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PREFACE

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion
and dissemination of knowledge about earthquakes, the improvement of earthquake-resistant
design, and the implementation of seismic hazard mitigation procedures to minimize loss of lives
and property. The emphasis is on structures and lifelines that are found in zones of moderate to
high seismicity throughout the United States.

NCEER’s research is being carried out in an integrated and coordinated manner following a
structured program. The current research program comprises four main areas:

« Existing and New Structures

+ Secondary and Protective Systems
¢ Lifeline Systems

« Disaster Research and Planning

This technical report pertains to Program 2, Secondary and Protective Systems, and more specifi-
cally, to protective systems. Protective Systems are devices or systems which, when incorpo-
rated into a structure, help to improve the structure’s ability to withstand seismic or other en-
vironmental loads. These systems can be passive, such as base isolators or viscoelastic dampers:
or active, such as active tendons or active mass dampers; or combined passive-active systems.

Passive protective systems constitute one of the important areas of research. Current research
activities, as shown schematically in the figure below, include the following:

1. Compilation and evaluation of available data.
2. Development of comprehensive analytical models.
3. Development of performance criteria and standardized testing procedures.
4. Development of simplified, code-type methods for analysis and design,
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This report presents an evaluation of a sliding isolation system which consists of Teflon disc
bearings and helical steel springs. The study is part of a series of experimental and analytical
Investigations being carried out at the University at Buffalo on a variety of base isolation sys-
tems. The isolation system was tested in a six-story quarier-scale model stricture on the shake
table at the University at Buffalo. Test results showed that the system has low sensitivity to the
frequency content of input motion. Experimental results confirmed that system response could be
predicted by analytical technigues.
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ARBTRACT

A sliding isclation system consisting of Teflon disc bearings
and helical steel springs is described. The system has been evaluated
in shake table tests of a six-story, quarter scale, 52 Kip model
structure and found to be capable of withstanding strong earthquake
forces of significantly different frequency content. The isolation
system has been designed to have strong frictional force and weak
restoring force. Under these conditions, the isolated structure
is insensitive to the frequency content of input and experimental

results confirm this important property.
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SECTION i
INTRODUCTION

Elastomeric isolation systems are becoming widely accepted and
found application in several building and bridge structures in the
United States, Japan, New Zealand and elsewhere (Buckle 1986, Kelly
1988) . Elastomeric isclation systems are spring-like systems. They
shift the fundamental frequency of the structure to values lower
than the predominant earthquake frequencies. This effect, coupled
with increased energy absorption capability, results in significant
reductions of the earthquake forces imparted to the structural
system above the isolation interface. This reduction of forces is
associated with large displacements at the isolation system which
must be accommodated by the elastomeric supports. Elastomeric
isolation systems are sensitive to the fregquency content of the
earthquake excitation. 1In particular, these systems are not very
effective in protecting structures against long period motions like
the 1985 Mexico City earthguake. Isolation against this motion,
which has a predominant frequency of less than 0.5 Hz, would reguire
a much lower than 0.3 Hz isolation system frequency, which is
impractical.

An alternative method of isolation is by sliding systems. A
structure supported entirely by sliding bearings would be experi-
encing forces at the isclation interface that are always bounded
by the mobilized frictional force, regardless of the level of ground
acceleration or its frequency content. However, a freely sliding

structure would also have large permanent displacements, particuw



larly when the sliding interface is not perfectly leveled. Control
of these permanent displacements within acceptable limits is
accomplished by the use of recentering devices,

Several sliding isolation systems with recentering devices have
been proposed. The most notable of these systems are the Friction
Pendulum System (Zayas et al, 1987, Mokha et al 1990a), the TASS
system (Kawamura et al, 1988) and the R-FBI system (Mostaghel and
Khodaverdian, 1987). These systems have been studied both analyt-
ically and experimentally. They all utilize sliding interfaces
consisting of Teflon or Teflon based materials in contact with
polished metals. Recentering capability is provided in the three
systems by different means. In the Friction Pendulum System (FPS},
the sliding interface takes a spherical shape so that restoring
force is provided by the weight of the structure during rising along
the spherical surface. In the TASS system, rubber springs are used
in parallel with elastomeric-TFE sliding bearings. In the R-FBI
system, bearings consisting of several Teflon-steel interfaces are
fitted in the center with a rubber core which provides restoring
force when deformed in shear. A 50,000 gallon water tank in
California is isolated by FPS bearings and three structures in Japan
are isolated by the TASS system. Furthermore, FPS bearings have
been very recently used in the seismic retrofit a three-story
apartment building in the San Francisco marina area.

Testing of sliding isclation systems has been limited to shake
table tests of single-story models (Zayas et al, 1987, Kawamura et

al, 1988). Shake table tests with multistory models have been



recently conducted by Chalhoub and Kelly, 1989 on a combined
sliding-elastomeric bearing system and by Mokha et al, 1990a on the
Friction Pendulum System. Both series of tests demonstrated the
effectiveness of the tested systems in protecting the structure
above. Bearing displacements in these systems were better controlled
than the ones in purely elastomeric systems, however accelerations
were higher. In both tested systems, the mobilized frictional
forces were of the same order or less than the developed restoring
forces in strong earthguake excitations. They could be classified
as sliding isolation systems with strong restoring force and both
showed a sensitivity to long period motions like the 1985 Mexico
City earthquake. In the tests of the FPS system with the Mexico
City motion, resonance effects were clearly evident, whereas in the
tests of the combined sliding-elastomeric bearing system with the
same motion, a displacement control device in the elastoneric
bearings was activated and prevented the bearings from moving too
far.

The tests reported in this report have been carried out with
a novel sliding isolation system. The model structure, a quarter
scale six-story steel frame, was entirely supported by sliding
Teflon disc bearings (Mokha et al, 1988). Recentering capability
was provided by helical steel springs which carried no vertical
load and deformed in shear. Three groups of tests were conducted,
one without the steel springs, and two with springs of different

total stiffness. In all cases, the mobilized peak frictional forces



were larger, by at least a factor of twc, than the developed peak

restoring forces in the sgprings, resulting in systems with weak or

no restoring force. The tests demonstrated the following:

1.

The system was effective in protecting the structural system
above against motions of significantly different frequency
content.

In the three groups of tests, with and without restoring force
devices, the peak model acceleration, peak interstory drift and
peak base shear were practically the same for the same table
input. The restoring force devices (helical springs) served
only as displacenent control devices.

