITIONS 1 TYPE OF ANALYSIS 2 EQ.1-STATIC LOAD ANALYSIS+MODE SHAPES AND FREQUENCIES +LATERAL EARTHOUAKE RESPONSE AND PEAK RESPONSE PRINTOUT EQ.2-STATIC LOAD ANALYSIS+MODE SHAPES AND FREQUENCIES +LATERAL EARTHOUAKE RESPONSE AND TIME HISTORY PRINTOUT NUMBER OF FREQUENCIES 12 STORY TRANSLATION CODE 0	
NO. OF FLOORS(EXCL. BASE)= 8 NO. OF BEARINGS= 28 NO. OF EIGEN VECTORS CONSIDERED= 12 INDEX FOR SUPERSTRUCTURE STIFFNESS DATA= 2	
INDEX = 1 FOR 3D SHEAR BUILDING REPRES. INDEX = 2 FOR FULL 3D REPRESENTATION	
TIME STEP OF INTEGRATION (NEWMARK)= 0.0050 INDEX FOR TYPE OF TIME STEP= 1	
INDEX = 1 FOR CONSTANT TIME STEP INDEX = 2 FOR VARIABLE TIME STEP	
GAMA FOR NEWMARKSMETHOD=0.50BETA FOR NEWMARKSMETHOD=0.25TOLERANCE FOR FORCE COMPUTATION=0.0010REFERENCE MOMENT OF CONVERGENCE=5000.0MAX NUMBER OF ITERATIONS WITHIN T.S=200INDEX FOR GROUND MOTION INPUT=2	
INDEX = 1 FOR UNIDIRECTIONAL INPUT INDEX = 2 FOR BIDIRECTIONAL INPUT	
TIME STEP OF RECORD=0.010LENGTH OF RECORD=3000LOAD FACTOR=386.22ANGLE OF EARTHQUAKE INCIDENCE=0.00	

******** END OF MIRROR OF INPUT ********

STORY DATA

LEVEL NO.		MASS	(M) MR**	[•] 2 X	(M) Y((M)	к-х	K-Y		
8	TORY-GENERAL INFORM 147.00	2.82	589802.00	421.50	639.00	0.00	0.	.00		
SEVENTH	147.00	3.53	738351.00	421.50	639.00	0.00	0	.00		
SIXTH	147.00	3.53	738351.00	421.50	639.00	0.00	0.	.00		
FIFTH 5	147.00	3.53	738351.00	421.50	639.00	0.00	0.	.00		
FORTH	147.00	3.53	738351.00	421.50	639.00	0.00	0.	.00		
	147.00	3.56	743790.00	421.50	639.00	0.00	0	.00		
SECOND	147.00	3.56	743790.00	421.50	639.00	0.00	0.	.00		
FIRST 1	147.00	3.56	743790.00	421.50	639.00	0.00	0	.00		
STRUCTURE LATERAL LOADSCASES A AND B										
LEVEL NO. 8 7 5 4 3 2 1	0.00 0.00 0.00 0.00 0.00 0.00 0.00	FY-A .00 .00 .00 .00 .00 .00 .00 .0	MOM-A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	FX-B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	FY-B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	MOM-B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	XA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	YA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	XB 0.0 0.0 0.0 0.0 0.0 0.0 0.0	YB 0.0 0.0 0.0 0.0 0.0 0.0 0.0

EXTE FRAME NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER	OF S OF C OF B OF D OF D OF D	MBER- TORY OLUMN AYS IFF. IFF.	LEVE LIN COL. BEAM FEF-	PROP PROP	- 28 - 45 - 7 - 13 - 0												
COLUMN LINE 2 3 4 5 6 7 8 9 10 12 13 4 5 6 7 8 9 10 12 13 15 16 7 8 9 21 223 224 226 27 8 226 27 8 COLUMN		() () () () () () () () () () () () () (X 000 000 000 000 000 000 000 000 000 0	F	237 47. 7948 1142 237 714 142 237. 714 142 237. 714 714 714 714 714 714 714 714 714 714	Y00 Y00 Y00 Y00 Y00 Y00 Y00 Y00	МА	AJ SA	MIN SA		TORS I	MA.I T		MTN T	RIGID	TOP	RIGID BOT
BEAM	1234567D123456789011234	31 31 31 31 31 31 31 31 31 31 31 31 31 3	50.0 50.0 50.0 50.0 50.0 50.0	000000000000000000000000000000000000000	324 5766 672 784 219 3596 2319 3598 2902 4388 3298 3298 3298 3298 3298 3298 3298 3	00 00 00 00 00 00 00 00 00 00 00 00 00	44 55 65 65 1926 25307 26407 16894 38333 21335 213555 213555 213555 213555 213555 213555 213555 213555 213555 213555 213555 213555 213555 213555 213555 213555 213555 2135555 2135555 2135555 2135555 21355555 2135555555555	J.J. SA \$29.00 \$8.00 \$1.00 \$8.00 \$1.00 \$8.00 \$1.00 \$8.00 \$7.00 \$9.00 \$9.00 \$9.00 \$9.00 \$8.00 \$9.00	MIN SA 269.00 478.00 551.00 637.00 359.00 FLEX I 10648.00 20736.00 12423.00 12423.00 12747.00 23040.00 14197.00 25344.00 15972.00 21996.00 27648.00 29952.00	14 46 64 75 86 80 25	TORS I 762.00 556.00 866.00 336.00 336.00 436.00 436.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	MAJ I 8748.00 27648.00 38081.00 43904.00 65536.00 20736.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	I	MIN I 8748.00 7648.00 2256.00 1221.00 6864.00 1664.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	13 14 14		RIGID B01 12.00 14.00 14.00 14.00 14.00
BAY I 1 1 1 1	LEV 8 7 4 2	IC 1 1 1	UNNAN WWWW	BID 7 6 9 12	GEN 0 2 1 1	VL1 0 0 0	0 0 0	0 0 0 0			VL2 V	/L3					
2222	8 7 4 2	2222	3333	11 6 9 12	0 2 1 1	0 0 0	0 0 0	0 0 0									
3333	8 7 4 2	3333	4 4 4 4	11 6 9 12	0 2 1 1	0 0 0	0 0 0	0 0 0									
4444	8742 87642	4444 4444	55555	11 2 4 9 12	0 0 1 1	0 0 0 0	0 0 0 0	000000									
NNNN 44444 55555 00000	- 87 64 2	55555	66666	11 24 23	0 0 1 1	000000000000000000000000000000000000000											
6 6 6 6	8 7 6 4 2	6 6 6 6 6	7 7 7 7 7 7	11 2 4 9 12	0 0 1 1	0 0 0 0	0000000	0 0 0 0									

7	8 7	1	8	11 3	0	0	0	0
7 7 7 7 7	87642	1 1 1 1	88888	11 3 6 9 13	0 0 1 1	000000	0 0 0 0 0	00000
8 8 8	8 7 4	222	9 9 9	7 6 12	0 2 3	0 0 0	0 0 0	0 0 0
9 9 9	8 7 4	3 3 3	10 10 10	7 6 12	0 23	0 0 0	0 0 0	0 0 0
10 10 10	8 7 4	333 444	11 11 11	7 6 12	0 23	0 0 0	0 0 0	0 0 0
11 11 11	8 7 4	5 5 5	12 12 12	7612 7612 7612 7612	0 2 3	0 0 0	0 0 0	0 0 0
12 12 12	8 7 4	555 666	13 13 13	7 6 12	0 2 3	0 0 0	0 0 0	0 0 0
13 13 13 13 13	87642	7 7 7 7 7	14 14 14 14	762 113693 12369	0 0 1 1	000000	0 0 0 0	000000
14 14 14 14	87642	8 8 8 8 8 8	9 9 9 9 9 9 9 9	12369	0 0 1 1	0 0 0 0	0 0 0 0	0 0 0 0
15 15 15 15	87642	9 9 9 9 9 9 9	10 10 10 10	12369	0 0 1 1	0 0 0 0	0 0 0 0 0	0 0 0 0
16 16 16 16 16	87642	10 10 10 10	11 11 11 11 11	12369	0 0 1 1	000000	000000	0 0 0 0 0
17 17 17 17 17	87642	11 11 11 11 11	12 12 12 12	12369	0 0 1 1	0 0 0 0	0 0 0 0	0 0 0 0
18 18 18 18 18	87642	12 12 12 12	13 13 13 13	1 7 10 5 8	0 0 1 1	0000000	0 0 0 0 0	0 0 0 0 0
19 19 19 19 19	87642	13 13 13 13	14 14 14 14	1 2 3 6 9	0 0 1 1	0000000	0 0 0 0 0	0000000
20 20 20 20 20	87642	8 8 8 8 8	15 15 15 15	11 3 6 9 13	0 0 1 1	000000	0 0 0 0	000000
21 21 21	8 7 4	9 9 9	16 16 16	7 6 12	0 23	0 0 0	0 0 0	0 0 0
22 22 22 22	8 7 6 4	10 10 10 10	17 17 17 17	7 10 6 12	0 0 1 3	0 0 0	0 0 0	0 0 0
23 23 23 23	87 64	11 11 11 11	18 18 18 18	7 10 5 11	0 0 1 3	0 0 0 0	0 0 0	0 0 0 0
24 24 24 24	8 7 6 4	12 12 12 12	19 19 19 19	762 7062 7051 7361 762	0 0 1 3	0 0 0	0 0 0 0	0 0 0
25 25 25	8 7 4	13 13 13	20 20 20		0 2 3	0 0 0	0 0 0	0 0 0
26	8	14	21	11	0	0	0	0

26 26 26 26	7642	14 14 14 14	21 21 21 21	3 6 9 13	0 1 1	0 0 0	0 0 0	0 0 0
27 27 27 27 27 27	87642	15 15 15 15	16 16 16 16	12369	0 0 1 1 1	0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000
28 28 28 28 28		16 16 16 16	17 17 17 17 17	1 2 3 6 9	0 0 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0
29 29 29 29 29	87642 87642	17 17 17 17 17	18 18 18 18 18	12369	0 0 1 1	0000000	0 0 0 0	0 0 0 0
30 30 30 30 30	8 7 6 4 2	18 18 18 18 18	19 19 19 19 19	12369	0 0 1 1	0 0 0 0	0 0 0 0	0 0 0 0
31 31 31 31 31 31	87642	19 19 19 19 19	20 20 20 20 20	12369	0 0 1 1	0 0 0 0	0 0 0 0	0 0 0 0
32 32 32 32 32	87642	20 20 20 20 20	21 21 21 21 21	12369	0 0 1 1	0 0 0 0	0 0 0 0	0 0 0 0
33 33 33 33 33 33	87642	15 15 15 15	22 22 22 22 22 22 22	11 3 6 9 13	0 0 1 1	0 0 0 0	0 0 0 0	0000000
34 34 34	8 7 4	16 16 16	23 23 23	7 6 12	0 23	0 0 0	0 0 0	0 0 0
35 35 35	8 7 4	17 17 17	24 24 24	7 6 12	0 23	0 0 0	0 0 0	0 0 0
36 36 36	8 7 4	18 18 18	25 25 25	7 6 12	0 2 3	0 0 0	0 0 0	0 0 0
37 37 37	8 7 4	19 19 19	26 26 26	7 6 12	0 2 3	0 0 0	0 0 0	0 0 0
38 38 38	8 7 4	20 20 20	27 27 27	7 6 12	0 2 3	0 0 0	0 0 0	0 0 0
39 39 39 39 39	87642	21 21 21 21 21	28 28 28 28 28 28	1136913 76912 116912 116912 116912 116912 116912	0 0 1 1	0 0 0 0	0 0 0 0	000000
40 40 40 40	8 7 4 2	22 22 22 22	23 23 23 23	7 6 9 12	0 2 1 1	0 0 0 0	0 0 0 0	0 0 0
41 41 41 41	8 7 4 2	23 23 23 23	24 24 24 24	11 6 9 12	0 2 1 1	0 0 0	0 0 0	0 0 0
42 42 42	8 7 4 2	24 24 24 24	25 25 25 25	11 6 9 12	0 2 1 1	0 0 0	0 0 0	0 0 0
43 43 43 43	8742 8742 8742 8742 8742	25 25 25 25	26 26 26 26	11 6 9 12	0 2 1 1	0 0 0	0 0 0	0 0 0
44 44 44 45	8 7 4 2	26 26 26 26	27 27 27 27 27	11 6 9 12	0 2 1 1	0 0 0	0 0 0 0	0 0 0 0
45	8	27	28	11	0	0	0	0

45 45	7 4	27 27	20	8 8	6 12	23	0		0	0																				
GENERA OSTORY	TED 1	BEAM 2		ATIC 4	NNS 5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
8 7 5	76669	11 6 6	11 6 6	11 2 4 4	11 2 4 4	11 2 4 4	11 36 60	7666	7666	7666	7666	7666	11 3 6 6	12334	12334	12336699	12336699	17 10 10 55 88	12336699	1136699333 13	766622222	70662222 122212	7 10 5 11 11 11	7 3 6 11	76662222	1136699333 13	12336600	12336699	12336699	12336699
8 6 5 4 3 2 1 0STORY	9 12 12 31	116666992222 1122	6 9 12 12 33	112449992224 1124	1244223335 35	112449992226	113669993337 137	7666222228	7666222229	7666222220	7666222221	7666222222	11366993333 1134	12MM66094	123366095	0699	0699 9	588	699	9 13 13	12 12 12	12 12 12	11 11 11	11 11 11 11	12 12 12	9 13 13	699	6 9 9	699	6 9 9
	1 2 3													11 66 69 99																
87654321	36690	1 3 6 9 9 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 9 13	6 12 12 12	76662222 12222	76662222 1222	766662222	766622222	1136699933 1313	766699222 12	11 66 99 122	11 66 69 92 12	11 66 99 122	0999 122	116662222 12222															
OCOLUMN O LINE		CATÍC / CI	IS INS ID KC	COL 8	GEN	3	12	12	2		7																			
	2			8 8		7			3 4		7 7																			
	3 4 4			8 1		7 2			55		, 6 0																			
	4 5555			- 863 1		1 235			- 6666		1 2 1																			
						1					0																			
	6 6 6 6 6			8 6 3 1		235			7 7 7 7		1 2 1 0																			
	7			8		3			6		7																			
	8 9			8 8		7			9 10		7 1																			
	9 9 9 9			64 2		1 23 5			10 10 10		1 1 1																			
	10 10 10			8 4 2		2 4 6			11 11 11		3 1 1																			
	11 11 11 11			8 6 4 2		1 23 5			12 12 12 12		1 1 1																			
	12 12 12			8 6 4		1 23			13 13 13		1																			
	12			2		35			13		1 1																			
	13 13 13 13			8642		1 2 3 5			14 14 14 14		1 1 1																			
	14	•		8		7			13		7																			
	15			8		7			16 17		7 1																			
	16 16 16			8 6 4 2		1235			17 17 17 17		1 1 1																			
	17 17 17 17	, , ,		8 6 4 2		12335			18 18 18 18		1 1 1																			
	18 18 18	3		8642		1235			19 19 19 19		1																			
	18	Š >									1																			
	19 19 19			8 6 4 2		107107			20 20 20 20		1 1 1																			
															•															

	20		8			1		2	21		0L 1	JTPUT	f fof	R CAS	SE SI	UDY	#2												
	20 20 20 20		8 6 4 2			1 2 3 5			21 21 21 21		1 1 1																		
	21 22		8 8			7 3			20 2 3		7 7																		
	23 24		8 8			7 7			24		7 7																		
	25		8			7		2	26		7																		
	26 27		8 8			7 7			27 28		7 7																		
	28		8			3		2	7		7																		
OSTOR		2	3	ATI 4	ONS 5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	
8 7 6 5	3333	7 7 7 7	7 7 7 7	7 7 7 7	1 22	1 2 2 2	אאאא	77777	1 22	222244	1 2 2	1 2 2	1 2 2	7 7 7	7777	1 2	1	1 2	1	1 2	7 7 7	333	7 7 7	7 7 7	7 7 7	7 7 7	7 7 7	3 3 3	
654M2	3333	7 7 7 7 7	777777777777777777777777777777777777777	.7 7 7 7 2	ของอาก	222335	พพพพพพพพ	77777777	ุ่งงพุฑษย	1446	223355	223355	223355	77777	777777777	223355	ุ่งงารระบบ	22MM5	223355	22335	(77777777	กกกกกกกก	7 7 7 7 7 7	77777777	7 7 7 7 7	77777777777	7 7 7 7	กกกกกกก	
BEAM	PROPE			_	-	2	2	(5	0	5	5	5	7	7	5	5	5	5	5	7	3	7	7	7	7	7 7	ž	
LEVE	NUMBER L		E	292	SA 2.00	16	TORS	I	FI 1419	EX	I	4	KII .00		KJ.	l	ار	(IJ		12 0	Ĺ	40	MJ			RT1	Ņ	/ERT2	VERT3
8765		3150.0 3150.0 3150.0 3150.0 3150.0 3150.0	Ŏ O O	398	2.00 8.00 8.00 8.00	31 31 31	872. 872. 872.	00 00 00	2304 2304 2304)))	444	.00 .00 .00		4.0)	2222	00		12.00 12.00 12.00)	12 12 12 12	.00 .00 .00			0 0 0 0		0 0 0	0
4321		3150.0 3150.0 3150.0	0 0 0	438	8.00 8.00 8.00 8.00	58 38 46 46	TORS 896. 872. 872. 333. 333. 656.	00 00 00 00	2534	4.00)	4	.00 .00 .00		4.00	}	2222	00		14.00 14.00 14.00 14.00)	14 14 14	.00 .00 .00			0 0 0		0 0 0	000000000000000000000000000000000000000
BAY LEVE 8 7		3150.0	E 0 0	438	SA 8.00 8.00	21	TORS 331.	I 00	FL	EX 1		4	<ii .00 .00</ii 		KJ. 4.00	1				W1	5		.00 .00		VE	RT 1 0	۱	0 /ERT2 0	VERT3
65 43	:	3150.0 3150.0 3150.0	0 0 0	398	3.00 R 00	31 31 38	TORS 331. 872. 872. 333. 333. 656.		2304	0.00	}	4	.00 .00 .00		4.00)	2222			12.00)))	12	.00		l			0 0 0	0 0 0 0 0
2 1 BAY 1	UMBER	3150.0 3150.0 3150.0 3150.0	0	438 478 478	3.00 3.00 3.00 3.00	38 46 46	656.0 656.0	00 00 00	2534 2764 2764	8.00)	4.	.00 .00 .00		4.00 4.00 4.00)	2.	00 00 00		14.00 14.00 14.00		14 14 14	.00		1	Ď		000	000
LEVEI 8 7	-	3150.00 3150.00 3150.00	<u>,</u>	438	SA 3.00	21 31	TORS 331.0 872.0 872.0 872.0 333.0 333.0	I 00 00	FL 2129 2304	EX I 6.00)	4	00 00		KJJ 4.00 4.00)	2. 2. 2.	IJ 00 00	•	WI 4.00		14. 12.	UU 00		VEI)	۷	ERT2	VERT3 0 0
65 43		3150.00 3150.00 3150.00	2	398 438	3.00 3.00 3.00 3.00	310 310 38 38	872.0 872.0 333.0	00 00 00	2304 2304 2534 2534	0.00)	4.	.00 .00 .00		4.00		2.	00 00 00 00 00	•	2.00		14 12 12 12	.00					0 0 0	0 0 0
Ž 1 BAY N LEVEL	UMBER	3150.00 3150.00 5 4	2	478	3.00 3.00 3.00	460	556.0	20	2764 2764	8.00 8.00) .	4. 4.	00		4.00	1	2:	00	1	4.00		14. 14. 14.	00			5		0 0 0	0 0 0
8 7 6 5		150.00 150.00 150.00 150.00 150.00 150.00 150.00	5	438 319 256	SA 00 00 00 00 00 00	213 192 120	ORS 331.0 268.0 73.0 73.0 333.0 56.0 56.0		FL 2129 1843 1242 1242 2534 2534 2764 2764	6.00 2.00 3.00		4.	11 00 00		KJJ 4.00 4.00		K	IJ 00 00	1	WI 4.00 2.00		14. 12.	00 00		VER)	۷	ERT2	VERT3
5 4 3 2 1	בון און און און און און און און און און א	150.00 150.00 150.00		256 438 438 478	.00	120 383 383	073.0 333.0 333.0		1242 2534 2534	3.00		4.	00 00 00 00		4.00		22.	00 00 00	1	2.00 2.00 2.00 4.00 4.00 4.00		12. 14. 14.	00 00 00 00 00 00))		0 0 0	0 0 0
BAY N			Ś	478	500 SA	466	0RS	I	2764 FL	8.00 8.00 EX I		4. K	00 00		4.00 4.00 KJJ							14:	00		C C VER)	v	0	0
8 7 6 5	NUMER	150.00 150.00 150.00		438 319 256 256	.00	213 192 120	68.0 73.0)0)0)0	2129 1843 1242	6.00 2.00 3.00		44.4	00 00 00		KJJ 4.00 4.00 4.00		2.2.2.	00 00 00	1	4.00 2.00 2.00		14. 12. 12.			000		v	ERT2 0 0 0	VERT3 0 0 0
87654321	18181 1919 1919	150.00 150.00 150.00 150.00 150.00		319 319 359	SA 00 00 00 00 00 00 00	192 192 253	ORS 31.0 268.0 73.0 68.0 68.0 69.0		FL 2129 1843 1242 1242 1843 1843 2073 2073	2.00		4.	00 00 00		4.00 4.00 4.00 4.00 4.00		K	00 00 00	1	WI 2.00 2.00 2.00 2.00 2.00 2.00 2.00		142.122.122.122.122.122.122.122.122.122.	00 00 00 00		0000			0 0 0 0	0 0 0 0
BAY N LEVEL 8	UMDERS	· •_		۵۵۶ 438	.00 SA .00	203 1 213	07.0 ORS	I	2073 FLI 2129/	5.00 EX I		4. 4.	11		4.00							12: 14.			0 VER	т1	V	0 ERT2	0 VERT3
7654	3337	150.00 150.00 150.00		319 256 256	.00	192 120 120	68.0 73.0 73.0	0	1843 1242 1242	2.00 3.00		4.	00 00 00		4.00		2.0		1	2.00		12. 12. 12. 14.	00 00 00		0 0 0 0			0 0 0 0	0 0 0 0
ĩ	รี	150.00		438 478 478	SA .00 .00 .00 .00 .00 .00	383 466 466	ORS 31.0 68.0 73.0 73.0 33.0 56.0 56.0	000	FLI 21290 1843 1242 1242 25344 25344 27648 27648	.00 .00 3.00		4.4.4.	00 00 00		4.00 4.00 4.00 4.00			00 00 00	1	4.00 2.00 2.00 4.00 4.00 4.00		14. 14. 14. 14.	00 00 00		Ŭ O O O			0000	000
BATN	UMBERS	7										-						-							0			0	U

					DUTPUT FOR C					1/5074	10000	10077
LEVEL 8 7 6 5 4 3 2 1	E 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00	SA 438.00 359.00 398.00 438.00 438.00 438.00 518.00 518.00	TORS I 21331.00 25369.00 31872.00 38333.00 38333.00 38333.00 53914.00 53914.00	FLEX I. 21296.00 20736.00 23040.00 25344.00 25344.00 25344.00 29952.00	KII 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00	WI 14.00 12.00 12.00 14.00 14.00 14.00 14.00	WJ 14.00 12.00 12.00 14.00 14.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0
BAÝ NUMB LEVEL 8 7 6 5 4 3 2 1	E 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00	SA 292.00 398.00 398.00 478.00 478.00 478.00 478.00	TORS I 16896.00 31872.00 31872.00 46656.00 46656.00 46656.00 46656.00	FLEX I 14197.00 23040.00 23040.00 27648.00 27648.00 27648.00 27648.00	KII 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	WI 12.00 12.00 12.00 14.00 14.00 14.00 14.00	WJ 12.00 12.00 12.00 14.00 14.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0
BAY NUME LEVEL 8 7 6 5 4 3 2 1	E 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00	SA 292.00 398.00 398.00 478.00 478.00 478.00 478.00 478.00	TORS I 16896.00 31872.00 31872.00 31872.00 46656.00 46656.00 46656.00	FLEX I 14197.00 23040.00 23040.00 27648.00 27648.00 27648.00 27648.00	KII 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00	WI 12.00 12.00 12.00 14.00 14.00 14.00 14.00	WJ 12.00 12.00 12.00 14.00 14.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0
BAY NUME LEVEL 8 7 6 5 4 3 2 1	3150.00 BERS 10 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00	SA 292.00 398.00 398.00 478.00 478.00 478.00 478.00 478.00	TORS I 16896.00 31872.00 31872.00 46656.00 46656.00 46656.00	FLEX I 14197.00 23040.00 23040.00 27648.00 27648.00 27648.00 27648.00	KII 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	WI 12.00 12.00 12.00 14.00 14.00 14.00 14.00	WJ 12.00 12.00 12.00 14.00 14.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0
BAÝ NUME LEVEL 8 7 6 5 4 3 2 1	SERS 11 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00	SA 292.00 398.00 398.00 398.00 478.00 478.00 478.00 478.00	TORS I 16896.00 31872.00 31872.00 31872.00 46656.00 46656.00 46656.00	FLEX I 14197.00 23040.00 23040.00 23040.00 27648.00 27648.00 27648.00 27648.00	KII 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00	WI 12.00 12.00 12.00 14.00 14.00 14.00 14.00	WJ 12.00 12.00 12.00 14.00 14.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0
BAY NUMI LEVEL 8 7 6 5 4 3 2 1	3ERS 12 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00	SA 292.00 398.00 398.00 398.00 478.00 478.00 478.00 478.00	TORS I 16896.00 31872.00 31872.00 46656.00 46656.00 46656.00		KII 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	WI 12.00 12.00 12.00 14.00 14.00 14.00 14.00	WJ 12.00 12.00 12.00 12.00 14.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0
BAÝ NUMI LEVEL 7 6 5 4 3 2 1	BERS 13 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 BERS 14_	SA 438.00 359.00 398.00 438.00 438.00 438.00 518.00 518.00	TORS I 21331.00 25369.00 31872.00 31872.00	FLEX I 21296.00 20736.00 23040.00 23040.00	KII 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00	WI 12.00 12.00 12.00 14.00 14.00 14.00 14.00	WJ 14.00 12.00 12.00 14.00 14.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0
BAÝ NUM LEVEL 7 6 5 4 3 2 1	BERS 14 5150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00	SA 219.00 359.00 359.00 398.00 398.00 438.00 438.00			KII 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	WI 12.00 12.00 12.00 12.00 12.00 12.00 14.00	WJ 12.00 12.00 12.00 12.00 12.00 12.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0 0
BAÝ NUM LEVEL 8 7 6 5 4 3 2 1	BERS 15 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00	SA 219.00 319.00 359.00 359.00 398.00 398.00 438.00 438.00	TORS I 8696.00 19268.00 25369.00 25369.00 31872.00 31872.00 38333.00	FLEX I 10648.00 18432.00 20736.00 23040.00 23040.00 25344.00 25344.00	KII 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	WI 12.00 12.00 12.00 12.00 12.00 12.00 14.00 14.00	WJ 12.00 12.00 12.00 12.00 12.00 12.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0
BAY NUM LEVEL 87 65 54 32 1	BERS 16 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00	SA 219.00 319.00 359.00 359.00 398.00 438.00 438.00	TORS 1 8696.00 19268.00 25369.00 25369.00 31872.00 38333.00	FLEX I	KII 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	WI 12.00 12.00 12.00 12.00 12.00 12.00 14.00 14.00	WJ 12.00 12.00 12.00 12.00 12.00 12.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0
					E	-12						

