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ABSTRACT

A study of the dynamic impedances of thin, infinite viscoelastic soil
layers with a circular hole is made considering a continuous, ramp-1ike
radial variation for the shear modulus of the material. Both vertically
and torsionally excited systems are examined. The impedances are evalu-
ated over wide ranges of the parameters involved and compared with those
obtained both for homogeneous layers, and for inhomogeneous layers with
discontinuous variations 1in shear modulus. In addition, a simple ap-
proximate method of analysis based on the Galerkin approach is presented
for vertically excited layers, and it is used to assess the parameters
that control their high-frequency response.
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SECTION 1
INTRODUCTION

Whereas the dynamic impedances of thin homogeneous soil layers are well
established and have been used extensively in studies of piles and other
embedded foundations (e.q., references 3,4,5), those for inhomogeneous
layers have received comparatively Tittle attention.

The earliest study of inhomogeneous layers appears to have been made by
Novak and Sheta [6], who, in an effort to provide for the effects of the
typically reduced resistance of soils in the immediate vicinity of the
foundation, proposed the use of a composite viscoelastic layer with a
weakened annular boundary zone around the foundation. In the original
anaiysis of this problem, the shear modulus of the layer for each zone
was considered to be constant, and the wmass of the boundary zone was
presumed to be negligible.

Subsequent analyses {7,8,9] revealed that, even when the boundary zone
is fairly narrow, its inertia effects may be substantial and should not,
in general, be neglected. These analyses have further revealed that the
variations with frequency of the layer impedances may be highly undulatory
for abrupt variations in shear modulus. A consequence of the wave reflec-
tions from the discontinuous interface of the two zones, these undulations
would not be expected to occur for layers with more realistic, continuous
property variations.

The primary purpose of this paper is to evaluate the dynamic impedances
for viscoelastic layers with continuous, ramp-like variations 1in shear
modulus, and to compare the results with those obtained for homogeneous
layers as well as for composite layers with discontinuous modulus varia-
tions. Only vertically and torsionally excited layers are examined. A
companion study of horizontally excited layers has been reported recently
in reference 9.

The shear modulus for the boundary zone of the Tayer in the study reported
herein is assumed to increase exponentially in the radial direction, and
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all other material properties are considered to be constant within each
zone. In addition to being more nearly representative of actual condi-
tions, the particular variation considered leads to simple, closed-form
solutions for the governing equations of motion.

A secondary objective of this paper is to present a relatively simple
method of analysis for the system based on the Galerkin approach, and to
demonstrate the utility and range of applicability of this approach.

The impedances of soil Tayers with linearly increasing radial variation
of shear modulus within the boundary zone have also been examined by
Lakshmanan and Minai [2]. Although the inertia effects of the boundary
zone were duly considered in this study, the width of the boundary zone
and the relative values of the shear moduli for the two zones could not
be varied independently by the method of analysis employed.
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SECTION 2
SYSTEM CONSIDERED

The system examined is similar to that empioyed in reference 8. It fis
a viscoelastic layer of unit depth and infinite extent with & circular
hole of radius R, as shown in figure 2-1. The Tayer consists of two
concentric zones: a narrow anhular boundary zone of disturbed material
and width AR, and a semi-infinite outer zone of undisturbed material.
The radius of the interface of the two zones fs denoted by RO. Unlike
the layer examined in vreference 8, however, for which the material
properties of the inner zone were considered to be constant, in the present
study, the complex-valued shear modulus of the layer, 6*(c), is considered
to increase exponentially according to the expressions

EA

6;(1 + itans;) " for 15 £ < kg (1a)
6*(g) =
(1b)

jivs
aal

Go(l + 1tan60) for ¢

in which ¢ = r/R; £ ~ RO/R; r = the radial distance to an arbitrary point;
i=V-T; m = a positive constant; Gi and GO are the shear moduli for the
innermost boundary and outer zone, respectively; and tanéi and tanﬁo are
constants representing the material damping factors for the two zones.
At £ = £y the real parts of equations (la) and (1lb) are considered to
be equal. Accordingly,

ngj ) Go (2)
and unless tanGi = tanso, the complex-valued shear modulus is discontin-
uous at ¢ = Ege It is important to note that, for a specified value of
m, the ratio Go/Gi and the relative width of the boundary zone, 4R/R, can-
not be varjed arbitrarily. Indeed, on noting that £ = (R + aR)}/R, one
obtains the following relationship between AR/R and Go/Gi from equation

(2):
G_\1/m
LR
“ﬁ"(f) -1 (3)

The real part of 6¥(z) will be denoted by G(g).
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For each mode of vibration., the layer is presumed to deform in pure shear,
and only small amplitude oscillations are considered. It 1is desired to
evaluate the dynamic impedances of the layer, KW and Ke’ defined as the
complex-valued amplitudes of the vertical force and torque which are
necessary to induce, respectively, a vertical displacement and a rotation
of unit amplitude along the boundary of the central hole.

