NATIONAL CENTER FOR EARTHQUAKE
ENGINEERING RESEARCH

State University of New York at Buffalo

R 5 i S5
R S R NS R S

A RESPONSE SPECTRUM APPROACH
FOR ANALYSIS OF NONCLASSICALLY
DAMPED STRUCTURES

by

J.N. Yang, 5. Sarkani and EX. Long

Department of Civil, Mechanical and Environmental Engineering
The George Washington University
Washington D.C. 20052

Technical Report NCEER-88-0020

April 22, 1988

This research was conducted at The George Washington University and was partially
supported by the National Science Foundation under Grant No. ECE 86-07591.



NOTICE

This report was prepared by The George Washington University
as a result of research sponsored by the National Center for
Earthquake Engineering Research (NCEER) and the National
Science Foundation. Neither NCEER, associates of NCFER, its
sponsors, The George Washington University, nor any person
acting on their behaif:

a. makes any warranty, express or implied, with respect to the
use of any information, apparatus, method, or process
disclosed in this report or that such use may not infringe upon
privately owned rights; or

b. assumes any liabilities of whatsoever lind with respect to the
use of, or for damages resulting from the use of, any
information, apparatus, method or process disclosed in this
report.



i
A RESPONSE SPECTRUM APPROACH
FOR ANALYSIS OF NONCLASSICALLY DAMPED STRUCTURES

by

J.N. Yang!, S. Sarkani® and F.X. Long®

April 22, 1988

Technical Report NCEER-88-0020

NCEER Contract Number 87-2004

NSF Master Contract Number ECE 86-07591

Professor, Dept. of Civil, Mechanical and Environmental Engineering, The George

1

2 Assistant Professor, Dept. of Civil, Mechanical and Environmental Engineering, The George

Washington University

Washington University
3 Visiting Scholar, Dept. of Civil, Mechanical and Environmental Engineering, The George

Washington University

NATIONAL CENTER FOR EARTHQUAKE ENGINEERING RESEARCH

State University of New York at Buffalo
Red Jacket Quadrangle, Buffalo, NY 14261







PREFACE

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion
of knowledge about earthquakes, the improvement of earthquake-resistant design, and the
implementation of seismic hazard mitigation procedures to minimize loss of lives and property.
Initially, the emphasis is on structures and lifelines of the types that would be found in zones of
moderate seismicity, such as the eastern and central United States.

NCEER’s research is being carried out in an integrated and coordinated manner following a
structured program. The current research program comprises four main areas:

[

Existing and New Structures
Secondary and Protective Systems
Lifeline Systems

Disaster Research and Planning
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This technical report pertains to the second program area and, more specifically, to secondary
systems.

In earthquake engineering research, an area of increasing concern is the performance of secon-
dary systems which are anchored or attached to primary structural systems. Many secondary
systems perform vital functions whose failure during an earthquake could be just as catastrophic
as that of the primary structure itself. The research goals in this area are to:

1. Develop greater understanding of the dynamic behavior of secondary systems in a
seismic environment while realistically accounting for inherent dynamic complexities
that exist in the underlying primary-secondary structural systems. These complexities
include the problem of tuning, complex artachment configuration, nonproportional
damping, parametric uncertainties, large number of degrees of freedom and non-
lingarities in the primary structure.

2. Develop practical criteria and procedures for the analysis and design of secondary
systems.

3, Investigate methods of mitigation of potential seismic damage to secondary systems
through optimization or protection. The most direct route is to consider enhancing
their performance through optimization in their dynamic characteristics, in their
placement within a primary structure or in innovative design of their supports. From
the point of view of protection, base isclation of the primary structure or the applica-
tion of other passive or active protection devices can also be fruitful.
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Current research in secondary systems involves activities in all three of these areas.

Their

interaction and interrelationships with other NCEER programs are illustrated in the accompany-

ing figure.

Secondary Systems

Analyses and
Experiments

Performance

Evaluation

and Design
Criteria

Optimization
and Prediction

|
| Program 1

- Structural
Response

- Risk and
Reliability

- Seismicity
and Ground
Motion
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- Protective

Systems

The purpose of research documented in this report is to develop a response spectrum approach
for nonclassically damped structural systems. The aim is to make the procedure simple for
practical applications and similar to the response spectrum procedure commonly used for
analysis of classically damped systems. Emphasis is placed on nonclassically damped primary-
secondary systems in which the effect of nonclassical damping is significant.
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ABSTRACT

A respomse spectrum approach for analysis of mnonclassically damped
structural systems is presented. Similar to the response spectrum procedure
for analysis of classically damped systems, the only required informatioen
regarding the ground motion input is its response spectrum. The procedure
rakes into account the effect of cross correlation between modes with closely
spaced frequencies, and it is simple for practical application.

The proposed method is used to approximated the maximum response of
several nonclassically damped structural systems. Emphasis is placed om
nonclassically damped primary-secondary systems in which the effect of
nonclassical dawmping is significant. Numerical results indicate that the
maximum structural vesponses predicted by the proposed response sgpectrum
approach are gemerally closer to the exact solutions than those obtained using
approximate classically damped procedure. The accuracy of the present

approach is quite reasonable.
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SECTION 1

INTRODUCTION

In seismic analysis of multi-degree-of-freedom linear structures, modal
analysis in conjunction with the response spectrum continues to be the most
widely used technique, referred to as the response spectyum approach. The
main reasons are the simplicity of the procedure and the fact that in most
design situations the input ground acceleration is specified in terms of the
displacement response spectrum (commonly referred to as the response
gpectrum).

Traditionally, the response spectrum approach requires the decoupling of
the equations of motion using the undamped modes of vibration of the system.
Then, the maximum respomse in each mode can be obtained using the response
spectrum of the ground acceleration [2]. Then, the maximum wvalue of the
response quantities are determined using a proper modal combination rule [13].
Consequently, such as  approach requires that the damping matrix eof the
structure is of the classical (proportional) form (i.e., the form specified by
Caughey and 0'Kelly [1]). However, real structural systems may not always be
classically damped, so that the damping matrix may not be diagonalized by the
eigenvectors of the undamped system. For these structures, referred to as
nonclassically damped structures, the classical medal analysis 1z not
applicable and the complex modal analysis procedure has been used in the
literatures,

Response spectrum appreaches for nonclassically damped structures have
been suggested, recently, in the literature [9,12,6,11]. Based on the complex
modal analysis, the maximum response of a nonclassically damped structure had
been expressed in terms of the displacement response spectrum and the velocity

response spectrum of the ground acceleration [6,11]. The velocity response
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spectrum was obtained from the displacement response spectrum using various
approximations {6,5].

