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PREFACE

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion
and dissemination of knowledge about earthquakes, the improvement of earthquake-resistant
design, and the implementation of seismic hazard mitigation procedures to minimize loss of lives
and property. The emphasis is on structures and lifelines that are found in zones of moderate to
high seismicity throughout the United States.

NCEER’s research is being carried out in an integrated and coordinated manner following a
structured program. The current research program comprises four main areas:

» Existing and New Structures

» Secondary and Protective Systems
 Lifeline Systems

» Disaster Research and Planning

This technical report pertains to Program 3, Lifeline Systems, and more specifically to the study
of dams, bridges and infrastructures.

The safe and serviceable operation of lifeline systems such as gas, electricity, oil, water, com-
munication and fransportation networks, immediately after a severe earthquake, is of crucial
importance to the welfare of the general public, and to the mitigation of seismic hazards upon
society at large. The long-term goals of the lifeline study are to evaluate the seismic performance
of lifeline systems in general, and to recommend measures for mitigating the societal risk arising
from their failures.

In addition to the study of specific lifeline systems, such as water delivery and crude oil transmis-
sion systems, effort is directed toward the study of the behavior of dams, bridges and infrastruc-
tures under seismic conditions. Seismological and geotechnical issues, such as variation in
seismic intensity from atienuation effects, faulting, liquefaction and spatial variability of soil
properties are topics under investigation. These topics are shown in the figure below.

Program Elements and Tasks
Dams Bridges Infrastructures
« Fragiiity Curves = Evaluate and « Inspection, Maintenance
« Computer Codes Recommernid Respanse and Repair
« Risk Assessment Medification Factor = Non-destructive Tests
and Management {RMF) (NDT) and Inspection
+ Develop Probabilistic + Develop On-line System
Load and Resistant Identification Technigues
Factor Design {LRDF) (INTELAB})
Format + Evaluate Seismic Effects
on Metropolitan New York
Transit Facilities
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When the surface or subsurface topography of a site is irregular (canyon or basin structure),
strains and stresses experienced by ground and underground structures may reach much higher
values locally than predicted by the layered half-space model due to horizontal interferences and
focusing of seismic energy originating from the irregular boundary. For the safer design of
Important lifeline systems, such local site effects must be investigated carefully and must be taken
into account. This report describes how the Boundary Element Method can be used to solve this
kind of problem, and presents various important applications.
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ABSTRACT

In order to make structures safe from earthquake damage, a designing engineer needs to
have some information about the waves to which it will be subjected and the structure’s
response to them. While a precise prediction of all seismic activity during the life of a
structure is virtually impossible, earthquakes do occur within predictable limits with often
repeated qualitative characteristics. We can, accordingly, choose a representative earth-

quake for a given site.

However, while we can guess well as to the nature of an earthquake in bedrock, we must
also have some idea as to how the excitation is modified by the local conditions at the site.
Some of the things influencing wave propagation would be soil material properties, layering

of the soil, and the behaviour of structures embedded in and resting on the soil profile.

The present work presents a technigue for examining the interaction of soil layers and struc-
tures in a two-dimensional profile subjected to incident SH waves. The analysis is carried
out in the frequency domain where the response at any frequency in the spectrum is com-
puted by the boundary element method. This enables the efficient solution of complex

geometries, including lenses, tunnels, foundations, and cavities.

Results are presented which show that the method gives good agreement with known results

and that the interaction of closely spaced structures is significant.
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SECTION 1
INTRODUCTION

An important part of the study of earthquake analysis is the propagation of stress waves through
soil. The free-field behaviour of waves is fairly easily examined but when the waves come into
contact with surfaces, cavities, and inhomogeneities, the behavior becomes more complicated.
Wave energy reflects from these surfaces or refracts through the different media to form a more
complicated pattern. There are very few geometries which possess closed-form solutions.

Therefore, approximate methods are necessary for dealing with many different profiles.
One popular method of computing wave scattering is expansion in terms of matched functions as

presented by Sanchez-Sesma er al ). Another group of methods is the discretization of the

domain such as finite element methods and boundary element methods like those reported by
Altay ¥ Other investigators who have worked on this problem with boundary methods are
Banaugh and Goldsmith P! who apparently applied the boundary element method to the problem

before the method was recognized as an analytical tool and Beskos and Karabalis 4! who have

developed three-dimensional time-domain elements where all inhomogeneity is finite.

This report presents a solution technique for wave propagation in two-dimensional, elastic, iso-
tropic, heterogeneous problems. The problem is solved in the frequency domain for individual
frequencies by the boundary element method and the resulting admittance function is convoluted
with the Fourier series of an incident earthquake record and the results are rendered into the time

domain.

It is an extension of the work done by Aliay £2.5]

. Altay’s work solved the propagation problem
for SH, SV, and P waves for homogeneous profiles. The current work presents the convolution

into the time domain and the methodology for solving SH wave propagation in heterogeneous
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media.

This approach seems capable of addressing a wide variety of problems over a large range of fre-

quencies and is, therefore, a promising tool for research and analysis.

1.1 Organization of this report

The basic methodology is set forth in sections 2, 3, and 4. Section 2 sets forth the theory for
homogeneous profiles and gives examples of some simple applications. Section 3 extends this
theory to simple nonhomogeneous profiles (layers, inclusions, ezc.) and shows examples of this
extension for a few simple geometries. Finally, section 4 gives the theory for points where three
or more media meet. Section 5 presents a brief study of a real profile, the Santa Felicia earth

dam, subjected to the San Fernando earthquake of 1971.

More detailed mathematical derivations are reserved for the appendices. Appendix A holds the
basic mathematical development for a single medium. Appendix B describes how the equations
‘developed in appendix A are adapted to the numerical procedures and appendices C and D relate
the extension to nonhomogeneous profiles. Appendix E gives a small example of the entire pro-

cess of deriving the time response of a point in a profile to a given input,
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SECTION 2
HOMOGENEOUS MEDIA

The purpose of this section is to present the methodology of the project for the case of a sin-
gle homogeneous medium. The mathematics is presented more fully in appendix A but a
brief description of the development is reproduced in the first section of this chapter. Fol-
lowing the analytical development is a section on the numerical methods described in detail
in appendix B. The chapter closes with examples of the use of the methods described.

2.1 Mathematical theory of wave scattering

Figure 2-1 shows a bounded homogencous medium subjected to an incident SH wave, i (¢).
The purpose of this project is to find the response of the profile to this incident wave. When
the incident wave strikes a surface, the energy is reflected as another wave field, the scat-
tered field, us(¢). The incident and scattered field then undergo constructive and destructive
interference. The response of the system is the sum of these two fields—the total field,

TLESTIENTE (2.1)

In order to obtain an equation of motion, we apply Newton’s second Jaw which is most suc-
cinctly expressed as

F =ma (2.2)

where: F = force,
m = mass, and

a = acceleration,

Applying this to an element of linear elastic isotropic material in the homogeneous medium

of figure 2-1 yields

L) i+ s +pu; =pi; (2.3}

where: At = the L.ame constants,
u = the vector displacement, and

p = density.

Subscripts are to be interpreted according to indicial notation. Because the scope of this

project is limited to SH waves, «a—%—:(} and u=u=0. Also, we can neglect body forces.

Therefore, eguation (2.3) becomes



FIGURE 2-1 A bounded homogeneous medium
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patg 11 LU 3 2= PU s g (2.4)
or

Vo=t i (2.5)

where: w = displacement in the z —direction and

c= ‘\! %wshear wave velocity in the medium.
This equation governs the behaviour of transient SH waves in an homogeneous medium.

In order to simplify the equation further, a Fourier transform is applied. This procedure

wansforms the equation into an equation for steady-state wave propagation

vzmz_agmwm_gm (2.6)

where: W = the steady—state displacement amplitude,

® = the frequency of the steady—state response, and

E= %’mw'\ /%mme wave number.

This equation can be rearranged to

V2 +E2m=0 2.7)
The Green’s function approach is now used to convert this differential equation into an

integral equation

W fi A
£ Jie V- Vg )dA’:{ng?.rrzeAr 2.8)

where: A’ = the two—dimensional profile,
g = g {rr)=the two—dimensional Green's function, and

gag’_ = its normal derivative.
7

This equation is written for an observation point, r, and the integration is done across the

integration poinis, ¥. By using Green’s theorem, the integral is transformed from an



integral over the profile, 4’, to an integral around its boundary, §".

3w -3 ., JW forre A’

._g[(g"é?"“w‘a‘fﬂds —{O forre A 2.9)
There is a singularity in the normal derivative of the Green’s function at the points where
the integration crosses the observation point, (r=r"). This can be extracted and the integral

interpreted in the Cauchy principal value sense to yield

_ OW . g 0o dW fOrred’
(Iw-i'Pj(g——-a:i —W aan,)ds 3{0 forre A’ (210)
N

d

where: o = the singularity in =&,
This equation applies to both the incident and the scattered fields. However, the incident

wave, w', originating at infinity, is not singular within the domain while the scattered wave,

w*, 1s. Combining these two waves yields the equation

(1—&)W+P!}(W§f;~g§§;)d§’mwf 2.11)
Solving this equation for w gives the response along the boundary for the given incident
field at the given frequency, . If the incident field is a unit field, then the result is the
admittance function. The admittance function for each point can be computed for a whole
range of frequencies and the results convoluted back into the time domain by an inverse
Fourier transform. Thus, the response in time of a point in the profile to a transient incident

wave can be computed.
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2.2 Numerical formulation

Because equation (2.11) is soluble in closed form for only a few geometries, a numercal
method must be used to obtain a general solution. Equation (2.11) is an equation around the
boundary of the medium and therefore lends itself directly to boundary element methods.
Figure 2-2 shows the geometry of figure 2-1 discretized into segments. The endpoints of
the segments are marked with circles. In the numerical method, we accept as unknowns the

aw

= ot the endpoints of the segments. The
14

displacement, #, and the normal derivative,

behaviour of these functions is assumed to be linear between the endpoints. Therefore, the
integral of equation (2.11) can be expressed numerically in terms of these unknowns. Using

this scheme, we generate a matrix equation
Hiw=f; (2.12}

where: H;; = the matrix of coefficients from the integration,
w; = the vector of unknowns (displacements and derivatives), and

£ =the incident wave field at the observation point.

In the above equation the subscript j is the subscript of the integration point and the sub-

script ¢ is the subscript of the observation point.

