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ABSTRACT

The accuracy and efficiency of different methods to obtain time histories of
response of coupled systems subjected to seismic excitations are investigated. Both
linear and nonlinear systems are considered. The Duhamel integral approach and the
Newmark method are investigated for the composite system (i.e., without any
subsystem analysis). Three different formulations of primary-secondary subsystem
analysis are considered, and compared with the composite analyses. In each of these
subsystem analysis methods iteration is performed to find the solution to coupled
subsystem equations. The mass coupled approach in which the subsystems are coupled
only by inertia terms is an existing technique while the two stiffness coupled

approaches are new to this study.

For linear systems, the Newmark method for the composite system seems
generally to give better results than the primary-secondary methods, although the
variations between methods are generally quite small. There is a significant variation
between the computation times for different methods for nonlinear systems. The direct
stiffness coupled subsystern approach is found to be more efficient than the other
methods, especially if the nonlinearity is only in one of the smaller subsystems. It is
also shown that only Rayleigh damping can simultaneously lead to classical normal
modes for the composite and for each subsystem without imposing any restrictions on

the stiffness or mass matrices.
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1.0 INTRODUCTION

Dynamic analysis of structures is important for the safe and efficient design of
structures in seismically active areas. Sometimes, complex structures are divided into
substructures for the ease of analysis. Commonly, if a structure is divided into two
substructures and one of them is small (small mass and stiffness ratio) compared to the
other, the smaller substructure is referred to as the secondary and the larger as the
primary. In this study, the term primary-secondary has been retained but no assumption

about the relative values of the parameters of the primary and secondary is made.

The objective of this study is to compare the accuracy and the efficiency of the
various computation schemes for earthquake response. It is also intended to study the
effect of different mass and stiffness ratios on the methods. The other objective is to
find out conditions which lead to the simultaneous diagonalization of the damping
matrix for the composite system as well as all the subsystems. The final objective is to

find out the relative merits of the different methods when applied to nonlinear systems.

In chapter 2, some of the techniques available for the analysis of primary-
secondary systems are reviewed briefly. These include cascade analysis and
perturbation techniques. Also reviewed briefly are some of the methods used in
modeling earthquake ground motion and some of the techniques used in the integration

of equations of motion.

In chapter 3, the methods available for the analysis of the composite system, ie.,
without subdividing into primary and secondary systems, are discussed. These methods
are the Duhamel integral approach for the composite and the Newmark method for the
composite. The conditions which need be satisfied in order to uncouple the damping

matrix for the composite system along with those of the subsystems are also discussed.



This topic seems to be misinterpreted by some investigators who assume that having the
same modal damping for all the subsysterns automatically gives rise to a damping
matrix for the composite system which can be uncoupled. However, it is shown here
that this is not rue. It seems that the Rayleigh condition for the composite system is the
only condition which can give rise to simultaneous diagonalization of the composite
along with all the subsystems without imposing any restrictions on the stiffness or mass

matrices.,

After subdividing the composite, the various approaches for the primary-secondary
analysis are discussed. These are the mass coupled, and two stiffness coupled
approaches. The direct and the diagonalized stiffness coupled are new methods which

have been proposed in this study.

In chapter 4, simulation results are presented for linear and nonlinear systems, A
method for generating representative time histories is discussed. For the linear case,
two structures are considered in which the relative sizes of the primary to the secondary
are different. The effect of different mass and stiffness ratios and of different time steps
is considered. For the nonlinear case, the second structure is considered to be attached
with nonlinear interface springs. Two different magnitudes of nonlinearities are
considered. Also considered are the relative merits of the the various methods when all

subsystems are nonlinear as well as the case when only the interface is nonlinear,

Finally, in chapter 5, some conclusions are listed regarding the relative accuracy
and efficiency of the different methods of analysis for linear and nonlinear systems. It
seems that substructuring need not always be the more efficient way of obtaining time

histories of response to earthquake excitation,
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2.0 BACKGROUND

The dynamic analysis of structures is carried cut in order to design structures
subjected to forces varying with time. Dynamic analysis is complicated by the fact that
inertia forces result from structural displacements which in turn depend on the
magnitude of the inertia forces. To avoid using an iterative scheme the problem is
formulated in terms of differential equations. If the mass of the structure is assumed to
be distributed, then the response quantities must be defined at each point on the
structure. In this case the problem can only be formulated in terms of partial
differential equations because the response quantities will vary with respect to both

space and time.

However, if the mass of the structure is assumed to be concentrated at some
discrete points, then the analytical problem is simplified because inertia forces are
developed only at these points. These structures are often known as lumped mass
systems. For these structures the response quantities are computed only at these
discrete points and the problem can be formulated in terms of an ordinary differential

equation. In this study only lumped mass systems have been used.
2.1 Integrating Dynamic Equations of Motion

There are several techniques that can be used for the solution of any set of second
order differential equations. Specifically, consider the equation

MR + C® + K% = T 2.1

which describes the motion of a lumped mass system with the coefficient matrices

defined by the following energy relationships

potential energy = -%'x“' KR (2.2)



<+ T <+
kinetic energy = -%3? MR (2.3)

- T »
energy dissipated per unit time =% C¥% (2.4)

Mathematically eqn. (2.1) represents a system of linear differential equations of second
order and the solution can be obtained by standard procedures for the solution of
differential equations with constant coefficients. However, the procedures proposed for
the sclution of a general system of equations can become expensive if the order of the
matrices is large - unless advantage is taken of the special characteristics of the
coefficient matrices M, C and K. Defining these matrices using eqns. (2.2), (2.3), (2.4)
assures the symmetry of these matrices. Generally two methods of integration are

considered for solving eqn. (2.1). These are direct integration and modal superposition.
2.1.1 Direct Integration Methods

In direct integration eqn. (2.1) is integrated using a numerical step by step
procedure5, 31]. The term "direct” is used to tmply that eqn. (2.1) is not transformed
into a different form prior to the numerical integration. Direct integration methods are
based on two ideas. First, eqn. (2.1) is not satisfied at every time t, but only at discrete
times an interval At apart. This means that static equilibrium, which includes the effect
of inertia and damping forces is satisfied at discrete time points within the interval of
solution. The second idea is that a variation of displacement, velocity and acceleration
within each time step At is assumed. The form of the assumption on the variation of
displacement, velocity and acceleration within each time interval determines the

accuracy, stability and the cost of the solution procedure.

It is assumed that the initial displacement, velocity and acceleration vectors
denoted by X, X and Xy are known and the sclution is required from time O to T. For

the solution, the time range is subdivided into n equal time intervals At (At = T/n). The



integration scheme computes an approximate solution at times At, 2At,...., T,

The Newmark method is one such direct integration method in which the
displacement and velocity at the next time step are given in terms of the response
parameters at the previous time step and the acceleration at the next time siep. Since
the acceleration at the next time step needs to be assumed, this method is an implicit
procedure. This method has been used in this study and it will be described in detail

later.
2.1.2 Stability and Accuracy of a Direct Integration Method

An integration scheme is said to be unconditionally stable if the solution for any
initial conditions does not grow without bound for any time step, in particular when the
time step is large compared to the shortest time period of the structure. The error in the
computed value of the acceleration, velocity and displacement components should not
grow due to round off. A method is conditionally stable if the errors do not grow only
when the time step is below a certain critical level At,. The stability of any method can

be evaluated using the concept of spectral radius[4].

The accuracy of a numerical integration scheme depends on the loading, the
physical parameters of the system and the time step. In general, if the time step is large,
accuracy might be obtained in the lower mode responses but not in the higher modes, in
particular, the higher modes are effectively filtered out of the solution. When an
unconditionally stable scheme is used, the time step is chosen with regard to accuracy
only and not with regard to stability. This generally allows a larger time step to be
used. In the dynamic analysis of most structures only frequencies within a specified
range are of interest. The loading generally defines which frequencies are significant
and how small a time step should be used. In the case of earthquake loading, excitation

components with periods smaller than about 0.05 sec. generally are not accurately



recorded[31] and so it may not be justifiable to include the response in these higher

frequencies in the analysis.
2.1.3 Modal Superposition

A coordinate transformation which changes a set of N coupled equations of motion
of a multi degree of freedom system into a set of N uncoupled equations is the basis of
the modal superposition method. If the damping is of a restricted form, where the
coefficient matrices satisfy the relationship C MK = KM C, then the damping can
be expressed by modal damping ratios. The system is then said to have classical

normal modes and there exists a matrix & such that

' Me =1 (2.5)
8'C® = I' = diagonal (2.6)
OTK& = A = diagonal Q.7

and if one introduces variables ¥ such that® = @V then eqn. (2.1) is replaced by
7+I7+A7 = @7F 2.8)

This is a set of N independent equations of motion, one for each mode of vibration.