In this paper an alternate approach is presented in which the equations
of motion for a nonclassically damped structure are decoupled using the
canonical modal decomposition approach {14]. The decoupled equations involve
only real parameters and the maximum response of the structure is expressed in
terms of the sine spectrum, that is related to the displacement response
spectrum, as well as the cosine spectrum. The cosine spectrum is determined
in approximation from the sine spectrum. A proper nmodal combination rule for
sine and cosine spectra is derived and the maximum response quantities are
determined taking inte account the effect of cross correlation of modes with
closely spaced frequencies. Similar te the response spectrum apprecach for
analysis of classically damped structures, the present approach is simple for
practical applications and only the informatien ¢f the response spectrum for
the ground acceleration input is needed.

The proposed response spectrum approach Iz employed to approximate the
maximum response of a number of nonclassically damped primary-secondary
structural systems., Particular emphasis is placed on evaluating the maximum
responise of primary-secondary structures in which the effect of nonclassical
damping 1s known to be slgnificant [14], including the tuning of the secondary
system. Numerical results indicate that the accuracy of the proposed response

spectrum approach is quite reasonable in comparison with the ewxact solution.



SECTION 2

BACKGROUND

The response of a linear n degree-of-freedom viscously damped structure
subjected to a ground acceleration %g’ can be obtained by solving the
following matrix equation of motion

ME+CR+RE~-Hzx (1)
in which M, €, and K denote the (nxn) mass, damping, and stiffness matrices of
the structure, respectively, and X is an n displacement vector relative to the
moving base. The vector ¢ is a unit vector r = [1, 1,...,11". The super dot
indicates differentiation with respect to time and an underbar denotes a
vector or matrix. In Egq. (1), the argument of time, t, for X and ﬁg has been
omltted for simplicity.

Caughey and 0'Kelly [1] showed that if the damping matrix satisfies the

identity § Mﬂl B = K M:l ¢, the matrix of the eigenvectors of the undamped

system, $, can be used to transform the equations of motion into a set of n

decoupled egquations. The eigenvectors are found from the solution of the
following
2
w, K@, -K& =20 2
;g BE R )

in which wjz and &, are the jth eigenvalue and elgenvector, respectively,

3

where wj is the jth undamped natural frequency of the structure.
The equations of motion are decoupled using the transformation X = 2

¥ in Eq. (1), where & = [ @1, §5] iz the modal matrix. The jth

?iza e

decoupled equation of motion is given by [2]

Y +2$ijj+92ij j{{g; j”i,z,...,n (3)

in which Yj is the ith element of ¥, ¥, - -0, Mz / &, ¥ &

is the ith modal
3775 j = e 4
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participation factor, and fj = Qé c e, / 2wj is the jth modal damping ratio.
In the expressions above, a prime denotes the transpose of a matrix or vector.
The solution of Egq. (3) can be expressed in terms of the well known

Duhamel’s integral

Y. = ¥, h, 4
J(fct) ¢3 J(t) (4)
in which
1 t -
ENOR 555 fo exp| ~$jwj(t-f)] sin ij(t-T) Xg(f) dr (5)

is the relative displacement with respect to the ground for a SDOF oscillator
2)1/2
J

jth damped frequency. Generally, the quantity of most interest is the maximum

with frequency wj and damping ratic £ Note that w, = wj(l - £ is the

i Dj

value of Yj(t), denoted by ?j. For small values of damping (e.g., & < 20%) it
can be approximated by

Yj = ¢3 Sv(Ej’wj) / wj (6)

in which

t
§,(6,w) = ' j exp[-¢w(t-7)] sin w(t-r) % (r)dr (7)
0 & max

is called the spectral pseudo-velocity response of the ground motion. Finally,

the maximum wvalue of the response vector X(t), denoted by X, can be

approximated by the well known square-root-of-sum-of-squares (SRSS)
procedure

) o ) 1/2

X - El [y ¥y 5,(¢5.00 /0y ] (8)

C, iz not of the classical form, the

However, if the damping matrix,
eigenvectors of the undamped system will not diagonalize the damping matrix.
For such systems, the approach proposed by Foss (4] and Traill-Nash [10] can

be used. In this approach, Eg. (1) is converted into a 2n first order matrix
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equation

Hasl
i
I
o

Z+B

-5 g

(9)

wherse Z ig a 2n state vector, Z =

4] M Tik = .Q}
A - + B + R
Lolu'le ol k M x (1%

The eigenvalue problem of Egq. (9), [A él + ﬁ] = 0, can be expressed as

3 -
g - e
e S
4
[=}
.

follows
A, A , + B ¢, =0 11

in which Aj and @j

the system is underdamped, the eigenvalues and eigenvectors are n pairs of

are the jth eigenvalue and eigenvector, respectively. If

complex conjugate. The jth pair of eigenvalues can be written as

w, + 1w, 1-§2w-$w +

AL, L o= £, . LW, i 12
25-1, 25 ~ €3¥ 3 18y 393 & 3 epy a2

in which 1 = jtz . ij = wj(l-gjz)l/z, where wj iz different from the jth
natural frequency of the corresponding undamped system.

The response state vector, Z, can be expressed as a linear combination of

the eigenvectors

Z=9¢XY (13)

where ¢ = [ ?1, @2,..., ?rl ) is a (2nx2n) complex modal matrix. Sub-

stituting Eq. (13) into Egq. (9) and premultiplying it by the inverse of the ¢

-1 . ]
matrix, ¢ =, one obtainsg a set of 2n decoupled equations

V, = A, V

FEEYR AR : 3 =1,2,..., 2n

(14a)

in which Vj and Qj

.1 L
Q=4 . (14b)
o

Solutions of Egq. (l4a) together with the transformatiom of Eq. (13) yield

are the jth element of the ¥ and Q vectors, where
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the response state vector Z(t) of the structural svstem. Since kj and ?j are
complex parameters that occur in complex conjugate pairs, the final response
quantities are all. real.