In veference 2, the radial variation of the shear modulus within the boun-
dary zone was considered to be linear, m = 1, and the layer impedances
were evaluated only for the combinations of AR/R and Golai defined by equa-
tion {3). By letting m be arbitrary in the present study, the ratios aR/R
and GO/Gf may, in effect, be varied arbitrarily.

In figure 2-2 are shown the variations in shear modulus obtained for
several different combinations of AR/R and GO/Gj, along with the associated
values of m. Note that these variations are not materijally different from
the linear variation considered in the companion study of horizontally
excited layers [9], and are, in fact, more realistic than the Tinear in
that severe disturbances, represented by the higher values of Go/si’ are
felt over greater distances than are moderate disturbances.

The subscript 1 will be used to identify material properties for the inner-
most boundary and the subscript o will identify the corresponding
properties for the outer zone. For the solutions presented herein, the
mass density of the layer, p, is considered to be the same throughout.



m=6.2 |

- M= 3.42
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.23 0.71
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Figure 2-2. Ramp-Like Variations of Shear Modulus Considered



SECTION 3
ANALYSIS OF SYSTEM

Let w(z,t) be the vertical displacement at an arbitrary point and time
t induced by the vertical excitation, and v(z,t) be the corresponding cir-
cumferential displacement induced by the torsional excitation. These
displacements are of the form,

w(g,t) = welwt (4a)

and v(c,t) = velwt (4b)

in which » = the circular frequency of the excitation and of the resulting
steady-state response, and w and v are complex-valued displacement ampli-
tudes that are functions of the dimensionless position coordinate, ¢.

3.1 Vertically Excited Laver

The differential equations for the displacement amplitudes of the verti-
cally excited Tayer, deduced from expressions given in reference 8, are

2
ngug-+(m+1)a—gﬁ—A?gz“mw=o for 1 ¢ <¢ (5a)
de £ i 0
2_@3_‘{{ + ;d;ﬂ _ AZ 2W=O foy\ > (5b)
£
in which
iai
o= e (6)
1 /1 + 11tan<5,f
a. = wR (7)
! Vsi
Vi T JGi/p = the velocity of shear wave propagation in a medium with the

sroperties of the sofl at the boundary of the hole;
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ia
o

A= ——
¢ Al +itan50 (8)
wR
. = uR (3)
0 Voo

and = Jﬁ;ﬁ; = the velocity of shear wave propagation in a medium with

v
50
the properties of the outer zone.

The solutions of these equations are

m/?
e~/ [AWKK_l(Kligl/K) + BWIK_I(KAigl/K)} fFor 1 (10a)

A
Jory
iIA
i

and w = (K (Aog) + DWIO(AOg) for & (10b}

W O

v
Yy

o

in which ¢ = 2/{2- m); IK and KK are modified Bessel functions of order

v of the first and second kind, respectively; and AW, ng CW

complex-valued constants of integration which are determined by requiring

a D r
nd y are

that the displacement amplitude be unity at the boundary of the hole, that
the displacements vanish as ¢ - «, and that the displacements and sires-
ses be continuous at the interface of the two zones.

Satisfaction of these boundary conditions leads to Dw = { and to the fol-
Towing systems of algebraic eguations for the determination of the
remaining constants:

"rA\ 7y
Kea1lry) PEICSY 0 W
1/x 1/x m/2 .
Keplerse, ™) Ioqloge ) - e " KOye )18, ¢ ¢0 4 (11)
1/ 1/k
=K (e, 7 0) I rge ™) xKiOgggd - 1HC, L0

in which x==VGg/G§. With the integration constants evaluated, the impe-
dance of the vertically excited layer, Kw’ is computed from

32



ook dW
Ky = =265 gl (12a)

- %
or Kw = 2ﬂGiAi[:AWKK(Kli) - BWIK(KAi)] (12b)