OUTPUT FOR CASE STUDY	COTFOI	1001 #4
-----------------------	--------	---------

		(SUTPUT FOR	CASE STUDY	#2					
BAY NUMBERS 17 LEVEL E 8 3150.00 7 3150.00 5 3150.00 5 3150.00 4 3150.00 3 3150.00 2 3150.00 1 3150.00 BAY NUMBERS 18	SA TORS 219.00 8696.00 319.00 19268.00 359.00 25369.00 398.00 31872.00 398.00 31872.00 438.00 38333.00 438.00 38333.00	0 10648.00 18432.00 0 20736.00 0 20736.00 0 23040.00 0 23040.00 0 25344.00 0 25344.00	KII 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	WI 12.00 12.00 12.00 12.00 12.00 12.00 14.00	WJ 12.00 12.00 12.00 12.00 12.00 12.00 14.00	VERT1 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0
LEVEL E 8 3150.00 7 3150.00 6 3150.00 4 3150.00 3 3150.00 2 3150.00 2 3150.00 1 3150.00 BAY_NUMBERS 19	SA TORS 1 219.00 8696.00 292.00 16896.00 329.00 21331.00 329.00 21331.00 365.00 26400.00 365.00 26400.00 402.00 32942.00 402.00 32942.00	14197.00 15972.00 15972.00 17747.00 17747.00 17747.00 19521.00 19521.00	KII 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00	WI 12.00 13.00 13.00 12.00 12.00 14.00 14.00	WJ 12.00 13.00 13.00 12.00 12.00 12.00 14.00	VERT1 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0 0
LEVEL E 8 3150.00 7 3150.00 5 3150.00 4 3150.00 3 3150.00 2 3150.00 1 3150.00 BAY NUMBERS 20	SA TORS 1 219.00 8696.00 319.00 19268.00 359.00 25369.00 359.00 25369.00 398.00 31872.00 398.00 31872.00 438.00 38333.00 438.00 38333.00	18432.00 20736.00	KII 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	WI 12.00 12.00 12.00 12.00 12.00 12.00 14.00 14.00	WJ 12.00 12.00 12.00 12.00 12.00 12.00 14.00	VERT1 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0 0
LEVEL E 8 3150.00 7 3150.00 5 3150.00 4 3150.00 3 3150.00 2 3150.00 1 3150.00 BAY NUMBERS 21	SA TORS I 438.00 21331.00 359.00 5569.00 3598.00 31872.00 398.00 31872.00 398.00 31872.00 348.00 38333.00 438.00 38333.00 53914.00 518.00 53914.00	21296.00 20736.00 23040.00 23040.00 25344.00 25344.00	KII 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	WI 12.00 12.00 12.00 14.00 14.00 14.00 14.00	WJ 14.00 12.00 12.00 14.00 14.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0 0
LEVEL E 8 3150.00 7 3150.00 6 3150.00 5 3150.00 4 3150.00 3 3150.00 2 3150.00 1 3150.00 BAY NUMBERS 22	SA TORS I 292.00 16896.00 398.00 31872.00 398.00 31872.00 398.00 31872.00 478.00 46656.00 478.00 46656.00 478.00 46656.00 478.00 46656.00	FLEX I 14197.00 23040.00 23040.00 23040.00 27648.00 27648.00 27648.00 27648.00	KII 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00	WI 12.00 12.00 12.00 14.00 14.00 14.00 14.00	WJ 12.00 12.00 12.00 14.00 14.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0 0
LEVEL E 8 3150.00 7 3150.00 5 3150.00 4 3150.00 3 3150.00 2 3150.00 1 3150.00 BAY NUMBERS 23	SA TORS I 292.00 16896.00 329.00 21331.00 398.00 31872.00 398.00 31872.00 478.00 46656.00 478.00 46656.00 478.00 46656.00	15972.00 23040.00 23040.00 27648.00 27648.00 27648.00	KII 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00	WI 12.00 13.00 12.00 14.00 14.00 14.00 14.00	WJ 12.00 13.00 12.00 14.00 14.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0 0 0
LEVEL E LEVEL E 150.00 7 3150.00 5 3150.00 4 3150.00 3 3150.00 2 3150.00 1 3150.00 BAY NUMBERS 24	SA TORS I 292.00 16896.00 329.00 21331.00 365.00 26400.00 365.00 26400.00 438.00 21331.00 438.00 21331.00 438.00 21331.00 438.00 21331.00	21296.00 21296.00 21296.00	KII 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	WI 12.00 13.00 12.00 14.00 14.00 14.00 14.00	WJ 12.00 13.00 12.00 14.00 14.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0
LEVEL E 8 3150.00 7 3150.00 6 3150.00 5 3150.00 4 3150.00 3 3150.00 2 3150.00 1 3150.00 BAY NUMBERS 25	SA TORS I 292.00 16896.00 359.00 25369.00 398.00 31872.00 398.00 31872.00 438.00 21331.00 438.00 21331.00 438.00 21331.00	FLEX I 14197.00 23040.00 23040.00 21296.00 21296.00 21296.00 21296.00	KII 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	WI 12.00 12.00 12.00 14.00 14.00 14.00 14.00	WJ 12.00 12.00 12.00 14.00 14.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0 0
LEVEL E 8 3150.00 7 3150.00 6 3150.00 5 3150.00 4 3150.00 3 3150.00 2 3150.00 1 3150.00	SA TORS I 292.00 16896.00 398.00 31872.00 398.00 31872.00 398.00 31872.00 478.00 46656.00 478.00 46656.00 478.00 46656.00	FLEX I 14197.00 23040.00 23040.00 23040.00 27648.00 27648.00 27648.00	KII 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	WI 12.00 12.00 12.00 14.00 14.00 14.00 14.00	WJ 12.00 12.00 12.00 14.00 14.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0 0
BAY NUMBERS 26 LEVEL E 8 3150.00 7 3150.00 6 3150.00 5 3150.00 4 3150.00 3 3150.00 2 3150.00	SA TORS I 438.00 21331.00 359.00 25369.00 398.00 31872.00 398.00 31872.00 438.00 38333.00 438.00 38333.00 518.00 53914.00	FLEX I 21296.00 20736.00 23040.00 25344.00 25344.00 25344.00 29952.00	KII 4.00 4.00 4.00 4.00 4.00 4.00 E-1	KJJ 4.00 4.00 4.00 4.00 4.00 4.00	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00	WI 14.00 12.00 12.00 14.00 14.00 14.00	WJ 14.00 12.00 12.00 12.00 14.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0 0 0

			1	DUTPUT FOR	CASE STUDY	#2					
1 3150.00 BAY NUMBERS 27 LEVEL ZIEG E	518.00 53	TORS	29952.00	4.00 ,KII	4.00 ,KJJ	2.00 KIJ 2.00	14.00 WI 12.00	14.00 WJ 12.00	0 VERT1 0	0 VERT2	0 VERT3 0
	219.00 319.00 359.00 250.00 250.00 250.00 25	8696.00 9268.00 5369.00	10648.00 18432.00 20736.00 20736.00	4.00 4.00 4.00 4.00	4.00 4.00 4.00 4.00	2.00 2.00 2.00 2.00	12.00 12.00 12.00 12.00	12.00 12.00 12.00	0	0	Ó
5 3150.00 4 3150.00 3 3150.00 2 3150.00	438 00 3	8268.00 9268.00 5369.00 5369.00 1872.00 1872.00 8333.00	20736.00 23040.00 23040.00 25344.00	4.00 4.00 4.00	4.00 4.00 4.00	2.00 2.00 2.00	12.00 12.00 14.00	12.00 12.00 14.00	Ŭ O O	Ŭ O O	0 0 0
1 3150.00 BAY NUMBERS 28	458.00 50	8333.00 TORS I 8696.00	25344.00	4.00 ,KII	4.00 ,KJJ	2.00 KI.I	14.00	14.00 WJ 12.00	0 VERT1	0 VERT2	0 VERT3
LEVEL E 8 3150.00 7 3150.00 6 3150.00 5 3150.00	SA 219.00 8 319.00 19 359.00 25 359.00 25	8696.00 9268.00 5369.00	FLEX I 10648.00 18432.00 20736.00	4.00 4.00 4.00 4.00	4.00 4.00 4.00	2.00 2.00 2.00 2.00 2.00	WI 12.00 12.00 12.00	12.00 12.00 12.00 12.00	0 0 0	0 0 0	0 0 0
5 5150.00 4 3150.00 3 3150.00 2 3150.00	398.00 3 398.00 3 398.00 3 438.00 3 438.00 3	8696.00 9268.00 5369.00 1872.00 1872.00 8333.00 8333.00	20736.00 23040.00 23040.00 25344.00 25344.00	4.00 4.00 4.00 4.00	4.00 4.00 4.00 4.00	2.00 2.00 2.00 2.00 2.00	12.00 12.00 12.00 12.00 14.00	12.00 12.00 14.00	Ö	Ŏ	000
1 3150.00 BAY NUMBERS 29 LEVEL E	54	8333.00 TORS I 8696.00	25344.00 FLEX I 10648.00	4.00 KII	4.00 KJJ 4.00	KIJ	14.00 ut	14.00 V.I	Ö VERT1	Ŭ VERT2	0 VERT3
8 3150.00 7 3150.00 6 3150.00	219.00 319.00 359.00 359.00 259.00 259.00	8696.00 9268.00 5369.00	18432.00 20736.00	4.00 4.00 4.00	4.00 4.00	2.00	12.00 12.00 12.00	12.00 12.00 12.00	0 0 0	0 0 0	0 0 0
5 3150.00 4 3150.00 3 3150.00 2 3150.00	398.00 398.00 398.00 438.00 3	8896.00 9268.00 5369.00 5369.00 1872.00 1872.00 8333.00 8333.00	20736.00 23040.00 23040.00 25344.00 25344.00	4.00 4.00 4.00 4.00	4.00 4.00 4.00 4.00	2.00 2.00 2.00 2.00	12.00 12.00 12.00 12.00 12.00 12.00 14.00	12.00 12.00 12.00 14.00	0	0	000
1 3150.00 BAY NUMBERS 30	54		25344.00 FLEX I	4.00 KII	4.00 KJJ	2.00 KIJ	14.00	14.00	Ö VERT1	Ŏ VERT2	Ŭ VERT3
8 3150.00 7 3150.00	219.00 319.00 359.00 359.00 21 359.00 21 359.00 378.00 378.00 378.00 378.00 378.00 378.00 378.00 378.00 378.00 378.00 378.00 378.00 378.00 378.00 379.00 370	TORS I 8696.00 9268.00 5369.00	10648.00	4.00 4.00 4.00	4.00 4.00 4.00	2.00 2.00 2.00	WI 12.00 12.00 12.00 12.00 12.00 12.00 14.00	WJ 12.00 12.00 12.00 12.00 12.00	0 0 0	0	0
5 3150.00 4 3150.00 3 3150.00 2 3150.00	359.00 2 398.00 3 398.00 3 438.00 3	8896.00 9268.00 5369.00 5369.00 1872.00 1872.00 8333.00 8333.00	20736.00 23040.00 23040.00 25344.00 25344.00	4.00 4.00 4.00 4.00	4.00 4.00 4.00 4.00	2.00 2.00 2.00 2.00 2.00	12.00 12.00 12.00	12.00 12.00 12.00 14.00	0	0 0 0	000000000000000000000000000000000000000
BAY NUMBERS 31				4:00 KII	4:00 KJJ	K T 1	14.00 WI	14.00 WJ	Ŭ VERT1	Ŏ VERT2	Ŭ VERT3
8 3150.00 7 3150.00 6 3150.00	319.00 1	TORS I 8696.00 9268.00 5369.00	FLEX I 10648.00 18432.00 20736.00	4.00 4.00 4.00	4.00 4.00 4.00	2.00	12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00	0	0 0 0	0 0 0
5 3150.00 4 3150.00 3 3150.00	359.00 2 398.00 3 398.00 3	5369.00 5369.00 1872.00 1872.00 8333.00 8333.00	20736.00 23040.00 23040.00 25344.00 25344.00	4.00 4.00 4.00	4.00 4.00 4.00	2.00 2.00 2.00 2.00	12.00 12.00 12.00 12.00 12.00 12.00 14.00	12.00	0 0 0 0	0000	0 0 0
2 3150.00 1 3150.00 BAY NUMBERS 32			25344.00 25344.00 FLEX I	4.00 4.00 KII	4.00 4.00 KJJ	2:00 KIJ	14.00 14.00	14.00 14.00 WJ	Ŏ VERT1	0 VERT2	Ŭ VERT3
LEVEL E 8 3150.00 7 3150.00 6 3150.00	SA 219.00 319.00 1 359.00 2	TORS I 8696.00 9268.00 5369.00	10648.00 18432.00 20736.00	4.00 4.00 4.00	4.00 4.00 4.00	2.00	12.00 12.00 12.00	12.00 12.00 12.00	0 0 0	0 0 0	0 0 0
5 3150.00 4 3150.00 3 3150.00	319.00 1 359.00 2 359.00 2 398.00 3 398.00 3	8268.00 9268.00 5369.00 1872.00 1872.00 8333.00 8333.00	20736.00 23040.00 23040.00	4.00 4.00 4.00	4.00 4.00 4.00	2.00	12.00 12.00 12.00 14.00	12.00 12.00 12.00	0 0 0	0000	0 0 0
2 3150.00 1 3150.00 BAY NUMBERS 33 LEVEL E			25344.00 25344.00	4.00 4.00 KII	4.00 4.00 .KJJ	2.00	14.00 UT	14.00 14.00 U.I	Ö VERT1	0 VERT2	0 VERT3
8 3150.00 7 3150.00	359.00 2	TORS I 1331.00 5369.00 1872.00	FLEX I 21296.00 20736.00 23040.00	4.00 4.00 4.00	4.00 4.00 4.00	KIJ 2.00 2.00 2.00	14.00 12.00 12.00	WJ 14.00 12.00 12.00	0 0 0	0	0 0 0
5 3150.00 4 3150.00 3 3150.00 2 3150.00 2 3150.00	398.00 398.00 438.00 438.00 518.00 518.00 5	1872.00 8333.00 8333.00 3914.00 3914.00	23040.00 25344.00 25344.00 29952.00 29952.00	4.00 4.00 4.00	4.00 4.00 4.00	2.00 2.00 2.00 2.00 2.00	12.00 14.00 14.00 14.00	12.00 14.00 14.00 14.00	0	000	00000
BAY NUMBERS 34				4.00 4.00	4.00		14.00	14.00	0 0 VERT1	0 0 VERT2	0
LEVEL E 8 3150.00 7 3150.00 6 3150.00 5 3150.00 4 3150.00 3 3150.00 2 3150.00 2 3150.00	SA 292.00 1 398.00 3 398.00 3 398.00 3 478.00 4 478.00 4 478.00 4	TORS I 6896.00 1872.00 1872.00 1872.00 6656.00 6656.00 6656.00 6656.00	FLEX I 14197.00 23040.00 23040.00 23040.00 27648.00 27648.00 27648.00 27648.00	KII 4.00 4.00 4.00	KJJ 4.00 4.00 4.00	KIJ 2.00 2.00 2.00 2.00 2.00 2.00	WI 12.00 12.00 12.00 14.00 14.00 14.00 14.00	12.00 12.00 12.00 12.00 14.00 14.00 14.00 14.00			VERT3 0 0 0
5 3150.00 4 3150.00 3 3150.00	398.00 3 478.00 4 478.00 4	1872.00 6656.00 6656.00	23040.00 27648.00 27648.00	4.00 4.00 4.00	4.00 4.00 4.00	2.00 2.00 2.00	12.00 14.00 14.00	12.00 14.00 14.00	0 0 0	0 0 0	0 0 0 0 0
BAY NUMBERS 35	478.00 4 478.00 4	6656.00	27648.00 27648.00	4.00 4.00	4.00 4.00	2.00		14.00 14.00	0	0	0
LEVEL E 8 3150.00 7 3150.00 6 3150.00 5 3150.00 4 3150.00 3 3150.00 2 3150.00 1 7150.00	SA 292.00 1 398.00 3 398.00 3 398.00 3 478.00 4 478.00 4 478.00 4	TORS I 6896.00 1872.00 1872.00 1872.00 6656.00 6656.00 6656.00 6656.00	FLEX I 14197.00 23040.00 23040.00 23040.00 27648.00 27648.00 27648.00	KII 4.00 4.00 4.00	KJJ 4.00 4.00 4.00	KIJ 2.00 2.00 2.00	WI 12.00 12.00 12.00 14.00 14.00 14.00	12.00 12.00 12.00	VERT1 0 0 0	VERT2 0 0 0	VERT3 0 0 0
5 3150.00 4 3150.00 3 3150.00	398.00 3 478.00 4 478.00 4	1872.00 6656.00 6656.00	23040.00 27648.00 27648.00	4.00 4.00 4.00	4.00 4.00 4.00	2.00 2.00 2.00 2.00 2.00 2.00	12.00 14.00 14.00	12.00 12.00 12.00 14.00 14.00	0 0 0	0 0 0	0 0 0 0
BAY NUMBERS 36	478.00 4 478.00 4	6656.00	27040.00	4.00 4.00	4.00 4.00	2.00	14.00	14.00	0 0	0 0 VEDT2	
	SA 292.00 1 398.00 3 398.00 3 398.00 3 478.00 4	TORS I 6896.00 1872.00 1872.00 1872.00 6656.00 6656.00	FLEX I 14197.00 23040.00 23060.00	KII 4.00 4.00 4.00	KJJ 4.00 4.00 4.00	KIJ 2.00 2.00 2.00 2.00 2.00 2.00	WI 12.00 12.00 12.00 12.00 14.00	WJ 12.00 12.00 12.00 12.00 14.00	VERT1 0 0 0	VERT2 0 0 0	VERT3 0 0 0 0
Level 3150.00 7 3150.00 6 3150.00 5 3150.00 4 3150.00 3 3150.00	398.00 3 398.00 3 478.00 4 478.00 4	1872.00 6656.00 6656.00	23040.00 23040.00 27648.00 27648.00	4.00 4.00 4.00	4.00 4.00 4.00	2.00	12.00 14.00 14.00	12.00 12.00 14.00 14.00	0 0	0 0	Ö

				OUTPUT FOR							
2 3150.00 1 3150.00 BAY NUMBERS 37	478.00 478.00	46656.00		4.00	4.00 4.00	2.00	14.00 14.00	14.00 14.00	0	0	0
LEVEL E 8 3150.00 7 3150.00 6 3150.00 5 3150.00 4 3150.00 3 3150.00 3 3150.00	SA 292.00 398.00 398.00 398.00 478.00 478.00	TORS I 16896.00 31872.00 31872.00 31872.00 46656.00 46656.00 46656.00	FLEX I 14197.00 23040.00 23040.00 23040.00 27648.00 27648.00	K11 4.00 4.00 4.00 4.00 4.00	KJJ 4.00 4.00 4.00 4.00 4.00	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	WI 12.00 12.00 12.00 12.00 14.00 14.00	WJ 12.00 12.00 12.00 12.00 14.00 14.00	VERT1 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0	VERT3 0 0 0 0 0 0
2 3150.00 1 3150.00 BAY NUMBERS 38 LEVEL E	478.00 478.00 SA	46656.00 46656.00	27648.00	4.00 4.00 KII	4.00 4.00		14.00 14.00	14.00 14.00	0 0	0	0
3150.00 7 3150.00 6 3150.00 5 3150.00 4 3150.00 3 3150.00 2 3150.00 1 3150.00 1 3150.00 3 3150.00 1 3150.00 3 3150.00 1 3150.00 1 3150.00 1 3150.00	292.00 398.00 398.00 398.00 478.00 478.00 478.00 478.00	TORS I 16896.00 31872.00 31872.00 46656.00 46656.00 46656.00 46656.00	FLEX I 14197.00 23040.00 23040.00 23040.00 27648.00 27648.00 27648.00 27648.00	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	12.00 12.00 12.00 14.00 14.00 14.00 14.00	WJ 12.00 12.00 12.00 14.00 14.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0
LEVEL E 8 3150.00 7 3150.00 6 3150.00 4 3150.00 3 3150.00 2 3150.00 1 3150.00	SA 438.00 359.00 398.00 438.00 438.00 518.00 518.00	TORS I 21331.00 25369.00 31872.00 38333.00 38333.00 53914.00 53914.00	FLEX I 21296.00 20736.00 23040.00 25344.00 25344.00 25344.00 29952.00	K11 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00	WI 14.00 12.00 12.00 14.00 14.00 14.00 14.00	WJ 14.00 12.00 12.00 12.00 14.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0
BAY NUMBERS 40 LEVEL E 3150.00 6 3150.00 5 3150.00 4 3150.00 3 3150.00 2 3150.00 2 3150.00 1 3150.00	SA 292.00 398.00 398.00 438.00 438.00 438.00 478.00	TORS I 16896.00 31872.00 31872.00 38333.00 38333.00 46656.00	FLEX I 14197.00 23040.00 23040.00 25344.00 25344.00 27648.00 27648.00	K11 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00	WI 12.00 12.00 12.00 14.00 14.00 14.00 14.00	WJ 12.00 12.00 12.00 12.00 14.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0
BAY NUMBERS 41 LEVEL E 8 3150.00 6 3150.00 5 3150.00 4 3150.00 3 3150.00 2 3150.00 1 3150.00 BAY NUMBERS 42	SA 438.00 398.00 398.00 438.00 438.00 438.00 478.00 478.00	TORS I 21331.00 31872.00 31872.00 38333.00 38333.00 46656.00	FLEX I 21296.00 23040.00 23040.00 25344.00 25344.00 25344.00 27648.00	K11 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00	WI 14.00 12.00 12.00 14.00 14.00 14.00 14.00	WJ 14.00 12.00 12.00 14.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0
BAY NUMBERS 42 LEVEL E 8 3150.00 6 3150.00 5 3150.00 4 3150.00 3 3150.00 2 3150.00 1 3150.00 BAY NUMBERS 43	SA 438.00 398.00 398.00 398.00 438.00 438.00 438.00 478.00 478.00	TORS I 21331.00 31872.00 31872.00 38333.00 38333.00 46656.00	FLEX I 21296.00 23040.00 23040.00 25344.00 25344.00 27648.00 27648.00	K11 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00	WI 14.00 12.00 12.00 14.00 14.00 14.00 14.00	WJ 14.00 12.00 12.00 14.00 14.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0
LEVEL 3150.00 7 3150.00 6 3150.00 5 3150.00 4 3150.00 3 3150.00 2 3150.00 1 3150.00 BAY NUMBERS 44	SA 438.00 398.00 398.00 438.00 438.00 438.00 478.00 478.00	31872.00 31872.00 38333.00 38333.00 46656.00 46656.00	FLEX I 21296.00 23040.00 23040.00 23040.00 25344.00 25344.00 27648.00 27648.00	K11 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00	WI 14.00 12.00 12.00 14.00 14.00 14.00 14.00	WJ 14.00 12.00 12.00 14.00 14.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0
LEVEL E 8 3150.00 7 3150.00 5 3150.00 4 3150.00 3 3150.00 2 3150.00 2 3150.00 1 NUMBERS 45	SA 438.00 398.00 398.00 438.00 438.00 438.00 478.00 478.00	TORS I 21331.00 31872.00 31872.00 31872.00 38333.00 38333.00 46656.00 46656.00	FLEX I 21296.00 23040.00 23040.00 23040.00 25344.00 25344.00 27648.00 27648.00	KII 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	WI 14.00 12.00 12.00 14.00 14.00 14.00 14.00	WJ 14.00 12.00 12.00 14.00 14.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0
LEVEL 52 (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	SA 438.00 398.00 398.00 478.00 478.00 478.00 478.00	TORS I 21331.00 31872.00 31872.00 46656.00 46656.00 46656.00 46656.00	FLEX I 21296.00 23040.00 23040.00 23040.00 27648.00 27648.00 27648.00 27648.00	KII 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.	KJJ 4.00 4.00 4.00 4.00 4.00 4.00 4.00	KIJ 2.00 2.00 2.00 2.00 2.00 2.00 2.00	WI 14.00 12.00 12.00 12.00 14.00 14.00 14.00 14.00	WJ 14.00 12.00 12.00 12.00 14.00 14.00 14.00 14.00	VERT1 0 0 0 0 0 0 0 0 0	VERT2 0 0 0 0 0 0 0 0 0	VERT3 0 0 0 0 0 0 0 0 0
COLUMN PROPERTIES COLUMN LINE NO. LEVEL E	1 A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB			

					CASE STUD			40.00
7 3150.00 6 6 3150.00 6 5 3150.00 6 4 3150.00 6 3 3150.00 6	576.00 576.00 576.00 576.00 576.00 576.00 576.00 576.00 576.00	561.00 561.00 561.00 561.00 561.00 561.00 561.00 561.00	561.00 561.00 561.00 561.00 561.00 561.00 561.00 561.00	64262.00 64262.00 64262.00 64262.00 64262.00 64262.00 64262.00 64262.00 64262.00	38081.00 38081.00 38081.00 38081.00 38081.00 38081.00 38081.00 38081.00	38081.00 38081.00 38081.00 38081.00 38081.00 38081.00 38081.00 38081.00 38081.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL E	A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB
4 3150 00 /	432.00 432.00 432.00 432.00 432.00 432.00 432.00 432.00 432.00	359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00	359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00	25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 25369.00	20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00	11664.00 11664.00 11664.00 11664.00 11664.00 11664.00 11664.00 11664.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL E	A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB
8 3150.00 4 7 3150.00 4 5 3150.00 4 4 3150.00 4 3 3150.00 4 2 3150.00 4 1 3150.00 4 1 3150.00 4 1 3150.00 4 1 3150.00 4 1 3150.00 4	432.00 432.00 432.00 432.00 432.00 432.00 432.00 432.00 432.00	359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00	359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00	25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 25369.00	20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00	11664.00 11664.00 11664.00 11664.00 11664.00 11664.00 11664.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL E	A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB
6 3150.00 5 3150.00 4 3150.00 3 3150.00 2 3150.00	432.00 432.00 432.00 432.00 432.00 432.00 432.00 576.00	359.00 359.00 359.00 359.00 359.00 359.00 359.00 478.00	359.00 359.00 359.00 359.00 359.00 359.00 359.00 478.00	25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 46656.00	20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 27648.00	11664.00 11664.00 11664.00 11664.00 11664.00 11664.00 11664.00 27648.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL E	Α	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB
7 3150.00 6 3150.00 5 3150.00 4 3150.00 3 3150.00 2 3150.00	324.00 324.00 576.00 576.00 576.00 676.00 676.00 784.00	269.00 269.00 478.00 478.00 478.00 561.00 561.00 651.00	269.00 269.00 478.00 478.00 561.00 561.00 651.00	14762.00 14762.00 46656.00 46656.00 46656.00 64262.00 64262.00 86436.00	8748.00 8748.00 27648.00 27648.00 27648.00 38081.00 38081.00 51221.00	8748.00 8748.00 27648.00 27648.00 27648.00 38081.00 38081.00 51221.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL	A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB
7 3150.00 6 3150.00 5 3150.00 4 3150.00 3 3150.00 2 3150.00	324.00 324.00 576.00 576.00 576.00 676.00 676.00 784.00	269.00 269.00 478.00 478.00 478.00 561.00 561.00 651.00	269.00 269.00 478.00 478.00 561.00 561.00 651.00	14762.00 14762.00 46656.00 46656.00 46656.00 64262.00 64262.00 86436.00	8748.00 8748.00 27648.00 27648.00 27648.00 38081.00 38081.00 51221.00	8748.00 8748.00 27648.00 27648.00 27648.00 38081.00 38081.00 51221.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL	A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB
7 3150.00 6 3150.00 5 3150.00 4 3150.00 3 3150.00	676.00 676.00 676.00 676.00 676.00 676.00 676.00 676.00	561.00 561.00 561.00 561.00 561.00 561.00 561.00 561.00	561.00 561.00 561.00 561.00 561.00 561.00 561.00 561.00	64262.00 64262.00 64262.00 64262.00 64262.00 64262.00 64262.00 64262.00 64262.00	38081.00 38081.00 38081.00 38081.00 38081.00 38081.00 38081.00 38081.00	38081.00 38081.00 38081.00 38081.00 38081.00 38081.00 38081.00 38081.00 38081.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL E	A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB
COLUMN LINE NO. 9	432.00 432.00 432.00 432.00 432.00 432.00 432.00 432.00 432.00	359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00	359.00 359.00 359.00 359.00 359.00 359.00 359.00	25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 25369.00	20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00	11664.00 11664.00 11664.00 11664.00 11664.00 11664.00 11664.00 11664.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL E	A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB
5 3150.00 4 3150.00 3 3150.00 2 3150.00	324.00 324.00 576.00 576.00 676.00 676.00 784.00 784.00	269.00 269.00 478.00 478.00 561.00 561.00 651.00 651.00	269.00 269.00 478.00 561.00 561.00 651.00 651.00	14762.00 14762.00 46656.00 46656.00 64262.00 64262.00 86436.00 86436.00	8748.00 8748.00 27648.00 38081.00 38081.00 51221.00 51221.00	8748.00 8748.00 27648.00 38081.00 38081.00 51221.00 51221.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL	A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB

_						R CASE STU			
8 7 6 5 4 3 2 1 COLUMN		576.00 576.00 576.00 576.00 672.00 672.00 768.00 768.00	478.00 478.00 478.00 558.00 558.00 637.00	478.00 478.00 478.00 558.00 558.00 637.00 637.00	46656.00 46656.00 46656.00 75866.00 75866.00 80179.00 80179.00	27648.00 27648.00 27648.00 43904.00 43904.00 65536.00 65536.00	27648.00 27648.00 27648.00 32256.00 32256.00 36864.00 36864.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL	E	A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB
8 7 6 5 4 3 2 1 COLUMN	3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 LINE NO. 1	324.00 324.00 576.00 576.00 676.00 676.00 784.00 784.00	269.00 269.00 478.00 561.00 561.00 651.00 651.00	269.00 269.00 478.00 561.00 561.00 651.00 651.00	14762.00 14762.00 46656.00 64262.00 64262.00 86436.00 86436.00	8748.00 8748.00 27648.00 38081.00 38081.00 51221.00 51221.00	8748.00 8748.00 27648.00 27648.00 38081.00 38081.00 51221.00 51221.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL	E	A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB
8 7 6 5 4 3 2 1 COLUMN	3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 150.00 150.00	324.00 324.00 576.00 576.00 676.00 676.00 784.00 784.00 3	269.00 269.00 478.00 561.00 551.00 651.00	269.00 269.00 478.00 561.00 561.00 651.00 651.00	14762.00 14762.00 46656.00 46656.00 64262.00 64262.00 86436.00 86436.00	8748.00 8748.00 27648.00 38081.00 38081.00 51221.00 51221.00	8748.00 8748.00 27648.00 38081.00 38081.00 51221.00 51221.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL	Ē	A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB
8 7 6 5 4 3 2 1 COLLIMN	3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 LINE NO. 1	324.00 324.00 576.00 576.00 676.00 676.00 784.00 784.00 784.00	269.00 269.00 478.00 561.00 561.00 651.00 651.00	269.00 269.00 478.00 561.00 561.00 651.00 651.00	14762.00 14762.00 46656.00 46656.00 64262.00 64262.00 86436.00 86436.00	8748.00 8748.00 27648.00 27648.00 38081.00 38081.00 51221.00 51221.00	8748.00 8748.00 27648.00 27648.00 38081.00 38081.00 51221.00 51221.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL	E	A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB
8 7 6 5 4 3 2 2 1 COLUMN	3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 LINE NO. 1	432.00 432.00 432.00 432.00 432.00 432.00 432.00 432.00 432.00 5	359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00	359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00	25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 25369.00	20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00	11664.00 11664.00 11664.00 11664.00 11664.00 11664.00 11664.00 11664.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL	E	A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB
8 7 5 4 3 2 1 COLUMN 1	3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 .1NE NO. 10	432.00 432.00 432.00 432.00 432.00 432.00 432.00 432.00 432.00 6	359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00	359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00	25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 25369.00	20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00	11664.00 11664.00 11664.00 11664.00 11664.00 11664.00 11664.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL	E	A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB
8 7 5 4 3 2 1 COLUMN L	3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 150.00		269.00 269.00 478.00 561.00 561.00 651.00 651.00	269.00 269.00 478.00 561.00 561.00 651.00 651.00	$\begin{array}{c} 14762.00\\ 14762.00\\ 46656.00\\ 46656.00\\ 64262.00\\ 64262.00\\ 86436.00\\ 86436.00\\ \end{array}$	8748.00 8748.00 27648.00 38081.00 38081.00 51221.00 51221.00	8748.00 8748.00 27648.00 38081.00 38081.00 51221.00 51221.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL	E 3450.00	A 70/ 00	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB
8 7 5 4 3 2 1 COLUMN L			269.00 269.00 478.00 561.00 561.00 651.00 651.00	269.00 269.00 478.00 561.00 561.00 651.00 651.00	14762.00 14762.00 46656.00 64262.00 64262.00 86436.00 86436.00	8748.00 8748.00 27648.00 38081.00 38081.00 51221.00 51221.00	8748.00 8748.00 27648.00 38081.00 38081.00 51221.00 51221.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL	E	A 70/ 00	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB
	3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 INE NO_ 15		269.00 269.00 478.00 478.00 561.00 561.00 651.00 651.00		14762.00 14762.00 46656.00 64262.00 64262.00 86436.00 86436.00	8748.00 8748.00 27648.00 27648.00 38081.00 38081.00 51221.00 51221.00	8748.00 8748.00 27648.00 38081.00 38081.00 51221.00 51221.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL	Ĕ	A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	269.00 269.00 478.00 561.00 561.00 651.00 651.00	269.00 269.00 478.00 561.00 561.00 651.00 651.00	14762.00 14762.00 46656.00 46656.00 64262.00 64262.00 86436.00 86436.00	8748.00 8748.00 27648.00 27648.00 38081.00 38081.00 51221.00 51221.00	8748.00 8748.00 27648.00 27648.00 38081.00 38081.00 51221.00 51221.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
COLUMN LINE NO. 20 LEVEL E A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB
8 3150.00 324.00 7 3150.00 324.00 6 3150.00 576.00 5 3150.00 676.00 4 3150.00 676.00 3 3150.00 676.00 3 3150.00 676.00 2 3150.00 676.00 1 3150.00 784.00	269.00 269.00 478.00 478.00 561.00 561.00 651.00	269.00 269.00 478.00 478.00 561.00 561.00 651.00 651.00	14762.00 14762.00 46656.00 64262.00 64262.00 86436.00 86436.00	8748.00 8748.00 27648.00 38081.00 38081.00 51221.00 51221.00	8748.00 8748.00 27648.00 38081.00 38081.00 51221.00 51221.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL E A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB
8 3150.00 432.00 7 3150.00 432.00 6 3150.00 432.00 5 3150.00 432.00 4 3150.00 432.00 3 3150.00 432.00 2 3150.00 432.00 2 3150.00 432.00 1 3150.00 432.00 1 3150.00 432.00 2 22	359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00	359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00	25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 25369.00	20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00	11664.00 11664.00 11664.00 11664.00 11664.00 11664.00 11664.00 11664.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL É A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB
8 3150.00 676.00 7 3150.00 676.00 6 3150.00 676.00 5 3150.00 676.00 4 3150.00 676.00 3 3150.00 676.00 2 3150.00 676.00 1 3150.00 676.00 COLUMN LINE NO. 23	561.00 561.00 561.00 561.00 561.00 561.00 561.00 561.00	561.00 561.00 561.00 561.00 561.00 561.00 561.00 561.00	64262.00 64262.00 64262.00 64262.00 64262.00 64262.00 64262.00 64262.00	38081.00 38081.00 38081.00 38081.00 38081.00 38081.00 38081.00 38081.00	38081.00 38081.00 38081.00 38081.00 38081.00 38081.00 38081.00 38081.00 38081.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
COLUMN LINË NO. 23 LEVEL E A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00	359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00	25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 25369.00	20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00	11664.00 11664.00 11664.00 11664.00 11664.00 11664.00 11664.00 11664.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
COLUMN LINË NO. 24 LEVEL Ë A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB
8 3150.00 432.00 7 3150.00 432.00 6 3150.00 432.00 5 3150.00 432.00 4 3150.00 432.00 3 3150.00 432.00 2 3150.00 432.00 1 3150.00 432.00 2 3150.00 432.00 3 3150.00 432.00 432.00 3 3150.00 432.00 432.00 3 3150.00 432.00	359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00	359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00	25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 25369.00	20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00	11664.00 11664.00 11664.00 11664.00 11664.00 11664.00 11664.00 11664.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL E A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB
8 3150.00 432.00 7 3150.00 432.00 6 3150.00 432.00 5 3150.00 432.00 4 3150.00 432.00 3 3150.00 432.00 2 3150.00 432.00 2 3150.00 432.00 1 3150.00 432.00 2 3150.00 432.00 3 3 3150.00 432.00 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00	359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00	25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 25369.00	20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00	11664.00 11664.00 11664.00 11664.00 11664.00 11664.00 11664.00 11664.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL E A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB
8 3150.00 432.00 7 3150.00 432.00 6 3150.00 432.00 5 3150.00 432.00 4 3150.00 432.00 3 3150.00 432.00 2 3150.00 432.00 1 3150.00 432.00 1 3150.00 432.00 COLUMN LINE NO. 27	359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00	359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00	25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 25369.00	20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00	11664.00 11664.00 11664.00 11664.00 11664.00 11664.00 11664.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL E A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I 11664.00	DT 12 00	DB 12 00
8 3150.00 432.00 7 3150.00 432.00 6 3150.00 432.00 5 3150.00 432.00 4 3150.00 432.00 3 3150.00 432.00 2 3150.00 432.00 2 3150.00 432.00 1 3150.00 432.00 1 3150.00 432.00 COLUMN LINE NO. 28	359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00	359.00 359.00 359.00 359.00 359.00 359.00 359.00 359.00	25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 25369.00 25369.00	20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00 20736.00	11664.00 11664.00 11664.00 11664.00 11664.00 11664.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
LEVEL E A	MAJ SA	MIN SA	TORS I	MAJ I	MIN I	DT	DB

				OUTP	PUT FOR CASE ST	'UDY #2		
87654321	3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00 3150.00	676.00 676.00 676.00 676.00 676.00 676.00 676.00 676.00	561.00 561.00 561.00 561.00 561.00 561.00 561.00 561.00	561.00 642 561.00 642 561.00 642 561.00 642 561.00 642 561.00 642 561.00 642	262.00 38081.0 262.00 38081.0 262.00 38081.0 262.00 38081.0 262.00 38081.0 262.00 38081.0 262.00 38081.0 262.00 38081.0 262.00 38081.0 262.00 38081.0 262.00 38081.0	00 38081.00 00 38081.00 00 38081.00 00 38081.00 00 38081.00 00 38081.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00

FRAME 1 LOCAT

FRAME POSITION DATA

FRAME ID FORCE CODE X1 Y1 ANG 1 1 0 0.00 0.00 0.00

SUPERSTRUCTUR MODE SHAPE	E DAMPING. DAMPING RATIO (%)
1 2 3	5.0 5.0 5.0
1 2 3 4 5 6 7 8 9 10 11	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
(8 9 10	5.0 5.0 5.0
11 12	5.0
HEIGHT FLOOR	HË I GHT
8 7 6	1176.0 1029.0 882.0
876543210	735.0 588.0 441.0
2 1 0	294.0 147.0 0.0

BASEMAT MASS AT THE CENTER OF MASS OF THE BASE TRANSL. MASS ROTATIONAL MASS MASS 3.581 749231.000

BASE ISOLATION DATA: OPTION ONE: EQUIVALENT GLOBAL DEVICE PROPERTIES

GLOBAL ISOLATION DAMPING AT THE CENTER OF MASS OF THE BASE....

	X	Y	R	ECX	ECY
LINEAR STIFFNESS[F/L]	136.7300	136.7300 871	55787.0000	0.0000	0.0000
VISCOUS DAMPING[F/L/T]	0.0000	0.0000	0.0000	0.0000	

BASE ISOLATION DATA: OPTION TWO: INDIVIDUAL ISOLATION ELEMENTS

SLIDING BEARING	BEARING P. FMAX X	ARAMETERS. FMAX Y	DF X	DF Y	PA X	PA Y	Y.DIS.X	Y.DIS.Y	NORM. FORCE
123456789011234567890112345678922222	$\begin{array}{c} 0.080\\ 0.$	0.080 0	0.040 0.040	0.040 0.040	0.600 0.600	0.600 0.600	$\begin{array}{c} 0.01000\\ 0.000\\ 0.00$	$\begin{array}{c} 0.01000\\ 0.000\\$	$\begin{array}{c} 430.00000\\$

	OUTPUT FOR CASE STUDY #2									
	25 26 27 28	0.080 0.080 0.080 0.080 0.080	0.080 0.080 0.080 0.080 0.080	0.040 0.040 0.040 0.040	0.040 0.040 0.040 0.040 0.040	0.600 0.600 0.600 0.600	0.600 0.600 0.600 0.600	0.01000 0.01000 0.01000 0.01000 0.01000	0.01000 0.01000 0.01000 0.01000 0.01000	430.00000 430.00000 430.00000 430.00000
	BEARING BEARING	LOCATION .	· · · · · · · · · · · · · · · · · · ·							
	123456789011234567890122345678	$\begin{array}{c} -349.5500\\ -3449.55500\\ -3449.55500\\ -3449.55500\\ -3449.55500\\ -1166.555500\\ -1166.555500\\ -1166.555500\\ -1166.555500\\ -1166.555500\\ -1166.555500\\ -1166.555500\\ -1166.5555500\\ -1166.5555500\\ -1166.55555\\ -1166.55555\\ -1166.5555\\ -1166.5555\\ -1166.5555\\ -1166.5555\\ -1166.5555\\ -1166.5555\\ -1166.5555\\ -1166.555\\ -1166.555\\ -1166.555\\ -1166.555\\ -1166.555\\ -1166.555\\ -1166.555\\ -1166.555\\ -1166.55\\ -1166.55\\ -1166.55\\ -1166.55\\ -1166.55\\ -1166.55\\ -1166.55\\ -1166.55\\ -1166.55\\ -1166.55\\ -1166.55\\ -1166.55\\ -1166.55\\ -1166.55\\ -1166.55\\ -1166.55\\ -1166.55\\ -1166.5\\$	711.00 474.00 -237.00 -237.00 -711.00 711.00 474.00 -237.00 -237.00 -237.00 -2474.00 -711.00 711.00 -237.00 -237.00 -237.00 -237.00 -237.00 -237.00 -237.00 -237.00 -237.00 -711.00							
	INDEX =	STORY OPTIO = 0 FOR TIM = 1 FOR NO	E HISTORY	OUTPUT RY OUTPU	•••= r	1				
	OUTPUT I	IME STEPS S DESIRED SPLACEMENT NGS NUMBER	TIME HIST	ORY DESI		10 2 3	5 4			
1 **'	COL. LII 1 2 3 4 5 6	ATES OF COLI NE X. CORD -349.50 0.00 0.00 0.00 0.00	. Y <u>.</u> -7	CORD. 11.00 11.00 0.00 0.00 0.00 0.00			ARE DES	IRED		
MODE	SHAPES									
LEVE	LID	DIRN	1		2	3		4	5	6
8 8 8	i	X Y ROTN	0.249714 0.093042 0.000226	-0.12 0.25 0.00	2192 2221 0122 -	0.076935 0.097560 0.000560	-0.26 -0.08 -0.00	50031 -	0.107977 0.268304 0.000130	0.083118 0.095273 -0.000574

LEVEL	ID DIRN	1	2	3	4	5	6	7	8
8	X	0.249714	-0.122192	0.076935	-0.267828	0.107977	0.083118	-0.243863	-0.107025
8	Y	0.093042	0.252221	0.097560	-0.080031	-0.268304	0.095273	-0.079748	0.249172
8	ROTN	0.000226	0.000122	-0.000560	-0.000210	-0.000130	-0.000574	-0.000224	0.000126
7	X	0.233910	-0.114066	0.071206	-0.155596	0.061064	0.042178	0.005004	0.005005
7	Y	0.087966	0.237689	0.091065	-0.048517	-0.159050	0.051995	-0.001746	0.000642
7	ROTN	0.000215	0.000117	-0.000530	-0.000133	-0.000083	-0.000354	-0.000030	0.000015
6	X	0.207903	-0.100717	0.061870	0.003747	-0.004685	-0.011817	0.216438	0.095711
6	Y	0.079180	0.212550	0.079850	-0.002505	-0.000779	-0.008136	0.067969	-0.214666
6	ROTN	0.000195	0.000106	-0.000477	-0.000019	-0.000013	-0.000025	0.000159	-0.000095
5	X	0.176855	-0.085298	0.052087	0.134722	-0.055207	-0.044239	0.197317	0.080818
5	Y	0.067916	0.181158	0.066616	0.038776	0.134890	-0.052535	0.067704	-0.203153
5	ROTN	0.000167	0.000093	-0.000408	0.000094	0.000055	0.000280	0.000187	-0.000111
4	X	0.140608	-0.067458	0.040836	0.215987	-0.085105	-0.059323	0.013226	0.000691
4	Y	0.054322	0.143850	0.051625	0.065637	0.219596	-0.074855	0.008869	-0.018765
4	ROTN	0.000135	0.000075	-0.000326	0.000169	0.000102	0.000480	0.000058	-0.000033
3	X	0.102575	-0.048933	0.029308	0.224470	-0.086449	-0.055264	-0.169732	-0.072206
3	Y	0.039594	0.104069	0.036484	0.069849	0.228273	-0.070773	-0.054987	0.170202
3	ROTN	0.000099	0.000056	-0.000238	0.000184	0.000114	0.000513	-0.000103	0.000068
2	X	0.062149	-0.029389	0.017245	0.167592	-0.063231	-0.037326	-0.222236	-0.089150
2	Y	0.024022	0.062547	0.021309	0.052948	0.169604	-0.048359	-0.075663	0.224464
2	ROTN	0.000061	0.000034	-0.000145	0.000143	0.000089	0.000390	-0.000169	0.000110
1	X	0.023752	-0.011011	0.006184	0.071487	-0.026246	-0.014160	-0.118005	-0.045499
	Y	0.009309	0.023805	0.007725	0.023021	0.071913	-0.018726	-0.041169	0.118592
	ROTN	0.000024	0.000014	-0.000055	0.000064	0.000040	0.000168	-0.000098	0.000063

MODE SH	IAPES				
LEVEL	ID DIRN	9	10	11	12
8	X	-0.088752	0.197754	0.093476	-0.140636
8	Y	-0.098758	0.060847	-0.210382	-0.101985
8	ROTN	0.000524	0.000248	-0.000122	0.000323
7	X	0.019702	-0.155572	-0.075889	0.175690
7	Y	0.012183	-0.045596	0.153468	0.101504
7	ROTN	0.000035	-0.000100	0.000063	-0.000162
6	X	0.081666	-0.177559	-0.076920	0.014269
6	Y	0.089193	-0.058190	0.190967	0.052718
6	ROTN	-0.000436	-0.000234	0.000121	-0.000374
5	X	0.040525	0.097294	0.046486	-0.131701
5	Y	0.061023	0.029019	-0.089507	-0.076762
5	ROTN	-0.000470	-0.000015	-0.000011	0.000038
4	X	-0.024311	0.225482	0.093653	-0.001483
4	Y	-0.014222	0.074970	-0.229512	-0.054331
4	ROTN	-0.000095	0.000184	-0.000118	0.000458
3	X	-0.050049	0.021889	0.004963	0.091119
3	Y	-0.062996	0.008666	-0.026116	0.037317
3	ROTN	0.000355	0.000093	-0.000045	0.000164
2	X	-0.035951	-0.213495	-0.085799	-0.006917
2	Y	-0.060747	-0.072918	0.211524	0.045573
2	ROTN	0.000522	-0.000102	0.000087	-0.000422
1	X	-0.011222	-0.167508	-0.063636	-0.058080
1	Y	-0.025768	-0.058539	0.165784	0.008413
1	ROTN	0.000289	-0.000112	0.000084	-0.000402

MODE NUMBER	PERIOD
1 2 3 4 5 6 7 8 9 0 11 12	$\begin{array}{c} 1.022028\\ 0.945899\\ 0.778801\\ 0.352704\\ 0.326493\\ 0.268552\\ 0.202725\\ 0.188306\\ 0.154192\\ 0.137615\\ 0.127467\\ 0.105327\end{array}$

MAX	. REL. DISP. AT	THE CENTER O	F MASS OF FL	OORS		
FLOOR	X DISP.	Y DISP.	ROTN.(rad)	GRGE)		
8 76 5 4 3 2 1	2.3783 2.1318 1.7578 1.3803 1.0863 0.8074 0.4962 0.1904	-2.0325 -1.8459 -1.5539 -1.2939 -1.0447 -0.7713 -0.4707 -0.1805	0.0012 0.0011 0.0010 0.0009 0.0007 0.0006 0.0003 0.0001			
MAX STORY	INTERSTORY DRII X DST.	FT Y DST.	TIME	X DRIFT/FL. HT	.(%) TIME	Y DRIFT/FL. HT.(%)
87654321	349.50 349.50 349.50 349.50 349.50 349.50 349.50 349.50 349.50	711.00 711.00 711.00 711.00 711.00 711.00 711.00 711.00 711.00	9.44 9.45 9.449 9.53 3.56 3.59	0.26 0.36 0.34 0.34 0.27 0.27 0.17	7.61 7.62 3.51 3.53 7.73 7.73	0.13 0.21 0.23 0.25 0.24 0.22 0.21 0.13
87654321	-349.50 -349.50 -349.50 -349.50 -349.50 -349.50 -349.50 -349.50 -349.50	-711.00 -711.00 -711.00 -711.00 -711.00 -711.00 -711.00 -711.00 -711.00	8.10 8.08 8.06 8.04 8.03 6.43 6.43	0.14 0.21 0.22 0.22 0.22 0.20 0.18 0.11	7.58 7.59 7.60 7.61 7.65 7.69 7.71 7.72	0.15 0.23 0.24 0.23 0.20 0.20 0.20 0.19 0.11
8	0.00	0.00	9.43	0.19	7.59	0.14

			OUT	PUT FOR CASE	STUDY #2	
765 432 1	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	9.45 8.09 8.09 8.08 6.42 6.43 6.43	0.26 0.26 0.23 0.21 0.21 0.21 0.13	7.60 7.61 7.62 3.50 7.70 7.72 7.73	0.22 0.23 0.22 0.20 0.21 0.20 0.12
876 54 321	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	9.43 9.45 8.09 8.09 8.08 6.42 6.43 6.43	0.19 0.26 0.26 0.23 0.21 0.21 0.13	7.59 7.60 7.61 7.62 3.50 7.70 7.70 7.72 7.73	0.14 0.22 0.23 0.20 0.21 0.20 0.21 0.20 0.12
8765 432 1	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	9.43 9.45 8.09 8.09 8.08 6.43 6.43	0.19 0.26 0.26 0.23 0.21 0.21 0.21 0.21	7.59 7.60 7.61 7.62 3.50 7.70 7.72 7.73	0.14 0.22 0.23 0.20 0.20 0.21 0.20 0.12
8765 4321	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	9.43 9.45 8.09 8.08 6.42 6.43 6.43	0.19 0.26 0.26 0.23 0.21 0.21 0.21 0.13	7.59 7.60 7.61 7.62 3.50 7.70 7.72 7.73	0.14 0.22 0.23 0.20 0.20 0.21 0.20 0.12
MAX. D X D	DISP. AT THE O	CENTER OF MASS	OF BASE			
4	4.179 -3		.001			
MAX RE	ESULTANT DISP.	AT THE CENTER	R OF MASS OF E	BASE MP.		
TIME	KES. DISP					
6.530	9 4.181	4.17				
6.530 MAX RE BEARIN	D 4.181 ESULTANT BEAR: NG TIME	4.179 ING DISP. MAX. DIS	9 -0.' P ANG. WITH	139		
6.530 MAX RE	0 4.181 ESULTANT BEAR	4.179	9 -0.1	139		
6.530 MAX RE BEARIN 1 2 3 4	0 4.181 ESULTANT BEAR NG TIME 7.950 6.530 6.530 6.530 EARING DISP.	4.179 ING DISP. MAX. DIS	9 -0.4 P ANG. WITH -1.199 -0.050 -0.049	139		
6.530 MAX RE BEARIN 1 2 3 4 MAX BE	0 4.181 ESULTANT BEAR NG TIME 7.950 6.530 6.530 6.530 EARING DISP.	4.17 MAX. DISP. MAX. DISH 4.071 4.096 4.140 4.184 IN X	9 -0.4 P ANG. WITH -1.199 -0.050 -0.049	139		
6.530 MAX RE BEARIN 1 2 3 4 MAX BE BEARINO 1 2 3 4	D 4.181 ESULTANT BEAR: NG 7.950 6.530 6.530 6.530 6.530 EARING DISP. G TIME 6.530 6.525 6	4.17 ING DISP. MAX. DISI 4.071 4.096 4.140 4.184 IN X MAX. DISP X 4.047 4.091 4.135 4.179	9 -0.4 P ANG. WITH -1.199 -0.050 -0.049	139		
6.530 MAX RE BEARIN 1 2 3 4 MAX BE BEARING 1 2 3 4 MAX BE	D 4.181 ESULTANT BEAR: NG 7.950 6.530 6.530 6.530 6.530 EARING DISP. G TIME 6.530 6.525 6	4.17 ING DISP. MAX. DISP 4.071 4.096 4.140 4.184 IN X MAX. DISP X 4.047 4.091 4.135 4.179 IN Y	9 -0.4 P ANG. WITH -1.199 -0.050 -0.049	139		
6.530 MAX RE BEARIN 1 2 3 4 MAX BE BEARING 1 2 3 4 MAX BE BEARING 1 2 3 4	20 4.181 ESULTANT BEAR: NG 7.950 6.530 6.525 EARING DISP. G TIME 7.910 7.910 7.910	4.17 ING DISP. MAX. DISI 4.071 4.096 4.140 4.184 IN X MAX. DISP X 4.047 4.091 4.135 4.179 IN Y MAX. DISP Y -3.824 -3.824	9 -0.4 P ANG. WITH -1.199 -0.050 -0.049 -0.049	139		
6.530 MAX RE BEARIN 1 2 3 4 MAX BE BEARING 1 2 3 4 MAX BE BEARING 1 2 3 4 MAX BE BEARING	0 4.181 SULTANT BEAR: NG 7.950 6.530 6.530 6.530 6.530 6.530 6.530 6.530 6.530 6.530 6.530 6.525 EARING DISP. G TIME 7.910 7.910 7.910 7.910 7.910 7.910 TOTAL ACCL. A ACCL. X -214.550604 -134.550604	4.17 ING DISP. MAX. DISP 4.071 4.096 4.140 4.184 IN X MAX. DISP X 4.047 4.091 4.135 4.179 IN Y MAX. DISP Y -3.824 -3.825 -3.8	P -0.' P ANG. WITH -1.199 -0.050 -0.049 -0.049 -0.049 SS OF FLOORS ACCL. R 0.175983 0.090314	139		
6.530 MAX RE BEARIN 1 2 3 4 MAX BE BEARINO 1 2 3 4 MAX BE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 4.181 ESULTANT BEAR: NG 7.950 6.530 6.530 6.530 6.530 EARING DISP. G TIME 6.530 6.525 EARING DISP. G TIME 7.910	4.17 ING DISP. MAX. DISP 4.071 4.096 4.140 4.184 IN X MAX. DISP X 4.047 4.091 4.135 4.179 IN Y MAX. DISP Y -3.824 -3.824 -3.824 -3.824 -3.824 -3.824 IN CENTER OF MAX ACCL. Y	9 -0.4 P ANG. WITH -1.199 -0.050 -0.049 -0.049 -0.049 SS OF FLOORS ACCL. R 0.175983	139		
6.530 MAX RE BEARIN 1 2 3 4 MAX BE BEARINO 1 2 3 4 MAX BE BEARINO 1 1 2 3 4 MAX BE BEARINO 1 1 2 3 4 MAX BE BEARINO 1 1 2 3 4 MAX BE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D 4.181 ESULTANT BEAR: NG TIME 7.950 6.530 6.530 6.530 6.530 6.530 6.530 6.530 6.530 6.525 EARING DISP. G TIME 7.910 7.950 7.	4.17 ING DISP. MAX. DISP 4.071 4.096 4.140 4.184 IN X MAX. DISP X 4.047 4.091 4.135 4.179 IN Y MAX. DISP X 4.047 4.047 4.091 4.135 4.179 IN Y MAX. DISP Y -3.824 -3.825 -3.7837 -3.725 -3.132	P -0.4 P ANG. WITH -1.199 -0.050 -0.049 -0.049 -0.049 -0.049 SS OF FLOORS ACCL. R 0.175983 0.090314 0.175983 0.095176 -0.108708 -0.120051 -0.085355	139		
6.530 MAX REBEARIN 1 23 4 MAX BEBEARING 1 23 4 MAX BEBEARING 1 2 3 4 MAX BEBEARING 1 2 3 4 MAX BEBEARING 1 2 3 4 MAX SI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 4.181 SULTANT BEAR: NG TIME 7.950 6.530 6.530 6.530 6.530 6.530 6.530 6.530 6.530 6.530 6.525 EARING DISP. G TIME 7.910 7.955 1.30.613581 TORY SHEAR	4.17 ING DISP. MAX. DISP 4.071 4.096 4.140 4.184 IN X MAX. DISP X 4.047 4.091 4.135 4.179 IN Y MAX. DISP Y -3.824 -3.825 -3.825 -3.555 -3.5	 ANG. WITH 1.199 0.050 0.049 0.049	139 X AXIS		

3 2 1	8.020 -1197 6.425 -1294 6.415 -1337	4.622	OUT 7.695 7.710 7.725	PUT FOR CASE 1271.135 1368.953 1383.064	STUDY #2
MAX. STRI FORCE X -1337.07	UCTURE SHEAR (TOP FORCE Y 1383.06	OF BASE) Z MOMENT 291671.74			
MAX. BASI FORCE X 1386.97	E SHEAR (BEARING L FORCE Y -1379.05 -2	EVEL) Z MOMENT 294848.21			
OLOAD	N DEFINITION CARDS I II .00 0.00	5 0.00	RESPONS 1.0		

MEMBER	FORCE	s	FRAME ID	F RAME	1 L	OCAT	FRAME TYPE 1				
COLUMN	FORCE	s	LEVEL NO 1	•••	LEVEL	ID					
O LINE 1	LOAD 1 1	MAX MIN	TORSIONAL MOMENT 94.1477 -94.1477	TOP MO 1029 -1029	DMENT	AXIS BOT MOMENT 3825.6511 -3825.6511	AXIAL FORCE 327.0174 -327.0174	MINOR TOP MOMENT 1809.7969 -1809.7969	AXIS BOT MOMENT 5788.9766 -5788.9766	MAJOR SHEAR 38.9714 -38.9714	MINOR SHEAR 61.7787 -61.7787
2	1	MAX	37.1671	1838.	.6495	2785.3750	222.9761	1348.4757	2055.4622	37.5937	27.6743
	1	MIN	-37.1671	- 1838.	.6495	-2785.3750	-222.9761	-1348.4757	-2055.4622	-37.5937	-27.6743
3	1	MAX MIN	37.1671 -37.1671	1731 -1731	4460 4460	2728.8564 -2728.8564	222.7598 -222.7598	1161.5450 -1161.5450	1840.4996 -1840.4996	36.2626 -36.2626	24.4069 -24.4069
4	1	MAX	68.3539	2197.	.9854	3579.9724	218.3739	1806.7393	3647.1091	46.9753	44.3402
	1	MIN	-68.3539	-2197.	.9854	-3579.9724	-218.3739	-1806.7393	-3647.1091	-46.9753	-44.3402
5	1	MAX MIN	126.6340 -126.6340	2091 -2091	8799 8799	5524.1089 -5524.1089	238.1900 -238.1900	1394.9258 -1394.9258	5397.3125 -5397.3125	61.9186 -61.9186	55.1908 -55.1908
6	1	MAX	126.6340	2219.	9961	5590.0073	221.3384	1290.5078	5135.1758	63.4960	52.2413
	1	MIN	-126.6340	-2219.	9961	-5590.0073	-221.3384	-1290.5078	-5135.1758	-63.4960	-52.2413
7	1	MAX MIN	94.1477 -94.1477	1151 -1151	9565 9565	3893.6401 -3893.6401	243.3604 -243.3604	923.1533 -923.1533	3666.9253 -3666.9253	40.5852 -40.5852	37.3177 - -37.3177
8	1	MAX	37.1671	1077.	0076	2433.0559	169.3345	2289.5591	2749.1309	28.3106	40.9650
	1	MIN	-37.1671	-1077.	0076	-2433.0559	-169.3345	-2289.5591	-2749.1309	-28.3106	-40.9650
9	1	MAX	126.6340	2199.	9312	5693.0391	33.4426	3171.4531	7334.1196	63.4876	85.4112
	1	MIN	-126.6340	-2199.	9312	-5693.0391	-33.4426	-3171.4531	-7334.1196	-63.4876	-85.4112
10	1	MAX	117.4671	2170.	9502	6861.6440	28.0006	2562.1436	5128.1675	72.4901	62.4220
	1	MIN	-117.4671	-2170.	9502	-6861.6440	-28.0006	-2562.1436	-5128.1675	-72.4901	-62.4220
11	1	MAX	126.6340	2245	.6377	5722.6982	12.3857	2280.1514	6122.0322	64.1976	68.2922
	1	MIN	-126.6340	-2245	.6377	-5722.6982	-12.3857	-2280.1514	-6122.0322	-64.1976	-68.2922
12	1	MAX	126.6340	1973.	8369	5577.7104	36.2118	2204.6870	5812.6113	60.7271	65.1605
	1	MIN	-126.6340	- 1973.	8369	-5577.7104	-36.2118	-2204.6870	-5812.6113	-60.7271	-65.1605
13	1	MAX	126.6340	1926.	3296	5548.7983	20.5606	2376.3970	5693.7178	60.0351	65.6107
	1	MIN	-126.6340	-1926.	3296	-5548.7983	-20.5606	-2376.3970	-5693.7178	-60.0351	-65.6107
14	1	MAX MIN	37.1671 -37.1671	1086. -1086.	3875 3875	2439.4609 -2439.4609	161.1983 -161.1983	1453.5331 -1453.5331	1779.2917 -1779.2917	28.4614 -28.4614	26.2831 -26.2831
15	1	MAX MIN	37.1671 -37.1671	1133. -1133.	5432 5432	2533.8875 -2533.8875	189.3585 -189.3585	2277.8767 -2277.8767	2742.7874 -2742.7874	29.8165 -29.8165	40.8184 -40.8184
16	1	MAX	126.6340	2308.	0303	5929.8271	29.1342	3153.2070	7324.7349	66.9744	85.1865
	1	MIN	-126.6340	-2308.	0303	-5929.8271	-29.1342	-3153.2070	-7324.7349	-66.9744	-85.1865
17	1	MAX	126.6340	2352.	2622	5952.5786	32.9047	2602.8926	6511.1724	67.5190	73.4417
	1	MIN	-126.6340	-2352.	2622	-5952.5786	-32.9047	-2602.8926	-6511.1724	-67.5190	-73.4417
18	1	MAX	126.6340	2354	2632	5953.6079	4.0879	2144.1665	6047.5122	67.5436	66.5085
	1	MIN	-126.6340	-2354	2632	-5953.6079	-4.0879	-2144.1665	-6047.5122	-67.5436	-66.5085
19	1	MAX	126.6340	2351.	3081	5952.0879	5.2400	1997.7646	5706.1187	67.5073	62.6129
	1	MIN	-126.6340	-2351.	3081	-5952.0879	-5.2400	-1997.7646	-5706.1187	-67.5073	-62.6129
20	1	MAX	126.6340	2308.	2773	5929.9541	24.2385	2187.8325	5596.7271	66.9775	63.2891
	1	MIN	-126.6340	-2308.	2773	-5929.9541	-24.2385	-2187.8325	-5596.7271	-66.9775	-63.2891
21	1	MAX	37.1671	1138.		2536,5483	175,7642	1445.5922	1774.9797	29.8792	26,1835