Igusa and Der Kiureghian [6], and Veletsos and ventura [11] expressed

the solution of 2, Eq.(13), in terms of the Dubamel’s integral and its

derivative
n

z- I | b0+ g b (15)

j=1

in which a, = -2 Re LA and f.= 2 Re Q. |. In Eq. (15, h.(t) iz the
relative displacement of a SDOF system with fregquency wj and damping ratio
§j given by Eq. (5); whereas ﬁj(t) is the relative velocity with respect to
the ground. For classically damped systems, ﬁj = 0, and as expected, the

response can be expressed in terms of h,(t) alone.

A

In practical design applications, the designer is provided with the
description of the ground metion in terms of a response spectrum, The
response spectrum is the plot of the maximum pseudo-velocity, Sv(é,w),
defined by Eg. (6) as a function of frequency «w and damping vatio &. The
response spectrum alse contains Iinformation regarding maximum relative

displacement, Sd(é,w), and the maximum pseudo-acceleration, Sa(é,w), since

they are related as follows
S,(6,0) = S_(£,0) /0 (16a)

Sa(é,w) = Sv(f,w) (16b)
These three quantities, 1i.e., Sd(E,w), Sv(s,w) and Sa(E,w) are plotted in
a single chart against frequency in z so-called tripartite logarithmic plot.
It follows from Eq. (15) that the determination of the maximum response
of a nonclassically damped structure requires not only the maximum relative
displacement Sd(e,w) but alsc the maximum relative wvelocity, %(ﬁ,w) o=

-

maxi. |h(t)|. Note that the maximum relative velocity, h(¢,w), is different
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from the maximum pseudo wvelocity, SV(E,w}V Since, however, the maximun
relative displacement Sd(f,w) is the only information available to a
designer, it is desirable to obtain the maximum velocity, ﬁ(é,w), in term
of Sd(f,w). Attempts in this regard have been made by several researchers in
the following.

Villaverde and HNewmark [12] assumed that for small values of damping
ratio ¢, the maximum relative velocity, g(é,w), can be approximated by the
maximum pseudo velocity Sv(é,w). When the ground acceleration excitation is
assumed to be a stationary white noice process, the relatiom Dbetween the
maximom relative wveleocity é(ﬁ,w) and the nmaximum rvelative displacement
Sd(i,w) can be obtained in approximation. Such a relationship was assumed to
hold for general earthquake excitations to obtain é(é,w) from Sd(é,w) by
Igusa and Der Kiureghian [6].

Gupta and Jaw [5] compared the maximum relative velocity, ﬁ(é, w), and
the maximum relative displacement, Sd(f,w), for several earthquake records in
different frequency ranges and concluded that for intermediate wvalues of w
(i.e., 1< w <10 hz.), the maximum realtive velocity g(f,w) can be
approximated by the maximum pseudo-velocity Sv(€,w). Further, procedures are
proposed for approximating the maximum relative velocity ﬁ(&,w) using the
knowledge of the maximum relative displacement Sd(ﬁ,w) for other frequency
ranges.

In this paper, we propoge an alternate approach for approximating the
maximum response of a nonclassically damped system from the knowledge of the
response spectrum, Sd(é,w). This is accomplished using the "canonical modal

analysis" formulated by the authors for the analysis of nonclassically damped

structures [l4],
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SECTION 3
CANONICAL MODAL ANALYSIS
The equations of motion for the state vector, Eq. (9), are rewxritten as

follows:

Z=AZ+YUxX (17)

)

The eigenvalues and eigenvectors of matrix A4 are idemtical te those of

wherse

i
i
I
[t :
M
I
. i%l
H
=
)
=
[
oty
o

Eg. (11), denoted by Aj and fj' respectively, for j = 1, 2,..., 2n, see Eq.
(12). Further, the jth palr of eigenvectoers can be expressed as
= a, +1 Db 19
$25-1 7 25 * 1By (19)
a3 =8 " AR y.1, 2,0
in which éj and Qj are Z2n real vectors
The (2nx2n) real matrix T constructed in the following

E = [él’ hll -@2, b.zl L B.,g:j, bj L | ..ia..-.,n’ hrl] (20)
will transform the matrix A into a canonical form A, i.e.,

A-1tAT (21)
in which 2—1 ig the inverse of the T matrix and

& 0
)
A = c | (22)
0
~1
where
-& ., @,
Ay - LJ J ey ,j=1,2,...,n (23)
Dj i3



Let the transformation of the state vector be

Z=I v (24)

Substituting Eq. (24) inte Eq. (17) and premultiplying it by the inverse of

. -1 .
the T matrix, T =, one obtains

= Av +Fx 25
in which A is given by Egs. (22) and (23), and

-L
F-T" {} (26)
o

Equation (25) consists of n pairs of decoupled equations. Each pair of

i<e

equations represents one vibrational mode, and it is uncoupled with other
pairs. However, the two equations in each pair are coupled. The
transformation given in Eq. (24} 1ig referred to asz the canonical
transformation [14]. All the parameters in Eq. (25) are real.

The jth pair of coupled equations in Eq. (25), corresponding te the jth

vibrational mode, is given as follows:

u2j~1 o ‘é‘jwj u2j-l + ij y2j o+ FZj-l xg (27a)
23 - —ij v?jwl - {fjwj Uzj + sz xg {27b)
in which F23'1 and sz are the 2j-lth and the 2jth elements of the F wvector,

respectively. Solutions of Eqs. (27) together with the transformation of Eq.
{(24) yleld the response state vector Z{t) of the structural system.

The advantage of the formulation given ahove is that the computations for
the solutions are all in the real field. The modal decomposition approach
described above is referred to as the canonical modal decompesition.