These equations can now be solved using the Duhamel integral approach.
2.2 Earthquake Motions

The applied loads to civil engineering structures are in many cases of random
nature. Due to the uncertainty about details of future earthquakes and due to the
availability of only a few records of past earthquakes for a given site condition,
earthquake ground motion is considered a random process. Analyses which use actual
recorded data of particular earthquakes are eguivalent to a deterministic approach and

generally provide an inadequate approach for developing response statistics. However,



the deterministic aspects of such analyses become less significant when a large number
of past earthquakes is considered. Simulation procedures have the advantage that they

can produce as many sample records as desired.

A direct characterization of earthquake motion in the time domain is provided by
accelerograms. An accelerogram is the time record of ground acceleration during an
earthquake. Information about duration, frequency content and maximum acceleration

of ground shaking can be obtained from an accelerogram.

A response spectrum is associated with the dynamic behavior of a single degree of
freedom system resting on a base which is subjected to an acceleration history specified
by a particular accelerogram under consideration. The response spectrum represents
the maximum values of the response parameters as displacement, velocity or
acceleration of the single degree of freedom system subjected to the given excitation.
The maximuom values of the response parameters depend on the ratio of critical

damping ( of the single degree of freedom system.

The concept of design spectrum has been described in references 26 and 27. The
response  spectrum  corresponding to a particular accelerogram exhibits  local
irregularities in the frequency domain. When an ensemble of accelerograms produced
on geologically and seismologically similar sites is vsed to determine the response
spectra, then the response spectra are smooth functions of frequency. If an approach
based on the concept of response spectrum is to be used for earthquake resistant design
of structures, then a design spectrum which represents recorded and expected strong
ground shaking at a certain location can be used. The design spectra smooth out the
irregularities of any particular response spectrum and represent the repetitive

characteristics of the ensemble of response spectra.

The two basic approaches for generating time histories consistent with design
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spectra are deterministic and stochastic. The deterministic approach is based on a real
or artificial acceleration record the spectrum of which approximates the design
spectrurn. This record is then modified using spectral raising or suppressing techniques.
The stochastic approach is based on determining the power spectral density of a
process, a realization of which can be an approximation of a record in a deterministic

approach.

Several methods for generating artificial time histories have been developed by
Housner and Jennings[9], Levy, Kozin and Moorman} 14} and Shinozuka and Sato[21].
Some deterministic methods of generating artificial time histories also exist[29]. As
pointed out earlier, the usefulness of the deterministic approaches is restricted due to a

limited number of past earthquake records for a given site condition.

OCne process that has been used in modeling earthquakes is stationary white noise.
The real earthquake motion is nonwhite because it does not contain equal energy at all
frequencies. Housner and Jennings have suggested using a filtered white noise. These
models are based on the belief that seismic disturbances generated in an underlying
rock filter through the overlying soil media. The seismic disturbances at the bed rock
might be considered to be white, but the motions at the surface also represent the

vibratory characteristics of the soil strata.

The method of Housner and Jennings is based on the following approximate
relationship between the velocity response spectrum S,(w,0) with zero damping and the

power spectrum G(w)

0.2304

Gw) = 8t (@, 0) (2.9)

where t; is the duration of the earthquake. Eqgn. (2.9) was obtained by Rosenblueth and

Bustamante[18]. Housner and Jennings suggested that the power speciral density given
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by eqn. (2.9} be fitted to a simpie algebraic function

a (1 + 4b%a’/c?)

Gl =
(@) (1 — w?c? ) + db%w?/c?

2.10)

To match the average response spectra in the range 2.1 £ ®w <21 the constants were
found 1o be a = 0.2196 ty; b?=0.410; ¢* = 242. The power spectrum given by eqn
(2.10) is identical to the response of a linear system to a white noise with a power

spectral density of 1.

In reference 15 the response of a single degree of freedom sysiem subjected to
stationary excitation with different frequency contents is considered. The single degree
of freedom system is considered with linear properties as well as bilinear hysteretic

yielding behavior.

A fairly good approximation of an earthquake is obtained by using stationary
models with appropriate modulating functions in order to introduce time
nonstationarity. This approach is described in references 14 and 21. The model of
Shinozuka and Sato[21] filters a white input, and a function of time is included to
induce nonstationarity., A significant feature of this model is that it insures that the
associated ground velocity, in addition to the ground acceleration, eventually tends

toward zero. This model, which has been used in this study, will be described later.
2.3 Secondary Systems

Complex structures are often subdivided into primary and secondary systems. The
primary systems generally represent the main stroctures and buildings which consist of
beams, columns, trusses, floors and shear walls. These support the secondary systems.
For example, the primary structure can be a civil engineering structure and the

secondary can be the electrical and mechanic installations.



A secondary system is generally supported, on a single support or multiple
supports, from the primary structure. The systems with single support are usually small
and generally consist of small machinery or equipment. The multiply supported

systems, like piping in industrial facilities, can be spatially large.

Traditionally, structures have been subdivided inio primary and secondary systems
because of the practical difficulty in carrying out a combined dynamic analysis where
large matrices had to be stored. Primary-secondary analysis has been carried out

considering the primary and secondary in cascade and by using perturbation techniques.
2.3.1 Cascade Analysis

During an earthquake, the secondary system is excited by the primary which
supports it and its response is written in terms of the motion of the primary system[22].
The motion of the primary system can be written in terms of the responses of the
individual modes. Thus the response of the secondary system is investigated by
considering two single degree of freedom systems placed in cascade as shown in fig,
2.1. The first single degree of freedom system represents one of the modes of the
primary system and the second represents a single degree of freedom secondary system

or one of its modes,

A common method [23] used for calculating the response of a multiply supported
secondary system is the floor response spectrumn method. A floor response spectrum is
the representation of the peak response of a single degree of freedom oscillator of
variable frequency subjected to the motion of a support point ("floor") on the primary
system. The response of the secondary system is then computed by modal combination

in terms of the ordinates of the floor response spectra associated with the support points.

However, this approach neglects the interaction between the primary and the



secondary systems. The effect of interaction can be significant when tuning exists.
Tuning is the coincidence of the frequencies of the two systems and may give rise to
resonant responses of the secondary system. This approach also neglects the non-
classical damping character of the composite primary-secondary system, which may
result in inaccurate estimation of the response. It will be shown in chapter 3 that the
composite system might have non-classical damping even if each individual subsystem
has classical damping. The usual modal combination rules do not account for the
cross-correlations between modal responses of the secondary system or the cross-
correlations between the various support excitations resulting from spatial coupling.
The net effect of these inaccuracies is an error in the computed response which can be
on the conservative side or on the unconservative side. However, this error may not be

significant|22] if the mass ratio of the secondary to primary system is less than 0.01.

It is possible to consider the cross-correlations between modal responses and
between support motions by using the cross-cross floor spectrum method {2]. This
spectrumn is defined in terms of the cross-correlation between the responses of two
oscillators attached to the support points on the primary system. The oscillators

represent the modes of the secondary system.
2.3.2 Pertarbation Techniques

In this method the dynamic properties of the combined primary-secondary system
are computed in terms of those of the primary and the secondary alone. The secondary
system is assumed to be light compared to the primary so that the dynamic properties of

the combined system are not too different from those of the primary.

It is assumed]{19,20] that for light secondary systems there will only be a slight
change in the frequencies and mode shapes of the combined system. It has been

established that first order errors in the mode shapes result in second order errors in the



frequencies. Thus, as an approximatien it is assumed that the portions of the modal
vectors corresponding to structural degrees of freedom retain their shape after the
secondary system is attached. This leads to a second order approximation of the
frequencies of the combined system. However, this is only appropriate when the major
contribution to the modal matrix of the combined system comes from the primary.
Perturbation methods have been extended to deal with cases when the secondary system

is tuned to a primary mode.[11,12].

The techniques mentioned above assume the lightness of the secondary in
comparison to the primary leading to certain simplifying mathematical approximations.
Spanos et al. have presented a technique[28] which can be used to predict response time
histories for any mass ratio. This involves a predictor-corrector scheme to converge
iteratively to the interface accelerations of the combined system. A slight modification
to this technique, wherein one converges iteratively to the interface displacements of
the combined system instead of the interface accelerations is suggested here. These

schemes will be described in detail later.