					OUTPUT FOR CA	SE STUDY #2				
		MIN	-37.1671	-1138.5903	-2536.5483	-175.7642	-1445.5922	-1774.9797	-29.8792	-26.1835
22	1	MAX MIN	94.1477 -94.1477	1341.8486 -1341.8486	4400.2866	260.9391 -260.9391	1794.3340 -1794.3340	5780.9209 -5780.9209	45.8123 -45.8123	61.5875 -61.5875
23	1	MAX	37.1671 -37.1671	2148.2896 -2148.2896	3186.8110 -3186.8110	226.6622	1345.8661 -1345.8661	2054.0449	43.3748 -43.3748	27.6416
24	1	MAX MIN	37.1671 -37.1671	2021.0852	3119.7478 -3119.7478	220.0908 -220.0908	1218.6875 -1218.6875	1871.5289 -1871.5289	41.7954 -41.7954	25.1237 -25.1237
25	1	MAX MIN	37.1671 -37.1671	2035.0054 -2035.0054	3127.0867 -3127.0867	208.9518 -208.9518	1158.0663 -1158.0663	1777.4692 -1777.4692	41.9682 -41.9682	23.8661 -23.8661
26	1	MAX MIN	37.1671 -37.1671	2021.5325 -2021.5325	3119.9836 -3119.9836	201.3477 -201.3477	1090.0591 -1090.0591	1678.2981 -1678.2981	41.8009 -41.8009	22.4955 -22.4955
27	1 1	MAX MIN	37.1671 -37.1671	2155.9839 -2155.9839	3190.8677 -3190.8677	186.3189 -186.3189	1002.1134 -1002.1134	1581.6499 -1581.6499	43.4703	21.0062 -21.0062
28	1	MAX MIN	94.1477 -94.1477	1351.0234 -1351.0234	4406.3740 -4406.3740	297.1165 -297.1165	963.3462 -963.3462	3687.8645 -3687.8645	45.9568 -45.9568	37.8147 -37.8147
BEAM			TODO NONENT	T NONENT	I MONENT					
BAY 1	LOAD 1 1	MAX MIN	TORS MOMENT 249.4030 -249.4030	I MOMENT 3344.0308 -3344.0308	J MOMENT 2865.8228 -2865.8228					
2	1 1	MAX MIN	54.6928 -54.6928	2485.5928 -2485.5928	2525.3647 -2525.3647					
3	1 1	MAX Min	54.2622 -54.2622	2586.5117 -2586.5117	2617.1772 -2617.1772					
4	1 1	MAX Min	81.6601 -81.6601	2957.7395 -2957.7395	3234.7288 -3234.7288					
5	1	MAX Min	44.5769 -44.5769	2586.2813 -2586.2813	2571.7361 -2571.7361					
6	1 1	MAX Min	78.9115 -78.9115	3521.5073 -3521.5073	3645.3413 -3645.3413					
7	1	MAX MIN	108.6672 -108.6672	4742.3906 -4742.3906	3572.6155 -3572.6155					
8	1 1	MAX MIN	143.6314 -143.6314	3597.0679 -3597.0679	3939.7271 -3939.7271					
9	1	MAX MIN	148.5756 -148.5756	3211.1799 -3211.1799	3405.8486 -3405.8486					
10	1 1	MAX MIN	115.5135 -115.5135	3633.6721 -3633.6721	3774.4333 -3774.4333					
11	1 1	MAX MIN	78.8522 -78.8522	3988.4897 -3988.4897	3861.5002 -3861.5002					
12	1 1	MAX MIN	82.8089 -82.8089	3785.9187 -3785.9187	3615.1284 -3615.1284					
13	1 1	MAX MIN	104.2521 -104.2521	3206.1194 -3206.1194	2413.1873 -2413.1873					
14	1 1	MAX MIN	202.9785 -202.9785	3190.3552 -3190.3552	3236.5461 -3236.5461					
15	1	MAX MIN	81.0417 -81.0417	3465.3921 -3465.3921	3517.7842 -3517.7842					
16	1 1	MAX MIN	51.3041 -51.3041	3513.4780 -3513.4780	3452.9314 -3452.9314					
17	1 1	MAX Min	60.5119 -60.5119	3421.6567 -3421.6567	3461.5188 -3461.5188					
18	1 1	MAX Min	51.2339 -51.2339	2749.1633 -2749.1633	2755.2859 -2755.2859					
19	1 1	MAX MIN	172.0992 -172.0992	3298.4895 -3298.4895	3208.5107 -3208.5107					
20	1 1	MAX Min	84.2962 -84.2962	2428.9980 -2428.9980	2437.2234 -2437.2234					
21	1 1	MAX Min	74.1919 -74.1919	4399.3794 -4399.3794	4402.2490 -4402.2490					
22	1	MAX MIN	77.5491 -77.5491	3922.3855 -3922.3855	4054.0017 -4054.0017					
23	1	MAX MIN	34.0238 -34.0238	3189.7903 -3189.7903	3207.3420 -3207.3420					
24	1 1	MAX MIN	35.2693 -35.2693	3018.8208 -3018.8208	3043.9028 -3043.9028					
25	1	MAX	76.4073	3549.7737	3579.4309					

		1 MIN	-76.4073	-35/0 7777		CASE STUDY	#2	
26		I MAX	83.9827	-3549.7737 1705.5425 -1705.5425	-3579.4309 1711.1334 -1711.1334			
27		MAX	204.0952	3275.5935 -3275.5935	3324,9812			
28		MAX	57.5715	3512.1895 -3512.1895	-3324.9812 3505.1768 -3505.1768			
29	1	MAX	58.8300	3504.3743 -3504.3743	3503.8066			
30		MAX	61.9436	3500.4434 -3500.4434	-3503.8066			
31	1	MAX	61.4767	3508.2043 -3508.2043	-3500.6135 3516.0969 -3516.0969			
32	1	MAX		3325.8635 -3325.8635	3275.6292 -3275.6292			
33	1	MAX		3528.3772 -3528.3772	4693.4224			
34	1	MAX	129.9458 -129.9458	3920.2236 -3920.2236	3576.3906 -3576.3906			
35	1		111.2991 -111.2991	3643.0972 -3643.0972	3279.6731 -3279.6731			
36	1	MAX MIN	112.7435 -112.7435	3526.9009	3140.0598 -3140.0598			
37	1	MAX MIN	111.2087 -111.2087	3359.6506 -3359.6506	2992.8967			
38	1	MAX MIN	130.3772 -130.3772	3150.9749 -3150.9749	2871.1758			
39	1 1	MAX MIN	138.2659 -138.2659	2394.3406 -2394.3406	3172.5955 -3172.5955			
40	1	MAX MIN	249.9274 -249.9274	3694.7761 -3694.7761	3157.0652 -3157.0652			
41	1 1	MAX Min	58.3831 -58.3831	2747.8259 -2747.8259	2795.0181 -2795.0181			
42	1	MAX Min	52.7853 -52.7853	2832.2808 -2832.2808	2827.1165 -2827.1165			
43	1 1	MAX MIN	52.3023 -52.3023	2827.2385 -2827.2385	2832.2368 -2832.2368			
44	1 1	MAX Min	56.3919 -56.3919	2798.6833 -2798.6833	2748.8027 -2748.8027			
45	1 1	MAX Min	137.4427 -137.4427	3174.8494 -3174.8494	3713.0234 -3713.0234			
MEMBER	FORCE	s	FRAME ID		CAT			
COLUMN			LEVEL NO 2	F RAME 1 L O		RAME TYPE	1	
0 LINE		•	TORSIONAL MOMENT	MAJOR TOP MOMENT	AXIS BOT MOMENT	AXIA		
1	1 1	MAX MIN	142.2906 -142.2906	1658.3032 -1658.3032	2021.6929 -2021.6929	FORC 294.662 -294.662	0 2600.3848	BOT MOMENT 2664.2676 -2664.2676
2	1 1	MAX MIN	56.1727 -56.1727	2891.0933 -2891.0933	3089.6699 -3089.6699	199.829 -199.829	9 1824.6326	1881.3312 -1881.3312
3	1	MAX Min	56.1727 -56.1727	2735.8232 -2735.8232	2930.4038 -2930.4038	200.297		1807.0782 -1807.0782
4	1 1	MAX MIN	56.1727 -56.1727	2805.3999 -2805.3999	2907.4028 -2907.4028	191.733 -191.733	6 1527.9084 6 -1527.9084	1486.8330 -1486.8330
5	1	MAX MIN	142.2906 -142.2906	2805.1736 -2805.1736	3087.8638 -3087.8638	207.3650 -207.3650	0 1903.0852 0 -1903.0852	2164.3232 -2164.3232
6	1 1	MAX MIN	142.2906 -142.2906	2959.2112 -2959.2112	3238.4673 -3238.4673	190.1634 -190.1634	4 1782.4370 4 -1782.4370	2051.0195 -2051.0195
7	1	MAX MIN	142.2906 -142.2906	1804.7036 -1804.7036	2196.2021 -2196.2021	219.8750 -219.8750	1610.8267	1913.2593 -1913.2593
8	1 1	MAX MIN	56.1727 -56.1727	1605.6086 -1605.6086	1827.4609 -1827.4609	154.0992 -154.0992	3237.4624 -3237.4624	3288.4668 -3288.4668
9	1 1	MAX MIN	191.3888 -191.3888	3739.0876 -3739.0876	4085.7998 -4085.7998	26.3811 -26.3811	4752.8560 -4752.8560	4795.5469 -4795.5469

MAJOR SHEAR 29.8695 -29.8695

48.6241 -48.6241

46.0669 -46.0669

46.4455 -46.4455

47.9109 -47.9109

50.3876 -50.3876

32.5277 -32.5277

27.9111 -27.9111

63.6170 -63.6170

MINOR SHEAR 41.5473 -41.5473

30.0168 -30.0168

28.4745

24.5101 -24.5101

33.0393 -33.0393

30.8976 -30.8976

28.2417 -28.2417

53.0563 -53.0563

76.2068 -76.2068

					OUTPUT FOR CAS	SE STUDY #2				
10	1	MAX MIN	177.5344 -177.5344	3975.5073 -3975.5073	4381.8584 -4381.8584	22.7412 -22.7412	3898.3882 -3898.3882	4167.3359 -4167.3359	67.9460 -67.9460	65.5749 -65.5749
11	1	MAX MIN	191.3888 -191.3888	3842.1689 -3842.1689	4181.2280 -4181.2280	10.8394 -10.8394	3726.5615 -3726.5615	4090.8438 -4090.8438	65.2309 -65.2309	63.5561 -63.5561
12	1	MAX MIN	191.3888 -191.3888	3408.8550 -3408.8550	3751.0454 -3751.0454	29.6323 -29.6323	3757.1040 -3757.1040	4099.5352 -4099.5352	58.2106 -58.2106	63.8751 -63.8751
13	1	MAX MIN	191.3888 -191.3888	3316.6360 -3316.6360	3662.2729 -3662.2729	18.1679 -18.1679	4039.0559 -4039.0559	4375.4292 -4375.4292	56.7391 -56.7391	68.2474 -68.2474
14	1	MAX MIN	56.1727 -56.1727	1616.5243 -1616.5243	1841.9875 -1841.9875	139.7222 -139.7222	2269.6921 -2269.6921	2349.5764 -2349.5764	28.1180 -28.1180	37.5153 -37.5153
15	1	MAX MIN	56.1727 -56.1727	1647.7618 -1647.7618	1857.9709 -1857.9709	153.0584 -153.0584	3210.6912 -3210.6912	3265.6917 -3265.6917	28.3669 -28.3669	52.6535 -52.6535
16	1	MAX	191.3888 -191.3888	3792.7004 -3792.7004	4135.4878 -4135.4878	22.6338	4724.6489 -4724.6489	4785,1084 -4785,1084	64.4093 -64.4093	75.8651 -75.8651
17	1	MAX MIN	191.3888 -191.3888	3879.0083 -3879.0083	4219.3540 -4219.3540	28.7697 -28.7697	4210.2427 -4210.2427	4460.6328 -4460.6328	65.8403 -65.8403	70.4949 -70.4949
18	1	MAX MIN	191.3888 -191.3888	3883.7590 -3883.7590	4224.7500 -4224.7500	3.8809 -3.8809	3680.1001 -3680.1001	3960.3994 -3960.3994	65.9228 -65.9228	62.1179 -62.1179
19	1	MAX	191.3888 -191.3888	3882.8821 -3882.8821	4223.4136 -4223.4136	5.6390 -5.6390	3505.5840 -3505.5840	3817.8999 -3817.8999	65.9048 -65.9048	59.5405 -59.5405
20	1	MAX	191.3888 -191.3888	3800.0581 -3800.0581	4130.8008 -4130.8008	19.5833 -19.5833	3800.9580 -3800.9580	4114.3809 -4114.3809	64.3368 -64.3368	64.1621 -64.1621
21	1	MAX MIN	56.1727 -56.1727	1658.0345 -1658.0345	1858.7214 -1858.7214	152.4532 -152.4532	2257.5120 -2257.5120	2336.7952 -2336.7952	28.3726 -28.3726	37.3170 -37.3170
22	1		142.2906 -142.2906	1885.2341 -1885.2341	2123.1631 -2123.1631	246.7505 -246.7505	2563.5049 -2563.5049	2627.2744 -2627.2744	32.2893 -32.2893	40.9997 -40.9997
23	1	MAX	56.1727 -56.1727	3158.2095 -3158.2095	3326.3545 -3326.3545	201.2463 -201.2463	1814.3341 -1814.3341	1889.4198 -1889.4198	52.6301 -52.6301	29.8727 -29.8727
24	1	MAX MIN	56.1727 -56.1727	3023.2410 -3023.2410	3169.8655 -3169.8655	196.3856 -196.3856	1741.0988 -1741.0988	1872.2490 -1872.2490	50.2075 -50.2075	29.3768 -29.3768
25	1		56.1727 -56.1727	3032.2791 -3032.2791	3182.9358 -3182.9358	185.7559 -185.7559	1674.9229 -1674.9229	1808.9227 -1808.9227	50.4015 -50.4015	28.3239 -28.3239
26	1	MAX MIN	56.1727 -56.1727	3027.6135 -3027.6135	3172.7751 -3172.7751	176.1627 -176.1627	1601.6174 -1601.6174	1735.0878 -1735.0878	50.2644 -50.2644	27.1277 -27.1277
27	1		56.1727 -56.1727	3166.4097 -3166.4097	3325.1665 -3325.1665	162.5540 -162.5540	1484.8125 -1484.8125	1609.2052 -1609.2052	52.7771 -52.7771	25.1174 -25.1174
28	1	MAX	142.2906 -142.2906	1881.7717 -1881.7717	2114.6904 -2114.6904	267.0108 -267.0108	1649.5930 -1649.5930	1959.4063 -1959.4063	32.3157 -32.3157	28.9591 -28.9591
BEAM F	ORCES	;								
BAY 1	LOAD 1 1	MAX	TORS MOMENT 229.1980 -229.1980	I MOMENT 3772.0181 -3772.0181	J MOMENT 3291.7744 -3291.7744					
2	1	MAX MIN	62.0560 -62.0560	2992.7524 -2992.7524	3029.3887 -3029.3887					
3	1	MAX MIN	67.7198 -67.7198	2992.3494 -2992.3494	2950.3699 -2950.3699					
4	1	MAX MIN	129.7722 -129.7722	3246.6750 -3246.6750	3564.4124 -3564.4124					
5	1	MAX MIN	44.4156 -44.4156	2886.2107 -2886.2107	2870.5857 -2870.5857					
6		MAX MIN	82.0718 -82.0718	3866.7837 -3866.7837	4038.5767 -4038.5767					
7		1 MAX 1 MIN	109.6167 -109.6167	4975.4741 -4975.4741	3850.0625 -3850.0625					
8		1 MAX 1 MIN	125.6276 -125.6276	3824.5503 -3824.5503	4061.4131 -4061.4131					
9		1 MAX 1 MIN	129.2792 -129.2792	3541.9011 -3541.9011	3698.6016 -3698.6016					
10		1 MAX 1 MIN	122.1807 -122.1807	3487.4133 -3487.4133	3804.5718 -3804.5718					
11		1 MAX 1 MIN	76.6511 -76.6511	4241.4053 -4241.4053	4109.9604 -4109.9604					
12		1 MAX 1 MIN	80.9703 -80.9703	4075.1694 -4075.1694	3891.9719 -3891.9719					
13		1 MAX 1 MIN	106.2854 -106.2854	3579.8809 -3579.8809	2752.6924 -2752.6924					
					E·	-26				

					OUTPUT FOR
14	1	MAX MIN	190.1197 -190.1197	3549.3411 -3549.3411	3536.9153 -3536.9153
15	1	MAX	75.9540	3780.4299	3824.3423
	1	MIN	-75.9540	-3780.4299	-3824.3423
16	1	MAX	54.9509	3821.2178	3766.9226
	1	Min	-54.9509	-3821.2178	-3766.9226
17	1 1		63.8786 -63.8786	3738.9495 -3738.9495	3779.7231 -3779.7231
18	1	MAX	54.8307	3015.5242	3022.4197
	1	Min	-54.8307	-3015.5242	-3022.4197
19	1	MAX	170.5765	3586.7485	3558.2969
	1	MIN	-170.5765	-3586.7485	-3558.2969
20	1	MAX MIN	89.8799 -89.8799	2935.7690 -2935.7690	2953.4170 -2953.4170
21	1	MAX	75.3132	4569.4771	4570.9370
	1	MIN	-75.3132	-4569.4771	-4570.9370
22	1	MAX MIN	76.4758 -76.4758	4247.6138 -4247.6138	4339.2964 -4339.2964
23	1	MAX	34.0547	3468.0942	3464.6948
	1	MIN	-34.0547	-3468.0942	-3464.6948
24	1	MAX	35.2215	3295.2043	3312.7742
	1	MIN	-35.2215	-3295.2043	-3312.7742
25	1	MAX	76.5932	3901.8381	3924.7578
	1	MIN	-76.5932	-3901.8381	-3924.7578
26	1	MAX	88.5640	2212.4116	2216.3862
	1	MIN	-88.5640	-2212.4116	-2216.3862
27	1	MAX	191.3507	3624.9548	3612.7141
	1	Min	-191.3507	-3624.9548	-3612.7141
28	1	MAX MIN	58.9131 -58.9131	3837.2739 -3837.2739	3827.8496 -3827.8496
29	1	MAX	59.2399	3831.4482	3831.0684
	1	MIN	-59.2399	-3831.4482	-3831.0684
30	1	MAX	62.3541	3824.8203	3824.8567
	1	MIN	-62.3541	-3824.8203	-3824.8567
31	1	MAX	65.1969	3833.8882	3844.0061
	1	MIN	-65.1969	-3833.8882	-3844.0061
32	1	MAX Min	175_4253 -175_4253	3615.0129 -3615.0129	3627.1101 -3627.1101
33	1	MAX	140.7469	3754.8684	4870.6240
	1	Min	-140.7469	-3754.8684	-4870.6240
34	1	MAX Min	109.0518 -109.0518	4053.7178 -4053.7178	3816.7939 -3816.7939
35	1	MAX	96.3743	3883.0955	3625.1035
	1	MIN	-96.3743	-3883.0955	-3625.1035
36	1	MAX	96.3442	3784.1211	3497.0784
	1	MIN	-96.3442	-3784.1211	-3497.0784
37	1	MAX	96.8486	3648.2114	3370.1333
	1	MIN	-96.8486	-3648.2114	-3370.1333
38	1	MAX	108.0263	3448.4883	3244.8362
	1	MIN	-108.0263	-3448.4883	-3244.8362
39	1	MAX MIN	143.6313 -143.6313	2735.6750 -2735.6750	3554.0046 -3554.0046
40	1	MAX MIN	229.3925 -229.3925	4065.6443 -4065.6443	3547.6235 -3547.6235
41	1	MAX	65.7346	3270.7795	3296.0967
	1	MIN	-65.7346	-3270.7795	-3296.0967
42	1	MAX	60.0357	3307.1030	3306.7732
	1	MIN	-60.0357	-3307.1030	-3306.7732
43	1	MAX	59.9143	3305.1333	3303.7566
	1	MIN	-59.9143	-3305.1333	-3303.7566
44	1	MAX MIN	62.8171 -62.8171	3306.4246 -3306.4246	3286.0757 -3286.0757
45	1	MAX MIN	133.5737 -133.5737	3557.4368 -3557.4368	4077.5154

	50005	•	CRAME ID	FRAME 1 L O		RAME TYPE 1				
			FRAME ID LEVEL NO 3	LEVEL						
COLUMN 0 LINE		S	TORSIONAL	MAJOR	AXIS	AXIAL	MINOR A	XIS	MAJOR	MINOR
1	1	MAX MIN	MOMENT 146.2077 -146.2077	TOP MOMENT 1956.4485 -1956.4485	BOT MOMENT 1932.9634 -1932.9634	FORCE 249.1122 -249.1122	TOP MOMENT 2748.5483 -2748.5483	BOT MOMENT 3172.0273 -3172.0273	SHEAR 31.4066 -31.4066	SHEAR 44.5043 -44.5043
2	1	MAX	57.7191 -57.7191	2964.0745 -2964.0745	2982.5095 -2982.5095	171.1200 -171.1200	1862.4192 -1862.4192	1820.1161 -1820.1161	48.3462 -48.3462	29.9393 -29.9393
3	1	MAX	57.7191 -57.7191	2849.1975 -2849.1975	2850.6421 -2850.6421	172.1930 -172.1930	1702.2511 -1702.2511	1678.9120 -1678.9120	46.3402 -46.3402	27.4891 -27.4891
4	1	MAX	57.7191 -57.7191	2953.4636 -2953.4636	2987.3149 -2987.3149	162.8062 -162.8062	1674.6465 -1674.6465	1682.0414 -1682.0414	48.2990 -48.2990	27.2901 -27.2901
5	1	MAX	146.2077 -146.2077	3282.2939 -3282.2939	3206.8408 -3206.8408	170.6651 -170.6651	2358.5569 -2358.5569	2425.5874 -2425.5874	52.6591 -52.6591	37.1089 -37.1089
6	1	MAX	146.2077	3405.2544 -3405.2544	3334.4048 -3334.4048	153.1593 -153.1593	2226.0444 -2226.0444	2328.0903 -2328.0903	54.7940 -54.7940	35.8884 -35.8884
7	1	MAX MIN	146.2077 -146.2077	2052.9773 -2052.9773	2046.6533 -2046.6533	191.8948 -191.8948	1735.9031 -1735.9031	1992.7598 -1992.7598	33.1006 -33.1006	29.9848 -29.9848
8	1	MAX MIN	57.7191 -57.7191	1649.3832 -1649.3832	1692.8728 -1692.8728	134.1147 -134.1147	3243.8760 -3243.8760	3290.5154 -3290.5154	27.1728 -27.1728	53.1251 -53.1251
9	1	MAX MIN	146.2077 -146.2077	3292.0710 -3292.0710	3269.1089 -3269.1089	20.4467 -20.4467	4347.3594 -4347.3594	4448.4390 -4448.4390	53.3430 -53.3430	68.1663 -68.1663
10	1	MAX MIN	172.6089 -172.6089	3419.8813 -3419.8813	3347.2153 -3347.2153	16.6567 -16.6567	3736.7764 -3736.7764	3625.9790 -3625.9790	55.0170 -55.0170	59.4038 -59.4038
11	1	MAX MIN	146.2077 -146.2077	3373.9414 -3373.9414	3352.0796 -3352.0796	10.1357 -10.1357	3415.3984 -3415.3984	3360.9795 -3360.9795	54.6832 -54.6832	53.4469 -53.4469
12	1	MAX MIN	146.2077 -146.2077	3055.4153 -3055.4153	3027.8022 -3027.8022	21.0389 -21.0389	3479.1475 -3479.1475	3493.6646 -3493.6646	49.4571 -49.4571	54.6969 -54.6969
13	1 1	MAX MIN	146.2077 -146.2077	2978.6626 -2978.6626	2953.0522 -2953.0522	15.9444 -15.9444	3683.7666 -3683.7666	3767.1909 -3767.1909	48.2254 -48.2254	59.7342 -59.7342
14	1	MAX MIN	57.7191 -57.7191	1651.7037 -1651.7037	1697.3535 -1697.3535	114.8672 -114.8672	2366.6143 -2366.6143	2456.6250 -2456.6250	27.2281 -27.2281	39.2133 -39.2133
15	1	MAX MIN	57.7191 -57.7191	1674.5131 -1674.5131	1739.0991 -1739.0991	117.6532 -117.6532	3201.1384 -3201.1384	3249.6340 -3249.6340	27.7530 -27.7530	52.4453 -52.4453
16	1	MAX MIN	146.2077 -146.2077	3346.5608 -3346.5608	3357.0923 -3357.0923	17.3772 -17.3772	4320.7515 -4320.7515	4447.9346 -4447.9346	54.5012 -54.5012	67.7423 -67.7423
17	1	MAX MIN	146.2077 -146.2077	3428.5452 -3428.5452	3436.4004 -3436.4004	23.8218 -23.8218	3803.3152 -3803.3152	3796.0015 -3796.0015	55.8126 -55.8126	59.7220 -59.7220
18	1	MAX MIN	146.2077 -146.2077	3430.9648 -3430.9648	3439.1372 -3439.1372	4.9540 -4.9540	3396.7344 -3396.7344	3358.2417 -3358.2417	55.8545 -55.8545	53.3414 -53.3414
19	1 1	MAX MIN	146.2077 -146.2077	3428.5959 -3428.5959	3437.7607 -3437.7607	6.7049 -6.7049	3280.8335 -3280.8335	3303.7515 -3303.7515	55.8241 -55.8241	51.5971 -51.5971
20	1 1	MAX MIN	146.2077 -146.2077	3347.4492 -3347.4492	3356.1958 -3356.1958	14.8231 -14.8231	3492.1252 -3492.1252	3584.3994 -3584.3994	54.5012 -54.5012	56.6724 -56.6724
21	1 1	MAX MIN	57.7191 -57.7191	1676.8721 -1676.8721	1739.9041 -1739.9041	128.2196 -128.2196	2356.9417 -2356.9417	2447.3931 -2447.3931	27.7787 -27.7787	39.0596 -39.0596
22	1 1	MAX MIN	146.2077 -146.2077	2088.6899 -2088.6899	2320.2866 -2320.2866	225.7012 -225.7012	2693.2334 -2693.2334	3180.5972 -3180.5972	34.0454 -34.0454	43.6109 -43.6109
23	1 1	MAX MIN	57.7191 -57.7191	3225.6672 -3225.6672	3310.6965 -3310.6965	170.4969 -170.4969	1843.3805 -1843.3805	1820.4991 -1820.4991	52.9367 -52.9367	29.6404 -29.6404
24	1	MAX MIN	57.7191 -57.7191	3143.6011 -3143.6011	3264.9714 -3264.9714	166.9194 -166.9194	1729.5140 -1729.5140	1704.1423 -1704.1423	51.5171 -51.5171	27.9159 -27.9159
25	1 1	MAX MIN	57.7191 -57.7191	3145.5256 -3145.5256	3265.2368 -3265.2368	157.2298 -157.2298	1674.8702 -1674.8702	1654.2770 -1654.2770	51.5463 -51.5463	27.0662 -27.0662
26	1 1	MAX MIN	57.7191 -57.7191	3141.5784 -3141.5784	3268.6262 -3268.6262	146.7174 -146.7174	1618.1818 -1618.1818	1630.6547 -1630.6547	51.5190 -51.5190	26.1793 -26.1793
27	1	MAX MIN	57.7191 -57.7191	3292.3970 -3292.3970	3381.3738 -3381.3738	132.9351 -132.9351	1518.6025 -1518.6025	1570.7178 -1570.7178	53.7136 -53.7136	25.0075 -25.0075
28	1	MAX MIN	146.2077 -146.2077	2200.9941 -2200.9941	2396.6289 -2396.6289	225.7128 -225.7128	1764.7593 -1764.7593	2029.8564 -2029.8564	35.0490 -35.0490	30.5826 -30.5826
BEAM	FORCES	;			I NOUTHT					