The freguency content of the response of the model structure in
the three groups of tests was practically unaffected by the
stiffness of helical springs. This phenomenon further indicates
that the springs were effective in only controlling the bearing
displacement and that they did not contribute to the effectiveness
of the isolation system by lengthening the period of the

structural systen.



SECTION 2
TEET BTRUCTURE AND IHSTRUMENTATION

Figure 2-1 shows the test structure. It represents a section
in the weak direction of a typical steel moment-resisting frame at
approximately guarter scale. Concrete blocks were used to add mass
as necessary for similitude requirements, bringing the weight to
51.4 Kips (229.2 kN). The base of the model consisted of two heavy
W14x90 sections. The isolation system, consisting of four sliding
Teflon disc bearings and helical steel spring units, was placed
between the base and the shake table. The distribution of weight
with height was: 7.65 Kips (34.1 kN} at sixth floor, 7.84 Kips
(34.9 kN) at floors fifth to first and 4.56 Kips (20.3 kN) at the
base.

The natural frequencies, mode shapes and modal damping factors
of the test structure in its fixed-base condition were determined
in shake table tests using a banded 0~50 Hz white noise input and
employing modal identification techniques. The first three natural
frequencies were found to be 2.34 Hz, 7.76 Hz and 13.28 Hz. A
detailed description of the properties of the test structure together
with analytically determined modal properties has been presented
by Mokha et al, 1990a. Table 2~I lists the experimentally determined
frequencies, mode shapes and modal damping ratios of the test
structure. Analytically determined quantities are listed in the
same table in parenthesis. These guantities compare well with the

experimental ones. It should be noted that the analytically
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Fable 2-1 - Characteristics of Struciure Under Fixed Base Conditions
{Value in Parenthesis is Analytical)

Frequency Damping
Mode Hz Ratie Mede Shape
(1) 2) 3 4
Floor Floor Floor Floor Floor Floor
i 2 3 4 5 6 (top)
1 234 0.0142 0.214 0.437 0.632 4.797 0.921 1
(2.14) {0.164) (0.395) {0.611) (0.791) (0.923) {1
2 7.76 0.0204 0.563 1 £.900 0.326 -0.423 -0.997
{7.72) {0.520) (1) (0.956) (0.386) (-0.401) (-0.996)
3 13.28 0.0235 0.822 0.750 -0.248 -1 -0.435 0.850
(12.04) (0.804) (0.863) (-0.230) {-1) (-0.383) {0.817)
4 19.04 0.0155 1 ~0.010 -0.827 0.283 0.639 -0.461
(17.98) (1) (0.104) (-0.996) (0.240) (0.908) (-0.619)
5 24.80 0.0059 0.739 -0.851 0.229 0.708 -1 0.425
(24.02) (1) (-0.769) (-0.027) {0.805) (-0.946) (0.397)
6 28.92 0.0086 0.515 -0.850 1 -0.502 0.605 -(.209
(28.82) {0.679) {-0.919) (D (-0.879) {0.580) (-0.196)

2-3




determined frequencies are lower than the experimental ones,
indicating that the model structure is actually stiffer than the
theory predicted.

The instrumentation consisted of accelerometers and sonic
displacement transducers which were placed at each floor to measure
the horizontal acceleration of each floor and base in the longitudinal
(testing direction) and transverse directions. Displacement
transducers were placed only in the longitudinal direction and at
both sides of the model in order to measure displacements of each
floor and base with respect to a stationary frame as well as any
torsional motion of the model. Furthermore, transducers were used
to directly measure the displacement of the base with respect to
the shake table. Accelerometers were also placed above each sliding
bearing, to measure vertical acceleration and help determined whether
the model uplifted from its supports. A total of 39 channels of
data were recorded.

The instrumentation diagram of the test structure is shown in
Figure 2-~2. Only 30 channels are shown in Figure 2-2, the rest

were used to monitor the motion of the shake table.
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SECTIOH 3
ISOLATION EYSTEM

The isolation system consisted of four sliding Teflon disc
bearings which were placed under the base at 8 feet (2.44m) distance
as shown in Figure 2-1. The entire weight of the model was carried
by these bearings. The ratio of height of model to distance between
bearings was 2.25, indicating a slender configuration.

The Teflon disc bearing design is shown in Figure 3-1. The
upper plate of the bearing is faced with a polished stainless steel
plate which was commercially polished to degree No. 8. Measurements
of the surface roughness in the testing direction gave a value of
1.6 pin (0.04 pm) in the arithmetic average scale (Ry). The bottom
part of the bearing consists of a plate with a 3.7 in (94 mm)
diameter unfilled Teflcn sheet recessed on its top. The steel plate
is supported by a high hardness Adiprene (Urethane rubber) disc.
The disc is held by a shear restriction mechanism. The Adiprene
disc allows some limited rotation of the plate above so that Teflon
and stainless steel are in full contact. As designed the bearing
could accommodate 4.4 in (111.8 mm) movement in all directions.
However, in these tests, the bolts shown in Figure 3-1 were used
as displacement limits so that the maximum displacement the bearing
could accommodate was 2.8 in (71.1 mm).

Figure 3-2 shows a photograph of the Teflon disc bearing. The

circular Teflon sheet, recessed in its backing plate and supported
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Fig. 3~2 - Teflon Disc Bearing.
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by the Adiprene disc and shear restriction mechanism, is reflected
in the highly polished stainless steel plate of the top part of the
bearing.

The bearings were placed on top of axial load cells which were
raised with a system of leveling plates and bolts until all four
bearings were subjected to the same load. In this position the
load cells were bolted to the shake table, grouted and steel plates
were welded all around, reducing them to simple pedestals as shown
in Figures 2~1 and 3-1.

The top sliding plate of each bearing was leveled by the following
procedure. A washer was placed between this plate and the W14x90
section above and the four connecting bolts were used to level the
bearing within carpenter’s accuracy. In this position, the plate
was grouted. Measurements of the inclination of the plates revealed
that on the average, the four sliding plates were inclined by
0.4 degrees in a single direction.

Restoring force capability was provided by helical steel spring
units, each one of which consisted of three helical steel springs
of 7.5 in (190.5 mm) free length, external diameter of 3.1 in
(78.7 mm) and 0.512 in (13 mm) of wire diameter. The springs did
not carry any axial load and they provided restoring force by
deforming in shear. Figure 3-3 shows one spring unit under shear
deformation of 1.8 in (45.7 mm).

The properties of the isolation system were determined by the
following test. The base of the model was connected to a reaction

frame by two stiff rods which were instrumented with load cells.