£5 SECONDARY SYSTEM

Y e

RESPDONSE OF PRIMPRY IS
INPUT TGO SECONDARY

55 PRIMARY SYSTEM

Vo rrssrd
&3 BASE MOTION

Fig. 2.1 Cascade Analysis
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3.0 ANALYSIS OF SECONDARY SYSTEMS

In the numerical integration of egn. (2.1) the time is discretized to a set
(t], tgpeenenr L) and the response parameters are evaluated at these times. The values of
®,.q and ﬁm are found from the knowledge of £(t), %, =%(t,) and Y;’n E?(tn). Generally
only discrete values of the excitation T are used but any available information about the

way in which T(t) varies between T, = £(t,) and T, can be used.
3.1 Duhamel Integral Approach for Composite System

In the composite system approach the structure is not subdivided into primary and
secondary systems but the whole structure is considered as one composite unit.
Consider eqn. (2.1) for the composite system with the coefficient matrices as defined in
eqns. (2.2), (2.3) and (2.4). Let a matrix h'(t) be defined such that hy(t) represents the
xj(t) homogeneous response when the initial conditions are velocity at kth degree of
freedom %, (0) = 1, all other velocities being zero and all displacements being zero.
Similarly let a matrix g*(t) be defined such that g;((t) represents the homogeneocus xj(t)
when the initial conditions are displacement at kth degree of freedom x,(0) =1, all other
displacements being zero and all velocities being zero. Then the response at the next
time step is given by

At

Bor = [0 R, + MAOIR, + [[h" @] M e, +u) du 3.1)
0

. ) At

R = [£7(OOIR, + [W(A0R, + [[h7(w] M Fg+u) du (3.2)
&

The matrices M and X in egn. (2.1) are real, symmetric and positive definite. There

exists a matrix @ such that the following relationships hold



8T M@ = I = identity matrix (3.3)

OTK® = A = diag(e,?, &>, ©,%) (3.4)
where ; >0, j=1,2,....n are the real natural frequencies of the undamped systern and

diag( ) denotes a diagonal matrix.

If the matrices M, C and X satisfy the relationship K MC =Ml K, then the
system is said to have classical normal modes and the matrix C is also diagonalized by

the matrix ©.
OTCO =T = diag2{;m;, 2{,009,....., 2{,0,) (3.5)

where i;j- is known as the modal damping for the jth mode. For this case eqn. (2.1) can
be reduced to a system of n uncoupled second order differential equations by the

transformation ® = ©. Substituting for Xin eqgn. (2.1)

MOV + COYV + K87 = T (3.6)
eTMe7 + 6Tcoy + 'key = 8Ti
or

I+ TV + AV = P@)  where (1) = 7T G.7)

Eqn. (3.7) represents a system of n uncoupled second order differential equations which

can be expressed as

The matrices h* and g* for V are represented by by h and g respectively. The matrices

h* and g*can be expressed in terms of h and g by
h'=8h8T and g'=6gal (3.9)

The general solution of eqn, (3.8) can be written as



At
yi. = A0y, + hyAny; + [hy) p; (ttu) du (3.10)
0

At
Vi, = ga0y, + h80y; + [0 py (hrhu) du (3.11)
G

Here it may be noted that the matrices g and h are diagonal. The diagonal elements of g

and h are given by

e w L
g5 () = & [cos (1) + —— sin (g, O] (3.12)
g het
h(t) = o sin (g, ©)  where g, = o \/1{5 (3.13)
The matrices h’ and g’ are defined as
W = Sh  and  gO = S0 (3.14)
dt dt ’

However, it should be noted that the integrals in egns. (3.1), (3.2), (3.10) and

{3.11) require knowledge of the variation of (0] from?; to’f;,,l.
3.2 Newmark Method for Composite System

Here also the structure is not subdivided into primary and secondary systems but
considered as one composite unit. In the Newmark method it is assurmed that the values

of displacement, velocity, and acceleration are known at time t, and these quantities
need to be evaluated at time t,,,. The displacement X,,; and the velocity X, at the

next time step are given in terms of the acceleration %, ,; by the following relationships

Rt = %y + Ry AL+ (5= B Ry (A0 + PRy (A1) (3.15)



Ry = %y A+ (1 =Py AL + YRy At (3.16)

The parameters v and P indicate how much of the acceleration at the end of the interval

enters into relations for velocity and displacement at the end of the interval. It has been

shown [16] that unless the quantity y= gj there is a spurious damping introduced which

is proportional to (Y — %).

There is a correspondence between 3 and the variation in acceleration during the
time interval. A physical relationship is possible only for four values of B. It is seen
that § = 1/4 corresponds to a uniform value of acceleration equal to the mean of the
initial and final values of the acceleration during the time interval, B = 1/6 corresponds
to a linear variation of the acceleration during the time interval, § = 1/8 corresponds to
a step function with a value equal to the initial value for the first half and a value equal
to the the final value for the second half of the interval and 8 = 0 corresponds to two
pulses of acceleration at the beginning and the end of the interval with each of these
pulses equal to one half of the acceleration times the time interval, one occurring just
before the end of the preceding interval and the other just after the beginning of the next

interval] 16].

In Newmark’s original procedure the vaiue of %“nﬂ is assumed and the values of
Ry and %m-}. are computed using egns. (3.15) and (3.16). Then using eqn. (2.1) at time
tae1s the value of %?m.l is calculated by substituting the computed values of %, and
?n_,,l. If the error between the calculated value of ;“;’n,ﬂ and the assumed value of ”n +1 18
within a permissible limit, the solution is said to have converged. If the solution has not
converged, then the value of %4—1 calculated using egn. (2.1) is taken as the assumed

value and the whole process is repeated until convergence occurs. The rate of

convergence toward equality of the calculated and assumed accelerations is a function



of the time step At. The error in the Newmark method is proportional to (A2

Another approach [5] is to solve eqns. (2.1), (3.15) and (3.16) simultaneously.

These give a total of 3n simultaneous scalar equations relating the 3n unknown
components of X, Xy, and %,,;. Thus the solution can be found by inverting a

matrix and performing matrix multiplication.

In reference 29 a review of the solution techniques used in the direct integration of
ihe equations of motion has been presented. It has been concluded that the Newmark -
f} = 1/4 method is more efficient than the Park, Wilson 9 - 8 = 1.4 and Houbolt methods
for linear dynamic analysis. In nonlinear dynamic analysis the Newmark - § = 1/4

method should be preferred if equilibrium iterations are performed at each time step.
3.3 C{onditions for Classical Normal Modes

In this section conditions which lead to uncoupled equations for the composite
system as well as the primary, secondary and interface systems are investigated.

Consider the primary and the secondary systems represented by eqns. (3.17) and (3.18)

8 el P o

)tisb CSN, Cs‘m XS-;, Ksbb Ksh XS FS + Fs.
o ; ol _ X ) B
{X s} + [Cs.b Cs" XS + ngh Ks“ XS Fs (3 8)

The subscripts p, s and b refer to the primary, secondary and interface degrees of

respectively.

R
0 M| (X Con Con
M, 0O

Sph

o M,

freedom respectively. It may be noted that F, + Fg = 0. Eqns. (3.17) and (3.18) can

be combined fogether to vield the following equation for the composite systern.



Mil 0 0 5‘%1 Cli 0 C13 }.(; Kli 0 KIS X1 Fl
0 My 0 |3Xr+ |0 C2Cujdr+ | 0 Ko KuliXpr = {Fr (3.19)
0 0 Msp||X, Car Caz Caz) %5 Ka; Kz Ky |50 B3

‘The coordinates have been chosen such that X, and X, are coupled only by virtue
of being coupled to X3 The coordinates X and X, represent the primary and
secondary respectively whereas the coordinates X, represent the interface. It has been
assumed that X, and X, are not inertiélly coupled with X4. A special case of this is
when X’s represent the displacements of mass points making M diagonal. The
submatrices in eqn. (3.19) can be defined in terms of the matrices in eqns. (3.17) and

(3.18) as follows
My =M, , My=M,, My=M, +M,
Cn=0C,, C3=6C,, Ch=GC,, Cu=C(
Cyy=GCp. Cp=C,., Cyu=Cy +Cy

F]. = F Fz = FS 3 F3 - pr + FBb (3.20)

The relationships for the K submatrices can be obiained from the relationships for C

submatrices with K replaced for C.
Eqgn. (2.1) (or 3.19)can be uncoupled in the following cases.