BAY 1	LOAD 1 1	MAX MIN	TORS MOMENT 209.1411 -209.1411	I MOMENT 3412.3125 -3412.3125	J MOMENT 2998.9836 -2998.9836	
2	1	MAX MIN	52.3894 -52.3894	2890.1619 -2890.1619	2902.7236 -2902.7236	

3	1 MA) 1 MIN	50.7290 -50.7290	2865.2039 -2865.2039	2848.4329 -2848.4329
4	1 MIN 1 MAX 1 MIN		-2865.2039 3130.4844 -3130.4844	-2848.4329 3362.4673 -3362.4673
5	1 MAX	33,5451	-3130.4844 2586.7854 -2586.7854	
6	1 MIN 1 MAX	70,5950	-2586.7854 3472.2056 -3472.2056	2581.9231 -2581.9231 3655.4978
7	1 MIN 1 MAX	69.5007		3655.4978 -3655.4978 3541.9055
8	1 MIN 1 MAX		4503.4082 -4503.4082 3864.2068	3541.9055 -3541.9055 4060 4946
9	1 MIN 1 MAX		3864.2068 -3864.2068 3369.0767	4060.4946 -4060.4946 3676 1062
10	1 MIN 1 MAX	-136.9990	3369.0767 -3369.0767 3442.4512	3474.1042 -3474.1042 3656.8870
11	1 MIN 1 MAX	-128.1462	3442.4512 -3442.4512 4209.8120	-3656.8870
12	1 MIN 1 MAX	-88.3678	4209.8120 -4209.8120	4049.5261
13	1 MIN	-94.5981	4153.4961	3940.9814 -3940.9814
	1 MAX 1 MIN	68.2778 -68.2778	3390.1367 -3390.1367	2679.3318 -2679.3318
14	1 MAX 1 MIN	121.8885	3103.6917 -3103.6917	3056.6804 -3056.6804
15	1 MAX 1 MIN	57.3012 -57.3012	3266.7349 -3266.7349	3291.9080 -3291.9080
16	1 MAX 1 MIN	42.1942 -42.1942	3292.0847 -3292.0847	3258.0342 -3258.0342
17	1 MAX 1 MIN	52.6691 -52.6691	3245.7092 -3245.7092	3280.0715 -3280.0715
18	1 MAX 1 MIN	42.8495 -42.8495	2627.3247 -2627.3247	2636.7415 -2636.7415
19	1 MAX 1 MIN	113.0368 -113.0368	3088.4534 -3088.4534	3101.3120 -3101.3120
20	1 MAX 1 MIN	69.8715 -69.8715	3007.6838 -3007.6838	3005.4497 -3005.4497
21	1 MAX 1 MIN	78.5655 -78.5655	4652.3691 -4652.3691	4652.7197 -4652.7197
22	1 MAX 1 MIN	67.0153 -67.0153	4164.3267 -4164.3267	4236.7026 -4236.7026
23	1 MAX 1 MIN	34.7884 -34.7884	3477.9260 -3477.9260	3482.2905 -3482.2905
24	1 MAX 1 MIN	32.1977 -32.1977	3374.7661 -3374.7661	3399.0413 -3399.0413
25	1 MAX 1 MIN	68.7824 -68.7824	4075.4050 -4075.4050	4104.9053 -4104.9053
26	1 MAX 1 MIN	65.5807 -65.5807	2376.8516	2380.3286
27	1 MAX 1 MIN	122.2211	3195.4094 -3195.4094	3146.7300 -3146.7300
28	1 MAX 1 MIN	46.1371	3381.7422 -3381.7422	3367.0476 -3367.0476
29	1 MAX 1 MIN	43.8478	3390.3833 -3390.3833	3391.3147 -3391.3147
30	1 MAX 1 MIN	50.1178 -50.1178	3362.2644 -3362.2644	3363.5063 -3363.5063
31	1 MAX 1 MIN	53.4379 -53.4379	-3368.8159 -3368.8159	-3363.5063 3377.6956 -3377.6956
32	1 MAX 1 MIN	-33.4379 118.9407 -118.9407	-3368.8159 3149.3408 -3149.3408	-3377.6956 3197.5188 -3197.5188
33	1 MAX	101.9316	-3149.3408 3556.7041 -3556.7041	-3197.5188 4519.4971 -4519.4971
34	1 MIN 1 MAX 1 MIN	-101.9316 102.7289 -102.7289	-3556.7041 4072.0442 -4072.0442	
35	1 MAX	-102.7289 93.7896 -93.7896		3872.9221 -3872.9221 3436.4165
	1 MIN	-93.7896	3631.3220 -3631.3220	3436.4165 -3436.4165

36	1 1	MAX MIN	93.4186 -93.4186	3618.8357 -3618.8357	3385.7141 -3385.7141
37	1	MAX MIN	92.9348 -92.9348	3587.9873 -3587.9873	3359.0962 -3359.0962
38	1	MAX MIN	109.5751 -109.5751	3504.4387 -3504.4387	3346.0718 -3346.0718
39	1	MAX MIN	96.2729 -96.2729	2663.2458 -2663.2458	3365.4341 -3365.4341
40	1	MAX MIN	209.5505 -209.5505	3947.1025 -3947.1025	3457.4055 -3457.4055
41	1	MAX MIN	56.6408 -56.6408	3386.3550 -3386.3550	3393.8904 -3393.8904
42	1 1	MAX MIN	51.0472 -51.0472	3395.4502 -3395.4502	3395.1106 -3395.1106
43	1	MAX MIN	50.0761 -50.0761	3397.5232 -3397.5232	3398.9163 -3398.9163
44	1	MAX MIN	50.7266 -50.7266	3388.2974 -3388.2974	3344.0254 -3344.0254
45	1	MAX MIN	143.8351 -143.8351	3795.9084 -3795.9084	4339.8530 -4339.8530

MEMBER	FORCE	s	FRAME ID	FRAME 1 L	OCAT	FRAME TYPE 1				
COLUMN	FORCE	s	LEVEL NO 4	LEVE	L ID					
0 LINE					R AXIS	AXIAL FORCE	MINOR TOP MOMENT	BOT MOMENT	MA JOR SHEAR 25.9279	MINOR
1	1	MAX MIN	MOMENT 135.7873 -135.7873	TOP MOMEN1 1742.020 -1742.020	1673.2715 - 1673.2715	197.8210	TOP MOMENT 2528.6758 -2528.6758	-2626.5801 -2626.5801	25.9279 -25.9279	41.4199 -41.4199
2	1	MAX MIN	53.6053 -53.6053	2791.8853 -2791.8853	2825.9282 -2825.9282	138.3190 -138.3190	1937.9519 -1937.9519	1967.5487 -1967.5487	45.6733 -45.6733	31.7521 -31.7521
3	1	MAX MIN	53.6053 -53.6053	2710.522 -2710.522	5 2756.3613 5 -2756.3613	139.4363 -139.4363	1718.2511 -1718.2511	1757.4067 -1757.4067	44.4462 -44.4462	28.1713 -28.1713
4	1 1	MAX MIN	53.6053 -53.6053	2856.477 -2856.477	1 2868.9187 1 -2868.9187	130.3550 -130.3550	1580.9030 -1580.9030	1656.4104 -1656.4104	46.5479 -46.5479	26.3196 -26.3196
5	1	MAX MIN	98.5853 -98.5853	2717.429	7 2593.0327 7 -2593.0327	133.7252 -133.7252	1872.2483 -1872.2483	1951.5322 -1951.5322	43.1745 -43.1745	31.0877 -31.0877
6	1	MAX MIN	98.5853 -98.5853	2764.098 -2764.098	9 2636.9238 9 -2636.9238	115.2685 -115.2685	1798.1177 -1798.1177	1876.6699 -1876.6699	43.9107 -43.9107	29.8764 -29.8764
7	1 1	MAX MIN	135.7873 -135.7873	1865.825 -1865.825	4 1818.9912 4 -1818.9912	159.4647 -159.4647	1571.9280 -1571.9280	1663.2832 -1663.2832	28.7119 -28.7119	25.1343 -25.1343
8	1	MAX	53.6053 -53.6053	1428.106 -1428.106	9 1399.4673 9 -1399.4673	111.6129 -111.6129	3333.6763 -3333.6763	3336.3750 -3336.3750	21.9929 -21.9929	54.2281 -54.2281
9	1 1	MAX MIN	135.7873 -135.7873	3153.410 -3153.410	4 3106.6904 4 -3106.6904	13.5551 -13.5551	4947.9155 -4947.9155	4903.5659 -4903.5659	50.6375 -50.6375	79.5576 -79.5576
10	1	MAX MIN	160.3068 -160.3068	3382.260 -3382.260	7 3319.1 807 7 -3319.1 807	7 10.4381 7 -10.4381	3962.5198 -3962.5198	4085.8921 -4085.8921	54.2561 -54.2561	64.4267 -64.4267
11	1	MAX MIN	135.7873 -135.7873	3250.113 -3250.113	3 3229.763 3 -3229.763	7 10.0928 7 -10.0928	3645.9380 -3645.9380	3748.1782 -3748.1782	52.6820 -52.6820	59.8748 -59.8748
12	1	MAX MIN	135.7873 -135.7873	2961.280 -2961.280	8 2913.2349 8 -2913.2349	9 11.9989 -11.9989	3755.6882 -3755.6882	3839.3828 -3839.3828	47.4210 -47.4210	61.7486 -61.7486
13	1 1	MAX MIN	135.7873 -135.7873	2865.616 -2865.616	0 2802.6138 0 -2802.6138	3 14.5793 5 -14.5793	4165.9077 -4165.9077	4186.3643 -4186.3643	45.6259 -45.6259	67.9047 -67.9047
14	1	MAX MIN	53.6053 -53.6053	1427.787 -1427.787	5 1408.8290 5 -1408.8290	6 90.4364 6 -90.4364	2415.4453 -2415.4453	2438.5432 -2438.5432	22.1747 -22.1747	39.4633 -39.4633
15	1 1	MAX MIN	53.6053 -53.6053	1459.553 -1459.553	2 1484.127 2 -1484.127	0 85.8123 -85.8123	3339.2908 -3339.2908	3342.0684 -3342.0684	23.5345 -23.5345	54.3200 -54.3200
16	1	MAX Min	135.7873 -135.7873	3316.144 -3316.144	3 3277.039 3 -3277.039	6 11.1997 6 -11.1997	4948.6567 -4948.6567	4894.8877 -4894.8877	53.6032 -53.6032	79.5568 -79.5568
17	1 1	MAX MIN	135.7873 -135.7873	3460.088 -3460.088	3415.999 1 -3415.999	0 17.6221 0 -17.6221	4236.0825 -4236.0825	4334.9102 -4334.9102	55.9032 -55.9032	68.2444 -68.2444
18	1	MAX MIN	135.7873 -135.7873	3450.435 -3450.435	8 3406.915 8 -3406.915	5 6.7389 5 -6.7389	3621.8115 -3621.8115	3718.6831 -3718.6831	55.7509 -55.7509	59.4156 -59.4156
19	1	MAX MIN	135.7873 -135.7873	3433.933 -3433.933	3392.913 33-3392.913	6 7.7168 6 -7.7168	3532.9412 -3532.9412	3613.3042 -3613.3042	55.5029 -55.5029	58.0995 -58.0995
20	1	MAX	135.7873	3355.100	3312.017	6 9.5497	3955.5017	3973.7500	54.2043	64.4655

					OUTPUT FOR C	ASE STUDY #2				
21	1	MIN MAX	-135.7873 53.6053 -53.6053	-3355.1008 1464.6024 -1464.6024	-3312.0176 1520.3826 -1520.3826	-9.5497 105.1590	-3955.5017 2405.2351	-3973.7500 2428.8838	-54.2043 24.1414	-64.4655 39.3018
22	1	MAX	-53.6053 135.7873 -135.7873	-1464.6024 1869.3359 -1869.3359		-105.1590	2405.2351 -2405.2351 2535.8325	-2428.8838	24.1414 -24.1414 31.8696	39.3018 -39.3018 41.5414
23	1	MAX	-135.7873 53.6053 -53.6053		2057.4580 -2057.4580 3396.5415	196.7046 -196.7046 138.6699	2535.8325 -2535.8325 1942.9109	2613.8682 -2613.8682 1972 9359	31.8696 -31.8696 54.7923	-41.5414
24	1	MIN MAX	-53.6053 53.6053	3342.9102 -3342.9102 3313.0681	3396.5415 -3396.5415 3364.8091	138.6699 -138.6699 132.7991	1942.9109 -1942.9109 1739.8539	1972.9359 -1972.9359 1789.2501	54.7923 -54.7923 54.2917	31.8362 -31.8362
25	1	MIN MAX	-53.6053	-3313.0681	3364.8091 -3364.8091 3367 1536	132.7991 -132.7991 124.8547	-1739.8539	-1789.2501	54.2917 -54.2917	28.5636 -28.5636
26	1	MIN MAX	53.6053 -53.6053 53.6053	3316.1475 -3316.1475 3308.5789	3367.1536 -3367.1536 3360.2046	124.8547 -124.8547 115.9136	1601.3656 -1601.3656	1681.6464 -1681.6464	54.3358 -54.3358	26.6912 -26.6912
27	1	MIN	-53.6053	-3308.5789	3360.2046 -3360.2046 3562.3208	115.9136 -115.9136	1598.3613 -1598.3613	1667.1257 -1667.1257	54.2177	26.5487 -26.5487
28	1	MAX MIN	53.6053 -53.6053	3513.6558 -3513.6558	3562.3208 -3562.3208	103.9625 -103.9625	1529.5621 -1529.5621	1596.8514 -1596.8514	57.5282 -57.5282	25.4180 -25.4180
	1	MAX MIN	135.7873 -135.7873	2096.0840 -2096.0840	2283.0762 -2283.0762	178.1348 -178.1348	1603.7551 -1603.7551	1701.6055 -1701.6055	35.6029 -35.6029	25.7385 -25.7385
BEAM F BAY	LOAD		TORS MOMENT	I MOMENT	J MOMENT					
1	1	MAX MIN	219.9478 -219.9478	3496.1895 -3496.1895	J MOMENT 3045.6892 -3045.6892					
2	1	MAX MIN	50.0025 -50.0025	3033.6658 -3033.6658	3050.8096 -3050.8096					
3	1	MAX MIN	46.0920 -46.0920	2979.4575 -2979.4575	2929.8989 -2929.8989					
4	1	MAX MIN	74.8228 -74.8228	3175.5911 -3175.5911	3332.6030 -3332.6030					
5	1 1	MAX MIN	27.6624 -27.6624	2476.8728 -2476.8728	2474.5955 -2474.5955					
6	1	MAX MIN	68.5735 -68.5735	3328.5718 -3328.5718	3618.5671 -3618.5671					
7	1 1	MAX MIN	63.2299 -63.2299	4999.7749 -4999.7749	3909.5632 -3909.5632					
8	1 1	MAX Min	124.6875 -124.6875	4264.6143 -4264.6143	4348.4375 -4348.4375					
9	1 1	MAX Min	121.5614 -121.5614	3833.4541 -3833.4541	3901.4041 -3901.4041					
10	1 1	MAX Min	118.9506 -118.9506	3642.6475 -3642.6475	3779.3230 -3779.3230					
11	1 1	MAX MIN	87.3449 -87.3449	4247.5435 -4247.5435	4076.1475 -4076.1475					
12	1 1	MAX MIN	97.3986 -97.3986	4170.4839 -4170.4839	3919.7507 -3919.7507					
13	1 1	MAX MIN	60.2183 -60.2183	3548.2563 -3548.2563	2773.7085 -2773.7085					
14	1	MAX MIN	119.7386 -119.7386	3059.0723 -3059.0723	2952.3362 -2952.3362					
15	1 1	MAX MIN	44.2912 -44.2912	3237.4292 -3237.4292	3253.1440 -3253.1440					
16	1 1	MAX MIN	36.5845 -36.5845	3254.7776 -3254.7776	3224.2979 -3224.2979					
17	1	MAX MIN	44.6517 -44.6517	3211.7380 -3211.7380	3249.7944 -3249.7944					
18	1	MAX MIN	42.8793 -42.8793	2629.8242	2639.1226 -2639.1226					
19	1	MAX MIN	107.5391 -107.5391	3002.8296 -3002.8296	3070.8181 -3070.8181					
20	1	MAX MIN	65.2412 -65.2412	3502.6165 -3502.6165	3507.0520 -3507.0520					
21	1	MAX	68.8258 -68.8258	5035.6753 -5035.6753	5036.1680 -5036.1680					
22	1	MAX	59.8411 -59.8411	4637.6426 -4637.6426	4661.8320 -4661.8320					
23	1	MAX	28.6050 -28.6050	3627.8184 -3627.8184	3629.1301 -3629.1301					
24	1	MAX	28.8896	3463.4673	-3629.1301 3486.6233					
					E-31	1				

					OUTPUT FOR CASE STUDY #2
	1	MIN	-28.8896	-3463.4673	-3486.6233
25	1	MAX	60.8497	4098.6704	4127.2085
	1	MIN	-60.8497	-4098.6704	-4127.2085
26	1	MAX MIN	56.1406 -56.1406	2489.6665 -2489.6665	2493.8613 -2493.8613
27	1	MAX MIN	119.2743 -119.2743	3126.7734 -3126.7734	3021.1062 -3021.1062
28	1	MAX	37.9130	3332.1628	3315.7271
	1	MIN	-37.9130	-3332.1628	-3315.7271
29	1	MAX	38.2677	3346.9072	3348.0376
	1	MIN	-38.2677	-3346.9072	-3348.0376
30	1	MAX MIN	40.4008 -40.4008	3311.8523 -3311.8523	3313.9668 -3313.9668
31	1	MAX	52.9128	3320.4934	3328.9211
	1	MIN	-52.9128	-3320.4934	-3328.9211
32	1	MAX	113.0422	3104.3411	3206.6716
	1	MIN	-113.0422	-3104.3411	-3206.6716
33	1	MAX MIN	92.2180 -92.2180	3881.6941 -3881.6941	4969.4219 -4969.4219
34	1	MAX MIN	87.3385 -87.3385	4341.0972 -4341.0972	4258.3237 -4258.3237
35	1	MAX MIN	79.0352 -79.0352	3983.8193 -3983.8193	3886.5205 -3886.5205
36	1	MAX	78.2324	3751.4966	3606.7642
	1	MIN	-78.2324	-3751.4966	-3606.7642
37	1	MAX	77.3893	3659.3708	3493.2712
	1	MIN	-77.3893	-3659.3708	-3493.2712
38	1	MAX	93.1536	3528.1594	3457.5417
	1	MIN	-93.1536	-3528.1594	-3457.5417
39	1	MAX MIN	85.5783 -85.5783	2753.6790 -2753.6790	3519.8269 -3519.8269
40	1	MAX MIN	220.1129 -220.1129	4074.3262 -4074.3262	3546.8479 -3546.8479
41	1	MAX	51.7754	3517.2505	3523.4263
	1	MIN	-51.7754	-3517.2505	-3523.4263
42	1	MAX	45.8690	3527.3511	3526.4834
	1	MIN	-45.8690	-3527.3511	-3526.4834
43	1	MAX MIN	47.1756 -47.1756	3529.2983 -3529.2983	3531.1375 -3531.1375
44	1	MAX	45.8026	3520.4194	3474.0181
	1	MIN	-45.8026	-3520.4194	-3474.0181
45	1	MAX	141.9179	3907.5469	4493.2031
	1	MIN	-141.9179	-3907.5469	-4493.2031

MEMBER	FORCI	s	FRAME ID	FRAME 1 L	DCAT	FRAME TYPE 1				
COLUM	FORCI	S	LEVEL NO 5	LEVEL	ID					
0 LINE	E LOAD		TORSIONAL MOMENT	MAJOR TOP MOMENT	AXIS BOT MOMENT	AXIAL FORCE	MINOR TOP_MOMENT	BOT MOMENT	MAJOR	MINOR
1	1 1	MAX MIN	138.6134 -138.6134	1805.7783 -1805.7783	2260.4854 -2260.4854	148.3398 -148.3398	2671.8408 -2671.8408	3117.1943 -3117.1943	32.0693 -32.0693	47.0654 -47.0654
2	1 1	MAX Min	54.7210 -54.7210	2969.4658 -2969.4658	3278.2783 -3278.2783	106.7984 -106.7984	1981.5580 -1981.5580	2175.4514 -2175.4514	50.7947 -50.7947	33.6504 -33.6504
3	1	MAX MIN	54.7210 -54.7210	2987.4255 -2987.4255	3251.3472 -3251.3472	107.1642 -107.1642	1834.3805 -1834.3805	2040.0127 -2040.0127	50.7217 -50.7217	31.4992 -31.4992
4	1	MAX MIN	54.7210 -54.7210	2666.1077 -2666.1077	3187.1680 -3187.1680	94.9360 -94.9360	1715.9137 -1715.9137	1893.5526 -1893.5526	47.5876 -47.5876	29.3453 -29.3453
5	1 1	MAX MIN	100.6372 -100.6372	2184.2231 -2184.2231	3076.4209 -3076.4209	93.3191 -93.3191	1926.3389 -1926.3389	2318.0474 -2318.0474	42.6786 -42.6786	33.8834 -33.8834
6	1	MAX MIN	100.6372 -100.6372	2188.6714 -2188.6714	3080.6150 -3080.6150	80.0938 -80.0938	1917.4390 -1917.4390	2133.2949 -2133.2949	42.6380 -42.6380	32.9328 -32.9328
7	1 1	MAX MIN	138.6134 -138.6134	1413.9712 -1413.9712	2185.0830 -2185.0830	118.2079 -118.2079	1942.4133 -1942.4133	1909.7661 -1909.7661	27.9101 -27.9101	31.3186 -31.3186
8	1	MAX MIN	54.7210 -54.7210	1477.8147 -1477.8147	1696.7358 -1696.7358	83.0975 -83.0975	3669.6863 -3669.6863	3819.1331 -3819.1331	25.4261 -25.4261	60.8847 -60.8847

						ASE STUDY #2				
9	1	MAX MIN	100.6372 -100.6372	2688.3606 -2688.3606	3027.2358 -3027.2358	8.3798 -8.3798	4152.0757 -4152.0757	4567.6870 -4567.6870	46.1784 -46.1784	70.4435 -70.4435
10	1 1		100.6372 -100.6372	2934.0222 -2934.0222	3131.4346 -3131.4346	7.2769 -7.2769	3948.3557 -3948.3557	4357.4829 -4357.4829	49.3126 -49.3126	67.5272 -67.5272
11	1 1		100.6372 -100.6372	2791.2585 -2791.2585	3142.7485 -3142.7485	9.9975 -9.9975	3183.7788 -3183.7788	3586.8267 -3586.8267	48.1288 -48.1288	55.0456 -55.0456
12	1 1	MAX MIN	100.6372 -100.6372	2592.0867 -2592.0867	2912.7510 -2912.7510	8.4772 -8.4772	3357.2195 -3357.2195	3523.4917 -3523.4917	44.5562 -44.5562	55.4585 -55.4585
13	1 1	MAX MIN	100.6372 -100.6372	2485.6316 -2485.6316	2810.2168 -2810.2168	11.7167 -11.7167	3414.3708 -3414.3708	3560.6001 -3560.6001	42.7155 -42.7155	56.7071 -56.7071
14	1 1	MAX MIN	54.7210 -54.7210	1475.8822 -1475.8822	1712.5652 -1712.5652	64.5379 -64.5379	2489.4143 -2489.4143	2547.5088 -2547.5088	25.6101 -25.6101	40.9506 -40.9506
15	1	MAX MIN	54.7210 -54.7210	1537.1143 -1537.1143	1659.8911 -1659.8911	61.2324	3658.3076 -3658.3076	3807.7056 -3807.7056	24.9873 -24.9873	60.6993 -60.6993
16	1 1	MAX Min	100.6372 -100.6372	2831.5361 -2831.5361	2955.3823 -2955.3823	6.8309 -6.8309	4143.4644 -4143.4644	4563.2568 -4563.2568	45.4045 -45.4045	70.3263 -70.3263
17	1 1	MAX MIN	100.6372 -100.6372	2958.6729 -2958.6729	3044.9814 -3044.9814	11.1954 -11.1954	3712.0806 -3712.0806	4171.3613 -4171.3613	47.0477 -47.0477	64.0930 -64.0930
18	1 1		100.6372 -100.6372	2948.5574 -2948.5574	3045.1147 -3045.1147	7.5608 -7.5608	3167.0669 -3167.0669	3573.6826 -3573.6826	46.9715 -46.9715	54.8028 -54.8028
19	1	MAX Min	100.6372 -100.6372	2938.4163 -2938.4163	3055.9487 -3055.9487	8.8492 -8.8492	3190.8586 -3190.8586	3359.6392 -3359.6392	47.1733 -47.1733	52.7435 -52.7435
20	1 1	MAX Min	100.6372 -100.6372	2863.4688 -2863.4688	2933.2773 -2933.2773	5.5210 -5.5210	3257.9724 -3257.9724	3405.5166 -3405.5166	45.3684 -45.3684	54.1747 -54.1747
21	1 1	MAX MIN	54.7210 -54.7210	1572.6184 -1572.6184	1637.3203 -1637.3203	78.3139 -78.3139	2479.2471 -2479.2471	2537.0242 -2537.0242	24.9080 -24.9080	40.7827 -40.7827
22	1 1	MAX Min	138.6134 -138.6134	2224.4556 -2224.4556	2059.0024 -2059.0024	155.3374 -155.3374	2657.9199 -2657.9199	3102.5068 -3102.5068	34.4930 -34.4930	46.8327 -46.8327
23	1 1	MAX MIN	54.7210 -54.7210	3333.7148 -3333.7148	3347.3367 -3347.3367	104.5696 -104.5696	1980.4563 -1980.4563	2175.0886 -2175.0886	54.3174 -54.3174	33.6480 -33.6480
24	1 1	MAX MIN	54.7210 -54.7210	3346.2520 -3346.2520	3340.8328 -3340.8328	98.5339 -98.5339	1872.6831 -1872.6831	2066.4075 -2066.4075	54.3665 -54.3665	32.0251 -32.0251
25	1 1	MAX MIN	54.7210 -54.7210	3346.0544 -3346.0544	3342.5725 -3342.5725	88.9832 -88.9832	1729.4380 -1729.4380	1907.7894 -1907.7894	54.3790 -54.3790	29.5710 -29.5710
26	1 1	MAX Min	54.7210 -54.7210	3353.2441 -3353.2441	3342.4570 -3342.4570	82.2348 -82.2348	1609.1064 -1609.1064	1757.4105 -1757.4105	54.4366 -54.4366	27.1978 -27.1978
27	1 1	MAX Min	54.7210 -54.7210	3420.0261 -3420.0261	3476.1860 -3476.1860	75.8605 -75.8605	1562.3010 -1562.3010	1644.5121 -1644.5121	56.0667 -56.0667	26.0717 -26.0717
28	1 1	MAX MIN	138.6134 -138.6134	2312.1870 -2312.1870	2179.9229 -2179.9229	127.5383 -127.5383	1963.2017 -1963.2017	1936.6123 -1936.6123	36.5212 -36.5212	31.7059 -31.7059
BEAM F										
ВАҮ 1	LOAD 1 1	MAX Min	TORS MOMENT 166.5486 -166.5486	I MOMENT 3649.8232 -3649.8232	J MOMENT 3244.7097 -3244.7097					
2	1 1	MAX Min	45.4031 -45.4031	3261.2966 -3261.2966	3247.7864 -3247.7864					
3	1 1	MAX MIN	47.7214 -47.7214	3320.8445 -3320.8445	3441.6245 -3441.6245					
4	1 1	MAX Min	23.7649 -23.7649	2170.8479 -2170.8479	2300.4990 -2300.4990					
5	1	MAX MIN	21.5370 -21.5370	2445.3176 -2445.3176	2447.2529 -2447.2529					
6	1	MAX Min	23.1800 -23.1800	2262.7856 -2262.7856	2340.9531 -2340.9531					
7	1	MAX MIN	53.8517 -53.8517	4852.6313 -4852.6313	3895.6548 -3895.6548					
8	1	MAX MIN	65.9947 -65.9947	4069.4414 -4069.4414	4118.3354 -4118.3354					
9	1	MAX MIN	55.7558 -55.7558	3717.4795 -3717.4795	3734.6230 -3734.6230					
10	1	MAX MIN	48.4639 -48.4639	3493.4258 -3493.4258	3596.3047 -3596.3047					
11	1 1	MAX MIN	57.0619 -57.0619	3846.5464 -3846.5464	3583.3606 -3583.3606					
12	1 1	MAX MIN	54.3973 -54.3973	3602.6484 -3602.6484	3363.5544 -3363.5544					
					r. 7	7				

