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PREFACE

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion
and dissemination of knowledge about earthquakes, the improvement of earthquake-resistant
design, and the implementation of seismic hazard mitigation procedures to minimize loss of lives
and property. The emphasis is on structures and lifelines that are found in zones of moderate to
high seismicity throughout the United States.

NCEER'’s research is being carried out in an integrated and coordinated manner following a
structured program. The current research program comprises four main areas:

L

Existing and New Structures
Secondary and Protective Systems
Lifeline Systems

Disaster Research and Planning

@
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This technical report pertains to Program 2, Secondary and Protective Systems, and more specifi-
cally, to a passive protective systems. Protective Systems are devices or systems which, when
incorporated into a structure, help to improve the structure’s ability to withstand seismic or other
environmental loads. These systems can be passive, such as base isolators or viscoelastic
dampers; or active, such as active tendons or active mass dampers; or combined passive-active
systems.

Passive protective systems constitute one of the important areas of research. Current research
activities, as shown schematically in the figore below, include the following:

1. Compilation and evaluation of available data.

2. Development of comprehensive analytical models.

3. Development of performance criteria and standardized testing procedures.
4. Development of simplified, code-type methods for analysis and design,

Analytical Modeling and Data Compilation
Experimental Verification and Evaluation

N Y

Performance Criteria and
Testing Procedures

!

Methods for Analysis
and Design
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Considered in this report is the modeling of viscous dampers for vibration and seismic isolation
of building structures. A fractional derivative Maxwell model is proposed and validated by
experimentally observed dynamic characteristics. It is also used in the analysis of a base-
isolated model structure which has been tested on a shaking rable,
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ABSTRACT

A fractional derivative Maxwell model is proposed for viscous dampers
which are used for vibration isolation of piping systems, forging hammers and
other industrial equipment, as well as for vibration and seismic isolation of
building structures. The development and calibration of the model is based on
experimentally observed dynamic characteristics. The proposed model 1is
validated by dynamic testing and very good agreement between predicted and
experimental results is obtained. Some analytical results for a gingle-degree-
of-freedom viscodamper system are presented. These results are useful to the
design of vibration isolation systems. Furthermore, an equivalent viscous
oscillator is defined whose response is essentially the same as that of the
viscodamper isolator. Finally, the model is employed in the analysis of a base-

isolated model structure which has been tested on a shake table,
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SECTION 1
INTRODUCTION

Viscous dampers are devices for dissipating energy. They are used in the
reduction of vibration in pipework systems and together with helical steel
springs in vibration isolation of massive industrial equipment like presses and
forging hammers. More recently they have been proposed for seismic isolation of
buildings (Huffmann, 1985). Two residential buildings have been very recently
constructed in Los Angeles, California on isolation systems, consisting of

helical steel springs and viscous dampers, for earthquake protection.

Viscous dampers typically consist of a moving part immersed in highly
viscous fluid. 1In the applications described above, the moving part is in the
form of a hollow cylinder (piston). Figure 1-1 shows the construction of an
experimental cylindrical damper which has been used in the experiments described
in this report. The damper piston can move in all directions and damping forces
develop as a result of shearing action and displacement in the fluid. Dampers
of different geometry than the one shown in Figure 1-1 have been used in
combination with elastomeric bearings in a seismic isolated building in Japan
(Higashino et al 1988, Kelly 1988). The dampers consisted of circular plates
which were positioned on top of viscous fluid within a container. Damping

forces develop by shearing of the fluid during motion of the plate.

The dynamic characteristics of a viscous damper depend primarily on the
properties of the viscous fluid and secondarily on the geometry of the device.
Two types of damper fluid are used: temperature-dependent fluids which can be
adapted to the operating temperature of a particular application, and nearly
temperature-independent fluids. The fluid used in the tests reported herein is
a form of silicon gel with nearly temperature-independent properties in the
range of -40 to 130° ¢. It was supplied by a manufacturer of viscous dampers
(GERB, 1986). It is known that viscous dampers exhilbit viscoelastic behavior,
that is behavior which incorporates both elastic and viscous characteristics.

Furthermore, the properties of viscous dampers are strongly frequency dependent,



e.g. for the tested dampers the damping coefficient showed a ten-fold decrease
within the frequency range of 0 to 50 Hz. Nevertheless, mathematical models
used for these devices have been limited to that of the simple linear viscous

dashpot (GERB 1986, Higashino et al 1988).

Herein, the concept of fractional derivative (Oldham and Spanier, 1974) is
employed in the development of a force-displacement relationship for viscous
dampers. Fractional derivatives within the context of viscoelasticity have been
used as early as 1936 by Gemant, 1936 and very recently by Koh and Kelly, 1990,
who proposed a fractional Kelvin model for elastomeric bearings. Earlier
experiments with viscous dampers (Schwahn et al, 1988) have demonstrated that
the classical two- and three-parameters models of viscoelasticity were incapable
of describing the behavior of the dampers with sufficient degree of accuracy.
The authors of this report observed that the frequency dependency of the
mechanical properties of the tested dampers varied as frequency was raised to
fractional rather than integer powers. This suggests that differentials of
fractional order could be used in modeling of the dampers. Similar observations
have prompted Gemant, 1936 to first propose fractional derivative models for

viscoelastic materials. The above reasons motivated the study reported herein.
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SECTION 2
FRACTIONAL DERIVATIVE MAXWELL MODEL

2.1 Model of Viscous Fluid

The dynamic characteristics of the viscous damper of Figure 1-1 depend
primarily on the properties of the viscous fluid. The fluid used in the tested
damper is a form of silicon gel with mass density of 0.93 g/em?®, which is
slighly less than that of water. The rate-dependent and frequency-dependent
properties of the fluid were determined In tests empleying the cone-and-plate

method (Bird et al, 1987).

First, the cone-and-plate method in steady shear flow was used to obtain
measurements of the dynamic viscosity of the fluid. Figure 2-1 depicts measured
values of viscosity as function of rate of strain for twe samples of the fluid.
The viscosity has a value of about 1900 Pa-sec (19,000 poise) in the range of

2

shear strain rate of O to 2 secnl. Beyond the limit of 2 sec “, the viscosity

reduces.

Oscillatory shear flow experiments using the cone-and-plate method were
used to measure the storage and loss shear moduli of the fluid. In this test,
oscillatory shear flow is imposed and measurements of the induced shear stresses

are made {see Bird et al, 1987 for details). The relation between amplitude of

shear stress, r{(w), and amplitude of shear strain, v{w) is expressed as

T(0)=[G1{(w) + 1Gy(w)]y(w) (2-1)

where G1 and G2 are the storage and loss shear modulus, respectively, i1 is the
imaginary unit and w ig the frequency of oscillation. Figures 2-2 and 2-3 show
measured values of moduli G, and G, as function of frequency for two values of
amplitude of shear strain, 5% and 10%, It may be observed that the amplitude of

strain has an insignificant effect on the measured values of the shear moduli.
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The authors observed that the frequency dependency of the shear moduli of
the fluid varied as frequency was raised to fractional rather than integer
powers. This suggests that fractional differentials could be used in modeling
the shear stress-strain relationship of the fluid. The simplest model of
viscoelasticity which is capable of describing fluid behavior is the Maxwell
model. It was natural to consider as candidate model the Maxwell model with the

Tirst order derivatives replaced by fracticonal order derivatives.

The shear stress-strain relationship in the fractional derivative Maxwell

model is

r+ A DF[r] = pu DYiy] (2-2)

in which r and vy are the shear stress and strain, respectively and A and p are
generalized material constants. Dr[f(t)] is the fracticnal derivative of order
r of the time dependent function f. A definition of the fractional derivative
of a function satisfying the condition f(t)=0 for t<0 is via the following

series which was given by Grunwald (Oldham and Spanier, 1974)

£ .
T [E1 N-1 ©{j-r)
DY(f(t)] = *.i_ljtf £) f\i_];i‘ I}gwr) ?]-:mo EESH) f(t—j*h%) (2-3)

where I' is the Gamma function. The authors prefer the above definition to the
more commonly used integral representation of Riemann-Liouville (Oldham and
Spanier, 1974) because equation 2-3 involves only evaluations of the function

itself and not of its derivatives and integrals.

The model of equation 2-2 is a special case of the more general model of
Bagley and Torvik, 1983. 1t may be seen that the model of equation 2-2
collapses to the conventional Maxwell model when r=g=1, in which case X and pu

become the relaxation time and dynamic viscosity, respectively.
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Equation 2-2 may be written in the form of equation 2-1 by taking Fourier
transform and noting the property of the Fourier transform of a fractional

derivative,

FIDTIE(E)]] = (i) FIE(E)} (2-4)
in which i’ is represented by its principal value

it = cos (%L) + i sin (%L (2-3)

and F [ ] is the Fourier transform of the expression in the brackets. The

storage and loss shear moduli are given by

I wqcos(g%){l+kwrcos(£%)} + i Awq+rsin(£%)sin(g%)

Gy= 3 (2-6)

7 quin(g%){l+Awrcos(£%)] - Awq+rsin(£%)cos(g%)

G- 5 (2-7)

d =1 + 2%%%

+ 220" cos (L%) (2-8)
The four parameters of the model were determined by the following
procedure. Based on the fact that the viscesity is independent of the rate of
strain in a wide range of values, parameter g was set eqgqual to unity.
Accordingly, parameter u becomes the viscesity. It should be equal to about
1900 Pa-sec. Parameters i and r were determined in a least square fit of the
experimental data on the storage modulus at 5% strain and parameter p was found
by fitting the loss modulus experimental data. The results was
3=0.26(sec)? 765 £=0.565, g=1 and p=1930 Pa-sec. The value of u is in very
good agreement with the experimental results on the viscesity. The values of
moduli G, and G, predicted by equations 2-6 to 2-8 are plotted against the
experimental results in Figures 2-2 and 2-3. The agreement is seen to be very

good.
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Attempts have been made to fit the viscoelastic properties of the viscous
fluid with conventional models of viscoelasticity. It was found that
conventional models were worst than the proposed fractional derivative model and
valid only in a small range of frequencies. For example, the conventional
Maxwell model could fit well only the data on the loss modulus within a
frequency range 50 times smaller than that in the fractional derivative Maxwell
model. Figures 2-4 and 2-5 compare the experimental values of shear moduli of
the fluid at 5% strain to values predicted by the conventional Maxwell model
(q=r=1). Evidently, the conventional Maxwell model is incapable of describing

the behavior of the fluid.

2.2 Model of Viscous Damper in Vertical Motion

Dynamic tests of the viscous damper of Figure 1-1 were conducted by
imposing sinusoidal motion of specified amplitude and frequency to the piston of
the damper and measuring the force needed to maintain the motion. Figure 2-6
shows a schematic representation of the testing arrangement, A hydraulie
actuator was used to impose the motion. A load cell was placed below the damper
to measure the reaction force. Figure 2-7 shows a photograph of the testing
arrangement together with a close-up of the damper with the protective sleeve
lowered to reveal the piston. It should be noted that the reaction force is the
force needed to maintain the motion, whereas the force imposed by the actuater
differs from the reaction force by the inertia force of the moving part. This
inertia force is larger than the reaction force in the tests at large frequency
of motion. For example, in a test at 45 Hz frequency, the peak reaction force
was 463.7N (104 1bs) and the peak inertia force was about 758N (170 1bs). This
large inertia force was a result of the almost 8.5g acceleration of the moving

part which weighed about 90N (20 1lbs).

