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ABSTRACT

Three optimal control algorithms are preoposed for reducing oscillations
of flexible nonlinear structures subjected to general stochastic dynamic
leads, such as earthquakes, waves, winds, etc. The optimal control forces
are determined analytically by minimizing a time dependent quadratic
performance index, and nonlinear equations of motion are solved using the
Wilson-f numerical procedures.

The optimal control algorithms developed for applications to nonlinear
structures are referred to as the instantaneous optimal control algorithms,
including the instantaneous optimal open-loop contrel algorithnm,
instantaneous optimal closed-loop controel algorithm, and instantaneous
optimal closed-open-loop control algorithm. These optimal algorithms are
computationally efficient and suitable for on-line implementation of active
control systems to realistic nonlinear structures. HNumerical examples are
worked out to demonstrate the applications of these optimal control
algorithms to nonlinear structures. In particular, contrcl of structures
undergoing inelastic deformations under strong earthquake excitations are
illustrated., The advantage of using combined passive/active contrel systems

is also demonstrated.
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I. INTRODUCTION

To improve the reliability and safety of tall buildings under strong
earthquakes, the use of protective systems, such as passive or active
control devices, has received considerable attention {[e.g., 1-24}. These
contrel systems have been shown theoretically and in some cases experimen-
tally to be effective in safeguarding structural integrity. Numerous
studies have been conducted for applications of passive control systems,
such as lead-core rubber base iszclators, tuned mass dampers, etc., and in
some cases these passive control systems have been installed in repre-
sentative buildings., While passive control systems are effective in some
circumstances, they also suffer from a number of limitatiens, in particular
the transient nature of strompg earthquakes. As a result, active control
systems, such as active mass dampers, active tendon systems, gas pulse
generators, etc., whose performance depends on the supply of external
energy, have been investigated intensively in the last decade mostly in the
theoretical aspects. It is enly until recently that experimental studies of
active control systems have been realistically conducted. Likewise, the
study of possible use of combined passive/active control systems is
currently being initiated.

In reality, many tall buildings undergo large deformation or yielding
when subjected to strong earthquake ground motions, and hence exhibit
nonlinear or inelastic behavior. Consequently, active control systems may
operate in the nonlinear range of motion for tall buildings. Further, for
the combined use of passive/active control systems, passive devices, such as
rubber base isolatoers, always exhibit large deformation and inelastic
behavior, leading to nonlinear equations of motion for the entire structural
system. Hence, the active control system should be capable of dealing with

nonlinear structures.



Traditionally, active control has been applied to linear structures,
and control theories for nonlinear systems are very limited. In an attempt
to contrel nonlinear structures, active pulse control has been investigated
recently in Refs. 1-3. In using active pulse control, several variables
should be determined from the control algorithm, including the time at which
pulses should be applied, the magnitude of each pulse, the pulse shape and
duration, etc. In general, the pulse shape and duration are given because
of limitations of control devices. Pulses usually are triggered when the
response reaches certain levels [1-3]. The determination of pulse magnitude
is important in order to achieve given control efficiency. When the pulse
magnitude is toc small, the effectiveness of active control will be insig-
nificant. However, if the pulse magnitude is too large, the structure {or
system) may become unstable or the structural response may be worse than
that without controel. In Ref. 1, the pulse magnitude is chesen to be
proportional to some power of the response velocity, whereas the
proportional constant is selected empirically. Given a selected
proportional constant, the stability condition for the structure is examined
[1l]. This type of control is non-optimal.

In Ref, 2, it is assumed that the structural motion consists of
stochastic components superimposed on top of a deterministic component. The
pulse magnitudes are determined to minimize the deterministic component of
the system response over a relatively short time segment after pulses are
triggered. The optimal control alpgorithm is developed utilizing the model
analysis of the structure, and hence it is applicable to linear structures.
However, such a control algorithm can be used for control of nonlinear
structures provided that reasonable equivalent linear properties can be used
te represent nonlinear structures satisfactorily. In Ref. 3, the response

of a SDOF nonlinear structure at every time instant t is monitored, and the



response at the next time interval t+At ie estimated. If the estimated
responge at t+At exceeds a specified level, a pulse is triggered. Then, the
magnitude of the pulse is estimated such that the response at t+at is
brought back to the specified level. The estimation of the pulse magnitude
can be made using the initial conditions at time t and the specified
regponse at t+At. Such a contrel algorithm again is non-optimal, and it is,
in effect, an approximate bounded state control algorithm.

In this paper we propecsed three optimal contrel algorithms applilicable
to flexible nonlinear structures, including inelastic structures, subjected
te general dynamic leoads, deterministic or stochastic. These include the
instantaneous optimal closed-loop control algorithm, instantaneous optimal
open-loop control algorithm and instantanecus optimal closed-open loop
control alporithm, These optimal control alporithms are simple and reliable
for on-line control operations and they are effective in mitigating
structural esecillation.

Unlike pulse control, control forces considered herein are continuous
in time and active control can be implemented by electrohydraulic
servomechanisms along with tendons or mass dampers, referred to as active
tendon control system and active mass damper, respectively. Particular
emphasis is placed on the mitigation of the inelastic response of flexible
tall buildings subjected to strong earthquakes. HNumerical examples are
worked out tec demonstrate the applications of these optimal control
algorithms to nonlinear structures. The advantage of using combined

passive/active control systems is alse illustrated.






¥II. FORMULATION

For simplicity, consider a one-dimensional nonlinear building structure
implemented by an active tendon control system as shown in Fig, 1. The
structure is ldealized by an n-degree-of-freedom system and subjected to a
one-dimensional earthquake ground acceleration ‘)io(t). The matrix equation

of motion can be expressed as

-

-

i

1

(6) + CI¥(e)] ¥(e) + R{Y(B)] ¥(e)= -M v X (t) + H U(e) (1)

in which Y(t) ls an n vector denoting the displacements of the structure
relative to the moving base, v is a unit vector of order n, i.e., v = [1,
1, 1,..., 1]', U(t) is a r-dimensional control vector, and H is a (nxr)
matrix denoting the location of r controllers. A super dot (¢) represents
differentiation with respect to time, and an under bar denotes a vector or
matrix. In Eq. (1), M is a (nxn) constant mass matrix, g[i(t)] is a (nxn)
nonlinear damping matrix, and R[¥(t)] is a (nxn) nonlinear stiffness matrix.

Both Q[i'(t}] and K[Y(t)] are general functions of velocity vector i(t) and

displacement vector Y(t), respectively.

2.1 Solution of Honlinear Equation of Metion

The matrix equation of motion, Eg. (1), can also be written as
M ¥(e) + Fp(e) + E(€) = - My X.(e) + HU () 2

in which ED(t) is an n vector denoting the damping force and _E:s(t) is an n
vector denoting the stiffness restoring force, all at time t. Both F,(t)
and gs(t) are general nonlinear functions of i(t) and Y(t), respectively,

ie., Ey(e) = Ep[¥(t)] and E_(£) = F_[¥(£)].



V74

{(a) (b)

Fig. 1: Structural Model of 2 Multi-Story Building with Active
Control System; (a) Active Tendon Control Systemn;
(b) Active Mass Damper.



For convenience of step-by-step numerical integration with a step size

At, the nonlinear terms in Eq. (2) are approximated by

U

Fp(t) = Ep(c-at) + ¢ (c-ar) [¥(e) - ¥(t-ap)]

(3)

it

F_(£) = F_(t-At) + K (t-At) [¥(t) - ¥(t-at)]

* %

in which € (t-4t) and K (t-At) are (nxn) matrices evaluated at t-At. The
* * *

i-jth elements of C (t-At) and K (t-At) matrices, denoted by Cij(t-At) and

sz(t-At), respectively, are the influence coefficients given by f[e.g., 25

3

26]

aF . (t-41) 3
Ci.(t»At) . WTQ%“""“““
J 87 (t-at)

f (4)
aFSi(t-At)

8y (£-At)

*
Kij(t-At) =

in which FDi(t-At) and Fsi(t-&t) are the ith elements of vectors ED(t-At}
and Es(t—At), respectively, whereas §j(t-At) and yj(t-At) are the jth ele-
ment of the response vectors i(t-ﬁt) and Y(t-At), respectively. The influ-
ence coefficients, ij(t—At) and k:j(t—At), represent the tangent damping
and tangent stiffness at t-At, respectively, as shown in Fig. 2.