There are a number of procedures that can be used to solve Egs. (27) as

explained in details in Ref. 14. Let hy (t) be the impulse response function
b
" [
of the jth wvibrational mode, i.e., xg = §{t) and gj(t} w[v2jw1'u2j] = hyj(t)
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where §(t

from Eq.

h, (£ = 4

J

) is the Dirac delta function,

(27) as

-¢.w t
L—(e 37} sin ijt) F2j-1

+

Then hu {t) can be easily obtained
h

-fjwjt
sin w,..t) F
Di™ 23 L gy

-fLw,. t
cos .ty F, .
(e 7 “j® Faj ]

The response of the jth vibrational mode gj(t) = [UZj-l’ UZj] ig given

t
gj(t) - J
0

Using Eq. (29) and the transformation of Eq. (24), the displacement vector can

by

h, (t-1) ;’&g(r) dr j=1,2, ...n (29)

J

be expressed as:

n
Xty = I', S,(ty +4A, C, (¢t 30
“<>j§1[“j () + Ay JQ] (30)
in which
Ly =25 Fay 7 By Faga e
éj = gjL FZj-l + hjL sz (31b)
[t 4w (Eo1) )
Sj(t) == e gin ij(t—r) xg(r) dr (31c)
<0
t _gjwj(t"f) .
Cj(t) = e cos ij(t—f) xg(f} dr (314d)
<0
where éjL and QjL are the lowexr halves of the éj and bj vectors, respectively.
For classically damped structures, the vector A, can be shown to be null

N

and, as expected, the response reduces to terms involving the sine integrals

Sj(t) only. Of course, the maximum value of integrals involving the sine

terms is nothing but the pseudo-velocity Sv(f,w) which can be cbtained from
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the response spectrum Sd(é,w), Eq. (l6a).

For nonclassically damped systems, the maximum response involves not only
sine integrals, Sj(t)’ but alsoc cosine integrals, Cj(t)' The following
section outlines a simple procedure that can be used to evaluate the maximum
of cosine integrals from the pseudo-velocity spectrum of the ground motiomn,

.

i.e., maximum of the sine integrals.
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SECTION 4

EVALUATION OF COSINE SPECTRUM

The maximum value of Sj(t) that involves sine integral denoted by éj =

., = 8 W) = W,
37 Sy Ty
Sd(Ej,wj). The plot of §j against the frequency, wj, for a2 given damping

maxi. Isj(t)[, is nothing but the pseudo-velocity, i.e., g

ratio, £j, is the pseudo-velocity spectrum, and herein referred to as the
"sine spectrum”. The maximum value of Cj<t) that invelves cosine integral Eq.
(31), is denoted by é":j - maxi. ICj(t:)l. The plot of éj against the
frequency, wj, for & given damping ratio, 53, iz herein referred to as the
"cosine spectrum”. Note that §j and éj {or sine and cosine spectra) are
functions of wj and Ej’ and because of simplicity in notation these arpuments
are omitted.

The pseudo-velocity spectrum of an earthquake record can be generated
either dirvectly by numerical integration of Eq. (5) or using an approximate
procedure developed by Newmark, Blume and Kapur [8]. In the latter case the
pseudc-velocity spectrum (or the sine spectrum) is approximated by the
knowledge of the maximum values of the ground acceleration, ground velocity
and ground displacement. Such an approximate procedure is based on an
empirical study of the response spectra of a large number of earthquake
records.

In this study, the pseudo-velocity spectrum or the sine spectrum will be
obtained using either one of the two approaches mentioned above, whereas the
cosine spectrum will be evaluated, In approximation, from the sine spectrum.

In order to evaluate the approximate relation between the sine spectrum
and the cosine spectrum, the sarthquake ground acceleration ig(t) is modeled
expediently as a uniformly modulated nonstationary random process with zero

mean

}"cg(t) = a(t) }T&O(t) (32)



in which a(t) is a deterministic non-negative modulating or envelope function
and ﬁo(t) is a stationary random process with zero mean and a power spectral
density, éﬁi(w)' The stationary random process io(t) can be expressed in
terms of a suwmmation of sine functions as follows

. N

xo(t) = Z Ak 51n(wkt + ¢k) (33a)

fe=1
in which ¢k’s are independent random phase angles distributed uniformly in
/2 . .

[0,2r] and Ak = [ 2¢ik(wk) Aw ] with ¢££(wk) being the power spectral
density of ﬁo(t) evaluated at frequency w, = kAw. A commonly used form of the

k
spectral density, éii(w), is that given by [2,7]

2 2 4
1+6£° (w/w ) (w/w,)
E & * 9 s (313b)

2 2
[ RN T [1-Gorog?] + 68wy’

¢ (w) =

in which fg’ wg, 50, Wy and 5 are parameters depending on the intensity and

the characteristics of the earthquake at a particular geological location.
Various types of the envelope function a(t) have been suggested in the

literature to introduce the nonstationarity of the ground acceleration into

BEq. (32). One possible form of a(t) is: a(t) = (t/tl)2 for 0 = ¢t = , a(t)

‘1
= 1 for tl L tz, and a(t) = exp [ ﬁ(t-tz) ] for t > tz. Note that tl'
t, and 8 can be selected to reflect the shape and duration of the earthquake
ground acceleration., When a(t) = 1, the ground acceleration is a stationary
randem process, The statiopmary assumption is reasonable when the duration of
the strong shaking of the earthquake ground motion is much longer than the
natural period of the structure.

Thus, the earthquake ground scceleration can be expressed as follows

N

x (t) = ¥ al(t) A sin(w t + ¢.) (34)
g T Asinlogt + ¢
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Note that for a given set of ¢k values (k=1, 2,..., N), Eq. (34) represents a
sample time history of the ground acceleration ig(t). Substituting Eq. (34)

into Eq. (31) and changing t-r to a new integration variable 7, one obtains

N rt —ﬁjwjr
5,(0) :kzl a(t-r) A sinfo (tor) + 4] e sin oy r dr (35a)
0
N rt —éjwjr
Cy(x) mkzl a(t-r) A sinfw, (t-7) + 4 e cos wp,7 dr (35b)
0
It is mentioned that wk's for k = 1,2..., N are the frequency values of the

power spectral demsity of the random process io(t); whereas wj and Ej are the
natural frequency and damping ratio of the single-degree-of-freedom
oscillator.

