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ABSTRACT

The optimal design of structures subjected to seismic excitations and
equipped with active control systems including active tendons, active mass
damper and a combination of the two is presented. Optimal and non-optimal
control algorithms are employed for implementation of the structural
control. The structural optimization is formulated in terms of construction
materials or structural weight with various constraints of displacements and
control forces. A control energy performance index is also minimized to
find optimal weighting matrices that yield the least optimal control forces

gatisfying the constraints.

A critical-mode control algorithm 1is derived based on the instantaneous
vlosed-loop technigque. The spillover effect is studied theoretically and
numerically. The algorithm is then used to establish optimal locations for
a limited number of active tendon controllers. Three approaches of using
the modal shapes, the performance index of control energy, and the
performance index of response are studied for determining the optimal

locations.
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SECTION 1

INTRCDUCTION

Recause of recent advances in electronics, engineers and scientists are on
the threshoid of a new era in structural analysis and design. Most of their
research efforts are based on the development of sophisticated computer
programs for the analysis of complex structures. Currently, when these
programs are used to design structures, the relative stiffnesses of a
structure's constituent members must be assumed. If the preliminary
stiffnesses are misjudged, repeated analyses, regardless of a program's
sophistication, will wusually not vyield an improved design. The programs
that are presently used are actually based on coventional designs, and their

application in reality is an art rather than a science.

The optimum design concept has been recegnized as being more rational and
reliable than those that require the conventional trial and error process
[refs. 3, 26, 31]. It is because for a given set of constraints, such as
allowable stresses, displacements, drifts, frequencies, upper and lower
bounds of member sizes, and given seismic loads, such as equivalent forces
in the code provisions, spectra, or time-histories, the stiffnesses of
members are automatically selected through the mathematical logic
(structural synthesis) written in the computer program. Consequently, the
strengths of the constitutent members are uniformly distributed, and the
rigidity of every component can uniquely satisfy the demands of the external
loads and the code requirements, such as displacements and drifts. By using
an  optimum design computer program, one can conduct a project schedule at a
high speed and thus increase the benefit because of the time that is saved.
An optimum design program can also be used for parametric studies to
identify which structural system is more economical and serviceable than the
other and assess the principles of various building code provisions as to

whether they are as logical as they are intended te be [refs. 4, 10, 16].

Structural control implies that performance and serviceability of a
structure are controlled sc that they remain within prescribed limits during

the application of environmental loads. Structural control is achieved by
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using passive or active control devices. The passive devices utilize the
fact that energy dissipating mechanisms can be activated by the motion of
the structure itself. Base~isolation of the superstructure from fhe
foundation using rubber bearings 1is an example of passive control for

earthquake registant structures.

hetive control devices require external energy for their operation.
Extensive optimal control algorithms are available in literature of various
engineering disciplines {[refs. 1, 9, 20, 23, 24, 32, 35, 36]. The devices
under consideration can be classified into four categories: 1) active mass
damper [ref. 2], 2) active tendons [refs. 17, 34], 3) appendages [ref. 29},
and 4) pulse centrol [refs. 21, 271. The description of the devices and

some experimental results are given in the aforementioned references.

Recent studies have recognized the importance of combining structural
optimization with contrel [refs. 5, 6, 12, 15, 18, 28]. The advantages of
the approach are quite obvious that it can have all the strong points of

both structural optimization and optimal control.

The main objective of this report is to show the effect of the combining
structural optimization and optimal control on the structural response and
optimal design parameters. Three active control systems are considered: the
active tendon system, the active mass damper system, and a combination of
the two systems. Also included in the report is the critical-mode optimal
control based on the instantaneous closed-loop algorithm. The spillover
effect is demonstrated theoretically and through the use of numerical
examples. The algorithm is then used as a tool for establishing optimal
locations of active tendon controllers when only a limited number of

controllers are employved.
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SECTION 2
STRUCTURAL QPTIMIZATION
JSING NON-CPTIMAL CONTROL

2.1 Structural System

The structural model chosen for the present study is an N-story shear
building equipped with a number of active tendons (AT}, and an active mass
damper (AMD), as shown in Figure 2-1. The assumptions made to simplify the
analysig are: 1) the mass of each floor is concentrated at the floor level,
2) linear elasticity is provided by massless columns between neighboring
floors, 3) the structural vresponse is described by the displacement and
lateral force in each story, 4) AT controllers are installed between two
neighboring floors either above or below the jth floor, 5} an AT controller
is regulated by two sensors placed on the floors above and below it, &) an
AMD is placed on the top floor, and 7) an acceleration sensor igs placed at

the top floor to regulate the AMD controller.

2.2 Formulation of Non-Optimal Closed-Loop Algorithm

The procedure for analysis follows the transfer matrix approach in the
frequency-domain instead of the classical modal approach. The transfer
matrix approach determines the structural response directly without having
to calculate the natural fregquencies and modes. This results in
considerable simplification of the calculations. The transfer matrix
approach was early studied by Yang [ref. 32]. Two features are different in
the derivations presented herein. First, each Floor of the structure does
not have to be identical to the others. This is reguired for the structural
optimization algorithm to be implemented. Secondly, the present derivation
includes a combined active tendon-mass damper system. It will be shown in
the numerical examples that the combined system resulted In improved

performance of the control system.

The earthquake ground acceleration is modelled as a stochastic process and a
random vibration analysis is carried out to determine the stochastic

response. T+ is assumed that the statistics are time-invarlant, or
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stationary. The earthguake ground acceleration ﬁg(t) is modelled as a
stationary random process with zero mean and a power spectral density
P Xq(m), given by

2
[1+ 402 55 s
3 oy

¢ X (w) = 7 5 {1}
g LW e 2 W
(1 02 yo ot 4Lg o2
g g
where:

Qg = ground damping

wg = ground frequency

w = forcing frequency

- power spectrum of white noise

Let Xj and Yj-l be the displacement and the resultant shear force in the
columns of the jth floor respectively of an N-story shear building, as shown
in Figure 2~1. Also let XN+1 be the displacement of the AMD, YN be the
force exerted on the mass of the damper my from the elastic spring kd and
dashpot Cqv and mj, cj and kj he the mass, damping and stiffness of the Jjth
floor, respectively. The eaquaticons of motion of the bhuilding with the AT

and AMD systems can be written in the frequency-domain as
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= AMD controller gain

[is}
£
—
i

ko, =k, + w
o3 5 7 9plw
gt(m) = AT controller gain

The controller gains gm(w) and gt{m) are functions of thenormalized

foedback and loop gains for the AT Ty and s and for the AMD T4 and €4
regpectively. Note that Egq. (2) is valid for fleors 1 to (N-1), and it can
be written recursively to transfer the response of the mth fleor te that of
the (m-1)th floor. Applying the boundary conditions at the top £floor and

pase of the building one can solve Egs. (2-4) to determine the displacement

response §ﬁ, the shear force Y,, and the AMD and AT control forces.
4 4
Detailed derivation and solution of Egs. 2-4 are available in [refs. 5,

6].