The recorded force-displacement loops had an almost precise elliptical
shape (see Section 3 for graphs of the loops). These loops were used in
obtaining the frequency dependent properties of the damper. Under steady-state

conditions, the force and displacement are

2-6
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Figure 2-7 Photographs of Testing Arrangement for Vertical Motion.
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u=U_ sinwt (2-9)

P=P0 sinfwt+s) (2-10)
where P is the recorded amplitude of the force, U, is the recorded amplitude of
displacement, w is the frequency of motion and § is the phase difference. The
energy dissipated in a cycle of steady-state motion is

Wd =éPdu = @ sind POU0 (2-11)

Furthermeore, equation 2-10 may be written as

P = K;U_ sin wt + K,U_ cos wt (2-12)
where
p P,
Ky = =L s0s6, Ky, = 5= sins (2-13)
[s] (¢

Ky and K, are the storage and loss stiffnesses of the damper. Quantity Po/Uo s
Ko represents the elastic stiffness. It should be noted that the two parts of
equation 2-12 represent respectively the in-phase and 90° out-of-phase parts of

the force. Accordingly, using equation 2-9 and its time derivative {velocity},

P~Ky u+* u (2-14)

c - -2 (2-15)

Returning to equation 2-13 and using equation 2-11,



2 (2-16)

Equations 2-11 to 2-16 are used to extract the frequency-dependent
properties of the damper from the measured quantities P, U  and W,. First,
equation 2-16 is used to obtain the loss stiffness. Equation 2-15 is used to
obtain the damping coefficient. Finally, equations 2-13 are used to obtain the

phase difference and storage stiffness.

Table 2-1 summarizes the experimental results for motion in the vertical

direction. The results are presented in units of lbs and in., the units in
which measurements were made. The strong dependency of the mechanical
properties of the damper on frequency is evident. 1In some of the tests the

amplitude of displacement was varied while the frequency was kept constant. The
properties were practically unaffected by the value of displacement amplitude.
This indicates that for the range of parameters used in these tests, the
properties are frequency-dependent but rate-independent (i.e. independent of

velocity of motion).

A mathematical model of the device is written in a form analogous to that
of the shear stress-strain relationship of the damper fluid. This is based on
the assumption that the fluid is primarily subjected to shearing action while
the piston moves in vertical motion. The force-displacement relationship in
vertical motion is expressed as

P+ ADr[P]mCODq[u] (2-17)

in which P and u are the force and displacement, respectively. The expectation
is that q equals to unity and X and r are very close to the values obtained for
the stress-strain relationship of the fluid. For g=1, constant C0 attains
physical interpretation. It is the damping coefficient at zero fregquency which
could be measured in an oscillatory test at very low frequency (0.01 Hz in this

study).
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Table 2-1: Experimental Results for Vertical Motion (1 1b = 4.46 N, 1 in.= 25.4 mm)

Frequency Amplitude Force Energy Stiffrness Stiffness Damping Coef. Phase
(Hz) UO(in) Po(lbs) WD(lb~in) Kl(lb/in) Kz(lb/in) € (lb-sec/in) (degrees)
0.01 0.2 0.97 0.60 .85 4.77 75.99 79.89
0.05 6.2 &4.57 2.52 16.95 20.05 63.83 61.36
0.10 G.2 8.57 5.00 15.91 39.7% 63.33 68.21
0.20 Gc.2 16.42 10.00 20.19 79.58 63.33 75.76
0.50 G.2 36.78 21.84 60.11 173.79 55.32 70.92

1 .2 62.50 35.60 131.91 283.29 45.09 6£5.03
2 0.2 102.80 56.08 255.03 446.27 35.51 60.25
4 0.2 157.00 76.00 500.46 60479 24.06 50.39
& 0.2 200.00 93.580 667.27 744 .85 15.76 48.15
8 .1 118.00 27.20 801.74 865.80 17.22 47.20

8 0.2 220.89 100.80 752.71 802.14 15.96 46.82
10 0.1 118.00 24.40 888.35 776.68 12,36 41.16
10 6.2 243,00 108.00 872.92 859 .44 13.68 44,55
12 c.1 143.00 31.80 1016.44 1005.86 13.34 44 .70
15 0.1 154.30 33.60 1112.19 1069.52 11,35 43.88
15 6.2 291.50 120.00 1101.1¢ 954,93 10.13 40.93
18 0.055 89.30 10.20 1218.28 1073.31 9.49 41.38
18 0.1 164.30 35.20 1201.68 1120.45 9.91 42.99
18 0.2 300.00 124 .40 1126.95 989.94 g8.75 41.30
20 0.055 89.30 10.00 1236.50 1052.26 8.37 40.40
25 0.055 90.00 10.30 1225.97 1083.83 6.90 £1.47
25 0.1 181.56 37.6C 1364 .47 1196.84 7.62 41,25
30 0.055 108.50 11.40 1613.09 1451.49 7.70 41.98
35 0.038 79.70 6.60 1510.72 1454 .88 6.62 43.92
40 0.044 109.00 10.00 1853.00 le44 .16 £.54 41.58
&0 0.018 50.00 1.67 2241.48 1640.67 6.52 36.20
45 G.041 104.00 7.61 2087 .52 1441.01 5.09 34,62
50 0.035 65.00 5.88 1055.72 1527.8% 4.86 55.36
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The relationship between force amplitude, P(w), and displacement

amplitude, u(w) is obtained by employing Fourier transform to equation 2-17

Plw) = [Ky(@) + i Ky(w)] u(w) (2-18)

where K; and K, are the storage and loss stiffnesses. The mathematical
expressions for stiffnesses K1 and K2 are identical to those for modulil Gl and

G2 {equations 2-6 to 2-8) except that p is replace by Co‘

In the calibration of the model, parameter q was set equal to unity and
parameters A and r were determined in a least square fit of the elastic
stiffrness curve (defined as the square root of the sum of squares of Ky and KZ)‘
Constant C_ was then found by fitting the damping coefficient curve. The
parameters of the model are g=1, CO=15,OOO Ns/m, r=0.6 and Am0.3(sec)0'6.

Indeed, parameters X and r are very close to those of the stress-strain

relationship of the fluid.

Figures 2—8.to 2-12 compare predictions of the calibrated model of
equation 2-17 with experimental results on the elastic stiffness, damping
coefficient, storage and loss stiffness and phase difference (calculated as
tan'l(Kz/Kl) ). The agreement between the two sets of results is very good.
Comparison of experimental and analytical force-displacement loops are presented

in section 3.
2.3 Model of Viscous Dampers in Horizontal Motion

Tests with motion in the horizontal direction were conducted with the
arrvangement of Figure 2-13. The damper was placed on top of very low friction
roller bearings and a lcad cell mounted on the damper housing was used to
measure the reaction force. Roller bearings were also used to support the
moving piston and prevent it from tilting. The friction force from the roller

bearings was estimated to be extremely low and accordingly the measured force in
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the load cell was not corrected for the effect of the friction force.
Photographs of the testing arrangement are shown in Figure 2-14. The top
photograph shows a general view of the arrangement. The middle photograph shows
the roller bearing connection for preventing tilting of the piston and the

bottom photograph shows the connection of the housing to the load cell.

The recorded force-displacement loops had again elliptical shape for
frequencies of motion up to 1 Hz. For frequencies of 2 Hz and ahbove, the loops
had a higher harmonic function superimposed on the basic elliptical shape.
Figures 2-15 show experimental force-displacement loops for horizontal motion
and for frequencies of 1 to 15 Hz. The wavy form of the loop is seen in these
figures. This phenomenon is caused by standing waves that generate in the fluld
during motion of the piston. In modeling the behavior of the device, only the
basic elliptical shape has been accounted and the higher harmonics in the

recorded force have been neglected.

Tests were conducted with the arrangement of Figure 2-13 with frequencies
in the range of 0.05 to 20 Hz. The measured properties of the damper are given
in Table 2-II. The properties are given in units of lbs and in,.,, the units in
which measurements were made. Three of the tests in Table 2-1I1 (those
identified by an asterisk) were conducted at large amplitude of displacement
using a different testing arrangement. Four identical dampers were commected to
the shake table at Buffalo with thelr pistons connected to a stiff base
consisting of two heavy WL14x90 steel sections. The weight of the base was
carried by a crane. The base was connected by stiff rods to a nearby reaction
wall. The rods were instrumented by load cells (see Figure 2-16). The shake
table was driven in displacement-controlled mode with specified amplitude and
frequency. The force transmitted through the four dampers was measured by the
load cells connecting the base to the reaction wall. In this way, data from
four dampers were obtained and then reduced to a single damper. The properties
obtained in these tests are consistent with those obtained with the arrangement

of Figure 2-13.



Figure 2-14 Photographs of Testing Arrangement of Damper for Heorizontal

Motion.



Figure 2-14  Continued.
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Table 2-1I1:

Experimental Results for Horizontal Motion (llb = 4.46N, 1 in. = 25.4 mm)

Frequency Amplitude Force Energy Stiffness Stiffness Damping Coef. Fhasze
(Hz) U, (in) P (lbs) W,{lb-in) Kl(lb/in) K,(1b/in) € (1b-sec/in) (degrees)
0.05 0.20 2.28 1.28 5.08 10.24 32.59 63.60
0.10 0.20 4.57 2.44 12.00 19.51 30.90 58.42
0.20 0.20 8.12 L. 66 16.36 37.27 29.66 66,30
0.50 0.20 17.96 16.00 41.33 79.98 25.486 62.67
0.50 0.81 69.11 162.76 31.21 79.95 25.45 63.63 *

1 0.20 30.28 16.60 73.56 132.76 21.13 61.01
1 0.2¢ 28.17 14 .40 81.70 115.17 18.33 54,65
1 0.84 128.34 290.91 78.91 129.99 20.45 58.74 %
2 0.2¢ 50.060 25.80 142 .26 206 .34 16.42 55.42
2 0.81 213.49 42456 163.60 208.54 16.59 51.85 =
4 0.20 74.99 35.40 239.65 283.12 11.26 49.75
5 0.10 43.31 9.75 300.22 336.75 10.72 48.28
6 .20 92.96 40.80 332.64 326.31 B.66 bly 45
6 0.19% 90.27 40.60 314.31 339.87 §.02 47.24
8 G.20 103.52 45.60 369.12 364.65 7.26 L4 65
8 0.10 54.90 12.00 394.33 381.97 7.60 44 .09
10 0.10 60.36 13.00 44372 .17 413.80 6.59 43.10
10 G.20 119 .44 48.00 464,81 423.24 6.74 42.32
12 0.10 66.20 13.40 506.27 426.54 5.66 40,11
12 0.20 135.21 51.20 540.06 409.48 5.43 37.17
15 0.10 81.69 15.60 648 .65 496,56 5.27 37.44
20 0.085 88.88 15.00 771.63 529.03 4.21 3444
20 0.19 183.10 564.490 821.16 455.39 3.62 29.01
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In modeling the behavior of the device for motion in the horizontal
direction, the model of equation 2-17 is used. The calibration of the model was
done in the same way as in the case of vertical motion, resulting in the
following parameters: g=1, C, = 6000 Ns/m, AmO.lS(sec)O'T and r=0.7. Figures 2-
17 to 2-21 compare the frequency dependent properties of the damper as measured
and as predicted by the fractional Maxwell model. The agreement is good. It
ghould be noted that the model is capable of modeling only the basic behavior of
the damper and not the higher harmonics observed in the loops of Figures 2-15.
To demonstrate this, the steady-state force-displacement loops as predicted by
the calibrated analytical model of equation 2-17 have been plotted next to the
experimental loops in Figures 2-15. For the calculation of the force in steady-

state motion, equation 2-12 has been used.
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SECTION 3
VERIFICATION OF MODEL