Thus, the matrix equation of motion, Egq. (2), can be expressed
conveniently as

M Y(e) + Fpe-ae) + € (e-a) [T(t) - (t-At)] + F_(t-aL)

+ K (e-a8) [X(8) - Y(t-at)] = - H v X (8) + H U(E) (5)



o
')
Tangent damping
FQi(t) - smEmes e e-
§
i
H
]
§
§
yit-at ¥ —wyj
(a)
F
'
Tangent stiffness

Fig. 2: Nonlinear Influence Coefficients: (a) Nonlinear Viscous
Damping Coefficient Ci*j; (b) Nonlinear Stiffness

Coefficient Kfj‘



Using the Wilson-# numerical integration procedure for the solution of

nonlinear equations, Eq. (53), the 2n state vector Z{t)

Z(t) = |T--- (6)
1(e)

can be expressed in terms of the response state vector Z{t-At), nonlinear
damping vector gD(t-At), nonlinear stiffness vector Es(t-At), earthquake

bazse excitation Xo(t—At), and the control wvector g(t-At), all at time t-At,
as well as the control vector U(t) and the earthquake base excitation xo(t)

at time t as follows (see Appendix for detail derivations):

Z(t) = 2*(t*At) + élio(t) + 4, U(t) (7)
in which

*
D (t-At) = 53 Z(t-AL) + éa[g‘n(t-ﬂt) + Es(t—At)]

+ ‘55 Xo(t~At) + 56 U(t-At) - (8)
In Eqs. (7) and (8), éj for j=1,2,...,6 are vectors or matrices given in the
following.
T T ]
r:N 2um 8-2 --...‘::E'.._- : A = 9-2 ---?g---
21 ~2
-3 3
at ~1 L At =2
1 8 % T [ E T, |
A, = __’_":.L_z _____ T3 : A, = 9‘2 et s (9)
=3 0 -2 ~4 ET
-~ 3 I, ¥ ET, [~ ~6 |
ET [ E T, ]
Ay = 672 T uy L A - PR I I
EIg ] E Tg ] J




in which ll is an (nun) identity matrix, 4 is chosen to be greater than

1.37, and
* 2 * )
I, ~ - EMy, T,=EH , Ty= (6/06)M + 3C + At(47-1) K
*

xa = - 3K, 25 = ‘(351+§1)’ 26 - '(6/At>£1' §2
T, =21, +8, T = (3/A0I, + S,

-1

S M+ 2 ¢ e K (10)
TR
[ At (1.56-1) ¢° + 0.5(at)2(6%-6) X ] yt
-1
- [ 3¢0-1) ¢* + avaco-1.5) k* | m

* *
In Egq.(10), the argument t-At for influence coefficient matrices C and X
has been omitted for simplicity. For a particular case in which damping 1s
linear viscous damping, i.e.,

Fy(t-at) = C ¥(t-At) (11)

where C is a (nxn) constant matrix, Eq. (8) becomes

D'(t-at) = A, Z(t-At) + A, F_(t-8t) + AKX (t-at) + 4 U(t-at)  (12)
in which
L | e
A, = (13)
2
0 I+67°E Ty,



Ig = (6/ALIM + [3(9~1)§1-§1]§ + At(az»l)g*(t—At)
S5,1C 3K* A
210 = . (6/At)_1-1 + 5,1C - 3K (t-AL)
It follows from Egs. (9)-{14) that éj for j=1,2,...,7 are functions of

* *
influence coefficient matrices C (t-At) and K (t-At) at time t-At. Hence,

they are evaluated at t-aAt, i.e.,

éi = gl(t'At) , 52 = éz(t~At) , 53 = §3(t—At)
ég s éa(t~At) , éB = és(t-At) , é6 = &G(t-At)
§7 = §7(t~At) (15)

Again, for simplicity of notation, the argument t-At for these vectors and

matrices have been omitted.

2.2 Optimal Control Algoerithms for Nonlinear Structures
Unlike linear systems, control theories for nonlinear structures,
including inelastic structures, are not well developed [e.g., Refs. 1-3].

For linear systems, the gquadratic performance index

t
T- [Tz gz s rm R e (16)
0
has been used to arrive at various classical optimal control theories. 1In

Eq. (16}, a prime denotes the transpose of a vector or matrix, te is the
terminal time at which the state vector, Z(t), will die down, and Q and R
are weighting matrices denoting the relative importance between the response

state vector Z(t) and the control vector U(t). Unfortunately, even for

linear structures subjected to earthquake excitation, these classical

2-7



optimal control theories are not applicable as pointed out by Yang, et al
[Refs. 13-15]. The reason is that these classical control thecries require
the prior knowledge of earthquake ground motion. Since earthquake ground
acceleration is a random process, it is not known a priori.

While the earthquake ground motion is not know g _priori, the base
excitation of the building can be measured on-line real-time by installing
sensors on the basement floor. In other words, at any particular time t,
the base excitation record is available up to that time instant £. Such an

important information has been utilized recently by Yang, et al to develop

three new optimal contrel algorithms, referred to as instantaneous optimal
control algorithms [Refs. 13-15]. Further, these three instantaneous
optimal contrecl algorithms have also been verified experimentally using a
scale building model excited by simulated earthquakes on a shaking table
[91.

A time dependent quadratic objective function J(t) was proposed to
establish three instantaneocus optimal control algorithms for linear

structures [Refs. 13-15]

J(t) = Z'(t) Q Z(t) + U'(t) R U(t) (17)

The implication of minimizing the objective function above, Eq. (17), is
that the performance index J(t) is minimized at every time instant t for all
0=t x Ce- Hence, the optimal control algorithms thus obtained are re-
ferred to as instantaneous optimal control algerithms [13-15].

For nonlinear structures, we propose the same time dependent objective
function given in Egq. (17) with the constraints of the generzl eguations of
motion, Eq. (1) or (3). The general equations of motion for nonlinear

structures have been solved numerically using the Wilson-# method given hy



Eqs. (7) and (8). Thus, we shall determine the optimal control vector U(t)
by minimizing the objective function J(t) given by Eq. (17) subjected to the
constraint given by Eq. (7) as follows.

The Hamiltonian H is obtained by introducing a 2n-dimensional
Lagrangian multiplier vector 5(t) or co-state vector to the objective

function,

Hagw>gym+g%wggu>+y@u>~f@mw

-8 K00 - 8 U} A
in vhich D (t-At) is given by Eq. (8).

The necessary conditions for minimizing the performance index J(t)

subjected to the constraint given by Eq. (7) are as follows

Substitution of Eg. (18) into Eg. (19) leads to the following three matrix

equations
2 .Q Z(t) + Alt) = 0 (20)
2 R UCE) - A5 A(E) = O (21)
zZ(t) = D*(c-at) + A, K (t) + A, U(E) (22)



Thus, the optimal control vector U(t), the co-state vector A(t), and the
response state vector g(t) can be obtained from Eqs. (20)-(22) as described

in the following.

2.2.1 Instantaneous {Uptimal Open-loop Control

Note that the control vector U(t) is linearly proportional to the co-
state vector A(t) at every time instant t as shown in Eq. (21). Assuming
that the control vector U(t), or the co-state vector A(t), is regulated by
the measured earthquake ground motion without a feedback state vector Z(t},
i.e.,

A(t) = g(t) (23)

the optimal control algorithm thus obtained is referred to as the instan-
taneous optimal open-loop control algorithm. By use of Eq. (23), Egs. (20)-

(22) become

2 Q Z(t) + q(t) = 0 (24)
2 R UCE) - A q(E) = O (25)
Z(t) = D (t-ar) + A, K (t) + &, U(E) (26)

The optimal control vector U{t) can be obtained from Eqs. (24)-(26) as
follows: (i) Z(t) is eliminated by substituting Eq. (26) into Eq. (24), and
(ii) the resulting g(t) obtained from Eq. (24) is substituted into Eq. (25);
with the result

U(e) = L G(r) (27)
in which

L= -[R+45 Q4] a5 Q

—

% N (28)
G(t) = D (t-8t) + A X (t)

As observed from Egs. (27)-(28), the control vector at time t is regulated

by the measured earthquake ground accelerations Xo(t) and ﬁo(t—ét) at time t



and t-At, respectively, as well as the computed guantity Q*(t-At) at time t-
At, Eg. (8).

The response state vector g(t) under instantaneous optimal open-loop
control is obtained by substituting Eq. (27} into Egq. (26),

20 = [ 18 R+4508) 7 82 e 29)

in which I is a (2nox2n) identity matrix.

For the instantaneous optimal open-loop control algorithm obtained
above, the response state vector g(t) for all time instants t is not
measured, rather it is computed. It was found in the experimental program
[Ref. 9] as well as analytical studies [Ref. 19] for linear structures that
the control efficiency is vulnerable to system time delay. The control
efficiency can be improved and the sensitivity with respective to time delay
can be stabllized by measuring the response state vector Z(t) for use in the
computation of the control wvector U(t). 1In other words, the state vector
Z(t-At) appearing in Q*(twat) of Eq. (28) is measured rather than computed,
see Eq. (8). In this paper, we alsoc propose to measure the state vector
Z(t) for all t for the computation of 9*(t-At). Such a control algorithm is
referred to as the modifiled instantanecus optimal open-loop control

algorithm.

2.2.2 Instantaneous Optimal Closed-Loop Comtrol
For closed-loep control, the control vector U(t), or the co-state
vector A(t}),-is regulated by the feedback state vector Z(t), i.e.,
A(t) = A Z(t) (30)
Substitution of Eq. (30) into Eq. (20) leads to the following expression,

(2Q + A) 2(t) = 0 (31)



For Z(t) = 0, the unknown matrix A is obtained as

A = -2Q {32)
Thus, the optimal closed-loop control vector U(t) follows from Egs. (21) and
(32) as

u(e) = R!

