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ABSTRACT

The question of how a primary structural system is affected by the
presence of secondary structural and/or non-structural attachments and vice-
versa during an intense dynamic event such as an earthquake can best be
answered by recourse to numerical simulation coupled with experimental
verification., Towards this goal, the present work develops a substructuring
methodology in the time domain for the analysis of structures containing
secondary systems, In particular, the structure can be broken inte a
primary substructure that in turn contains secondary substructures, There
is no restriction on the size or configuration of the secondary
substructures. The present methodelogy allows for a separate analysis of
the primary and secondary substructures under the influence of the applied
loads. Then, the response of these substructures to the interaction forces
that are responsible for their coupling is also separately evaluated and
acts as a correction to the response due to the presence of the applied
loads. The size of both primary and secondary subsystem representations can
be reduced by introducing modal condensation via Ritz vectors that do not
form complete modal sets. Numerical implementation of the present
methodology is done through the use of direct numerical integration, The
presence of interaction forces that are unknown at the current time step,
however, necessitates the introduction of a predictor-corrector scheme, If
modal condensation is used, then the predictor-corrector scheme is applied
at the modal equation level, Finally, a three-story shear building
containing a two degree-of-freedom secondary system is carefully analyzed
with and without modal condensation., Parametric studies are conducted by
changing the properties of the secondary substructure and by considering

different types of applied loads in the form of ground excitations.
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SECTICN 1

INTRODUCTION

1.1 Secondary Systems

The progress that has been made in the seismic analysis of structural
systems during the past decades (Newmark and Rosenblueth, 1971) has resulted
in improvements in the analysis, design and construction of buildings,
bridges, dams, etc., under seismic excitations. More recently, an area of
increasing concern is seismic performance of secondary systems that are
attached in some way to a primary structural system. In general, there are
two basic types of secondary systems, namely, non-structural and structural.
Examples of the first case include computer and control systems, machinery,
electrical panels, and storage tanks. Performance integrity of these
systems under seismic loads transmitted through the primary structural
system is important because they serve vital functions and their failure may
have serious consequences. Examples of the second case include stairways,
structural partitions, suspended ceilings, piping systems and ducts.
TInteraction of these systems with the primary system is again important
because they are capable of modifying the structural behavior of the primary

system in unanticipated ways.

Traditionally, the seismic analysis of secondary systems is done wusing
the floor spectrum approach. In this approach, the response behavior of the
primary structural system at the support points of a secondary system is
first determined in the absence of the secondary system. The response
spectra at the support points, or the 'floor response spectra', are then
used as input to the secondary system. The response behavior of the
secondary system is finally computed on the basis of this input, using one

of several modal combination rules.



The use of this approach, however, leads to a number of deficiencies.
The most serious one is the fact that it ignores the primary-secondary
interaction. The floor spectrum method gives acceptable results for
secondary systems with relatively small masses and with freguencies which
are not tuned to a frequency of the primary structural system. When the two
systems are tuned to each other, however, a gross error in estimation of the
secondary system behavior may result (Crandall and Mark 1963, Singh 1975,
Kapur and Shao 1973). Another problem has to do with the use of modal
combination rules. Significant error again can arise since these commonly
used rules do not account for such important effects as cross~correlations
between support motions and between modal responses (Amin et al 1971

Chakravarti and Vanmarke 1973).

Recently, a number of analytical methods have been developed in an
attempt to correct the deficiencies outlined above. All of these are based
on an analysis of the combined primary-secondary (PS) system. In Sackman
and Kelly (1979) and Igusa and Der Kiureghian (1983), perturbation methods
are used by treating the parameters of secondary systems as small. This
leads to better accuracies in analyzing tuned two degree-of-ireedom (dof)
systems. Modal analysis of the PS system has also been developed by Ruzicka
and Robinson (1980), Villaverde and Newmark (1980), and Der Kiureghian et al
(1983 a,b) who found the mode shapes and frequencies of the combined system
by wusing perturbation techniques. The modal responses are subsequently
combined to give the physical displacements by wusing a modal combination
rule. However, the important non-classical damping characteristics are not
adequately addressed. In addition, various kinds of simplifying assumptions
are used such as (i) The primary and secondary structural systems are
classically damped and linearly elastic, (ii) The mass of the secondary
system is considerably smaller than that of the primary system, (1ii) Input
floor spectra at all support points are identical, and (iv) Interaction
oeffects of foundation, cascaded tertiary or higher level subsystems, or

other separate secondary systems are ignored.



In more recent work, Igusa and Kiureghian (1985 a,b) used pertrubation
theory to determine the modal properties of a structure from the modal
properties of its substructures and to evaluate the secondary substructure
response using modal combination. The effects of spatial coupling that
results  because  of the presence of multiply supported secondary
substructures, of tuning and of non-classical damping are all taken into
account. 4 simplified approach for computing the maximum response of a
light secondary system with one point of attachment to a primary
substructure under seismic motions by avoiding solution of a large
eigenvalue problem was introduced by Villaverde {1986). His procedure uses
the component mode synthesis technique and takes into account the
interaction effect between the two substructures. A  component mode
synthesis technique was also introduced by Suarez and Singh (1987a) for
obtaining the modal properties of a combined single dof secondary system
attached to a primary substructure in terms of the modal properties of the
individual systems. No assumption is made as to the size of the secondary
substructure. In a series of papers, Singh and his co-workers (Suarez and
Singh 1987b; Suarez and Singh 1987c¢; Burdisso and Singh 1987a; Singh and
Burdisso 1987; Burdisso and Singh 1987b) describe how to synthesize the
eigenproperties of the combined structure from knowledge of the
eigenproperties of the primary and secondary substructures for cases where
either the primary substructure or the combined system are nonclassicially
damped. Two basic techniques are developed, namely pertrubation techniques
for tuned or detuned secondary equipment and an eigensolution in terms of a
nonlinear characteristic equation that is valid for both light and heavy
secondary substructures. Based on these analyses, the aforementioned
researchers proceed to construct floor response spectra that take into
account the interaction effect between primary and secondary substructures.
Also, the case of multiple supported secondary systems is examined, where it
is necessary to consider the correlation between the motions of all points
to which the secondary system is attached. Parametric studies on the
frequency response of a single dof secondary system contained within a

multiple dof primary system were conducted by Yong and Lin (1987) and by



Holung et al (1987). The latter investigators used the transfer matrix
approach to find the mode shapes and natural frequencies of a twenty story

building to which a single dof secondary system is attached.

1.2 Substructuring Approaches

The key idea behind substructuring is to reduce the size of the system
under consideratiomn. This can be accomplished by either dividing the
structure into a number of substructures whose boundaries are arbitrarily
specified or by transforming the physical ccordinates of the structure into
a smaller set of generalized coordinates. There are also substructuring

techniques that combine both of these approaches.

Substructuring through partitioning

The structure is first partitioned into subsystems that may or may not
correspond to physically identifiable substructures. Then each subsystem is
treated as a complex structural element and finite elements or any other
suitable numerical method can be used to model it. Once the displacements
and forces at the interfaces between subsystems have been determined, each

subsystem is analyzed separately under known boundary conditions.