Helical

Steel
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The shake table was driven in sinusoidal motion of specified
frequency and displacement amplitude and measurements of the force
transmitted through the isolation system to the motionless base
were made. Figure 3-4a shows recorded force-displacement loops in
two such tests in which the model was supported only by the sliding
bearings and the table was driven at an amplitude of 1.75 in. The
test at a frequency of 0.016 Hz was the first to be conducted and
the effects of breakaway (or static) friction are evident. The
value of sliding coefficlent of friction was measured and found to
vary between a value of 0.032 at very slaow velocity of sliding and
about 0.12 at high velocity of sliding. These values were consistent
with previous tests by the authors under similar conditions (Mokha
et al, 1988 and 19%0b).

When all four spring units were added to the isolation systemn,
the recorded loops exhibited the stiffness of the springs as shown
in Figure 3-4b. Again in these tests the table was driven at an
amplitude of 1.75 in. For a displacement of up to about 0.5 in
(12.7 mm), the springs had a lower stiffness (a common characteristic
of helical steel springs). For the four units the total initial
stiffness was 1.54 Kip/in (0.27 kEN/mm) . Beyond this 1limit on
displacement, the stiffness had a value of 2.68 Kip/in (0.47 kN/mm).
The following guantity having dimensions of time is defined:

iA/ 172
Tﬁz“(gxz) (3.1)
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where W is the weight of the structure and K is the stiffness
of the spring units beyond the limit of about 0.5 in (12.7 mm) on
displacement. Tp represents the period of free vibration of the
isolated structure when the superstructure is considered a rigid
body and friction is disregarded. In the tested system, Tp takes
the value of 1.4 sec. when all four spring units are used and the
value of 1.98 sec. when two units are used. When the springs are
removed, Ty becomes infinite.

An important observations to be made in the results of Figure 3-4
is that the coefficient of fricticen in Figure 3-4b is considerably
larger than that in Figure 3-4a. The tests results shown 1n
Figure 3-4b were conducted after completing several high velocity
tests. This phenomenon prompted the authors to conduct a set of
tests on Teflon-steel interfaces and study the effect of loading
history on the frictional properties (Mokha et al, 1990c). It was
found that friction of these interfaces increases when the interface
is previously worn by a large number of high velocity cycles of
motion. In the earthquake motion tests that followed, friction
continued to rise so that its maximum value increased from about
0.12 in the first tests to about 0.19, where it became stable.

In general, it was found that the coefficient of sliding friction
followed with good accuracy the following relationship which was

proposed by Constantinou et al, 1990:

LU )= Foax = Dfexp(-alU, 1) (3.2)



where U, is the velocity at the sliding interface and fy,y and

(fmax = Df) are the maximum and minimum mobilized coefficients of
friction, respectively. During the earthquake motion tests, the
values of fpay and (fpay - Df) varied from 0.15 to 0.19 and from
0.06 to 0.10, respectively. Parameter a was approximately constant
at a value of 0.55 sec/inch (21.6 sec/m).

Based on the above guoted values of the friction coefficient,
the mobilized peak frictional force was 9.8 kips whereas the peak
restoring force was 4.8 kips (configuration with four spring units
at displacement of 2 in.). Accordingly, the ratio of peak frictional
force to peak restoring force in the tested system was larger then

two.






SECTION 4
TEST PROGRAM

The model structure was subjected to seven different earthqguake

signals on the shake table. The characteristics of these earthquake

signals ranged from high freguency (Mivagiken - 0Oki) to predomi-

nantly low fregquency motions (Hachinohe and Mexico City). The

signals used are listed below:

1.

Inperial Valley Earthquake (E1 Centro SO00E) of May 18, 1940.
Component. S00E, peak ground acceleration (PGA) = 0.34g, pre-
dominant frequency range (PFR) = 1 - 4 Hz,.

Kern County Earthguake (Taft N21E) of July 21, 1952. Component
N21E, PGA = 0.16 g, PFR = 0.5 - &5 Hz,

San Fernando Earthquake (Pacoima S74W) of February 9, 1971.
Component 874W. PGA = 1.08g, PFR = 0.25 - 2 Hz.

San Fernando Earthquake (Pacoima S16E) of February 9, 1971.
Component S16E, PGA = 1.17 g, PFR = 0.25 - & Hz.

Miyagiken-Oki Earthquake (Miyagiken-0Oki) of June 12, 1978
(Tohoku Univ., Sendai, Japan). Component EW, PGA = 0.16q,
PFR = 0.5 - 5 Hz.

Tokachi-0Oki Earthquake, Japan (Hachinohe) of May 16, 1968.
Component NS, PGA = 0.23g, PFR = 0.25 -~ 1.5 Hz.

Mexico City Earthguake (Mexico City) of September 19, 1585 (SCT
Building Station). Component NOOW, PGA = 0.17g,

PFR = 0.35 - 0.55 Hz.



Of these records, the last two are long period motions with Mexico
City being almost a sinusoidal wave at frequency of 0.5 Hz. The
records were time-compressed by a factor of two for similitude.
Each earthgquake signal was run at increasing levels of peak table
acceleration until the peak interstory drift reached approximately
the elastic limit of the test structure, which was determined to
be about 0.2 inches (5.1 mm) or 0.0055 times the story height.
Furthermore, one test was conducted with sinusoidal table motion
of 2.4 Hz frequency and large number of cycles. This test was
conducted sc that any deteriorating behavior of the isolation system
is observed.
Figure 4-1 shows plots of time histories of some of the motions
used in the testing program as recorded in tests of the isolation
system with four spring units. These motions are shown in scaled
time. The percentage figure shown in the caption of each plot
applies to the acceleration of the actual record. For example, the
figure 85% implies that the acceleration of the actual record has
been multiplied by the factor 0.85, time-scaled and fitted through
the shake table. Of interest to note is the high frequency tail
of some of these records (El Centro, Taft and Miyagiken-0Oki). This

is evidence of table-structure interaction.
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BECTION 3
TEST RESULTE

Table 5-I lists the input signals in the test program, the
isolation system condition, the peak table acceleration and the
maximum response of the model in terms of base shear over weight
(51.4 Kips) ratio, bearing displacement, peak model acceleration,
peak interstory drift and permanent bearing displacement at the end
of free vibration response. The base shear was computed from the
floor and base acceleration records assuming that the mass of the
model is concentrated at the level of the floor and base. Four
isolation conditions are identified in Tabkle 5-1. Fiwed for
fixed-base conditions and SB4HS, SB2HS and SBOHS for the sliding
system with four, two and no helical spring units, respectively.
The earthquake excitation in Table 5~I is presented with a percentage
figure which applies to the peak ground acceleration of the actual
record. For example, the case Taft N21E 300% corresponds to the
actual Taft record with the peak acceleration increased approximately
by a factor of three.