1. Rayleigh Condition: It is assumed that C is a linear combination of M and X given
by
C=aM+ vK (3.21)

Here eqn (2.1) can always be uncoupled by the matrix & defined in egns. (3.4), (3.5)
and (3.6). It may be noted that the modal damping ratios satisfy the following
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relationship

o+ Yol = 2o (3.22)

2. A more general condition for the equations to be uncoupled is when the matrices
satisfy the relationship C MK = KM C. This can also be expressed in a different

form given by [6]

C =M Zab {Mﬂl K]‘t, (3‘23)
b
It can be seen that the Rayleigh condition is a special case of this.
3. For all the modes to have equal modal damping {, K can be found as follows

8T C® = 2{ diag(w)

diag(e) = - €7CO

1
2¢
and diag(mjz) = mfg eTces’ce

But OTMSE =1 gives M = el o1

so that @6’ =M
K can also be expressed as
K = 6" diag(w?) e
Mow substituting for diag(wf) in the expression for K, we get

cMic (3.24)

This condition is distinctly different from condition 1 and both cannot be

simultaneously satisfied for dimension greater than 2.



The three parts of the composite system, eqn. (3.19), when analyzed separately,

can be represented as

My X, + Cp Xy + KXy = F — C3X3 - Ki3X;
My X9 + CppXp + Kpp Xy = Fy — Cpy Xy — Kp X5

Mz X3 + Caa X3 + Kps Xy = F3 — Gy X — G Xy — K Xy ~ K Xy (3.25)

The uncoupling of eqns. (3.25) involves diagonalization of the marrices
M;;, Cand Ky which are the submatrices on the diagonal of egqn. (3.19). The
conditions 1, 2 and 3 as given above, but applied to individual subsystems, ensure the

diagonalization of these matrices.

It is obvious that no diagonalization condition for eqns. (3.25) is sufficient to
ensure diagonalization of the composite system. This is because diagonalization of the
left hand sides of egns. (3.25) does not impose any restraints on Cj4 and Cyy and such

restraints are required for the diagonalization of the composite system.

However it seems possible that a diagonalization condition for the composite
systern will result in the diagonalization of eqns. (3.25) also. The conditions

mentioned above will be considered.

1. Rayleigh Condition: ¥ C = oM + vK, then Cj = aM;; + YK and therefore
gach subset also satisfies the Rayleigh condition. Therefore, when the composite

system satisfies the Rayleigh condition, eqns. (3.25) can also be uncoupled.

2. This condition for classical normal modes is as expressed by eqn. (3.23). For some
K matrices it may be possible 10 choose a C matrix which satisfies this condition for the
composite structure as well as the substructures whereas for some other K matrices it

may be impossible. For example, consider
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C=aM+a,K+aKM'K  withay # 0 (3.26)
This assures classical normal modes of the composite structure but not of the
substruciures. The first diagonal submatrix of Cis
Cpp = a9 My; + a3 Kyy + 8y Ky M Ky + Ky3 Msg Kay) (3.27)
Thus the primary system has classical normal modes if and only if

Ci Mi Ky = Ky Mif €
or
agMy MKy + a K MKy + a,(K M MKy + KgMp Ky MiTKyy) =
2K MMy + 2K MifKyy + 2Ky MK MifKyy + K My KsMKsp)
or  KysMuKy MKy = Ky MK sMa3 Ky, (3.28)

in particular {KBM{;KﬂMl‘ 11K11] should be a symmetric matrix. This is a restriction
which must be imposed on K {(or M) in order that both the composite system and the
primary system have classical normal modes, when the damping of the composite
system is as defined by eqn. (3.26). Similar restrictions must be placed on the
secondary and the interface if they are to have classical normal modes. If terms beyond
a, are included in eqgn. (3.26), then more complicated restrictions need to be placed on
K in order to have classical normal modes for the composite as well as the

substructures.

3. In this case equal modal damping in all the modes of the composite system as well

as each subsystem is required. Here K is defined by



Ky 0 Ky
K= |0 KpKyl= fgcmmlc
K31 K3y Kug

Cu 0 Cujjmt 0 TuffCn O Cu
K = 'f“i" 0 CuCullo M 0|0 CnCy (3.29)
Gy G2 Caa | 0 0 Ga1} |Gy Cap Cy

CyMiTCy+CaMii Cyy C13sM3FCs, C M7 C3+C13M3Css
C23M33Csy CpMz3 CoptCosMz Cay CpoMi7 Cos+CpaMi3 Cas
C3 M Cy+C33M33 Cay CapMad CoptCasMiF Cay CaMif CratCapMz CostCaaMi3 Caa

__1
a2

The following relationships can be ssen from egn. (3.29)

1

(C11 M7 Cpp + Ci3 M3z Cay)
1 - _
Ko = IE; (CuMz3 Cpy + Cy3 M3z Cap)

1 B - -
Kay = EEE (C33 M33 Cy3 + Cyy My Cp3 + C3p My Cpg) (3.30)

However the primary system (X;) would uncouple with damping  in each mode if and
only if

1 -
Ky = na Cy Mii Cyy (3.31)

The simultaneous satisfaction of eqns. (3.30) and (3.31) requires that
CsMz Cyy =0 or  (CaMidH(CisMzHT =0 (3.32)

But this is possible if and only if C;3 = 0. Similarly uncoupling of the secondary with
modal damping { in each mode is possible only if Cy3 = 0. Further if Ci3 = 0 and

Cy3 = 0 then Ka5 is given by
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1 _
Kg3 = = (g3 Mgy Cas (3.33)
44
i.¢., the interface equations also uncouple with damping C.

This iz somewhat misleading as it can be seen from eqn. (3.29) that for
Ciz = 0 and Cys = 0, Kj3 and Ky are also null matrices. Thus, this is a trivial
systern in which the primary and the secondary are initially uncoupled from the

interface, i.e., three uncoupled systems.

Thus it can be seen that there is no nontrivial system in which the composite
systern along with the primary, secondary, and interface systems uncouples with
damping { in each mode. It may be noted that the conditions determined here for the
existence of classical normal modes seem to be more restrictive than what other authors
have sometimes presumed. In reference 2 it is stated that the composite system will
have classical normal modes when C is chosen to give the same percent of critical
damping in each mode of the primary and secondary systems. For more than two
degrees of freedom in either the primary or the secondary this requires a non-Rayleigh
damping and so it appears that X as well as C must be restricted if the composite sysiem
is to have classical normal modes, Therefore it seems that the Rayleigh condition is the
only condition which can result in the simultaneous diagonalization of the composite,

primary, secondary and interface systems without imposing any restrictions on K.
3.4 Inertia Coupled Approach
3.4.1 Transformation of the Equations of Motion

In this approach[7] eqns. (3.19) is modified so that there is no stiffness coupling

between the various subsystems. Let a transformation matrix & be defined such that



@11 0 ®13
X=0Y where & = | § &y Oy {3.34)
0 0 O

The submatrix ©3 is chosen such that the stiffness forces in the primary depend only
on Y, and the submatrix &, is similarly chosen so that the forces in the secondary

depend only on Y,. The stiffness forces for the primary can be written as
Ki Xy + K3 Xy = Ky (O Yy + O3 Y3) + K3 853 Y5 (3.35)
It can be seen that Y5 can be eliminated from eqgn. (3.35) if
813 = ~K{{ Ky3 03 (3.36)
Similarly €,5 should be defined as
@y = —K3 Ky 85y (3.37)

so that the secondary forces depend only on Y,. The stiffness and mass matrices in the

Y space can now be written as

T 0K 18y T 0 0
@'KB = O szz@zz T 0* _ {(3.38)
0 0 833K3303;

Ed — —
where  Ka3 = Ka3~ KyKi{Ky3 — KgpKpKps

EMIEQII 0 ®]’5M1113

6TM® = BM

M& = - 0 ’2T2 22822 22M2223 (3.39)
©53M1181; BsMpBy e5M;58,,

# -1 - - -
where Msy = K3 KM Ki{Kys + KagKog MK Kys + Mag

It may be noted that the subsystems and interface do not have any stiffness coupling in
the Y space. Further &, ©,, and 8,3 could be chosen so as to give diagonal

submatrices on the diagonal of the transformed stiffness matrix. For example, choosing



&y, to be made up of eigen vectors of My, 1 X,1. ©, to be eigen vectors of M53Ky,, and

€345 1O be eigen vectors of M§§‘K§3 results in diagonal submatrices.