Under static conditions, the problem is solved in two steps
(Przemieniecki 1968). At first a substructure is isolated from its
neighbors by setting the boundary displacements equal to zero, and the
reactions necessary for maintaining fixity of the common boundaries are
computed. Next, the boundaries are relaxed and the true displacements
there, as well as the remaining interior displacements, are computed. The
complete solution is synthesized by adding the results of these two steps.
Under dynamic conditions, it 1is difficult to explicitly solve for the
interaction forces at the common boundaries between substructures. The
researchers that have addressed this problem (Kennedy et al 1981, Ordonez et

al 1985) determine the interaction forces by imposing compatibility of



accelerations at interface dof within the context of time stepping
algorithms. In addition, information on the modal shapes of both Primary

and secondary substructures is required by their methods.
Substructuring through generalized coordinates ~ Ritz vectors

The basic idea here is to introduce a coordinate transformation in the
equation of motion so as to transform it from order nxn to order mxm, m<n,
Such a coordinate transformation can be accomplished wusing a set of
eigenvectors or a set of Ritz vectors. In either case, the vector of
physical coordinates {x} and the vector of generalized coordinates {q} are

related through the trvansformation matrix [A] as
{x} = [A] {q} (1.1)

Note that the transformation matrix [A] is of order nxm.

It is not efficient to wuse the complete set of eigenvectors of the
structure to build [A], despite the advantage of uncoupled modal equations
of motion that results for classically damping cases, because of the
difficulties associated with solving the associated eigenvalue problem.
Wilson et al (1982) and Wilson (1985) demonstrated that the use of the Ritz
set of vectors is preferable to a reduced set of eigenvectors of the same
order. Ritz vectors depend on the spatial distribution of the applied loads
and the resulting modal stiffness matrix is not diagonal, as the case would
be if the eigenvectors were used. Therefore, a subsequent modal analysis of
the mxm system of equations of motion resulting in orthogonal Ritz vectors

is necessary to rectify this problen.
Substructuring through generalized coordinates - Constraint equations

Another way of constructing matrix [A] of Eq. 1.1 is through specifying

a relation between the vector or independent (or active) coordinates {xa}



and the vector of dependent coordinates {xd}, where {x}T = {xa, Xd}' This
is done through the constraint equation

[R, » Ry,l {ia} =0 (1.2)

da’ d

Equation 1.2 is then used to solve for {xd} in terms of {Xa} so that

I
== 27 0 ix} = 1Al {x} (1.3)

RyaRaa

where [I] is the identity matrix. A constraint equation such as Eq 1.2

arises when an elastic structure contains rigid attachments (Weaver 1966).

Another type of constraint equation can be obtained from static
condensation. This case arises when certain dof in the equation of motion
do not have any mass and force terms associated with them. These ‘'static!
dof then become the dependent dof. Thus, if the stiffness matrix [K] is
partitioned according to active and dependent dof, it is easy to show that

[A] becomes a function of the submatrices of [K] as

I
(Al =10 27 1 (1.4)
-X

ad¥da

In the Guyan reduction method (Guyan 1965), the transformation matrix
is identified with Eq. 1.4, despite the fact that inertia is asgociated with
all dof. The physical meaning of the columns of {A] is that each represents
a static displacement pattern resulting from imposing a unit displacement at
one active dof, while the remaining active coordinates are fixed and the
dependent coordinates are released. Anderson et al (1968) discuss the
effect that the choice of {xa} has on the accuracy of the eigensolution of

typical problems. Finally, Johnson et al (1080) discuss a quadratic



eigensolution procedure for improving the accuracy of the Guyan reduction

method.
Substructuring through component mode synthesis

A more general way of substructuring for dynamic problems is the
component mode synthesis method that, in a way, combines both structural
partitioning aspects as well as the generalized coordinate concepts. As
before, we distinguish between the interior and the boundary of a given

substructure. We also retain the representation

{x} = {B] {Q} (1.5)

where {Q} are the component generalized coordinates and [B] is a matrix of
preselected component modes. Equation 1.5 can be viewed as an approximation
of the displacement vector {x} no different than the one in Eg. 1.1. Matrix
[{B] may contain {(a) the normal modes of the free vibration problem, (b)
constraint modes and (c) attachment modes. In the first case, the normal
modes are obtained by solving the classical eigenvalue problem for one of
the following three boundary conditjions: fixed boundary, free boundary, and
partially fixed boundary. In addition, some substructuring methods consider
the boundary to be loaded, whereby mass and stiffness coefficients are added
to the original mass and stiffness matrices, respectively. The modal matrix
[Wn}, whose columng are the normal modes, is normalized with respect to the
mass matrix. It is quite standard to use in Eq. 1.5 a truncated set of
normal modes [B] = {Wm] where m<n. In the second case, the constraint modes
are the same as those used in the Guyan reduction technique. In the third
case, an attachment mode is defined as the static deflection at an active
dof due to a unit force at that dof, while the remaining active coordinates

are force-free.

When the component synthesis method is applied to free vibrations, the

original equation of motion of the system reduces to solution of uncoupled



modal equations for the component generalized coerdinates {Q} of each
substructure. A number of wvariations on the component mode synthesis
technique exist {Craig and Bampton 1968}, most of which are modifications of
the original method of Hurty (1965). The component mode synthesis can be
extended to damped structures (Klein and Dowell 1974) and to forced
vibrations. It is also possible to include rigid-body modes, which appear

in aerospace structures, in the formulation.

More current research (Leung 1979, Arora and Nguyen 1980, Bathe and
Gracewski 1981) on the component mode synthesis method focuses on improving
the accuracy as well as the efficiency of the methodology, on investigating
normal mode truncation, and on implementing the technique in general purpose
finite eliement programs. Furthermore, error analyses have been done and
attempts have been made to extend the method to systems with nonporportional
damping and complex eigenvalues/vectors. A comprehensive review article on

the component mode synthesis method can be found in Craig (1985).
Other methods of substructuring

Other methods of substructuring include: (i) The use of ordinary
admissible function representation for substructures (Hale and Meirovitch
1980, Meirovitch and Hale 1981). These admissible functions are low order
polynomials that simplify computations, and the method of weighted residuals
is wused to approximately enforce the geometric compatibility conditions.
Convergence of the method is achieved as the number of admissible functions
increases: (ii) The transfer matrix method automatically achieves a
reduction in the size of the matrices without having to truncate any dof
{(Chiatti and Sestieri 1981). This method, however, is restricted to
structures with a chain-like topology. The accuracy of the transfer matrix
method for large systems can be improved by use of the brancing concept; and
(iii) The finite strip method, which is tailoved for plates and shells, can
be thought of as equivalent to a substructuring technique (Dawe and Morris

1982). Substructuring can also be wused in conjunction with statistical



concepts to analyze the random response of coupled subsystems. Finally,
substructuring can be combined with analytical-experimental techniques, and
Goyder (1980) describes how to model components from experimentally measured
data. Two review articles (Greif and Wu 1983; Greif 1986) summarize the
work done on substructure analysis of vibrating systems from the early

1980's onwards and reference over a hundred papers.