5.1 Effectiveness of System

The effectiveness of the isolation system in protecting the
structure above is evident in a comparison of the test results
with E1 Centro motion. Under fixed base conditions, the peak
interstory drift reached a value close to the elastic limit at
a peak table acceleration of 0.1g. In the isolated condition

with four spring units (condition with Ty, Eg. (3.1), equal
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to 1.4 secs), a lower value on the peak drift was obtained at
a peak table acceleration of 0.31g. Acceordingly, the capacity
of the frame to withstand this motion while remaining undamaged
has been increased in the isolated condition by a factor of at
least three in comparison to the fixed-base condition.

Bearing displacements in the case of the system with four
spring units arve small and in general about half of those measured
in tests with elastomeric isolation systems and similar size and
scale models {(Griffith et al, 1988). However, recorded peak
model accelerations are considerably larger than in the previocusly
mentioned tests of elastomeric isolation systenms, and in general
are larger than the peak table acceleration.

It has been common to determine the effectiveness of elas-
tomeric isoclation systems by the degree to which the table
acceleration has been reduced in the structure above (e.g. Griffith
et al, 1988). This measure of effectiveness is, of course, valid
only in systems in wﬁich all stories move in phase. In such cases,
accelerations and inertia forces point to the same direction and,
unless they are low, they may lead to large story shear, overturning
moment and drift. However, when out of phase response prevails,
the inertia forces may be large but they point in opposing
directions, leading to reduce story shear, overturning moment
and drift. This kind of behavior dominates the response of
sliding systems. It has been previously observed by the authors
in tests of the Friction Pendulum System (Mokha et al, 1990a)

and in the tests described in this report.



Evidence for this behavior is provided in Figure 5-1 which
shows profiles of acceleration (solid line) and displacement
(dashed line) of the tested frame at times at which the indicated
peak responses were recorded. Excitation is the Pacoima record,
component S16E scaled to peak acceleration of 0.84g. The isolation
system was with four spring units. The peak bearing displacement,
peak interstory drift, peak overturning moment and base shear
occur when model accelerations are less than 0.6g, thus less than
the peak table acceleration. The peak model acceleration of
1.08g occurs at a much later time, at the first floor and while
all other floor accelerations are less than 0.6g and in opposing
directions. Clearly, the response is out of phase with dominant
higher mode participation.

Figure 5-2 shows profiles of acceleration and displacement
of the same system, but for the El1 Centro input, scaled to peak
acceleration of 0.31g. Again the acceleration response is out
of phase. The peak model acceleration occurs at the sixth floor
and is equal to 0.92g, almost three times the table acceleration.
However, the peak interstory drift occurs at a different time,
when the peak model acceleration is 0.47g (1.5 times the table
acceleration) and when the response is dominated by higher mode
participation. Interstory drift and not the peak model accel-
eration represents in this case a useful measure of stress and

deformation levels in the structures.
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A somewhat different picture develops in the long period
motions. Figures 5-3 and 5-4 show profiles of acceleration and
displacement of the same system when excited by the Hachinohe NS
(0.22g) and Mexico City (0.18g peak table acceleration) motions.
The higher mode participation in the response is not as dominant
as in the other motions. However, at the time at which the peak
interstory drift occurs the model accelerations are lower than
the peak value shown in Table 5-I.

Similar behavior is observed in the tests with two and no
spring units as shown in Figures 5-5 through 5-8, respectively.

Concluding, we note that the accelerations in the model
structure are large and in general larger than the peak table
acceleration. However, the response is out of phase with dominant
higher mode participation. The floor inertia forces, while large,
point to opposing directions leading to reduced interstory drift,

overturning moment and shear.

5.2 Effect of Restoring Force

The helical spring units were designed to provide weak
restoring force with the specific purpose of controlling the
bearing displacement and not for shifting the fundamental fre-
quency of the system to low values.

Tests with four spring units (Tp = 1.4 secs), two spring
units (T = 1.98 secs) and no spring units (T ~ ) were conducted

with the Japanese Miyvagiken-0Oki (two tests) and Hachinohe (one
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(0.18g peak table acceleration).
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test) records. The first is a high freguency motion, whereas

the second is a low frequency motion. The results of Table 5-I
clearly indicate that the response of the test structure in terms
of peak base shear, peak model acceleration and peak interstory
drift was practically unaffected by the stiffness of the spring
units. The results show that the springs were effective only in
limiting the bearing displacement. In particular, the config-
uration with four spring units resulted in very low permanent
displacements which, in general, were less than six percent of
the bearing design displacement (2.8 in or 71.1 mm). On the
other hand, the configurations with two and no spring units
resulted in excessive permanent displacements.

This interesting behavior 1is vividly illustrated in
Figures 5-9 and 5-10 which show recorded peak responses as function
of parameter Ty (Eg. (3-1)) for the Hachinohe input (peak table
acceleration of 0.22g) and the Miyagiken-Oki input (peak table
acceleration of 0.42qg).

It should be noted that the large permanent bearing dis-
placements in the system without spring units have been primarily
a result of the accidental inclination of the sliding interface
in a single direction, which was determined to be about 0.4
degrees. This in effect increases the coefficient of friction
in one direction and decreases it in the opposite direction.
This difference may appear to be small but is very important and
analytical evidence for this will be provided later in this

report.
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The stiffness of the restoring force devices had also an
insignificant effect on the frequency content of the response of
the tested structure. Evidence for this is provided in Figure 5-11
which shows Fourier amplitude spectra of the recorded sixth floor
acceleration of the test structure. The dashed line corresponds
to the Fourier spectra of the fixed base structure when excited
by the scaled-down El Centro 1940 motion. The distinct peaks at
2.34 and 7.76 Hz correspond to the first two frequencies of the
superstructure. The solid line corresponds to Fourier spectra
of the isclated model with four, two and no spring units and for
the Hachinohe input. The three spectra are almost identical and
exhibit distinct peaks at the fundamental frequencies of the
superstructure. As intended in the design, the spring units did
not shift the freguencies of the test structure to lower values.

The results indicate that restoring force devices in sliding
isolation systemg are important in controlling bearing dis-
placements within acceptable limits. The stiffness of these
devices should be selected so that permanent displacements are
small. Designing for lower than necessary stiffness does not

increase the degree of isolation.