Assuming that the damping is of the Rayleigh type, the equations of motion in the
Y space can be written as |
i O Mpb Yl 2§pmp ¢ Cpb ‘}?1 mpz 0 0 Y1 Pl

0 T Mg|4Yab+| O 2 Cyy [1Y5h+ |0 ©F 0 |{Yap =<{Ps} (3.40)
Mp MG 1 |[[Ys] | ch C 2G| |Ys| |0 o off[Ys| |Ps

where

oT
Py e 0 0 3
= 85 0
Por= | 0 O F, (3.41)
T
Ps el ef 65|
The equations of motion for the primary, secondary and the interface systems can now

be written as

Yy + 20,0,Y; + 0¥y = Py — MpY; — Y3 (3.42)

‘%2 + ngﬂ}s?z 4= 0352 YQ P2 — Msb{(_oj - CstB (343)

il

Yy + 200, Ys + @02Yy = Py ~ M&{,Yi - MaY, ~ cggyl ~ CIY, (3.44)

The term "inertia coupled approach" for this formulation refers to the right-hand-
sides of these equations. That is, each Y; vector appears to be governed by an
uncoupled sei of modal equations for that subsystem, but these equations are coupled to

other Y vectors in the right hand side of the equations.
3.4.2 Method of Solution

The dynamic response of the primary-secondary system { as suggested in reference



28) is obtained through an iterative solution of egns. (3.42), (3.43) and (3.44). It is

assumed that the values of "f”]n, an and "A%{’gn at time t, are known and these quantities
need to be evaluated at time ;. In this approach the values of ‘i"gm and ngl need to
be predicted in order to start the computation. These predicted values of ‘%m and ‘)'{3H

are substituted into eqns. (3.42) and (3.43) to obtain the values of Y; , Y, ,Y; and
Y2n+l'

For predicting the interface acceleration, the temporal slope of the interface
acceleration is used. To determine the temporal slope, eqns. (3.42), (3.43) and (3.44)

are differentiaied to yield
¥y, + 20, @, ¥y + 02Y, =Py - My Ys - Cpy Vs, (3.45)
Y, + 200, ¥, + 0f ¥, = Py - My ¥y — Cy ¥a (3.46)
Y, + 200, ¥y, + 0¥y = Py - ML ¥ - MLY, - LY, - 1Y, 3a7)

Now substituting for ¥;_and ¥, from eqns. (3.46) and (3.47) into eqn. (3.48) gives

{1 ~ MppMpp — MiMsb}Y:;n = Py — CppYy ~ ChYo— Mg;,{ P - CpYa —20,0,Y)

_ Y} -w};{@%«- Gty sy mm} s - 0P (b

The values of I"ln, Pzn and ]:33n are deternmined numerically. The value of §3n can now be
determined from eqn. (3.48). It may be noted that the matrix on the left hand side of
egn. (3.48) need be inverted only once and that it can then be used at all times. The
interface modal accelerations and velocities are predicted using a truncated Taylor

series



¥ =¥y + Aty (3.49)

2.
@97 ¢, (3.50)

~n

‘YPS,HI — ?3n - A{ ?311 s

The predicted interface acceleration "S}P_gm and interface velocity ‘Si’P%Hare substituted
into egns. {3.42) and (3.43) 1o determine the response of the interior degrees of
freedom. An unconditionally stable Newmark step by step integration scheme is used
to integrate egns. {3.42) and (3.43). The calculated values of ?le and ?PZ‘M are used
to update the values of {’P3m and 'i’%m using Newmark’s method to integrate eqn.
(3.44). The iteration is terminated when the error between two successive estimates of
the interface acceleration and the interface velocity is less than that required for a
specified accuracy. One measure of accuracy £ is defined as the ratio of the difference
between the calculated and the assumed values to the assumed value. To initiate the

solution scheme, the dynamic equilibrium equations can be solved at the time origin.
3.5 Stiffness Coupled Approach

In this method eqn. (3.19) is considered as such without any transformation. Here
also the response of the primary-secondary system can be obtained by solving the
equations of motion iteratively. The iteration can be carried out without uncoupling

these equations or the equations can be uncoupled and the iteration carried out,
3.5.1 Direct Integration

Here the equations are not transformed in any way prior to the iteration. The

equations of motion for the primary, secondary and interface systems can be written as

Mp X+ CnXp + KXy =F - CXy - Ky Xy (3.51)

My Xy + Cpp Xy + EppXp = Fy = Cpy X5 — Ko X3 (3.52)
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Mz X3 + CaXa + K3 X3 = F3 — C3 Xy — CppXp — Kay Xp — KXy (3.53)

These subsystems are considered to be "stiffness coupled” because of the KX terms on

the right-hand-side of the equations.

It is assumed that the response parameters at time t, are known and these
parameters need to be evaluated at time t,,;. However the values of X5 = and X;

need to be predicted in order to start the computation. These guantities are predicted

using a truncated Taylor series

Xy =X + AtXg (3.54)

Z ..
BY° %, (3.55)

X?gml = XSn + At 5(3“ +

The predicted velocity Xp:;m and displacement XP3MI are substituted into egns. {(3.51)

and (3.52) to determine the response of the interior degrees of freedom. Newmark’s
method is used for integrating egns. (3.51) and (3.52). The calculated values of
XP]_ XP}

XPZM ; XPQM are used to calculate the new values of XP% and X%M

ol ! ml 7 +1

using Newmark's method to integrate eqn. (3.53). The iteration is terminated when the
ertor between two successive estimates of the interface displacement and the interface
velocity is less than 2 prescribed limit €. It may be noted that a matrix inversion is
required for Newmark's method here whereas in the mass coupled approach no such

inversion was required as the equations had been uncoupled.
3.5.2 Diagonalized Approach

In order to avoid a matrix inversion as required in the previous method it may be
desirable to uncouple the left-hand sides of equs. (3.51), (3.52) and (3.53). let a

mansformation matrix © be defined as follows



@, 0 O
X=®Y where ®= | g Dy O (3.56)
0 O 33

The submatrices ®yq, Py and P45 can be chosen to be composed of the eigen vectors
of M Kyy, Myt Ky, and M33 K35 50 as to uncouple egns. (3.51), (3.52) and (3.53).

The transformed mass and stiffness mairix in the Y space can be written as

100
OMD = 1010 (3.57)
001
2
p 02 Kpo 0)3 02 O K333
OKD = | 0 O Kg| = 0 O OHKyu®a;|  (3.58)

K;};, KD of D53K,®); OHKa @y wf

Assuming that the damping is of the Rayleigh type, the equations of motion in the Y

space can now be written as

:1}1 2§p0)p 0 Cpb ?1 (D}? 0 Kpb YI Pl
Yob+ | 0 2O Cp |Vpp+ |0 OF Kg[dYpl= Pyl (359)
¥

0
0
I[{Ys| | Cop Cf 26y (V3| |KE KE 2| [¥s] [P

Lo e B
O o O

where

Py o 0 0 }R
Pyt=| g @5, 0 |{F, (3.60)
P, 0 0 Ph||F

The equations of moticn for the primary, secondary and the interface in the Y space can

be written as
Y, + 20,0,y + 02 ¥ = Py — Y3 — K, Y3 (3.61)

?2 + ng(ﬂsifz + {!}3 Y2 = Pz - Csb?’.% - Kst?, (362)



Ys + 204,00,Ys + @fYs = Py ~ Cpp¥; = C, Yy - KpY1— KhLYa (3.63)

Note that this formulation is a direct paraliel o egns. (3.42), (3.43) and (3.44) for the
inertia coupled approach. In both situations the lefi-hand sides of the equations are

diagonalized while the terms on the right-hand sides still couple the subsystems.

It may also be noted that when the mass matrix is not originally diagonal, an
approach similar to that used in the inertia coupled approach can be used 6 uncouple

the mass matrix insiead of the stiffness matrix.

For solving eqns. (3.61), (3.62) and (3.63) the values of Ys_, and Y3 are

predicted using a truncated Taylor series.

Y, = Y5 + AY, (3.64)

¥ =Yy Vs, (3.65)

These predicted values of the interface velocity {[pgml and the interface displacement

Y%, are substituted into eqgns. (3.61) and (3.62) to obtain the values of YP]_M, V'd

3za T

‘?sz and YPZM which are then substituted into eqn. (3.63) to obtain the updated values
of ?PBM anc ngm. The Newmark integration scheme is used here also. The iteration

is continued until the error between two successive estimates of the interface velocity

and the interface displacement is below a certain prescribed level €.
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4.0 NUMERICAL RESULTS

The various methods mentioned in chapter 3 were used for the analysis of both
linear and nonlinear primary-secondary systems,

in order to compare the accuracy and efficiency of the methods.
4.1 Stuctures Considered
4.1.1 Linear Structures

The two linear structures that were used are shown in fig. 4.1, In the first structure
both the primary and the secondary have five degrees of freedom, while the second
structure has ten degrees of freedom in the primary and only twoe in the secondary. The
first structure was used to study the methods when the primary and the secondary have
about the same number of degrees of freedom and the second structure depicts a

structure in which the secondary is relatively small compared to the primary.