A model for the force-displacement relationship of viscous dampers has
been developed and calibrated, The calibration was based on experimental data
under conditions of steady-state motion, For verification, the predictions of
the model are compared to experimental results under conditions of transient
motion. This requires the development of numerical procedures for the solution
of the constitutive relationship, i.e. the solution of equation 2-17 for the
time history of force P when the time history of displacement U is known. Two
numerical procedures are developed, one valid in the time domain and the other

valid in the frequency domain.
3.1 Solution of Constitutive Relation in The Time Domain - GlFP Algorithm

Numerical procedures in the time domain are usually preferred so that
nonlinearities can be included if necessary. For example, a time domain
analysis procedure is required when viscous dampers are used in isolation
systemsg which incorporate other nonlinear devices like sliding bearings, or in

structures which undergo inelastic deformations.

Several algorithms for the numerical evaluation of fractional derivatives
are presented by Oldham and Spanier, 1974, One of these algorithms, which is
called the "Gl-algerithm", is generated from the Grunwald definition of
fractional derivative (equation 2-3) by omitting the N+ operation. However, in
evaluating the fractional derivative of the force at time t, the value of the
force at that time is needed which is unknown. Accordingly, the Gl-algorithm
has been modified to include an iterative procedure. Equation 2-17 is written
(for the case of g=1) as

DYIB(E)] - % (8 §F - P(O)] (3-1)

where the fracticnal derivative is given by



(£, Nl
N - F'{j-ry

DrEP(t)] = ffTEj_ jmo F(j;l) P(t'jﬁ)

{3-2)

The value P{t) is assumed and equation 3-2 is used to evaluate Dr[P{t)]. The
calculated value is compared to the value calculated from equation 3-1 and
iteration is employed with continuous updating of the value of P{t) until the
difference between the two calculated values is within a prescribed tolerance.
This algorithm we term the "GlFP-algorithm." To expedite the evaluation of the

series in equation 3-2, the recursion

(j-q)  j-q-1 T{j-q-1)
T+l ~ ] INGD

(3-3)
is used. This avoids explicit use of gamma functions,

The relative error in evaluating the fractional derivative of a function
using the Gl-algorithm has been determined by Oldham and Spanier, 1974 in
selected cases of simple functions in the form of powers of the independent
variable. The relative error, defined as the approximate wvalue minus the exact

value and divided by the exact value is

L -4
€ = Fo (3-4)
This equation may be used to establish the number of terms needed in the series
of equation 3-2 for specified relative error ¢. For example, when r=0.7 and

e=0.001, N should be larger than 245.

To demonstrate the accuracy of the GlFP-algorithm, an analytical solution
of equation 2-17 is presented for the particular case of gq=1, r=0.5 and

u=UOsinwt. Applying Laplace transform to equation 2-17 we arrive at

1/2
LB L7 175 - & exe(perfeILIE (3-5)
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where L[ ] stands for the Laplace transform of the expression in the brackets
and erfc is the complementary error function. Recognizing that equation 3-5 is
a convolution, the force P(t) is determined to be

P(t)=(2w)1/2U0(coswtC2+sinwt 55)

U w L 1/2

- i coswt { exp (iﬁ) erfc (T 5 ) coswrdr
t
U w 1/2
- i sinwt { exp (iﬁ) erfe (f5~) sinwrdr (3-6)

where C, and S, are the Fresnel integrals (Abramowitz and Stegun, 1970)

wt wt

1 cos _Z 1 gin z
Co = dz S. = dz (3-7)
2 (2#)1/2 £ Z1/2 2 (zﬂ)l/Z i z1/2

?

Figure 3-1 compares the analytical seolution for the time history of force
P to the numerical solution (GLlFP algorithm) for the case of a damper with
r=0,5, A=0.3 (sec)o‘s, 60%15,000 Ns/m and for displacement with U0=5.08mm and
frequency f=w/2x = 1 Hz and UOmZ.Samm and f=20Hz. The agreement between

analytical and numerical results is very good.
3.2 Solution of Constitutive Relation in the Frequency Domain-DFT Algorithm

Numerical schemes in the frequency domaln are very convenlent to use but
restricted to linear systems. Returning to equation 2-18 we recognize that the
expression Kl(w)+iK2(w) represents the amplitude and phase angle of the steady-
state force in the damper for a harmonic displacement input of unit amplitude.

Accordingly, the time history of force is expressed as

P(t)= 5% _mfw [Kq (0)+iK, ()] T(w)e @t (3-8)
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where u(w) represents the Fourier transform of the imposed motion. The
computation of the force is thus easily obtained by the Discrete Fourier
Transform (DFT) approach in combination with Fast Fourier Transform (¥FT)
algorithms (Veletsos and Ventura, 1985). A particular advantage of equation 3-8
is that it applies to all models of viscoelasticity, provided that parameters K;
and K2 are known. In contrast, the GlFP-algorithm (eguations 3-1 and 3-2)
applies to the specific case of the fractional derivative Maxwell model with

g=1.

The DFT-algorithm has been employed in the calculation of the time history
of force when input is the displacement history used in the experiments for the
calibration of the model (see Table 2-I). In this respect, equation 3-8 has
been used with u{t) being the measured displacement of the piston of the damper
which was available in discretized form. Figures 3-2 compare the experimental
force-displacement loops to the analytically determined loops. The agreement is
excellent. It should be observed that the model predicts every detail of the

experimental response including the transient part at the initiation of motion.

3.3 Verification Tests

The results shown in Figures 3-2 provide a verification of the developed
fractional derivative Maxwell model for viscous dampers. However, in these
tests the motion of the piston had a simple form and contained only a single
frequency. Further tests were conducted with more complicated motion of the
piston and the experimental results have been compared to predictions of the

model. All tests were with motion in the vertical direction.

In one set of verification tests the motion was harmonic with time

dependent frequency and amplitude. The displacement was specified as either

u=U0 sinfwl(t) t] (3-9)
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T -T
u=2u LB sinfu(e) ¢ (3-10)
i3]
where
w(t) = 5L (3-11)
m

with U0#2.54mm (0.1 in.), tm#9 sec and £f=20 Hz. The displacement histories were
digitized and used as Input to the actuator in the testing arrangement of Figure
2-6. The experiments were run for time t between 0 and 2 secs. In this time
interval, the frequency of motion {equation 3-11) changes from 0 to 4.45 Hz., 1In
this range of frequencies the properties of the damper change by several orders
of magnitude (see Figures 2-8 to 2-11). Figures 3-3 and 3-4 show the
experimental loops in the two tests together with the loops predicted by the
model and calculated by the GLlFP and DFT algorithms, respectively. The figure
on top is for the constant amplitude motion (equation 3-9) and the figure at the
bottom is for the variable amplitude motion (equation 3-10). The agreement

between analytical and experimental results is very good.

In another test, the input motion was a four cycle beat described by

umﬁo (sinwlt + sinwzt) (3-12)
with U0=2.54mm (0.1 in.), wq = 4w r/s (2 Hz) and meSﬂ r/s (2.5 Hz). The

experimental loop together with the predicted loop (DFT algorithm) are shown in

Figure 3-5. The agreement is very good.
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SECTION &
VISCODAMPER OSCILLATOR

A viscodamper oscillator is defined as a single-degree-of-freedom (SDOF)
spring-mass system with viscous dampers. It represents the simplest model of a
vibration isolation system.

4.1 Frequency and Damping Ratio in Free Vibration

The equation of motion of a free vibrating viscodamper oscillator is

m u(t)+R u(t) + P(t) = O (4-1)
P(t) + ADT[B(t)] = C_ g% (4-2)

where m is the mass, K is the stiffness of spring, u(t) is the displacement and

P(t) is the force from viscous dampers.

The eigenvalue problem of equations 4-1 and 4-2 is produced by applying
Laplace transform and deriving the characteristic equation in terms of the
Laplace transform parameter s

2 2‘fdwos 2

s+m+wo=0 (4-3)

where

- &1/2 (4-4)

Q
- (4-5)
2 (k) 172



In equations 4&-4 and 4-5, w  1is recognized is the frequency of free vibration of
the oscillator when viscous dampers are not present and Ed ig recognized as the
damping ratio of an oscillator with constant viscous coefficient equal to C .
Clearing the Laplace parameter from the denominator of equation 4-3,

24t 2 2.r 2

+ 5 +2§dwos + Awo s+ w, " o= 0 (4-6)

AS

The next step is to apply a transformation to equation 4-6 which produces a
polynomial equation. In the particular case of r=0.6 (vertical vibration of

viscous dampers) the transformation is

o = st/ (4-7)
The result is

Aals + alo + 2§dw005 + Aw0203 +ow, = 0 (4-8)
The solution of equation 4-8 results in 13 eigenvalues. Raising these

eigenvalues to the power of 5 we obtain the complex roots of equation 4-6. For
an underdamped system (a system that has oscillatory behavior), the complex
roots which correspond to the natural frequency of the system will appear as a

conjugate pair

s = sp + i St (4-9)

from where the natural frequency wy and damping ratio El are derived

wy = (sg” + s, )72 (4-10)
S
£, = ;}; (4-11)



To identify the complex roots that correspond te the natural frequency, their
phase angle must be calculated and found to lie in the range of -180 to 1807,
Only one conjugate pair of roots can satisfy this condition. The remaining
roots are not associated with frequenices but rather describe the nonoscillatory

behavior of the system.

For the proof of equations 4-10 and 4-11 consider the SDOF viscous
oscillator with frequency wq and damping ratio 51‘ Its characteristic equation

in terms of the Fourier parameter w is

¥ - 21¢ 010 w7 = 0 (4-12)

with roots

w=1 w(1-£,9% 160 (4-13)
Using the relation between Laplace and Fourier parameters, s = -iuw,
s = gy F 1w (1-6, 57 (4-14)

By comparing equations 4-9 and 4-14, equations 4-10 and 4-11 are derived.

The procedure described above has been implemented in the case of a
viscodamper oscillator with viscous dampers moving in the vertical direction.