5.3 S8ystem Adeguacy

An adequate isolation system should not deteriorate when
subjected to a large number of cycles of loading. In one test

in the configuration with four spring units, the shake table was



0.05
( 0034 Hy 6th FLOOR ACCELERATION
o e Fixed Bose: El Centro 30 s
.{ : —— SHOHS: Hachinohe NS 100 %I
! ! 1
o |
i 4}776 Hz ;
4 11 |
i i
L
o L _‘,\ﬂ‘\;' .li’gm‘\ ey MM
5 0.0 RS T T !"_1-1 T f“l'!"fﬁ PP :’f‘-lll‘}-i\ﬂ\ T
> 0.05
%g | —-— SB2HS: Hachinche NS 100 =
= |
S e
. { ﬁ |
5 | |
= ﬂ
= A ] A H
= ] g li%ﬂ Yiﬁ “\ |
I iﬁM /‘
™ 0.00 ML’*"N] d WMWWAWM g
L I I i [ T T !Jlf
&2 0.05
- [ --—— SB4HS: Hochinohe NS 100 =
2 |
" .
ﬁ |
] *1 I
N |
ﬁ, IW
MJ W |
0.00 [‘illl!lllilllJT\\ii]lll!\EIII||\\\EIIJ\]\IIIJIJIa}

. 2 4 5 8 10
FREQUENCY  Hz

Fig. 5-11 - Fourier Amplitude Spectra of Sixth-Floor Acceleration
of Structure for Fixed-Based Conditions and Isolation
Conditions with Four (SB4HS), Two (SB2HS) and Without
(SBOHS) Spring Units. Observe that Frequency Content

is not Affected by Stiffness of Spring Units.

5-14



driven at a fregquency of 2.4 Hz and amplitude was varied until
the table acceleration reached a value of 0.2g. At least forty
cycles of motion were completed with bearing displacement
exceeding 0.2 in (5 mm) and peak sliding velocity between 3 and
4 in/sec (75 to 100 mm/sec). The recorded base (bearing) dis-
placement history and the base shear - displacement loops with
displacement larger than 0.2 in are shown in Figure 5-12. The
isolation system showed very stable characteristics without any

degradation under repeated cyclic loading.

5.4 FPeatures of Response

The recorded response of the isolated model structure is presented
in Figures 5-13 through 5-39 in terms of time histories of base
{bearing) displacement, structural shear over weight (51.4 Kips)
ratio (structural shear is shear at first story) and sixth floor
displacement with respect to base and base shear (at bearing
level) over weight ratio versus bearing displacement loops.
Figures 5-13 through 5-28 present results for the system with
four spring units (SB4HS), Figures 5-29 through 5-35 present
results for the system with two spring units (SB2HS) and
Figures 5-36 through 5-39 present results for the system without

spring (SBOHS).

Note the following in these figures:
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The time histories of structural shear and sixth floor dis-
placement are almeost identical in the three groups of tests
with and without spring units. Of course, thig should be
expected as the springs were weak and did not alter the
frequency characteristics of the svystem.

The bearing displacement histories in the three groups of
tests exhibit very similar characteristics except for the
drift in a preferred direction in the systems with two and
no spring units. This is a result of the accidental average
inclination of the bearings in that direction.

The tail of the time histories of structural shear and sixth
floor displacement shows a peculiar behavior (large values,
and is some cases, beat phenomena) which appears to be
inconsistent with the corresponding table translational input
(see Figure 4-1) and bearing displacement history. This
behavior could be explained when one considers rocking motion
of the table. Unfeortunately, the rocking motion of table was
not monitored in the tests. Rather, the vertical acceleration
just above each sliding bearing was measured (see Figure 2-2
for instrumentation diagram). These records were used to
obtain approximations to the rocking meotion of the table.
Indeed, this motion was sizable and responsible for the
ocbserved behavior. More details will be provided later in
this report when the analytical predicticon of the response

ig discussed,

i
i
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Finally, we note that during the entire testing program no
uplift occurred at the bearings and no torsional motion was

detected.
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BECTION ¢
ANALYTICAL PREDICTION OF RESPONSE

The "“Tentative General Requirements for the Design and Con-
struction of Seismic-Isolated Structures" document which was pre-
pared by the Structural Engineers Association of California (SEAOC,
1990) specifies analysis procedures for base~isolated structures.
The document reguires the use of dynamic time history analysis for
specific cases, one of which is when the structure is located on
a soil profile with site factor S4. Of course, this requires the
availability of analytical techniques for the reliable prediction
of response,.

2 lumped mass model with degrees of freedom being the floor and
base displacements was used for the analytical prediction of the

response of the tested system. The egquations of motion are:

[MI{UY+[CHUY+[KJ{UY=~[MI{1}(U,+ U ) (6.1)
6

S mU ~Uy+U ) +my(U,+U )+ F +F =0 (6.2)
iw] .

Egquation (6.1) is the equation of motion of the six story super-
structure with [M], [C] and {K] being the mass, damping and stiffness
matrices, respectively. Equation (6.2) is that of dynamic
equilibrium of the entire structure in the horizontal direction.
{U} is the vector of floor displacements with respect to the base,
Up is the base displacement with respect to the table and Ug is
the table displacement. A dot denotes differentiation with respect

to time. my and mp (i = 1 to 6} are the floor and base masses.



Matrices [K] and [C] were constructed analytically using the ana-
lytical modal shapes and freguencies of Table 2-I (see Mokhé et
al, 19%0a for details). The modal damping factors used in the
construction of matrix [C] were those determined experimentally
(see Table 2-1).

Fr and Fyp are the frictional and restoring forces, respectively,

at the isolation interface. The frictional force is given by:

Fo=[W{U,)cosb~sgn(l/,)sinb]wz (6.3)

where sgn stands for the signum function and u(l/,) is the coefficient

of sliding friction of the Teflon bearing which depends on the
velocity of sliding in accordance to Eg. (3.2). & is the accidental
average inclination of the sliding interface which was determined
to be 0.4 degrees. Effectively, the mobilized frictional force is
lower when sliding occurs in the downhill direction and larger when
sliding occurs in the uphill direction. The difference from the
average value is sind W, where W is the weight of the model. This
small difference amounts to only 0.36 Kips (1.6 kN). This difference
is visible in the frictional force~displacement loops of
Figures 3-4a. These loops were adjusted for symmetry so that
reliable measurements of the coefficient of frictional could be
made. In the loop of Figure 3~4a at frequency of 0.016 Hz, the
starting point of the locp is shown with a dot which starts at a

force of about -0.3 Kips.