For each of the endpoints in figure 2-2, equation (2.12) can be written thereby generating

Npoims €quations. At each of these points there are potentially two unknown quantities, w;

and “”g‘,”?“. There is also a boundary condition at each of the points. Therefore, while there

are 2WNpgin Unknowns, there are also Npius +Mpoins €quations and the problem is well posed.

Typically, the boundary condition is that the surface is a free surface. This means that

%’Z:@ and the unknown vector, w;, of equation (2.12) contains only displacements. Solving
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this equation for w gives the total field response to the steady-state incident wave within the

hHmits of the numerical method.

The original goal of this derivation was to find the time history response of the profile. To
do this the admittance is computed for a range of frequencies and reserved to build an
admittance function. In figure 2-2 the points marked by squares and numbers have been
chosen as points for which the admittance function is collected. By computing the admit-
tance function for the range of frequencies and collecting them for the points shown, a com-
plete admittance function for those points in that profile is generated. This admittance func-
tion can then be convoluted with the Fourier ransform of the time series of the incident
wave to generate the response of the point to the incident wave. A complete example of this

procedure is shown in appendix E.

2.3 Examples

The remainder of this section is devoted to examples of the use of this method on several
different geometries. First, results are obtained for problems which have been solved previ-
ously. This enables comparison of the results of this method. Then, there are examples of
problems which are not easily solved by other methods. Finally, there are examples of time
histories obtained by the methodology. Where possible, the accuracy and reasonableness of

these results is explained.
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2.3.1 Examples of problems possessing analytical solutions

In this section, we examine two homogeneous profiles for which analytical solutions
exist—a circle in an infinite space and a halfspace. Plots of both géometries are shown with

the numerical and analytical solutions.

Half space Figure 2-3 shows the surface of a homogeneous elastic halfspace. The reflecied

wave from the free surface is equal to the incident wave at the surface. Therefore, the total
field is twice the incident field. Figure 2-4 shows the results for the numerical method
(dashed line) and the exact results (dotted line). The fact that the agreement is exact is not

surprising in light of the fact that for a flat free surface the stress terms all vanish and the
Green’s function (%) from one point to another on a straight line is also zero. This leaves
R

just the singularity, o=0.5, equal to the incident field at the point (0.5w=%"). This means that

the total field is twice the incident.

Cylindrical cavity in an infinite space Figure 2-5 shows a circle in an infinite space. The
circle is centered at the origin and has a radius of 10. The material constants of the sur-

rounding space are shear modulus, u=108, density, p=4, and shear velocity, ¢,=500. This prob-

lem has been solved as a convergent series of Hankel functions in Eringen and Suhubi [©,

Figure 2-6 shows the response of this cavity at w=>50 rad/s. This gives a dimensionless fre-
quency of &r=1. As can be seen from the figure, the numerical solution, represented by the
long dashes, gives a very good approximation of the analytical solution represented by the
dotted line. Figure 2-7 shows the response at @=150 rad/s. As can be seen, the approxima-
tion is still good though it has strayed somewhat. The results for these two frequencies are

shown in tables 2-1 and 2-1I.
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point

M oQo =1 Ch o o e B e

mgub—-i—-b—-bﬂp—-h—-p—-n—nn—n
R R N X X =

angle
{radians)
0.
0.314
0.628
0.942
1.257
1.571
1.885
2.199
2513
2.827
3.142
3.456
3.770
4.084
4.398
4712
5.027
5.341
5.655
5.969
6.283

TABLE 2-I Results for the cylinder at ©=580 rad/s

exact solution
complex coefficient

(6.1130e+01,-.30066+00)
(0.8789e+00,0.1485e+00)
(0.4828e+00,0.4967e+00)
{0.6679¢-01,0.7018e+00)
(~.240%9e+00,0.7922¢+00)
(-.3533e+00,0.814%e+00)
(-2409e+00,0.7922e+00)
(0.6679e-01,0.7018e+00)
(0.4828e+00,0.4%62¢+00)
(0.8789e+00,0,1485e+00)
(0.1130e+01,-.3066e+00)
(€.1176e+01,- 7777 e+00)
(0.1048e+01,-.1167e+01)
(0.8443e+00,-.1425¢+01)
(0.6726e+00,-.1557e+01)
{0.6070e+00,-.1596e+01)
(0.6726e+00,-.1557e+01)
(0.8443e+00,-.1425¢+01)
(0.1048e+01,-.1167e+01)
(0.1176e+01,- 777 Te+00)
(0.1130e+01,-.3066e+0{)

magnitude
11713
0.8914
0.6923
0.7050
0.8280
0.8882
0.8280
0.7050
0.6923
0.8914
1.1713
1.4162
1.5688
1.6560
1.6959
17071
1.6959
1.6560
1.5688
1.4102
1.1713

rumerical solution

complex coefficient
(0.1129¢+01,-.3082e+00)
(0.8784¢+00,0.1483e+00)
(0.4835e+00,0.4978e+00)
{0.6869¢-01,0.7055e+00)
(~2381e+00,0.7973¢+00)
(--3502e+00,0.8206¢+00)
(-2381e+00,0.7973e+00)
(0.6869¢-01,0.7055¢-+-00)
(0.4835¢+00,0.4978e+00)
(0.8784e+00,0.1483e+00)
(0.1129e+01,-.3082e+00)
(0.1175e+01,-.7801e+00)
(0.1047e+01 ,-.1170e+01)
(0.8433e+00,-.1427e+01)
(0.6720e+00,-.155%e+01)
(0.6065e+00,-. 1598e+01)
(0.6720e+00,-.1559e+01)
(0.8433e+00,-.1427e+01)
(0.1047e+01,-.1170e+01)
(0.1175¢+01,-.7801+00;
(0.1129¢+01,-.30826+00)

2-18

magnitnde
1.1704
0.8908
0.6940
0.7088
0.8321
0.8922
0.8321
0.7088
0.6940
0.8508
1.1704
1.4101
1.5698
1.6578
1.6980
1.7093
1.6980
1.6578
1.5698
1.4101
1.1704

error
compiex coefficient
(0.1363e-0Z2,0.1595e-02)
(0.5200e-03,0.2096¢-03)
(-.6781e-03,-.1658e-02)
(-.1901e-02,-.3618¢-02)
(-.2803e-02,-.5115e-02)
(-.3134e-02,-.5678e-02)
(-.2803e-02,-.5115e-02}
(-.1901e-02,-361%9¢-02)
(-6774e-03,-.1657e-02}
(0.5196¢-03,0.2098e-03)
(0.1366¢-02,0.1595e-02)
(0.1673e-02,0.2373e-02)
(0.1490e-02,0.2648e-02}
(0.1040e-02,0.2643e-02}
(0.6136e-03,0.2548e-02)
(0.4418¢-03,0.25082-02)
(0.6145e-03,0.2546e-02}
(0.10402-02,0.2642¢-02)
(0.1491e-02,0.2648e-02)
(0.1674e-02,0.2372-02)
(0.1363e-02,0.1595e-02)

magnitude
0.0021
0.0006
0.0018
0.0041
0.0058
0.0065
0.0058
0.0041
0.0018
0.0006
0.0021
0.0029
0.6030
0.0028
0.6026
0.0025
0.06026
0.0028
0.0030
0.0029
0.0021



angie
point  (radians}
I 0.

2 0314
3 0.628
4 0.942
5 1.257
3 1.571
7 1.885
8 2.199
9 2513
10 2.827
11 3.142
2 3.456
13 3.770
14 4,084
) 4.398
16 4.712
17 5.027
18 5341
19 5.655
20 5.569
1 6.283

2.3.2 A problem which others have solved numerically

Table 2-1f Results for the cylinder at w=150 rad/s

exact solution
complex coefficient

{0.1317e+01,-.1759¢+00)
(0.52832+00,0.8447¢+00)
(-.5002e+00,0.7724e+00)
(-.5832e+00,0.1056e+00)
{0.5653e-01,-.3404e+00)
(0.43310+00,-.4479¢+00)
(0.5653e-01,-.3404e+00)
(-.5832e+00,0.1056e+00)
-.5002e+00,0.7724e+00})
{0.5283e+00,0.8447e+00)
{0.1317e+01,-.17539e+00)
{0.77266+00,-.1371e+01)
{--5611e+00,-.1593e+01)
(-.1539e+01,-.9678e+00}
(-.18752+01,-,2958¢+00)
(-.1917e+01.-.4082e-01)
(-.1875e+01,-.2958e+00)
(-.1539¢+01,-.9678e+00)
(-.5611e+00,-.1593e+01)
(0.7726e+00,-.1371e+01)
(0.1317e+01,-.1759e+00)

magnitude
1.3287
0.9563
0.9202
0.5627
0.3451
0.6231
0.3451
0.5927
0.9202
0.9563
1.3287
1.5734
1.6887
1.8181
1.8984
1.9177
1.8984
1.8181
1.6887
1.5734
1.3287

numerical solution

comples coefficient
(0.1326e+01,-.1936e+00)
{0.5537e+00,0.8604e+00)
(-.4734e+00,0.8165e+00)
{-5781e+00,0.1362e+00)
(0.3321e-01,-.3564e+00)
{0.3972e+00,-.4901e+00)
(0.3321e-01,-.3564e+00)
(- 5781e+00,0.1362e+00)
{-.4734e+00,0.8165¢+00)
{0.5537e+00,0.8604e+00)
{0.1326e+01,-.1936e+00)
(0.7693e+00,-.1397e+01)
(-.5662e+00,-.1608e+01)
{(-.1544e+01,-9701e+00)
(- 1882e+01,-.2908e+00)
(-.1926e+01,-.3386¢-01)
(-.1882¢+01,-.28082+00)
(~.1544e+01,-.9701e+00)
(~.5662e+00,-.1608e+01)
(0.769%3e+00,-.136Te+01}
(0.1326e+01,-.1936e+00}

magnitode
1.3399
1.0231
0.9438
0.5939
0.3580
0.6308
0.3580
0.5939
(.9438
1.0233
1.3349
1.5951
1.7052
1.8233
1.9047
1.9265
1.9047
1.8233
1.7052
1.5951
1.3399

emer
complex coefficient
(-.8798c-02,0.1765e-01)
(-.2536e-01,-.1569e-01)
(~2673e-01,-4412c-01)
(-.5118e-02,-.3059%¢-01)
(0.2332¢-01,0.1603e-01)
(0.3596e-01,0.4217-01)
{0.2332¢-01,0.1603e-01)
(-.5118¢-02,-3060e-01)
{-2673e-01,-.4411e-01)
{-2536e-01,-.1565e-01)
{-.8795¢-02,0.176%e-01)
{0.3287¢-02,0.2668¢-01)
{0.5045e-02,0.1573e-01)
{0.4721e-02,0.22842-02)
(0.7151e-02,-. 5048:-02)
(0.8946¢-02,-.6960e-02)
(0.7149e-02,-.5048e-02)
(0.47222-02,0.2283e-02)
(0.5046-02,0.1573e-01)
(0.3288¢-02,0.2668e-01)
(-.87982-02,0.1765e-01}

magnitude
0.0198
0.0298
0.0516
0.0310
0.0283
0.0554
0.0283
0.0310
0.0516
0.0298
0.0198
0.0269
0.0165
0.0052
0.0088
0.0113
0.0088
0.0052
0.0185
0.0269
0.0198

In this section we present the results of a problem which has been solved numerically and

compare these results to the results of the boundary element method. Figure 2-8 shows the

profile of a hill on a homogeneous halfspace of the type solved by Sanchez-Sesma, ez al [V,

The shape of the hill is defined by the equation yzh(lv{’g—)?)e"s(%y and the solution in refer-

ence 1} is obtained by an expansion. The results for the hill are shown in figure 2-9 for a

frequency of 7.85 rad/s. This number was chosen in order to match dimensionless parame-

ters to those for which Sanchez-Sesma er al give results. For dimensionless parameters of

hib= the ratio of height to half the width of the hill and nz%z a dimensionless frequency,
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the admittances are shown by the dotted lines of figure 2-9. It should be noted that the
boundary method used in this project can be applied for much higher (and lower) frequen-

cies as well.