6

Parameters X and r were 0.3 (sec)o‘ and 0.6 as determined in the experiments.
The frequency f1 = wl/Zw and damping ratio 51 were calculated for a system with
fo = wo/Zw in the range of 0.5 to 10 Hz and fd (equation 4-5%) in the range of
0.5 to 2.5, The results are plotted in Figure 4-1. The figure demonstrates
that frequency f1 is always larger than fo' This, of course, is a result of the

stiffening effect of viscous dampers.
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Figure 4-1 may be used as a design tool for vibration isolation systems.
Consider for example that a system with 60,000 Xg mass is to be supported by
springs and viscous dampers for vibration isolation. A frequency of 5 Hz and
damping ratic of about 0.25 are desired. From Figure 4-1 we determine that a
design with fo = 4 Hz and §d = 1 will satisfy these requirements. Using
equations 4-4 and 4-5, we determine K = 37899 kN/m and C0 = 3016 kNs/m. With
these values known, springs and viscous dampers could be selected for the
isolation system. It should be noted that the determined values for K and C_
are valid only for values of parameters A and r equal to 0.3 (sec)0'6 and 0.6,
respectively. This means that viscous dampers of different size have identical
parameters A and r and differ only in the value of constant C . Commercially
available viscous dampers of different sizes exhibit properties that have almost
identical variation with frequency (GERB, 1986). This confirms the above

hypothesis.

The calculation of the frequency and damping ratio of a viscodamper
oscillator is a complex procedure. In this respect, the development of an
approximate but simple procedure is of practical significance. For this we

recall that under steady-state conditions, the force needed for maintaining

harmonic motion of the damper with displacement u and velocity u is given by

P = Ky(w) u+ Cw) u (4-15)
where w 1s the frequency of motion and Ky and € are the storage stiffness and

damping coefficient of the damper. Accordingly, a new oscillator is defined

whose equation of free vibration is

a4+ C {0 u 4+ [K+K, (@)] u = O (4-16)

where 0 is an arbitrary frequency. This oscillator we term the equivalent

viscous oscillator. More conveniently, equation 4-16 is written as

4-5



24 = 0 (4-17)

u + 26 wu+ w

e’e e

where W and 5@ are the natural frequency and damping ratio of the equivalent
viscous oscillator. These parameters are determined from the expressions for
the storage stiffness and damping coefficient of viscous dampers which were

presented in section 3,

I+r

28 A" s

w =, [1+ &1 (4-18)
w0(1+A Q- 42207¢)
£ 1w (1+A0%ce)

e ” e 227 I (4-19)

we(1+A Q°74+2007¢)
where s and c¢ stand for the sine and cosine of r#x/2. When @, and fe are

evaluated at frequency Q&we, they represent approximations to the exact
frequency wy and damping ratio 51 of the viscodamper oscillator. For the
evaluation, an iterative procedure is required, starting from Q=w, . Figure 4.2
compares the frequency and damping ratio of the viscodamper and equivalent
viscous oscillators for the range of parameters with most interest in vibration
isolation applications (6150.3, foglo Hz). In Figure 4-2, A=0.3(sec)0'6, r=0.6
and femwe/Zﬂ. The agreement between approximate and exact values i1s good. Some
'discrepancies are observed in the values of frequency when fo is less than about

3 Hz and Ed_is larger than 1.5. This combination results in unrealistic values

of £, (exceeding unity).

The accuracy of the approximate procedure is further investigated for
other values of parameters X\ and r in Figure 4-3. Exact values of frequency fl
and damping ratio £, (solid line) are compared to approximate values fe and £
(dashed line) for a system with fomS Hz, &dmO.S and A in the vange of 0 to
1(sec)® where r=0, 0.3, 0.6 and 1, The case r=1 corresponds to the comnventional
Maxwell model, whereas the case r=0 corresponds to the simple linear dashpot

model with damping constant equal to CO/(1+A) where now A is dimensionless.
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Figure 4-3 Comparison of Exact Frequency and Damping Ratio of Viscodamper
Oscillator to Frequency and Damping Ratio of Equivalent Viscous
Oscillator for other Values of X and r.



Very good agreement between exact and approximate values is observed. The
largest error in the approximate frequency is about 3% of the exact value, which

corresponds to about 7% underestimation of the effective stiffness.

Concluding, procedures have been established for the determination and
identification of the frequency and damping ratio of the viscodamper oscilliator.
Furthermore, a simple procedure has been presented for determining approximate

values of these quantities.

4.2 Steady-State Harmonlic Response of Viscodamper Oscillator

When the viscodamper oscillator is subjected te dynamic loading, the

equation of motion is
mu (&) + K u(t) + P(t) = F(t) (4-20)
where P(t) is given by equation 4-2. The frequency response function of the

viscodamper oscillator is easily derived by employing Fourier transform to

equation 4-20,

- 216,84
H(w) = 2@ _ 1o g2 —2d (4-21)
“ T Fw Kit-r 1+17 85 ]
where
5 - ﬁ; (4-22)
v o= Awor : (4-23)

and u(w), F(w) represent the Fourier amplitude of u(t) and F(t), respectively.
Tt should be noted that equation 4-21 reduces to the equation for a SDOF viscous

oscillator with natural frequency w  and damping ratio £y when v=0,



For a harmonic forcing function F(t) = F, sin ot, the steady-state

displacement response is given by

F

u(t) = Eg D sin{wt-4) (4-24)

D - (1+Brvc)2 + (Brus)z 172 (4-25)

(1-pH 2 (148 ve)? + [(1-p%)Fvs+2¢ 412

2¢ B(1+p"vc)
tand = 2 r .2 r .2 T+r (4-26)
(- [(147we)™ + (Bws) [+2£ 487 Tus

In the above equations ¢ and s stand for the cosine and sine of rn/2. 1In
equations 4-24 to 4-26, D represents the dynamic magnification factor and ¢
represents the phase angle. They are the amplitude and phase of the complex
frequency response function (equation 4-21), respectively. Equation 4-24 is, of
course, valid in the limit of large time and provided that a sinusoidal force
acting on the viscodamper oscillator produces a sinusoidal displacement after
transients have died out. Analytic proof for this behavior is presented in

Appendix A.

The maximum force exerted against the base of the oscillator by the spring
and viscous damper upon division by the amplitude of the driving force, F,

gives the absolute transmissibilicy

(1+p%ve)? + (BTve)? + (26 )% + 4g 17T |12
(1-gH2 (ptve)? + ((1-p7)pvsr2e 817

TR = (4-27)

in which again s and ¢ stand for sine and cosine of rm/2. The absolute
transmissibility has been derived by the following procedure. The force exerted

against the base is given by

Fp(t) = P(t) + K u(t) (4-28)

410



Applying Fourier transform to equation 4-28 and using equation 4-21 we obtain

Fp (W) iwC
e = H{w) [K + mmm—;—;] {(4-29)
F (w) 1+3i"w

The absolute transmissibility is the amplitude of the complex function on the

right side of equation 4-29.

It may be noted that equations 4-25 to 4-27 reduce to those of a SDOF

vigscous oscillator with natural frequency w, and damping ratio gd when v=0.

Plots of the dynamic magnification factor, D, phase angle, ¢, and
transmissibility, TR, are shown in Figures 4-4 to 4-5 for a system with
f0=w0/2ﬁw5 Hz, v=2.374 and r=0.6. The following significant features of the
steady-state response of the viscodamper oscillator can be observed in Figures

L-b4 to 4-5:

a, The peak value of the dynamic magnification factor occurs for values of 8
larger than unity, whereas in the SDOF viscous oscillator this peak occurs
at values of B less than unity. This phenomenon is caused by the

stiffening effect of the viscous damper.
b. At resonance, B=1, the phase angle § is equal to rm/2.

c. The phase angle, #, does not increase monotonically with increasing
frequency ratioc f. Rather, it exhibits a peak value, which is always less
than #x, at a value of B larger than unity. Beyond this value, ¥
decreases. Again, this result is caused by the stiffening effect of the

viscous damper.
d. The curves of transmissibility do not pass through the same point as in

the SDOF viscous oscillator., Damping ratio ﬁd tends to reduce the

effectiveness of an isclation system for frequency ratio § greater than a

=11
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certain value which, unlike the SDOF viscous oscillator, is not fixed but

rather depends on the system's parameters.

The presented results on the harmonic steady-state response of the
viscodamper oscillator may be used in constructing design charts for vibration

isolation systems consisting of springs and viscous dampers,
4.3 Transient Response of Viscodamper Oscillator

Analytical solutions for the transient response of the viscodamper
oscillator are extremely difficult even in the simplest cases of loading. For
an example, the reader is refered to Appendix A for an analytic solution of the
response to harmonic loading. Another case for which an analytic solution is
possible is that of impulsive loading F(t)=§(t). This case has been treated by
Bagley and Torvik, 1983. Apparently, the most convenient method for deriving

transient responses is by numerical procedures.

The response of the viscodamper oscillator to general dynamic loading is
mest conveniently determined by the DFT approach. Alternatively, time domain
algorithms may be used, but they are computationally intensive. One such
algorithm will be presented later in this report in conjunction with the
analysis of a nonlinear isolation system. The time domain GlDP-alporithm
presented in section 3 will be used later in this report in conjunction with the

analysis of a nonlinear isolation system.
The response of the viscodamper oscillator to general dynamic loading and

for zero initial conditions is derived by application of Fourier transform to

equation 4-20

u(t)= 7= f H(w) Flw) et dw (4-30)



where H{(w) is the complex frequency response function (equation 4-21), and Fw)
is the Fourier transform of load F(t). The application of the DFT approach is
directly analogous to that of the SDOF viscous oscillator {(Veletsos and Ventura,

1985) .

The transient response of the viscodamper oscillator will be compared to
the response of the equivalent SDOF wviscous oscillator which was introduced
earlier. This oscillator is defined as one whose response is essentially the
same as that of the viscodamper oscillator. In the equivalent oscillator, the
frequency dependency of the parameters of the viscous damper is neglected so

that the equation of motion is

mu + C(Mu + [K+Kq (0)] u = F(t) (4-31)

where Kl(ﬂ) and C{fl) are the storage stiffness and damping coefficient of the
viscous damper evaluated at frequency Q. This frequency could be the natural
frequency of the equivalent oscilliator or it could be a frequency contained in

the load F(t).

More conveniently, egquation 4-31 is rewritten as

G+ 2600 + oot u = BB (4-32)

where £  and w  are given by equations 4-18 and 4-19.

The wvalidity ¢f the equivalent oscillator is studied in twe interesting

applications of wviscous dampers.
4.3.1 Impulsive Loading

Forging hammers is one application of viscous dampers in which impulsive

loading is involved. Forging hammers are masgsive machines with mass equal to



about 60,000Kg. The ram of the machine has a mass of about 3,000Kg with an
impact velocity of 5.5m/s. On iInpact, the hammer response velocity is
approximately 0.4 m/s. The load on the machine has a 5 to 15 msec duration and

is approximately a half sine impulse.

A commonly used support system for forging hammers consists of helical
steel springs and viscous dampers. This vibration isolation system
substantially reduces the transmission of vibration to the surroundings and
prévents settling and tilting of the hammer. Damping in the iscolation system is
large so that vibrations of the hammer are eliminated within a very short time
interval. Typically, the isolation system is designed to give a vertical
frequency of free vibration of about 5Hz with an effective damping ratio of

about 0.25.