					OUTPUT FOR CAS
13	1	MAX	69.0806	3119.2715	2507.7737
	1	MIN	-69.0806	-3119.2715	-2507.7737
14	1	MAX	102.6446	3125.0261	3028.0205
	1	MIN	-102.6446	-3125.0261	-3028.0205
15	1	MAX MIN	41.5641 -41.5641	3300.0542 -3300.0542	3235.8540 -3235.8540
16	1	MAX	29.9255	3232.2275	3278.4216
	1	MIN	-29.9255	-3232.2275	-3278.4216
17	1	MAX	52.2100	3335.1885	3360.1987
	1	MIN	-52.2100	-3335.1885	-3360.1987
18	1	MAX	31.5987	2769.3162	2784.7109
	1	MIN	-31.5987	-2769.3162	-2784.7109
19	1	MAX	92.6872	3090.4373	3161.2192
	1	MIN	-92.6872	-3090.4373	-3161.2192
20	1	MAX	58.1948	3648.8022	3652.6992
	1	MIN	-58.1948	-3648.8022	-3652.6992
21	1	MAX	50.3753	4763.7744	4765.7378
	1	MIN	-50.3753	-4763.7744	-4765.7378
22	1	MAX	51.1692	4388.4678	4432.8359
	1	MIN	-51.1692	-4388.4678	-4432.8359
23	1	MAX	39.5152	3411.8794	3414.2993
	1	MIN	-39.5152	-3411.8794	-3414.2993
24	1	MAX	45.8597	3819.8513	3846.7356
	1	MIN	-45.8597	-3819.8513	-3846.7356
25	1	MAX MIN	45.0308 -45.0308	3520.7014 -3520.7014	3544.6724 -3544.6724
26	1	MAX	55.7331	2399.8193	2403.1897
	1	MIN	-55.7331	-2399.8193	-2403.1897
27	1	MAX Min	102.7874 -102.7874	3071.4163 -3071.4163	2971.1567 -2971.1567
28	1	MAX	36.1796	3247.0356	3228.5229
	1	MIN	-36.1796	-3247.0356	-3228.5229
29	1	MAX Min	35.4761 -35.4761	3191.7651 -3191.7651	3194.4788 -3194.4788
30	1	MAX	48.4022	3229.8848	3227.5371
	1	MIN	-48.4022	-3229.8848	-3227.5371
31	1	MAX MIN	37.9324 -37.9324	3235.9170 -3235.9170	3257.0020 -3257.0020
32	1	MAX	97.8395	2912.7224	3015.0320
	1	MIN	-97.8395	-2912.7224	-3015.0320
33	1	MAX MIN	76.5347 -76.5347	3867.3774 -3867.3774	4821.9253 -4821.9253
34	1	MAX	57.7264	4119.4019	4067.4846
	1	MIN	-57.7264	-4119.4019	-4067.4846
35	1	MAX MIN	50.9320 -50.9320	3850.1448 -3850.1448	3770.5745 -3770.5745
36	1	MAX	51.3907	3584.0693	3473.6836
	1	MIN	-51.3907	-3584.0693	-3473.6836
37	1	MAX	51.4086	3218.0417	3176.3792
	1	MIN	-51.4086	-3218.0417	-3176.3792
38	1	MAX	55.3796	3036.4026	3001.8926
	1	MIN	-55.3796	-3036.4026	-3001.8926
39	1	MAX	77.4934	2487.2839	3093.8193
	1	MIN	-77.4934	-2487.2839	-3093.8193
40	1	MAX	166.9890	3419.1577	3044.6604
	1	Min	-166.9890	-3419.1577	-3044.6604
41	1	MAX	49.2652	3096.6497	3089.9417
	1	MIN	-49.2652	-3096.6497	-3089.9417
42	1	MAX	45.7714	3087.4910	3087.9590
	1	MIN	-45.7714	-3087.4910	-3087.9590
43	1	MAX	45.5635	3087.3323	3084.2859
	1	Min	-45.5635	-3087.3323	-3084.2859
44	1	MAX	46.3505	3113.2642	3114.8271
	1	MIN	-46.3505	-3113.2642	-3114.8271
45	1	MAX MIN	72.3318 -72.3318	3133.0249 -3133.0249	3529.6636 -3529.6636

MEMBER	FORCI	ES	. FRAME ID	FRAME 1 L C	CAT	FRAME TYPE 1				
COLUMN	FORCI	ES	LEVEL NO 6	LEVEL	ID					
O LINE 1	LOAD	MAX MIN	TORSIONAL MOMENT 136.1103 -136.1103	MAJOR TOP MOMENT 1601.0854 -1601.0854	AXIS BOT MOMENT 1690.8662 -1690.8662	AXIAL FORCE 102.1211 -102.1211	MINOR TOP MOMENT 2427.7197 -2427.7197	AXIS BOT MOMENT 2564.2852 -2564.2852	MAJOR SHEAR 26.7638 -26.7638	MINOR SHEAR 35.9845 -35.9845
2	1	MAX MIN	53.7329 -53.7329	3054.6401 -3054.6401	3043.1233 -3043.1233	71.5000 -71.5000	1734.4032 -1734.4032	1844.1321 -1844.1321	49.5753 -49.5753	28.5603 -28.5603
3	1 1	MAX MIN	53.7329 -53.7329	3083.7378 -3083.7378	3090.6213 -3090.6213	75.4920 -75.4920	1645.9304 -1645.9304	1652.4099 -1652.4099	50.1980 -50.1980	26.5349 -26.5349
4	1	MAX MIN	53.7329 -53.7329	2527.3533 -2527.3533	2509.8093 -2509.8093	59.8046 -59.8046	1479.6669 -1479.6669	1493.0300 -1493.0300	40.9525	24.1683 -24.1683
5	1	MAX MIN	98.8198 -98.8198	2599.8604 -2599.8604	2177.2266 -2177.2266	57.4941 -57.4941	2010.3728 -2010.3728	1695.3931 -1695.3931	38.8381 -38.8381	30.1282 -30.1282
6	1 1	MAX MIN	98.8198 -98.8198	2582.8018 -2582.8018	2156.8452 -2156.8452	47.2548 -47.2548	1818.0212 -1818.0212	1566.8560 -1566.8560	38.5337 -38.5337	27.5193 -27.5193
7	1	MAX MIN	136.1103 -136.1103	952.9568 -952.9568	912.7432 -912.7432	84.1323 -84.1323	1258.3242 -1258.3242	1128.0190 -1128.0190	14.4883 -14.4883	17.6363 -17.6363
8	1 1	MAX MIN	53.7329 -53.7329	1368.5593 -1368.5593	1431.2354 -1431.2354	51.9779 -51.9779	3558.2610 -3558.2610	3626.7307 -3626.7307	22.7626 -22.7626	58.4146 -58.4146
9	1	MAX MIN	98.8198 -98.8198	3665.4875 -3665.4875	3220.6079 -3220.6079	8.5447 -8.5447	4903.3267 -4903.3267	4589.3667 -4589.3667	55.9845 -55.9845	77.1763 -77.1763
10	1	MAX MIN	98.8198 -98.8198	3016.3289 -3016.3289	3104.7778 -3104.7778	8.7274 -8.7274	3651.9333 -3651.9333	3671.3809 -3671.3809	49.7651 -49.7651	58.7188 -58.7188
11	1 1	MAX MIN	98.8198 -98.8198	3750.3071 -3750.3071	3328.8149 -3328.8149	9.5509 -9.5509	3808.7932 -3808.7932	3305.1606 -3305.1606	57.5539 -57.5539	57.8370 -57.8370
12	1 1	MAX MIN	98.8198 -98.8198	3438.5159 -3438.5159	3076.2603 -3076.2603	6.0021 -6.0021	3972.8987 -3972.8987	3549.4946 -3549.4946	52.9657 -52.9657	61.1577 -61.1577
13	1	MAX MIN	98.8198 -98.8198	3361.8464 -3361.8464	2966.0283 -2966.0283	9.1430 -9.1430	3631.3486 -3631.3486	3248.3032 -3248.3032	51.4461 -51.4461	55.9321 -55.9321
14	1 1	MAX MIN	53.7329 -53.7329	1378.2676 -1378.2676	1434.8198 -1434.8198	38.0595 -38.0595	2106.7639 -2106.7639	2057.0652 -2057.0652	22.8707 -22.8707	33.6731 -33.6731
15	1	MAX MIN	53.7329 -53.7329	1340.5479 -1340.5479	1400.7874 -1400.7874	36.9241 -36.9241	3536.8538 -3536.8538	3605.4761 -3605.4761	22.2873 -22.2873	58.0678 -58.0678
16	1 1	MAX MIN	98.8198 -98.8198	3536.3181 -3536.3181	3143.0825 -3143.0825	7.0522 -7.0522	4914.5313 -4914.5313	4585.3252 -4585.3252	54.3041 -54.3041	77.2345 -77.2345
17	1 1	MAX MIN	98.8198 -98.8198	3574.1804 -3574.1804	3228.3188 -3228.3188	6.0823 -6.0823	4565.0488 -4565.0488	4064.7383 -4064.7383	55.3049 -55.3049	69.2594 -69.2594
18	1 1	MAX MIN	98.8198 -98.8198	3592.3826 -3592.3826	3228.3447 -3228.3447	8.4617 -8.4617	3814.9512 -3814.9512	3298.6230 -3298.6230	55.4531 -55.4531	57.8340 -57.8340
19	1	MAX MIN	98.8198 -98.8198	3605.3552 -3605.3552	3243.4644 -3243.4644	6.1538 -6.1538	3833.3506 -3833.3506	3392.2148 -3392.2148	55.6814 -55.6814	58.7445 -58.7445
20	1 1	MAX MIN	98.8198 -98.8198	3497.3362 -3497.3362	3112.1714 -3112.1714	6.1873 -6.1873	3509.0515 -3509.0515	3107.0327 -3107.0327	53.7358 -53.7358	53.7893 -53.7893
21	1 1	MAX MIN	53.7329 -53.7329	1313.0981 -1313.0981	1373.1206 -1373.1206	49.5349 -49.5349	2096.2764 -2096.2764	2051.7451 -2051.7451	21.8392 -21.8392	33.5051 -33.5051
22	1 1	MAX MIN	136.1103 -136.1103	1804.9907 -1804.9907	1542.0332 -1542.0332	107.6692 -107.6692	2412.7031 -2412.7031	2538.0479 -2538.0479	24.2723 -24.2723	35.5441 -35.5441
23	1 1	MAX MIN	53.7329 -53.7329	2811.1306 -2811.1306	2805.3901 -2805.3901	68.0496 -68.0496	1733.6973 -1733.6973	1840.6621 -1840.6621	45.6628 -45.6628	28.4851 -28.4851
24	1 1	MAX MIN	53.7329 -53.7329	2787.9189 -2787.9189	2786.6995 -2786.6995	65.4426 -65.4426	1621.7537 -1621.7537	1666.5396 -1666.5396	45.3221 -45.3221	26.4264 -26.4264
25	1	MAX MIN	53.7329 -53.7329	2781.7813 -2781.7813	2780.0264 -2780.0264	57.9753 -57.9753	1486.3585 -1486.3585	1502.4565 -1502.4565	45.2180 -45.2180	24.2994 -24.2994
26	1	MAX MIN	53.7329 -53.7329	2790.1533 -2790.1533	2790.7959 -2790.7959	51.6837 -51.6837	1339.6554 -1339.6554	1367.3357 -1367.3357	45.3736 -45.3736	22.0081 -22.0081
27	1	MAX MIN	53.7329 -53.7329	2765.7695 -2765.7695	2754.5635 -2754.5635	48.9139 -48.9139	1206.0896 -1206.0896	1245.5237 -1245.5237	44.8808 -44.8808	19.8679 -19.8679
28	1	MAX MIN	136.1103 -136.1103	1864.0796 -1864.0796	1474.9673 -1474.9673	84.3440 -84.3440	1267.5388 -1267.5388	1142.3359 -1142.3359	23.3752 -23.3752	17.8055 -17.8055
BEAM FO	RCES									

1 MIN -167.4233 -3668.7158 -3224.8	8442 8442	
------------------------------------	--------------	--

2	1	MAX MIN	53.0356 -53.0356	3243.7249 -3243.7249	3242.0200 -3242.0200
3	1	MAX MIN	37.5367 -37.5367	3307.8459 -3307.8459	3412.9529 -3412.9529
4	1	MAX	16.4488	2046.2998	2072.3601
	1	Min	-16.4488	-2046.2998	-2072.3601
5	1	MAX MIN	18.4794 -18.4794	2093.5417 -2093.5417	2094.6143 -2094.6143
6	1	MAX	20.6383	2021.9642	2218.8364
	1	MIN	-20.6383	-2021.9642	-2218.8364
7	1	MAX MIN	55.1051 -55.1051	5162.0044 -5162.0044	4088.0618 -4088.0618
8	1	MAX	39.6391	4021.0686	3726.1577
	1	MIN	-39.6391	-4021.0686	-3726.1577
9	1	MAX Min	50.3387 -50.3387	3743.3569 -3743.3569	3755.0471 -3755.0471
10	1	MAX	57.1516	3197.4094	3037.7583
	1	MIN	-57.1516	-3197.4094	-3037.7583
11	1	MAX MIN	53.3982 -53.3982	3253.4309 -3253.4309	2937.0701 -2937.0701
12	1	MAX	52.3736	3046.1460	2748.4697
	1	Min	-52.3736	-3046.1460	-2748.4697
13	1	MAX MIN	73.3911 -73.3911	2995.5129 -2995.5129	2370.7012 -2370.7012
14	1	MAX	50.5004	2952.5615	2626.6860
	1	MIN	-50.5004	-2952.5615	-2626.6860
15	1	MAX	34.2742	2934.5815	3101.3643
	1	MIN	-34.2742	-2934.5815	-3101.3643
16	1	MAX	73.1989	3106.3857	2931.7249
	1	MIN	-73.1989	-3106.3857	-2931.7249
17	1	MAX	44 4551	2776.3274	2826.9937
	1	MIN	-44 4551	-2776.3274	-2826.9937
18	1	MAX	24.6782	2362.6890	2366.7822
	1	MIN	-24.6782	-2362.6890	-2366.7822
19	1	MAX	50.1613	2731.1460	3006.0129
	1	MIN	-50.1613	-2731.1460	-3006.0129
20	1	MAX	57.5449	3828.2866	3835.7200
	1	MIN	-57.5449	-3828.2866	-3835.7200
21	1	MAX MIN	44.4723 -44.4723	4049.9121 -4049.9121	4045.6294 -4045.6294
22	1	MAX	61.8113	4113.0620	3834.4541
	1	MIN	-61.8113	-4113.0620	-3834.4541
23	1	MAX MIN	30.8520 -30.8520	2794.0532 -2794.0532	2791.6772 -2791.6772
24	1	MAX MIN	37.1659 -37.1659	3139.3110 -3139.3110	3157.4993 -3157.4993
25	1	MAX MIN	36.1576 -36.1576	2867.2007 -2867.2007	2882.5588 -2882.5588
26	1	MAX MIN	49.5911 -49.5911	2277.7922 -2277.7922	2280.0039 -2280.0039
27	1	MAX MIN	49.2664 -49.2664	2925.9241 -2925.9241	2620.5686 -2620.5686
28	1	MAX	34.9963	2724.3162	2726.3220
	1	MIN	-34.9963	-2724.3162	-2726.3220
29	1	MAX MIN	20.8379 -20.8379	2696.6262 -2696.6262	2691.4683 -2691.4683
30	1	MAX	40.6791	2725.0894	2723.6702
	1	MIN	-40.6791	-2725.0894	-2723.6702
31	1	MAX	29.8667	2721.9751	2732.9807
	1	MIN	-29.8667	-2721.9751	-2732.9807
32	1	MAX	53.8537	2561.5835	2865.3689
	1	MIN	-53.8537	-2561.5835	-2865.3689
33	1	MAX	64.5335	4035.2686	5105.1167
	1	MIN	-64.5335	-4035.2686	-5105.1167
34	1	MAX MIN	35.8223 -35.8223	3705.8040 -3705.8040	4007.9280 -4007.9280

35	1	MAX	37.3883	3265.1714	3559.9463
	1	MIN	-37.3883	-3265.1714	-3559.9463
36	1	MAX	36.9058	3019.7029	3181.2534
	1	MIN	-36.9058	-3019.7029	-3181.2534
37	1	MAX	34.9183	2753.1714	2960.0344
	1	MIN	-34.9183	-2753.1714	-2960.0344
38	1	MAX	33.6543	2595.5034	2803.2231
	1	MIN	-33.6543	-2595.5034	-2803.2231
39	1	MAX	63.9696	2360.2395	2981.2258
	1	MIN	-63.9696	-2360.2395	-2981.2258
40	1	MAX MIN	167.5380 -167.5380	3461.0923 -3461.0923	3048.4741 -3048.4741
41	1	MAX MIN	46.0320 -46.0320	3003.7786 -3003.7786	3009.3901 -3009.3901
42	1	MAX	45.4346	3003.2979	3004.3984
	1	MIN	-45.4346	-3003.2979	-3004.3984
43	1	MAX	43.6499	3002.2302	3001.0981
	1	MIN	-43.6499	-3002.2302	-3001.0981
44	1	MAX	44.0021	3018.1321	3020.3513
	1	MIN	-44.0021	-3018.1321	-3020.3513
45	1	MAX	64.9799	2922.4973	3329.2334
	1	MIN	-64.9799	-2922.4973	-3329.2334

I	MEMBER	FORCE	s	FRAME ID	F RAME	1 L	OCAT	FRAME TYPE 1				
	COLUMN	FORCE	s	LEVEL NO	7	LEVEL	. ID					
0	LINE			TORSION MOMEN	AL T TOP M	MAJOR	AXIS BOT MOMENT	AXIAL FORCE	MINOR TOP MOMENT	BOT MOMENT	MAJOR	MINOR
	1	1 1	MAX MIN	MOMEN 129.634 -129.634		OMENT 2295 2295	BOT MOMENT 1740.1348 -1740.1348		TOP MOMENT 3695.7734 -3695.7734	2921.3154 -2921.3154	SHEAR 36.2306 -36.2306	SHEAR 53.7976 -53.7976
	2	1 1	MAX MIN	51.176 -51.176	3 3304 3 -3304	.2529	2976.2690 -2976.2690	35.4478 -35.4478	2080.0493 -2080.0493	1947.1106 -1947.1106	51.0612 -51.0612	32.7411 -32.7411
	3	1 1	MAX MIN	51.176 -51.176	3 3268 3 -3268	.6956	2961.5828 -2961.5828	40.4407 -40.4407	2101.9641 -2101.9641	1926.7761 -1926.7761	50.6527 -50.6527	32.7540 -32.7540
	4	1	MAX MIN	51.176 -51.176	3 2980 3 - 2980	.6965	2559.5681 -2559.5681	28.8608 -28.8608	1722.1018 -1722.1018	1615.0532 -1615.0532	45.0429 -45.0429	27.1314 -27.1314
	5	1	MAX MIN	29.779 -29.779	0 1739 0 -1739	.1404	1316.4875 -1316.4875	27.2944 -27.2944	1274.0967 -1274.0967	1064.3397 -1064.3397	24.8425 -24.8425	18.8121 -18.8121
	6	1 1	MAX MIN	29.779 -29.779	0 1709 0 -1709	.3755	1298.3093 -1298.3093	20.0317 -20.0317	1208.0992 -1208.0992	994.5546 -994.5546	24.4527 -24.4527	17.9077 -17.9077
	7	1	MAX MIN	129.634 -129.634	1 2209 1 -2209	.4971 .4971	1149.7529 -1149.7529	47.6493 -47.6493	2232.7007 -2232.7007	1793.6924 -1793.6924	27.3110 -27.3110	32.7349 -32.7349
	8	1 1	MAX MIN	51.176 -51.176	3 1681 3 - 1681	.0847 .0847	1305.3472 -1305.3472	22.2234 -22.2234	3868.5972 -3868.5972	3835.6570 -3835.6570	24.2799 -24.2799	62.6362 -62.6362
	9	1 1	MAX MIN	29.779 -29.779	0 1828 0 -1828	.1212	1538.6331 -1538.6331	6.9409 -6.9409	2704.4495 -2704.4495	2375.2859 -2375.2859	27.3720 -27.3720	41.2987 -41.2987
	10	1 1	MAX MIN	94.118 -94.118	0 3168 0 -3168	.3406	2789.9312 -2789.9312	9.1043 -9.1043	4148.6450 -4148.6450	3993.0801 -3993.0801	48.4412 -48.4412	66.1929 -66.1929
	11	1 1	MAX MIN	29.779 -29.779	0 1828 0 -1828	.1395 .1395	1547.5222 -1547.5222	6.5596 -6.5596	2050.7705 -2050.7705	1804.6908 -1804.6908	27.4444 -27.4444	31.3452 -31.3452
	12	1 1	MAX MIN	29.779 -29.779	0 1658 0 -1658	.2588 .2588	1398.1636 -1398.1636	4.4161 -4.4161	1958.3862 -1958.3862	1715.5333 -1715.5333	24.8490 -24.8490	29.8281 -29.8281
	13	1	MAX MIN	29.779 -29.779	0 1682 0 -1682	.0021	1405.1217 -1405.1217	4.6406 -4.6406	1895.3668 -1895.3668	1664.0703 -1664.0703	25.0986 -25.0986	28.9385 -28.9385
	14	1 1	MAX MIN	51.176 -51.176	3 1706 3 -1706	.8052 .8052	1326.7227 -1326.7227	15.5406 -15.5406	2293.5386 -2293.5386	2270.6851 -2270.6851	24.6629 -24.6629	37.1075 -37.1075
	15	1 1	MAX MIN	51.176 -51.176	3 1672 3 -1672	.5371 .5371	1309.9844 -1309.9844	20.5570 -20.5570	3850.3818 -3850.3818	3815.8984 -3815.8984	24.2482 -24.2482	62.3275 -62.3275
	16	1 1	MAX MIN	29.779 -29.779	0 1725 0 -1725	.8984 .8984	1463.8926 -1463.8926	5.7079 -5.7079	2726.9219 -2726.9219	2391.7537 -2391.7537	25.9333 -25.9333	41.6153 -41.6153
	17	1 1	MAX MIN	29.779 -29.779	0 1678 0 -1678	.8038 .8038	1436.0592 -1436.0592	2.6143 -2.6143	2452.5820 -2452.5820	2186.4829 -2186.4829	25.3241 -25.3241	37.7160 -37.7160
	18	1	MAX MIN	29.779 -29.779	0 1708 0 -1708	.6503 .6503	1458.0801 -1458.0801	6.3533 -6.3533	2072.3992 -2072.3992	1819.3157 -1819.3157	25.7458 -25.7458	31.6399 -31.6399
	19	1	MAX	29.779	0 1705	.4485	1457.9406	4.8730	1962.9341	1705.9808	25.7186	29.7380

					OUTPUT FOR CA	SE STUDY #2				
20	1	MIN MAX	-29.7790 29.7790	-1705.4485 1701.7664	-1457.9406 1443.5364	-4.8730 4.6024	-1962.9341 1901.4982	-1705.9808 1652.1116	-25.7186 25.5716	-29.7380 28.8911
21	1	MIN MAX	29.7790 -29.7790 51.1763	1701.7664 -1701.7664 1647.7100	1443.5364 -1443.5364 1284.0342	4.6024 -4.6024 21.6214	1901.4982 -1901.4982 2289.9810	1652.1116 -1652.1116 2265.8186	-25.5716	28.8911 -28.8911 37.0390
22	1 1 1	MIN MAX	51.1763 -51.1763 129.6341	1647.7100 -1647.7100 2562.0664	1284.0342 -1284.0342 1709.7153	21.6214 -21.6214 57.3619	2289.9810 -2289.9810 3674 5684	2265.8186 -2265.8186 2896.0068	23.8354 -23.8354 34.6146	37.0390 -37.0390 53.4193
23	i 1	MIN MAX	129.6341 -129.6341 51.1763	2562.0664 -2562.0664 3106.5381	1709.7153 -1709.7153 2817.1758	57.3619 -57.3619 31.7244	3674.5684 -3674.5684 2063.8567	2896.0068 -2896.0068 1934 4285	34.6146 -34.6146 48.1603	53.4193 -53.4193 32.5064
24	i 1	MIN	51.1763 -51.1763 51.1763	3106.5381 -3106.5381 3069.7075	-2817.1758	-31.7244	-2063.8567	1934.4285 -1934.4285 1783.4758	-48.1603	-32.5064
	1	MIN	51.1763 -51.1763	3069.7075 -3069.7075	2784.4001 -2784.4001	32.8008 -32.8008	1906.1597 -1906.1597	1783.4758 -1783.4758	47.5944 -47.5944	29.9971 -29.9971
25	1	MAX MIN	51.1763 -51.1763	3078.0603 -3078.0603	2786.1860 -2786.1860	28.6660 28.6660	1703.4673	1605.2686 -1605.2686	47.6769 -47.6769	26.9003 -26.9003
26	1	MAX MIN	51.1763 -51.1763	3079.9417 -3079.9417	2789.8704 -2789.8704	24.6652	1535.2988 -1535.2988	1413.9512 -1413.9512	47.7221 -47.7221	23.8459 -23.8459
27	1	MAX MIN	51.1763 -51.1763	3036.7490 -3036.7490	2761.8169 -2761.8169	23.7676 -23.7676	1442.8929 -1442.8929	1333.9492 -1333.9492	47.1429	22.5760 -22.5760
28	1	MAX MIN	129.6341 -129.6341	2436.2769 -2436.2769	1621.6665 -1621.6665	44.9146 -44.9146	2230.6797 -2230.6797	1799.5352 -1799.5352	32.9912 -32.9912	32.7659 -32.7659
BEAM F	ORCES LOAD		TOPS NOMENT	I MOMENT	J_MOMENT					
1	1	MAX MIN	TORS MOMENT 133.3639 -133.3639	2699.8481 -2699.8481	2386.5623					
2	1 1	MAX MIN	66.8357 -66.8357	2572.4229 -2572.4229	2584.1072 -2584.1072					
3	1	MAX MIN	27.5547 -27.5547	2591.3452 -2591.3452	2623.2986 -2623.2986					
4	1 1	MAX MIN	42.6373 -42.6373	1988.9243 -1988.9243	1729.5084 -1729.5084					
5	1 1	MAX MIN	19.6066 -19.6066	1458.9984 -1458.9984	1474.6842 -1474.6842					
6	1	MAX MIN	47.7399 -47.7399	1586.4567 -1586.4567	2082.5042 -2082.5042					
7	1	MAX MIN	35.4737 -35.4737	4056.2842 -4056.2842	3303.4558 -3303.4558					
8	1 1	MAX MIN	83.7537 -83.7537	3093.3101 -3093.3101	2442.7375 -2442.7375					
9	1	MAX MIN	46.8796 -46.8796	3187.7148 -3187.7148	3326.7688 -3326.7688					
10	1	MAX MIN	94.7059 -94.7059	2468.8359 -2468.8359	2029.8429					
11	1	MAX MIN	26.1888 -26.1888	1985.4076 -1985.4076	1674.4193 -1674.4193					
12	1	MAX MIN	22.7621 -22.7621	1922.9381 -1922.9381	1597.7458 -1597.7458					
13	1	MAX MIN	38.9651 -38.9651	2356.6677 -2356.6677	1911.1116 -1911.1116					
14	1 1	MAX MIN	49.0467 -49.0467	1816.9645 -1816.9645	1367.9382 -1367.9382					
15	1	MAX MIN	93.7209 -93.7209	1701.0059 -1701.0059	2055.8049 -2055.8049					
16	1	MAX MIN	107.4249 -107.4249	2069.8511 -2069.8511	1718.8448 -1718.8448					
17	1	MAX MIN	20.8945 -20.8945	1399.6082 -1399.6082	1469.6136 -1469.6136					
18	1	MAX MIN	13.9466 -13.9466	1257.0272 -1257.0272	1244.9022					
19	1	MAX	18.8858 -18.8858	1486.1765 -1486.1765	1872.2904 -1872.2904					
20	- 1	MAX	38.3963	3340.6702 -3340.6702	3345.7466 -3345.7466					
21	1	MAX	-38.3983 34.0985 -34.0985	2404.3220 -2404.3220	2390.7283 -2390.7283					
22	י 1 1	MAX	-34.0985 76.3501 -76.3501	-2404.3220 2483.0703 -2483.0703	-2390.7283 2052.7751 -2052.7751					
23	1	MIN MAX	-76.3501 16.7558	-2483.0703 1609.5995	-2052.7751 1599.9764					
					E-3	8				

					OUTPUT FOR CASE STUDY #2
	1	MIN	-16.7558	-1609.5995	-1599.9764
24	1	MAX	21.0474	1681.0651	1669.2765
	1	MIN	-21.0474	-1681.0651	-1669.2765
25	1	MAX	22.6210	1685.2341	1672.5522
	1	MIN	-22.6210	-1685.2341	-1672.5522
26	1	MAX MIN	34.0108 -34.0108	1972.6283 -1972.6283	1973.2485 -1973.2485
27	1	MAX	52.3138	1840.4578	1436.3422
	1	MIN	-52.3138	-1840.4578	-1436.3422
28	1	MAX MIN	10.6584 -10.6584	1423.7849 -1423.7849	1449.0029 -1449.0029
29	1	MAX	9.6826	1432.8503	1418.7445
	1	MIN	-9.6826	-1432.8503	-1418.7445
30	1	MAX MIN	20.8188 -20.8188	1445.4209 -1445.4209	1447.8861 -1447.8861
31	1	MAX MIN	15.7170 -15.7170	1437.8636 -1437.8636	1434.5988 -1434.5988
32	1	MAX MIN	21.1570 -21.1570	1392.3535 -1392.3535	1789.9015 -1789.9015
33	1	MAX	36.4607	3252.1411	4001.5835
	1	Min	-36.4607	-3252.1411	-4001.5835
34	1	MAX MIN	62.0149 -62.0149	2410.2517 -2410.2517	3081.4285 -3081.4285
35	1	MAX MIN	59.6890 -59.6890	2208.0076 -2208.0076	2772.6177 -2772.6177
36	1	MAX MIN	61.5327 -61.5327	1988.4473 -1988.4473	2451.2256 -2451.2256
37	1	MAX	59.4712	1693.0084	2146.2380
	1	MIN	-59.4712	-1693.0084	-2146.2380
38	1	MAX	63.2699	1617.3054	2084.9272
	1	Min	-63.2699	-1617.3054	-2084.9272
39	1	MAX	38.1092	1900.2225	2346.2253
	1	MIN	-38.1092	-1900.2225	-2346.2253
40	1	MAX	131.9219	2603.9749	2308.4385
	1	MIN	-131.9219	-2603.9749	-2308.4385
41	1	MAX	43.8291	2404.9746	2413.1892
	1	MIN	-43.8291	-2404.9746	-2413.1892
42	1	MAX	37.4370	2409.5886	2406.4739
	1	Min	-37.4370	-2409.5886	-2406.4739
43	1	MAX	37.1202	2400.6765	2400.7031
	1	Min	-37.1202	-2400.6765	-2400.7031
44	1	MAX MIN	37.3921 -37.3921	2426.7361 -2426.7361	2438.6687 -2438.6687
45	1	MAX	49.5903	2215.9927	2514.5232
	1	Min	-49.5903	-2215.9927	-2514.5232