The maximum values of expressions in Egqs. (35a) and (35b) have been

denoted by §, and C,, respectively. G, will be obtained in approximation as

h) 3 J
follows.
-€.w,T
When uﬁ is wvery small, both the exponential term, e 33 , and the
cosine term, oS ijT, in Eg. (35b) can be approxrimated by unity. This
results in
N "
Cj(t) mkgl Ak a{t-r) 51n[wk(t-f) + ¢k] dr
“0
N .t t -
= E Ak a(r) sin(wkf + ¢k) dr = Kg(f) dr (36)
K=l
Y0 0
= % (t)
B
Therefore, the maximum value of Cj(t) for small uﬁ ig the maximum ground
velocity, i.e., &j = maxi. Iig(t)l. In other words, the cosine spectrum in

the small frequency range is equal to the maximum earthquake ground velocity.
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When w, is very large, the natural period T} of the oscillator is very
short and hence the stationary period of the earthquake is much longer than
the oscillator pexioed T,. Thus, the maximum values 6j and §j will occur in
the stationary portion of the response. Consequently, the earthquake ground

acceleration can be mecdeled as a stationary random process, i.e,, a(t) = 1,

and Cj(t) can be expressed as

N t € w, T
¢ (£ =k§l OAk sinfo, (c-r) + ¢ ] e 77 cos wpy” dr (37)

Using exponential relations (Euler's equation) for the sine terms and cosine

terms in Eq. (37}, the integral can be evaluated as
N i .t + ¢ )0t (ot + )
Cj(t) “‘kEl o [e"" Dj k 33 . k k ]/(wk' ij "isjwj)

I A TR i JRlye ¢k)]

/(wk+ ij -ifjwj)

Lot - g )-Ew.t ~iw .t o+ ¢)
+ le™ D LS 6 I k ]

/(wk+ ij +iéjwj)

+ e -2

(38)
When wj iz large compare to @, the above expression can be approximated
by
1 - y 1 -twrt N
C.{t) = — # {t) + Tt} + e i B, .(t 39
50 wz[ejwj (8 + X ()] wZEJJk.Z.lAkkJ“ (39a)
h] i
in which
Bkj(t) = wj sin wbjt sinék - co8 ijt (wk cos ¢k + fjwj 31n¢k) (39b)

* -
Let £ be the time at which C,(t) reaches its maximum value, i.e., C, =

] ]
*
Cj(t }. Then, Eq. (3%a) becomes
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+* -
(&) D]+ g e

i 1=

1 - *
¢ = ~3 (6.0, Ay By (€)) (%0)

b1 & W, k=1
3 J
For gj % 0, Eq. (40) can be further simplified to
- 1 - * % {41a)
G, = —F w, x () +x () ]
io,2 [ €545 g 3
J
since the summation of sin ¢k or COoS ¢k for k=1,2,...,8 is close to zero,

Eq. (4la) represents the maximum value of Cj(t) when wj is large. HNote
that éj is generally much smaller than unity. Examination of Eq. (4la)

reveals that when wj iz not extremely large, 6j can be avproximated as being

. 2

inversely proportional tgo gj.
On the other hand, when wj is extremely large, §jwj ig(t) is the dominant

term and Cj reduces to
C, = &, x_(t)/w 41b
5 éJ g|( )/ 5 (41b)
In a similar manner using Eq. (35a) with a(t) = 1, the following
approximate expression for the sine spectrum Sj(t) for w, very large can be

j

obtained as

) -€jwjt N
Sj(t) = xg(t)/wj + e Eml Ak(-éjwj sin ijt cos:ﬁk + sin ijt sinqﬁk
+ “ps sin ijt cos ¢, ) (42)

A

If t denotes the time at which Sj(t) reaches its maximum value, 1i.e.,

éj = Sj(t), then Eq. (42) can be simplified as

Sj - xg(t)/wj = maxi.lxg(t)/wjl (43)

provide that 63 # 0. Equation (43) indicates that in the high frequency
region {i.e., wj very large), the relative pseudo-spectral acceleration wj éj'

is constant and equal to maximum ground acceleration ig(t) as expected.

A& comparison of Egs. (41b) and (43) indicates that when w, is extremely

3

large and gj = (0, the cosine spectrum is related to the sine spectrum as

follows



C, = £, S, 44
j €JJ (44)

In the intermediate frequency range for wj, closed form expressions for

éj and Cj are not tractable. However, for a comparison of §j and éj’ the
ground acceleration %g(t) iz approximated by stationary white noise with

zero mean and a power spectral density § Then, Cj(t) and Sj(t) are

0"
stationary random process with zero mean and their mean square wvalues (or

variance) can be obtained as follows (see Appendix).
E[C?(t)] - [(1 + 5?)/2g.w.] xS (452)
j j 373 0
E[S?(t)} = [(l - 52)/25 w ] #8 (45b)
3 3 7] 0

It foliows from above equations that for small damping Ej the variances

of 5,(t} and C,(t) are identical. Thus, the maximum values of Gj(t) and Sj(t)

A 3
are approximately equal, i.e., éj s éj' This, indeed, has been verified by
comparing the exact éj and éj values for several earthquake records for
intermediate values of wj°

Noted that in most situations the response spectrum used for design
purpeses ig approximated by a series of straight lines in the tripartite
logarithmic paper and it is referred to as a smooth spectrum herein. These
straight lines correspond to vreglons of amplification of the ground
acceleration, velocity and displacement. There are also guidelines available
that can be used to approximate a smooth spectrum based on only the knowledge
of the maximum ground acceleration, velocity and displacement [8}.
Therefore the cosine spectrum will be obtained in approximation from the
available smooth sine spectrum using the results derived above. This will
lead to a smooth cosine spectrum, and the procedures are described in the
following.

Exact sine and cosine spectra for several earthquakes have been

constructed and all sine spectra have been smoothled out with straight lines.
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A comparison between the smooth sine spectrum with the Trespective cosine
spectrum indicates that at low frequency values of wj’ the cosine spectrum is
constant and is equal to maximum value of ground velocity, Eq. (36), up to the
frequency value, w at which it intersects the sine spectrum as shown in Fig.
1 by segment 1. This point of intersection, W determines the begimning of
the intermediate region in which the two spectra are almost identical. The
upper frequency, Wy, at which the twe spectra are almost 1dentical can be well
approximated by the largest frequency at which the sine spectrum is equal to a
constant amplification of the ground acceleration. This frequency, W, can
easily be determined from the smooth sine spectrum, see Fig. 1. Beyond @y >
the cosine spectrum can be well approximated by a straight line on the
log-log paper with a slope of -1, see Eq.(4la), as shown in Fig. 1 by the
gegment (3}.

When wj is extremely large, the cosine spectrum can be approximated by
multiplying the sine spectrum by the damping ratio éj as shown in Eq. (44).
Thus, in the extremely large frequency region, =say wj > 100 cps, a straight
line parallel to the sine spectrum but its ordinate being equal to Ej éj can

be drawn as shown in Fig. 1 by the segment (4). The intersection of segments

{3) and (4), dencted by @, igz the beginning of the region where éj £ Ejéj’
Eq. (44).