Figure 4-6 shows a time history of displacement of a hammer for a half
since impulse load of 10 msec duration. The amplitude of the load is determined
so that fF(t)dt/meo=0.4 m/sec. The response was evaluated by applying DFT to
equation 4-30., The exact response of the viscodamper oscillater is compared to
that of the equivalent viscous oscillator with parameters w, and §e as given by
equations 4-18 and 4-19. 0 was selected to be the natural frequency of the
equivalent oscillator, O=w,. 1In evaluating w, and §e, an iterative procedure is
required, starting from (=w . The parameters of the isolation system were
selected to be wo=31.42 rad/s (fo:wo/2ﬁ=5 Hz), 2=0.3 (sec)r, r=0.6 and Ed=1.52.
The parameters of the equivalent oscillator were we=41.56 rad/s and femO.ZS.
The stiffening effect of viscous dampers is evident in the difference between
frequencies N and W, Alternatively, one could use the exact frequency, @y
and damping ratio, §1, rather than the approximate values. Using Figure 4-1, we
get wy=43.97 r/s and 5120.27. The response of the equivalent oscillator closely
follows the exact response, capturing the correct content in frequency but
underestimating the peak displacement. This is explained when considering that
the peak displacement is reached in very short time, when the response exhibits

strong low frequency components, In this short time, the viscodamper oscillator
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Figure 4-6 Comparison of Time Histories of Response of Vigcodamper and

Equivalent Viscous Oscillator When Subjected to Impulsive Loading.



exhibits a stiffness close to K, whereas the equivalent oscillator has a higher

stiffness equal to K+K1(ﬂ).

The role of viscous dampers in isolation systems for forging hammers is to
provide energy dissipation so that vibrations are eliminated within a very short
time interval., Figure 4-7 shows the time needed for the displacement to reduce
to five percent of its peak value as a function of parameter éd in three
isolation systems for forging hammers. The equivalent viscous oscillator

predicts results in good agreement with the exact.

The plots of Figure 4-7 represent a useful design tool. Consider for
example that an isolation system for a 60,000 Kg forging hammer is to be
designed for the impulsive lecading shown in the figure. The design criterion is
that vibration should be reduced to 5% of the peak value within 250 msec. From
Figure 4-7 we determine that two possibilities exist: wow62.83 r/s and del.IQ
or w =31.42 r/s and £,=1.42. The latter solution gives a total spring constant
K=59 218 kN/m and a total damping coefficient Coﬁ5353 kNs/m (using equations 4-4
and &4-5}).

4.3.2 Earthguake Loading

Applications of viscous dampers in which earthquake loading is involved
are in selsmic isolation of equipment and structures. One such application has

been discussed in the introduction of this report.

The equation of motion of a seismically excited SDOF viscodamper
oscillator is given by equation 4-20 with F(t)=-m§g(t).ag(t) is the ground
acceleration and u(t) represents the relative displacement. Again, the solution
is derived by application of the DFT approach. Figure 4-8 presents displacement
response spectra of viscodamper oscillators for the 1940 El Centro earthquake
(Imperial Valley, component SOOE, peak ground acceleration of 0.348g) and for
the 1985 Mexico City earthquake (SCT building, component N9OW, peak ground

acceleration of 0.17g). The oscillators are defined by parameters T0=2w/w0,



HALF SINE IMPULSE, t; = 10 msec, Vg = 0.4 m/sec

1 w, = 1571 rad/sec, v = 1.566,r = 0.6
2 wq = 3142 rad/sec, v = 2374, r = 0.6
3 wy = 62.83 rad/sec, v = 3.588,r = 0.6
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Figure 4-7 Time Needed for Displacement Response to Impulsive Loading to

Reduce to Five Percent of Peak Value.



A=0.3(sec)’, r=0.6 and equivalent damping ratio fe, eguation 4-19, in which O is
taken equal to W - The equivalent viscous oscillator, defined by parameters w,
and £, equations 4-18 and 4-19, gives results in very good agreement with the
exact. It should be noted that each of the curves of Figure 4-8 are presented
for a constant Ee. This means that parameter Ed varies as TO varies, i.e.
different size viscous dampers are needed to give constant §  at different

values of To. Furthermore, for fixed ée and TO the actual period of the system

is less than T  because of the stiffening effect of the viscous dampers.

Figures 4-9 and 4-10 present spectra of velocity and total acceleration
for the same systems and excitations (these are spectra of actual velocity and
acceleration, not of pseudovelocity and pseudoacceleration). To compute the
time histories of relative velocity and relative acceleration, the complex

frequency response functions of these quantities are used

i

MFJ
=

a() S ey B @) F @) oM (4-33)

G - T oty i@ F ey el aw (4-34)

1

where H(w) is the complex frequency response function for the relative
displacement (equation 4-21). The total acceleration is computed as ult) +
ﬁg(t). Figures 4-9 and 4-10 demonstrate very good agreement between the

predictions of the equivalent viscous oscillator and the exact results.

Concluding the section, procedures have been presented for the exact
analysis of the viscodamper oscillator. Approximate procedures, which are based
on the concept of equivalent viscous oscillator, have been presented and shown

to give results in good agreement with the exact,
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SECTION 5

APPLICATION OF VISCOUS DAMPERS IN SLIDING ISOLATION SYSTEMS

Sliding isolation systems have been used for the seismic protection of
structures. They are more stable and have lower bearing displacements than
elastomeric isolation systems, at the expense however of higher structural
accelerations. One such sliding system has been recently tested on a shake
table using a six-story, quarter scale, 230KN (51.4 Kips) model structure
(Constantinou et al, 1990a and 1990b). The isolation system consisted of Teflon
sliding bearings and restoring force devices in the form of helical steel
springs.

In the tested system, the helical springs had a spring constant of 470
N/mm (2.68 K/in.) and the coefficient of friction in the sliding bearings was
dependent on the velocity of sliding. It varied between a minimum value and a
maximum value which was mobilized at large velocity of sliding. The friction

coefficlent, p, followed with good accuracy the relation

pu o= f - Df . exp(-a|V}]) (5-1)

where fma is the maximum value, Df) is the minimum value, V is the

X <fmax'

velocity of sliding and a is a constant. The parameters in equation 5-1 were
foax = 0.16 to 0.17, Df = 0.04 to 0.06 and a = 21.65 sec/m (0.5 sec/in.). They
were determined experimentally.

The isolation system was specifically designed to have weak restoring
force and strong fricticnal force, so that it has low sensitivity to the
frequency content of the earthquake motion (Constantinou et al, 1990a and
1990b). This property has been confirmed in the experiments. While the
strong frictional force/weak restoring force combination may be desirable in

this respect, it may also result in large permanent displacements. The

permanent displacement has the following upper limit



(£

max - PE) W

(5-2)

where W is the weight carried by the bearings and K is the stiffness of the
restoring force devices. For the tested system this upper limit is 39 mm (1.53
in.), which is about half the bearing displacement capacity. However, during
the shake table tests the maximum permanent bearing displacement was only 4 mm
(0.16 in.). This value is remarkably low and by far smaller than the limit of
equation 5-2. This limit was derived assuming that no inertia forces act on the
structure, and apparently the inertial forces "help” the isolation system to re-
center itself,

In analyses of the response of the model structure prior to testing, it
was observed that by including viscous damping into the isolation system
(modeled by linear dashpots), the displacements and accelerations of the model
were reduced. Accordingly, it was decided to add viscous dampers to the
isolation system. By adding four of the tested dampers (Figure 1-1), it was
estimated that the damping ratio in the fundamental mode would be about 0.1.
This, of course, was based on the assumption that viscous dampers could be
modeled as linear dashpots. In the shake table testing it was observed that
indeed the wviscous dampers were effective in reducing the peak to peak
displacement of the Isolation system. However, it was clear in the experimental
results that the dampers were not simple linear dashpots. This prompted the
authors to conduct component tests on the dampers which led to the developed

fractional derivative model.

5.1 Test Program and Results

The model structure has been described in detail in Constantinou et al,
1990b. Four viscous dampers identical to the tested one (Figure 1-1) were added
to the isolation system. The sliding bearings did not allow any vertical
movement so that the dampers were only effective in the horizontal direction.
The model structure was subjected to four earthquake signals on the shake table.

These earthquakes were:



1. San Fernando earthquake (Pacoima Dam) of February 9, 1971. Component
S16E, peak ground acceleration (PGA) = 1.17g. This record was scaled to a

peak table acceleration (PTA) of 0.73 g.

2. Miyagiken-0Oki earthquake of June 12, 1978 (Tohoku Univ., Sendai, Japan}.
Component EW, PGA = 0.l6g. The record was scaled to PTA = 0.41g.

3. Tokachi-0Oki earthquake, Japan (Hachinohe) of May 16, 1968, Component NS,

PGA-23g. The acceleration of this record was not scaled (PTA = 0.22g).

4, Mexico City earthquake of September 19, 1985 (SCT Building station).

Component N9OW, PGA = 0.17g. The record was scaled to PTA = 0.21 g.

All records were time scaled by a factor of 2 to satisfy similitude
requirements of the quarter scale model.

Figures 5-1 to 5-4 present experimental results in the four cases of input
on the base (bearing) displacement time history, structure shear over weight
ratio time history, 6th floor displacement with respect to base time history and
base shear over weight ratio versus bearing displacement loop. The structure
shear is the shear force at the first story, whereas the base shear is the shear
force at the bearing level. The weight is 230 kN (51.4 Kips). The results are
presented in units of inches ag they were measured. For comparison, Figures 5-5
to 5-8 present experimental results for the same input and model structure but
without the four viscous dampers. It is apparent that the addition of viscous
dampers resulted in large permanent displacements,

Table 5-1 compares experimental results in the two sets of tests. The
peak to peak displacement is the distance between the positive peak and negative
peak position of the bearing. The viscous dampers were effective in reducing
this peak to peak displacement in all cases. Particularly in the Mexico City
earthquake, this reduction is substantial (about 35%). The good performance in
this case is due to the low frequency response of the system in which the
dampers exhibit high damping coefficient and low storage stiffness. Otherwise,

the response of the two systems is about the same, except for the permanent

5-3
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displacement. Other then the case of Mexico City motion, the permanent
displacement in the system with viscous dampers is much larger than that in the
system without viscous dampers. The dampers appear to counteract the combined
effect of inertia and restoring (spring) forces which tend to re-center the
isolation system.