2.3.3 Time histories

In this section we present the completion of the solution method. For the geometries
presented above, response in time is presented. The profiles are all solved over a range of
frequencies by the methods given above and convoluted with the forward transforms of two
earthquakes—a Gaussian pulse of energy (figure 2-10) and the east-west trace of the San
Fernando earthquake of 1971 as recorded in the basement of 3360 Lomiskey Boulevard

(figure 2-11).

Time response of a half space Figure 2-12 shows the response of point 2 in the half space
of figure 2-3 to the incident Gaussian pulse shown in figure 2-10 at horizontal incidence.
As can be seen, the response of the half space is twice the incident wave which is what
theory predicts. Figure 2-13 shows the response of the same point to the San Fernando

earthquake shown in figure 2-11. Again the input is doubled in the response.

Time response of a cavity Figure 2-14 shows the time response of the four points shown on
the cylinder of figure 2-5 as response to the Gaussian pulse of figure 2-10. Figure 2-15
shows the time response of the four points as response to the San Fernando earthquake of

figure 2-11.

Time response of a hill Figure 2-16 shows the time response of the five points shown on
the hill profile of figure 2-8 as response o the Gaussian pulse for vertical, 45°, and horizontal

incidence. Note that in the first column, corresponding to vertical incidence, symmetry is
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preserved. Parts a and m and parts d and j have identical responses in time. Part g shows an
amplification in response above that expected for an ordinary half space. This could be due
to a channeling of the energy by the hill. The second column, corresponding to 45° angle of
incidence, and the third column, corresponding to horizontal incidence, show the lag in time
for the wave to propagate across the profile. Figure 2-17 shows the time response of the five

points to the San Fernando earthquake.

2.4 Conclusions

The results of section 2.3 show that the numerical scheme presented at the beginning of the
chapter yields accurate, reasonable results. The present method can, therefore, be con-
sidered to be a reliable method for predicting the response of points in a homogeneous iso-

tropic two-dimensional linear elastic halfspace to transient antiplane incident waves.
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SECTION 3
NONHOMOGENEOUS PROFILES

In section 2 the application of the boundary integral method to the solution of wave scatter-
ing problems in an homogeneous medium is presented. In this section the technique is
extended to profiles containing several different media. Each of the media is homogeneous

but their interface permits the analysis of nonhomogeneous profiles.

This section contains a brief extension of the underlying mathematics of the problem for
multiple media, then examples of its application. These examples show a high amount of
agreement between the solution by the approximate method and several exact solutions

which do exist.

The section closes with examples of complete problems convoluted back into the time

domain.

3.1 Theory of wave scattering in nonhomogeneous profiles

In section 2, the equations governing a homogeneous medinm were presented. The purpose
of this section is to extend those equations to a nonhomogeneous profile. The profile will be
considered to be made up of several different media with different material properties as

shown in figure 3-1. The material within each medium is assumed to be homogeneous.

Because the material within each medium is homogeneous, the equations of section 2 apply.
Therefore, the only extension required is the handling of the continuity conditions at the
interfaces between media. For this project these conditions are assumed to be continuity of

displacement and stress, that is
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FIGURE 3-2 Half space with homogeneous layers
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W=, and T,=T. (3.1
on either side of the interface.

Thus, the integral equation for a point on a surface or an interface bordering medium b is

similar to that given in equation (2.11), o wit:
W 508 o OW yior i
(1 a)w+PSj’ (w2%; g 5)dS = (3.2)

where: Sp = the surface bounding medium b,
For the points on free surfaces this equation is writien around the medium as it is done for
the homogeneous medium in section 2. For the points on an interface there are two equa-
tions, one written around each medium. Accordingly, one can see that the problem is still
well formed because while the interfaces have two unknowns (stress and displacement),

they also have two equations.

3.2 Numerical formulation

The conversion of the continuous equation to the numerical system is the same as it is for
the homogeneous case and the resulting equation can again be represented as

Hywj=f; (3.3)
However, it is no longer possible to eliminate one of the unknowns. Therefore, while the
equation has the same summary form, there are many more equations and many more unk-
nowns. Also, more bookkeeping is necessary to keep the signs of the outward normals
(direction of integration) straight. The #’s are the displacements in the z- or xs-direction
and are the same for both media. However, the stresses, 1, are the stress on the outer face of
the medium of integration. Therefore, there is a sign difference between the stresses

depending on which medium is being integrated.
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3,3 Truncation

The discretization of the problem domain requires truncation of the surfaces and interfaces
which extend to infinity as shown by the dashed lines of figure 3-1. By integrating just over
the discretized part of the domain and ignoring the truncated portions, the equations have no
contribution from those portions. This is equivalent to assuming that the displacement and

stress along these lines is zero. In most cases this is a bad assumption.

The details of the method for handling these truncated portions is given in appendix D.
Essentially, it involves the assumption that beyond the points of truncation the layers are
infinite, horizontal, and parallel. Given this assumption, the wave field in the uncated por-

tion is assumed to approach the free field solution for infinite parallel layers. That is
ot~ (3.4)

where: w/7 = Wi +W" =the free~field response in infinite parallel layers

w" = the reflected wave in infinite paralle! layers.

This is equivalent to the assumption that any scattering done by objects within the numerical
portion of the problem is not transmitted beyond the truncation point. The shape of the
Green’s function, if not common sense, indicates that this must eventually be so at a point

sufficiently removed from any scatterer.

3.4 Examples

In the following sections results are presented of the application of this method to profiles
comprised of multiple layers. First, there is a section demonstrating the application to prob-

lems with known solutions, then some more general problems, and finally, several results of



convolutions back into the time domain.

3.4.1 Examples of problems possessing analytical solutions

There are several problems for which analytical solutions have been found. We first present
the case of a homogeneous half space solved as a layered system. Then we proceed to the
case of a heterogeneous layered half space. These results are compared to the analytical

solutions.

Half space Figure 3-2 shows the geometry used for the solution of an homogeneous elastic
half space solved as if it were layered. The solutions for this profile are presented in figure
3-3. Solutions for the half space at =50 rad/s are presented in table 3-1. The agreement

between the approximate methods and the analytical solution is quite good.

Heterogeneous layered half space Figure 3-4 shows the profile of a layered half space in
which the layers have different material properties—a soft layer overlies a stiffer layer. The
method for obtaining the analytical solution for the layered system is presented in section
D.1.1. Fgure 3-5 and table 3-1 show the solutions for it. Figure 3-6 shows the response of
this profile to a field incident at a 45° angle at ®=50 rad/s. It can be seen that the methed

yields good results for oblique angles as well.

3.4.2 Examples of problems which do not possess analytical solutions

Figure 3-7 shows the geometry and discretization for a cylindrical cavity in a heterogencous
layered half space with modified surface topography. The admittance of this geomeiry for

the three surfaces for vertical and oblique angles of incidence are shown in figures 3-8 and
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point  coordinates
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16
17
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23
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26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

TABLE 3-1 Solutions for the layered half space at @=50 rad/s

(50,0)
(45,0)
(40,0)
(35,0)
(30,0)
(25,0)
(20,0)
(15,0)
(10,0)
5.0
0,0
(-50)
(-10,0)
(-15,0)
(-20,0)
(-250)
(-30,0)
(-35,0)
(-40,0)
(-45,0)
(-50,0)
(50,-20)
(45,-20)
(40,-20)
(35,-20)
(30,-20)
(25,-20)
(20,-20)
(15,-20)
(10,-20)
(5,-20)
(0,-20)
(-5,-20)
(-10,-20)
(-15,-20)
(-20,-20)
(-25,-20)
(-30,-20)
(-35,-20)
(-40,-20)
(-45,-20)
(-50,-20)

analytical solution

complex coefficient

(-0.254,.2.636)
(-0.254,2.636)
(-0.254,2.636)
(-0.254,2.636)
(-0.254,2.636)
(-0.254,2.636)
(-0.254,2.636)
(-0.254,2.636)
(-0.254,2.636)
(-0.254,2.636)
(-0.254,2.636)
(-0.254,2.636)
(-0.254,2.636)
(-0.254,2.636)
(-0.254,2.636)
(-0.254,2.636)
(-0.254,2.636)
(-0.254,2.636)
(-0.254,2.636)
(-0.254,2.636)
(-0.254,2.636)
(0.166,-1.732)
(0.166,-1.732)
(0.166,-1.732)
(0.166,-1.732)
(0.166,-1.732)
(0.166,-1.732)
(0.166,-1.732)
(0.166,-1.732)
(0.166,-1.732)
(0.166,-1.732)
(0.166,-1.732)
(0.166,-1.732)
(0.166,-1.732)
(0.166,-1.732)
(0.166,-1.732)
(0.166,-1.732)
(0.166,-1.732)
(0.166,-1.732)
(0.166,-1.732)
(0.166,-1.732)
(0.166,-1.732)

magnitude complex coefficient

2.648
2.648
2.648
2.648
2.648
2.648
2.648
2.648
2.648
2.648
2.648
2648
2.648
2.648
2.648
2.648
2.648
2.648
2.648
2.648
2.048
1.740
1.740
1.740
1.740
1.740
1.740
1.740
1.740
1.740
1.740
1.740
1.740
1.740
1.740
£.740
1.740
1.740
1,740
1.740
1.740
1.740
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numerical solution