A4 Q Z(t) (33)
and the respomnse state vector is obtained by substituting Eq. (33) into Eq.

(22},

-1 -1
JE e e (34)

z0) = [ 1+a

in which G(t) is given by Eq. (28). The control algorithm derived above is
referred to as the instantaneous optimal closed-loop control algorithm.

It is important te notice that for the instantaneous optimal closed-

ioop control algorithm, the measurement of earthquake base acceleration

Ko(t) is not necessary. In other words, the control vector U(t) is regu-

ulated only by the measured state vector Z(t),.

2.2.3 Instantaneous Optimal Closed-Open-loop Comtrol
Let the control vector U(t), or the co-state vector A(t), be regulated
by both the feedback response state vector Z(t) and the measured base

excitation Xo(t), i.e.,
A(t) = A Z(t) + gq(t) (33)

in which 5 and g are unknown matrix and vector, respectively, to be deter-
mined from Egs. (20)-(22) as follows. Substituting Eq. (35) into Eq. (21)
yields the expression for U(t). Then, the resulting U(t) is substituted in-

to Eq. (22) leading to the following expression for Z(t)



2(t) = D (t-ar) + A, HoCe) + % A, R A (5 z0 + e ] (36)

The term 2Q Z(t) In Eq. (20) is expressed as Q [Z{(t) + Z(t)], and the first

term of Z(t) is replaced by Egq. (36), whereas Eq. (35) is used for A(t) in

Eq. (20); with the result,

1

for[3ametar1]i}zo ]| *

Q8 B4y 4 1] O

o

+Q G(t) =0 e

For Z(t} = 0 and §(t) = 0, one obtains the solutions for unknown matrix 5

and unknown vector §(t),

=g

--[femrta 1]t 39)
q(t) = A G(t) (39)

Thus, the optimal control vector U(t) and the response state vector

Z(t) are determined from Egs. (21) and (22) as follows

u(e) =

3 Jt

R A K1 2(e) + 6(o)) (40)

-1
....]..-.. ' _]; Y
2y = [1-3a, 8 a8 [1+5a, R a0 e (41)

The optimal algorithm presented above is referred to as the instantaneous

optimal closed-open-loop contrel algorithm.



2.3 State Variable and State Vector

The state vector Z(t) defined in Eq. (6)

¥(t)
z(t) = | I--- (42)
Y(t)
consists of displacement vector Y(t) = [yl(t), yz(t), C e yn(t)r and
velocity vector i(t) - {§1(t), §2(t), ey &n(t)]'; whereas the performance

index J(t) is defined in terms of the state vector Z(t),
J(e) = Z'(t) Q Z(t) + U'(t) R U(t) (43)

Both Z'(t) and J(t) are defined in terms of state variables {yl(t), yz(t),
. yn(t)]. In fact, the state variables can be defined in different forms
depending on the particular situation. For instance, in the previous
section the state variable yj(t) represents the relative displacement of the
jth floor with respect to the moving ground. Under this circumstance, the
mass matrix M, the damping matrix g[g(t)] and the stiffness matrix K{Y(t)]
appearing in the matrix equation of motiom, Eq. (1), are given in Appendix
IT.
On the other hand, the state variables can be defined as the relative

displacement between adjacent floors or the deformation of each story unit,

i.e.,
X(t)
Z(t) = il (44)
X(t)
in which X(t) = [xl(t), xz(t), R xn(t)}’. In Eg. (44), xj(t) represents

the deformation of the jth story unit, i.e., the relative displacement
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between the jth floor and the j-1 th floor. The matrix equation of motion
using these state variables and the corresponding mass matrix M, damping
matrix g[i(t)} and stiffness matrix K{¥Y(t)] are shown in Appendix 1I.

When the structural response quantities, without active control, are
all within the elastic range, the control efificlency using the two different
definitions of state variables given above does not differ significantly.
Howeveyr, as the response guantities enter into the inelastic region, the
control efficiency may differ substantially using different state variables
depending on the design condition of the structure. For instance, when the
optimal structural design is made such that yielding occurs in every story
unit simultaneously, the state variables defined in Eq. (44) are superior to
those of Egq. (42). This will be demonstrated in a numerical example
presented later.

Consequently, an appropriate choice of state wvariables for the
implementation of control systems may be important. This issue along with

aspects of optimal design will be addressed in ancther report.






III. NUMERICAL EXAMPLES

To illustrate the effectiveness of the instantaneous optimal
control algorithms developed in this paper for control of nonlinear
structures, several examples are presented in the following. The
structure is assumed to exhibit nonlinear material behavior and both
bilinear elastic and bilinear elastic-plastic structures will bhe
demonstrated. For simplicity, damping is assumed to be linear viscous
damping. It should be mentioned that the three instantaneous optimal
control algorithms result in identical structural response quantities
as well as identical control force under ideal contrel environment,
Ideal control environment refers to that without a system time delay,
system uncertainty, estimation errors, ete., during the control
process, This has been expected because the three instantaneous
optimal control algorithms minimize the same time-dependent objective
function J(t). Hence, in what follows, the instantaneous optimal

closed-loop control algorithm will be used for simplicity.

Example 1: SDOF Bilinear Elastic-Plastic Structure

A conventional single-degree-of-freedom structure implemented by
an active tendon control system shown In Fig. 3 is considered. The
stiffness is bilinear elastic-plastic with an elastic translational
stiffness k, = 8.5273 x 104 kN/m and a post elastic translational

1

stiffness kzw 9.7455 = 103 kN/m as shown in Fig. &4(a). In Fig. 4(a), v
denotes the lateral relative displacement and Fs(y) is the stiffmness

restoring force. The floor mass m is 345.6 tons and the linear viscous

damping coefficient C is 54.29 kN. sec/m which corresponds to a damping



ratio of 0.5%. The natural frequency of the structure is 2.5 Hz and
yielding occurs at a lateral relative displacement of 2.4 cm. The
angle of inclination of active tendons with respect to the ground is 4
=~ 25°, A simulated earthquake ground acceleration time history shown
in Fig. 5 is considered as the input excitation, where the maximum
ground acceleration is 0.4g. Without active contrel, the relative
displacement of the top floor and the base shear force are displayed in
Figs. G(a). and 7{a), respectively. The hysteresis loop of the
inelastic restoring force is shown in Fig. 8(a), in which a significant
yielding occurs in the structure. With an active tendon control
system, the structural response and active control force depend on the
weighting matrices Q and R. In the present example, Q is a (2x2)
matrix, whereas R is a (1xl) matrix. For simplicity, Q matrix is
chosen to be diagonal, i.e., le = Q21 = 0, and the diagonal elements
are identical, i.e., Q11 - sz == QO. The only element of R matrix is

8

denoted by R With active tendon control for QO/R0 = 0.15 x 10", the

0"
time histories of the top floor relative displacement, the base shear
force, the hysteresis loop of iInelastic restoring force, and the
required active control force are presented in Figs. 6(b}, 7(b), 8(b)
and 9(a), respectively. As observed from these figures, the maximum
relative displacement 1is reduced by 27%; whereas the maximum base
shear force is reduced by 5%. For QO/RO = 0.8 x 108, the
corresponding results are shown in Filgs, 6(e), 7{e), 8(c) and 9(b),
respectiveiy. In this case, the maximum relative displacement and

maximum base shear force are reduced by 63.8% and 38.5%, respectively,

and the response is entirely well within the elastic range. To examine



the effect of weighting matrices on active control, the maximum floor
relative displacement and maximum control force in the entire
earthquake episode of 30 seconds are presented in Fig. 10 as functioens
of QO/RO. It is observed from Figs. 6-9 that a significant reduction
of structural response can be achieved through the application of an
active tendon control system. It is further observed from Fig. 10 that
as the ratio QO/RO increases, the structural response quantities
decrease consistently; whereas the reguired active control forece
increases. Finally, the structural oscillation isg completely within
the elastic range when QO/R0 > 0.35 x 108. Thus, the active tendon

control system is capable of preserving the structural response within

the elastic range.

Example 2: SDOF Bilinear Elastlc Structure

Example 1 is reconslidered in which the structure is bilinear
elastic rather than bilinear elastic-plastic as shown in Fig. 4(b).
The bilinear stiffnesses kl and k2 are identical to that of Example 1

and the transition from kl to k2 occurs at a relative displacement of
2.4 em. Without a control system, the relative displacement and base
shear force are depicted iIn Figs. 11(a) and 12(a), respectively. A
comparison between Figs. 6(a) and 11(a} indicates that the response of
a bilinear elastic structure is higher than that of a bilinear
elastic-plastic structure, This has been expected because the
hysteresis behavior of the elastic-plastic system dissipates energies

during oscillations. With the instantaneous optimal control algorithm

for QO/R0 = 0.8 x 108, the relative displacement, base shear force and



required control force are displayed in Figs. 11(b), 12(b) and 13.
Again, the active control system 1is very effective in reducing
structural oscillations. Further, as the ratio QO/RO increases, the
styuctural response quantities reduce consistently and the active

control force increases.