The experiments demonstrated that viscous dampers are not useful in
sliding isolation systems because of the possibility of occurrence of large

permanent displacements,
5.2 Analytical Prediction of Response

The shake table tests provided a good opportunity to verify the developed
fractional derivative model and to test the validity of the GlFP-algorithm for
analysis in the time domain. |

For the analysis of the tested model structure, a lumped mass model with
degrees of freedom being the floor and base displacements was used. The

equations of motion are

] (@) + (0] (1) + (K] () = - [M] (1) (U + U (5-3)

§ oo

1 mi(Ui + Ub + Ug) + mb(Ub+ Ug) + Ff+ Fr + P{t) =0 (5-4)

i
Equation (5-3) is the equation of motion of the six story superstructure with
[M], (€] and [K] being the mass, damping and stiffness matrices, respectively.
Equation (5-4) is that of dynamic equilibrium of the entire structure in the
horizontal direction. {U} is the vector of floor displacements with respect to
the base, Ub is the base displacement with respect to the table and Ug is the
table displacement. A dot denotes differentiation with respect to time. m; and
iy (i = 1 to 6) are the floor and base masses. Matrices [K] and [C] were
constructed analytically using analytically determined modal shapes and

frequencies and experimentally determined damping factors (see Constantinou et

al, 1990a for details).
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Fe and F. are the frictional and restoring forces, respectively, at the

isclation interface. The frictional force is given by:
Fe = [p(Ub) cosé - sgn(Ub) sing W Z {5-5)

where sgn stands for the signum function and p(ﬁb) is the coefficient of sliding

friction of the Teflon bearings, which depends on the velocity of sliding, éb’
in accordance to equation 5-1. § is the accidental average inclination of the
sliding interfaces which was determined to be between 0.15 and 0.35 degrees.
Variable Z in equation 5-5 is used to account for the conditions of
separation and reattachment {Constantinou et al, 1990¢) and is governed by the

following differential equation:

- . - 2 *
Y Z 4y U |Z|Z| + BUZ° - Uy = 0 (5-6)

in which ¥ = 0,127 mm (0.005 in,) and 8 + v = 1.

The restoring force is given by:

K1Y 1Up1 €Dy
F = (5-7)

(Ry - Ky) Dy sgn(Up) + KUy, |Uf > Dy

in which Ky is the initial low value of the spring stiffness, valid for
displacements less than the limit Dy and K, is the stiffness beyond the limit
By. Equation (5-7) describes the force in an elastic bilinear spring. For the
tested system, Ky = 270 N/mm (1.54 Kip/in.}, Ky = 470 N/mm (2.68 Kip/in.) and
D1 =12.7 mm (0.5 in.). Furthermore, P(t) in equation 5-4 is the foxrce from

four viscous dampers which is described by



P(t) + AD"[P(t)] = C, U (5-8)

b
with r = 0.7, X = 0.15 (sec)(}'7 and Go = 24 Ns/mm (136.71 1b-s/in.)

In solving equations 5-3 to 5-8, force P(t) was brought to the right side
of equation 5-4 and treated as load. The equations were reduced to a system of
first order differential equations and integrated using Gears method for stiff
differential equations (Gear, 1971). 1In each time step, which was extremely
small, the force P(t) was assumed constant and equal to the value calculated at
the previous integration step. At the end of each step, equation 5-8 was solved
by employing the GlFP-algorithm (section 3.1) and the value of P(t) was
calculated.

Figure 5-9 compares the recorded and analytically determined time
histories of the base (bearing) displacement of the system without (top figure}
and with four viscous dampers (bottom figure) for the Mexico City motion (PTA =
0.21g). The agreement between the experimental and analytical results is good.

Figure 5-10 compares the experimental and analytical time histories of the
base displacement for the Japanese Miyagiken-Oki motion (PTA = 0.42g). Again,
the agreement between experimental and analytical results is good. It is very
interesting to note that the analytical solution correctly predicts the
significant permanent displacement in the case of the systen with viscous
dampers. This permanent displacement could not be accurately predicted by the
simple equivalent viscous damper model (see section 4). Figure 5-11 compares
the experimental response to that predicted by the equivalent viscous damper
model. The details of the displacement history are predicted well but the

permanent displacement is underestimated.
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SECTION 6

CONCLUSIONS

The fractionmal derivative Maxwell model has been found te fit the
viscoelastic properties of a type of viscous damper consisting of a piston
moving in a highly viscous gel. This damper is used in vibration isolation
systems for pipeworks and industrial machines and in seismic isolation systems
for structures.

Experiments were conducted for the calibration and verification of the
developed model. The model could predict the experimental results with very
good accuracy and over a wide range of frequencies.

A SDOF viscodamper oscillator, consisting of a mass, a linear spring and a
fractional derivative Maxwell element 1s used In the representation of an
isolation system. The problem of determination of the frequency and damping
ratio of the viscodamper cscillator is formulated. The steady-state response of
the oscillator is shown to always exist and is derived analytically.
Furthermore, the evaluation of the response of the oscillator to general dynamic
icading is presented within the context of Fourier analysis.

An equivalent S8DOF viscous oscillator is defined whose response 1s
essentially the same as that of the viscodamper isolator. The equivalent
oscillator has the combined stiffness of the sprimg and storage stiffness of the
fractional Maxwell element and the damping coefficient of the fractional Maxwell
elements. The storage stiffness and damping coefficient are evaluated at the
fundamental frequency of the oscillator. The equivalent oscillator is found to
predict well the dynamic response of the SDOF viscodamper oscillator when
subjected to general dynamic loading.

Numerical procedures for the analysis of the viscodamper oscillator are
presented, Most convenient is the analysis in the frequency domain by the DFT
approach in combination with FFT algorithms. For this, the complex frequency
response function of the oscillator has been derived. For the analysis in the

time domalin, an algorithm termed "GLlFP¥ is presented.



Finally, shake table tests of a large isolated model structure equipped
with a sliding isolation system and enhanced by viscous dampers were conducted.
While the test demonstrated the good ability of the dampers to reduce peak
displacements, it was also found that they had an undesirable effect on the
permanent displacement of the isolation system. The developed numerical
analysis procedures in the time domain were employed in the analysis of the

tested model and found to predict accurately the recorded response.
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APPENDIX A
EXISTENCE OF STEADY-STATE RESPONSE

We consider the viscodamper oscillator with homogeneous initial conditions

and subjected to harmonic loading. The equation of motion is

mi(t) + KU(t) + P(t) = F_ sinot (A.1)

P(t) + ADT[B(t)] = C, U(t) (A.2)

We apply the method of Laplace transform to find

F w r
2+ 2 2.r 2 _Zo” 1 + As
[As + 8% + 2 §dwos + Awo s oo, ] U(s) = o 75 (A.3)
s +w
where U(s) is the Laplace transform of U(t) and W, and §d are given by equations
4-4 and 4-5. In equation A.3 we recognize on the left side the expression in the

characteristic equation 4-6. Let the smallest common denominator of fraction r

and unity be n(e.g. for r = 0.6, n = 5). Equation A.3 may be written as

Fow
U(s) = . .
m 52402 j=1 ]

b J i
1/n

(A.4)

- Aj

where Ajare the eigenvalues of the polynominal equation corresponding to equation
4.6 (for r = 0.6, equation 4.8). Turthermore, J is an integer equal to (2 + )n
and Aj are constants). The eigenvalues are derived by the procedure described in
Section 4. It should be noted that equation A.4 is identical in form to that
studied by Bagley and Torvik, 1983,

The inverse transform is

y+ieo
5%5 &5t U(s) ds (A.5)
y-iwe

U(e) = L Hu(s)] -



Figure A-1 shows the closed contour for the integration. All singularities
of function U(s) are to the left of segment ] of the contour. The radii of
contours 2 and 6 are increased indefinitely and sepgments 3 and 5 are extended
indefinitely in the negative real direction. The contribution to the closed loop
integral from segments 2 and 6 is zero. Furthermore, in direct similarity to the
problem studied by Bagley and Torvik, 1983, the contribution from segment 4

1/n

(branch point of function s } goes to zero as the radius of the contour goes to

zero. For the evaluation of integral A.5 (integral along contour 1) it remains

to evaluate the contributions from poles s = A%, j =1 toJ, poles 5 = +1lw and

J
the branch cut of funections sl/n {negative real axis, segments 3 and 5).
y+ieo
J
Uit) = 5%{ f eStU(s) ds = - E%Y j eStU(S) ds + ?_1 Rj+ Rw + R-w
- fe 395 =

{(A.B)

where Rj are the contributions from the residues of poles s = Ajn and R, , are the

contributions from the poles s = tiw. All poles are of first order. By

application of the residue theorem we obtain

nr
J J o aF el 4+ My (A7)
% R, = 3 -3 s exp (A\Rt) :
j=1 3 j=1 A+ w J
PR A,
R - o@lIA(e) ] oivt 3 J (A.8)
w 2iwm el (iw)i/n ) Aj
. A.
F ollta(-iw)¥] . J 3
R, =~ ¥t 3 (A.9)

j=1  (-1)1/m . A;

The integral along segments 3 and 5 (branch cut) was evaluated by Bagley

and Torvik, 1983



¥

'3/('%} /NL Re
|

Figure A-1 Contour of Integration in Complex Plane.



x)
5%{ j &5t U(s)ds = - % Tm{ f U(ze”iﬂ) e 24z (A.10)
3,5 o

where U is given by equation A.4 with s replaced by ze 17 Im stands for the

imaginary part.

We observe that the response consists of part R, + R_. which is a sinusoid
of frequency w and two other parts described by equations A.7 and A.10. Steady-
state response exXists only when these two parts vanish in the limit of large
times. The part described by eguation A.7 is a sum of exponentially decaying
sinusoids provided that A? appear in complex conjugate palrs. In general, this
is the case except In certain cases in which A? is a real and negative quantity.

For example when r = 0.6, n =35 and J = 13, eigenvalues Aj are derived from the

solution of equation 4-8 and thirteen values of s = A? {(n = 5) are obtained.
They appear as six conjugate pairs and one negative real quantity. HNote that
L/n or ¢ (equation 4-7) plane and then

eignevalues Aj are found in the s
transformed to the s plane. The real negative eigenvalue maps on the Riemann
surfaces associated with the branch cut in the integration contour (Figure A-1).
The residue of this pole does not contribute to the response of the system,

Accordingly, the part given by equation A.7 is exponentially decaying with time.

The part given by equation A.10 is easily recognized as one decaying faster

o

than the integral f exp(-zt) dz as t tends to infinity. This integral is equal

o
to ~t'l for fixed t, so that the integral of equation A.10 is asymptotic to
e~ (1+a) where a > 0. Accordingly, this part also decays with time. Therefore,

in the limit of large times only the parts given by equations A.8 and A.9
survive. These parts describe the steady-state response of the system. This

response is sinusoidal of frequency w.

A-b
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Vertical and Torsional Impedances for Radially Inhomogeneous Viscoelastic Soil Layers,” by K.W,
Dotson and A.S. Veletsos, 12/87, (PR88-187786/AS).

"Proceedings from the Symposium on Seismic Hazards, Ground Motions, Soil-Liquefaction and
Engineering Practice in Eastern North America,” October 20-22, 1987, edited by K.H. Jacoh, 12/87,
{PBBB-188115/A5).

"Report on the Whittier-Narrows, Catifornia, Earthquake of October 1, 1987," by I. Pantelic and A.
Reinhorn, 11/87, (PR88-187752/A8). This report is available only through NTIS (see address given
above).

"Design of a Modular Program for Transient Nonlinear Analysis of Large 3-D Building Structures,” by
3. Srivastav and I.F, Abel, 12/30/87, (PB&8-187950/AS).