Variable Z in Eg. (6.3) is used to account for the conditions
of separation and reattachment (Constantinou et al, 1990) and is

governed by the following differential equation:
YZ+y|U, | Z | Z1+RBU,Z2%-U,=0 (6.4)
in which ¥ = 0.005 in (0.127 mm) and R+y=1.

The restoring force is given by:

KU, UL IS D,
. (6.5)
(Ky =KD sgn(U )+ KU, (U, 1> D,y

in which K3 is the initial low value of the spring stiffness, valid
for displacements less than the limit Dy and Ky is the stiffness
beyond the limit Dj. Egquation (6.5) describes the force in an
elastic bilinear spring. For the system with four spring units,
Ky = 1.54 Kip/in (0.27 kN/mm), XKp = 2.68 Kip/in (0.47 kN/mm) and
D = 0.5 in {(12.7 mm).

As noted earlier, the coefficient of friction was not constant,
but rather increased with repeated testing. In general, the
coefficient of sliding friction followed the law of Eqg. (3.2) with
parameter a equal to approximately 0.55 sec/in (21.6 sec/m) but
with parameters Dy and fpay increasing with repeated testing. At
the initial tests, fyayx was 0.12 and De was 0.088. The value of
frayx could be obtained from recorded base shear-bearing displacement
loops during the sequence of earthquake loading tests. It was found
to increase from 0.12 to almost 0.19, where it became stable. It

was not possible to accurately determine the value of Dg in each



test. It was approximately determined from recorded loops of base
shear~displacement to be in the range of 0.06 to 0.13. For example,
in the test on the system with four spring units and Pacoima S16E
85% (peak table acceleration of 0.84g) input, these parameters had
values of fyay = 0.17 and Dfg = 0.16. In the test on the system
without spring units and Hachinohe 100% (0.21g) input, these
parameters changed to fyzy = 0.185 and Dy = 0.13. This was the
last test in the testing seguence.

Analyses have been performed in selected cases and the results
are presented in Figures 6-1 through 6~9%. The results are presented
in the same terms as the experimental results of Figures 5-13 through
5-39, to which they should be compared. For the numerical solution
of Egs. (6.1) through (6.5) a technique appropriate for stiff
differential equations has been used as described by Mokha et al,
1990a.

The analytical results on the bearing displacement history and
base shear—displacement loop compare favorably to the experimental
results. It is particularly important to note the ability of the
analytical model to predict permanent bearing displacements in the
systems with two or no spring units. However, the accuracy of the
analytical prediction is not as good as in earlier studies of the
authors with cother sliding isolation systems (Mokha et al, 19%0a}).
Major reason for this difference is the lack of precise knowledge

of the coefficient of friction.



The analytical results on the structural shear and sixth floor
displacement histories compare well to the experimental results
only in the initial portion of each record and show marked differences
in the tail of each record. As discussed earlier, this difference
in the tail is caused by the rocking motion of the table which was
not accounted for in the analysis,

In an attempt to provide analytical interpretation of this
phenomenon we selected the case of the system with four spring units
and Pacoima S16E (0.84g) input (Figures 5-24 and 6-2). This is a
case with marked difference between the tails of analytical and
experimental responses. We determined the rocking motion of the
table from the vertical acceleration records from accelerometers
which were placed above each sliding bearing (see Figure 2-2 for
instrumentation diagram). This was not the exact rocking moticn
of the table as some filtering occurred in the Adiprene discs of
the sliding bearings. The equations of motion were modified to
account for rocking input and the results of this analysis are shown
in Figure 6-10. A comparison of this figure to Figure 5-24 (ex-—
perimental response) shows a good agreement between the analytical
and experimental results. Indeed the rocking tabkle input is
responsible for the peculiar tail of the observed response.

The importance of the accidental average bearing inclination
is demonstrated in Figure 6-11, which compares analytical bearing
displacement histories to the experimental one for the system without
spring units and Hachinche 100% (0.21g) input. When the measured

value of 6 = 0.4 degrees was used, the analysis gave results in very



good acceord with the experiment. However, when a value of §= 0
(perfectly leveled bearings) was used, the bearing followed a

different path with much lower permanent displacement.
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STRUCTURE SHEAR/WEIGHT

6th FLOOR DISPLACEMENT {NCHES

Fig. 6~10 - Analytical Time Histories
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The Rocking Motion of Table
Compare with Figure 5-24.
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BECTION 7
CONCLUSIONS

A sliding isolation system consisting of Teflon disc bearings

and helical steel =zprings has been tested with a quarter scale,

six-gstory large aspect ratio mocdel. The helical steel springs

provided weak peak restoring force which was always less, by at

least a factor of two, than the mobilized peak frictional force.

The results show:

i.

The system has low sensitivity to the frequency content of input
motion. The system performed well for motions of significantly
different frequency content, ranging from high frequency like
the 1940 El Centro and the 1978 Japanese Miyagiken-0Oki to low
frequency like the 1985 Mexico City earthqguake.

The restoring force devices were only effective in reducing
bearing displacements and, in particular, in reducing permanent
bearing displacements. In the configuration with four spring
unite, these permanent displacements were less than six percent
of the bearing design displacement.

Isolation was provided by limiting the force at the isolation
interface and not by shifting the fundamental frequency of the
system to low values. Actually, the spring units did not at
all change the frequency characteristics of the structure.

An important consideration in the design of sliding isocolation
systems is the possible accidental average inclination of the

sliding interfaces. As a result of this inclination, friction



is asymmetric. The stiffness of the restoring force devices
should be large enough to counteract the effects of this
asymmetry.

The response of the structure is out of phase with large floor
accelerations. However, owing to the out of phase response the
accelerations point to opposing directions and lead to reduced
story shear, overturning moment and drift.

In tests with the El Centro motion the isolated structure could
sustain, while elastic, a table acceleration at least three
times more than it could sustain under fixed-base conditions.
The response of the system could be reliably predicted by

analytical techniques.
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"First Expert Panel Meeting on Disaster Research and Planning,” edited by J. Pantelic and J, Stoyle,
9/15/88, (PB8Y-174460/A8).