The structural response and active contreol statistics are stationary random
processes with zerc mean. The power spectral density of the 3jth floor

displacement response is given by

2w 3 (w) {5)

where:

“ ng ? = magnitude of the displacement response

The mean sguare response at the jth floor, G;j, is

z mnq @ﬁg(w)dm (&)

Similar relations can be written for the shear forces, AT control forces,

and the AMD control force.

2.3 Optimization for Non-Optimal Algorithm

From previous studies by Cheng and his associates for deterministic and

nondeterministic structural systems [refs. 4, 6, 11, 14, 16}, it is known
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that structural weight is a reliable objective function for member resizing
and ig therefore used in this study. The objective function is approwimated

by a linear structural weight functlon given by

N
W=a+1Ib.,k, {73}
j=1 4 3
where:
W = gitructural weight of building
kj = floor stiffness
a,bj = constants relating structural stiffness and weight

The structural optimization problem is as fellows: Find kj’ th’ Iy Td,
2 that will minimize the structural weight W of Eq. (7) subject to the

following constraints

ij < Oxj max j=1,...,H {8)
Uti < 0, max i=1,...,M {3)
T4 < Uq WX {10)
kj > k min 3= 1,...,N {11)
Tti < T wmax, Eti < B max i=1,...,M {(12)
Td LT max, Ed £ & max {13}
where:

., ij max = standard deviation of relative displacement of jth floor

%]
and the allowable

Opir Oy max = standard deviation of ith tendon control force and the
allowable

Oqr g Max = standard deviation of AMD control force and the
allowable

R win = minimum floor elastic stiffness

it ¥ opax normalized feedback gain for ith active tendon and the
allowable

T4 = normalized feedback gain for the active mass damper

Eigr & Law = normalized loop gain for ith active fendon and the
allowable

ed = normallized loop gain for the active mass damper

N = number of floors

= number of active tendons
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The gquantity oxj can be obtained from the response statistics of Egq. (6).

oy and o4 can be obtained from similar equations. The

implementation of standard deviation expressed in the constraints is in the

The quantities o

gense that for a given maximum displacement and a probability of not
exceeding that wvalue, the standard deviation of the displacement can be
obtained. A Gaussian probability distribution is assumed. The numerical
procedure for the sclution of the optimization problem of Egs. {7) through

(13), follows a penalty function formulation.
2.4 Numerical Examples
2.4.1 Example 1: Two~8tory Bullding

The optimization procedure is applied to a two-story building shown in
Figure 2-2 for earthquake excitaticn. The objective is to find the minimum
structural weight that satisfies the imposed constraints. The design
variables are the floor stiffnesses, and the normalized loop and feedback
gains. Three case studies are made. In Case A, the structure is eguipped
with two active tendons whose stiffness kt is allowed to vary according to
the wvariaticn of the jth floor stiffness, kj’ in the coptimization procedure
as kt = .05 kj. In Case B, the stiffness of the tendons is fixed at kt =
40 kips/in (7000 kN/m). In Cage C, an active mass damper ils included in
addition to the two tendons. The earthquake excitation used is that of Eqg.
{1), of the Xanai-Tajimi spectral density function, with the following
parameters: wg = 18.85 rad/sec, Cg = (.65, and §% = 4.65x1064m2/secg/rad.
The structural properties for all three cases are: m, = m, = 2 kip~sec?/in

1 2

(350 Mg), e, =c, = 1.6 kip-seq/in (280 Mg/sec), and 8 = 25 degrees, where

8 = angle between the tendon and the grider. The active mass damper
my = 0.04 kip-sec?/in (7 Mg}, kd = 6.11 kip/in
(1070 kN/m), ¢, = 0.10 kip-sec/in (17.5 Mg/sec), and km = 25 kip/in {4378

d d
kN/m), where kmd = proportionality constant for active mass damper. The

constraints for all three cases are: O, Max = 0.035 in {0.8% mm), GX? max =

0.076 in (1.78 mm}, 0., WMax = o, , max = 10 kips (44.48 kN), T max = & max =

1 t2
10. Additional constralints are imposed for Case C as 7, < 6, and ¢, < 6.

parameters for Case C are:

d d
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From Figures 2-3 and 2-4 one can observe that Case C gives the least
gtructural weight. From Figure 2-5 it is evident that the active tendon
control forces of Case B require a larger Ty The £ values, however, reach
upper bound for all three cases as shown in Figure 2-6. The same active
tendon control force standard deviations are obtained at the optimum for all
three cases. In Case C, Td reaches upper bound, whereas ed goes to a small
value, as shown in Figure 2-7. In all three cases, the displacement
constraint of the second floor and the control force constraints are active.
The difference between Case A and Case B is very small, in terms cof the
structural weight. It appears that the combined active tendon and active

mags damper system is advantageous over the other two cases.
2.4.2 Example 2: Eight~Stery Building

The three active control system models, i.e. the active tendon, active mass
damper, and combined active mass damper and tendons, are compared in this
example. The eight-story structure is first optimized, subjected to the
earthquake excitation without any active control system (Case 1l}; in Case 2
the structure is equipped with eight active tendons; in Case 3 the structure
is equipped with an active mass damper on the top floor, and in Case 4 the
structure is equipped with an active mass damper and two active tendons at
the +two bottom floors. All four cases are shown in Figure 2-8. The design
variables are floor stiffnesses, and normalized loop and feedback gains.
The structural properties are: mj = 314 Mg and Cj = 90 Mg/sec, J = 1,..., 8.
The earthquake excitation is that of the Kanai-Taiimi function, given by Eq.
(1) with the following parameters: wy = 18.85 rad/sec, Cg = 0.65, ang 8% =
4.65x10_4m2/sec3/rad. The control parameters are: kt = 15x10% kiN/m, € = 25
= 27 Mg, k, = 957.2 k¥/m, c, = 23 Mg/sec, and k_. = 15%10% kN/m.

s/ d d g

The constraints for all four cases are: le max = 6x10 m, UxZ max =

1n2x10w3m, g mag = 1.8x10“3m, o] max = 2.4x10“3m, 0 . max = 3.0x10° m,
%3 Xé% %5

o max = 3.6x10m3m, o] max = 4.2x10n'm, Gx max = 4.8%10° m, T max = £ max

degrees, m

®6 %7 8
= g, and k min = 1.5x10° kN/m. For Case 2 G, max = 200 kN, 1= 1,..., 8.
For Case 4 Ot* max = 200 kN, i = 1,..., 2.