“Second-Year Program in Research, Education and Technology Transfer," 3/8/88, (PB88-219480/A8).
"Workshop on Seismic Computer Analysis and Design of Buildings With Interactive Graphics,” by W.
McGuire, J.F. Abel and C.H. Conley, 1/18/88, (PB88-187760/AS).

"Optimal Control of Nenlinear Flexibie Stuctures,” by LN. Yang, FX. Long and D, Wong, 1/22/88,
(PB88-213772/A8).

"Substructuring Techniques in the Time Domain for Primary-Secondary Structural Systems," by G.D.
Manolis and G, Juhn, 2/10/88, (PB88-213780/A%).

"lterative Seismic Analysis of Primary-Secondary Systems," by A. Singhal, L.D. Lutes and P.D.
Spanos, 2/23/88, (PB8E-213798/A8),

“Stochastic Finite Element Expansion for Random Media,” by P.D. Sparos and R. Ghanem, 3/14/88,
(PB88-213806/A8),

"Combining Structural Optimization and Structural Control,” by F.Y. Cheng and C.P. Pantelides,
1/10/88, (PB88-213814/A85).

"Seismic Performance Assessment of Code-Designed Structures,” by H.H-M. Hwang, I-W. Jaw and
H-J. Shau, 3/20/88, (PB88-219423/A8).
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NCEER-88-0013

NCEER-88-0014

NCEER-88-0015

NCEER-88-0016

NCEER-88-0017

NCEER-88-0018

NCEER-88-0019

NCEER-88-0020

NCEER-88-0021

NCEER-88.0022

NCEER-88-0023

NCEER-88-0024

NCEER-88-0023

NCEER-88-0026

NCEER-88-0027

"Reliability Analysis of Code-Designed Structures Under Natural Hazards," by H.H-M. Hwang, H.
Ushiba and M. Shinozuka, 2/29/88, {(PB88-229471/A5).

"Seismic Fragility Analysis of Shear Wall Structures," by J-W Jaw and H.H-M. Hwang, 4/30/88,
(PB89-102867/AS).

"Base Isolation of a Multi-Story Building Under a Harmonic Ground Motion - A Comparison of
Performances of Various Systerns,” by F-G Fan, G. Ahmadi and L1.G. Tadjbakhsh, 5/18/88,
(PB89-122238/A5).

"Seismic Floor Response Spectra for a Combined Systermn by Green's Functions," by F.M. Lavelle, L.A.
Bergman and P.D. Spanos, 5/1/88, (PB89-102875/A8).

"A New Solution Technique for Randomly Excited Hysteretic Structures,” by G.Q. Cai and Y.K. Lin,
5/16/88, (PB89-102883/A8).

"A Study of Radiation Damping and Soil-Siructure Interaction Effects in the Cenrrifuge,” by K.
Weissman, supervised by LH. Prevost, 5/24/88, (PB89-144703/A8).

"Parameter Identificarion and Implementation of a Kinematic Plasticity Model for Frictional Soils,” by
J.H. Prevost and D.V. Griffiths, to be published.

"T'wo- and Three- Dimensional Dynamic Finite Element Analyses of the Long Valley Dam,” by D.V.
Griffiths and J.H. Prevost, 6/17/88, (PB89-144711/AS).

"Damage Assessment of Reinforced Concrete Structures in Eastern United States,” by A.M. Reinhorn,
M.J. Seidel, 5K, Kunnath and Y.J. Park, 6/15/88, (PB89-122220/A8).

"Dynamic Compliance of Vertically Loaded Strip Foundations in Multilayered Viscoelastic Soils," by
S. Ahmad and A.S.M. Israil, 6/17/88, (PR89-102891/A%).

"An Experimental Study of Seismic Structural Response With Added Viscoelastic Dampers,” by R.C.
Lin, Z. Liang, T.T. Soong and R.H. Zhang, 6/30/88, (PB89-122212/A8).

"Experimental Investigation of Primary - Secondary System Interaction,” by G.D. Manolis, G. Juhn and
AM. Reinhomn, 5/27/88, (PB89-122204/A8).

"A Response Spectrum Approach For Analysis of Nonclassically Damped Structures,” by IN. Yang, §.
Sarkani and F.X, Long, 4/22/88, (PB89-102909/A8).

"Seismic Interaction of Structures and Soils: Swchastic Approach,” by A.S. Veletsos and AM. Prasad,
7/21/88, (PRB9-122196/A8).

"Identification of the Serviceability Limit State and Detection of Seismic Structural Damage,” by E.
DiPasquale and A.S. Cakmak, 6/15/88, (PBB9-122188/A8).

"Multi-Hazard Risk Analysis: Case of a Simple Offshore Structure,” by B.K. Bhartia and E.H.
Vanmarcke, 7/21/88, (PB89-145213/AS).

“Automated Seismic Design of Reinforced Concrete Buildings,” by Y.S. Chung, €. Meyer and M.
Shinozuka, 7/5/88, (PB89-122170/A8).

"Experimental Study of Active Control of MDOF Structures Under Seismic Excitations,” by L.L.
Chung, R.C. Lin, T.T. Soong and A.M. Reinhorn, 7/10/88, (PB89-122600/A5).

"Barthquake Simulation Tests of a Low-Rise Metal Structure,” by 1S. Hwang, K.C. Chang, G.C. Lee
and R.L. Kerter, 8/1/88, (PB83-102917/AS).

"Systems Study of Urban Response and Reconstruction Due to Catastrophic Earthquakes,” by F. Kozin
and H.K. Zhou, 9/22/88, (PB90-162348/A8).
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NCEER-88-0040

NCEER-88-0041

NCEER-88-0042

NCEER-88-0043

NCEER-88-0044

NCEER-88-0045

NCEER-88-0046

“Seismic Fragility Analysis of Plane Frame Structures,” by H.H-M. Hwang and Y.K. Low, 7/31/88,
(PB89-131445/A8).

"Response Analysis of Stochastic Structures,” by A. Kardara, C. Bucher and M. Shinozuka, 9/22/88,
(PB89-174429/A8).

"Nonnormal Accelerations Due to Yielding in a Primary Structure,” by D.C.K. Chen and L.D. Lutes,
9/19/88, (PB8%-131437/A8).

"Design Approaches for Soil-Structure Imteraction,” by A.S. Veletsos, AM. Prasad and Y. Tang,
12/30/88, (PB89-174437/A8).

"A Re-evaluation of Design Spectra for Seismic Damage Control,” by C.J. Turkstra and A.G. Tallin,
11/7/88, (PB89-145221/AS).

"The Behavior and Design of Noncontact Lap Splices Subjected to Repeated Tnelastic Tensile Loading,”
by V.E. Sagan, P. Gergely and R.N. White, 12/8/88, (PB&9-163737/AS).

“Seismic Response of Pile Foundations,” by S.M. Mamoon, P.K. Banerjee and S. Ahmad, 11/1/88,
(PB89-145239/A8).

"Modeling of R/C Building Structures With Flexible Floor Diaphragms (IDARC2),” by A.M. Reinhorn,
S.K. Kunnath and N. Panahshahi, 9/7/88, (PB89-207153/AS).

"Sclution of the Dam-Reservoir Interaction Problem Using a Combination of FEM, BEM with
Particular Integrals, Modal Analysis, and Substructuring,” by C-$. Tsai, G.C. Lee and R.L. Ketter,
12/31/88, (PB89-207146/A8).

"Optimal Placement of Actuators for Structural Control," by F.Y. Cheng and C.P. Pantelides, 8/15/88,
(PB89-162846/A8),

“Teflon Bearings in Aseismic Base Isolation: Experimental Studies and Mathematical Modeling,” by A.
Mokha, M.C. Constantinou and A.M. Reinhorn, 12/5/%8, (PB89-218457/A8).

“Seismic Behavior of Flat Slab High-Rise Buildings in the New York City Area,” by P. Weidlinger and
M. Ettouney, 10/15/88, (PB90-145681/AS).

“Evaluation of the Earthquake Resistance of Existing Buildings in New York City," by P. Weidlinger
and M. Ettouney, 10/15/88, 1o be published.

"Small-Scale Modeling Techniques for Reinforced Concrete Structures Subjected to Seismic Loads,” by
W. Kim, A, El-Attar and R.N. White, 11/22/88, (PB89-189625/AS),

"Modeling Strong Ground Motion from Multiple Bvent Earthquakes,” by G.W. Ellis and A.S. Cakmak,
10/15/88, (PB89-174445/A8),

“Nonstationary Models of Seismic Ground Acceleration,” by M. Grigoriu, S.E. Ruiz and E.
Rosenblueth, 7/15/88, (PB89-189617/AS).

"SARCF User’s Guide: Seismic Analysis of Reinforced Concrele Frames," by Y.S. Chung, C. Meyer
and M. Shinozuka, 11/9/88, (PB89-174452/A5).

"First Expert Panel Meeting on Disaster Research and Planning,” ediled by 1. Pantelic and J. Stoyle,
9/15/88, (PB89-174460/A8).

"Preliminary Studies of the Effect of Degrading Infill Walls on the Nonlinear Seismic Response of Steel
Frames," by C.Z. Chrysostomou, P. Gergely and J.F. Abel, 12/19/88, (PR89-208383/AS).
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“Reinforced Concrete Frame Component Testing Facility - Design, Construction, Instrumentation and
Operation,” by S$.P. Pessikii C. Conley, T. Bond, P. Gergely and RN, White, 12/16/88,
(PB89-174478/AS).

"Effects of Protective Cushion and Seil Compliancy on the Response of Equipment Within a Seismi-
celly Excited Building,” by I.A. Holung, 2/16/89, (PB89-207179/AS5).

"Statistical Evalvation of Response Modification Factors for Reinforced Concrete Structures,” by
H.H-M. Hwang and J.W. Jaw, 2/17/89, (PB89-207187/AS).

“Hysteretic Columns Under Random Excitation,” by G-Q. Cai and Y.K. Lin, 1/9/89, (PB89-196513/
AS).

"Experimental Study of ‘Elephant Foot Bulge’ Instability of Thin-Walled Metal Tanks,” by Z-H. Jia and
R.L. Ketter, 2/22/89, (PB89-207195/AS5).

"Experiment on Performance of Buried Pipelines Across San Andreas Fault,” by J. Isenberg, E.
Richardson and T.D. O'Rourke, 3/10/89, (PB89-218440/A8).

“A Knowledge-Based Approach to Structural Design of Earthquake-Resistant Buildings,” by M.
Subramani, P. Gergely, C.H. Conley, 1.F. Abel and A H. Zaghw, 1/15/89, (PB80-218465/A8).

"Liquefaction Hazards and Their Effects on Buried Pipelines,” by T.D. O’Rourke and P.A. Lane,
2/1/86, (PB89-218481).

"Fundamentals of System Identification in Structural Dynamics,” by H. Imai, C-B. Yun, O. Maruyama
and M. Shinozuka, 1/26/89, (PB89-207211/AS8).

“Effects of the 1985 Michozcan Earthquake on Water Systems and Other Buried Lifelines in Mexico,”
by A.G. Ayala and M.J. O'Rourke, 3/8/89, (PB89-207229/A8).