1.3 Overview of Present Work

This work is arranged as follows: Section ? discusses the basic theory
of substructuring in the time domain as well as numerical implementation
aspects, including the predictor-corrector scheme developed to handle the
interaction forces between primary and secondary substructures. Section 3
introduces the concept of modal condensation through the use of Ritz
vectors. It also discusses the predictor-corrector scheme of the previous
section for the case of modal coordinates. Then, Section 4 contains
numerical studies for a three-dof shear building containing a two-dof
secondary substructure whose properties are varied and a number of
excitations are considered. Finally, Section 5 draws a list of conclusions

and discusses further work along this area.






SECTION 2
SUBSTRUCTURING IN THE TIME DOMAIN
2.1 Basic Equations

The equations of motion of a structure such as the one shown in Fig. 1

are of the form

Mp 0] ﬁp Cp 0 ip KP 0 xp Fp Rp
F w1+ P 1P+ 1=+ @
8 5 s 5 S s s 8

if a lumped parameter representation (e.g., Fig. 2) is assumed. 1In the
above, [M], [C] and [K] are mass, damping and stiffness matrices,
respectively, and {x} are displacements. Furthermore, subscripts p and s
denote primary and secondary substructure, respectively, and dots indicate
time derivatives. Finally, {F} and {R} respectively contain the applied
loads and the interaction forces that are manifested at the points of
attachment between the primary and secondary substructures. In general,

there is coupling in Eq. 2.1 between the primary and secondary dof because
{Rp} = {f({XP},{xS},{xp},{xS})} (2.2)

and similarliy for {RS}. If {R} is brought over to the left-hand side of Kq.
2.1, we then have a coupled nxn system of equations whose solution is
referred to as the base solution. If not, then Eq. 2.1 wuncouples into an
mxm system of equations governing the motions of the primary substructure
and an 1xl system (m+l=n) for the secondary substructure, provided the

interaction forces can be evaluated in some way.
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Figure | - Structural system composed of primary system (dof 1,2,3) and

secondary system (dof 4, 35).
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If this last approach is followed, then it is convenient to decompose the

displacement as
L] L1}
x,(t) = x () + x,(t) (2.3)
J J J

and similarly for the velocity and acceleration. TIn the above, x;(t) is the
response of dof j belonging to either primary or secondary substructure
under the influence of applied loads only. Also, x;(t) is the response of
dof j when the substructure is under the influence of the interaction forces
only. Obviously, this type of decomposition is possible for linearized
substructure behavior. It should be noted that solution for the primed
response is accomplished independently of the double-primed response, and
the latter solution acts as a correction to the former by accounting for the
coupling effect between primary and secondary substructures. Compared to
the base solution where the entire nxn system of equations has to be solved,
the substructuring approach reduces the problem to solution of two smaller
subsystems with the possibility of condensing the dof of either or both

subsystems.
2.2 Numerical Implementation

One way of solving the uncoupled form of Eq. 2.1 with an mxm system
governing primary substructure response and an 1xl system  governing
secondary substructure response is by numerically integrating each of these
two systems. The only problem remaining is to evaluate the interaction

force {R} at time step t with t. being the current time step. The

i+1°?
algorithm designed for this purpose is a predictor-corrector type method.
In particular, the velocity and acceleration can be written in terms of the

displacement using central differences as



{&(e DY = ({x(r, O} + {x(t,, 0D /2t (2.4)
and
fe(e,)} = (e, )3 - 20x(e)) + x(t,, D) /ac? (2.5)

respectively, with At = ti ~-t:.L being the time increment. When the above

+1
two expressions are substituted into the equations of motion (2.1) written

at ti’ the resulting expression for the displacement vector at ti+1 is
tx(e,, 0 = (1/ae? + [€1/280)70 ((R(e)Y ~ (KD ~(2/ae%)
[MD) {x(e ) 3-(IM1/at - [C]/288) {x (e, )}) (2.6)

where [M], [C] and [K] are the appropriate mass, damping and stiffness
matrices and {R} is the interaction force. Equations 2.4-2.6 form the
predictor branch, i.e., {X(ti+1)} is computed from Eq. 2.6 and substituted
in Egs. 2.4 and 2.5 to give {k(ti)} and {x(ti)}, respectively.

For the corrector branch, Newmark method expansions are used to get
updated values for the acceleration and velocity and a corrected value for
the displacement based on the information supplied by the predictor branch

as

Gt Y = (e, D3-(x(e D) Jant? k(2 ) foser{x(e,)}H(1-1/20)
(2.7)



and then

= (x(E)) + GREDIsE + ((0.5-a)(x(e )} + alx(e,,)Dac?
(2.8)

Mo
et
i

= (8} + ((1-8)(x(t,)} + alx(t,, )D)at (2.9)

R
e
i

Note that §>0.5 and a 20.25(0.5+6)2 are the usual Newmark method parameters.
In the above alporithm, as with all numerical integration methods, fresh
values of the displacement, velocity and acceleration replace old values as

soon as they hecome available.

The final task is to compute an updated value for the interaction force
based on updated values for the displacement and velocity, Egs. 2.8 and 2.9,
respectively, at the dof adjoining the attachment point. In view of Eqg.
2.2, the updated interaction force component r(t) at an attachment point is

given by
et ) = Gt ) -ox (e )+ el (e ) = 2 (e ,)) =

= k(e ) (e () (g ) 4 el (e ) - & (e ) +
)) _ (2.10)

In the above, the primed quantities are the response of the dofs of the
primary and secondary substructures adjoining the attachment point to the
applied loads. They can he computed separately from the double primed
gquantities, which are the response of the aformentioned dof to the
interaction force. These last quantities are known at t, since r(ti) has
already been evaluated. Subsequently, these quantities are computed at ti

+1
using the predictor-corrector scheme previously outlined.



SECTICON 3
SUBSTRUCTURING WITH MODAL CONDENSATION
3.1 Ritz Vectors

The wuse of modal analysis for solution of primary and secondary
substructures with coupling accounted for by virtue of the interaction force
allows for condensation of the modal dof. This is achieved by simply using
a subset of the complete set of mode shapes, although care must be
excercised to assure that enough modes are retained in order to obtain an
accurate solution. The Ritz vectors are chosen here because they yield more
accurate results than an equal number of mode shapes {Wilson et al, 1982).
The only drawbacks are that Ritz vectors depend on the spatial distribution
of applied dynamic loads and that they do not form an orthogonal set of
vectors. The first drawback is of little consequence because for the case
of ground motions, the overall spatial distribution of the loads does not
change for a given structure. The second drawback is remedied by a

subsequent orthogalization of the original Ritz vectors.
Although Ritz vectors have been treated elsewhere (Wilson et al, 1982),

the algorithm for their generation is included here for completeness. The

first Ritz vector {¢1} is found by solving
e
tKl{e, } = {f} (3.1)

where {f} encompases the spatial variation of {F}. Then, the first Ritz

vector is normalized using



(6,3 M1{0 ) = 1 (3.2)
Aditional Ritz vectors are found through the recursive relation

K1{o,) = (MI{¢, ) (3.3)
(Kl{egy = Ml{e, '

with orthogonality correction as

s

EAe
v

{$

~ b _ i-1 _ T 1
(3= o5 - 300 eY, Comle ) M) (3.4)

and normalization as
(6,37 M1{e,} = 1 (3.5)
i i )

Pre~ and post- multiplication of the stiffness [K] and mass [M] matrices by
matrix [¢] cogtaining the Ritz vectors {¢i} gives the modal stiffness {K*]
and mass [M ] matrices, vrespectively, with only the latter one being
diagonal. A set of Ritz vectors {wi} orthogonal to the stiffness matrix as

well is obtained by solving the eigenvalue problem

X 2 %
(K 1-w{[M D{v,3 = 0 (3.6)
where w, are corresponding frequencies. It should be noted that the above

eigenvalue problem is soived after a decision on how many Ritz vectors will

be used is reached.