The optimization results are shown in Figures 2-9 through 2-12. From Figure

7-9 we observe that the structure without controls requires a very large

2-6



welght. Comparing the three control configurations, we note from Figures 2-
10 and 2-11 that the combined system of Case 4, gives the least weight. The
optimam stiffness distribution for all four cases is shown in Figure 2-12.
The values of the normalized loop and feedback gaing for Case 4 are given in
Figure 2-13. it is observed that Tyy reaches upper bound, Tio is close to

the upper bound, but T4 is low. Similar results are obtained for Eryr Eigo

and €4 The power spectral densities of the response for the four optimal
cases were calculated; the spectral density of the eighth floor relative
displacement and the spectral density of the base shear force are shown in
Figures 2-14 and 2-15, respectively. From these figures it is obvious that
the no-control case is the worst case. Cases 3 and 4 control the response
effectively; Case 4, however has the least weight and it reduces the higher
modes better than Case 3. (Case 2 reduces the higher modes best, but of the

three control cases has the most weight.
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SECTION 3
STRUCTURAL OPTIMIZATION
USING CPTIMAIL: CONTROL

The difficulty of not knowing the earthquake ground motien apriori makes it
necessary to consider the assumption of a white noise excitation in the
derivation of the classical Ricatti closed-loop control [ref. 16]. The
instantaneous optimal control algorithms resolve this issue with the added
advantage that the optimal control expressions are simpler than those of the

classical Ricatti closed-lcop control.

Depending on the implementation scheme the instantaneous optimal control
algorithms can be classified into open-loop, closed-loop, and open-closed~
loop. Their simplicity in establishing the control gain matrix is of

paramount importance in thelr application to the optimization algorithm.
3.1 Optimal Active Contrel Formulation
The equation of motion of the N-story shear building of Figure 3-l(a)

equipped with a number of active tendons and subjected to an earthquake

acceleration, Xg(t), is

[MI{x(t)} + [CH{&(t)} + [KI{x(t)} = [vI{a(t)} + {8} ﬁg(t) {14}
where:

[M] = mass matrix

[C] = damping matrix

[K] = gtiffness matrix

{x(t)} = gtory relative displacements

{u(t)} = control forces

[v] = location matrix for AT

183 = excitation influence vector

Equation (14) can be expressed in state-form as

{2(t)y}r = [Al{z(t)} + [Bl{u(t)} + {C} ﬁg(t) (15)
where:
{fz{t)} = {iﬁi;li}, a 2Nx1 state-vector

{Z(t)?
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[A] = plant matrix
[B] = location matrix
{C} = excitation vector

Details of Egs. (14) and (15) are given in [refs. 9, 12, 16].

The optimal centrol {u*(t)}, is derived by minimizing an instantanecus time-

dependent performance index Jp(t) defined as

3o(6) = (2(6)) 1914=(0)) ¢ () TRICu(E)) (16)

where:

[Q0] = positive semidefinite weighting matrix

[R] = positive definite weighting matrix
and satisfying the state-equation, Eg. (15). The performance index Jp(t) is
minimized at every time instant t, for all t in the interval Ogtﬁtf, where
t_ is the earthguake duration. Depending on the manner in which the control

f
forces are requlated, there are three schemes available.

Instantaneous Open-Loop

‘The onty measurement required for instantaneous open-locp control is that of
the excitation as described in [ref. 33]. Experimental evaluation cf the
instantaneous algorithms was carried out by Lin, Socng and keinhorn |[ref.

19]. The optimum control can be derived as

ur(6)} = [61{6(t)) (17)
in which
(61 = 131 IRIBI (R + (RI1 (18)
(0(t)1 = 18] [RI[T1EAlt-at)3 (35 - 131 TQICH (655" (19)
where:
At = time-step

{A(L-At)} = integration vector from solution of Eg. {15%)

[T] = modal transformation matrix of [A]
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Thus the optimal controcl £forces are computed from the measured base
acceleration Xg(t} and previous information at (t~At), keeping the real-time

on-line computational effort minimal.

Tngtantansous Closed-Loop

The control forces are regulated by the feedback response state-vector
{z(t)} alone, i.e. the only measurements required are those of the response
at time €. There is a definite advantage of this algorithm for the case of
wind excitation which is difficult to measure for application with the open-
loop algorithm. The optimal control in this case is derived as

-1

fur(t)y = = (BRI B TQ){z(E)) (20)

Note that another advantage of the instantaneous closed-loop algorithm is
that it is insensitive to estimation errors in the stiffness, mass or
damping of the structure since [R], [B] and [Q] are known.

Iinstantaneous Open-closed~-loop

This algerithm regquires the measurement of the ground excitation and the

response. The optimal control {u*{t)} is tc be of the form
fur(t)} = [s1l{a(t)} + {s2(t)} (21)

where [81] is a constant gain matrix, and {S2(t)} a vector containing the

measured excitation upto and including time t.

Tt can be shown that [S1] and {82(t)} are given by

- - 2 _4
(511 = (25 Ry "HB1TIn) ¢ r@lrmIR) )T AAE o) (22)
(52(£)} = [STI{ITHA(E-48)} = (CHE(£)(55)) (23)

The derivations for the active mass damper c¢oantrol system shown in Figure 3-

1{b) are similar to those for the active tendon, and are not given here.
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3.2 Optimization for Optimal Algorithms

The structural optimization of actively controlled structures redistributes
the structure's stiffness more effectively and thus increases the safety of
seismic structures. The imposed constraints on the serviceability of
seismic structures can be satisfied with different combinations of control
force levels and structural stiffness requirements. In the structural
optimization that follows, the optimal control law has already been derived
in the previous section. The weighting matrices [Q] and [R] are fixed

during the optimization.