"NCEER Bibliography of Earthquake Bducation Materials,” by K.E.K. Ross, Second Revision, $/1/89,
(PB90-125352/A8).

"Inelastic Three-Dimensional Response Analysis of Reinforced Concrete Building Structures (IDARC-
3D), Part I - Modeling,” by $.K. Kunnath and A.M. Reinthomn, 4/17/89, (PB90-114612/AS}.

“Recommended Modifications 10 ATC-14," by CD. Poland and J.O. Malley, 4/12/89,
(PB90-108648/AS5).

"Repair and Strengthening of Beam-to-Column Connections Subjected o Earthquake Loading,” by M.
Corazao and A.J. Durrani, 2/28/89, (PB90-109885/A5).

"Program EXKAL?2 for Identification of Structural Dynamic Systems,” by O. Maruyama, C-B. Yun, M.
Hoshiya and M. Shinozuka, 5/19/89, (PBS0-109877/AS}.

"Response of Frames With Bolted Semi-Rigid Connections, Part I - Experimental Study and Analytical
Predictions,” by P.J. DiCorso, A.M., Reinhorn, J.R. Dickerson, J.B. Radziminski and W.L. Harper,
6/1/89, 1o be published.

"ARMA Monte Carlo Simulation in Probabilistic Structural Analysis," by P.D. Spanos and M.P.
Mignolet, 7/10/89, (PB90-109893/AS8).

“Preliminary Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake
Education in Our Schools," Edited by K.E.K. Ross, 6/23/89.

"Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake Education in
Qur Schools," Edited by K.E.K. Ross, 12/31/89, (PB90-207895).
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"Multidimensional Models of Hysteretic Material Behavior for Vibration Analysis of Shape Memory
Energy Absorbing Devices, by E.J. Graesser and F.A, Cozzarelli, 6/7/89, (PB90-164146/A8).

"Nonlinear Dynamic Analysis of Three-Dimensional Base Isolated Structures (3D-BASIS),” by S.
Nagarajaiah, A.M. Reinhom and M.C. Constantinou, 8/3/89, (PR90-161936/AS).

"Structural Control Considering Time-Rate of Control Forces and Control Rate Constraints,” by E.Y.
Cheng and C.P. Pantelides, 8/3/89, (PB%0-120445/A8).

"Subsurface Conditions of Memphis and Shelby County,” by K.W. Ng, T-S. Chang and H-HM.
Hwang, 7/26/89, (PB90-120437/A85),

"Seismic Wave Propagation Effects on Straight Jointed Buried Pipelines," by K. Ethmadi and M.J.
O’Rourke, 8/24/89, (PB90-162322/A5).

"Workshop on Serviceability Analysis of Water Delivery Systems,” edited by M. Grigoriu, 3/6/89,
(PBO0O-127424/A8).

"Shaking Table Study of a 1/5 Scale Steel Frame Composed of Tapered Members,” by K.C. Chang, I.5.
Hwang and G.C. Lee, 9/18/89, (PBS0-160169/A5).

"DYNAID: A Computer Program for Nonlinear Seismic Site Response Analysis - Technical Docurnen-
tation,” by Jean H. Prevost, 9/14/89, (PB90-161944/AS),

"1:4 Scale Model Studies of Active Tendon Systems and Active Mass Dampers for Aseismic Protec-
tion," by A.M. Reinkorn, T.T. Soong, R.C. Lin, Y.P. Yang, Y. Fukao, H. Abe and M. Nakai, 9/15/89,
(PBS0-173246/A8).

"Scattering of Waves by Inclusions in a Nonhomogeneous Elastic Half Space Solved by Boundary
Element Methods," by PX. Hadley, A. Askar and A.S. Cakmak, 6/15/89, {PB9G-145699/A8).

“Statistical Evaluation of Deflection Amplification Factors for Reinforced Concrete Structures,” by
HHM. Hwang, J-W. Jaw and A.L. Ch'ng, 8/31/89, (PR90-164633/A8).

"Bedrock Accelerations in Memphis Area Due 1o Large New Madrid Earthquakes,” by H.H.M. Hwang,
CH.S. Chen and G. Yu, 11/7/89, (PB99-162330/AS).

"Seismic Behavior and Response Sensitivity of Secondary Structural Systems," by Y.(J. Chen and T.T.
Soong, 10/23/89, (PB90-164658/A8).

"Random Vibration and Reliability Analysis of Primary-Secondary Structural Systems,” by Y, Ibrahim,
M. Grigoriu and T.T. Soong, 11/10/89, (PB9G-161951/AS).

"Proceedings from the Second U 8. - Japan Workshop on Liquefaction, Large Ground Deformation and
Their Effects on Lifetines, September 26-29, 1989, Edited by T.IJ, O’Rourke and M, Harnada, 12/1/89,
{PB50-209388/A8).

“Deterministic Model for Seismic Damage Evaluation of Reinforced Concrete Structures,” by IM.
Bracci, A.M. Reinhom, 1.B. Mander and $.K. Kunnath, 9/27/89.

"On the Relation Between Local and Global Damage Indices,” by E. DiPasquale and A.S. Cakmak,
8/15/89, (PRS0-173865).

"Cyclic Undrained Behavior of Nonplastic and Low Plasticity Silts,” by A.J. Walker and H.E. Stewart,
7/26/89, (PBS0-183518/A8).

"Liquefaction Potential of Surficial Deposits in the City of Buffalo, New York," by M. Budhu, R, Giese
and L. Baumgrass, 1/17/89, (PB90-208455/A8).
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"A Determinstic Assessment of Effects of Ground Motion Incoherence,” by A.S. Veletsos and Y, Tang,
7/15/89, (PBYO-164294/A8).

"Workshop on Ground Motion Parameters for Seismic Hazard Mapping,” July 17-18, 1989, edited by
R.V. Whitman, 12/1/89, (PBS0-173923/A8}.

"Seismic Effects on Elevated Transit Lines of the New York City Transit Authority,” by C.J. Cos-
tantino, C.A. Miller and E. Heymsfield, 12/26/89, {PB90-207887/AS).

"Centrifugal Modeling of Dynamic Scil-Structure Interaction,” by K. Weissman, Supervised by LH.
Prevost, 5/10/89, (PEG0-207875/AS8).

"Linearized Identification of Buildings With Cores for Seismic Vulnerability Assessment,” by I-K. Ho
and A.E. Aktan, 11/1/89.
"Geotechnical and Lifeline Aspects of the October 17, 1989 Loma Prieta Earthguake in San Francisco,”

by T.D. O'Rourke, H.E. Stewart, RT. Blackburn and T.S. Dickerman, 1/90, (PB90-208596/A8).

"Nonnormal Secondary Response Due to Yielding in a Primary Structure,” by D.C.K. Chen and L.D.
Lutes, 2/28/90.

"Earthquake Education Materials for Grades K-12,” by K.E.K.. Ross, 4/16/90.
"Catalog of Strong Moticn Stations in Eastern North America,” by R.W. Busbhy, 4/3/90.

"NCEER Sirong-Motion Data Base: A User Manuel for the GeoBase Release (Version 1.0 for the
Sun3)," by P. Friberg and K. Jacob, 3/31/50.

"Seismic Hazard Along a Crude Oil Pipeline in the Event of an 1811-1812 Type New Madrid
Earthquake,” by H.H.M. Hwang and C-H.5. Chen, 4/16/90.

"Site-Specific Response Spectra for Memphis Sheahan Pumping Station,” by H.HH.M. Hwang and C.8.
Lee, 5/15/90.

"Pilot Study on Seismic Vulnerability of Crude Oil Transmission Systems,” by T. Ariman, R. Dobry, M.
Grigoriu, F. Kozin, M. O’Rourke, T. O’Rourke and M, Shinozuka, 3/25/90.

"A Program to Generate Site Dependent Time Histories: EQGEN,” by G.W. Ellis, M. Srinivasan and
A.S. Cakmak, 1/30/90.

“Active Isolation for Seismic Protection of Operating Rooms,” by M.E. Talbott, Supervised by M.
Shinozuka, 6/8/5.

"Program LINEARID for Identification of Linear Structural Dynamic Systems,” by C-B. Yun and M,
Shinozuka, 6/25/90.

"T'wo-Dimensional Two-Phase Elasto-Plastic Seismic Response of Earth Damns,” by AN. Yiagos,
Supervised by I.H. Prevost, 6/20/90.

“Secondary Systems in Base-Isolated Structures: Experimental Investigation, Stochastic Response and
Stochastic Sensitivity,” by G.D. Manolis, G. Juhn, M.C. Constantinou and A.M. Reinhorn, 7/1/90.

"Seismic Behavior of Lightly-Reinforced Concrete Column and Beam-Column Joint Details,” by S.P.
Pessiki, C.H. Conley, P. Gergely and R.N. White, 8/22/90,

"T'wo Hybrid Control Systems for Building Structures Under Strong Earthquakes,” by 1.N. Yang and A.
Danielians, 6/25/90.
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“Instantanecus Optimal Control with Acceleration and Velocity Feedback,” by I.N, Yang and 7, Li,
6/29/90.

"Reconnaissance Report on the Northern Iran Earthquake of June 21, 1990," by M. Mehrain, 10/4/90,

"Evaluation of Liquefaction Potential in Memphis and Shelby County,” by T.5. Chang, P.§. Tang, C.S.
Lee and H. Hwang, 8/10/90.

“Experimental and Analytical Study of a Combined Sliding Disc Bearing and Helical Steel Spring
Isolation System,"” by M.C. Constantinon, A.S. Mokha and A.M. Reinhom, 10/4/90.

"Experimental Study and Analytical Prediction of Earthquake Response of a Sliding Isolation System
with a Spherical Surface,” by A.S. Mokha, M.C. Constantinou and A M. Reinhorn, 10/11/50.

“Dynamic Interaction Factors for Floating Pile Groups," by G. Gazetas, K. Fan, A. Kaynia and E.
Kausel, 9/10/90.

"Evaluation of Seismic Damage Indices for Reinforced Concrete Structures,” by 8, Rodri’gueszfmez
and A.S. Cakmak, 9/30/90.

“Study of Site Response at a Selected Memphis Site," by H. Desai, S. Ahmad, G. Gazetas and M.R. Oh,
10/11/90.

"A User’s Guide to Strongmo: Version 1.0 of NCEER s Strong-Motion Data Access Teol for PCs and
Terminals," by P.A. Priberg and C.A.T. Susch, 11/15/90.

“A Three-Dimensional Analytical Study of Spatial Variability of Seismic Greund Motions,” by L-L.
Hong and AH.-S. Ang, 10/30/90,

"MUMOID User’s Guide - A Program for the Identification of Modal Parameters,” by 8.
Rodr guez-Gamez and E. DiPasquale, 9/30/90.

"SARCEF-II User’s Guide - Seismic Analysis of Reinforced Concrete Frames," by 8, Rodri guez«Gémez,
Y.8. Chung and C. Meyer, 9/30/90.

"Viscous Dampers: Testing, Modeling and Application in Vibration and Seismic Isolation,” by N.
Makris and M.C. Constantinou, 12/20/90.
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