The matrix containing the final Ritz vectors is obtained as

[A] = [9][¥] (3.7)

where [¢] contains the {wi} vectors. Final modal stiffness and mass
matrices that are diagonal can now be obtained by pre- and post-

multiplication of [Kl and [M] with matrix [A].
3.2 Numerical Implementation

The algorithm constructed for solving problems using the substructuring
methodology outlined in Section 2.1 in conjunctin with modal condensation isg
as follows: At first, the orthogonal Ritz vectors and corresponding
frequencies of the primary and secondary substructures are computed as
indicated in Section 3.1. Since the spatial distribution of the applied
loads 1is different from the spatial distribution of the interaction forces,
two sets of orthogonal Ritz vectors are computed for each substructure, as
shown in Fig. 3. In practice, these two sets of orthogonal Ritz vectors for
each substructure will often turn out to be the same because of the
similarity in the spatial distribution of the applied loads and of the
interaction force. Second, this modal type of information is used to
uncouple the equations of motion of each of the two substructures.
Depending on the number of modes used, a set of equations less than or equal
to m and less than or equal to ¢ results for the primary and secondary

substructures, respectively. These modal equations are of the form

ék(t) +2 B g(t) + wﬁ q, () = (fk+£k) /§k (3.8)
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Figure 3 - Ritz vectors for (a) primary substructure, applied loads (P-L);
(b) primary substructure, interaction force (P-I1);
secondary substructure, applied loads (5-L) and (d) secondary

substructure, interaction force,

{s-1).



where qk(t) is the generalized coordinate, £, is the modal damping factor,
Wy is the frequency, fk(t) is the generalized load, rk(t} is the generalized
interaction force and My the modal mass, all corresponding to the kth Ritz
vector. Third, the modal response of the primary and secondary
substructures to the applied loads (primed solution) and to the interaction
forces (double-primed solution) is computed by numerically integrating
equations such as Eq. 3.8. Fourth, the solution for the displacements {x}

is recovered from the modal response {q} through the transformation

t " t 1
X

X X q q
o= P =0 D+ 00 = IR + 00D = 1AM (3.9)

5 X X
S 5 qS qS

It should be noted that although the applied loads are known at time

step t the interaction forces are not. Thus, the methodology described

i+l?
in Section 2.2 for predicting the interaction forces at ti+1 from their

values at ti must be re-introduced. This is done at the generalized

i+1)
using central differences as in Egs. 2.4 and 2.5, respectively.

coordinate level by first expressing 4 (t,) and g (t,) in terms of q, (t
ki kh7d k

Subsequently, by substituting these expressions in Eg. 3.8 written at ti and

re-arranging, the generalized displacement at ti+1 is obtained as

a(tsyq) = (5o a0 ™0 ((2-lat?)q (t)) - (L-gu at) q (t, ) + at” £ (£,))

(3.10)
where ;k(ti) is the interaction force expressed in modal coordinates. Eqg.
3.10 is wused to predict qk(ti*l)' Corrected values of qk(ti+1) and

update values of qk(ti+l) and qk(ti+1) are found in conjunction with Egs.
2.7-2.9 written in terms of the generalized coordinates. Next, Eq. 3.9 is

used to recover the displacements and velocitiss at ti from knowledge of

+1



the corresponding generalized coordinates at t Finally, the interaction

i+i”
force at ti+1 is computed by recourse to Eg. 2.10.



SECTION 4
NUMERICAL EXAMPLES

4.1 Five DOF Structure

The concept of substructuring is now explained through an example.
Consider the structure that was shown in Fig. 1, which contains a secondary
substructure within the primary substructure. A lumped mass idealization
utilizing 3 dof for the primary substructure and 2 dof for the secondary

substructure was also shown in Fig. 2. The structure is subjected to ground

accelerations gg(t) and the relative displacement at dof j is xj(t). The
equations of motion of the structure can easily be obtained as N
- ~, —
r . v - i
my fl kl + kz k2 X
., fZ —kz k2+ k3 "k3 ) Xy
i 9% o kg k3 ' Xy
m, = kg kg 4
mg X5 ks kg | g
e — ~ - L -~ . )
-~ ™~ I” h
m 0
m2 J 1
= - 4 m X - G L>r
2 > 3
m, ~1
m 0
~ 5/ ~ S
(4.1)
where
iy ka(Xz“ xz) + Cll- (X‘!‘ - Xz)
(4.2)



is the interaction force at the point of attachment between primary and

secondary substructures. The wusual notation is employed, with mj and kj

denoting mass and stiffness coefficients associated with dof 3,
respectively. Damping is included in this example, but since the damping
matrix has the same form as the stiffness matrix, it is omitted from Egq. 4.1
for tidiness.

1f the interaction force r in Eq. 4.1 is brought to the left-hand side
and the coupled 5 x5 system of equations is solved, the solution obtained is
called the base solution. By keeping r on the right-hand side, FEq. 4.1

uncouples as

m, %1 kl+ kZ ~k2 0 Xy m, ) G
m, %, + —k2 k2+ k3 —k3 X, = - m, xg— 1 ¥
my || X3 0 S B my 0 (4.3)
for the primary substructure and
m, XJ kg kg Xy, ™, 1
N TS ‘ s - x4+ r
mg xs‘f "y kg + kg X me| g 0 (&.4)

for the secondary substructure. Note that in Eq. 4.4, a soft spring kO has

been added to the stiffness matrix to avoid rigid body motion associated
with the unassembled secondary system. Numerical studies show that values

of kO less than 0.001 kS are appropriate. Solution of the the primary and

secondary substructures can now proceed separately, provided the interaction

force can be evaluated.

The following properties are now chosen for the uncoupled primary

substructure:
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The above numerical values result in three natural frequencies for the
uncoupled primary substructure that are listed in Table 1. A damping matrix

[Cp] is constructed following standard procedure by assuming modal viscous

damping factors of

£;= B, = 0.05,£, = 0.06 (4.6)

A number of cases for the uncoupled secondary substructure are now

considered. In all cases,

m E 5=m (4.7)

and damping matrix {CS] is constructed using the following modal viscous

damping factors

54 = £S =0.02 (4.8)

Also, the value of dashpot C, in Eq. 4.2 is taken as equal to zero. For the

Tirst three cases we have (a) m /m_ = 0.1, (b) m /m_ = 0.01 and (¢) m /m =
s P s p 5 P

0.001. Stiffness ratio kS/kp is the same as the mass ratic for each

particular case so that the natural frequencies listed in Table 1 are all

the same. Note that a zero natural frequency reveals the rigid body motion



Table

}

Natural frequencies (in rad/s) of primary substructure, secondary
substructures and combined structure.