The objective function is thaet of Bg. (7), given in Section 2. The

structural optimization problem is formulated as follows: Find k,, that
J

will minimize +the structural weight of Egq. (7) subject to the following

constraints

xj(t) < xj max j=1,...,N {24)
ui(t) < u, max i=1,...,M (25)
ud(t) < uy max {28)
kj > k min o= 1,...,N {27}
where:

xj(t} = relative displacemenit of ijth floor

xj max = allowable displacement of jth floor

i}

ui(t) ith AT control force

]

u, max ith allowable AT control force

ud(t) = AMD control force
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ug max = allowable AMD control force
Rased on a rational stiffness distribution, an optimum structure wiil be

obtained in accordance with the allowable level of the control forces.
3.3 Control Energy Minimization

Numerical simulations show that when the elements of the response weighting
matrix [Q] are large the response is reduced, but at the ewxpenss of large
control forces. When the elements of the control weighting matrix [R] are
large the control forces are small, however the displacement response is not

reduced appreciably.

Physical limitations of the actuator impose an upper bound on the maximum
control force magnitude that can be achieved. Considerations of power limit
the control energy svailable. Various objectives and constraints can be met
by judicious selection of the elements of the weighting matrices.
Physically the weighting matrices affect the gain matrix for the system and
they are implemented in terms of the amplifier gains that produce the

control forces.

A rational procedure 1is developed herein in order to obtain the optimal
weighting matrix [R]. The elements of matrix (¢}, and the structural
stiffnesses are kept constant. The control energy is <chosen as the
objective function to be minimized. The constraints are the same as those
used in the structural optimizatien. The optimization problem is as
follows: Find the elements R(i,i) of the weighting matrix [R] assumed

diagonal, that will minimize the control energy defined as

t

e = 2 7ty RIGa()) at (28)

SR E

subject to constraints on the allowable floor relative displacements ang
allowable control forces of Egs. (24-27). The objective here is to obtain
the optimum weighting matrices that will reduce the control forces, while

the response still remains within the constraint limitations. In this
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sense, a combination of structural optimization and optimal active control
yields an economical design that both dJdetermines the optimal structure
stiffnesses and the optimum control parameters as ewpressed by the optimum

weighting matrices.
3.4 RNumerical Examples
3.4.1 Ewample 3: Optimum Structure Using Open-Loop Control

The instantanecus optimal open-loop control algorithm is wused in this
example. An eight-story shear building is considered. The structural
properties are: mj = 105 Mg, cj = 1138 Mg/sec, j = 1,...,8. The earthquake
excitation used is the N-8 compcnent of the El-Centro earthquake of May 18,
1240. The structure is equipped with (a) eight active tendons, or (b) an
active mase damper. The properties of the mass damper are as follows: mg =
9 Mg, k = 736 kN/m, and c, = 11 Mg/sec. The weighting matrices [¢], and

4d d
[R], are assumed diagonal.

The constraints used for both cases are: xl max = 0.015 m, xz max = 0.025 m,

%, max = 0,035 m, x, max = 0.045 m, % max = 0.050 m, %, max = 0.055% m, =%

3 4 5 & i
max = (.060 m, XS max = 0.065 m. The control forces are constrained ati: ui
max = 650 kN, 1 = 1,...,8, u, max = 650 kN, and k min = 1.5x10%kN/m. The

a
eptimization cycles for the structural welght are shown in Figure 3-2. The

optimum stiffness distribution at the final iteration is shown in Figure 3-
3. The optimum weight for the AT case is 586.6 kN, and for the AMD case

526.8 kN. For the AT case, the following constraints are active: b4

6" 7’

For the AMD case, x_ is active.

ul, u7, and u 5

5"
The optimal designs found above for the AT and AMD case, were subjected to
the same earthquake excitation, but without the active control systems.
Figure 3-4 describes the response for the optimal structure with and without
the active tendons, and Figure 3-5 describes the response for the optimal
structure with and without the active mase damper. From Figure 3-4 it is
obvious that the eighth floor relative displacement has been reduced by
using the active tendon system. Although the maximum displacement of the

controlled response has been reduced by only about 60% as compared to the
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no~control case, it is evident That for the rest of the time history, the
reduction is much greater. The maximum relative velocity and maximugm
acceleration of the eighth floor have been respectively reduced by 55% and

70% as compared to the no-contrel case.

From Figure 3~5, the eighth floor relative displacement has been reduced by
using the active mass damper system by about 80% as compared tc the no-
control casge. The maximun relative velocity and aceeleration of the eighth
floor have Dboth been reduced by 85% as compared to the no-contrel cases.
The damper control force is ahout one third of the allowable at itse maximum
value. This ig the reason why the active mass damper system does not reduce
the response as much as the active tendon system. However, the active mass
dampar performance could be improved by adjusting the elements of the

welghting matrices, so as to vield a large control force.
3.4.2 Example 4: Optimum Structure Using Closed-Loop Control

The instantanecus optimal closed-loop control algorithm is used in this
example to illustrate tThe benefits of combining structural optimizaition with
active control. An eight~story shear building is considered. The
structural propertles are: mj = 2 kip ~ sec®/in (350 Mg}, 3§ = 1,...,8, and
1% critical damping in all the modes. The earthquake excitation usged is the
N-S component of the El-Centro earthguake of May 18, 1940. The structure is
equipped with eight active +tendons, one on each floor. The weighting
matrices [Q] and [R}, are assumed diagonal with the values R(i,i) = 0.06, i
= %1,...,8 and Q{1,1) = 1500, I = 1,...,16. The choice of these matrices at
this stage is arbitrary, and they are fixed at this values during the

structural optimization.