Thus, the cosine spectrum is completely define if the maximum value of
the ground velocity is known. Note that the wvalues of the maximum ground
acceleration and ground displacement can be obtained from the sine spectrum.
Unfortunately, the value of the maximum ground wvelecclty camnot be directly
extracted from the sine spectrum. Based on empirical study of a large number
of earthquakes, the average wvalues for the maximum ground velocity was

expressed in terms of the maximum ground acceleration and the site condition,

(i.e., soil type), in Ref.8. For rock, the maximum valueg of ground velocity

4.7



and ground displacement are 36 in/sec. and 12 in., respectively, for every 1 g
in/sec.2 of maximum ground acceleration. For alluvium, the maximum values of
ground velocity and displacement are 48 in/sec. and 36 in, respectively, for
every 1 g in/sec2 of maximum ground acceleration. Therefore, by comparing the
above wvalues with the maximum values of ground acceleration and displacement
obtained from the sine spectrum, one can determine the soil types and the
approximate maximum value of the ground velocity.

Figures 2a through 2h presents the exact and smocth sine spectra for
several earthquake ground accelerations, Also shown in these figures are the
approximate smooth cosine spectrum obtained from the knowledge of the
smooth sine spectrum. For comparison purposes the exact cogine gpectrum which

was obtained using a numerical jitegration of Eg. 35b ig also presented.
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SECTION 3

COMBINING MAXIMUM MODAL RESFONSES

We are now in the position to obtain the approximate maximum structural
response from the sine and cosine spectra. Recall that the wvector of

structural response £ is given by Eq. (30), i.e.,

n

X =7 [r. §. () + A, c.(t)] (46)

3] J 3 -] ]

J:-t
The earthquake ground acceleration is modeled as a random process with zero
mearn. Further, it is assumed that the statiomary segment of the ground
acceleration is long compared with the period of the structure, so that the
structural response can be considered as a statlonary random process with zerec
mear. Thus, Sj(t) and Cj

mean. The stationary varlance of the structural response can be obtained from

{t) are all stationary random processes with zero

Egq. (46) as follows

2 T n
ol = )y % E{ P, T, 8,(x) S,.(t) + 2L, A, S,(t) C (£

X {=l =1 p| h ] ]

+ by éj c, (t) Cj(t)]

Tt st
- ¥ Y [r.r, o(5,,8,) 0, o, + 2L, &, p(5,.C,) o, @
i_lj,,l[ij 1737 78y s, R A

] (47)

J

in which o and o, are the standard deviations of Sj(t) and Cj(t),
] h|

respectively, and p(Si,Sj) == E[Si(t) Sj(t)} / asiasj is the correlation

(t). Similar definition holds for the correlation

+ éi éj p(Ci,Cj) aciac

coefficiant of Si(t) and Sj

coefficiants p(Ci,C Y} and p(Si,C

3 3

For a stationary random process with zero mean, such as Sj(t) and Cj(t),

the mean of the maximum value may be expressed in approximation by a peak



factor vy multiplied by the standard deviation. Assuming that the peak factor

v for all stationary processes Cj(t) and Sj(t), for i = 1,2,...,n, as well as
the response vector process Z(t) is Identical, i.e., éjﬁ R éj ~ 7 9,

b ]
for 3 = 1,2,...,n and X = maxi. |Z(e)| = ., one obtains from Eq. (47) the

square of the maximum response as follows

n n PR -

2, - LT, p(S.,S.) §. 8, + 2T, A, p(S.,C.) &, G,

x| - I 21 [By Ly p(S85) Sy Sy + 203 &y (34,C9) 8y €y
i=1 j=

+ Ay A p(Si,Cj) ¢, 63] (48)
in which the jth element of the vector Iﬁii given above is the square of the
maximum value of the relative displacement to the moving base of the jth
floor.

For classically damped system, éj = O and EBq. (48) reduces to the
Complete Quadratic Combination (CQC) methed [13]. Since the sine and cosine
spectra, éj and éj’ have been estimated previously, the remaining step is to

evaluate the correlation coefficients in approximation. Der Kiureghian [ 3 ]}

computed the correlation coefficients p(8§ 3 for the sine spectrum using

155
the filtered white noise as the input excitation and compared with the
corresponding results when the input excitation is white noise. His
conclusion is that the correlation coefficients p(Si,Sj) under filtered
white noise input can very well be approximated by that due to a white noise
input when the damping is not very large (e.g. £<20%). Hence, the corralation
coefficients p(Si,Sj) obtained using the white noise excitation can be used
for the computation of the maximum response.

Here, we suggest the use of the white noise excitation as input to

compute the correlation coefficients, p(Si,Sj), p(Si,Cj) and p(Ci,Cj)

appearing in Eg. (48). The results are given in the following {(detailed
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derivations are presented in the Appendix)

where

p(Si

.5,
J)

8a

p(circj) = aai

p(Si,Cj) = 4a, .

a..
1]
b.,
1]
c, .
1]

ij

i

[}

(€.6.0.0.)"

ij

J

1]

1] 1]

2 2
w; + wj + 2¢6.¢,w

c, ., wiwj/di

1]

J

1]

2
- 2w, d,.(l+£,
wDJ Y/ lJ( EJ

AR
1]

J

2 2
b, . cij/dij{(1+€i )(1+Ej )}

5-3

1/2

2,1/2

(49a)

(49b)

(48¢)

(50a)

(50b)

{50c)

(504d)






SECTION &
NUMERICAL EXAMPLES

In order to demonstrate the accuracy of the response spectrum appreach
developed in this paper, the maximum response of several nonclassically damped
structural systems subjected to several earthquake ground ewcitations will be
considered. Based on a detalled study conducted in Ref. 14, the effect of
nonclassical damping is significant for certain primary-secondary systems
subjected to earthquake excitations; particularly if the equipment is light
and it is tuned to a frequency of the primary structure. Therefore, emphasis
is placed on approximating the maximum response of several nonclassically
damped primary-secondary systems.

A1l the example preoblems are subjected to the 1940 El Centro, 1971 8an
Fernando, 1985 Mexico City earthquakes, and simulated nonstationary ground
accelerations described in Egs. (33) and (34). The parameters that describe
the envelope function, a(t), and the spectral density, ¢§i(w), of the

earthquake modal are: t, = 3 sec., t, = 13 sec., B8 = 0.26, wg = 3.0 Hz.,&g =

1 2

0.65, w, = 0.5 Hz., 50 = 0,71 and S2 = 74,7 % lOwa mz/sac.3/rad. With these

0
parameters a simulated ground acceleration is shown in Fig. 3.