I. Primary Substructure

“1 “2 “3
14.07 | 39.43 56.98
iI. Secondary Substructures
Cases a,b,c Case d Case e Case f
“1 ¥z “1 “2 “1 “2 “1 “2
0.0 44 .72 14.07 36.83 39.43 103.23 56.98 | 149.2
ITI. Combined Structure
(Primary substructure plus secondary substructure, case d)
“1 Y2 “3 4 “5
12.34 | 15.94 36.71 39.83 57.29




problem associated with the unassembled secondary substructure. TFor cases

{(d), (e), and (f) we have mslmp + 0.1 but the stiffness ratio kslkp changes

to produce tuning with respect to the first, second and third natural
frequencies of the primary substructure. The natural frequencies
corresponding to these last three cases are listed in Table 1. According to
the definition of tuning, the secondary substructure must be anchored at the
attachment point with the primary substructure, and the attachement point
remains immobile. Hence the presence of two natural frequencies in Table 1

for these last three cases.

Each of the six possible combinations of the primary substructure with
the secondary substructures is a complete structure with five natural
frequencies whose solution is labeled as the base solution. As shown in
Table 1 for the combination of the primary substructure with the secondary
substructure of case (d), the natural frequencies of the assembled structure
do not correspond to the natural frequencies of either substructure. This
is so because the mass ratio of secondary to the primary substructure is not

negligible.

Three types of ground motions are considered here: a low frequency sine
excitation with forcing frequency Q = 0.628 rad/s, a high frequency sine
excitation with forcing frequency {4 = 31.42 rad/s and a suddenly applied and
maintained shock, All three types of accelerograms have a peak ground

acceleration of 0.lg, g being the gravity constant.
4.2 Substructuring without Modal Condensation

All results presented in this section are obtained via the methodology
outlined in Section 2.2 and for the cases described in the previous section.
The applied load is the ground motion with sinusoidal time variation and low
frequency of excitation. The  predictor-corrector alorithm is a
conditionally stable one and a time step as large as one-fifth times the

lowest natural period of the primary substructure yields very accurate



results. All the results obtained in this and the next section are for time
steps between one-fifth and one-tenth times the lowest natural period of the

primary substurcture.

At first, the base solution (solution of the combined system) is
compared with the solution obtained using the substructuring concept for the
structural system consisting of the primary substructure with the secondary
substructure of case (a). These results are shown in Fig. 4 in terms of the
displacement time history at the 5th dof (see Fig. 2) and are identical.
The substructuring concept yields the same results as the ones obtained for
the base solution at other dof as well and for the other five combinations

of a secondary substructure with the primary substructure.

Having thus established the validity of the substructuring approach,
the next results depict the effect of the mass ratio, cases {a) - (c¢), on
the displacements at the 4th dof (Fig. 5) and on the interaction force (Fig.
6). Since cases (a) - (c¢) all result in the same detuned natural
frequencies, the displacements experienced by these secondary substructures
are all the same. The interaction forces experienced in the attachment
spring, however, decrease as the secondary substructure becomes lighter in

comparison to the primary substructure.

Finally, Figs. 7 and 8 investigate the tuning effect. In particular,
Fig. 7 shows the displacement time history at dof 4 for the secondary
substructure tuned to the first {case(d)), the second (case (e)) and the
third (case (f)) natural frequencies of the primary substructure. Figure 8
shows similar results for the interaction force time history. Since the
frequency of the applied load is low, case (d) is the secondary substructure
whose motions are affected the most. The interaction force time history is
the same for these three cases because they all have the same mass.
Finally, the frequency content of both displacements and interaction force
is proportional to the frequency content of the excitation at this low level

of forecing frequency.
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4.3 Substructuring with Modal Condensation

At first, orthogonal Ritz vectors and their associated frequencies are
computed for the primary (P) and secondary (8) substructures and for static
distributions of the applied loads (L) and the interaction force (I), as was
depicted in TFig. 3. Table 2 shows this information for the primary
substructure and the secondary substructures that are tuned to the first,
second and third natural frequencies of the primary substructure, i.e.,
cases (d) - (f), respectively. It should first be noted that the full set
of orthogonal Ritz vectors and their associated frequencies are identical to
their modal counterparts, 1i.e., the mode shapes and natural frequencies.
Subsets of the full orthogonal Ritz vector set, however, differ from their
corresponding modal counterparts. Next, the orthogonal Ritz vector sets
obtained for applied load cases (L)} and (I) are identical since the static
distributors of (L) and (I) are quite similar. Finally, the artificial

spring ko that inhibits the rigid body motion of a secondary substructure

affects the corresponding mode shape {d)l}T = L1,1] and natural frequency
wy = 0 just enough to allow for a modal decomposition of the secondary

substructure.

Figures 9 - 11 are for the low frequency sinusoidal ground excitation
and primary-secondary substructure combination (d). In particular, they
respectively depict the displacement time history of the 4 dof, the
interation force time history, and the displacement time history of the 2nd
dof obtained for two cases: (i) the full set of Ritz vectors and (ii) only
one Ritz vector for each of the primary (P} and secondary (S) substuctures
and for loading cases (L) and (I). It is observed that a truncated set of
only one Ritz vector for each substructure will give exact results. This
spectacular reduction is due to the fact that the excitation has a low

forcing frequency compared to the natural frequencies of the substuctures.

4-12



Table 2

Orthogonal Ritz vectors and associated frequencies (in rad/s) of primary
and secondary substructures.

I. Primary Substructure

No. of Ritz vectors Frequency Ritz Vector
14.07 0.1037 0.1870 0.2331
39.43 -0.2331 -0.1037 0.1870
56.98 0.1870 ~0.2331 0.1037
14.07 0.1038 0.1869 0.2330
44 .19 0.1132 0.2037 -0.2138 ;
14.08 0.1049 0.1889 0.2309
IT. Secondary Substructure
Case No. of Ritz vectors Freguency Ritz Vector
d 1 0.007 0.7071 0.7071
2 32.22 ~0.7071 0.7071
e 1 0.007 0.7071 0.7071 ¢
2 90.23 -0.7071 0.7071
f 1 0.007 0.7071 6.7071
2 130.4 ~0.7071 0.7071
d,e,f 1 0.0607 0.7071 0.7071

h-13
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Figures 12 - 16 are for the high frequency sinusoidal ground excitation
and for primary - secondary combinations (4)-(f). At first, TFig. 12
demonstrates that the same displacements at dof 5 are obtained using
substructuring with complete orthogenal Ritz vector sets as when the entire
structure 1is solved wusing numerical integration. Figures 13 and 14
investigate the effect of modal trunctation on the interaction force for
primary - secondary combination (d). In Fig. 13, a full representation is
retained for loading case (I) and the reduced modal representations are in
conjunction with loading case (L). The reverse holds true in Fig. 14. It
is observed that it is preferable to maintain a full representation for
loading case (I) than for loading case (L). TFigure 15 plots the interaction
force for primary - secondary combination (e) with a full modal
representation retained for loading case (I). Comparison of Figs. 13 - 15
shows that it makes little difference whether it is the modal representation
of the primary system or of the secondary system that is reduced. To be
sure, less accurate results are obtained in Fig. 14 if one mode is used for
(8) than if two modes are used for (P), but that corresponds to a 50%
reduction in the modal representation of the secondary substructure compared
to a 33.37 reduction in the modal representation of the primary
substructure. Primary - secondary combination (f) has natural frequencies
sufficiently removed from the forcing frequency of the excitation to allow
for good quality results to be obtained with a reduced (P) substructure and
a full (S8) substructure representation, irrespective of the loading

condition (L) or (I), as shown in Fig. 16.