Recall that the substructure analysis procedures require consideration of three
subsystems: primary, secondary, and interface. The substructuring for the two
structures is shown in fig. 4.2. This figure also shows the modal frequencies both for
the composite structures and for each substructure. These frequencies have been
normalized by (K/M)". For the first structure (part a of the figure) the values outside
the parentheses (for the composite system and the interface subsystem) are for a mass
and stiffness ratio of 0.1, while the values in parentheses are for m/M = k/K = 0.5. For

the second structure the mass and stiffness ratio is 0.2.

The damping for the linear structures was taken to be stiffness proportional, at a

level giving a damping ratio of 0.05 in the first mode of the composite structure.

4.1,2 Nonlinear Structures



Here the second structure with nonlinear interface springs has been considered.

The forces in these springs vary as a function of deformation as
F=kd+ kad? (4.1)

where d is the deformation of the spring and k; and kj are positive constants. It may be
noted that this gives a hardening spring since the resistance(stiffness) of the spring

increases with increasing deformation.

Here the parameter k) was chosen to be 80% and 50% of the corresponding linear
stiffness. Since the linear stiffness was assumed to be 0.2K, k; was calculated as 0.16K
and 0.10K. The parameter k3 was computed by equating the maximum force in the
nonlinear spring to that in the linear case under a deformation equal to the mean of the
maximum deformation of the spring in the linear situation, the mean being taken over
the ensemble. The choice of k3 was based on the concept of secant stiffness and a
desire to have the nonlinear systems have maximum response values of the same order
of magnitude as those of the linear system. For k; = 0.16K, ks for the first (top) spring
was computed as 0.000363K and for the second (bottom) spring as 0.000080K.. For ky
= (0.10K, k3 for the first spring was computed as 0.000909K and for the second spring as
0.000200K.

If the response levels of the nonlinear systems had been identical to those of the
linear system, the the cubic portion of eqn. 4.1 would have contributed 20% and 80% to
the maximum restoring forces for the two different choices of k; and k3 (based on the
ensemble average). In fact, the maximum responses for k; = 0.16K were somewhat
smaller than for the linear system and those for ky = 0.10K were somewhat larger, The
effect of this was that the mean maximum contribution of the cubic term was 13% for
the first spring and 15% for the second spring when k; = 0.16K. For k; = 0.10K these

numbers were 69% and 54%, respectively.



4.2 Type of Excitation Used

The purpose of this study was to compare the accurscy and efficiency of the
various computation schemes for earthquake response. Stationary white noise has been
used by some investigators to represent an earthquake, but it cannot be considered as
the most realistic representation of an earthquake. Ground motion during an earthquake

is obviously nonwhite and it is not stationary as it builds up and then decays with time.

Random process simulation procedure has been used in this study because of the
convenience in generating representative time histories. The external excitation has
been chosen to be filtered Gaussian white noise modulated by a time function. The
excitation at the bedrock has been assumed, by some investigators, to be white noise
which is then filtered by the overlying soil sirata. The effect of the soil strata has been
represented by a single degree of freedom system in this study. The white noise is
defined to be a process having a constant power spectral density of intensity Sgp over

the entire range of frequencies. The autocorrelation function for white noise is given by
E[F(ty) F(i)] = Rer (2 — 1) = 27 Spp 8tz — 1) (4.2

where 8 is the Dirac delta function. White noise can be visualized as a shot noise

defined by
F©) = 2 Aidt-1) (4.3)
1=

where t; — 1 = At, A; are independent normal random variables the mean of which
is zero and the mean square is a constant. The arrival time of the first of this train of

pulses is uniformly distributed in the interval (0, At). It can be shown that

E[A%] = 2n Spp At (4.4)

The level of excitation is often characterized by a measure with units of length.



The definition of one such constant which has been used in this study is

e[ B
D= i m{r A,t (.5)

where g has been taken to be the fundamental frequency of the structure. It may be

noted that the normalized time step used in this study is defined as At = wpht

The sequence of random numbers generated is then modulated to introduce

nonstationarity. Here the modulating function y(t) has been chosen to be [21]
Yty = (e — ePyU(t) with B>a>0 (4.6)

where ot = 0.02/mg, B = 0.04/03 and U{ 1) is a unit step function.

The equation of motion for the filter can be written as
mz + cz+ kz=F 4.

This equation of motion was normalized with respect to wp. The ratio of the frequency
of the filter to @y has been assumed to be 1.5 and the damping ratio of the filier has
been assumed to be 0.6 [32].

It may be noted that if normal random numbers are generated with zero mean and
variance E[AZ?], the sequence of the independent variables Apy(ty) may be divided by
Doy and added instantaneously to the normalized filter velocity Z, (Z = z/Day ) at time

t;, This can be expressed as
¥ = 7o + A() / (E[AZYrAL )% (4.8)

The normalized absolute acceleration of the filter z, where z = (Z+ w)/Dwg¢ and
w = —F/m is the acceleration at the bed rock, is obtained at each time step and that is
taken to be the excitation at the base of the structure. The analytical expressions for the

response statistics of the filter have been derived in reference 21.



4.3  Algorithm for the Newmark Method

As mentioned earlier, the Newmark method has been used in this study. The
displacement %, and the velocity T;:’nﬂ at the next time step are given in tenms of the
acceleration %’Ml by egns. (3.15) and (3.16). The equilibrivm equation (2.1) is also
considered at dme t,,;. Here the approach where the matrix is inverted has been used.
Eqgns. (3.15) and (3.16) are used to calculate 3},1“ and ‘;':’nﬂ in terms of Xy.1. These two
relations for T'i’n+1 and%’mi are substituted into egn. (2.1) to solve for X,.;. The values of
'i?nﬂ and %nﬂ can then be computed using eqgns. (3.15) and (3.16). The algorithm for

the Newmark method involves calculating a set of constants as shown below

=1 o =X . oa =L a1
a’O"'W s al-BAt ] 32'—[5At y as 75‘ 1

azm%—-l ; 352.%;‘.(.%_2) ; oag = A(1-y) ; a7 = YAt (4.9)

The effective stiffness matrix K is formed as

K=K+ aM + ,C (4.10)

The matrix K is inverted only once for the linear case and that inverse can be used at all

times. The effective loads need to be calculated at each time step as
Fat = faur + M (g% + 23%n + 23%) + C@i%y + %y + as%p) (41D
The displacement at the next time t,,; is then given by
Kort = KM (4.12)
The acceleration and the velocity at .5 are calculated using the following equations

Bl = 80 Rort — Xn) — 258y — 23Ry (4.13)

_ibn.{..] = -X’!l “+ 3.6?11 + 3.73?&,;.1 (4.14)

This method is more efficient than the iterative approach in the Newmark method. In



this study the parameter [ has been chosen to be 1/4 because the Newmark method is
unconditionally stable for this value of B. The effect of different time steps has been
studied for one of the linear systerns, using normalized time steps of magnitude 0.1, 0.2

and (0.4,
4.4 Simulation Procedure

44,1 Linear System

Here the response of the systems obtained by the Duhatnel integral approach for
the composite system, as mentioned in sec. 3.1, has been referred to as the exact
solution. The other methods of solution like the Newmark for composite, mass(inertia)
coupled, direct stiffness and the uncoupled stiffness, all of which have been described

in chapter 3, were also used to obtain the response of the systems.

An ensemble of 20 samples was used and the same ensemble was used for all the
methods. Here the mean square error in the maximum absolate displacement attained
until a specific time for each degree of freedom was considered for each sample. A
normalized form of the error consisting of the ratio of of the error at each time to the
exact solution at that time, has been used. The mean square was calculated by taking
the mean over time of the square of the error in the maximum absolute displacement
until that time. Then the rms value of this mean square error for each degree of

freedom was computed across the ensemble.,

Instead of using the actual displacements at each time, the maximum absolute
displacement attained by a particular degree of freedom uniil that time was considered
in computing the errors. When the actual displacements were considered for computing
the errors, the percentage errors grew by enormous amounts. This is because the

methods do not calculate the displacements very accurately near zerc crossings.