"Preliminary Studies of the Effect of Degrading Infill Walls on the Nonlinear Seismic Response of Steel
Frames," by C.Z. Chrysostornou, P. Gergely and IF. Abel, 12/19/88, (PB89-208383/A8).
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NCEER-88-0047

NCEER-89-0001

NCEER-89-0002

NCEER-89-0003

NCEER-89-0004

NCEER-89-0003

NCEER-89-0006

NCEER-89-0007

NCEER-89-0008

NCEER-89-0009

NCEER-89-R010

NCEER-89-0011

NCEER-89-0012

NCEER-89-0013

NCEER-89-0014

NCEER-89-0015

NCEER-89-0016

NCEER-89-P017

NCEER-89-0017

"Reinforced Concrete Frame Component Testing Facility - Design, Construction, Instrumentation and
Operation,” by S.P. Pessiki, C. Conley, T. Bond, P. Gergely and R.N., White, 12/16/88,
(PB8Y9-174478/AS8).

"Effects of Protective Cushion and Soil Compliancy on the Response of Equipment Within a Seismi-
cally Excited Building," by J.A. HoLung, 2/16/89, (PB89-207179/A5).

“Statistical Evaluation of Response Modification Factors for Reinforced Concrete Structures,” by
HH-M. Hwang and I-W. Jaw, 2/17/89, (PB89-207187/AS).

"Hysteretic Columns Under Random Excitation,” by G-Q. Cai and Y.K. Lin, 1/9/89, (PB89-196513/
AS).

"Experimental Study of ‘Elephant Foot Bulge’ Instability of Thin-Walled Metal Tanks," by Z-H. Jia and
R.L. Ketter, 2/22/89, (PB89-207195/AS).

"Experiment on Performance of Buried Pipelines Across San Andreas Fault," by J. Isenberg, E.
Richardson and T.D. O'Rourke, 3/10/89, (PB89-218440/A8).

"A Knowledge-Based Approach to Structural Design of Earthguake-Resistant Buildings," by M.
Subramani, P. Gergely, C.H. Conley, J.F. Abel and A.H. Zaghw, 1/15/89, (PB89-218465/A%).

“Liquefaction Hazards and Their Effects on Buried Pipelines,” by T.D. O'Rourke and P.A. Lane,
2/1/89, (PB89-218481).

"Fundamentals of System Identification in Structural Dynamics,” by H. Imai, C-B. Yun, O. Maruyama
and M. Shinozuka, 1/26/89, (PB89.207211/AS).

"Effects of the 1985 Michoacan Earthquake on Water Systems and Other Bured Lifelines in Mexico,"
by A.G. Ayala and M.L. O'Rourke, 3/8/89, (PB89-207229/AS).

"NCEER Bibtiography of Earthquake Education Materials," by K.E.K. Ross, Second Revision, $/1/89,
(PB90-125352/A8).

"Inelastic Three-Dimensional Response Analysis of Reinforced Concrete Building Structures IDARC-
3D), Part I - Modeling," by S.K. Kunnath and A.M. Reinhomn, 4/17/89, (PB90-114612/AS).

"Recommended Modifications to ATC-14," by CD. Poland and JO. Malley, 4/12/89,
(PB90-108648/A8).

"Repair and Strengthening of Beam-to-Column Connections Subjected o Earthquake Loading,” by M.
Corazao and A.J, Durrani, 2/28/89, (PBO0-109885/AS).

"Program EXKAL? for Identification of Structural Dynamic Systems," by O, Maruyama, C-B. Yun, M.
Hoshiya and M. Shinozuka, 5/19/89, (PB90-109877/AS).

"Response of Frames With Bolted Semi-Rigid Connections, Part I - Experimental Study and Analytical
Predictions,” by P.J. DiCorso, A.M. Reinhorn, J.R. Dickerson, ].B. Radziminski and W.L. Harper,
6/1/89, to be published.

"ARMA Monte Carle Simulation in Probabilistic Structural Analysis,” by P.D. Spanos and M.P.
Mignolet, 7/10/89, (PBO0-109893/A3).

"Preliminary Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake
Education in Qur Schools,” Edited by K.E.K. Ross, 6/23/89,

"Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake Education in
Our Schools," Edited by K.E.K. Ross, 12/31/89, (PR90-207895).
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NCEER-89-0018

NCEER-89-0019

NCEER-89-0020

NCEER-89-0021

NCEER-89-8022

NCEER-89-0023

NCEER-89-0024

NCEER-89-0025

NCEER-89-0026

NCEER-89-0027

NCEER-89-0028

NCEER-89-0029

NCEER-89-0030

NCEER-89-0031

NCEER-89-0032

NCEER-89-0033

NCEER-89-0034

NCEER-89-0035

NCEER-89-0036

"Multidimensional Models of Hysteretic Material Behavior for Vibration Analysis of Shape Memory
Energy Absorbing Devices, by E.J. Graesser and F.A. Cozzarelli, 6/7/89, (PB90-164146/A5).

"Nonlinear Dynamic Analysis of Three-Dimensional Base Isclated Structures {3D-BASIS),” by S.
Nagarajaiak, A.M. Reinhorn and M.C. Constantinou, 8/3/89, (PB90-161936/A8).

"Structural Control Considering Time-Rate of Control Forces and Control Rate Constraints,” by F.Y.
Cheng and C.P. Pantelides, 8/3/89, (PB30-120445/A8).

"Subsurface Conditions of Memphis and Shelby Coumty,” by KW, Ng, T-S. Chang and H-H.M.
Hwang, 7/26/89, (PB90-120437/A8).

“Seismic Wave Propagation Effects on Straight Jointed Buried Pipelines,” by K. Eihmadi and M.J.
O’Rourke, 8/24/89, (PB90-162322/A8).

"Workshop on Serviceability Analysis of Water Delivery Systems,” edised by M. Grigoriu, 3/6/89,
(PBS0-127424/A8).

“Shaking Table Study of a 1/5 Scale Steel Frame Composed of Tapered Members," by K.C. Chang, I.S.
Hwang and G.C. Lee, 9/18/39, (PBO0-160169/A8).

"DYNA1D: A Computer Program for Nonlinear Seismic Site Response Analysis - Technical Documen-
1ation,” by Jean H. Prevost, 9/14/89, (PB0-161944/A8).

"1:4 Scale Model Studies of Active Tendon Systems and Active Mass Dampers for Aseismic Protec-
tion,” by A.M. Reinhomn, T.T. Soong, R.C. Lin, Y.P. Yang, Y. Fukao, H. Abe and M. Nakai, 9/15/89,
(PB90O-173246/A8).

"Scattering of Waves by Inclusions in 2 Nonhomogeneous Elastic Half Space Solved by Boundary
Element Methods,” by P.K. Hadley, A. Askar and A.S. Cakmak, 6/15/89, (PB90-145699/AS).