Finally, Figs. 17 - 19 investigate the effect of a suddenly applied and
maintained ground excitation on the displacements at the 4th dof for the
primary substructure with a secondary substructures cases {(d) or (e). This
type of excitation contains a wide band of forcing frequencies that are
bound to include the structure s natural frequencies. Figure 17 is for case
(e} and again shows the excellent agreement of results obtained using
substructuring with complete modal representation with results obtained by

solving the entire structure in one try. TFigures 18 and 19 are for case {(d)

4-17
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and again indicate that better accuracy is obtained if the reduced
representation in the primary substructure is used in conjunction with the

applied loads (L) rather than with the interaction force (I).

L4 biscussion of Results

Based on the results presented in the previous two sections, the

following points are summarized:

(i) The magnitude of the interaction force is proportional to the mass
ratio of the secondary to the primary substructure. The frequency
content of the interaction force depends on the frequency content of
the applied loads as well as on the tuning effect between secondary

and primary substructures.

(ii) The response of a secondary substurcture is very sensitive to the

magnitude and fregquency content of the interaction force.

(iii) The effect of the interaction force on the response of the primary
substructure is negligible for low mass ratios of secondary to

primary substructure and considerable if these ratios are high.

(iv) Substructuring without modal condensation and substructuring with
modal condensation give identical results as those obtained from
solution of the entire structure provided in the latter case complete
orthongonal Ritz vector sets are used, i.e., all the modes are

included.

(v) If any of the modes of the secondary substructure is tuned to a mode
of the primary substrcture, then this tuned mode should be included

in the modal representation of the secondary substructure.



(vi)

(vii)

(viii)

In general, reduced orthogonal Ritz vector sets can be safely
employed for either primary or secondary substructure and for either
the applied load or the interaction force case if the excitation
frequencies are much lower than the first natural frequency of the

entire structure.

It does not make much difference if the reduction in the modal
representation is done in conjunction with the secondary substructure

or in conjunction with the primary substructure.

¥or a given substructure, it is preferable to reduce the orthogonal
Ritz vector set representation for the applied loading case than to
reduce the orthogonal Ritz vector representation for the interaction

force case.






SECTION 5

CONCLUSIONS

A substructuring approach in the time domain for the analysis of
structures composed of a primary substructure to which secondary
substructures are attached is presented in this work. This substructuring
approach allows for a separate analysis of the uncoupled primary and
secondary substuctures, with the coupling effect accounted for through the
interaction forces. Uncoupling also nesessitates definition of two loading
states, one being the applied loads and the other being the interaction
forces. The response of the primary and secondary substructures is then
determined under each of these two loading states, with the reponse due to
the interaction forces acting as a correction to the response due to the
applied loads. Modal condensation is introduced by employing incomplete

orthogonal Ritz vector sets for both primary and secondary substructures.

Direct numerical integration is used for implementing this
substructuring  approach. The complication that arises is that the
interaction forces are not known for a time step past the current one and
therefore a predictor - corrector method is introduced to remedy that. For
the case of modal condensation, numerical integration is applied at the
modal equation level but computation of the interaction forces is done in

the physical coordinate level.

The numerical results obtained indicate that the substructuring approach
vields results indentical to those obtained by solving the entire structural
system in one try. If modal condensation is employed, then good quality
results can be obtained for a small number of orthogonal Ritz vectors.
Modal condensation is, however, sensitive to the forcing frequencies of the
applied loads and the tuning effect between primary and secondary
substructure. The advantage gained by using substructuring is obviously

that one works with smaller structural systems.



In general, the substructuring approach presented here ig applicable
to cases where there are more than one secondary substructure and there are
multiple points of attachment between primary and secondary substructures.
Also, the secondary substructure does not need to be light compared to the
primary substructure and the applied loads may have arbitrary spatial and

temporal variations.

At present, the substructuring methodology 1is applicable to
linearized systems under deterministic loads. Current work is aimed at
relaxing both assumptions, l.e., to further the methodology so that it will

be possible to treat random vibrations of hysteretic systems.



10.

11.

SECTION 6

REFERENCES

Amin, M., Hall, W. J., WNewmark, N. M., and Kaswara, R. P. (1971)
"Earthquake response of multiple connected light secondary systems by
spectrum methods", Proc. ASME First National Congress on Pressure
Vessel and Piping Technology, San Francisco,

Anderson, R. G., Irons, B. M., and Ziewkiewicz, 0.C. (1968) "Vibration
and stability of plates using finite elements™, Int. J. Solids
Structures, Vol. 4, 1031 - 1055.

Arora, J. S. and Nguyen, D. T. (1980) "Eigensolution for large
structural systems with substructures", Int. J. Num. Mehtods Engng.,
Vol. 15, 333 - 341.

Bathe, K. J. and Gracewski, 5. (1981) "On nonlinear dynamic analysis
using substructuring and mode superposition', Computers Struc.,
Vol.13, 699 - 707.

Burdisso, R. A. and Singh, M. P. (1987 a) ‘"Multiple supported
secondary systems Part TI: Response spectrum analysis', Barthguake
Engng. Struct. Dynamics, Veol. 15, 53-72.

Burdisso, R. A. and Singh, M. P. (1987 b} "Seismic analysis of
multiple supported systems with dynamic  interaction effects",
Earthquake Engng. Struct. Dynamics, Vol. 15, 1005-1022.

Chakravarti, M. K. and Vanmarke, E. H. (1973) " Probabilistic seismic
analysis of light equipment within buildings'", Proc. Fifth World
Conference on Earthquake Engineering, Vol.II, p. 2822 - 2828,
Rome, Italy.

Chiatti, G. and Sestieri, A. {(1981) "Solution of quasi-harmonic
equations through the combined finite element - transfer matrix
method", Int. J. Num. Anal. Engng., Vol. 17, No.8, 1161- 1175.

Craig, R. R., Jr. (1985) " A review of time -domain and frequency-
domain component mode synthesis method", Applied Mech. Division, Vol.
67, ASME, 1 -30.

Craig, R. R., Jr. and Bampton, M.C.C. (1968) "Coupling of
substructures for dynamic analysis'", ATAA J., Vol. 6, 1313 - 1319.