Example 3: Bullding Isolated by Rubber Bearings

& five-story building resting on lead-core rubber bearings
considered in Ref. 4 has been modeled in Ref. 3 mathematically by a
SDOF system in approximation as shown iIn Fig. 14(a). This
representation seems to be reasonable since the effect of rubber
bearing is to introduce a "soft story" with inelastic characteristics,
whereas, in comparison, the superstructure behaves like a rigid body.
As a result, we shall consider herein a representative SDOF structure
resting on rubber bearings shown in Fig. 1l4(a). Active tendon contrel
is introduced to limit the relative displacement of the rubber bearings
to avoid instability failure as well as the relative displacement of
the superstructure. The instantaneous optimsl closed-leoop control
algorithm is most suitable for such applications. The superstructure
is assumed to be linear elastic, whereas the rubber bearings exhibit
bilinear elastic-plastic behavior as shown in Fig. 14(b). The
structural properties are given in the following: (1) m = mass of sup-
erstructure = 153,06 tons; (2) k = translational stiffness of
superstructure = 6.71 x 10& kN/m, and hence the natural frequency is
3.33 Hz; (3) ¢ = damping coefficient of superstructure = 0; (4) k, =

1

elastic stiffness of base isolators = 10,000 kN/m: (5) k2 =

post-elastic stiffness of base isolators = 2,500 kN/m; (6) ¥y =



yvielding deformation of base isolators = 10.1 mm; (7) Yy = failure
deformation of base isolators = 150 mm. The angle of inclination of

tendons is # = 25°.

A simulated earthquake ground acceleration shown
in Fig. 15 is considered as the input excitation, where the maximum
ground acceleration is 0.2g (2.05 m/sec.z). The uncontrolled and
controlled response quantities for two different QO/RO ratios are
presented in Figs., 16-18. These include the relative displacement of
the superstructure with respect to base isclators, the relative
displacement of rubber isolators with respect to the ground, and the
shear force in rubber isolators. The hysteresis loops of elastic-plastic
restoring shear force in rubber isolators are shown in Fig. 19, whereas
the required active control forces are shown in Fig. 20. To illustrate
the control efficiency the maximum relative displacement of the
supergtructure, maximum relative displacement of rubber isolators and
maximum required active control forces in 30 seconds of the earthquake
episode are depicted in Fig. 21 as functions of QO/R0 ratio. It 1is
observed from Figs. 16-21 that the active tendon control system is
capable of drastically reducing not only the superstructural response
but also the deformation of base isolators. Likewise, both the
deformations of the structure and rubber base isolators are mitigated
consistently as the ratio QO/RO increases. The ability to safeguard
severe damage for passive control devices against earthquakes by means
of active control iz quite obvious., The basic idea presented herein
for the use of combined passive/active control systems is explained in
the following. The base isclation system (passive) is used to absorb

large deformation and dissipate input energies such that smaller
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excitations are transmitted to the superstructure. However, base
isolators must be protected against severe damage or instability
failure. This is achieved by use of active contrel devices along with
the optimal centrol algorithms developed herein. The advantage of

the combined passive/active contrel .system is clearly demonstrated.

Example 4: Eight-Story Bullding With Active Mass Damper

An eight-story building in which every story unit is identically
constructed is considered for illustrative purposes. The stiffness of
each story unit is assumed to be bilinear elastic-plastic with elastic
stiffness kil = kl = 3.404 x 105 kN/m, and pest elastic stiffness ki2 =
k2 = 10% k1 = 3.404 x ]_O4 kN/m (i=1,2,...,8). The yielding level is
identical for each story unit at a lateral deformation of 2.4 cm. The
floor mass is m -~ 345.6 tons and the internal damping coefficient C for
each story unit is C = 734.3 kN. sec/m which corresponds to a 0.5%
damping ratic for the first vibrational mode of the entire building,
The external damping is assumed to be zero. The computed natural
frequencies are 5.79%, 17.18, 27.98, 37.82, 46.38, 53.36, 58.53, and
61.69 rad/sec. The simulated earthquake shown in Fig. 5 is scaled

uniformly so that the maximum ground acceleration is X = 0.3g. The

Omax
resulting earthquake time Thistory is considered as the input
excitation., Without any contrel system, the top floer relative
displacement with respect to the ground and the base shear force of the
building are shown in Figs. 22(a) and 23(a), respectively. Hysteresis
loops for the shear force in each story unit are displayed in Fig.

24(a), in which "i" signifies the ith story unit. As observed from Fig.

24, yielding occurs in the lower three story units.



An active mass damper is installed on the top floor of the
building as shown in Fig. 1(b). The properties of the mass damper

are: m, = mass of the damper = 36.3 tons; C, = damping of the damper =

d
31.0 kN. sec./m; K

d

q = stiffness of the damper = 1173.0 kN/m. Note that

the damper mass m, is 10.5% of the generalized mass associated with the

d
first vibrational mode, the frequency of the damper is 98% of the first
natural frequency of the building, and the damping ratio of the damper
is approximately 7.5%., Without the active contrel force, the mass
damper is passive. With the passive mass damper, the response
quantities, including the top floor relative displacement with respect
to the ground and the base shear force, are shown in Figs. 22(b) and
23(b), respectively. It is observed from these two figures that the

passive mass danmper is not effective.

With an active mass damper, the structural response depends on the

weighting matrices R and Q. 1In this example, the weighting matrix R
consists of only one element denoted by RO’ whereas the dimension of
the Q matrix is (18 x 18). RO is chosen to be 10_5. With the

application of the instantaneous optimal control algorithms, the

(18x18) Q matrix is partitioned more efficiently as follows [14],

° 9
Q=a |- -l---i-I--- (45)

1+ o

in which 921 and sz are (2x%) matrices. The following wvalues are

assigned to elements of these two matrices for illustrative purposes:

[ -33.5 -67. -100.5 -134. -167.5 -201. -234.5 -268. -375.6
Q —
21

-33.5 -67. -100.5 -134. -167.5 -201. -234.5 -268. 32.2



67.5 135.0 202.5 270.0 338.5 405.0 472.5 540.0 32.2

5.8 11.6 17.6 23.2 29.0 34.7 40.5 46.3 5.7

A value of 5.12 is chosen for «, such that the top Ffloor relative
displacement with respect to the ground is reduced approximately by
58.3% and all the response quantities are well within the elastic
limit. The response guantities and the required active control force
from the controller are presented in Figs. 22(¢), 23(c) and 25(a). The
relative displacement of the mass damper with respect to the top floor
is displayed in Fig. 25(b). Also, hysteresis loops for the shear force
in each story unit are depicted in Fig. 24(b). Within 30 seconds of
the earthquake episode, the maximum response quantities, including the
relative displacement of each floor with respect to the ground,
yi(iul,Z,...,B), the deformation of each story unit or the relative
displacement between adjacent floors, xi(iwl,Z,...,B), and the shear
force, Si’ in each story unit are presented in Table 1 for comparison,
The maximum control force is 820.7 kN. It is observed from Figs. 22-25
that with an active mass damper the response of the entire building is
well within the elastlc range.

In the example above, yielding in the lower three story units is
moderate without control. Let us consider the case in which a large
scale vyielding occurs and the structure would have failed without
control. Suppose the earthquake time history shown in Fig. 5 iz scaled

up uniformly so that the maximum ground acceleration Is X = (. 55g,

Omax

Such a severe earthquake Is considered as the input excitation. The



top floor relative displacement with respect to the ground, the base
shear force and hysteresis loops for the shear force in each story unit
for the building with and without active mass damper are shown in
Figs. 26, 27 and 28. The required active control force and the
relative displacement of the mass damper with respect to the top floor
are depicted in Fig. 29. Within 30 seconds of the earthguake episode,
the maximum floor relative displacement with respect to the ground,
yi(i = 1,2,...,8), the maximum interstory relative displacement, xi(i
= 1,2,...,8), and the maximum interstory shear force are summarized in
Table 2 for comparison., The maximum active control force is 1505 kN,
The following observations are made from Figs. 26-28 and Table 2: (i)
The building may have failed without an active control system and
structural failure can be prevented using an active mass damper, and
(ii) a large scale yielding and severe inelastic damage can be reduced
significantly using an active mass damper. Further numerical results
indicate that the response of the entire building can be brought back

to the elastic range with an increase of the control force.

Example 5: Eight-Story Building With Active Tendon Control System

The same eight-story building subjected to the same earthquake
ground acceleration input illustrated in Example 4 1is considered
herein., Instead of installing an active mass damper on the top floor,
four active tendon controllers are installed in the lowest story units
and the angle of inclination of tendons with respect to the floor is
25° as shown in Fig. 1(a). In the present example, the dimension of
the weighting matrices Q and R ave (16x16) and (4x4), respectively.