(-0.2351,2.625)
(-0.2321,2.615)
(-0.2299,2.605)
(-0.2284,2.600)
(-0.2271,2.602)
(-0.2263,2.607)
(-0.2270.2.611)
(-0.2298,2.608)
(-0.2340,2.599)
(-0.2379,2.588)
(-0.2395,2.584)
(-0.2379,2.588)
(-0.2340,2.599)
(-0.2298,2.608)
(-0.22702.611)
(-0.2263,2.607)
(-0.2271,2.602)
(-0.2284.2.600)
(-0.2299,2.605)
(-0.2321,2.615)
(-0.2351,2.625)
(0.1659,-1.747)
(0.1602,-1.761)
(0.1534,-1.765)
(0.1489,-1.769)
(0.1475,-1.771)
(0.1490,-1.770)
(0.1522,-1.76T)
(0.1556,-1.764)
(0.1583,-1.760)
(0.1599,-1.758)
(0.1604,-1.757)
(0.1599,-1.758)
(0.1583,-1.760)
(0.1556,-1.764)
(0.1522,-1.767)
(0.1490,-1.770)
(0.1475,-1.771)
(0.1489,-1.769)
(0.1534,-1.765)
(0.1602,-1.761)
(0.1659,-1.747T)

magnitude
263518
262513
261541
261018
261158
261718
262112
261847
2.60936
2.59920
2.59480
2.59520
2.60936
2.61847
262112
261718
2.61158
261018
261541
262513
2.63518
1.75447
1.76832
177124
1.77480
1.77688
1.77651
1.77400
177057
1.76745
1.76541
1.76472
1.76541
1.76745
1.77057
1.77400
1.77651
1.77688
1.77480
177124
1.76832
1.75447
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3-9. As can be seen by comparing these figures to others, the hill and the tunnel have an
effect on each other. The response of the hill is somewhat deflected by the tunnel beneath it

and the response of the tunnel is modified by the reflections from the hill.

Figure 3-10 shows the geometry and discretization for three cylindrical cavities in a hetero-
geneous layered half space with modified surface topography. The admittance of this
geometry for the three surfaces for vertical and oblique angles of incidence are shown in
figures 3-11 and 3-12. Again, there are effects of interaction. In fact, the presence of the
two extra tunnels modifies the behaviour of the original tunnel of figure 3-7 as shown for
the case of vertical incidence in figure 3-13. We can thus see that the interaction of buried

objects can be a significant consideration in the response of the system.

The construction of other profiles is straightforward.

3.4.3 Time histories

This section contains examples of time histories convoluted back from the frequency
domain. Results for several of the profiles introduced above have been convoluted with the
Gaussian pulse and San Fernando earthquakes introduced in section 2. These are repro-

duced here as figures 3-14 and 3-15.

Figure 3-16 shows the response of the homogeneous half space treated as a layered system
of figure 3-2 to the Gaussian pulse. The responses shown are for the points labeled 1, 2, 4,
and 5 of figure 3-2. These responses correspond to the rows. The columns contain the
results for vertical, 45°, and horizontal angles of incidence. If one locks at plots a-f, one
sees the doubling of the incident function which is to be expected at the free surface of a

half space. Furthermore, plots b and ¢ show the earlier arrival of the pulse at the left side of
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the profile. This is, of course, what one would expect and validates the process of the

Fourier analysis.

Plots g-1 are for points on the interface layer and show that for horizontal incidence (plots i
and 1) the incident and reflected wave armrive together while for the vertical and 45°
incidences, the energy travels to the surface and is reflected, thereby causing the double

spikes in those plots and a pattern of constructive interference in time.

Figures 3-18 and 3-19 show the response of the tunnel in a half space with a hill shown in
figure 3-7 to the Gaussian pulse at vertical and 45° incidence respectively. In each figure
plot a is the response of point 3 at the crest of the hill, plot b is the response of point 7 on the
left side of the cylindrical cavity, and plot ¢ is the response of point 11 which is directly

beneath the tunnel,the midpoint of the interface line.

By comparing these two figures, one can see that the angle of incidence is a potentially
important parameter and that analytical methods should have the capacity to take it into

account.

Figures 3-21 and 3-22 show the responses of the same three points 10 a vertically incident

wave but in the profile with three tunnels.

Figure 3-23 gives a comparison of the response of the same three points (points 3, 7, and
11) in figure 3-7 (the single cavity profile) and figure 3-10 (the triple cavity profile) to the
Gaussian pulse at vertical incidence. Previously, the difference in response in the frequency
domain was noted. This figure shows that there can be differences in the time domain as

well.
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3.5 Conclusions

The boundary integral method is an effective way to perform a frequency-domain analysis
of the behaviour of a nonhomogeneous profile subjected to SH waves. Where compared to
known solutions, it is found to have small errors. The examples given in this section show

the wide variety of problems to which the method can be applied:

problems with different soil properties

problems with multiple inclusions

problems with infinite width as long as the edges behave as parallel layers
problems with surficial topographies which are not fiat.

The results compuied for individual frequencies can be convoluted back into the time
domain to find the time history of the response of points in the profile. Results show that the
interaction of buried structures does modify behaviour and therefore indicates the limitation

of a one-dimensional analysis and the desirability of a multidimensional analysis.
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SECTION 4
INTERSECTION POINTS

Section 2 presents the basic theory for the wave scattering problem in homogeneous media.
Section 3 extends this theory for nonhomogeneous profiles but does not address the case

when two interface lines intersect as shown in figure 4-1.

The purpose of this section is to extend the theory and implementation to include problems
where three media are in contact at one point. First, the analytical theory is extended, then
the implications of that extension for the numerical scheme are examined. Finally, exam-

ples of the use of this extension are given.

4.1 Analytical theory

As was shown in section 2, the integral equation for steady-state harmonic wave scattering

in a bounded homogeneous elastic medium is

’

(1-0) +Pj(w5@fm~g%‘i,)ds'=wi 4.1
:

In this equation, o, which comes from the singularity in the Hankel function, is equal to ﬁa’?

or that portion of a circle which integration proceeds around. Thus, for the typical case of a
line or smoothly changing curve, o is always 0.5 and 1-a is 0.5. For the case of a sharp
corner, this no longer obtains. In figure 4-1 the value of o at point B is 0.5 in the lower
medium, 0.8334 in medium a, and 0.6667 in medium b. Because the integrations are done
with respect to an outward-pointing normal, ¢ becomes the portion of the circle on the out-
side of the medium and 1-« becomes the portion inside. Thus the values of 1« for the three

media are 0.5, 0.1667, and 0.3333.
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There is also a difficulty in choosing the unknown for the stress term in equation (1). The
stress term, 1 is supposed to be the shear stress on the cutward surface. If there is only one
line at a given point, the stress on the surface is the obvious choice for use in the equations.
However, the points where two or more lines meet can have several different outward nor-
mals. The choice of stresses with which to express the equation must be consistent with

theory and amenable to use.

Fortunately, this is a very minor problem. Figure 4-2 shows a stress block with two surfaces
parallel to the coordinate axes and one parallel to a surface in the profile of figure 4-1. Basic
considerations as reproduced in appendix C show that

T = Ty, COSO+T,, SINO (4.2)
For this reason all the normal stresses on all the surfaces meeting at a point can be expressed

in terms of two independent stresses. One need know only the orientations of the surfaces.

At the point of intersection of surfaces there are three independent unknown variables, dis-
placement, % and the two stresses, 1,; and1,,. If there are three media meeting at the same

point, then the balance between number of unknowns and number of equations is preserved.

The present discussion can also be applied to points at a free surface such as point A in
figure 4-1. Again, for this angle 6=0.8333 or 0.6667 and 1-0=0.1667 or 0.3333. Because two of
the surfaces are free surfaces, the shear stresses are zero. On the third surface (AB) there is

no need to apportion the stress trigonometrically.

In like manner, sharp corners in a free surface can be handled by adjusting the singularity.



4.2 Numerical representation of the joints

From the discussion in the previous section, it should be clear that the implementation of
these joints of several surfaces is a small extension io the numerical problem. Primarily, the
task is that of establishing the proper bookkeeping procedures to keep straight the
coefficients of the two stresses and to check the endpoints of each surface to determine
whether the term for the singularity (1-o) should be modified. Apart from this all the
integrations remain the same because along any surface there is no ambiguity as to which

stress to use or about the value of the singularity.

4.3 Examples

This section contains a small set of examples showing the reasonableness of this extension

and some of the new geometries which are now susceptible to solution.

4.3.1 Examples of problems possessing analytical solutions

Figure 4-3 shows a homogeneous elastic half space divided as if it were composed of
several layers. Because it is homogeneous, it possesses an analytical solution. Figures 4-4
to 4-6 show the admittance for the three surfaces of figure 4-3 subjected to vertical, 45°, and
horizontal incident wave fields. As can be seen, there is close agreement between the

analytical solution and the numerical solution.
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4.3.2 Examples of problems nof possessing analytical solutions

Figure 4-7 shows the same geometry as figure 4-3 but with the upper right layer composed
of a softer material than the rest of the profile. Figures 4-8 to 4-10 show the admittances of

this profile at ®=50 rad/sec for various angles of incidence.

4.3.3 Time histories

Figure 4-11 shows a profile of a semicylinder of soft material in a stiffer half space. Figure
4-12 gives the response in time of the five points marked to the Gaussian pulse. The
columns are for horizontal, 45°, and vertical angles of incidence. The soft inclusion
modifies the behaviour over what one would expect from a homogeneous half space. For
the horizontal incidence shown in the left column, points to the left of the kettle (plots
d,g,m) experience a response similar to that which they would undergo in a homogeneous
half space though they do see some waves reflected or otherwise modified by the kettle. For
the point on the surface in the middle of the soft soil (plots k1), there is a significant
‘amplification effect as one would expect. The fact that there is little variation with respect

to angle of incidence is probably due to the fact that the kettle is cylindrical in shape.

The point on the far side from the point of incidence (plots a,b) shows how the original
clean signal loses some of its coherence on passing through the softer medium. Of course,
this effect is even more pronounced where the reflection arrives later than the incident wave
(plots g,h,i and m,n,0). The existence of inhomogeneities can affect the behavior of other
points in the profile. Figure 4-13 is the profile of a soft wedge of soil overlying a stiffer
half space. The responses of the four numbered points to the Gaussian pulse of figure 2-10

are shown in figure 4-14 for herizontal, 45°, and vertical incident waves. Again, there is
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amplification in the soft material but very little deviation in the other points from what
would be expected in a half space. This result is understandable since the points used are all

on the incident (upwind) side of the soft layer.