3.2 Torsionally Excited Layer

The differential equations governing the amplitude of the circumferential
displacement of such a layer are:

¢2 QM% N (m+1)g'%! Pt )v=0 forl<Ec<E (13a)
de £ i 0
2d% ,, dv _ (2l 4 1)y =0 for £ 2 £ (13b)
2 dgz 2 de ob = R0
and their solutions are
- Lmm/2 1/k 1/
v o= g [AK, _lexge™ ) + Boly 4 (kXyE )] forlsg=¢) (14a)
and v = CeKl(Aog) + DGII(AOg) for € 2 & (14b)
in which D6 = 0, and Ae, Be and C6 are complex-valued constants of inte-
gration determined from the solution of the following system of algebraic
equations:
= 9 7 A Y
K2K_1(KA1) IZK“l(KAi) 0 Ay R
1/« 1/« m/2 _
Koeo1 (2480 ) Tpe g logeg™) = 67 KiDge )1 48g ¢ =y 0 0 (1)
_ 1/k 1/
Ko loageg™ ) T leages™) xKa(hgge) ] %ol 0]




The rotational impedance, KG’ is then determined from

- *p Ay _ ¥
_ *
or Ke = EHGiRAi [AGKZK(KAi) - BGIZK(KAi)] (16b)

3.3 A Special Case

For the special case of m=2, the quantity & disappears from the rightmost
terms of the left hand side of equations (5a) and {(13a), and the solutions
presented so far are not applicable. The correct expressions for the dis~
placement amplitudes in this case are given in the Appendix.



SECTION 4
PRESENTATION AND ANALYSIS OF RESULYS

4.1 Format of Presentation

It is desirable to express egquations (12) and (16) in the form employed
in reference 8 as

Kw = WG_E(OLW + ia,igw) (17}

- 2 .
and Ky = 3r6.R7(a, + fa;8) (18)
in which ags Ggs B and By are dimensionless coefficients that depend on
I AR/R, Go/Gi’ tanéi and tanﬁo. The real part in each of these expres-
sions represents the force component that is in phase with the motion,

and the imaginary part represents the component that is 90° out of phase.

In equivalent, spring-dashpot representations of the soil layer, the spring
stiffnesses are represented by the real parts of equations (17) and (18),
and the damping coefficients, Cy and Cgyo are related to By and Bg by the

expressions
¢y = ﬂgwgii (19)
s
6, R
and ¢, = 3ngef\7’—;— (20)

Note that unlike the format emploved by Novak and Sheta [6], in which K,
and Ke were expressed in terms of the shear modulus of the outer zone,
equations (17) and (18) are expressed in terms of the shear modulus along
the boundary of the hole. Note further that the frequency parameter a;
has been added in front of the factors By and By When expressed in this
form, the high frequency 1limits of @y, and g for a homogeneous Tlayer
without material damping are unity, and the corresponding values of B
and By are 2 and 2/3, respectively.
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4,2 Resulis

The results obtained for vertically excited Tayers with no material damping
(tan@i = tan&o = 1) are shown in figure 4-1 for several different combina-
tions of AR/R and Go/Gi’ and the corresponding data for torsionally excited
layers are shown in figure 4-2. The values of m for the combinations of
AR/R and Go/Gi considered are identified in figure 2-2.

The general trends of the curves in figures 4-1 and 4-2 and of the
corresponding curves presented in reference 8 for layers with abrupt varia-
tions in shear modulus are similar, except for the following:

1. The present curves are not nearly as undulatory as those reported pre-
viously. Considering that the variation of the shear modulus for the
present solutions is continuous, this resuit is not surprising. What might
be surprising is that the curves are undulatory at all. Contributed by
the discontinuity in the slope of the G-diagram at the interface of the
two zones, the amplitudes of these oscillations are effectively proportion-
al to the magnitude of the slope discontinuity, increasing with increasing
Go/Gi and decreasing AR/R. However, these undulations are generally of
small amplitude and, as demonstrated in a later section, They are further
suppressed for Tayers with finite values of material damping.

2. The abscissas of the curves in figures 4-1 and 4-2 are essentially
stretched-out versions of those for the corresponding curves with discon-
tinuous varijations in G presented 1in reference 8. For example, whereas
the peak of the @, curve for AR/R = 0.5 and Go/Gi = 4 in figure 4-1 vccurs
at a; = 3.3, the peak of the corresponding curve in reference 8 occurs
at a; = 1.3, Similarly. whereas the point of intersection of the B, curves
in figure 4-1{b) occurs at a; = 2.8, the corresponding point for the curves
in reference 8 occcurs at a; = 0.8.