The constraints used in this case (Case 1) are: %, max = 0.72 in (.018 m},

X, Max = 1.44 in (.037 m), Xy max = 2.16 in {(G.55 m), X4 max = 2.88 1in
(.073 m), Xy max = 3.60 in (.091 m}, ¥e max = 4.32 in (.110 m), x7 max =
5.04 in (.128 m), Xg

max = 5.76 in {.146 m}, u, max = 300 kips (133 kN), i
1,...,8, and k min = 400 kips/in (70040 kN/m). The optimization cycles for

the structural weight are shown in Figure 3-6. The optimum stiffness

distribution at the final interation is shown in Figure 3-7. The optimum
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weight for Case 1 is 42.12 kips (187.35 kN). The following constraints are
active: Ror Xy and X, Te illustrate the usefulness and versatility of the
optimization process, & second optimization of the same structure-control
system was carried out, with the following difference: The displacement
constraints of Case 1 were reduced by 70% for this case (Case 2). The rest
of the constraints are kept at the same values. The resulting design for
Case 2 ig also shown in Figures 3-é and 3-7. As expected the optimum weight
for Case 2 is higher, at 116.34 kips (517.48 kN). The following constraints
are active: Xs Hqy X, Koo and Xg- It can be seen that optimization is not
intended Jjust to reduce the structural weight, but to achieve optimal
structural strength through rational stiffness redistributicn based on a

given set of constraints.
3.4.3 Example 5: Optimal Weighting Matrices

The optimal weight structure obtained in Case 1 of section 3.4.2 is used as
the structure for applying the control energy minimization procedure. The
structure and the weighting matrix [Q], are fixed. The constraints for
allowable displacements and control forces are the same as before for Case
1. The objective is to determine the optimum elements of the diagonal
weighting matrix R(i,1), i =1,...,8, that will minimize the contreol energy
as defined by Eg. (28). From the results shown in Figure 3-8 and Table 3-I
it can be observed that by finding the optimal weighting matrices, the
maxima of the control forces have been reduced. The maxima displacements of

course are still bound by the constraints used in Case 1.
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TABLE 3-1 CONTROL ENERGY MINIMIZATION RESULTS

Maxima of Control Forces { kip )
( 1 kip = 4.45 kN )

iteration Floor Number
Number
1 2 3 & 5 6 7 8
1 289 271 285 280 273 252 177 g2
5 250 258 211 216 202 162 89 57
Weighting Variables R(i,i)x 107>
Iteration Floor Number
Number
1 2 3 4 5 6 7 8
1 .070 070 .070 .070 L0770 .070 .070 070
5 . 110 076 . 100 . 0985 . 109 . 169 .274 . 240
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SECTION 4
CRITICAL-MODE CONTRCL

The optimal critical-mode control algorithm is likely to be as effective as
the optimal global control, since the response of tall buildings under
earthguake excitations is usually dominated by a few lowest modes. The
critical-mode control is also superior to the global control, as far as the
amount of on-line computations is concerned. For global control of a

structure with N degrees of freedom, the instantanecus closed~lcop algorithm
requires the solution of 2N differential equations. However if only m

critical modes are controlled where (E<N}, only om differential aquations
have to be solved. The critical-mode contrel algorithm is develeoped herein
in order to reduce the amount of computation, and is also used to study the

optimal lcocations of controllers.
4.1 Critical-Mode Control Formulation
The formulation is developed using the instantaneous c¢losed-loop algorithm

of Section 3.1 for the active téndon gystem. The state-equation, Eg. {15),

can be transformed into the modal'domain as follows
{a{t)} = [T1{p{t)} (29)
in which [T} is given by
o ) | . i
{T} i{M]}! {Yl.f!"'»' ¥ {Mj}' {Yj}r""r {MN}I {YN}] (30}
where:
{Mi} = real part of jth eigenvector

{Yg} = imaginary part of jth eigenvector

Substitﬁting Eg. {29) in Hg. (15) vields

[T}{§(t)} = PATITH (Y + iBI{u{t)} + {C}ig(t) {31)

Premultiplying Eg. (31) by {T]m1 yields the modal state-egquation
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(E)Y = Tel{e()} + [117 %

where:

- “1 z2
Bl{u(t)} + [T] {C}Xg(t) (32)
ol = modal plant matrix
Our interest is in contrelling oniy the lowest modes {¢{t)}ct The remaining

regidual modes are dencted as {@(t}}r. By partitioning [mx} according to

the critical and residual modes, Eg. (32) can be written in the form

{iiJ(t)}C ) [I@]c ! [0} } o, [gTB]C} H B
{@(t)}r‘ T Te1 | (o1, ] ) Tb(0)3, * (767 fu(t)l (33)
| {Té}c X (L)
{rC} s\ 9
where:
(rB] = {1 (8]

{rcy = [T] T{C}

Rewriting Eg. (33) in two separate equations, one for the critical and one

for the residual modes
ey, = Tol (e, + [T8] {u{e)} + {1} R (t) (34)

()}, = Lol L9(0)3, + [TB] {u{t)} + {IC} X (t) (35)

The critical-mode control algorithm is based entirely on the dynamics of Eq.
(34). The residual modes of Egq. (35) are ignored in the derivation of the

optimal control forces.

The optimal control {u*{t)}, is to be derived by minimizing the
instantaneous time-dependent performance index of Eg. (16), Section 3.
Substituting Eq. (29) intoc Eg. (16), the expression for the performance

index becomes

Tpte) = I BTIQIUTIH(H) Y + (u(t)} [RI{a(t)) (36)
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Substituting the partiticned modal state-vector {{{t)}

{wit)
{wit)y = TGN (37)

in Eg. (36), and ignoring terms that involve the residual modes the

critical-mode performance index is
. N L T .
JE) = ({e3 [0) it} + {u(6)} [Ri{u(t)} (38)

in which [Q]  is a 2m x 2m matrix obtained form partitioning the following
matrix product

CIR I

C

9], | el

BRI (39)

The c¢critical-meode optimal contrel problem is stated as: Find the optimal
control {u*(t)}, that minimizes the critical-mode performance index Jc(t) of
Eg. (38) and satisfies the state-equation for the critical modes, Eq. (34).
The critical-mode closed-loep optimal control is found [ref. 16}, as

-1

far(e)} = =[E51R) T TBITIO) we)y, = (K] TW(t)], (40)

P
[
Note that the optimal control is given as a function of the modal state-
vector. Spacifically, only the goritical modes {‘q‘;(t)}C are of interest.
However the displacement and velocity senscrs measure the actual state-
vector {z(t)}. The modal states can be estimated using modal filters, as
pointed cut by Meirovitch and Baruh {Fef. 2z .] The modal filters produce
estimates of modal states from distributed measurements of the actual
states. For simulation purposes we assume here that the modal state-vector
can be recovered from the actual state-vector {z(t)} by using the inverse of

Eg. (29) in the form

(hie)d,

[————— = "1 2§
N)(t)}r [T} “{z(t)} (41)
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4.2 Spillover Effect