4.4 Conclusions

In this section the techniques of the earlier sections were extended to handle cases where
three media meet at one spot. The success of this extension means that the boundary ele-
ment method is a promising tool for analyzing profiles with lenses, soft pockets, and valleys.
As in the previous cases, the convolution back to the time domain is also shown to be possi-

ble. The combination of these approaches gives the method a wide range of applicability.

4-14



SECTION 5
SANTA FELICIA EARTH DAM

In this chapter the techniques previously described are applied to a real problem—the Santa
Felicia earth dam in California subjected to the San Fernando earthquake of 1971. A
recorded accelerogram is used as input and the output is compared to an accelerogram
recorded at an observation point in the profile. Figure 5-1 shows a plan view and an ideal-
ized section of the Santa Felicia earth dam. This dam has been studied by Abdel-Ghaffar
and Scott ") and a nonlinear dynamic finite element analysis for in-plane displacements has
been done by Lacy (8] The material properties used in this project were taken from Lacy’s
work. The accelerogram and Fourier spectrum shown in figure 5-2 is the record taken at the
outlet works during the San Fernando earthquake of 1971. The input record used was

derived from this output record by these steps:

(1) the spectrum was divided by the admittance function at the downstream point labeled 5
in figure 5-1 to produce the supposed corresponding input at the reference point of the

incident wave,

(2) this new spectrum was clipped of high spikes which are more an artifact of the profile

than of the input earthquake,

(3) the corresponding time history was produced and truncated to eliminate the wrapping

due to the offset from the reference point to the point.

This input (shown in figure 5-3) was then convoluted in the usual manner with the admit-
tance functions of the top of the dam (point 1) and the downstream point (point 5). These
results are presented in figures 5-4 and 5-5. Figure 5-6 shows the measured response of the

crest of the earth dam during the San Fernando earthquake of 1971. This measured response
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is compared to the computed response of figure 5-4 in figure 5-7. Examination of this
figure shows that once again the numbers are of the right order but differ in the frequencies
where resonance occurs and have large spikes at the higher frequencies. This is probably

also explainable by the simplification in the geometry and the lack of damping.

In like manner, figure 5-8 compares the measured and computed responses at the down-
stream point. The similarity of these responses is not surprising when one considers the
derivation of the incident earthquake as described above. It does show that the record was

not destroyed completely.

5.1 Conclusions

These results show that the boundary element method produces results which can compare
well with the results observed for real earthquakes in real soil profiles. However, the model
as currently constituted is elastic and the introduction of damping into it might improve the

predictive power of this approach.
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SECTION 6
CONCLUSIONS

The boundary element method is shown to be an appropriate tool for solving the elastic
wave scattering problem for antiplane waves in a two-dimensional profile. Where there are
analytical solutions, the results of the numerical method match them closely. For simple
geometries which do not possess analytical solutions, the results seem reasonable. This

implies the accuracy of the technique for the more complicated geometries.

Because the boundary element method can be used to construct an admittance function over
a large range of frequencies, it can be used to solve for the response of most profiles to a
transient input. This Fourier analysis makes it a promising approach for research and

analysis.

6.1 Suggestions for future work

There are several directions which this research can take from this point:

(1) Extension to SV and P waves can be done with similar techniques as Altay [ has

shown for the homogeneous case.

(2) Similar methods could also be applied to the three-dimensional problem. Practical
applications for transient loading might be limited by the extravagant use of computer

time which the solving of the several matrices would entail. Accordingly,

(3) A more efficient method of solving the matrices would make the entire process
economically more feasible. There have been some promising results with a modified

Gauss-Seidel method of estimating the solution at the current frequency using the solu-
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tion of the previous frequency as a starting point. Unfortunately, this approach seems

to be unstable for more complicated geometries.

(4) Quasi-hysteretic damping (viscous within a single frequency) should be attainable as a

simple extension to the current methods.

(5) By making a surface rigid and movable, the dynamics of machine foundations should

be findable with these techniques.
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APPENDIX A
DERIVATION OF FUNDAMENTAL RELATIONSHIPS

The purpose of this appendix is to give the derivation of the basic mathematics used in the
current work. Starting from Newton’s second law, the equation of motion is transformed
into the integral equation of the steady-state wave propagation problem. The solution to this
equation gives the admittance function for an incident harmonic wave. These solutions can,
therefore, be convoluted with the forward Fourier transform of an incident wave back into
the time domain to render the time response of any point within the profile to the given

incident field.

The derivation in this appendix is limited to the case of a two-dimensional homogeneous
profile with arbitrary surface. The extension to a heterogeneous profile is made in appendix

C.

A.l Statement of the problem

Figure A-1 shows a generalized two-dimensional profile subjected to incident SH waves, u.
As these waves strike the surfaces shown (the tunnels, the hill, or the flat ground surface),
they are reflected. The combined effect of these reflections from all of the surfaces is the
scattered field, u#. The total response,u’, of any point x to the incident field is the sum of the
incident and scattered fields.

uf=yisys (A.D
The derivation in this appendix assumes that the profile is homogeneous, linear, elastic, and

isotropic. A further limitation is antiplane strain—that there is no variation in the z— or

xs—direction (???:?5%:0) and that the wave motion is entirely in that direction (u;=u=0).
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The incident wave may be transient or harmonic.

The problem solved in this dissertation is the computation of the total wave field, u’, as a

result of an incident SH wave, ui(x,1), for a two-dimensional profile.

A.2 Equation of motion

In his Principia ¥}, Professor Newton states that an object in motion tends to maintain its
velocity unless it is acted upon by unbalanced forces. This can be rendered into simpler
form as
F=ma (A.2)
Applying this to the element of material in figure A-2, yields the stress equation of motion
Ty s +0f = (A3)

where: 1= stress,
p = mass density,
f = the body force,

u = displacement, and
subscripts are 10 be interpreted according indicial notation.

For a linear, elastic, isotropic, homogeneous material the constitutive equation can be
represented as
Ty =Cijp €t =AE ij'i'?,}.lﬁij (A4)

where: ¢ = the elasticity tensor,
€= strain, and

AL = the Lame constants.

Substituting this relation into equation (A.3) yields the displacement equation of motion

(A g +H i +pf j=pld; (A.5)
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For large-scale problems of soil dynamics, the body force is negligible (f;=0). This
simplification leaves us with the equation for wave propagation in a three-dimensional,

homogeneous, linear, elastic, isotropic medium:

(it g+ i =pij (A.6)
Furthermore, the current study is limited to the case of antiplane (SH) waves. Therefore,

= =0 and 3%3;0. Thus,

R 3,11+u 3 20)=pid3 (AT
or

Hw 11tw )= Vow=pw (A.8)

where: w = us=displacement in the z— or x5~ direction

This is the differential equation governing the propagation of SH waves through a two-

dimensional elastic medium. The excitation can be transient or harmonic.

A.3 Forward Fourier transform

In order to simplify equation (A.8) further, a forward Fourier transform is applied. This
operation removes the time dependence of the equation and gives an equation which can be

solved at single frequencies of harmonic excitation. The Fourier transform is defined as

wqx,m){w@,f Yoot dy (A.9)

where: W (x,w) = the forward Fourier transform of w at x at frequency ®

X = position vector of the point of observation

Applying this definition to equation (A.8) yields the reduced wave equation

HW 5 :Vzwz—p(x)z\? (A. 10)
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Oor
V25 +E25=0 (A.11)

here: £2= 92— P
where: & Fy

&=~»§’mm~2{t— (where A is the wavelength) is the wave number for a shear wave in the medium at
2
the given frequency, @.

Accordingly, we now have a differential equation dependent only on position, x, and the
parameter, . This equation, when solved for w, gives the forward transform of the time
history of the displacement. Thus, to solve for the time history, it is now necessary to solve

the reduced equation only in space.

A.4 Integral equation and Green’s functions

In order to solve the reduced wave equation (A.11), it is recast into its integral form using
the Green’s function approach. The Green’s function is developed in three dimensions and

is reduced to the two-dimensional problem by integrating z or x; from —e 0 oe.

By definition the three-dimensional Green’s function for equation (A.11) must satisfy the

equation

(V389G (x,x")=—8(x—x") (A.12)

where: G (x,x") = the Green's function,
8 = the Dirac delia function,
x = the position vector of the observation point, and

x" = the positicn vector of the source point,

(Throughout the following discussion, primed quantities represent the source points or the

path of integration while their unprimed counterparts represent the observation point or the
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point around which the equation is written.)
Premuitiplying equation (A.12) by w, premultiplying equation (A.11) by G, and subtracting

yields

G (VERT 5 (VIHED G = 5
which simplifies to

GVE -V =w 3 (A.13)
Integrating over the volume of the medium, Vv,
'3 r2 i v’
ljV w—mv G)dv’m{g ke (A.14)
b
To transform the equation from the three-dimensional volume integral to a surface integral,

Green’s theorem is applied to obtain

T . oG , JwilorxeV’
- dA = , (A.15)
,g(canr Wan») {0 for x¢ V

Because there is no variation in the z~ or xs;-direction, this equation can be transformed into

a two-dimensional equation by integrating out that coordinate to yield

v , JwforreV’
6:)) l¥)dS :{g for rrséeV’ (A.16)

() 28 _
S,[(w(r) R —g )

where: g = j G dx4’,

I,:—QO
S’ = the line bounding the cross-section of the volume.
r = two~dimensional position vector of the observation point, and

r’ = two—dimensional position vector of the integration point.

Mow and Pao 1'% show that the Green’s function for equation (A.10) is

G (x,x’}=%=(} %) (A.17)

where: p = {x—x |=V(x—x")2+(y—y Y+{z~2 P

For the two-dimensional case of equation (A.11), this Green’s function becomes
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F T eibe T piEVPe fH(S;)(éf’_)
g= Gdz= e—dzm = (A 1 8)
2=L ’i“' 4mp ZJ-“ 4mNF24z? 4

where: F = V(x—x")>+(y—y 2=distance from observation point to integration point

HED = Jo (Fy+Y o (F)=the Hankel function of the first kind of zeroeth order

A.5 Application to the incident and scattered fields

Mow and Pac 119 point out that in equation (A.16), the incident field which originates at

infinity is not singular within the volume of integration. Therefore,

[ 2w 2&as'=0 (A.19)

The scattered field originatf:s at the surfaces shown in the profile and is singular. Therefore,

[~ 285 = (A.20)

Adding these two equations yields

[ T T _ (i 5 ) 98 135’ =i
g A on

or

a‘r—v" — a F__ s
@G~ 558 = (A21)
Further references to this equation drop the superscript ¢ so that % is understood to be the

total field, #*.