With the application of the instantaneous optimal control algorithm,



the weighting matrix R is chosen to be a diagonal matrix with elements
-4

Rii = 10 (i=1,2,3,4). The (16x16) weighting matrix Q is again
partitioned as shown in Eq. ({45), in which 921 and 922 are {(8x8)
matrices and o is a constant. Note that 911 and 912 do not contribute
to the active control forces and, hence, they are chosen to be zero
[14-15]. The choice of 921 and Q22 requires some considerations as
discussed in Ref. 14, For simplicity, 921 and sz are chosen to be
equal, i.e., Q21 = g22 - Q*. The elements of Q*, denoted by Q*(i,j),
are given in the following; Q*(i,j,) = § for i = 4 and Q*(i,j) = 0 for
i >4, For a 47% reduction of the building response, a value of 2500
ig used for «a. Under the earthquake with a maximum ground
acceleration of 0.3g, Fig. 53, time histories of the top floor relative
displacement with respect to the ground and the base shear force are
presented in Figs. 30 and 31, respectively. Hysteresis loops for the
shear force in each story unit are shown in Fig. 32, whereas the
required active control forces from the first controller (in the lowest
story unit) and the fourth controller are depicted in Fig.33. The
response quantities with or without active control are shown in these
figures for comparison. Within 30 seconds of the earthquake episode,
the maximum response quantities and maximum control forces are
summarized Iin Table 3. It is observed from Figs. 30-32 and Table 3
that all the response quantities of the structure are well within
the elastic range when the active tendon control system is used.
To examine the effectiveness of active tendon control for a large

scale yielding in the structure, the earthquake with a maximum ground

acceleration of 0.55g 1is considered as the Input excitation. The



response quantities and required active control forces corresponding to
Figs. 30-33 are presented in Figs. 34-37. 1In these figures, a = 2500
and 5500, respectively, are considered. The results corresponding to
Table 3 are shown in Table 4. It is observed from Figs. 34-37 and
Table 4 that while the active tendon control system is effective in
alleviating severe structural damages and for the case a« = 5300 all
the structural response gquantities are within the elastic range, the

regquired active control forces are too big to be practical.

Example 6: Optimal Design For Eight-Story Bullding With Active Mass

Damper

An eight-story building with identical stiffness for each story
unit is ceonsidered in Examples 4 and 5 for illustrating the application
of the proposed instantaneous optimal control algorithms. As observed
from these examples for the case without contrel, severe yielding takes
place in the lower story units, whereas the upper story units are
within the elastic range. From the standpoint of optimal design, a
building may be designed with wvarilable stiffness so that yielding
occurs simultaneously for each story wunit. Such a building will be
examined,

The properties of the eight-story building considered herein are
as follows: (i) the mass for each floor is identical with m, = m =
345.6 tons, (ii) the stiffness Zfor each story unit is bilinear

elastic-plastic, with the elastic stiffnesses k., = 3.404x105,

il
5 5 5 5 5 5
3.257x107, 2.849x107, 2.686x107, 2.430x107, 2.073x107, 1.687x107,

1.366% 105 kN/m, and the post elastic stiffnesses ki2 = 0.1 kil’ for i

=1,2,...,8, and (1ii) the internal damping ceefficients for each story



unit are Ci = 490, 467, 410, 386, 346, 298, 243 and 196 kN. sec./m,
respectively. The damping coefficients given above result in a
classically damped structure with a damping ratio of 0.38% for the
first vibrational mode. The natural frequencies are 5.24, 13.99,
22.55, 30.22, 36.89, 43.06, 49.54 and 55,96 rad./sec. Note that the

stiffness of each story unit of the structure is weaker than that of

the structure considered in Examples 4 and 5, and hence the natural

frequencies are lower. The yielding levels for each story unit vary
with respect to the stiffness. Hence, the yielding levels given in
term of the deformation of each story unit, Xyi (i =-1,2,...,8),

are 2.4, 2.3, 2.2, 2.1, 2.0, 1.9, 1.7 and 1.5 cn. The simulated
earthquake time history shown in Fig. 5 with a maximum ground
acceleration of 0.3g 1s considered as the Input excitation.

The properties of the active mass damper installed on the top
floor are given in the following: m, = mass of the damper = 36.3

d
tons; k, = stiffness of the damper = 957.5 kN/m; C, = damping

d d
coefficient of the damper = 27.97 kN, sec./m. Hence, the mass ratio of
the damper with respect to the first generalized mass is 10.5%, the
damping ratio of the damper is 7.5% and the frequency of the damper is
98% of the fundamental frequency of the building. As in the previous
examples, the state wvariables (yi, yz,...,yn) are used, and the
weighting matrices R and Q@ are identical to those given in
Example 4.

Without control, the top floor relative displacement with respect

to the ground, the base shear force and the hysteresis lcops for the

shear force in each story unit are displayed in Figs. 38(a), 39(a) and



40(a), respectively. Within 30 seconds of the earthquake episode, the

maximum relative displacement of each floor with respect to the moving

ground, i (i = 1,2,...,8), the maximum interstory deformation, X, (i =
1,2,...,8), and the maximum shear force in each story unit, Si (i =
1,2,...,8), are summarized in Table 5. As observed from Fig. 40(a&) and
Xy in Table 5, yielding takes place in each story unit. With an

active mass damper and e = 9.6, the corresponding response quantities
are shown in Figs. 38(b), 39(b) and 40(b) as well as Table 3 for
comparison, Further, the required active control force and the
relative displacement of the mass damper with respect to the top floor
are shown in Figs. 41(a) and 42(a), respectively. It is observed from
Fig. 40(b) and x, in Table 3 that the response of each story unit is
brought back to the elastic range except the top story unit. This 1is
due to the fact that the top fleor is subjected to the active damper
force. Thus, the stiffness of the top story unit should be reinforced,

The results presented above are based on the state wvariables (yl,

yz,...,yn) representing the relative displacement of each floor with
respect to the moving ground. In fact, the state variables (yl,
yz,...,yn) put more welght on the lower story units than the upper

story units, In other words, the reduction of the deformation for the

lower story units is more Important than that for the upper story

units. On the other hand, however, the state variables, (Xl’
xz,...,xn) put equal weight for the deformatioen of each story unit.
Consequently, the state variables, (xl, XZ""’xn)’ representing the

deformation of each story unit, may be more beneficial for use in the

optimal control formulation as described in Section 2.3, This 1is



particularly true for the optimally designed structure in which the
yielding resistance for each story unit is almost identical, 1i.e.,
yielding for each story unit takes place simultaneously, such as the
present example.

Now, the state wariables, (xl, X .,xn), representing the

97
interstory deformations will be used in the proposed instantaneous
optimal control algorithms. Because of the mnature of such state

variables, the weighting matrix Q given by Eq. (45) will be used in

which g21 and sz matrices are given in the following

-1, -1, -1, -1, -1, -1, -1.59, -2.68, 0.0125
Qyy =
-1, -1, -1, -1, -1, -1, -1.59, -2.68, 0.0107
2 2 2 2 2 2 2 2 0.0107
Q,, =
22 10.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.0107

With the active mass damper and a = 1040, the response quantities,
the required active control force and the relative displacement of the
mass damper are shown in Figs., 38{c), 39(¢c), 40(c), 41(b) and 42(b),
respectively. In 30 seconds of the earthquake episode, the maximum
response quantities are summarized in Table 5 for comparison. it is
observed from Fig. 40(c) and Tables 5 that the response of each story
unit is well within the elastic ranpe. Likewise, the maximum relative

displacement x, of the mass damper with respect to the top floor is

d

much smaller when the state variables (xl, ..,xn) are used. Hence,

XZ"
...,xn) is superior than the state

the use of state wvariables (xl, Xy,

variables (yl, yz,...,yn).



Suppose the earthquake time history shown in Fig, 5 is scaled up

uniformly so that the maximum ground acceleration is X = 0.55g.

Omax
Such a severe earthquake resulting in a large scale yielding and
possible structural failure is considered as the input excitation. The
hysteresis loops for the shear force in each story unit are displayed
in Fig. 43 and the maximum response quantities within 30 seconds of the

earthquake episode are summarized in Table 6. In Table 6 and Fig. 43,

a = 4000 1is used for the formulation with state wvariables (xl,

xz,.,.,xn), whereas a =~ 10.5 is used for the formulation with state
variables (yl, y2,...,yn). From Table 6, although the use of state
variables (yl, y2,...,yn) results in a significant reduction for

inelastic damage in lower story units, failure occurs in the top story
unit, Therefore, the hysteresis loops are not presented in Fig. 43 for

state wvariables (yl, yz,..‘,yn). It is observed from Table & that the

use of the state variables (xl, x2 ..,.xn) is superior.
H



TABLE 1: Maximum Response Quantities (0.3g Earthquake) : y; = max imum
relative displacement of ith floor with respect to the
ground; Xy maximum interstory deformation of ith story
unit; Si = maXimum shear force in ith story unit; xd =
maximum relative displacement of mass damper; Umax =
maximum control force.
FLOOR WITHOUT CONTROL PASSIVE MASS DAMPER ACTIVE MASS DAMPER
X4 = 0.60 m Umax = 820.7 kN
Xy = 1.646 m
NO. Yy Xy 5; Vi X5 5 Yi Xg 5
(i) {cm) (cm) | (kN) (cm) (cm) (kN) | (cm) (cm) (kN)
1 3.89 3.89 | 8677 2.99 2.99 8369 | 1.62 1.62 5529
2 7.04 3.22 | 8447 5.32 2.47 8193 § 3.11 1.48 5042
3 9.26 2.49 § 8200 7.44 2.21 7509 | 4.41 1,32 4497
4 11.16 2.30 | 7812 9.22 1.79 2089 | 5.52 1.27 4310
5 12.84 2,11 | 7184 10.49 | 1.48 5026 § 6.33 1.14 3877
6 14.28 1.84 | 6274 11.3¢ | 1.30 6426 | T7.45 0.93 3169
7 15.36 1.45 § 4851 11.82 § 0.99 3360 § B.11 0.68 2327
8 16.00 .80 ¢ 2722 12.26 | 0.53 1810 { 8.46 0.60 2043