The maximum structural responses (i.e. story displacements and story
deformations) are obtained using the following approcaches.

1. The wilson-§ direct time history integration methed. The maximum
response thus obtained is exact, referred to agithe exact soclution.

2. The response spectrum approach propesed. Recall that this approach
requires the Lknowledge of the sine spectrum (pseudo-velocity response
spectrum) and cosine spectrum of the ground wmotion. The cosine
spectrum may be generated from the time  history of the ground

acceleration (if available) or approximated from the sine spectrum using the

guldelines discussed in section IV. For the example problems studied the

61



maximum response is obtained using both the excat and approximate cosine
spectra,

3. The approximate classically damped apprecach. In this approach, the
second order equations of motion are decoupled using egenvectors of the
undamped system by disregarding the off-diagonal terms of the & £ ¢ matrix,
where & is the (mxn) modal matrix of the undamped system. Then the maximum
response iz obtained from the sine spectrum using the SRS58 procedure.

The above solutions are obtained for a particular earthquake, such as El
Centre or simulated sample earthquake. Likewise, The maximum response of all
the example problems were also computed wusing the average sine and cosine
spectra for twenty simulated ground motions having the power spectral density
and envelope function described previously. However for this situation one
cannot cbtain the exact maximum wvalues of the response gquantities. The
maximum stiructural response cobtained using varlous approaches will be compared
to demonstrate the validity of each approach.

The first example problem consists of a two-degree-of-freedom shear beam
type structure. This structure is classically damped if Cl/k1 =z CZ/kZ' The
= m, =m = 30 tonsg and k, = k

1 2 1 2
= k& = 19 379 kN/m. The natural frequencies of the structure are 2.5 Hz and

mass and stiffness of each story unit are: m

6.5 Hz, respectively.

Let values of C1 and C2 be equal toe 123.4 kN/m/sec. so that the structure
iz c¢lassically damped with first modal damping ratie of 5%. Now the
distribution of the damping is varied so the structure becomes nonclassically
damped. Two nonclassically damped structures are considered., First all the

damping of the structure is placed in the first story umit; with the results

C, = 246.8 kN/m/sec. and C, = 0.0. Next all the damping of the structure is

1 ya
placed in the second story unit, leading to the results Gl = 0.0 and Cy =
246 .8 kN/m/sec. Tables 1-a through 1-¢ presents the maxipum story
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deformations (Ui’UQ) of the structure with these three different damping
distributions. An examination of the Table indicates that, as expected, the
effect of mnoneclagsical damping on this type of structural system 1s not
significant and that either of the response spectrum procedures {(i.e.
classical or nonclassical damping) predicts maximum structural responses that
are in close agreement with the exact solutions.

Next consider the classically damped two-story structure of example 1 in
which a light single-degree-of-freedom equipment is mounted on the top floor.
Such a primary structure is classically damped if C1/kl = Cz/k2 where Cl - 02
= 123.4 kN/m.sec. and the combined equipment-structure system is classically
damped 1if Cljkl - Cz/k2 = Ce/ke where the subsecript e referes to the
equipment. In Ref. 14 it was shown that the effect of nonclassical damping
for this equipment-structure sgystem is significant if (1) the equipment is
tuned to a frequency of the primary structure, (iil) the equipment mass Iis
light cempared te the tuned modal mass of the primary structure, and (iii) the
equipment damping ratio is smaller than the damping ratio Eec that results in
a classically dawped equipment-structure system.

let the equipment frequency, W, be tuned te the fundamental frequency of
the primary structure, i.e. w, = 2.5 Hz. and the mass ratio (equipment mass
over the first modal mass of the primary structure which is 30 tons) be equal
to 10"A. For this equipment-structure system the value of 5ec iz equal to 5%.

Tables 2-a through 2-¢ presents the maximum response of the equipment
structure system for 3 different damping ratios of the equipment i.e. ée = 0%,
5%, and 10%,

Examination of the results in Table 2-a, which correspond teo 5@ = (%,
indicates that the displacement of the equipment relative to the attachment
point using the response spectrum approach developed in this paper is only 6%

higher than the exact solution for the El Centro earthquake, 12% higher for
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the San Fernando earthgquake, 14% higher for the Mexico City earthquake, and
31% higher for the simulated earthquake. Whereas using the approximate
classically damped approach, the response is 73% lower than the exact solution
for the El Centro earthquake, 71% lower for the San Fernande earthquake, 25%
lower for the Mexico City earthquake, and 60% lower for the simalated
earthquake. A comparison of the results obtained using the approximate cosine
spectra with those obtained using the exact cosine spectra for various
earthquakes considered except the Mexico City indicates excellent agreement.
For Mexico City earthquake the maximum equipment response using the
approximate cosine spectra is 46% lower than that using the exact cosine
spectra. As expected, the effect of nonclassical damping on the respomse of
the primary structure is insignificant and the maximum responses obtained
using different approaches are in close agreement. Results obtained using the
response spectrum of a single ground acceleration record and those obtained
using the average response spectrum of twenty records exhibit similar trends.

Table 2-b presents the maximumr response when the equipment- structure
system ig classically damped (i.e. $em§$c=§%)“ Of course for this situation
the nonclassically damped response spectrum appreoach reduces to classically
damped response spectrum prodecure and these results are In good agreement
with the exact scilutions.

Table 2-c¢ presents the results when the equipment damping ratio is 10%.
Examination of the equipment displacement relative te the attachment point
indicates that the equipment response using the response spectrum approach
developed is again in good agreement with the exact solutiens. The maximum
deformation of the equipment is within 21% of the exact solution for all four
earthquakes. However, the equipment response 1s 250% higher than the exract
solution when the approximate classically damped approach 1is used. The

results obtained using approximate cosine spectra are in remarkable agreement
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with those using the exact cosine spectra for all earthquakes. Again, for the
simulated earthquakes the results obtained using one and twenty sample records
exhibit similar trends.