A.6 Singularities in the Green’s functions

Equation {A.21) gives an expression for the steady-state harmonic coefficient of displace-
ment for any point reV for the given frequency, o, as an integral around the boundary of the

profile. The goal of this work is o be able to compute the coefficients of the displacement

A-T



and the normal derivative at points on the boundary. To do this by a boundary method, it is
necessary to move the observation point to the boundary. Unfortunately, this causes the
Green’s functions to be singular where the integration peint approaches the observation
point (r=r") because F=|r-r'[=0. In this section we extract those singularities and interpret
the integral in the Cauchy principal value sense. Accordingly, when the observation point is

on the boundary, equation (A.21) becomes

o® -

ow __a_EV___ W :.\n_ ' =
o +P3[(g S S = (A.22)

where: o = the singularity in —a@«gT, and
n

B = the singularity in g

For future convenience, we add and subtract @ on the right side to get

o
on’

This equation is rearranged to get

ow -

+P{(g-2% - 5145 =5 4 i =i
& on on

o BT P28 DT per
(1-0)) W+ an,+P£(wan, g5 S (A.23)
Assuming that the singularity is tractable, the equation can be dealt with on the basis of

these singularities. The next two subsections explain the evaluation of these singularities.

A.6.1 Evaluation of the singularity in the Green’s function

B is the singularity in the Green’s function for the case when r'—r. Therefore, its evaluation

requires examining its behaviour in the vicinity of r. Figure A-3 shows this vicinity. To

a‘?, ds’ is evaluated in terms of € and then € is allowed

extract the singularity, the integral, fg :
3 i

to approach 0.
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The green’s function is

o=HEED L erpiveer) (A24)

For small arguments (that is, as e—0), the Bessel functions approach

Jo(&e)’"lwé;?i“’l and

Y oEe)~ 2 In(e)

Thus, the asymptotic form for the Green’s function for small arguments is seen to be

g (L)~ 4 (1+i2In(Ee)) (A.25)

which has a logarithmic singularity.

Forr'e X, F=¢, dS'=¢d8, and gw ~~(_?f’~;(r), Therefore, we can evaluate 8 by
n 1)

_ " 8 . , _ .
B2 i (-9 457 iy [ £ (14 Zhinze)) 27 ¢4 p=20220) ©O200) i 014 2 In(Ee) =0 (A.26)
an E—I).% an E—)Ue‘ I T an £zl T

That e1 vanishes with ¢ should be obvious. eln(te) vanishes because a logarithmic singular-

ity is weaker than first order.

From the above discussion, we see that B=0 and the singularity in the ”g“?“ term vanishes.
43

A.6.2 Evaluation of the singularity in the derivative

@ is the singularity in the normal derivative of the Green’s function for the case when r-sr’.

Figure A-3 shows the vicinity of r. To extract the singularity, q., the integral jzwﬁaf,—ds is

evaluated along % in terms of € and then € is allowed to approach zero. The derivative of

the Green’s function is
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_ag__; L o _a‘g_ ..Qg«; .Qg_& F-.i H 1) 7
o n-Vg nrapvﬁleae P qé fIED

For points on the arc £ the outward normal is in the r-direction. Therefore, n,=1 and ng=0.
The derivative of H§" is —£#{» 111,

For small argument, £, the first-order Bessel functions approach

I {;E)‘“%

Yl(ée)~»,§§g

Thus, the asymptotic form for the first-order Hankel function is seen to be

H® "%»—i%%g (A.27)

- , [ 8 ,,__,Wf £ _. 2
ForreX, F=¢, d§' =¢ed 8, w(F)~w(r), and Ef’" —45{5[ I??Q’e_)' Thus, to evaluate ¢,
(xw=£i_r)n0:j;_wméa~f;~a’3’

8 .
T B

= (O 0P (T Nime( F i) (A28)
—w (=)

_—AB

_w_z.ﬁn

From this it is seen that the singularity, a=%?€ where A6 is the change in angle around the

outside of the point, r. Typically, this value is 7 but for the cases where there is a sharp

corner at a point, it will be different. Accordingly, in most cases =" and (1-e)=%.

Recognizing that B vanishes and that o does not, equation (A.23) becomes

5)dS " = W' (A.29)

. 798 _,0
(1 a)w+P3[(wan, g5

which is the principal analytic equation for the current work. This equation is solved for the
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steady-state coefficient of displacement at a given frequency, ®.

A.7 Response in the time domain

Equation (A.29) gives the steady-state response of all points on the boundary (and, there-
fore, in the interior) to an incident harmonic wave ' at the given frequency. In order to
find the response in the time domain to a transient incident wave, wi, it is necessary o

reverse the Fourier transform of equation (A.9).

The forward transform gives the frequency content of the incident wave. Equation (A.29)
gives the response at a given frequency for points in the medium. To get the response of a
particular point for the frequency content of the incident field, the two can be multiplied.
Thus, by superposition, the convolution of the forward transform from equation (A.9) and
the admittance function from equation (A.29) yields the time response of the given point to

the given incident field. The inverse transform would be

oq

wr,f)= iw(r,m)e""“”a’m (A30)

A.8 Summary

Starting from F=ma, the displacement equation of motion was developed for SH waves.
The time dependence of this equation was handled by the use of a Fourier transform and the
reduced spatially dependent equation was converted to its integral form through the use of
Green’s function. After investigating the singularities in the Green’s functions, a boundary
equation for the admittance was derived. The solution of this equation is then convoluted

with the forward transform of the incident wave field to obtain the response of a point in the
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profile to the given incident wave. An example of this process is given in appendix E.
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APPENDIX B
NUMERICAL IMPLEMENTATION FOR HOMOGENEOUS PROFILES

The purpose of this appendix is to present the implementation of a numerical solution method
for the equations derived in appendix A. The procedure is to discretize the surfaces of the
medium, represent the displacement and stress as interpolants of their values at the endpoints of
the discrete segments, and integrate the representations of these functions along each of the seg-

ments.

The final section of the appendix presents the discrete Fourier transform.

B.1 Numerical solution of the steady-state wave equation

The boundary integral form of the steady-state wave equation (A.11) is

(1-a)® + P[ (922 — g 9% yyq7 = ipi (B.1)

& on on
and is applicable to a homogeneous medium as shown in figure B-1. Because this equation is
solable for only a very small number of problems, numerical techniques are used. The numeri-
cal method used for this work entails a discretization of the problem boundaries, a Gaussian qua-

drature over the segments generated, and the solution of the matrix equation generated.

B.1.1 Discretization of the domain

The first step of the numerical process is to discretize the problem domain. Accordingly, figure
B-1 is divided into segments as exemplified in figure B-2. In that figure the endpoints of each
segment are denoted by o’s. The unknown quantities in the matrix equation are the displace-

ment, #, and the normal derivative, —gf— at each of these points. These quantities are assumed to
H
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FIGURE B-1 Homogeneous medium
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FIGURE B-2 Discretization of the domain

FIGURE B-3 Segment of the boundary
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vary linearly between the endpoints.

Instead of integrating over the whole boundary, the integration can now be conducted over

each segment and equation (B.1) becomes
N _
e | w8 — d o r e
1-o)W+3 P — g2 dS =W B.2
( )W%i“"an' §2)dS = (B.2)
where: N, = number of segments on surface andj =integration over the j® segment
4

Accordingly, if an expression is developed for integration over a single segment, this

integration can be repeated for each segment. In this work Gaussian quadrature is used.
Figure B-3 shows a single segment of the boundary. The task here is to obtain an expres-

sion for J(w-aé% ~ ggf,-)dS' in terms of w and _éa—"?_ at the endpoints of the segments. The fol-
J 1 R n

lowing notation is used:

E1 is the first endpoint

E2 is the second endpoint

G1 is the first Gauss point

G2 is the second Gausspoint

W is the first weighting factor for the quadrature (0.789)
W, is the second weighting factor (0.211)

s 1s distance from the first endpoint

As is the length of the segment

Assuming that w and —gﬁ’; may be well approximated in the segment by linear interpolation
n

between the endpoints,

W )=# lei( Ai? Y ng(f—s) and

oW ;.\ OW As—5+, oW s
r(s)“”éf;: Ei As )"'an, IEZ(E)

Therefore, at the Gauss points

WlgmW W gt Waw ips



W oWl g+ Wil | g2

ié@ff;*lmzw1 3 |a1+W2§’::
aw| ’“’Wz a&

Two-point Gauss quadrature tells us that the integral over the segment can be approximated

as

J 28— g DB a5 =(( 3K - 89T lo3+(-2E; - 95N a1 B

Substituting the above approximations for w and gag— at the Gauss points yields
n

J(W ga ,)dS =[(W,w IE|+WW§£1)8 o (Waa 7 £1+Wza - 1e)8 tos

HW o | gt W lﬁz)—aafr ler{Wy gf, ‘aa:wﬂ.ez)g lsz}%g‘

Collecting the like terms produces
J(W—'&“ S’an s’ {(Wi““&“lsﬁ'w —g" e izr*‘(wz_"’g"" it —g" fo2)W lga (83)

—(Wig lortWag lcz) Ezl"(Wzg fertWsg lﬁz)a 7 EE?J"":”

Using this equation to integrate the terms of equation (B.2) yields an approximate expres-

sion relating @ and gﬁ
¢

at all the segment endpoints on the surface to w and #* at the obser-

vation point. In order to make a well-posed problem out of this, the observation point is

moved to one of the segment endpoints.

— )W w02 _ , OW yyor i
( “’w‘+53”g[(wan' g5 =, (B.4)
This equation can be written for each of the segment endpoints (for i=1 Ny ) 10 formulate a

simultaneous system of equations.

At each of the segment endpoints an equation can be written (Mpems points). Also at each of

the points, there is a boundary condition (typically =0). Thus, there are 2N, €quations.