Crandall, S. H. and Mark, W. D. (1963) Random vibrations of mechanical
systems, Academic Press, New York.



13.

14.

15.

16.

17.

18.

19.

20.

2.

22,

23.

24.

Dawe, D. J. and Morris, J.R. (1982) "Vibration of curved plate
assemblies subjected to membrane stresses', J. Sound Vib., Vol. 81,
No. 2, 229-237.

Der Kiureghian, A., Sackman, J. L. and Nour - Omid, B. (1983 a)"
Dynamic analysis of light equipment in structures: Modal properties
of the combined system', J. Engng. Mech. ASCE, Vol. 109, No.l, 73 -
89,

Der Kiureghian, A., Sackman, J. L., and Nour - Omid, B. (1983 b)
"Dynamic analysis of light equipment in structures: Response to
stochastic input", J. Engng. Mech. ASCE, Vol. 169, No.l, S0 - 110.

Goyder, H. G. D. (1980) '"Methods and application of structural
modeling from measured structural frequency response data', J. Sound
Vib., Vol. 68, No.2, 209 -230.

Greif, R. and Wu, L. (1983) "Substructure analysis of vibrating
systems", Shock and Vibration Digest, Vol. 15, No. 1, 17 -24.

Greif, R. (1986) "Substructuring and component mode synthesis", Shock
and Vibration Digest, Vol. 18, No. 7, 3 - 8.

Guyan, J. R. (1965} "Reduction of stiffness and matrices", AIAA J.,
Vol. 3, 380.

Hale, A. L. and Meirovitch, L. (1980) "A general substructure
synthesis method for the dynamic simulation of complex structures', J.
Sound Vib., Vol. 69. No.2,309 - 326.

Holung, J. A., Cai, J., and Lin, Y. K. (1987) "Frequency response of
secondary systems under seismic excitation", NCEER Rept. 87 - 0013,
Buffalo, New York.

Hurty, W. €. {1965) '"Dynamic analysis of structural systems using
component modes'', ATAA J., Vol. 3, 678 - 685.

Igusa, T. and Der Kiureghian, A. (1983) "Dynamic analysis of multiple
tuned and arbitrarily supported secondary systems", Report No.
UCB/EERC - 83/07, University of California, Berkeley,CA.

Igusa, T. and Der Kiureghian, A. (1985 a) "Dynamic characterization of
two-degree-of-freedom equipment-structure systems", J. Engng. Mech.
ASCE, Vol. 111, No. i, 1 ~19.

Igusa, T. and Der Kiureghian, A. (1985 b) '"Dynamic response of
multiply supported secondary systems', J. Engng. Mech. ASCE, Vol. 111,
No. 1, 20 - 41.



25.

26.

27,

28.

29.

30.

31.

32.

33.

34.

35,

36.

37.

Johnson, C. P. , Craig, R. R., Jr., Yairicoglu, A., and Rajatabhoti,
R. (1980) "Quadratic reduction for the eigenproblem', Int. J. Num.
Methods Engng., Vol. 15, 911 - 923,

Kapur, K. K. and Shao, L. C. (1973) "Generation of seismic floor
response spectra for equipment design', Proc. Specialty Conference on
strurctural Design of Nuclear Plant Facilities, ASCE, Chicago.

Kennedy, R. P., Kincaid, R. H., and short, S. A. (1981) "Effects of
dynamic coupling between freestanding steel containment and attached
piping", Trans, 6th Int. Conf. Struct. HMech., Reactor Technology
(SMIRT) held in Paris, France, paper K10/12.

Kiein, L. R. and Dowell, E. H. (1974) "Analysis of modal damping by
component modes methods using Lagrange multipliers", J. Appl. Mech.,
Trans. ASME, Vol. 41, 327 - 528.

Leung, Y-T. (1979)"An accurate method of dynamic substructuring with
simplified computation", Int. J. Num. Methods Engng., Vol. 14, 1241 -
1256,

Meirovitch, L. and Hale A, L. {1981) “On the substructure synthesis
method", AIAA J., Vol. 19, No.7, 940 - 947,

Newmark, N. M. and Rosenblueth, E. {(1971) Fundamentals of earthquake
engineering, Prentice - Hall, Englewood Cliffs, New Jersey.

Ordonez, A., Moreno, A., Morales, S., and Requena, A. (1985)
"Evaluation of coupling effects between primary structural systems and
attached subsystems", Pressure Vessels and Pipings Vol. 98, ASME, 69 -
75.

Przemieniecki, J. S. (1968) Theory of matrix structural analysis,
McGraw-Hill, New York.

Ruzicka, G. €. and Robinson, A. R. (1980) "Dynamic response of tuned
secondary systems'', Report No. UILU ~ENG-80-2020,Dept. of Civil
Engineering, University of Illinois, Urbana, TI11.

Sackman, J. L. and Kelly, J.M. {(1979) "Seismic analysis of internal
equipment and components in structures", Engineering structures, Vol.
1, 179 - 160.

Singh, M.. P. (1975) “Generation of seismic floor spectra", J. Engng.
Mech., ASCE, Vol. 101, No. 5, 593 - 607.

Singh, M. P. and Burdisso, R. A. (1987) "Multiple supported secondary
systems Part II: Seismic inputs', Earthquake Engng. Struct. Dynamics,
Vol. 15, 73-90.



38.

40.

41,

42,

43,

a4,

45.

46.

Suarez, L. E. and Singh, M. P. (1987 a) "Seismic response of SDF
equipment - structure system', J. Engng. Mech., ASCE, Vol. 113, No. 1,
16 ~ 348. :

Suarez, L. E. and Singh, M. P. (1987 b) TEigenproperties of
nonclassically damped primary structure and oscillator systems', J.
Appl. Mech., Trans. ASME, Paper No. 87-WA/APM-8,

Suarez, L. E. and Singh, M. P. (1987 c¢) ‘'Perturbed complex
eigenproperties of classically damped primary structure and equipment
systems®, J. Sound Vib., Vol. 116, No. 2, 199-219.

Villaverde, R. (1986) "Simplified seismic analysis of secondary
systems", J. of Struc. Engng., ASCE, Vol. 112, No. 3, 588 - 04,

Villaverde, R. and Newmark N. M. (1980) '"Seismic response of light
attachments to buildilngs", Structural Research Series, No. 469,
University of Illinois, Urbana, I11.

Weaver, W. (1966) “Dynamics of elastically connected bodies'", Proc.
Third Southeastern Conf. on Theoretical and Applied Mechanics,
Columbia, South Carolina, 543 - 562.

Wilson, E. L. (1985) "A new method of dynamic analysis for linear and
nonlinear systems", Finite Elements in Analysis and Design, Vol.1l, 21
- 23,

Wilson, E. L., Yuan, M. W., and Dickens, J. M. (1982) "Dynamic
analysis by direct superposition of Ritz vector", Earthquake Engng.
Struct. Dynamiecs, Vol. 10, 813 - 821,

Yong, Y. and Lin, Y. K. (1987) "Parametric studies of frequency
response of secondary systems under ground acceleration excitations',
NCEER Rept. 87-0012, Buffalo, New York.