TABLE 2:

Maximum Response Quantities (0.535g Earthquake)

by, o=

maximum

relative displacement of ith floor with respect to the

ground; xi

unit; §, =
i

maximum shear force in ith story unit; x

d

maximum relative displacement of mass damper; Umax =

maximum control force,

maximum interstory deformation of ith story

FLOOR WITHOUT CONTROL PASSIVE MASS DAMPER ACTIVE MASS DAMPER

xd z= 1,01l m Umax = 1505 kN

X, = 2.79 m

d

NO. Vs g Si Y3 X5 5 Yi X5 55
(i) (cm) (cm} | (kN) (cm) (cm) (kN (cm) (cm) | (kN)
1 5.32 5.32 9164 5.30 5.30 9156 4.25 | A4.25 8800
2 8.57 3.50 8681 9,10 3.84 8659 6.76 2.66 8257
3 il.64 £,03 8725 11.41 2.57 8227 8.82 2.6%1 817¢L
& 13.83 3.48 8536 13.24 2.65 8iae 15.49 2.32 7896
5 15.64 3.06 8395 14.80 2.32 7807 12.00 2.09 7106
& 16.68 2.93 8350 16.07 2.04 6934 13.66 1.7% 5808
7 17.54 2.19 7456 17.01 1.54 5229 14.86 1.22 6135
8 i8.21 1.24 45206 17.53 $.86 2915 15.50 0.94 3193




TABLE 3: Maximum Response Quantities (0.3g Earthquake) : v, =
maximum relative displacement of ith floor with respect
to ground; X, = maximum interstory deformation of ith
sStory unit; Si = maximum shear force in ith story unit;
Ui = maximum control force from ith coantroller.

FLOOR WITHGUT CORTROL ACTIVE TENDONS

No. Yi X3 54 Yy Xy 34 Y

(i) (cm) (cm) (k¥) (cm) (cm) (kN) (kN)
T -
1 3.89 3.89 8677 1.78 1.78 6051 1725
2 7.04 3.22 8447 3.29 1.51 5134 1722
3 9.26 2.49 8200 4.48 1.26 4298 1677
& 11.16 2,30 7812 5.39 1.33 4337 1126
5 12.84 2.11 7184 6.20 1,43 4938 ]
6 14.28 1.84 6274 7.11 1.25 4269 o
7 15.36 1.43 4351 7.92 1,03 3699 ]
8 16.00 0.80 2723 8.38 0.56 1900 o
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TABLE &: Maximum Response Quantities (0.53g Earthquake) : yi = maximum
relative displacement of ith floor with respect to the
ground; X, = maximum interstory deformation of ith story
unit; Si = maximum shear force in ith story unit; Ui =
maximum control force from ith controller.
FLOOR, WITHOUT CONTEOL ACTIVE TENDONS ACTIVE TENDONS
= = 2500 o« = 3500
NG. *4 51 Yi i Sy U1 i X5 51 Uy
(1) (cm) | (cm){ (kN) {cm)| (cm) | (kN) 1 (kN) (cm) | (cm) | (kN) | (kN)
e
1 5,321 53.32 ) 9164 3.684 3.68 1 8604 § 3129 2.29) 2.29 17781 ] 5136
2 B8.97] 3.%01] 8681 5.991 2.51 1 8206 | 3123 4,071 1.841 6262 | 5123
3 f11.64¢ 4.03 ] 8723 8.061 2.23 17593 | 3043 5.37| 1.61 1 5488 | 4994
6 113.83; 3.48 8336 9.633 2.31 | 7876 | 2043 6.261 1.83 ] 6217 | 3333
5 15.641] 3.061 8395 }11.351 2.94 ] 8352 0 7.6212.2317576 0
& |16.68) 2.931! 8350 j{13.217 2.31} 7873 0 8.92]1.80 6126 1t
7 F17.5412.19| 7456 1114£.55} 1.90 | 6452 g 9.92 :1.58 | 5377 ]
& 118.217 1.26] 6206 {j15.36 ] 1.03 { 3504 0 106.36 ; 0.91 § 3104 0
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TABLE 35:

Maximum Response Quantities (0.3g Earthquake) : Y, = maximum
relative displacement of ith floor with respect to the

ground; x.1 = maximum interstory deformation of ith story

unit; Si = maximum shear force in ith story unit; Umax =
maximum control force; Kyi = yvielding level of ith story

unitc; xd = maximum relative displacement of mass damper.

ACTIVE MASS DAMPER
WITHOUT CONTROL ) )
AENVAS O L z=1x, ko
FLOOR Umax = 1370 kN Umax = 1359 kN
%, = 2. 444 m ¥x,= 1.158 m
d d
No.
xyi Yy xl Sy yi X5 Sy Yy X5 Si
(1) |{em) { (cm) | (cm) (kE) || (cm) | (cm) | (kM) {cm) | (cm) | (kN)
1 2.4 2.94 2.%4 8353 1.46 1.46 4980 1.40 1.40 4765
2 2.3 5.75 2.83 7663 2.76 1.31 4250 2.69 1.36 5631
3 2.2 8.32 3.33 6589 3.89 1.27 3630 4.07 1.53 4360
4 2.1 9.97 2.96 5872 4,78 1.48 3969 5.47 1.54 4123
5 2.0 12.34 2.61 5007 5.88 1.43 3463 6.88 1.50 3637
6 1.9 15.33 3.00 4165 7.08 1.22 2534 8.18 1.48 3064
7 1.7 17.75 2.75 3044 8.21 1.46 2464 9.30 1.57 2641
8 1.5 18.58 2.37 2167 9.37 2.33 2162 10.23 1.46 1994




TABLE 6: Maximum Response Quantities {0.355g Earthquake): y; = max imum
relative displacement of ith floor with respect to the

ground; X; = maximum interstory deformation of ith story

unit; Si = maximum shear force in ith story unit:; Umax =
maximum control force; xyi = yielding level of ith story

unit; xd = maximum relative displacement of mass damper,

ACTIVE MASS DAMPER

WITHOUT CONTROL . )
Z= EX‘. X'l’ Z= [E'. §'l'
FLOOR Umax = 3485 kN Umax = 3904 kN
xd = 5,882 m X, = 2.808 m
d
No.
Xoil Yy X Si Yy Xy Sy Yy Xy Si
(i) {cm) {cm) (cm) (kN {em) | {cm) (k¥) (cm) (cm) (kW)
1 2.4 4L, L0 4,40 48352 2.14 2.14 7290 2.39 2.39 8141
2 2.3 7.54 3.18 1779 3.98 1.97 6426 4,65 2.32 7499
3 2.2 10.75 3.86 6741 5.72 2.07 5892 7.00 2.94 6478
4 2.1 12.9% 3.22 5942 7.11 2.23 5676 9.17 2.35 5706
5 2.0 15.33 31.64 5258 8.87 1.97 4787 11.23 2.45 4968
& 1.9 17.9¢4 31.84 6341 10.27 1.99% 3957 13,21 z2.63 4049
7 1.7 21,45 6.79 3388 11.39 3.37 3149 14.87 2.83 3058
8 1.5 22.20 3.65 23463 12.83 9.07 3083 16.30 2.02 2120




Fig. 3: A SDOF Structural Model With an Active Tendon Control
System.



Fig. 4: Nonlinear Stiffness Characteristics: (a) Bilinear
Elastic-Plastic Stiffness; (b) Bilinear Elastic Stiffness.
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Fig. 6: Floor Relative Displacement of Bilinear Elastic-Plastic
Structure; (a) Without Control; (b) Q /R =0.15x10%

(c) Q /R _=0.8x10%
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ig. 12: Base Shear Force of Bilinear Elastic Structure; (a) Without

Control; (b) With Active Control Q_/R =0.8x10°.
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Fig. 13: Required Active Conwrol Force for Bilinear Elastic Structure
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Structural Model and Characteristics of Restoring Force;
(a) SDOF Model with Base Isclators and Active Tendon
System; (b) Bilinear Elastic-Plastic Restoring Force.
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) QR =9x107.
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RESTORING FORCE, (kN)

200

100 L
O
-100 L
-200 » :
~& -2 G 2 4
200
() (c)
?m b ." 2
O G
“‘gm e _%m =

0 2 .2 0
RELATIVE DISPLACEMENT, (cm)

Fig. 19: Hysteresis Loop of Inelastic Shear Force in Rubber
Isolators; (a) Without Control; (b) Q /R 0=2x107;

() QR =9x107.