It is known that any modal control technigue has as an objective to control
only some of the modes. The control forces may excite the remaining
uncontrolled modes. This is shown here for the instantaneous closed-~ioop

algorithm. Bubstituting Eq. {(4C) in Egq. (33) we obtain

()} (o1, | () (78] {K]
SR c 1 10] ol ot e )
‘ 07 [ tel, GO0, |7 |11 W, (42)

(D)},
(res |

ale
(Mgt

Cellecting terms

won ) fer ey | orer | foeen
O EI NS NIRRT

- (43)
W)},

) E{Tc}c

[T, Kytt)

Rewriting the equation for the residual modes by partitioning Eg. (43)

vields

WCE)d, = [o) L6(0)) + {TC} X () + [TBI K] {$(O)}, (44)

By comparison, note that for an uncontrolled system, the last term would be
absent. Thus the last term is an excitation of the residual modes by the
control forces. This term produces the contrel spillover effect, the
influence of which is examined in the numerical examples. If critical-mode

control is to be effective, the spillover effect should be minimized.
4.3 Numerical Examples

4.3.1 Example 6: Comparison of Global and Critical-Mode Control
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A comparison of the global Instantanecus closed-loop algorithm and the
oritical-mode control algorithm is carried out. An eight-story shear
building is considered whose structural properties of stiffness, mass and
damping are: k. = 1026.3 kip/in {179700 kN/m}, kz = 937.4 kip/in (164140

1
kN/m), k3 = 790.6 kip/in (138430 kN/m), k4 = 684.1 kip/in (119790 kN/m), kg
~ 538.5 kip/in (94290 kN/m), k, = 400.0 kip/in (70040 kN/m), k, = 400.0

6 7
kip/in (70040 kN/m), k., = 400.0 kip/in (70040 kN/m), m, =2 kip-sec?/in (350

Mgy, 1= 1,....,8, andBB% critical damping in all the mwodes. The earthquake
excitation used is the N-8 component of the El-Centro earthquake of May 18,
1940. The structure is equipped with eight active tendons, one on each
floor. The weighting matrices [Q], and [R], are assumed diagenal with the
values R(i,i) = 0.06, i = 1,111,8 and Q(1,1) = 1500, 1 = 1,...,16. The
global algorithm congiders control of all eight modes and the critical-mode
algorithm considers control of only the first and second mode. Figure 4-1
shows the eighth floor relative displacement. It can be observed that the
two-mode control is almost as effective as the global control for this

structure and excitation. The two algorithms also require control forces of

similar magnitude.
4.3.2 Pxample 7: 8pillover Effect

The structure of Section 4.3.1 equipped with only two active tendons located
at the two bottom floors is subjected to an artificial earthquake ground
acceleration. The excitation is a combination of three sinusoids centered
around the first, second and third frequencies of the structure of 3.5
rad/sec, 9 rad/sec and 15 rad/sec respectively. These sinusoids are
weighted and scaled to reflect a peak magnitude of ground acceleration of
0.2 g and to excite the first three modes. The purpose here is to evaluate
the spillover effect. The artificial excitation, designated as Excitation

1, is given by
ig{t) = .05 g (.2 sin 3.5 ¢t + sin 3 t + 3 sin 15 t) {45)

The critical mode algorithm was used to control the first and second mode.
The eighth floor relative displacement is split into the modal contributions

of the first three modes, and is compared with the no-control case. Figure
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4~2 shows the first mode response, Figure 4-3 the second, and Figure 4-4 the
third mode response. While modes one and two are controlled, mode three is
net, which shows the spillover effect. This is bacause the critical-mode
algorithm we have used attampts to control only the first two modes, which

in turn excite the third mode.
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SECTION 5
OPTIMAL LOCATICN OF CONTROLLERS

The objective here is to establish criteria for the optimal leocation of a
limited number of controllers. The critical-mode optimal control algorithm
is used to control the lowest modes of a seismic structure. It is quite
plausible that in the application of active control systems to structures,
it may be more economical to place the controllers at a few preselected
locations. Thes term optimal locations reflects on the reduction of the
structural response, while using the minimum control effort. The location
of  the zontroilers with respeci to the structure is reflected in the matrix
fv] in PBg. {14}, or the state-form matrix [B] in Eg. (15). By varying the
locations ©f the controllers, the entries in the aforementioned location

matrix will be changed, thusg the dynamic response will be modified.

5.1 Methods for Selecting Optimal Locations

One method of selecting the optimal controller locations is te consider the
modal shapes of the structure. The modal shapes of the few loweast modes
that we select to control give useful information about the most beneficial
locations. The maxima of these modal shapes in a given mode are obviously
advantageous locations for the controllers. However the determination of
the optimal locations for a combination of modes 1s more of an intuitive
procedure, but nevertheless useful. Another wethod for the optimal
locations selection 1s one proposed by Martin and Scong [ref. 20]. In this
approach a performance index of control energy is minimized in the time

period of interest. This performance index is defined by the integral

L

CF T .
JF = j O{u(t)} {fu(t)de (46}
where:
tf = final time

The concept here is that if the choice of the contreller locations is to be

optimal, the control work performed by the control system as reflected in
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Eg. (46) is to be a minimum. Numerical simulations have shown that
minimization of the performance index of Eq. (46) alone may not lead to the
opﬁimal solution since when the control energy is reduced the response 1s
bound to be increased. Therefore a new performance index is suggested that
reflacts upon the measure of the reduction of the structural response, given

as

tf T
Jp * Ay {z(tyy {z{r)3dt {47)
This index should also be considered in deciding whether or not a given
combination of controllers is trulv optimal. Extensive discussion of these

criteria is given in the numerical example.
5.2 HNumerical Examples
5.2.1 Example 8: Optimal Location of Active Tendon Controllers

The two approaches for selecting the optimal locations of controllers are
applied to an eight-story shear building with two active tendons. The two
rendons can be located on any of the eight possible locations. The
critical-mode algorithm is wused and the first and second mode are
controlled. The earthquake excitation is Excitation 1, of Eq. (45). The
structural properties are the same as those of Example & in Section 4.3.1
except that only 1% critical damping is considered in the present example.
The weighting matrix [Q] is the same as in Example 6 matrix IR] has only two
elements at the diagonal fixed at the values R(1,1) = R{(2,2) = 0.15. The
modal choice is made from a plot of the first two modes as shown in Tigure
5-1. Tt is suggested that for the first mode the 8th floor would be a
suitable choice, and for the second mode the 4th floor. For the performance
indices choice, using Egs. (46) and (47), several trials were made and the
best choice was for the 5th and 6th floors. A comparison of the performance
indices for control energy given in Eq. {46}, and for controlled response
given in Eg. (47) is shown in Table 5-I. As can be seen both the control
energy and response indices are less for the 5th and 6th floor choice. The

maximum relative displacements and accelerations for all the floors are less
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for the 5th and 6th floor choice. The maxima of the control forces for the

5th and 6th floor choice is slightly greater.