MEMBER	FORCE	s	. FRAME ID	FRAME 1L	OCAT	FRAME TYPE 1				
COLUMN	FORCE	s	LEVEL NO 8	LEVEL	. ID					
0 LINE	LOAD		TORSIONAL MOMENT	MAJOR TOP MOMENT	AXIS BOT MOMENT	AXIAL FORCE	MINOR A	AXIS BOT MOMENT	MAJOR SHEAR	MINOR SHEAR
1	1 1	MAX MIN	89.7368 -89.7368	929.7590 -929.7590	487.1994 -487.1994	17.7283 -17.7283	2161.1245 -2161.1245	1167.8690 -1167.8690	8.0224 -8.0224	22.6683 -22.6683
2	1	MAX MIN	35.4258 -35.4258	1936.4495 -1936.4495	1432.0862 -1432.0862	10.0954 -10.0954	1096.3877 -1096.3877	806.9303 -806.9303	26.9541 -26.9541	14.5785 -14.5785
3	1 1	MAX MIN	35.4258 -35.4258	2185.8660 -2185.8660	1536.0432 -1536.0432	10.3123	1113.3932 -1113.3932	857.3949 -857.3949	29.8248 -29.8248	15.7673 -15.7673
4	1	MAX MIN	35.4258 -35.4258	2085.1770 -2085.1770	1416.0127 -1416.0127	7.5063 -7.5063	864.2968 -864.2968	678.0115 -678.0115	27.9716 -27.9716	11.6379 -11.6379
5	1	MAX MIN	20.6140 -20.6140	1471.4948 -1471.4948	1236.3197 -1236.3197	8.1160 -8.1160	726.0688 -726.0688	570.6970 -570.6970	22.0147 -22.0147	10.5428 -10.5428
6	1	MAX MIN	20.6140 -20.6140	1381.4955 -1381.4955	1167.5594 -1167.5594	4.9681 -4.9681	689.9543 -689.9543	529.3088 -529.3088	20.7240 -20.7240	9.9127 -9.9127
7	1 1	MAX MIN	89.7368 -89.7368	1149.6194 -1149.6194	471.2644 -471.2644	16.0289 -16.0289	1207.3540 -1207.3540	617.3839 -617.3839	9.2191 -9.2191	10.7835 -10.7835

					OUTPUT FOR C	ASE STUDY #2				
8	1 1	MAX MIN	35.4258 -35.4258	599.1083 -599.1083	322.9354 -322.9354	8.1655 -8.1655	2921.4209 -2921.4209	2363.7925 -2363.7925	5.9041 -5.9041	42.9692 -42.9692
9	1 1	MAX MIN	20.6140 -20.6140	1082.8497 -1082.8497	1008.8514 -1008.8514	2.0843 -2.0843	1878.9966 -1878.9966	1743.9757 -1743.9757	17.0057 -17.0057	29.4551 -29.4551
10	1 1	MAX MIN	65.1514 -65.1514	1508.5974 -1508.5974	763.4995 -763.4995	1.7259	2413.8521 -2413.8521	1552.2207 -1552.2207	17.9911 -17.9911	30.6727 -30.6727
11	1 1	MAX MIN	20.6140 -20.6140	1121.9293 -1121.9293	1025.2610 -1025.2610	2.3532 -2.3532	1478.9301 -1478.9301	1313.4380 -1313.4380	17.4568 -17.4568	22.7022 -22.7022
12	1 1	MAX MIN	20.6140 -20.6140	1082.6305 -1082.6305	915.1426 -915.1426	1.8089 -1.8089	1327.4314 -1327.4314	1206.8198 -1206.8198	16.2421 -16.2421	20.6037 -20.6037
13	1 1	MAX MIN	20.6140 -20.6140	1039.8743 -1039.8743	911.8909 -911.8909	1.7044 -1.7044	1274.8926 -1274.8926	1170.6517 -1170.6517	15.8680 -15.8680	19.8825 -19.8825
14	1 1	MAX MIN	35.4258 -35.4258	605.6146 -605.6146	339.1918 -339.1918	4.6402 -4.6402	1669.4769 -1669.4769	1341.6371 -1341.6371	6.3397 -6.3397	24.4806 -24.4806
15	1 1	MAX MIN	35.4258 -35.4258	609.0793 -609.0793	345.1502 -345.1502	7.2839 -7.2839	2894.1399 -2894.1399	2341.4915 -2341.4915	6.9688 -6.9688	42.5661 -42.5661
16	1 1	MAX MIN	20.6140 -20.6140	1019.7601 -1019.7601	928.1563 -928.1563	1.9917 -1.9917	1892.1064 -1892.1064	1764.6272 -1764.6272	15.8367 -15.8367	29.7296 -29.7296
17	1 1	MAX MIN	20.6140 -20.6140	1034.8856 -1034.8856	904.3895 -904.3895	2.7644 -2.7644	1761.0823 -1761.0823	1595.8723 -1595.8723	15.7665 -15.7665	27.2923 -27.2923
18	1	MAX MIN	20.6140 -20.6140	1046.0375 -1046.0375	928.3337 -928.3337	2.2827 -2.2827	1489.6333 -1489.6333	1332.9352 -1332.9352	16.0518 -16.0518	22.9477 -22.9477
19	1	MAX MIN	20.6140 -20.6140	1063.6202 -1063.6202	934.7557 -934.7557	1.8809 -1.8809	1322.1233 -1322.1233	1217.1804 -1217.1804	16.2469 -16.2469	20.6447 -20.6447
20	1	MAX MIN	20.6140 -20.6140	999.1075 -999.1075	90 3. 8638 -903.8638	1.5023 -1.5023	1267.2117 -1267.2117	1179.1057 -1179.1057	15.4713 -15.4713	19.8887 -19.8887
21	1	MAX MIN	35.4258 -35.4258	586.9789 -586.9789	331.1080 -331.1080	5.5078 -5.5078	1663.9386 -1663.9386	1337.7148 -1337.7148	6.5358 -6.5358	24.4036 -24.4036
22	1	MAX MIN	89.7368 -89.7368	909.0540 -909.0540	512.5140 -512.5140	18.6869 -18.6869	2119.7783 -2119.7783	1137.2155 -1137.2155	10.4802 -10.4802	22.4885 -22.4885
23	1 1	MAX MIN	35.4258 -35.4258	1848.9153 -1848.9153	1396.0402 -1396.0402	9.8562 -9.8562	1086.6282 -1086.6282	799.4589 -799.4589	25.8118 -25.8118	14.3804 -14.3804
24	1	MAX MIN	35.4258 -35.4258	2088.8113 -2088.8113	14 32.8 623 -14 32.8 623	9.0125	969.7593 -969.7593	744.1896 -744.1896	28.6315 -28.6315	13.0061 -13.0061
25	1	MAX MIN	35.4258 -35.4258	2044.7202 -2044.7202	1417.0317 -1417.0317	7.4082 -7.4082	846.0729 -846.0729	673.6450 -673.6450	28.1443 -28.1443	11.3009 -11.3009
26	1 1	MAX MIN	35.4258 -35.4258	2074.0220 -2074.0220	1432.4172 -1432.4172	6.5237 -6.5237	751.0479 -751.0479	593.6089 -593.6089	28.5076 -28.5076	9.9784 -9.9784
27	1 1	MAX MIN	35.4258 -35.4258	1939.7800 -1939.7800	1393.5238 -1393.5238	6.3102 -6.3102	708.7458 -708.7458	505.8489 -505.8489	26.6099 -26.6099	9.1676 -9.1676
28	1 1	MAX MIN	89.7368 -89.7368	1125.3469 -1125.3469	529.6689 -529.6689	14_4446 -14_4446	1193.3586 -1193.3586	602.7162 -602.7162	12.3962 -12.3962	10.8251 -10.8251
BEAM F	ORCES									
BAY 1	LOAD 1 1	MAX MIN	TORS MOMENT 28.1772 -28.1772	I MOMENT 902.3298 -902.3298	J MOMENT 735.5128 -735.5128					
2	1	MAX MIN	20.5866 -20.5866	1263.7657 -1263.7657	1186.6898 -1186.6898					
3	1	MAX MIN	15.1754 -15.1754	1079.9634 -1079.9634	1092.8671 -1092.8671					
4	1 1	MAX MIN	28.0603 -28.0603	1054.1366 -1054.1366	854.0094 -854.0094					
5	1	MAX MIN	18.4095 -18.4095	687.8702 -687.8702	736.7662 -736.7662					
6	1	MAX MIN	18.9679 -18.9679	704.0169 -704.0169	1119.3383 -1119.3383					
7	1	MAX MIN	20.5804 -20.5804	2108.4492 -2108.4492	1416.1329 -1416.1329					
8	1 1	MAX MIN	12.0606 -12.0606	1159.7278 -1159.7278	916.1546 -916.1546					
9	1	MAX MIN	32.5837 -32.5837	1176.9991 -1176.9991	1149.7449 -1149.7449					
10	1 1	MAX MIN	7.3451 -7.3451	897.7686 -897.7686	682.0495 -682.0495					
11	1	MAX MIN	29.4603 -29.4603	781.5832 -781.5832	623.1533 -623.1533					

					OUTPUT FOR C	ASE STUDY #2
12	1 1	MAX MIN	27.6806 -27.6806	750.9717 -750.9717	604.4639 -604.4639	
13	1 1	MAX Min	20.3720 -20.3720	1170.3627 -1170.3627	778.5148 -778.5148	
14	1	MAX Min	-11.5156 -11.5156	598.1299 -598.1299	474.0742 -474.0742	
15	1 1	MAX Min	18.9204 -18.9204	677.6002 -677.6002	755.7054 -755.7054	
16	1 1	MAX Min	28.4834 -28.4834	745.8597 -745.8597	654.0120 -654.0120	
17	1 1	MAX Min	4.0971 -4.0971	538.9183 -538.9183	529.5817 -529.5817	
18	1	MAX Min	3.7786 -3.7786	591.8357 -591.8357	610.5081 -610.5081	
19	1 1	MAX MIN	8.5003 -8.5003	466.8046 -466.8046	595.8339 -595.8339	
20	1 1	MAX Min	24.7828 -24.7828	1575.7643 -1575.7643	1586.5364 -1586.5364	
21	1 1	MAX MIN	14.5046 -14.5046	1080.2891 -1080.2891	1079.1152 -1079.1152	
22	1 1	MAX MIN	33.1847 -33.1847	1313.1357 -1313.1357	1095.3445 -1095.3445	
23	1 1	MAX MIN	9.2220 -9.2220	899.6746 -899.6746	899.6032 -899.6032	
24	1 1	MAX Min	10.6214 -10.6214	784.7834 -784.7834	793.5724 -793.5724	
25	1 1	MAX MIN	9.8098 -9.8098	738.7153 -738.7153	746.3109 -746.3109	
26	1 1	MAX MIN	20.7514 -20.7514	932.4158 -932.4158	934.8359 -934.8359	
27	1 1	MAX MIN	10.4932 -10.4932	610.9067 -610.9067	494.5019 -494.5019	
28	1	MAX MIN	8.2721 -8.2721	588.4127 -588.4127	575.6437 -575.6437	
29	1 1	MAX Min	3.4524 -3.4524	545.1218 -545.1218	545.9642 -545.9642	
30	1 1	MAX MIN	3.6154 -3.6154	562.9102 -562.9102	556.4888 -556.4888	
31	1 1	MAX Min	3.8797 -3.8797	568.3186 -568.3186	590.0662 -590.0662	
32	1 1	MAX Min	9.8070 -9.8070	462.4177 -462.4177	577.3806 -577.3806	
33	1 1	MAX MIN	22.8490 -22.8490	1377.7974 -1377.7974	2065.0649 -2065.0649	
34	1 1	MAX Min	9.2374 -9.2374	908.5609 -908.5609	1154.1569 -1154.1569	
35	1 1	MAX Min	10.0610 -10.0610	759.5526 -759.5526	1021.8728 -1021.8728	
36	1 1	MAX MIN	8.2860 -8.2860	670.6888 -670.6888	889.0862 -889.0862	
37	1 1	MAX Min	7.5645 -7.5645	610.6864 -610.6864	790.2698 -790.2698	
38	1 1	MAX MIN	8.6069 -8.6069	589.3568 -589.3568	754.0040 -754.0040	
39	1 1	MAX Min	18.0887 -18.0887	771.4008 -771.4008	1162.4958 -1162.4958	
40	1 1	MAX MIN	28.8766 -28.8766	929.7326 -929.7326	779.5750 -779.5750	
41	1 1	MAX MIN	16.4156 -16.4156	1181.4661 -1181.4661	1108.8330 -1108.8330	
42	1	MAX MIN	17.7415 -17.7415	1037.2198 -1037.2198	1051.3666 -1051.3666	
43	1 1	MAX MIN	20.1869 -20.1869	1055.3052 -1055.3052	1046.9182 -1046.9182	
44	1 1	MAX MIN	19.8406 -19.8406	1085.0139 -1085.0139	1117.4492 -1117.4492	

45 1 MAX 17.1313 918.4484 1137.4172 1 MIN -17.1313 -918.4484 -1137.4172

******** END OF OUTPUT *******

NATIONAL CENTER FOR EARTHQUAKE ENGINEERING RESEARCH LIST OF TECHNICAL REPORTS

The National Center for Earthquake Engineering Research (NCEER) publishes technical reports on a variety of subjects related to earthquake engineering written by authors funded through NCEER. These reports are available from both NCEER's Publications Department and the National Technical Information Service (NTIS). Requests for reports should be directed to the Publications Department, National Center for Earthquake Engineering Research, State University of New York at Buffalo, Red Jacket Quadrangle, Buffalo, New York 14261. Reports can also be requested through NTIS, 5285 Port Royal Road, Springfield, Virginia 22161. NTIS accession numbers are shown in parenthesis, if available.

- NCEER-87-0001 "First-Year Program in Research, Education and Technology Transfer," 3/5/87, (PB88-134275).
- NCEER-87-0002 "Experimental Evaluation of Instantaneous Optimal Algorithms for Structural Control," by R.C. Lin, T.T. Soong and A.M. Reinhorn, 4/20/87, (PB88-134341).
- NCEER-87-0003 "Experimentation Using the Earthquake Simulation Facilities at University at Buffalo," by A.M. Reinhorn and R.L. Ketter, to be published.
- NCEER-87-0004 "The System Characteristics and Performance of a Shaking Table," by J.S. Hwang, K.C. Chang and G.C. Lee, 6/1/87, (PB88-134259). This report is available only through NTIS (see address given above).
- NCEER-87-0005 "A Finite Element Formulation for Nonlinear Viscoplastic Material Using a Q Model," by O. Gyebi and G. Dasgupta, 11/2/87, (PB88-213764).
- NCEER-87-0006 "Symbolic Manipulation Program (SMP) Algebraic Codes for Two and Three Dimensional Finite Element Formulations," by X. Lee and G. Dasgupta, 11/9/87, (PB88-218522).
- NCEER-87-0007 "Instantaneous Optimal Control Laws for Tall Buildings Under Seismic Excitations," by J.N. Yang, A. Akbarpour and P. Ghaemmaghami, 6/10/87, (PB88-134333). This report is only available through NTIS (see address given above).
- NCEER-87-0008 "IDARC: Inelastic Damage Analysis of Reinforced Concrete Frame Shear-Wall Structures," by Y.J. Park, A.M. Reinhorn and S.K. Kunnath, 7/20/87, (PB88-134325).
- NCEER-87-0009 "Liquefaction Potential for New York State: A Preliminary Report on Sites in Manhattan and Buffalo," by M. Budhu, V. Vijayakumar, R.F. Giese and L. Baumgras, 8/31/87, (PB88-163704). This report is available only through NTIS (see address given above).
- NCEER-87-0010 "Vertical and Torsional Vibration of Foundations in Inhomogeneous Media," by A.S. Veletsos and K.W. Dotson, 6/1/87, (PB88-134291).
- NCEER-87-0011 "Seismic Probabilistic Risk Assessment and Seismic Margins Studies for Nuclear Power Plants," by Howard H.M. Hwang, 6/15/87, (PB88-134267).
- NCEER-87-0012 "Parametric Studies of Frequency Response of Secondary Systems Under Ground-Acceleration Excitations," by Y. Yong and Y.K. Lin, 6/10/87, (PB88-134309).
- NCEER-87-0013 "Frequency Response of Secondary Systems Under Seismic Excitation," by J.A. HoLung, J. Cai and Y.K. Lin, 7/31/87, (PB88-134317).
- NCEER-87-0014 "Modelling Earthquake Ground Motions in Seismically Active Regions Using Parametric Time Series Methods," by G.W. Ellis and A.S. Cakmak, 8/25/87, (PB88-134283).
- NCEER-87-0015 "Detection and Assessment of Seismic Structural Damage," by E. DiPasquale and A.S. Cakmak, 8/25/87, (PB88-163712).

- NCEER-87-0016 "Pipeline Experiment at Parkfield, California," by J. Isenberg and E. Richardson, 9/15/87, (PB88-163720). This report is available only through NTIS (see address given above).
- NCEER-87-0017 "Digital Simulation of Seismic Ground Motion," by M. Shinozuka, G. Deodatis and T. Harada, 8/31/87, (PB88-155197). This report is available only through NTIS (see address given above).
- NCEER-87-0018 "Practical Considerations for Structural Control: System Uncertainty, System Time Delay and Truncation of Small Control Forces," J.N. Yang and A. Akbarpour, 8/10/87, (PB88-163738).
- NCEER-87-0019 "Modal Analysis of Nonclassically Damped Structural Systems Using Canonical Transformation," by J.N. Yang, S. Sarkani and F.X. Long, 9/27/87, (PB88-187851).
- NCEER-87-0020 "A Nonstationary Solution in Random Vibration Theory," by J.R. Red-Horse and P.D. Spanos, 11/3/87, (PB88-163746).
- NCEER-87-0021 "Horizontal Impedances for Radially Inhomogeneous Viscoelastic Soil Layers," by A.S. Veletsos and K.W. Dotson, 10/15/87, (PB88-150859).
- NCEER-87-0022 "Seismic Damage Assessment of Reinforced Concrete Members," by Y.S. Chung, C. Meyer and M. Shinozuka, 10/9/87, (PB88-150867). This report is available only through NTIS (see address given above).
- NCEER-87-0023 "Active Structural Control in Civil Engineering," by T.T. Soong, 11/11/87, (PB88-187778).
- NCEER-87-0024 "Vertical and Torsional Impedances for Radially Inhomogeneous Viscoelastic Soil Layers," by K.W. Dotson and A.S. Veletsos, 12/87, (PB88-187786).
- NCEER-87-0025 "Proceedings from the Symposium on Seismic Hazards, Ground Motions, Soil-Liquefaction and Engineering Practice in Eastern North America," October 20-22, 1987, edited by K.H. Jacob, 12/87, (PB88-188115).
- NCEER-87-0026 "Report on the Whittier-Narrows, California, Earthquake of October 1, 1987," by J. Pantelic and A. Reinhorn, 11/87, (PB88-187752). This report is available only through NTIS (see address given above).
- NCEER-87-0027 "Design of a Modular Program for Transient Nonlinear Analysis of Large 3-D Building Structures," by S. Srivastav and J.F. Abel, 12/30/87, (PB88-187950).
- NCEER-87-0028 "Second-Year Program in Research, Education and Technology Transfer," 3/8/88, (PB88-219480).
- NCEER-88-0001 "Workshop on Seismic Computer Analysis and Design of Buildings With Interactive Graphics," by W. McGuire, J.F. Abel and C.H. Conley, 1/18/88, (PB88-187760).
- NCEER-88-0002 "Optimal Control of Nonlinear Flexible Structures," by J.N. Yang, F.X. Long and D. Wong, 1/22/88, (PB88-213772).
- NCEER-88-0003 "Substructuring Techniques in the Time Domain for Primary-Secondary Structural Systems," by G.D. Manolis and G. Juhn, 2/10/88, (PB88-213780).
- NCEER-88-0004 "Iterative Seismic Analysis of Primary-Secondary Systems," by A. Singhal, L.D. Lutes and P.D. Spanos, 2/23/88, (PB88-213798).
- NCEER-88-0005 "Stochastic Finite Element Expansion for Random Media," by P.D. Spanos and R. Ghanem, 3/14/88, (PB88-213806).

- NCEER-88-0006 "Combining Structural Optimization and Structural Control," by F.Y. Cheng and C.P. Pantelides, 1/10/88, (PB88-213814).
- NCEER-88-0007 "Seismic Performance Assessment of Code-Designed Structures," by H.H-M. Hwang, J-W. Jaw and H-J. Shau, 3/20/88, (PB88-219423).
- NCEER-88-0008 "Reliability Analysis of Code-Designed Structures Under Natural Hazards," by H.H-M. Hwang, H. Ushiba and M. Shinozuka, 2/29/88, (PB88-229471).
- NCEER-88-0009 "Seismic Fragility Analysis of Shear Wall Structures," by J-W Jaw and H.H-M. Hwang, 4/30/88, (PB89-102867).
- NCEER-88-0010 "Base Isolation of a Multi-Story Building Under a Harmonic Ground Motion A Comparison of Performances of Various Systems," by F-G Fan, G. Ahmadi and I.G. Tadjbakhsh, 5/18/88, (PB89-122238).
- NCEER-88-0011 "Seismic Floor Response Spectra for a Combined System by Green's Functions," by F.M. Lavelle, L.A. Bergman and P.D. Spanos, 5/1/88, (PB89-102875).
- NCEER-88-0012 "A New Solution Technique for Randomly Excited Hysteretic Structures," by G.Q. Cai and Y.K. Lin, 5/16/88, (PB89-102883).
- NCEER-88-0013 "A Study of Radiation Damping and Soil-Structure Interaction Effects in the Centrifuge," by K. Weissman, supervised by J.H. Prevost, 5/24/88, (PB89-144703).
- NCEER-88-0014 "Parameter Identification and Implementation of a Kinematic Plasticity Model for Frictional Soils," by J.H. Prevost and D.V. Griffiths, to be published.
- NCEER-88-0015 "Two- and Three- Dimensional Dynamic Finite Element Analyses of the Long Valley Dam," by D.V. Griffiths and J.H. Prevost, 6/17/88, (PB89-144711).
- NCEER-88-0016 "Damage Assessment of Reinforced Concrete Structures in Eastern United States," by A.M. Reinhorn, M.J. Seidel, S.K. Kunnath and Y.J. Park, 6/15/88, (PB89-122220).
- NCEER-88-0017 "Dynamic Compliance of Vertically Loaded Strip Foundations in Multilayered Viscoelastic Soils," by S. Ahmad and A.S.M. Israil, 6/17/88, (PB89-102891).
- NCEER-88-0018 "An Experimental Study of Seismic Structural Response With Added Viscoelastic Dampers," by R.C. Lin, Z. Liang, T.T. Soong and R.H. Zhang, 6/30/88, (PB89-122212). This report is available only through NTIS (see address given above).
- NCEER-88-0019 "Experimental Investigation of Primary Secondary System Interaction," by G.D. Manolis, G. Juhn and A.M. Reinhorn, 5/27/88, (PB89-122204).
- NCEER-88-0020 "A Response Spectrum Approach For Analysis of Nonclassically Damped Structures," by J.N. Yang, S. Sarkani and F.X. Long, 4/22/88, (PB89-102909).
- NCEER-88-0021 "Seismic Interaction of Structures and Soils: Stochastic Approach," by A.S. Veletsos and A.M. Prasad, 7/21/88, (PB89-122196).
- NCEER-88-0022 "Identification of the Serviceability Limit State and Detection of Seismic Structural Damage," by E. DiPasquale and A.S. Cakmak, 6/15/88, (PB89-122188). This report is available only through NTIS (see address given above).
- NCEER-88-0023 "Multi-Hazard Risk Analysis: Case of a Simple Offshore Structure," by B.K. Bhartia and E.H. Vanmarcke, 7/21/88, (PB89-145213).

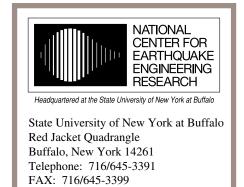
NCEER-88-0024	"Automated Seismic Design of Reinforced Concrete Buildings," by Y.S. Chung, C. Meyer and M. Shinozuka, 7/5/88, (PB89-122170). This report is available only through NTIS (see address given above).
NCEER-88-0025	"Experimental Study of Active Control of MDOF Structures Under Seismic Excitations," by L.L. Chung, R.C. Lin, T.T. Soong and A.M. Reinhorn, 7/10/88, (PB89-122600).
NCEER-88-0026	"Earthquake Simulation Tests of a Low-Rise Metal Structure," by J.S. Hwang, K.C. Chang, G.C. Lee and R.L. Ketter, 8/1/88, (PB89-102917).
NCEER-88-0027	"Systems Study of Urban Response and Reconstruction Due to Catastrophic Earthquakes," by F. Kozin and H.K. Zhou, 9/22/88, (PB90-162348).
NCEER-88-0028	"Seismic Fragility Analysis of Plane Frame Structures," by H.H-M. Hwang and Y.K. Low, 7/31/88, (PB89-131445).
NCEER-88-0029	"Response Analysis of Stochastic Structures," by A. Kardara, C. Bucher and M. Shinozuka, 9/22/88, (PB89-174429).
NCEER-88-0030	"Nonnormal Accelerations Due to Yielding in a Primary Structure," by D.C.K. Chen and L.D. Lutes, 9/19/88, (PB89-131437).
NCEER-88-0031	"Design Approaches for Soil-Structure Interaction," by A.S. Veletsos, A.M. Prasad and Y. Tang, 12/30/88, (PB89-174437). This report is available only through NTIS (see address given above).
NCEER-88-0032	"A Re-evaluation of Design Spectra for Seismic Damage Control," by C.J. Turkstra and A.G. Tallin, 11/7/88, (PB89-145221).
NCEER-88-0033	"The Behavior and Design of Noncontact Lap Splices Subjected to Repeated Inelastic Tensile Loading," by V.E. Sagan, P. Gergely and R.N. White, 12/8/88, (PB89-163737).
NCEER-88-0034	"Seismic Response of Pile Foundations," by S.M. Mamoon, P.K. Banerjee and S. Ahmad, 11/1/88, (PB89-145239).
NCEER-88-0035	"Modeling of R/C Building Structures With Flexible Floor Diaphragms (IDARC2)," by A.M. Reinhorn, S.K. Kunnath and N. Panahshahi, 9/7/88, (PB89-207153).
NCEER-88-0036	"Solution of the Dam-Reservoir Interaction Problem Using a Combination of FEM, BEM with Particular Integrals, Modal Analysis, and Substructuring," by C-S. Tsai, G.C. Lee and R.L. Ketter, 12/31/88, (PB89-207146).
NCEER-88-0037	"Optimal Placement of Actuators for Structural Control," by F.Y. Cheng and C.P. Pantelides, 8/15/88, (PB89-162846).
NCEER-88-0038	"Teflon Bearings in Aseismic Base Isolation: Experimental Studies and Mathematical Modeling," by A. Mokha, M.C. Constantinou and A.M. Reinhorn, 12/5/88, (PB89-218457). This report is available only through NTIS (see address given above).
NCEER-88-0039	"Seismic Behavior of Flat Slab High-Rise Buildings in the New York City Area," by P. Weidlinger and M. Ettouney, 10/15/88, (PB90-145681).
NCEER-88-0040	"Evaluation of the Earthquake Resistance of Existing Buildings in New York City," by P. Weidlinger and M. Ettouney, 10/15/88, to be published.
NCEER-88-0041	"Small-Scale Modeling Techniques for Reinforced Concrete Structures Subjected to Seismic Loads," by W. Kim, A. El-Attar and R.N. White, 11/22/88, (PB89-189625).