3~38




CONTROL FORCE, (kN)

150

(a)

(b)

180

- 150

i i | !
5 10 15 20 25
TIME, (seconds)

Fig. 20: Active Control Force; (a) Q0/R0=2x107; (b) Q0/R0=9x107.
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Fig. 22: Top Floor Relative Displacement With Respect to Ground
{0.3g Earthquake): (a) Without Control; (b) With Passive
Mass Damper; (C) With Active Mass Damper.
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Damper.
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Fig. 37a: Required Active Tendon Control Force for g = 0.25x10*
(0.55g Earthquake): (a) From First Congroller; (b) From
Fourth Controller.



CONTROL FORCE (MN)

4th CONTROLLER

§
M
£

¥

50

(a)

25¢

Ist CONTROLLER
&
e

~2.5k i

(b)

25

¥

b

& ] A

0 5 10 15 20 25 30
TIME, (seconds)

Fig. 37b: Required Active Tendon Control Force for a = 0.55x10%
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RELATIVE DISPLACEMENT OF TOP FLOOR, (cm)

Fig. 38:
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Top Floor Relaiive Displacement with Respect to Ground
(G.3g Earthquake): (a) Without Control; (b) With Active
Mass Damper Using State Variables y;; (¢) With Active

Mass Damper Using State Variables x;-
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Fig. 39: Base Shear Force (0.3g Earthquake): (a) Without Control;
(b} With Active Mass Damper Using State Variables ¥is

(c) With Aciive Mass Damper Using State Variables x;.
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CONTROL FORCE, MN

Fig. 41:

(a)

-2 ; a | | i

o & 10 15 20 25 30
TIME, seconds

Required Active Control Force (0.3g Earthquake): (a) With
Active Mass Damper Using State Variables y;; (b) With

Active Mass Damper Using State Variables x;.
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Fig. 42: Relative Displacement of Mass Damper with Respect to Top
Floor (0.3g Earthquake): (a) With Active Mass Damper
Using State Variables y;; (b) With Active Mass Damper

Using State Variables x;.
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IV. CONCLUSIONS

Three instantaneous optimal algorithms have been developed for active
control of nonlinear structures subjected to general dynamic loads. These
include the instantaneous optimal closed-loop control algorithm, instantane-
ous optimal open-loop control algorithm, and instantaneous optimal closed-
open-loop control algorithm. VUnder ideal control enviromments, these three
optimal algorithms yield identical results. Emphasis is placed on appli-
cations of active control to inelastic tall buildings subjected to strong
earthquake ground motions.

Instantaneous optimal control algorithms are derived by minimizing a
time dependent quadratic performance index, whereas nonlinear equations of
motion are solved using the Wilson-# numerical method. These optimal
control alporithms are shown to be computational efficient and suitable for
on-line implementation of control systems to nonlinear tall buildings under
earthquake excitations. While control of inelastic structures has been
demonstrated exclusively, these optimal algorithms are equally applicable to
structures with other types of nonlinearity, such as the geometric
nonlinearity. Likewise, they are applicable to linear structures as a
special case,

The following conclusions are obtained from numerical results: (1)
Significant yielding of building structures, which generally results in a
severe damage, can be mitigated or even eliminated through active control
systems using the proposed optimal contreol algorithms. It is possible and
may be practical to keep the structural response well within the elastic
limits. (2)- The proposed instantaneous optimal control algorithms are
reliable and they are capable of consistently mitigating structural response
quantities as regulated by the weighting matrices. (3) For the optimal

design of building structures implemented by an active control system, the



appropriate cholce of state variable for use in the instantaneous optimal
control algorithms is important. {4) The combined use of passive/active
control systems can be very beneficial. The basic idea beshind the use of
combined passive/active contrel devices as an integral protective system is
that the structural response can be mitigated mainly by the passive systems,
such as base isolators, whereas the damage of passive systems can be
alleviated or even eliminated by the active system effectively. Preliminary
results obtained in this report are quite encouraging and further research
in this regard is being underway. Since base isolators usually exhibit
nonlinear behavior, the optimal algorithms developed herein for controlling
nonlinear structural systems including buildings with a base isolation
system, 1s quite significant.

Frequently, after yielding occurs resulting from excessive deformation,
structural properties may change and degrade thus deviating significantly
from the original estimated values. In this connection, the adaptive
control algorithm should be developed in conjunction with the instantaneous
optimal control algorithms proposed herein. This is a subject of future
research. Further, based on the present optimal control algorithms, the
control efficiency is regulated at every time instant by the weighting
matyrices Q and R. In order to guarantee that the structural response be
always within specified limits, welighting matrices should be time dependent
and they should be adaptive to the feedback response at every time instant
t. This is a subject of research currently underway. Finally, experimental
programs will be undertaken in the near future to verify the applicability

of these proposed instantaneous optimal control algorithms.
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APPENDIX: THE WILSON-§# HETHOD

The equations of motion of a structural system at any time instant t

cart be written as, Eq. (2)

M Y(e) + Fy(e) + F(e) = - M v X (&) + H U(t) (1-1)

in which ‘}io(t) = earthquake base acceleration, Y(t) =« n-dimensional vector
denoting the digplacement of the structure relative to the moving base, M =
(rxn) constant mass matrix, I_{(t) = p-dimensional control vector, H = (nxr)

matrix denoting the location of r controllers, and v = unit vector of order

¢

n, i.e., v= {1,1, ..., 1] . In Eg. (I-1), g‘D(t) is an n-dimensional dam-

ping vector denoting the damping ferce, and Es(t) is an n-dimensional stiff-

ness vector denoting the stiffness restoring force. The equations of motion
can be solwved by a step-by-step numerical integration in which the response
time history is divided inte small time Interval At and the equations of
motion are satisfied at discrete time instants nAt for n =1 ,2,

At time t-At, the matrix equation of motion can be written as

M Y(t-at) + Fp(e-at) + F _(t-at) = - M v X (€-at) + H U(t-At) (I-2)

The Wilson-# method that results in an unconditionally stable
solution will be used herein. Based on the Wilson-# method, the response

acceleration is assumed to vary linearly over an extended interval from t-At



to t-At+fAt for 4 = 1.37. The matrix equation of motion at t-At+dAt is

given by

M ¥(t-At+4AT) + Ep(t-At+fAt) + F_(£-At+At) = - M v X, (c-AC+fAL)

+ H U(t-At+fAt)  (I-3)

Subtracting Eq. (I-2) from Eq. (I-3), one obtains the equation for

incremental response from t-At to t-At+dAt,

MA ¥+ "Bl + K By - A R (1-4)
in which

B ¥(r) = ¥(e-at+aat) - ¥(t-at)

@ Y(t) = Y(r-at+8at) - Y(t-At) (I-3)

B Y(t) = Y(t-At+8at) - Y(t-At)

are the increments of acceleration, velocity and displacement in the time
interval (t-At, t-At+fAt). In Egq. (I-4), the increments of damping force

and stiffness restoring force are approximated by the following

Fp(e-At+0at) - Fp(t-at) = ¢ A ¥(e)

g (1-6)

&
F_(t-At+fAt) - F_(t-At) = K A ¥(t)



* * * e
in which € = C (t-at) and K = K (t-At) are influence coefficient matrices

* %*
whose 1-j elements, denoted by Cij(t~At) and Kij(t-At), respectively, are

given as follows

8F, . (t-At)
¢l (t-at) = —2—
L 8y (£-4t)

(1-7)

BFSi(t-At)

*
Kij(t—At) - 8yj(t-At)

where FDi(t-At) and Fsi(t-At) are the ith elements of damping <wvector
ED(t-At) and stiffness vector Es(tuAt), respectively. Further, §j(t-At) and

yj(t-At) are the jth elements of the response vectors i(t—At) and Y(t-At),

respectively. As observed from Fig. 2, these influence coefficients are

tangent damping and tangent stiffness at t-At, respectively. HNote that the

damping vector ED(t-At) and the stiffness wvector Es(t-At) are functions of
i(t—At) and Y(t-At), respectively, i.e., ED(t~At) " ED{g(t—At)§ and Es(t~At}
= F_[Y(c-a0)].