At each of the points there are two unknown quantities, w and —gi—,, which means that there
n

are 2Np.i; unknowns. Accordingly, the system of equations is well posed. Of course, in
practice the boundary conditions are used to eliminate an unknown and not o generate &
new equation. The matrix equation which results from this numerical method will then have
Npois €QUALIONS I Npeins unknowns. This set of equations can be conveniently represented

as
H;j fv“jva“,» (Bﬁ)

where: H;; =the influence of the i unknown on the i equation
w; =the j% unknown (typically, the displacement at the j* point), and

W, = the incident field coefficient at the observation point
It should be observed that A, is the integral of Green’s functions relating the displacement
at the observation point (i) to the unknown (j) at the integration point. Therefore, the matrix
is not necessarily symmetric. Furthermore, it need not be positive-definite nor even well
conditioned. Because the maitrix relates all of the unknowns on the boundary to the dis-
placement at the observation points, it is dense and, quite possibly, completely full. These

make some of the more sophisticated methods of storage and solution inappropriate.

B.2 The discrete Fourier transform

Equations (A.9) and (A.30) give the forward and inverse Fourier transforms for a continuous
variable. Digital computers are discrete by nature and acceleration information for earth-
quakes is generally discretized at intervals of .02 seconds. These two considerations make

it reasonable to use a discrete Fourier transform. The discrete Fourier ransform pair is
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W (o )=igw (te)e' “h AL and w{tx );Ziw (e )e Ao (B.$)

where: W (o)) = the transform for the /*# frequency,
w () = the k™ term in the time history data, and

Neerms = the number of terms in the time series.

The algorithm used is the Cooley-Tukey algorithm (fast Fourier transform) as implemented
by IMSL [13]
B.3-Summary

The equation derived in appendix A has been solved approximately through the use of
Gaussian quadrature of the unknown quantities and a fast Fourier transform of the incident

wave,
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APPENDIX C
EXTENSION TO NONHOMOGENEQOUS PROFILES

The purpose of this appendix is to present the extension of the derivation of appendix A to
the case where a profile contains more than one material as shown in figure C-1. The
derivation is again limited to antiplane (SH) waves and, though the profile may have several

different media within it, each medium is homogeneous.

C.1 Statement of the problem

Figure C-1 shows a profile containing several different media. The problem addressed in
this appendix is the mathematical relationship between the several media and the extension
of the numerical methods for homogeneous media discussed in appendix B to the nonhomo-
geneous case. This extension is in two parts—the simple extension for layered profiles with
non-intersecting interfaces and the more complicated extension to intersecting interfaces

such as points A and B in figure C-1.

C.2-Governing equation

In appendix A the governing equation for shear wave propagation in a homogeneous
medium was presented as equation (A.29). Within each of the media of figure C-1, the
medium is homogeneous. Therefore, within each of these media, the development of
appendix A applies. In particular, equation (A.29) still applies. Therefore, within each

medium

1— — -——_ag__ afv— L
( a}w+P§fl(wan, gan,)dS W (C.1)
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FIGURE C-3 Expanded view of interface intersection
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where: § = the surface bounding the particular medium.
In the case where a profile consists of a single medium, the surfaces of that medium have

ow

on"’

boundary conditions which typically eliminate one of the unknowns, w or or at least

establish a relationship between them. In particular a free surface has no stress so that

_ oW
v on’

=0 and equation (C.1) becomes

(1007 +P ! wga’f;dy =7
However, for the case where a surface is not free but is rather an interface with the adjacent
medium, both unknowns will be present. Thus, all along the boundary in both media both
unknowns exist. It is reasonable to expect that there is a relationship between the displace-
ments and the derivatives on either side of the interface. The assumptions used here are that
the displacements and stresses are continuous across the interface. In the terms illustrated in
figure C-2,

W=, and  T,=T, (C.2)
"The first relation is immediately usable. The second must first be understood in terms of

displacements using the relation

Tm=ui“?;zun-VW (C.3)

an
There is a complication here because of the direction of integration. For adjacent media the
directions of integration must be opposite and the outward normals, n, and n,, must have
opposite signs. Therefore, there is a sign change between the two quantities as used in the

integrand of equation (C.1). Consequently, in the numerical formulation the coefficients of

the stresses must have their signs changed for one medium.
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In doing this we have at each observation point two unknowns and because the interface

borders two media, we have two equations. Accordingly, the problem is still well-posed.

C.3 Numerical implementation

Because all of the mechanisms for dealing with coefficients for both displacement and stress
are in place as described in appendix B, the only further extensions to the numerical prob-
lem are in bookkeeping. The program constructs the equations seriatim and therefore must
know which point and which medium each equation is written for. It must keep track of

which surfaces bound each medium. It must know the direction of the outward normal for

each medium so that it may compute the proper value for 5837 and assign the proper sign to
R

the matrix coefficients of the -!,?i"’m,-’s. Apart from these matters, the construction of the
1

matrices proceeds as described in appendix B.

C.4 Intersections of interfaces

Figure C-1 which shows the general multi-media problem contains points where interface
lines intersect (points A and B). Such points present two further complications—the fact
that the singularity, o, of equation (C.1) is not ¥2 and that there the normals are not neces-

sarily collinear.

An amplified view of point B of figure C-1 is presented in figure C-3. As can be seen from
the figure, there are three interior angles, 0,, 6, and ' and two (or possibly three) different
orientations of the interface lines, m, np, and ma. Each of these will be important in con-

structing equation (C.1) for point B. Furthermore, since there are three media meeting at
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point B, there are three different equations which can be written with B as the observation
point. Therefore, it is desirable that there should be three independent unknown quantities

at point B. This is indeed the case.

.4.1 Evaluation of o

Section A.6.2 gives the extraction of the singularity, o, from the ng-,— term of the integrand

of the principal equation. In that section it is shown that

a:%g_ (C4)
where: 8 = the angle measured around the outside of the boundary at the observation point.
For the typical point on an interface, o=%. At point B this is no longer rue. However,
under all circumstances, ¢, may be understood as the portion of the circle which lies outside
the medium. Since this is true, (1-o) may be understood as the portion of the circle which
lies inside the medium. Thus, the leading coefficient of equation (C.1) may be understood
as the interior angle of the medium at the observation point of the equation. For the equa-

tion written at point B and integrated around mediom a,
(1—01)::%’?
and the singularities in media b and ¢ may be handled similarly.

Having made this observation, the application of the numeric scheme is straightforward as it
plugs directly into equation (B.5). The displacement, #, is assumed to be the same in all

three media.
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C.4.2 Evaluation of normal derivatives

While z,, in medium a is equal and opposite to 1, in medium b along the length of line 3,
there is not such a clear relationship at the point of intersection, B. Basic principles of stress
are resorted to in order to determine the behavicur of the stresses at this point. Figure C-4
shows a wedge of the material where the inclined surface is parallel to line 1 of figure C-3.

Simple equilibrium considerations dictate that

T ARz —T dydz Ty, dxdz=0

where: dy=dn sinf and dx=dn cos8
Therefore,

Tz =Tsg SING+1Ty, COSO (C.5)
Through this relation, the stress on a plane of any orientation may be referred to x- and
y—coordinates. Therefore, there are at most two independent stresses at a given point.
Because there are one displacement and two stresses, there are three independent unknown
quantities at the point. As previously observed, there are also three media at this point and,

therefore, three equations. The matrix is still well-posed.

An appropriate method for handling more than three media intersecting at a point has not

been developed for the current work.

For the numerical formulation for such a point, equation (B.5) must be modified to include
the additional unknown stress. The modified equation will be

Hijwi=f (€.6)
where w; includes both displacements and stresses and where necessary includes both of the

independent stresses at a point.



FIGURE C-4 Wedge of material showing the antiplane stresses
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C.5 Summary

The methodology developed in appendices A and B has been extended to heterogeneous
profiles. The continuity of displacement and stress were assumed and the implications of
that assumption worked out for the numerical scheme. The case of intersecting interfaces
was also developed both analytically and numerically. The scheme set forth in this appen-
dix is applicable to a wide range of problems in earthquake wave propagation. In fact, any
profile consisting of distinct media each of which is homogeneous should be amenable to

solution by these methods.
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APPENDIX D
TRUNCATED PORTIONS

Figure D-1 shows a typical profile which has been truncated to make the numerical process
possible. Leaving these truncated regions out of the integrals introduces an error into the
equations. Perhaps, this is best seen by examining the main equation (2.11)

(o) + P (728, - g P )47 = i (D.1)
& on an

As this equation is applied to each medium, the integral is to be taken around the entire con-
tour of that medium. This analytical integral consists of two parts—the part included in the
numerical scheme and the part excluded from it. These two parts are identified in the figure
a$ Swm, that part of the surface which is included in the numerical scheme, and Spunc, that
part which is truncated from the problem before the discretization and numerical integra-
tions are performed. Using this division the following equation is written:

508 L, O0W \ier [ (598 5 0% e 708 _ , 0%y e
[P~ g 55ds= | (75K ~g 082S [ (Wals =875, 52dS (D.2)
Substituting this into equation (D.1) and rearranging yields
e | (w88 — o 8% ygemio [ (598 — 5 9% y45°
(1-0)¥ + 5;L(w‘_an, g£25)dS =7 S,L(Wan' gan,)ds D.3)

In the numerical process described supra, the final integral is omitted. Thus, there is an
error in each equation equal to the integral of the wave field around the truncated portion.
Clearly, leaving this integral out of the formulation entirely is tantarnount to assuming that
both the displacement and the stress on these surfaces vanish. This reduces the magnitude
of the computed response in the numerical portion. Figure D-2 shows the results of compu-
tations on a simple layered half-space ignoring the truncation. The solution is dragged
down toward zero at the ends and is far from the comect solution (shown by the dotted line)
over most of the domain.

D.1 Accounting for the truncation

Each medium of figure D-1 can be thought of as one of three separate media, one medium
within the numerical region and the others in the truncated regions. These media are
separated by an interface which has the same conditions of continuity in stress and displace-
ment as discussed in appendix C. Figure D-3 shows the several parts of a medium cut up in
this way. FEquation (D.1) is applicable to each of these media. For any equation that we
integrate in the numerical part, the observation point will be in the numerical region. For an
observation point in the numerical region, the integral around the truncated portion of the
medium will be zero. In other words, because the truncated portion is now a mathematically
separate medium, it has no direct influence on the displacement of the observation point.
Therefore, integration around one of the truncated portions on the side yields

VST SO VR I
s:f.,(wan' gan')d“si(wan' 89070 =0 - - 04

This becomes
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FIGURE D-3 The division of a truncated medium
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FIGURE D-4 Parallel infinite elastic layers showing the free-field solution
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From this equation it is seen that the problem of accounting for the truncated portion is
reduced to finding the integral along the side of the numerical portion of the problem
geometry. Equation (D.3) now becomes

1~ w + P | (w98 _ o W yier_ i 708 _ o 9% 3 je
(1-0) w + Sf,(wan' gan,)ds w+§:[.(wan, gan,)dS (D.6)

D.1.1 The field in the truncated portion

This integral is of the same form as the principal integral of equation (D.1) and is integrable
by similar methods. However, the wave field, w, is not known. For the purposes of this pro-
ject, its form and value are assumed.