The Tatter trends are consequences of the fact that the inner zone of the
Tayer for the continuous variation in shear modulus is stiffer, and hence
has a higher effective shear wave velocity, than for the discontinuous
variation. It follows that a prescribed value of aj for the continuous
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Figure 4-1. Impedance Coefficients for Vertically Excited Layers;
tansi = tans0 = 0



Figure 4-2. Impedance Coefficients for Torsionally Excited Layers;
tansj = tanao =0

4-4



variation corresponds to a reduced value for the discontinuous variation;
and the larger the vaive of Go/ﬁi” the larger is the reduction.

4.3 Comparison for Constant Areas

As a further indication of the interrelationship of the impedance functions
for the ramp variation of shear modulus examined herein and the discon-
tinuous variation considered in reference 8, a comparison is made in fiqure
4-3 of the results obtained for Tayers with no material damping and Go/Gi
= 2, The widths of the boundary zones in these solutions are taken such
that the areas under the G{¢)-diagrams for the two cases are equal.

For the Tayer with abruptly varying shear modulus, two different widths
are considered for the boundary zone: A very narrow zone with a value
of AR/R = 0.1; and a fairly wide zone with a value of AR/R = 1. The corre-
sponding values of AR/R and m for the exponentially increasing variation
are 0.18 and 4.10 for the narrow zone, and 2.16 and 0.60 for the wide zone.

The results for the thin boundary zone are displayed in the upper part
of figure 4-3 and those for the wide boundary zone are displayed in the
Tower part. The excellent agreement of the resuits in the first case
indicates that the response of the system for very narrow boundary zones
is effectively controlled by the area under the G{t) diagram. By contrast,
for the wide boundary zones, the response is affected significantly by
the detailed characteristics of the G(g) diagram, particularly by the
nature of its discontinuities. The consequences of wave reflections due
to a discontinuity in the slope of G{z) are cleariy not as important as
those due to a discontinuity in G6(g) itself. The difference 1is
particularly large for vertically excited layers.

4.4 Static Values of Impedances

The vertically excited layer offers no resistance to static loads, with
the result that o in figure 4-1 tends to zero as a; - 0. By contrast,
the torsionally excited layer is statically stable, and the curves for
ag in figure 4-2 approach non-zerc values.
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Figure 4-3. Comparisons of Impedance Coefficients for Soil Layers with Ramp

and Discontinuous Variations in Shear Modulus: Go/Gi =72,

tan 6‘? =tan 60=0
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The *“static" impedance of a torsionally excited viscoelastic Tayer may
be deduced from equations (13) by taking Ay = A T 0. The solutions of
the resuiting equations are

~(m+1)

v = Aeg +Beg for 1 s &5 & (21a)

0

-1

N (21b)

and v = L + Deg for £ 2 £

0

from which, on satisfying the appropriate boundary and interface condi-
tions, one obtains

#pn 2 1+%

4ﬂGiR
6. (2+m)/m o Leitans,
() Ty )
0 1+Ttan60

(Ke)ai=0

4.5 Effects of Material Damping

The impedance functions for elastic Tlayers with Go/Giﬂ 2 and AR/R=2 pre-
sented in figures 4-1{d) and 4-2(d) are compared in figure 4-4 with the
corresponding functions obtained for a viscoelastic Tayer with tan 61=

2 tan 50. As would be expected from available information about homogeneous
layers [4] and composite layers with abrupt variations in shear modulus
[8], material damping increases the damping capacity of the Tayer,
decreases its stiffness, and suppresses the undulations in the plots
for both of these quantities. The increase in damping is particularly
large for the torsional mede of vibration, especially at the Tow values
of the frequency parameter, for which the effects of radiation damping
are small.
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SECTION 5
LAYERS WITH SHMOOTH VARIATIONS IMN SHEAR MODULES

The impedances of vertically excited layers are evaluated in this section
for radial variations in shear modulus that are continuous both in the
function itself and its derivatives. The analysis is implemented approxi-
mately by the Galerkin approach using a single approximating function.
Special emphasis is paid to the behavior of the system at high frequencies.