The incremental loading A P(t) is approximated by

BBty = ¢ {« M v Eﬁo(t) - io(t-At)] +H [g(t) - g(c—an)]} (1-8)

Thus, given the response at t-At, the responses at t-At+fAt and at t can be

derived in the following.



t-At+8AL),

let 7 be the time increment in the time interval (t-at,
Then, the linear variation of the response acceleration

i.e., 0 = r < AL,
in (t-Ar, t-At+fAt) can be expressed as
Y(e-ater) = Y(e-a0) + S [g(t»At+9At) - i(t-At)] (1-9)
Integration of Eq. (I-9) yields
o hJ a0 1'2 e e
Y(t-at+r) = Y(t-At) + 7 Y(t-At) + LYYV [X(t—&t+9At) - X(t—ﬁt)] (I-10)
L) 72 .u
Y(t-At+r) = }f_’(t-At) + 7 Y(t-At) + 'R Y(t-At)
(I-11)

3
, . .
+ GOAE {}_’(t-AtMAt) - }_’(t-At)]

(1I-10) and (I-11) become

For r = fAt, Egs,
R o) = 4 ot Y(e-ar) + 52 Yo (1-12)
2
(1-13)

2
ﬁ }:(t) = § At }'_{(tva.t) + -(-gg—tL Y(t-at) + &

The incremental acceleration ﬁ g(t) and incremental velocity A g(t) in

expressed in terms of the Iincremental displacement

(t-At, t-At+8At) can be

B Y(t) using Eqs. (I-12) and (I-13) as follows



A ¥ -

> By - $(t-at) -3 ¥(c-at) (1-14)
(8AL) (9a¢t)

At

R iy = 72 By - 3 ¥e-ae) - BBE Y(eoan) (1-15)

ga

Substituting A g(t) and A i(t) given by Eq. (I-14) and (I-15) inte the
matrix equation for incremental response in (t-At, t-At+fAt), Egq. (I-4), one

can sclve the only unknown ﬁ Y(t) as follows

Ayey =67t g (o) (1-16)
in which
& 3 * *
g - M+ ¢+ K (1-17)
(9At)2 AL

E (E) = M [(git) Y(e-at) + 3 §(c-Ac)] + 0" [3 P(e-ar) + L85 §<t~At)]

s

- My [Xo(t) - io(t»At)] + 8 H [U() - U(t-at)] (1-18)

Thus, the incremental responses ﬁ g(t) and A i(t) in (t-At, t-Ar+fAt) are

obtained by substituting Eg. (I-16) inte Egs. (I-1l4) and (I-15),

respectively.

A-5



The incremental velocity and displacement vectors in the time interval
(t-At, t), denoted by A?(t) and AY(t), respectively, are obtained from

Egs. (I-10) and (I-11) by setting r=At as follows

AYCE) = ¥(t) - Y(t-at) = s F(e-ar) + 55 8 (o) (1-19)

AY(E) = Y(t) - Y(t-At) = At L(t-at) + 2(ar)” F(e-at)

(I-20)

in which A g(t) has been obtained in Eqs., (I-14) and (I-16), and Y(t-At) and
i(t-ﬁt) are the given initial conditions at t-At. The acceleration response

vector g(t-At) at t-At appearing in Egs. (I1-19) and (I-20) are determined

from the matrix equation of motion, Egq. (I-2},

Y(t-At) = rﬂg"}‘

[«g v ﬁo(t-At) + H U(t-at) - ED(t-At) - Es(t~At)] (I-21)
Thus, the equations of motion are maintained at time t-At. As the numerical
procedures are repeated at each time instant f+nAt for o=1,2,,.., the
equations of motion are preserved at these discrete time points.
Substitution of Egs. (I-21), (I-14) and (I-16) intc Eqs. (I-20) and

(I-19) leads to the following expressions for the incremental displacement

AY(t) and incremental velocity A%(t).

A-b



AY(E) = &

MO

in which

s, - [ 3¢0-1) ¢ + aco(o-1.5) K ] n

Y, .
E {33 Y(t-at) + gs[gsct-Ac) +

_2 I
-HU (t—At)]} + 8 [31 Xg() + T,

2 .
E {Ea Y(e-at) + gé[gs(t~At) +

ED(t—At)] .
g(t)}

ED(t-At)] -

=7

T [g v X, (t-at)

(1-22)

gg[g v Xy (£-40)

-HU (t—At)}} + 3 3'2(At>”1{gl Tty + T, g(c)}

EMwv, T,~EH , 33 = (6/At)M + SHQ* + At(sz—l) g*

=2

*
3K, Ty = -(31,+5,), Ig = -(6/88)1,- 8,
Iy *+ 5 Iy = /a0 + 5y
-1
*
g K
{6AtL)

st (1.56-1) € + 0.5(at)2(82-9) 5*} M

-1

A-7

1

-

{I-23)

> (1-24)




The response state vectors Z(t) and Z(t-At) at time t and t-At,

respectively, are defined as

Y(t) Y(t-At)
Z(t) = . Z(t-At) = (I-25)
1) Y(t-at)

and they are related as follows

8Y(E)

Z(t) = Z(t-At) + | (1-26)
- AY(t)

where AY(t) and Ai(t) are obtained in Egs. (I-22) and (I-23), respectively.

Substituting Egs. (I1-22) and (I-23) into Eq. (I-26), one obtains the

response state vector g(t) as follows

2(t) = D(e-at) + AR (6) + A, U(E) (1-27)
in which

D" (t-at) = Ay Z(t-At) + A, [F (t-At) + F_(c-At)]

+ Ay X(t-At) + A, U(t-At) (1-28)

In Egs. (I-27) and (1-28), A, for j=1,2,...,6 are vectors or matrices given

]

in the following

A-8



T '
A, 9"2 IS S : A = 5"2 LT
£y 22
-3 3
At ~1 At =2
I, : 8°°ET ET
A = __T}-: ..... =3 . A = g2 (TR > (1-29)
~3 0 -2 4 E T
- 4 i
I, +0 °E T, 6
ET ET
55 - -3'2 It M v : éé o= 9'2 Tl H
E Tg E Ty J

in which El is an {(nxn) identity matrix.



APPENDIX TII: BASIC EQUATIONS OF MOTION

With the state variable yj(t) being defined as the relative
displacement of the jth floor with respect to the moving base, the matrix
equation of motion for a one-dimensional n-degree-of-freedom shear-beam type

tall building implemented by an active control system can be written as
M ¥Ce) + ClTe)) (o) + RIWO)] ¥(©) = -M v Ro(e) + HU()  (T1-1)

For the structure implemented by an active mass damper on the top floor,
one obtains the follows matrices and wvectors: Y(t) - yl(t),yz{t),..‘.
yn(t), yd(t) 17, M= a (n+l) by (nt+l) diagonal matrix with the jth diagonal
element being mj where moal = P
= a (ntl) wvector = [0,0,0,.,.0, -1,1]", U(t) = a ome-component vector,

v = a (n+l) wunit vector = [1,1,...1]", H

and C and K are (n+l) x (n+l) matrices

ky+k, -k, 0
-k, kytky kg
e
K = “\\ "“\\ ~ - (11-2)
‘*-..\ .,
~ k vk, -k
™~k K
e i d d -
c1+c2 -02 0
“Cz - 02+CB ‘03
e
¢ = ~ \\\ ~ (11-3)
~ ~— .
™~ ~ e el T o-e
\\ n d d
™~
"4 €a




The quantities given above are described in the following: mj = mass of

the jth floor, my

unit, k, = stiffness of the mass damper, cj = damping coefficient of the ith

= mass of the mass damper, kj = gtiffness of the jth story

d

story unit, and c =damping coefficient of the mass damper.

d
For a structure implemented by r tendon controllers, one obtains the

following: Y(t) = [yl(t), yz(t),...,yn(t)}', M = an (nxn) diagonal matrix
with the jth diagonal element heing mj, v = an n unit vector = [1,1,...,1}",
U(t) = a r-dimensional vector = [Ul(t)’ Uz(t)’”"Ur(t)] and C and K are

(nxn) matrices obtained from Eqs. (II-3) and (II-2), respectively, by (i)
deleting the last raw and column, and {(ii) setting kd = Cd = (},
H is an (nxr) location matrix that can be obtained from the (mxn) full-

location matrix @*

-1 1 0 0 0
0 -1 1 0 0
*
H - o - 1 0 (II-4)
0 -1 1
\\\\\\
~ N ~
0 -1 1
0 -1

When every story unit is installed with a tendon controller, ﬁ* should be
used. With only r (<n) contrellers, H matrix is obtained from 3* by keeping
those columns corresponding to r controllers.

Let xj(t) be the relative displacement between the j th floor and the
3-1 th floor (i.e., the deformation of the jth story unit). With the state
variables | xl(t), xz(t),...,xn(t) iy  the matrix equation of motion can be
written as

M X(e) + CIR(0)] R(E) + RIX(E)] X(£) = - VK (6) + H U(E)  (II-5)
in which the location matrix H and the control wvector U(t) are identical to
those given in Eq. (II-1).

For a structure Implemented by an active mass damper on the top floor,

A ]

the following wvectors and matrices are obtained: () = | xl(t), xz(t),..

A-11



xn(t), xd(t) ], V= an (n+l) vector = [ Wy, My, m, m and M, C and

K are (nt+l) % (n+l) matrices given as follows

21
2y By
(11-6)
M- my w3 my 0
- [ | E
| I i
f f |
m m — — — I 0
n n n
i md md — - — md md
k -k
1 2 0
k -k
K = 2 3 (11-7)
ky -k,
~ \\
~
o ~.
~ -
ku kd
. kd wl
C -C
1 2 0
[+ =C
C = 23 (11-8)
°3\‘°a
0 N0
- \\ \
Cn -cd
- cd u

For a structure implemented by r tendon constrollers, one obtains the

following: X(t) = [xl(t), xz(t),. V = an n vector = [ m,

¢
o xn(t)} ¥
My, oo a B ], and M, K and C are (nxn) matrices obtained from Eqs. (II-6),
(II-7) and (I1I-8), respectively, by (i) deleting the last raw and column,

and (ii) setting my =c¢y4 = kd = (),
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