For the same structure, another comparison is made between the two cases of
modal shape and performance index choices. This time the elements of the
weighting matrix [R] are allowed to be different in the two choices. The
elements of matrix {Q] are still fixed. The reason for allowing the
elements of matrix [R] to be different in the two choices is to make the
maxima of the control forces for both choices equal. In this sense a better
comparison can be carried out. The results of this comparison are shown in
Table 5-II and Figures 5-2 through 5-4. Both  the control energy and
response performance indices are less for the 5th and 6th floor choice.
Similarly the maxima of the relative displacements and accelerations for all
the floors are less for the Sth and 6th floor choice. The maxima of the
control forces are equal and the elements of matrix [R] are different as
shown in Tablie 5-II. A comparison of the required control forces for the
two choices indicates that they are approximately equal. The 5th and 6th
floor choice reduces the 8th floor response more effectively as can be seen
from Figures 5-2 and 5-3 for the first and second mode response. From

Filigure 5-4 we can observe the spillover effect on both choices.

A second artificial excitation, Excitation 2, is applied to the same

structure. Excitation 2 is given as

ﬁg(t) = .02 g {.2sinp 3.5t + 7. sin 9 t + 3.3 sin 15 t) (48)
It excites the second mode more than the other modes. As before, the
elements of the weighting matrix [R] are different in the two choices. The
elements of matrizx [Q] are fixed. The results are shown in Table 5~II. The
5th and 6th floor choice is still better than the modal choice of 4th and
8th floor. Note that the response index is less and control energy is
higher for the 5th and 6th floor choice. The simulation shows that the
response response index may be a better measurement than the control energy.
The two cholces are compared, and overall the performance indewx choice of
5th and 6th floors is better. A note needs to be made about the modal

choice. It is interesting to note that after a modal choice has been made,
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Fhe modal shapes of the controlled system are no longer the same as those of

the original uncontrolled system.
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TABLE 5~1 OPTIMAL CONTROLLER LOCATIONS

FIXED R(I,I) - EXCITATION 1

( 1 kip = 4.45 kN Y, (1 in = 25.4 mm )

Locations 4 & 8 5& 6
Control Energy 74829 74132
Response Index 368 266

Maximum
Displacement (in.) (in.}

Floor 1 1.94 1.72

Floor 2 3.27 2.95

Floor 3 3.43 3.21

Floor 4 3.40 2.45

Floor 5 5.95 4.74

Floor 6 6.67 5.78

Floor 7 5.61 4,16

Floor 8 B.64 6.89

Maximum
Acceleration (% g) (% g)

Floor 1 90 80

Floor 2 146 127

Floor 3 134 109

Floor 4 55 40

Floor 5 148 140

Floor & 189 173

Floor 7 59 47

Floor 8 179 152

( kip ) ( kip )

Maximum 4th 8th 5th 6th

Control Forces 92 164 95 179
R{(1,1) .15 .15
R(z,2) .15 .15




TABLE 5-11 OPTIMAL CONTROLLER LOCATIONS - EXCITATION 1
( 1 kip =4.45 kN ), (1 in = 25.4 mm )

Locations 4 & 8 5& 6
Control Fnergy 93283 83716
Response Index 331 249

Maximum
Displacement (in.) (in.)

Floor 1 1.96 1.71

Floor 2 3.31 2.93

Floor 3 3.44 3.17

Fioor 4 3.20 2.38

Floor 5 5.70 4. 64

Floor 6 6.29 5.59

Floor 7 5.09 4.03

Floor 8 8.06 6.64

Maximum
Acceleration ( % g) { % g)

Floor 1 92 80

Floor 2 149 127

Floor 3 138 110

Floor & 55 41

Floor 5 149 138

Floor 6 189 172

Floor 7 57 &7

Floor 8 180 152

( kip ) ( kip )
Maximum 4th 8th 5th 6th
Contrel Forces 150 154 149 151
R{1,1) .085 .095
R(Z2,2) . 160 . 180
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TABLE 5-IIF OPTIMAL CONTROLLER LOCATIONS - EXCITATION 2
( 1 kip =4.45 kN ), (1 in = 25.4 om )

Locations 4 & 8 5& 6
Control Energy 124996 130195
Response Index 604 480

Max imum

Displacement (in.) {in.)

Floor 1 2.77 2.39

Floor 2 5.07 4,37

Floor 3 6.39 5.46

Fleoor & 6.39 5.39

Floor 5 6.05 5.25

Floor 6 3.65 4.05

Floor 7 6.49 6.05

Floor 8 8.75 8.18

Maximum

Acceleration (% g) (% g

Floor 1 298 80

Floor 2 149 127

Floor 3 138 110

Floor 4 55 41

Floor 5 149 138

Floor & 189 172

Floor 7 57 47

Floor 8 180 152

( kip ) ( kip )

Maximum 4th  8th 5th 6th

Contrel Forces 150 152 153 152
R(1, 1) .075 .30
R(2,2) .620 .720
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BECTION &
CONCLUSIONS

Active control of seismic structures can enhance their capacity to resist
earthquake excitations over a wide range of exciting fregquencies.
Structural optimization iz a rational and relisble design concept. iy
combining of structural optimization and structural control can yleld an

econonical, and serviceable structure and its control forces.

The non-optimal closed~loop algorithm has the advantage that no on-line
calculations are required for its implementation. For seismic structures it
was found that the combination of the active mass damper and a number of
active tendons is the most effective system since the active mass damper has
the ability to reduce the first mode response and the active tendons control

the higher modes.

An advantage of the instantaneous closed~loop algorithm as compared ta the
instantaneous open-loop and open-closed-loop, is that it is insensitive to
estimation errors in the stiffness, mass or damping of the structure. This
is because the gain matrix of the optimal control forces does not involve

any of the structural properties.