At all points the total wave field is comprised of the incident and scattered fields (w=w'+w* ).
For the case of infinite parallel layers the scattered field is simply the reflected field. Thus,
for this simple case, w*=%" and w=w+w". This field is also identified as the free ficld,
W =i,

The total field in these outlying regions can be thought of as the sum of the free-field wave
and the waves scattered by the irregularities in the numerical portion of the problem. For
the case shown in figure D-1, the scatterers would be the hill and the tunnel and the total
wave field can be thought of as

W =i 4 = T+ (D.7)
where w9 = the scattering due to the intemnal scatteress, ¢
" . iH§Y(EF)
The effect of the scatterer follows the shape of the Green’s function, g=~-°,2"~. Because

the Green’s function dies out with distance, w° does, too. Accordingly,

wo—0 a5 Fedoo

and

Wow +w =/ g5 Foe

1t is, therefore, reasonable to assume that at some point % is negligible. Using this assump-

tion, the integral along the side becomes

J (725 — g0 )5~ J (11)-28—g (87 yyas” ®.8)
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D.1.2 Computation of the free-field wave function The computation of the free-

021 1t is briefly

field wave form is a well-known solved problem in wave propagation
reproduced here. Figure D-4 shows a profile with infinite elastic layers. The wave in each
layer has an ascending and a descending part with coefficients A; and B, , respectively. This
means that the transform coefficient at a point (x,y) is

W,y Ay e SESDEI), g it (reosy-ysioy,)

and

aa:;i'f: =i E’;sinyk (AkeiE”‘ {xcosT, +y siny‘}_NBkei".‘,‘ {xcosy,—y siny,‘))
At each interface the displacement and the stress are assumed to be continuous. This means,
for instance, that at interface %,

R R I A e ST SR L St

and

Iy Easiny, [Age B FOTBNI_p, o LGOI, B s [Ag e’ T IR g ey

In the bottom layer A =w'. At the free surface, there is no stress. There are, therefore, as

many equations as there are unknown coefficients.

In order to allow a consistent solution,

COSYi _ COSYes1 _ COST:

CO8YL= = = .
Ercosye=Eri1COSWss  OF Cx Ck+] c1 {D.9)
Akz—rkAk,,_le‘y‘(ﬂ**’smy"‘w&"smy“)-{—1 Rk Bk+le iy, (,,,sinY, 4, sin?, ) (D‘l{))

and
1R ot s : o .
Br= ok Ay o Wb, I p, oottt D.11)
where Ry = PeiEe418i0Ys

Ly Cp SIIFY
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Starting at the top, the two coefficients, 4, and B,, must be such that there is no stress at the
surface.

Bp=A, e 258 D.12)
Coefficients of each layer can be expressed in terms of the coefficients of the layer above
according to the equations above. Therefore, each coefficient is expressed in terms of A4, at
the top. The whole set is corrected by the ratio of the value obtained for A, to the actual
value of wi. Using this technique the 2» equations in 2n unknowns are solved without ever

having to invert a matrix.

D.2 Examples of the effect of accounting for the truncated regions

In this section comparison is made of the solutions obtained ignoring the truncated portions
with the solutions obtained using the above approximate restoration of its influence. Figure
D-2 shows the results achieved with the numerical method without correcting for the trun-
cated regions for a homogeneous layered half space. Figure D-5 shows the results for the
same profile at the same frequency using the correction described above. Visual inspection
shows great improvement. Table D-I gives the computed and analytical solutions for this

same problem. Inspection of this table shows the quality of the results achieved.

Figure D-6 shows the admittances computed for a profile consisting of a soft layer overlying
a stiffer half space subjected to an incident unit harmonic wave at a frequency of 50 rad/s
and incident at a 45° angle. Again, the complete numerical solution (dashed line)} shows

very good agreement with the theoretical solution (dotted line).
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TABLE D-I Comparison of numerical and analytical solutions correcting for truncation

point
1

O 0o =~} v W B W D

—
D

12
13
14
15
16
17
18
19
20
21
22

(location)
{ 50.00, 0.00)
{ 40.00, 0.00)
{ 30.00, 0.00)
{ 20.00, 0.00)
{ 10.00, 0.00)
{ 0.00, 0.00)
(-10.00, 0.00)
(-20.00, 0.00)
( -30.00, 0.00)
(-40.00, 0.00)
(-50.00, 0.00)

( 50.00,-20.00)
( 40.00,-20.00)
( 30.00,-20.00)
{ 20.00,-20.00)
( 10.00,-20.00)
( 0.00,-20.00)
( -10.00,-20.00)
( -20.00,-20.00)
( -30.00,-20.00)
( -40.00,-20.00)
( -50.00,-20.00)

exact solution
complex coefficient

{ 0.2001e+01,-0.3571e-02)
{ 0.1999¢+01,-0.2178e-02)
{ 0.1998¢+01,-0,1246e-02)
{ 0.1997e+01,-0.9451e-03)
{ 0.1996e+01,-0.1016e-02)
{ 0.1996c+01,-0.10942-02)
( 0.1996¢+01,-0.1016e-02)
( 0.1997e+01,-0.9449¢-03)
{ 0.1998e+01,-0.1246e-02)
{ 0.1999¢+01,-0.2177e-02)
{ 0.2001e+01,-0.3570e-02)

{ -0.8016e+00, 0.1100e-03)
(-0.7716e+00,-0.2542e-03}
(-0.7714e+00,-0.6943e-03)
(-0.7715e+00,-0.118%9¢-02)
( -0.7717e+00,-0.1615¢-02)
{ -0.7718e+0.,-0.1786e-02)
{-0.7717e+00,-0.1615¢-02)
(-0.7715e+00,-0.118%e-02)
( -0.7714¢+00,-0.6944e-03)
(-0.7716e+00,-0.2545e-03)
( -0.8016e+00, 0.1097¢-03)

magnitude
2.00117
195908
1.99779
189677
1.99595
199562
1.99595
1.99677
1.99779
1.99908
2.00117

$.80163
0.77159
0.77144
0.77154
017160
077176
0.77169
0.77154
0.77144
077159
0.80163

numerical solution

complex coefficient
{0.2000e+01, 0.00)
( 0.2000e+01, 0.00)
(0.2000e+01, 0.00)
(0.2000e+01, 0.00)
( 0.2000e+01, 0.00)
( 0.2000e+01, 0.00)
{ 0.2000e+01, 0.00)
{ 0.2000e+01, 0.00)
{ 0.2000e+01, 0.00)
( 0.2000e+01, 0.00)
{ 0.2000e+01, 0.00)

(-0.8322935¢+00,0.00)
{-0.832295e+00,0.00)
{-0.832295e+00,0.00)
(-0.832295¢+00,0.00)
(-0.832295¢+00,0.00)
(-0.832295e+00,0.00)
{-0.832295e+00,0.00)
(-0.832295e+00,0.00)
(-0.832285¢+00,0.00)
{-0.832295e+00,0.00}
(-0.832295e+00,0.00)

magnitude
200000
2.00000
2.00000
2.00000
200000
2.60000
2.00000
2.00000
2.00000
2.00000
2.00000

0.85230
0.83230
0.83230
0.83230
0.83230
0.83230
0.83230
0.83230
0.83230
0.83230
0.83230
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APPENDIX E
EXAMPLE OF THE PROCEDURE

Figure E-1 shows the principal steps in computing the time history of point 1 of plot (a) sub-
jected to a vertically incident earthquake as recorded in (b). The surface(s) of the profile are
first divided into discreet portions by defining obserwation points which are marked by o’sin
plot {a). The resulting segments are then represented by their lengths and their two Gauss
quadrature points which are marked by x’s. The points (1, 2, and 3) at which time histories

are to be generated are then chosen.

After establishing the geometry of the profile, the next step is to create a transfer function
for each of the points (1, 2, and 3) for which a time history is to be computed. This is done
frequency by frequency where it is necessary to compute the response of all the observation
points to a unit incident harmonic wave at each frequency. This is accomplished through
the discretization of the domain and the numerical analysis as described previously. These

results are shown for two frequencies in plots {¢) and (d).

When these values are computed, the responses at the points of interest are kept and the rest
are discarded. After the results have been reserved for each of the evenly spaced frequen-
cies from 0 to 157 rad/s (=50m/rad/s=25 Hz), each point has an admittance function as
shown in plot (¢) where the steady-state response of the point is given for each of the har-

monic incident frequencies.

These admittance functions (or their interpolates) are then multiplied by the Fourier
transform of the incident earthquake, shown in (f}, to obtain the transfer function (g) of the
point in response to the incident wave. This wansfer function is the forward Fourier

transform of the response of the point.
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Accordingly, the application of the inverse (or backward) transform to the transfer function
results in the time history of the response of the point o the given incident earthquake. This
response in the time domain is given in plot (h). Thus, within the limits of the numerical

processes, plot (h) contains the response of point 1 in plot (a) to the incident field of plot (b).
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by A.G. Ayala and M.J. O'Rourke, 3/8/89, (PB89-207229/AS).

“NCEER Bibliography of Earthguake Education Materials,” by K.EK. Ross, 3/10/89,
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"Tnelastic Three-Dimensional Response Analysis of Reinforced Concrete Building Structures (IDARC-
3D), Part I - Modeling," by $.K. Kunnath and A.M. Reinhorn, 4/17/89.

"Recommended Modifications to ATC-14," by C.D. Poland and J.O. Maliey, 4/12/89.
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Corazao and A.J. Durrani, 2/28/89.

"Program EXKALZ for Identification of Structural Dynamic Sysiems,” by O. Maruyama, C-B. Yun, M.
Hoshiya and M. Shinozuka, 5/19/89.

"Response of Frames With Bolted Semi-Rigid Comnections, Part I - Experimental Study and Analytical
Predictions,” by P.J. DiCorso, A.M. Reinhorn, J.R. Dickerson, I.B. Radziminski and W.L. Harper,
6/1/89, to be published.

"ARMA Monte Carlo Simulation m Probabilistic Structural Amalysis,” by P.D. Spanos and M.P.
Mignolet, 7/10/89.

“Preliminary Proceedings of the Conference on Disaster Preparedness - The Place of Earthquake
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