Next we examine the response of the equipment mounted on top of the two
nonclassically damped structures of example 1. Again the equipment is tuned
to the fundamental frequency of the primary structure and three different
damping ratios for the equipment are considered (i.e. €e = 0%, 5% and 10%).
Tables 3-a through 3-c¢ present the maximum story deformation for the
equipment-structure system in which all the dampings of the primary structure
are placed in the lower story unit. The corresponding results for the case in
which all the dampings of the primary structure are placed in the second story
unit are presented in Tables 4-a through &4-c.

It is observed from these tables that the maximum equipment deformation
based on the response spectrum approach developed in this paper ls within 44%
of the exact solutions. However, based on the approximate classically damped
procedure the equipment responses deviate up to 490% of the exact solutions.
On the other hand, the effect of nonclassicél damping on the primary structure
response is insignifant. The results obtained using the approximate cosine
spectra are very close to those obtained from exact cosine spectra.

Suppose the equipment 1is detuned and its frequency is chosen to be the
average of the first two mnatural f£requencies of the primary structure.
S$imilar to the tuned equipment-structure system, three different damping
distributions for the primary structure are considered and the equipment is
undamped, i.e., €em0. Tables 5-a through 5-c present the response of the
detuned equipment-structure system. It is observed from these tables that the
accuracy for the proposed response spectrum approach, is well within 40%,
whereas the accuracy for the approximate classically damped procedure Iis

within 71% of the exact solution. Furthermore, the results obtained using
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exact and approximate cosine spectra are very close, Finally, the response
due to one simulated earthquake or twenty samples of simulated earthquakes

exhibits similar trends.
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SECTION 7
CONCLUSIONS

A response spectrum approach for the seismic analysis of non- classically
damped structural systems has been presented. Similar to the response
spectrum approach for analysis of classically damped structures, the only
information reguired for the ground motion Iinput is the response spectrum.
The maximum response of the nonclassically damped structure is expressed in
terms of the sine spectrum and the cosine spectrum. The szine spectrum is
directly related to the response spectrum of the ground accelevation, whereas
the cosine spectrum is obtained in approximation from the response spectrum as
well. The formulation takes into account the effect of cross correlation of
modes with closely spaced frequencies.

The proposed approach has been applied to approximate the maximum
response of several nonclassically damped structural systems subjected to
several earthguake greound accelerations. Particular emphasis is placed on
evaluating the maximum vesponse of structural systems in which the effect of
nonclassical damping is konown to be significant.

Numerical results are compared with the exact solutions obtained by
numerically integrating the equations of motion. It is shown that the
accuracy of the proposed approach is quite reasonable. Also presented ave
maximum response quantities obtalined using the approximate classically damped
solutions. HNumerical results indicate that the accuracy of proposed approach

is generally better than that of the approximate classically damped solutlomns,
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APPENDIX
CALCULATION OF CORRELATION COEFFICIENTS

In this Appendix, the various correlation coefficients needed to coumpute
the approximate maximum response will be evaluated. These correlation

coefficients are defined as

p(si'3j> = E(Sisj)/aS. as. {(I.1la)
1 3
P(Ci,Cj) = E(CiCj)/o’Gi I (I.1b)
]
p(Si,Cj) - E(Sicj)/aSi acj (1.1l
in which
oY
E(5.8.,) = E eagiwifl sin w7, % {t-r.) euéjaﬁ?g
i7j Di'l g 1
0+0
sin ijrz xg(t-rz) dfl‘dTZ} {1.2)
Similary E(CiCj) is given by Eq. (I1.2) with sin @iy and sin ijrz being

replaced by cos wnsTy and cos w regpectively, and E(Sicj) is also given

by Eg. (I-2) with sin w

pj’e’
Djfz being replaced by ces WyiToo
With the assumption that the egrthquake ground acceleration %g(t) iz a

stationary white noigse with zero mean and a power spectral densgity SO’ Eq.

(I.2) can be obtalned as follows.

. R
E(Sisj) - E{ jm jmxg(t~r1) e sin wy 7, dry
0“0

I-1



{od]

= E r- X (t-r )} iil
jo f: [Xg( W F T e sin opy7y 47y

-ELw, T

j i

e sin w jr dr

_siwifl —gjwjr
= [: j:Rii<71°72) e sin Wiy drl e sin ijfz df2

= £ w.T

-fLw, T
- Jo 2% SO e i1z sin @ns7o e 3732 sin ijTZ dfz
£, w, + £, w
““Solli jjz 3
) §'iwi+£jwj
2 2
(Si w, + €j wj) + (wDi + ij)
(b, + £.0.) (bo,, w. )
- 0 i1 i j Di "Di (1.3a)
(@2+w2+266 2 -t 2w 2

i 1 i%3 1%y i “pj

Similarly, the expressions for E(Ci j) and E(Si j) can be obtained as
follows
E, w, + £, w
E(C j) - SO i 1 A 7 5
. 6, wy + Ej I :
(fi wi + Ej wj) + (wDi + ij)
# S {(E.w, + £,w,} (2w 2+2w ¢ + L€ 8, w 4@ )
024y ¥ 849y) TTey Oy it 91 I.3b)
= 3 5 ) 33 (1.
(wi + wj + 2$i$j wiwj) - ani ij

and

I-2



“pi " “pj
* Z 7
(.‘fi wi + Ej wj) + (wDi - w{)j)
2 2
7 8 (2w (w b, 2E, & w0, + 2w, )
- j i) Dj
7 > 5y (L.3¢)
(wi + wj + 2€i€j wiwj) - wDi ij

The mean square values are obtained by setting indicles i and j equal to

sach other in Eqs. (I.3a) and (I.3b) as follows

2

2 2 -4
E(Si Y} o= asi n '———-ifé:;"z;; (I.48)

) ) xso(1+giz>
E(Ci } o= O’ci s —-'“‘ﬁ“gﬂ"“”"iw; (1.4b)

Substituting Egs. (I.3) and (I1.4) into Egs. (I.l), one ocbtains the thres

correlation coefficients In the following

p(Si,Sj) e Saij 1 W w )/d 15 {1.5a}
p(C;,Cy) = hay, by e ij/dij[(l+$i ) (14, %) ]1/2 (T.5b)
p(5;,6,) = bagy wy(by, - 2up,h/dy (ve, By (1.5¢)
and
gy = (80040 M (1.62)
byy - w? + w§ * 26,8 0 0, (1.6b)
Cij o éiwi + Ej wj (I.6c)
2 7 2 .
dgy = Bry - bopg” up, (1.6d)
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