A critical-mode optimal closed-loop algorithm was developed, based on the
instantanecus closed-loop algorithm. The spillover effect was shown to be
considerable. For seismic structures the prospect of applying the critical-
mode control is very promising since the response is governed by the lowest

few modes.

Three approaches for determining the optimal locations of a limited number
of controllers have been investigated. The first approcach is based on the
modal shapes of the uncontrolled structure. However these modal shapes are
changed when the control system is enforced and therefore the optimal
locations may be difficult to be determined. The second and third are based
on finding the locations of contrellers that will minimize the controel
energy index and response index, respectively. The later two approaches are

preferable and this can be attributed to the more rational procedure of

6-1



calculating the performance indices for all the possibilities and then
chosing the best combination. It was found that the vesponse Index is a
better measurement than the control energy and that the optimal locatiocns of
the tendons remained optimal. These concluding remarks are based on the

limited studies in this report.
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"First-Year Program in Research, Education and Technology Transfer,” 3/5/87, (PB88-134275/A5).

“Experimental Evaluation of Instantaneous Optimal Algorithms for Structural Control,” by R.C, Lin,
T.T. Soong and A.M. Reinhorn, 4/20/87, (PB88-134341/A8).

"Experimentation Using the Earthquake Simulation Facilities at University at Buffalo,” by A.M.
Reinhorn and R.L. Ketier, fo be published,

“The System Characteristics and Performance of a Shaking Table," by 1.S. Hwang, X.C. Chang and
G.C. Lee, 6/1/87, (PBRE-134259/A8).

"A Fiuite Element Formulation for Nonlinear Viscoplastic Material Using a  Model," by O, Gyebi and
G. Dasgupta.

"SMP - Algebraic Codes for Two and Three Dimensional Finite Element Formulations,” by X. Lee and
G. Dasgupta, to be published.

"Instantaneous Optimal Control Laws for Tall Buildings Under Seismic Excitations,” by I.N, Yang, A.
Akbarpour and P. Ghacmmaghami, 6/10/87, (PR88B-134333/A8).

"IDARC: Inelastic Damage Analysiz of Reinforced Concrete-Frame Shear-Wall Structures,” by Y.L
Park, A.M. Reinhorn and S.K. Kunnath, 7/20/87, (PB88-134325/A5).

"Liquefaction Potential for New York State: A Preliminary Report on Sites in Manhattan and Buffalo,”
by M. Buchu, V. ¥ijayakumar, R.F. Giese and L. Baumgras, 8/31/87, (PB88-163704/AS).

"Vertical and Torsional Vibration of Foundations in Inhomogeneous Media," by A.8. Veletsos and
K.W. Dotson, 6/1/87, (PB88-134291/A5).

"Seismic Probabilistic Risk Assessment and Seismic Margin Studies for Nuclear Power Plants,” by
Howard H.M. Hwang, 6/15/87, (PB88-134267/A8).

"Parametfric Studies of Frequency Response of Secondary Systems Under Ground-Acceleration
Excitations," by Y. Youg and Y. K. Lin, 6/10/87, (PB88-134309/A8).

"Frequency Response of Secondary Systems Under Seismic Excitations,” by I.A. HoLung, J. Cai and
YX. Lin, 7/31/87, (PB&8-134317/AS).

"Modeiling Earthquake Ground Motions in Seismically Active Regions Using Parametric Time Series
Methods," G.W. Eilis and A.S. Cakmak, 8/25/87, (PB88-134283/A8).

“Detection and Assessment of Seismic Structural Damage,” by E. DiPasquale and A.S. Cakmak,
8/25/87, (PBEB-163712/AS).

"Pipeline Experiment at Parkfield, California,”" by J. Isenberg and E. Richardson, 9/15/87,
(PBE8-163T20/AS).

"Digital Simulations of Seismic Ground Motion,” by M. Shinozuka, G. Deodatis and T. Harada,
8/31/87, (PB83-155197/A8).
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"Practical Considerations for Structural Control: System Uncertainty, System Time Delay and Trunca-
tion of Small Forces,” J. Yang and A. Akbarpour, 8/10/87, (PB88-163738/A5).

"Modal Analysis of Nonclassically Damped Structural Systems Using Canonical Transformation,” by
I.N, Yang, 8. Sarkani and F.X. Long, 9/27/87.

"4& Nonstationary Solution in Random Vibration Theory,” by J.R. Red-Horse and P.D. Spanes, 11/3/87,
(PBBE-163746/A85).

"Horizontal Impedances for Radially Inhomogeneous Viscoelastic Soil Layers,” by A.S. Veleisos and
K.W. Dotson, 10/15/87, (PB88-150850/A8).

"Seismic Damage Assessment of Reinforced Concrete Members," by Y.5. Chung, C. Meyer and M.
Shinozuka, 10/9/87, (PB88-150867/AS).

"Active Structural Control in Civil Engineering,” by T.T. Soong, 11/11/87.

"Vertical and Torsional Impedances for Radially Inhomogenecus Viscoelastic Soil Layers,” by KW,
Dotson and A.S. Veletsos, 12/87.

"Proceedings from the Symposium on Seismic Hazards, Ground Motions, Soil-Liquefaction and
Engineering Practice in Eastern North America, October 20-22, 1987, edited by K. H. Jacob, 12/87.

"Report on the Whittier-Narrows, California, Earthquake of October 1, 1987, by J. Paptelic and A.
Reinhorn, 11/87.

"Design of a Modular Program for Transient Nonlinear Analysis of Large 3.D Building Structures,” by
S. Srivastav and 1.F, Abel, 12/30/87.

"Workshop on Seismic Computer Analysis and Design With Interactive Graphics,” by LF. Abel and
C.H. Conley, 1/18/88,

"Optimal Control of Nonlinear Structures,” J.N. Yang, F.X. Long and D. Wong, 1/22/88.

“Substructuring Techniques in the Time Domain for Primary-Secondary Structural Systems,” by G, D.
Manolis and G, Juhn, 2/10/88, to be published.

"Iterative Seismic Analysis of Primary-Secondary Systems,” by A. Singhai, L.D. Lutes and P. Spanos,
2/23/88.

"Stochastic Finite Element Expansion for Random Media," P. D. Spanos and R. Ghanem, 3/14/88, to be
published,

"Combining Structural Optimization and Strectural Control," F. Y. Cheng and C. P. Pantelides, 1/10/88,
0 be published.
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