Further, the index used in calculating the error gives too much importance to these low

values of the displacement.

Three different ensembles of 20 samples each were considered. The enscmbles
were chosen to have 20 samples so as t© make sure that representative errors were
obtained. Similarly, three ensembles were chosen in order to verify that the errors
obtained were not specific to any particular ensemble. The normalized duration of each
sample was taken to be 60 rad.]21]. The mean square value of the normalized base

acceleration z for one of the ensembles is shown in figs. 4.3.
4.4.2 Nonlinear System

The nonlinear equations of motion can be linearized at any time t to give
MY + CT}+ Kﬁ?m—f-%_f; (4.15)

where K, is the tangent stiffness matrix formed by assuming the stiffness of the
nonlinear springs to be given by the slope of the tangent to the force deformation curve
when the deformation of the spring is taken to be the deformation of the spring at the
previous time step. The vector T, has elements f;, which are nonzero when i
corresponds to a node where a nonlinear spring is attached, all other elements being

Z€10.
The element f;, when i = a node where a nonlinear spring is attached, is defined as
fs, = k. dy {4.16)

where k; is the slope of the tangent as defined above and d, is the x-intercept of the
above defined tangent. Fig. 4.11 shows how to obtain the values of k; and d; when the
point d;—y, which is the deformation of the spring at the previous time step, is known on

the force deformation curve,



This tangent stiffness approach was used in applying each of the analysis methods
to the nonlinear systems. The stiffnesses were not varied within any time step. Recall
that the "exact" method for the linear systems involved Duhamel integration of the
modal equations of wmotion for the composite systemn. In a direct (although
cumbersome) extension of this idea, the composite modes for the appropriate tangent
stiffness system were evaluated for the nonlinear system at the beginning of each time
step, and Duhamel integration was then carried out. This procedure was considered to

give the best comparison of error levels between linear and nonlinear systems.
4.5 Simulation Results
4.5.1 Linear System

Figs. 4.5 and 4.6 show representative results for two of the linear structures
considered. The error results shown are for the first floor of the appropriate primary
subsystem, but they are also representative of the errors at other locations. In part (a) of
the figures, € is plotied on the horizontal scale with % error on the left vertical scale and
execution time in seconds for the various methods on the right vertical scale. Plotting
the data in this way gives one some idea of how the error and the execution time for the
different methods for primary-secondary analysis vary with €. It may be recalled that €
has been defined to be the ratio of the difference between the computed and the
assumed values to the assumed value of the relevant interface response measures in the

iterative solutions of the coupled subsystem equations.

It can be seen from figs. 4.5 and 4.6 that for small values of € the error in all the
methods is approximately the same. In fact, this level of error corresponds to that in the
Newmark method for the composite system. Reducing € cannot reduce the
computational error below this level. For the stiffness coupled approaches there exists

an optimum € which results in the least error and the lowest execution time for that



error. This value of € is around 0.01. If £ is increased slightly above this limit, the error
increases appreciably without any significant decrease in execution time, while
reducing € increases the computation time with no increase in accuracy. It may be
noted that both the direct stiffness coupled and the diagonalized stiffness coupled
approaches give almost the same ervor for the same € but the diagonalized stiffness
appears to be slightly more efficient especially for small £. The error of the mass
coupled approach appears to be almost independent of € for small time steps. The
execution time for all these three methods decreases with increasing € and approaches
the same value for larger €. The error in the stiffness coupled methods also tends to
remain constant after a certain value of € This value of € is around 0.1. These
characteristics can be attributed to the fact that the methods tend to become independent
of the convergence parameter € when it is so large that since no iteration is required io

achieve the specified convergence of the interface response levels.

It has been observed that the ratio of the number of iterations per time step
required in the inertia coupled approach to that required in the stiffness coupled
approaches is about 2.8:1 for € = 0.001 and 0.01. Both the stiffness coupled approaches

required the same number of iterations per time step.

In part (b) of figs. 4.5 and 4.6, % error is plotted versus the execution time, so that
one can easily see the "cost” that must be paid 10 achieve a given accuracy for different
methods. On this plot the methods for primary-secondary analysis along with the
methods for composite analysis are shown. The points for the methods used in the
primary-secondary analysis on part (b) of the figures have been derived from the
corresponding part (a). From figs. 4.5 and 4.6, it appears that the Newmark method for
the composite system gives a smaller execution time than any of the other methods for
the same amount of error. Another advantage in using either the Newmark method for

the composite system or the direct stiffness coupled method is that the damping does



not have (o be restricted to the Rayleigh form as the eguations do not have to be

uncoupled.

Comparing figs. 4.5 with 4.6 shows that the resulis for structures 1 and 2 are very
consistent. For linear structures of this magnitude, the relative number of degrees of
freedom in the primary and the secondary has little effect on the relative merits of the
various schemes. This result might be quite different for very large structures in which
the computer time required for eigen analysis or matrix inversion would become more

significant in comparison to the time spent in actually obtaining time histories.

Plots similar to figs. 4.5 and 4.6 are given in ref. 25 for the other cases considered:
the first stucture with m/M = k/K = 0.5 (time step = 0.1), and the second structure with
time step = 0.2 and 0.4 (m/M = k/K = 0.2). These plots are not reproduced here, since
they are very similar in form to figs. 4.5 and 4.6. Table 4.1 summarizes a few of the
values from those figures at key points identified by letters A through H on figs. 4.5 and
4.6.

It was found that the mass and stiffness ratios do not appear to affect the error in
any of the methods. When the normalized time step is increased from 0.1 to 0.2 and
0.4, the error inherent to the Newmark method tends to grow appreciably. This increase
in error could partially be due to the fact that the assumption on the vanation of the
external forces within each time step becomes more important as the time step is
increased. In this study, a linear variation of the external forces between each time step
is assurned when calculating the exact solution. The increase in the time step seems to
increase the error in both the stiffness approaches much more appreciably than in the
mass coupled approach. Further, the errors in these methods did not seem to become
independent of € when At was taken to be 0.4. The relative size of the primary o the

secondary, i.e., comparing the first and second structures, does not not seem (o affect



the accuracy and the efficiency of any of the methods for any time step.
4.5.2 Nonlinear System

Here also the rms value of the mean square error for each sample was calculated.
Fig. 4.7 shows representative accuracy and computation time results in a form similar
to the (a) parts of figs. 4.5 and 4.6. As before, the error results shown are for the first
floor or the primary structure. In addition to the methods for the primary-secondary
analysis, the results for the methods for composite analysis are also shown on the same
figure. The % error for the Newmark method for the composite is shown on the left
vertical scale and the execution times for the Newmark method and the exact analysis

for the composite are shown on the right vertical scale.

The computation times in part (a) of fig. 4.7 are based on computations taking
advantage of the fact that only the interface was nonlinear. In other situations all
subsystems may be nonlinear and the computation times for this situation were
determined by also doing all the computations that would be required if all subsystems
were nonlinear, even though only the interface is nonlinear. Results for this situation
are shown on part (b) of the figure. Part (a) represents the situation when k; = 0.10K

and part (b) is for k; = 0.16K.

The fact that only the interface springs were actually nonlinear for both parts of
fig. 4.7 explains the fact that the % error vs. epsilon is almost the same on the two plots.
However, the execution time is different on the two plots because eigen analysis or
matrix inversion had to be carried out at each time step for all subsystems for part (b)
whereas for part (a) the repeated matrix inversion or eigen analysis had to be carried out

only for the interface and the secondary subsystems..

As in the linear situation, the error in all the methods approaches that in the



Newmark method for the composite system for low values of €. Here, again, there is an
optimum & for the two stiffness coupled methods. This optimum value of € is again
around 0.01. The mass coupled approach, as before, is more or less independent of e.
As in the linear situation, the errors in the stiffness coupled methods do not increase
after a certain value of £. This value € is also around 0.1. In contrast to the linear case,
the execution times for the different methods for primary-secondary analysis do not
decrease appreciably with an increase in €. This is because the time required for matrix
inversion or for eigen analysis becomes as important or more important than the time

required for iteration at each time step.

However, it may be noted that the curves for the execution time in part (b) are
almost parallel 1o the corresponding curves in part (a). This is because of the fact that
eigen analysis or matrix inversion has to be carried out once for each time step
irrespective of the number of iterations required to converge to the interface response
parameters. The shift between the corresponding curves on the two figures is the
additional time required for repeated eigen analysis or matrix inversion for the primary
system. It was found that the magnitude of nonlinearity does not seem to affect any of

the methods.