"Statistical Evaluation of Deflection Amplification Factors for Reinforced Concrete Structures,” by
HH.M. Hwang, J-W, Jaw and A.L. Ch'ng, 8/31/89, (PB90-164633/AS).

"Bedrock Accelerations in Memphis Area Due o Large New Madrid Earthquakes," by H.H.M. Hwang,
CJH.S. Chen and G. Yu, 11/7/89, (PB90-162330/AS).

"Seismic Behavior and Response Sensitivity of Secondary Structural Systems,” by Y.Q). Chen and T.T.
Soong, 10/23/89, (PB90-164658/A8).

"Randem Vibration and Reliability Analysis of Primary-Secondary Structural Systems,” by Y. Ibrzhim,
M. Grigoriu and T.T. Soong, 11/10/89, (PB90-161951/A8).

“Proceedings from the Second U.S. - Japan Workshop on Liquefaction, Large Ground Deformation and
Their Effects on Lifelines, September 26-29, 198%," Edited by T.D. O'Rourke and M. Hamada, 12/1/89,
(PBSG-20G388/A8),

"Deterministic Model for Seismic Damage Evaluation of Reinforced Concrete Structures,” by LM,
Bracci, A.M. Reinhorn, LB. Mander and S.K. Kunnath, 9/27/89.

"On the Relation Between Local and Global Damage Indices,”" by E. DiPasquale and A.S. Cakmak,
8/15/89, (PB90-173865).

"Cyclic Undrained Behavior of Nonplastic and Low Plasticity Silts," by A.J. Walker and H.E. Stewart,
1/26/89, (PB90-183518/A8),

"Liquefaction Potential of Surficial Deposits in the City of Buffalo, New York," by M. Budhu, R. Giese
and L. Baumgrass, 1/17/89, (PB90-208455/A%).
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NCEER-89-0037

NCEER-89-0038

NCEER-89-0039

NCEER-89-0040

NCEER-89-0041

NCEER-90-0601

NCEER-90-0002

NCEER-90-0003
NCEER-9G-0004

NCEER-50-0005

NCEER-90-0606

NCEER-90-00067

NCEER-90-0008

NCEER-90-0009

NCEER-50-0010

NCEER-90-0011

NCEER-90-0012

NCEER-90-0013

NCEER-906-0014

NCEER-90-0015

"A Determinstic Assessment of Effects of Ground Motion Incoherence,” by A.8. Veletsos and Y. Tang,
/15789, (PBY0-164294/A8).

"Workshop on Ground Motior Parameters for Seismic Hazard Mapping,” July 17-18, 1989, edited by
R.V. Whitman, 12/1/89, (PB90-173923/A5).

"Seismic Effects or Elevated Transit Lines of the New York City Transit Authority," by C.J. Cos-
tantino, C.A. Miller and E. Heymsfield, 12/26/89, (PB0-207887/AS).

"Centrifugal Modeling of Dynamic Soil-Structure Interaction,” by K. Weissman, Supervised by LH,
Prevost, 5/10/8%, (PB90-207879/A8).

“Linearized Identification of Buildings With Cores for Seismic Vulnerability Assessment,” by I-K. Ho
and A E, Akian, 11/1/89.
"Geotechnical and Lifeline Aspects of the October 17, 1989 Loma Pricta Earthquake in San Francisco,”

by T.D, O'Rourke, H.E. Siewart, F.T. Blackburn and T.8. Dickerman, 1/90, (PB%0-208596/A8),

“Nonnormal Secondary Response Due 1o Yielding in a Primary Structure,” by D.C.X. Chen and L.D.
Lutes, 2/28/90.

"Earthquake Education Materials for Grades K-12," by K. E.K. Ross, 4/16/90.
"Catalog of Strong Motion Stations in Eastern North America,” by R.W. Busby, 4/3/90.

"NCEER Strong-Motion Data Base: A User Manuel for the GeoBase Release {Version 1.0 for the
Sun3)," by P. Friberg and K. Jacab, 3/31/50.

“Seismic Hazard Along & Crude Oil Pipeline in the Event of an 1811-1812 Type New Madrid
Earthquake," by H.H.M. Hwang and C-H.5. Chen, 4/16/90.

“Site-Specific Response Spectra for Memphis Sheahan Pumping Station,” by H.H.M. Hwang and C.S.
Lee, 5/15/90.

“Pilot Study on Seismic Vulnerability of Crude Oil Transmission Systems,” by T. Ariman, R. Dobry, M.
Grigoriy, F. Kozin, M. O’Rourke, T. O'Rourke and M. Shinozuka, 5/25/90.

"A Program to Generate Site Dependent Time Histories: BQGEN,” by G.W. Ellis, M. Srinivasan and
A8, Cakmak, 1/30/90.

"Active Isolation for Seismic Protection of Operating Rooms,” by M.E. Talbott, Supervised by M.
Shinozuka, 6/8/9.

"Program LINEARID for Identification of Linear Swuctural Dynamic Systems,” by C-B. Yun and M.
Shinozuka, 6/25/90.

"Two-Dimensional Two-Phase Elasto-Plastic Seismic Response of Earth Dams,” by AN, Yiagos,
Supervised by LH. Prevost, 6/20/90.

"Secondary Systems in Base-Isolated Structures: Experimental Investigation, Stochastic Response and
Stochastic Sensitivity,”" by G.D. Manolis, G. Juhn, M.C. Constantinou and A.M. Reinhorn, 7/1/90.

“Seismic Behavior of Lightly-Reinforced Concrete Column and Beam-Column Joint Details,” by 8.P.
Pessiki, C.H, Conley, P. Gergely and R.N. White, 8/22/90.

“Two Hybrid Contro] Systems for Building Structures Under Strong Earthquakes,” by ILN. Yang and A,
Danielians, 6/29/90.
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NCEER-90-0016

NCEER-90-0017

NCEER-90-0018

NCEER-90-6019

“Instantaneous Optimal Control with Acceleration and Velocity Feedback," by LN, Yang and Z. L,
6/29/90.

"Reconnaissance Report on the Northern Iran Earthquake of June 21, 1990," by M. Mehrain, 10/4/90.

“Evatuation of Liquefaction Potential in Memphis and Shelby County,” by T.S. Chang, P.S. Tang, C.S.
Lee and H. Hwang, &/10/90.

"Experimental and Analyical Study of a Combined Sliding Disc Bearing and Helical Steel Spring
Isolation System,” by M.C. Constantinou, A.S. Mokha and A M. Reinhomn, 10/4/90.
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