- NCEER-88-0042 "Modeling Strong Ground Motion from Multiple Event Earthquakes," by G.W. Ellis and A.S. Cakmak, 10/15/88, (PB89-174445).
- NCEER-88-0043 "Nonstationary Models of Seismic Ground Acceleration," by M. Grigoriu, S.E. Ruiz and E. Rosenblueth, 7/15/88, (PB89-189617).
- NCEER-88-0044 "SARCF User's Guide: Seismic Analysis of Reinforced Concrete Frames," by Y.S. Chung, C. Meyer and M. Shinozuka, 11/9/88, (PB89-174452).
- NCEER-88-0045 "First Expert Panel Meeting on Disaster Research and Planning," edited by J. Pantelic and J. Stoyle, 9/15/88, (PB89-174460).
- NCEER-88-0046 "Preliminary Studies of the Effect of Degrading Infill Walls on the Nonlinear Seismic Response of Steel Frames," by C.Z. Chrysostomou, P. Gergely and J.F. Abel, 12/19/88, (PB89-208383).
- NCEER-88-0047 "Reinforced Concrete Frame Component Testing Facility Design, Construction, Instrumentation and Operation," by S.P. Pessiki, C. Conley, T. Bond, P. Gergely and R.N. White, 12/16/88, (PB89-174478).
- NCEER-89-0001 "Effects of Protective Cushion and Soil Compliancy on the Response of Equipment Within a Seismically Excited Building," by J.A. HoLung, 2/16/89, (PB89-207179).
- NCEER-89-0002 "Statistical Evaluation of Response Modification Factors for Reinforced Concrete Structures," by H.H-M. Hwang and J-W. Jaw, 2/17/89, (PB89-207187).
- NCEER-89-0003 "Hysteretic Columns Under Random Excitation," by G-Q. Cai and Y.K. Lin, 1/9/89, (PB89-196513).
- NCEER-89-0004 "Experimental Study of 'Elephant Foot Bulge' Instability of Thin-Walled Metal Tanks," by Z-H. Jia and R.L. Ketter, 2/22/89, (PB89-207195).
- NCEER-89-0005 "Experiment on Performance of Buried Pipelines Across San Andreas Fault," by J. Isenberg, E. Richardson and T.D. O'Rourke, 3/10/89, (PB89-218440). This report is available only through NTIS (see address given above).
- NCEER-89-0006 "A Knowledge-Based Approach to Structural Design of Earthquake-Resistant Buildings," by M. Subramani, P. Gergely, C.H. Conley, J.F. Abel and A.H. Zaghw, 1/15/89, (PB89-218465).
- NCEER-89-0007 "Liquefaction Hazards and Their Effects on Buried Pipelines," by T.D. O'Rourke and P.A. Lane, 2/1/89, (PB89-218481).
- NCEER-89-0008 "Fundamentals of System Identification in Structural Dynamics," by H. Imai, C-B. Yun, O. Maruyama and M. Shinozuka, 1/26/89, (PB89-207211).
- NCEER-89-0009 "Effects of the 1985 Michoacan Earthquake on Water Systems and Other Buried Lifelines in Mexico," by A.G. Ayala and M.J. O'Rourke, 3/8/89, (PB89-207229).
- NCEER-89-R010 "NCEER Bibliography of Earthquake Education Materials," by K.E.K. Ross, Second Revision, 9/1/89, (PB90-125352).
- NCEER-89-0011 "Inelastic Three-Dimensional Response Analysis of Reinforced Concrete Building Structures (IDARC-3D), Part I - Modeling," by S.K. Kunnath and A.M. Reinhorn, 4/17/89, (PB90-114612).
- NCEER-89-0012 "Recommended Modifications to ATC-14," by C.D. Poland and J.O. Malley, 4/12/89, (PB90-108648).

- NCEER-89-0013 "Repair and Strengthening of Beam-to-Column Connections Subjected to Earthquake Loading," by M. Corazao and A.J. Durrani, 2/28/89, (PB90-109885).
- NCEER-89-0014 "Program EXKAL2 for Identification of Structural Dynamic Systems," by O. Maruyama, C-B. Yun, M. Hoshiya and M. Shinozuka, 5/19/89, (PB90-109877).
- NCEER-89-0015 "Response of Frames With Bolted Semi-Rigid Connections, Part I Experimental Study and Analytical Predictions," by P.J. DiCorso, A.M. Reinhorn, J.R. Dickerson, J.B. Radziminski and W.L. Harper, 6/1/89, to be published.
- NCEER-89-0016 "ARMA Monte Carlo Simulation in Probabilistic Structural Analysis," by P.D. Spanos and M.P. Mignolet, 7/10/89, (PB90-109893).
- NCEER-89-P017 "Preliminary Proceedings from the Conference on Disaster Preparedness The Place of Earthquake Education in Our Schools," Edited by K.E.K. Ross, 6/23/89, (PB90-108606).
- NCEER-89-0017 "Proceedings from the Conference on Disaster Preparedness The Place of Earthquake Education in Our Schools," Edited by K.E.K. Ross, 12/31/89, (PB90-207895). This report is available only through NTIS (see address given above).
- NCEER-89-0018 "Multidimensional Models of Hysteretic Material Behavior for Vibration Analysis of Shape Memory Energy Absorbing Devices, by E.J. Graesser and F.A. Cozzarelli, 6/7/89, (PB90-164146).
- NCEER-89-0019 "Nonlinear Dynamic Analysis of Three-Dimensional Base Isolated Structures (3D-BASIS)," by S. Nagarajaiah, A.M. Reinhorn and M.C. Constantinou, 8/3/89, (PB90-161936). This report is available only through NTIS (see address given above).
- NCEER-89-0020 "Structural Control Considering Time-Rate of Control Forces and Control Rate Constraints," by F.Y. Cheng and C.P. Pantelides, 8/3/89, (PB90-120445).
- NCEER-89-0021 "Subsurface Conditions of Memphis and Shelby County," by K.W. Ng, T-S. Chang and H-H.M. Hwang, 7/26/89, (PB90-120437).
- NCEER-89-0022 "Seismic Wave Propagation Effects on Straight Jointed Buried Pipelines," by K. Elhmadi and M.J. O'Rourke, 8/24/89, (PB90-162322).
- NCEER-89-0023 "Workshop on Serviceability Analysis of Water Delivery Systems," edited by M. Grigoriu, 3/6/89, (PB90-127424).
- NCEER-89-0024 "Shaking Table Study of a 1/5 Scale Steel Frame Composed of Tapered Members," by K.C. Chang, J.S. Hwang and G.C. Lee, 9/18/89, (PB90-160169).
- NCEER-89-0025 "DYNA1D: A Computer Program for Nonlinear Seismic Site Response Analysis Technical Documentation," by Jean H. Prevost, 9/14/89, (PB90-161944). This report is available only through NTIS (see address given above).
- NCEER-89-0026 "1:4 Scale Model Studies of Active Tendon Systems and Active Mass Dampers for Aseismic Protection," by A.M. Reinhorn, T.T. Soong, R.C. Lin, Y.P. Yang, Y. Fukao, H. Abe and M. Nakai, 9/15/89, (PB90-173246).
- NCEER-89-0027 "Scattering of Waves by Inclusions in a Nonhomogeneous Elastic Half Space Solved by Boundary Element Methods," by P.K. Hadley, A. Askar and A.S. Cakmak, 6/15/89, (PB90-145699).
- NCEER-89-0028 "Statistical Evaluation of Deflection Amplification Factors for Reinforced Concrete Structures," by H.H.M. Hwang, J-W. Jaw and A.L. Ch'ng, 8/31/89, (PB90-164633).

- NCEER-89-0029 "Bedrock Accelerations in Memphis Area Due to Large New Madrid Earthquakes," by H.H.M. Hwang, C.H.S. Chen and G. Yu, 11/7/89, (PB90-162330).
- NCEER-89-0030 "Seismic Behavior and Response Sensitivity of Secondary Structural Systems," by Y.Q. Chen and T.T. Soong, 10/23/89, (PB90-164658).
- NCEER-89-0031 "Random Vibration and Reliability Analysis of Primary-Secondary Structural Systems," by Y. Ibrahim, M. Grigoriu and T.T. Soong, 11/10/89, (PB90-161951).
- NCEER-89-0032 "Proceedings from the Second U.S. Japan Workshop on Liquefaction, Large Ground Deformation and Their Effects on Lifelines, September 26-29, 1989," Edited by T.D. O'Rourke and M. Hamada, 12/1/89, (PB90-209388).
- NCEER-89-0033 "Deterministic Model for Seismic Damage Evaluation of Reinforced Concrete Structures," by J.M. Bracci, A.M. Reinhorn, J.B. Mander and S.K. Kunnath, 9/27/89.
- NCEER-89-0034 "On the Relation Between Local and Global Damage Indices," by E. DiPasquale and A.S. Cakmak, 8/15/89, (PB90-173865).
- NCEER-89-0035 "Cyclic Undrained Behavior of Nonplastic and Low Plasticity Silts," by A.J. Walker and H.E. Stewart, 7/26/89, (PB90-183518).
- NCEER-89-0036 "Liquefaction Potential of Surficial Deposits in the City of Buffalo, New York," by M. Budhu, R. Giese and L. Baumgrass, 1/17/89, (PB90-208455).
- NCEER-89-0037 "A Deterministic Assessment of Effects of Ground Motion Incoherence," by A.S. Veletsos and Y. Tang, 7/15/89, (PB90-164294).
- NCEER-89-0038 "Workshop on Ground Motion Parameters for Seismic Hazard Mapping," July 17-18, 1989, edited by R.V. Whitman, 12/1/89, (PB90-173923).
- NCEER-89-0039 "Seismic Effects on Elevated Transit Lines of the New York City Transit Authority," by C.J. Costantino, C.A. Miller and E. Heymsfield, 12/26/89, (PB90-207887).
- NCEER-89-0040 "Centrifugal Modeling of Dynamic Soil-Structure Interaction," by K. Weissman, Supervised by J.H. Prevost, 5/10/89, (PB90-207879).
- NCEER-89-0041 "Linearized Identification of Buildings With Cores for Seismic Vulnerability Assessment," by I-K. Ho and A.E. Aktan, 11/1/89, (PB90-251943).
- NCEER-90-0001 "Geotechnical and Lifeline Aspects of the October 17, 1989 Loma Prieta Earthquake in San Francisco," by T.D. O'Rourke, H.E. Stewart, F.T. Blackburn and T.S. Dickerman, 1/90, (PB90-208596).
- NCEER-90-0002 "Nonnormal Secondary Response Due to Yielding in a Primary Structure," by D.C.K. Chen and L.D. Lutes, 2/28/90, (PB90-251976).
- NCEER-90-0003 "Earthquake Education Materials for Grades K-12," by K.E.K. Ross, 4/16/90, (PB91-251984).
- NCEER-90-0004 "Catalog of Strong Motion Stations in Eastern North America," by R.W. Busby, 4/3/90, (PB90-251984).
- NCEER-90-0005 "NCEER Strong-Motion Data Base: A User Manual for the GeoBase Release (Version 1.0 for the Sun3)," by P. Friberg and K. Jacob, 3/31/90 (PB90-258062).
- NCEER-90-0006 "Seismic Hazard Along a Crude Oil Pipeline in the Event of an 1811-1812 Type New Madrid Earthquake," by H.H.M. Hwang and C-H.S. Chen, 4/16/90(PB90-258054).

- NCEER-90-0007 "Site-Specific Response Spectra for Memphis Sheahan Pumping Station," by H.H.M. Hwang and C.S. Lee, 5/15/90, (PB91-108811).
 NCEER-90-0008 "Pilot Study on Seismic Vulnerability of Crude Oil Transmission Systems," by T. Ariman, R. Dobry, M. Grigoriu, F. Kozin, M. O'Rourke, T. O'Rourke and M. Shinozuka, 5/25/90, (PB91-108837).
- NCEER-90-0009 "A Program to Generate Site Dependent Time Histories: EQGEN," by G.W. Ellis, M. Srinivasan and A.S. Cakmak, 1/30/90, (PB91-108829).
- NCEER-90-0010 "Active Isolation for Seismic Protection of Operating Rooms," by M.E. Talbott, Supervised by M. Shinozuka, 6/8/9, (PB91-110205).
- NCEER-90-0011 "Program LINEARID for Identification of Linear Structural Dynamic Systems," by C-B. Yun and M. Shinozuka, 6/25/90, (PB91-110312).
- NCEER-90-0012 "Two-Dimensional Two-Phase Elasto-Plastic Seismic Response of Earth Dams," by A.N. Yiagos, Supervised by J.H. Prevost, 6/20/90, (PB91-110197).
- NCEER-90-0013 "Secondary Systems in Base-Isolated Structures: Experimental Investigation, Stochastic Response and Stochastic Sensitivity," by G.D. Manolis, G. Juhn, M.C. Constantinou and A.M. Reinhorn, 7/1/90, (PB91-110320).
- NCEER-90-0014 "Seismic Behavior of Lightly-Reinforced Concrete Column and Beam-Column Joint Details," by S.P. Pessiki, C.H. Conley, P. Gergely and R.N. White, 8/22/90, (PB91-108795).
- NCEER-90-0015 "Two Hybrid Control Systems for Building Structures Under Strong Earthquakes," by J.N. Yang and A. Danielians, 6/29/90, (PB91-125393).
- NCEER-90-0016 "Instantaneous Optimal Control with Acceleration and Velocity Feedback," by J.N. Yang and Z. Li, 6/29/90, (PB91-125401).
- NCEER-90-0017 "Reconnaissance Report on the Northern Iran Earthquake of June 21, 1990," by M. Mehrain, 10/4/90, (PB91-125377).
- NCEER-90-0018 "Evaluation of Liquefaction Potential in Memphis and Shelby County," by T.S. Chang, P.S. Tang, C.S. Lee and H. Hwang, 8/10/90, (PB91-125427).
- NCEER-90-0019 "Experimental and Analytical Study of a Combined Sliding Disc Bearing and Helical Steel Spring Isolation System," by M.C. Constantinou, A.S. Mokha and A.M. Reinhorn, 10/4/90, (PB91-125385).
- NCEER-90-0020 "Experimental Study and Analytical Prediction of Earthquake Response of a Sliding Isolation System with a Spherical Surface," by A.S. Mokha, M.C. Constantinou and A.M. Reinhorn, 10/11/90, (PB91-125419).
- NCEER-90-0021 "Dynamic Interaction Factors for Floating Pile Groups," by G. Gazetas, K. Fan, A. Kaynia and E. Kausel, 9/10/90, (PB91-170381).
- NCEER-90-0022 "Evaluation of Seismic Damage Indices for Reinforced Concrete Structures," by S. Rodriguez-Gomez and A.S. Cakmak, 9/30/90, PB91-171322).
- NCEER-90-0023 "Study of Site Response at a Selected Memphis Site," by H. Desai, S. Ahmad, E.S. Gazetas and M.R. Oh, 10/11/90, (PB91-196857).
- NCEER-90-0024 "A User's Guide to Strongmo: Version 1.0 of NCEER's Strong-Motion Data Access Tool for PCs and Terminals," by P.A. Friberg and C.A.T. Susch, 11/15/90, (PB91-171272).


- NCEER-90-0025 "A Three-Dimensional Analytical Study of Spatial Variability of Seismic Ground Motions," by L-L. Hong and A.H.-S. Ang, 10/30/90, (PB91-170399).
- NCEER-90-0026 "MUMOID User's Guide A Program for the Identification of Modal Parameters," by S. Rodriguez-Gomez and E. DiPasquale, 9/30/90, (PB91-171298).
- NCEER-90-0027 "SARCF-II User's Guide Seismic Analysis of Reinforced Concrete Frames," by S. Rodriguez-Gomez, Y.S. Chung and C. Meyer, 9/30/90, (PB91-171280).
- NCEER-90-0028 "Viscous Dampers: Testing, Modeling and Application in Vibration and Seismic Isolation," by N. Makris and M.C. Constantinou, 12/20/90 (PB91-190561).
- NCEER-90-0029 "Soil Effects on Earthquake Ground Motions in the Memphis Area," by H. Hwang, C.S. Lee, K.W. Ng and T.S. Chang, 8/2/90, (PB91-190751).
- NCEER-91-0001 "Proceedings from the Third Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction, December 17-19, 1990," edited by T.D. O'Rourke and M. Hamada, 2/1/91, (PB91-179259).
- NCEER-91-0002 "Physical Space Solutions of Non-Proportionally Damped Systems," by M. Tong, Z. Liang and G.C. Lee, 1/15/91, (PB91-179242).
- NCEER-91-0003 "Seismic Response of Single Piles and Pile Groups," by K. Fan and G. Gazetas, 1/10/91, (PB92-174994).
- NCEER-91-0004 "Damping of Structures: Part 1 Theory of Complex Damping," by Z. Liang and G. Lee, 10/10/91, (PB92-197235).
- NCEER-91-0005 "3D-BASIS Nonlinear Dynamic Analysis of Three Dimensional Base Isolated Structures: Part II," by S. Nagarajaiah, A.M. Reinhorn and M.C. Constantinou, 2/28/91, (PB91-190553).
- NCEER-91-0006 "A Multidimensional Hysteretic Model for Plasticity Deforming Metals in Energy Absorbing Devices," by E.J. Graesser and F.A. Cozzarelli, 4/9/91, (PB92-108364).
- NCEER-91-0007 "A Framework for Customizable Knowledge-Based Expert Systems with an Application to a KBES for Evaluating the Seismic Resistance of Existing Buildings," by E.G. Ibarra-Anaya and S.J. Fenves, 4/9/91, (PB91-210930).
- NCEER-91-0008 "Nonlinear Analysis of Steel Frames with Semi-Rigid Connections Using the Capacity Spectrum Method," by G.G. Deierlein, S-H. Hsieh, Y-J. Shen and J.F. Abel, 7/2/91, (PB92-113828).
- NCEER-91-0009 "Earthquake Education Materials for Grades K-12," by K.E.K. Ross, 4/30/91, (PB91-212142).
- NCEER-91-0010 "Phase Wave Velocities and Displacement Phase Differences in a Harmonically Oscillating Pile," by N. Makris and G. Gazetas, 7/8/91, (PB92-108356).
- NCEER-91-0011 "Dynamic Characteristics of a Full-Size Five-Story Steel Structure and a 2/5 Scale Model," by K.C. Chang, G.C. Yao, G.C. Lee, D.S. Hao and Y.C. Yeh," 7/2/91, (PB93-116648).
- NCEER-91-0012 "Seismic Response of a 2/5 Scale Steel Structure with Added Viscoelastic Dampers," by K.C. Chang, T.T. Soong, S-T. Oh and M.L. Lai, 5/17/91, (PB92-110816).
- NCEER-91-0013 "Earthquake Response of Retaining Walls; Full-Scale Testing and Computational Modeling," by S. Alampalli and A-W.M. Elgamal, 6/20/91, to be published.

- NCEER-91-0014 "3D-BASIS-M: Nonlinear Dynamic Analysis of Multiple Building Base Isolated Structures," by P.C. Tsopelas, S. Nagarajaiah, M.C. Constantinou and A.M. Reinhorn, 5/28/91, (PB92-113885).
- NCEER-91-0015 "Evaluation of SEAOC Design Requirements for Sliding Isolated Structures," by D. Theodossiou and M.C. Constantinou, 6/10/91, (PB92-114602).
- NCEER-91-0016 "Closed-Loop Modal Testing of a 27-Story Reinforced Concrete Flat Plate-Core Building," by H.R. Somaprasad, T. Toksoy, H. Yoshiyuki and A.E. Aktan, 7/15/91, (PB92-129980).
- NCEER-91-0017 "Shake Table Test of a 1/6 Scale Two-Story Lightly Reinforced Concrete Building," by A.G. El-Attar, R.N. White and P. Gergely, 2/28/91, (PB92-222447).
- NCEER-91-0018 "Shake Table Test of a 1/8 Scale Three-Story Lightly Reinforced Concrete Building," by A.G. El-Attar, R.N. White and P. Gergely, 2/28/91, (PB93-116630).
- NCEER-91-0019 "Transfer Functions for Rigid Rectangular Foundations," by A.S. Veletsos, A.M. Prasad and W.H. Wu, 7/31/91.
- NCEER-91-0020 "Hybrid Control of Seismic-Excited Nonlinear and Inelastic Structural Systems," by J.N. Yang, Z. Li and A. Danielians, 8/1/91, (PB92-143171).
- NCEER-91-0021 "The NCEER-91 Earthquake Catalog: Improved Intensity-Based Magnitudes and Recurrence Relations for U.S. Earthquakes East of New Madrid," by L. Seeber and J.G. Armbruster, 8/28/91, (PB92-176742).
- NCEER-91-0022 "Proceedings from the Implementation of Earthquake Planning and Education in Schools: The Need for Change The Roles of the Changemakers," by K.E.K. Ross and F. Winslow, 7/23/91, (PB92-129998).
- NCEER-91-0023 "A Study of Reliability-Based Criteria for Seismic Design of Reinforced Concrete Frame Buildings," by H.H.M. Hwang and H-M. Hsu, 8/10/91, (PB92-140235).
- NCEER-91-0024 "Experimental Verification of a Number of Structural System Identification Algorithms," by R.G. Ghanem, H. Gavin and M. Shinozuka, 9/18/91, (PB92-176577).
- NCEER-91-0025 "Probabilistic Evaluation of Liquefaction Potential," by H.H.M. Hwang and C.S. Lee," 11/25/91, (PB92-143429).
- NCEER-91-0026 "Instantaneous Optimal Control for Linear, Nonlinear and Hysteretic Structures Stable Controllers," by J.N. Yang and Z. Li, 11/15/91, (PB92-163807).
- NCEER-91-0027 "Experimental and Theoretical Study of a Sliding Isolation System for Bridges," by M.C. Constantinou, A. Kartoum, A.M. Reinhorn and P. Bradford, 11/15/91, (PB92-176973).
- NCEER-92-0001 "Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Volume 1: Japanese Case Studies," Edited by M. Hamada and T. O'Rourke, 2/17/92, (PB92-197243).
- NCEER-92-0002 "Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Volume 2: United States Case Studies," Edited by T. O'Rourke and M. Hamada, 2/17/92, (PB92-197250).
- NCEER-92-0003 "Issues in Earthquake Education," Edited by K. Ross, 2/3/92, (PB92-222389).
- NCEER-92-0004 "Proceedings from the First U.S. Japan Workshop on Earthquake Protective Systems for Bridges," Edited by I.G. Buckle, 2/4/92.
- NCEER-92-0005 "Seismic Ground Motion from a Haskell-Type Source in a Multiple-Layered Half-Space," A.P. Theoharis, G. Deodatis and M. Shinozuka, 1/2/92, to be published.

- NCEER-92-0006 "Proceedings from the Site Effects Workshop," Edited by R. Whitman, 2/29/92, (PB92-197201).
- NCEER-92-0007 "Engineering Evaluation of Permanent Ground Deformations Due to Seismically-Induced Liquefaction," by M.H. Baziar, R. Dobry and A-W.M. Elgamal, 3/24/92, (PB92-222421).
- NCEER-92-0008 "A Procedure for the Seismic Evaluation of Buildings in the Central and Eastern United States," by C.D. Poland and J.O. Malley, 4/2/92, (PB92-222439).
- NCEER-92-0009 "Experimental and Analytical Study of a Hybrid Isolation System Using Friction Controllable Sliding Bearings," by M.Q. Feng, S. Fujii and M. Shinozuka, 5/15/92, (PB93-150282).
- NCEER-92-0010 "Seismic Resistance of Slab-Column Connections in Existing Non-Ductile Flat-Plate Buildings," by A.J. Durrani and Y. Du, 5/18/92.
- NCEER-92-0011 "The Hysteretic and Dynamic Behavior of Brick Masonry Walls Upgraded by Ferrocement Coatings Under Cyclic Loading and Strong Simulated Ground Motion," by H. Lee and S.P. Prawel, 5/11/92, to be published.
- NCEER-92-0012 "Study of Wire Rope Systems for Seismic Protection of Equipment in Buildings," by G.F. Demetriades, M.C. Constantinou and A.M. Reinhorn, 5/20/92.
- NCEER-92-0013 "Shape Memory Structural Dampers: Material Properties, Design and Seismic Testing," by P.R. Witting and F.A. Cozzarelli, 5/26/92.
- NCEER-92-0014 "Longitudinal Permanent Ground Deformation Effects on Buried Continuous Pipelines," by M.J. O'Rourke, and C. Nordberg, 6/15/92.
- NCEER-92-0015 "A Simulation Method for Stationary Gaussian Random Functions Based on the Sampling Theorem," by M. Grigoriu and S. Balopoulou, 6/11/92, (PB93-127496).
- NCEER-92-0016 "Gravity-Load-Designed Reinforced Concrete Buildings: Seismic Evaluation of Existing Construction and Detailing Strategies for Improved Seismic Resistance," by G.W. Hoffmann, S.K. Kunnath, A.M. Reinhorn and J.B. Mander, 7/15/92.
- NCEER-92-0017 "Observations on Water System and Pipeline Performance in the Limón Area of Costa Rica Due to the April 22, 1991 Earthquake," by M. O'Rourke and D. Ballantyne, 6/30/92, (PB93-126811).
- NCEER-92-0018 "Fourth Edition of Earthquake Education Materials for Grades K-12," Edited by K.E.K. Ross, 8/10/92.
- NCEER-92-0019 "Proceedings from the Fourth Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction," Edited by M. Hamada and T.D. O'Rourke, 8/12/92, (PB93-163939).
- NCEER-92-0020 "Active Bracing System: A Full Scale Implementation of Active Control," by A.M. Reinhorn, T.T. Soong, R.C. Lin, M.A. Riley, Y.P. Wang, S. Aizawa and M. Higashino, 8/14/92, (PB93-127512).
- NCEER-92-0021 "Empirical Analysis of Horizontal Ground Displacement Generated by Liquefaction-Induced Lateral Spreads," by S.F. Bartlett and T.L. Youd, 8/17/92, (PB93-188241).
- NCEER-92-0022 "IDARC Version 3.0: Inelastic Damage Analysis of Reinforced Concrete Structures," by S.K. Kunnath, A.M. Reinhorn and R.F. Lobo, 8/31/92, (PB93-227502, A07, MF-A02).
- NCEER-92-0023 "A Semi-Empirical Analysis of Strong-Motion Peaks in Terms of Seismic Source, Propagation Path and Local Site Conditions, by M. Kamiyama, M.J. O'Rourke and R. Flores-Berrones, 9/9/92, (PB93-150266).
- NCEER-92-0024 "Seismic Behavior of Reinforced Concrete Frame Structures with Nonductile Details, Part I: Summary of Experimental Findings of Full Scale Beam-Column Joint Tests," by A. Beres, R.N. White and P. Gergely, 9/30/92, (PB93-227783, A05, MF-A01).

NCEER-92-0025	"Experimental Results of Repaired and Retrofitted Beam-Column Joint Tests in Lightly Reinforced Concrete Frame Buildings," by A. Beres, S. El-Borgi, R.N. White and P. Gergely, 10/29/92, (PB93-227791, A05, MF-A01).
NCEER-92-0026	"A Generalization of Optimal Control Theory: Linear and Nonlinear Structures," by J.N. Yang, Z. Li and S. Vongchavalitkul, 11/2/92, (PB93-188621).
NCEER-92-0027	"Seismic Resistance of Reinforced Concrete Frame Structures Designed Only for Gravity Loads: Part I - Design and Properties of a One-Third Scale Model Structure," by J.M. Bracci, A.M. Reinhorn and J.B. Mander, 12/1/92.
NCEER-92-0028	"Seismic Resistance of Reinforced Concrete Frame Structures Designed Only for Gravity Loads: Part II - Experimental Performance of Subassemblages," by L.E. Aycardi, J.B. Mander and A.M. Reinhorn, 12/1/92.
NCEER-92-0029	"Seismic Resistance of Reinforced Concrete Frame Structures Designed Only for Gravity Loads: Part III - Experimental Performance and Analytical Study of a Structural Model," by J.M. Bracci, A.M. Reinhorn and J.B. Mander, 12/1/92, (PB93-227528, A09, MF-A01).
NCEER-92-0030	"Evaluation of Seismic Retrofit of Reinforced Concrete Frame Structures: Part I - Experimental Performance of Retrofitted Subassemblages," by D. Choudhuri, J.B. Mander and A.M. Reinhorn, 12/8/92.
NCEER-92-0031	"Evaluation of Seismic Retrofit of Reinforced Concrete Frame Structures: Part II - Experimental Performance and Analytical Study of a Retrofitted Structural Model," by J.M. Bracci, A.M. Reinhorn and J.B. Mander, 12/8/92.
NCEER-92-0032	"Experimental and Analytical Investigation of Seismic Response of Structures with Supplemental Fluid Viscous Dampers," by M.C. Constantinou and M.D. Symans, 12/21/92, (PB93-191435).
NCEER-92-0033	"Reconnaissance Report on the Cairo, Egypt Earthquake of October 12, 1992," by M. Khater, 12/23/92, (PB93-188621).
NCEER-92-0034	"Low-Level Dynamic Characteristics of Four Tall Flat-Plate Buildings in New York City," by H. Gavin, S. Yuan, J. Grossman, E. Pekelis and K. Jacob, 12/28/92, (PB93-188217).
NCEER-93-0001	"An Experimental Study on the Seismic Performance of Brick-Infilled Steel Frames With and Without Retrofit," by J.B. Mander, B. Nair, K. Wojtkowski and J. Ma, 1/29/93, (PB93-227510, A07, MF-A02).
NCEER-93-0002	"Social Accounting for Disaster Preparedness and Recovery Planning," by S. Cole, E. Pantoja and V. Razak, 2/22/93, to be published.
NCEER-93-0003	"Assessment of 1991 NEHRP Provisions for Nonstructural Components and Recommended Revisions," by T.T. Soong, G. Chen, Z. Wu, R-H. Zhang and M. Grigoriu, 3/1/93, (PB93-188639).
NCEER-93-0004	"Evaluation of Static and Response Spectrum Analysis Procedures of SEAOC/UBC for Seismic Isolated Structures," by C.W. Winters and M.C. Constantinou, 3/23/93, (PB93-198299).
NCEER-93-0005	"Earthquakes in the Northeast - Are We Ignoring the Hazard? A Workshop on Earthquake Science and Safety for Educators," edited by K.E.K. Ross, 4/2/93.
NCEER-93-0006	"Inelastic Response of Reinforced Concrete Structures with Viscoelastic Braces," by R.F. Lobo, J.M. Bracci, K.L. Shen, A.M. Reinhorn and T.T. Soong, 4/5/93, (PB93-227486, A05, MF-A02).
NCEER-93-0007	"Seismic Testing of Installation Methods for Computers and Data Processing Equipment," by K. Kosar, T.T. Soong, K.L. Shen, J.A. HoLung and Y.K. Lin, 4/12/93, (PB93-198299).

- NCEER-93-0008 "Retrofit of Reinforced Concrete Frames Using Added Dampers," by A. Reinhorn, M. Constantinou and C. Li, to be published.
- NCEER-93-0009 "Seismic Applications of Viscoelastic Dampers to Steel Frame Structures," by K.C. Chang and T.T. Soong, to be published.
- NCEER-93-0010 "Seismic Performance of Shear-Critical Reinforced Concrete Bridge Piers," by J.B. Mander, S.M. Waheed, M.T.A. Chaudhary and S.S. Chen, 5/12/93, (PB93-227494, A08, MF-A02).
- NCEER-93-0011 "3D-BASIS-TABS: Computer Program for Nonlinear Dynamic Analysis of Three Dimensional Base Isolated Structures," by S. Nagarajaiah, C. Li, A.M. Reinhorn and M.C. Constantinou, 8/2/93.

ISSN 1088-3800