The greatest advantage of the primary-secondary analysis seems to be in the case
when one of the subsystems is nonlinear. The primary-secondary analysis seems to be
highly efficient especially if the nonlinearity is in one of the smaller subsystems. In
primary-secondary analysis only the matrices for that subsystem and interface need be
inverted at each time step or the eigen analysis for that subsystem and the interface

alone need be carried out.

Even in the case when all subsystems were considered nonlinear, primary-

secondary analysis appears relatively more efficient than in the linear case. When only



the interface was considered nonlinear, the mass coupled approach appears to be 5.5
times more efficient, diagonalized stiffness coupled appears to be 11.5 times more
efficient and direct stiffness coupled 19 times more efficient than the exact procedure.
When all subsystems were considered nonlinear, these values are 2 for mass coupled,
2.5 for diagonalized stiffness coupled and 11.5 for direct stiffness coupled. These

values for efficiency have been calculated at the optimum value of €.

The Newmark method for the composite appears to be about 8 times more efficient
than the exact. However, the Newmark method for the composite system is not
necessarily always the better approach for nonlinear analysis especially if the

nonlinearity is in one of the smaller subsystems.

Table 4.1 Execution Times and Errors of Linear Systern Computation

(See figs. 4.5 and 4.6 for Coding)

A B C D B F G H
sec sec sec sec % % sec % sec sec

Yirsi Strocture . Time Step = 0.1
m/M=kK=01 1200 | 240 | 250 | 100 1.9 { 046 140 | 0.33 92 | 190
05 1 170 1 190 1 29G & 100 1.8.0.032 130 1. 031 92 | 190

Second Structure m/M=k/K =02

Time Step=0.1 | 250 | 300 | 450 | 100 2 0.52 150 | 0.52 120 | 230
0.2 | 180 | 230 | 210 50 | 13 2.0 %0 | 2.0 60 | 116
04 | 170 | 220 80 40 - 1.6 81 | 7.6 30 37
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5.0 SUMMARY AND CONCLUSIONS

5.1 Semmary

Some of the commonly used methods for the analysis of primary-secondary
systems like the cascade analysis and the perturbation technigues have been discussed.
Cascade analysis uses separate subsystem analyses buf ignores the effect of interaction.
Thus, the presence of the secondary has no influence on the response of the primary.
Perturbation analysis uses subsystem analyses to approximate the dynamic
characteristics of the composite system and then uses composite analysis to obtain time
histories of response. The limitations of these methods have also been briefly
discussed. Some of the techniques for the simulation of representative time histories

have also been reviewed.

Some techniques for obtaining response time histories of coupled systems to
seismic excitations have been examined. One of these, the mass coupled approach, is
an existing technique while the two siiffness coupled approaches are new variations.
These methods use subsystem analyses in an iterative way to directly obtain response
time histories. In each of these methods, a parameter & denotes the degree of
convergence required for termination of iteration. Thus, £ affects both accuracy and
computation time. The Newmark method has been used to integrate the equations of
motion for all the subsystems. For the mass coupled approach and the diagonalized
stiffness coupled approach, the matrices on the left side of the equations are
diagonalized and so no matrix inversion is needed in the Newmark method. For the

direct stiffness coupled approach matrix inversion has to be carried out.

The conditions for simultanecus diagonalization of the damping matrices for the
composite system and all the subsystems have been examined in some depth. The

sitwations considered include the general case wherein the various damping matrices



satisfy the condition K M1C = CM K, and certain specific cases like the Rayleigh

condition and the condition for equal modal damping ratios.

The methods for obtaining time histories of response have been stadied both for
linear and nonlinear situations. In the linear case, two structures have been examined.
The total numbers of degrees of freedom are similar (ten and twelve) but they have
different ratios of secondary to primary degrees of freedom (5:5 and 2:10). The effects
of different mass and stiffness ratios and of time step have also been examined. In the
nonlinear case, the effect of changing the magnitude of the nonlinearities has been
examined. The case when only one of the subsystems is nonlinear has been studied
along with the case when all subsystems are treated as nonlinear. The emphases in
these studies is on the relative accuracy and efficiency of the various techniques for

computing response time histories.
5.2 Conclusions
5.2.1 Simultanecus Diagonalization of Damping Matrices

If the composite system satisfies the Rayleigh condition, then one can use a change
of variables to simultaneously diagonalize the damping matrix for the composite system
and one for each subsystem. This seems to be the only condition which can result in
simultaneous diagonalization without imposing any restrictions on the stiffness or mass
matrices. An assumption apparently made by some earlier investigators, that equal
modal damping ratios for all subsystems also results in diagonalization of the

composite, is shown to be in error.

Rased on the study of the linear and nonlinear systems, the following conclusions

can be arrived at for the two systems.

5.2.2 Linear System



It appears that the Newmark method for the composite system gives the smallest
execution time compared to the other methods for the same amount of error. Among
the three types of iterative subsystem analysis methods, it is ditficult to conclude that
any one is clearly better than the others. Each can give accurate results with reasonable

computation times, but there are some differences between them.

For the stiffness coupled approaches there exists an optimum £ which results in the
least error and the lowest execution time for that error.  This value of € is around (0.01.
If £ 15 increased slightly above this limit, the error increases appreciably without any
significant decrease in execution time. Both the direct and the diagonalized stiffness
coupled approaches give almost the same error for the same £ but the diagonalized
stiffness appears to be slightly more efficient especially for small €. The error for the
mass coupled approach appears to be almost independent of & for small time steps.
The execution time for all these three methods decreases with increasing € and all three
converge to the same value for larger €. The error in the stiffness coupled methods also

tends 10 remain constant after g certain value of £. This value of € is around .1,

The secondary-primary mass and stiffness ratios do not appear to affect the error in
any of the methods. When the normalized time step is increased from 0.1 t0 0.2 and
(.4, the error in the Newmark method itself tends to grow appreciably. The increase in
the thine step seems to increase the error in both the stiffness coupled approaches much
more appreciably than in the mass coupled approach. Further, these methods did not
seem o become independent of £ when At was taken to be 0.4. The relative number of
degrees of freedom in the primary and the secondary does not not seem to affect the

accuracy and the efficiency of any of the methods for any time step.

Another advantage in using the Newmark method for either the composite system

or in the direct stiffness coupled analysis is that the damping does not have to be



restricted to the Rayleigh form since the equations do not have to be uncoupled.

5.2.3 Nonlinear System

As in the linear, case there is an optimum € for the stiffness coupled approaches.
This optimum value of € is also around 0.01. The mass coupled approach, as before, is
more or less independent of £ As in the linear situation, the errors in the stiffness
coupled methods do not increase after a certain value of £ This value £ is also around
0.1. In conirast to the lingar case, the execution times for the different methods for
primary-secondary analysis do not decrease appreciably with an increase in &.
However, it may be noted that the curves for the execution time when all subsysiems
are considered nonlinear are almost parallel to the corresponding curves when only the
interface is considered nonlinear. This is because of the fact that eigen analysis or
matrix inversion has to be carried out once for each time step irrespective of the number
of iterations required 10 converge to the interface response parameters. The shift
between the corresponding curves on the two figures is the additional time required for

eigen analysis or matrix inversion.

The greatest advantage of the primary-secondary analysis seems {0 be in the case
when only one small subsystem is nonlinear. In primary-secondary analysis only the
matrices for that subsystem and the interface need be inverted at each time step or the

eigen analysis for that subsystem and interface alone need be carried out.

Even in the case when all subsystems were considered nonlinear, primary-
secondary analysis appears more efficient than in the linear case. When only the
interface was considered nonlinear, the mass coupled approach appears to be 5.5 times
more efficient, diagonalized stiffness appears to be 11.5 times more efficient and direct
stiffness 19 times more efficient than the exact procedure. When all subsystems were

considered nonlinear, these values are 2 for mass coupled, 2.5 for diagonalized stifiness



and 11.5 for direct stiffness. These values for efficiency have been calculated at the

optimum value of &.

The Newmark method for the composite appears 1o be about 8 times more efficient
than the exact. However, the Newmark method for the composite systerm is not
necessarily always the better approach for nonlinear analysis especially if the
nonlinearity is in one of the smaller subsystems. In particular, the direct stiffness
coupled method was about 2.4 times as efficient as the Newmark for composite system
when only one small subsystem was nonlinear, and the ratic was about 1.5 when all

subsystems were treated as nonlinear.
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