NATIGNAL CENTEE FOR EARTHQUAKE ENGINEERING RESEARCH

LiST OF PUBLISHED TECHNICAL REPORTS

The National Center for Barthquake Engineering Research (NCEER) publishes technical reports on a variety of subjects related
to earthquake engineering written by authors funded through NCEER. These reports are available from both NCEER's
Publications Department and the National Technical Information Service (NTIS). Requests for reports should be directed to the
Publications Department, National Center for Earthquake Engineering Research, State University of New York at Buffalo, Red
Jacket Quadrangle, Buffalo, New York 14261. Reports can also be requested through NTIS, 5285 Port Royal Road, Springfield,
Virginia 22161. NTIS accession numbers are shown in parenthesis, if available,

NCEER-87-0001

NCEER-87-0002

NCEER-87-0003

NCEER-87-0004

NCEER-87-0005

NCEER-87-0006

NCEER-87-0007

NCEER-87-0008

NCEER-87-0009

NCEER-87-0010

NCEER-87-0011

NCEER-87-0012

NCEER-87-0013

NCEER-87-0014

NCEER-87-0015

NCEER-87-0016

NCEER-87-0017

"First-Year Program in Research, Education and Technology Transfer," 3/5/87, (PB8B-134275/A3).

"Experimental Evaluation of Instantaneous Optimal Algorithms for Structural Control,” by R.C. Lin,
T.T. Soong and A.M. Reinhorn, 4/20/87, (PB&8-134341/AS).

"Experimentation Using the Earthquake Simulation Facilities at University at Buffalo,” by AM.
Reinhorn and R L. Ketter, to be published,

"The System Characteristics and Performance of a Shaking Table," by 1.S. Hwang, K.C. Chang and
G.C. Lee, 6/1/87, (PB8-134259/A8).

"A Finite Element Formulation for Nonlinear Viscoplastic Material Using a Q Model," by O. Gyebi and
G. Dasgupta.

"SMP - Algebraic Codes for Two and Three Dimensional Finite Element Formulations,” by X. Lee and
G. Dasgupta, to be published.

“Instantanecus Optimal Control Laws for Tall Buildings Under Seismic Excitations,” by J.N. Yang, A.
Alkbarpour and P. Ghaemmaghami, 6/10/87, (PB88-134333/A8).

"IDARC: Inelastic Damage Analysis of Reinforced Concrete-Frame Shear-Wall Structures,” by Y.
Park, A.M. Reinhorn and S.K. Kunnath, 7/20/87, (PBBB-134325/A8).

"Liquefaction Potential for New York State: A Preliminary Report on Sites in Manhattan and Buffalo,"
by M. Budhu, V. Vijayakumar, R.F. Giese and L. Baumgras, 8/31/87, (PB88-163704/A8).

"Vertical and Torsional Vibration of Foundations in Inhomogeneous Media,” by AS. Veletsos and
K.W. Dotson, 6/1/87, (PB88-134291/A8).

“Seismic Probabilistic Risk Assessment and Seismic Margin Studies for Nuclear Power Plants,” by
Howard H.M. Hwang, 6/15/87, (PB88-134267/AS).

"Parametric Studies of Frequency Respomse of Secondary Systems Under Ground-Acceleration
Excitations,” by Y. Yong and Y X. Lin, 6/10/87, (PB88-134309/AS),

“Frequency Response of Secondary Systems Under Seismic Excitations,” by J.A. HoLung, J. Cai and
Y.K. Lin, 7/31/87, (PB88-134317/A8).

"Modelling Farthquake Ground Motions in Seismically Active Regions Using Parametric Time Series
Methods,” G.W. Ellis and A.S, Calomak, 8/25/87, (PRRE-134283/A5).

"Detection and Assessment of Seismic Structural Damage,” by E. DiPasquale and A.S. Cakmak,
8/25/87, (PBB8-163712/A8).

"Pipeline Experiment at Parkfield, California," by J. Jsemberg and E. Richardson, 9/15/87,
(PB88-163720/A8).

"Digital Simulations of Seismic Ground Motion," by M. Shinozuka, G. Deodatis and T. Harada,
8/31/87, (PBBB-155197/AS).



NCEER.-87-0018

NCEER-87-001%

NCEER-87-0020

NCEER-87-0021

NCEER-87-0022

NCEER-87-0023

NCEER-87-0024

NCEER-87-0025

NCEER-87-0026

NCEER-87-0027

NCEER-88-06001

NCEER-88-0002

NCEER-88-0003

NCEER-88-0004

NCEER-88-0003

NCEER-88-0006

"Practical Considerations for Structural Conirol: System Uncertainty, System Time Delay and Trunca-
tion of Small Forces," J. Yang and A. Akbarpour, 8/10/87, (PB88-163738/AS).

"Meodal Analysis of Nonclassically Damped Structural Systems Using Canonical Transformation," by
LN. Yang, S. Sarkani and F.X. Long, 9/27/87.

"A Nonstationary Solution in Random Vibration Theory,” by LR. Red-Horse and P.1>. Spanos, 11/3/87,
(PB38-163746/A5).

“Horizontal Impedances for Radially Inhomogeneous Viscoelastic Soil Layers,” by A.S. Veletsos and
K.W. Dotson, 10/15/87, (PB88-150859/A8).

"Scismic Damage Assessment of Reinforced Concrete Members," by Y.S. Chung, C, Meyer and M.
Shinozuka, 10/9/87, (PB88-150867/AS).

" Active Structural Control in Civil Engineering,” by T.T, Soong, 11/11/87.

"Vertical and Torsional Impedances for Radially Inhomogeneous Viscoelastic Seil Layers," by K.W.
Dotson and A 8, Veletsos, 12/87.

"Proceedings from the Symposium on Seismic Hazards, Ground Motions, Soil-Liguefaction and
Engineering Practice in Eastern North America, October 20-22, 1987, edited by K.H. Jacob, 12/87.

"Report on the Whittier-Narrows, California, Earthquake of October 1, 1987," by 1. Pantelic and A.
Reinhorn, 11/87.

"Design of a Modular Program for Transient Nonlinear Analysis of Large 3-D Building Structures,” by
S. Srivastav and LF. Abel, 12/30/87.

"Workshop on Seismic Computer Analysis and Design With Interactive Graphics,” by J.F. Abel and
C.H. Conley, 1/18/88,

"Optimal Control of Nonlinear Structures,” L.N. Yang, F.X, Long and D. Wong, 1/22/88.

"Substruciuring Techniques in the Time Domain for Primary-Secondary Structural Systems,” by G. D.
Manolis and G. Juhn, 2/10/88, to be published.

“lterative Seismic Analysis of Primary-Secondary Systems," by A. Singhai, L.D. Lutes and P, Spanos,
2/23/88.

"Stochastic Finite Element Expansion for Random Media,” P. D. Spanos and R. Ghanem, 3/14/88, to be
published.

“Combining Structural Optimization and Structural Control,” F. Y. Cheng and C, P, Pantelides, 1/10/88,
0 be published.






e

“ I |1 National Center for Earthquake Engineering Research
State University of New York at Buffalo