The complex-vajued shear modulus is taken in the form
6"(e) = 6;9(¢) (23)

in which g = g(¢} = a complex-valued dimensionless function of g, defined
by

G,

glg) = —g-q —(Eﬁw 1>e”n(g“1) + itans, (24)
i

and n is a positive constant. The real part of this expression defines

the variation of the shear modulus, whereas the ratio of the imaginary

and real parts defines the material damping of the system. Note that

whereas the shear modulus increases monotonically with increasing ¢, the

damping factor exhibits the opposite trend. In particular, as ¢ - =, G

tends to Go’ and the material damping factor tends to
tandsO = (Gi/Go)tanéi {25)

The variations of these guantities with £ are displayed in figure 5~1 for
four different values of n.

5.1 Analysis of Layer

The differential equation for the displacement amplitude, w, is

2
2. dw 2dg dw , 2.2 .
agd£2+(£ a FEdgr tagew = 0 (26)

This equation is obtained from the equilibrium of vertical forces,
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Figure 5~1. Radial Variations of Material Properties Defined by
Equation (23)



dr

rz
T + r

2
- e Tt erewW {(27)

in which the shearing stress, Tpg? is related to w by

and G" is given by the right-hand member of equation (23).

The solution of equation (26) is taken approximately in the form
wo= ¢ = e“Y(i'l) (29)

in which vy 15 a complex-valued dimensionless parameter. Equation {29}
satisfies the condition of wunit displacement amplitude at the boundary
of the central hoie. In order that it also represent waves that propagate
away from the hole with amplitudes that decay with increasing £, both the
real and imaginary parts of v must be positive, j.e.,

Re{y) > 0 (30a)
Im(y) > 0 {30b)

On substituting the approximating function ¢ 1into equation (26) and
requiring that the integral over the range 1 £ £ £ « of the product of
the approximating function and the residual or error function vanish, one
obtains

) 2
j;[Ezw“:“%*(Ez*gfg‘+£9)¢%%+6§£2¢2}d£ = 0 (31)
£

Evaluation of this integral leads to the seventh order polynomial

C.vd =0 (32)
j=0 Y
in which

. 1.2 3
CO = gayn (33a)
C1 = -%a?(n3 + 3n2) (33b)
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e

82 = -%a?(ns + 6n" +6n) (33c)

c, - a?(Snz ¥ 6n o+ 2) (33d)
2 1By 36 3. 2

C4 = a; (6n + 4} +-§-§; n" - (E; - I1Xn" + n® + n) (33e)

6" G

2 2 2

Cc = 4a1.+3G—:_’¥n ~{§$~1)(5n + 2n) (33F)
Gr g

_ 0. . _9

C6 = 6 Gi n-8( Gi 1in (33g)
a; 6,

C-] = 4E;w4(~éf;—1)=¢(l+1tan51.) (33h)

Of the seven values of vy which satisfy equation (32), only one has been
found also to satisfy equations (30). On making use of this particular
value of vy, the impedance of the layer is determined from

K = -o2rGF 2

_ *
W i dg|g=1 = Gy (34)

5.2 Reliability of Solution

A measure of the reliability of the approximate procedure is provided in
figure 5-2, in which the impedance coefficients for a homogeneous layer
obtained by this approach are compared with the corresponding exact values
for tans = 0 and 0.20. Equation (32) in this case reduces to

(l-Fitanﬁo)yA + asyz + agy +-%a§ = { (35)

It is observed that whereas the agreement between the two sets of data
is excellent at the larger values of A it deteriorates at the smaller
values, resulting in errors that may exceed 20% for 2, < 0.4. However,
the errors in the individual coefficients are of opposite signs, and the
maximum error in the amplitude of the impedance (represented by the square
root of the sum of the squares of oy, and 3w) is generaliy quite small.
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Figure 5-2. Comparisons of Exact and Approximate Impedance Coefficients
for Vertically Excited Homogeneous Layer
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5.3 Presentation of Results

The impedance coefficients for layers with the variation of shear modulus
defined by equations (23} and (24) is given in figure 5-3 for several dif-
ferent combinations of Go/Gi and n. The far-field value of the material
damping factor in all of these solutions is taken as tanao = (.05. Thecor-
responding factors for the boundary of the hole are defined by equation(25).

In the 1ight of the inaccuracies revealed by the comparison of the results
presented in figure 5-2, the Tow-frequency behavior of the curves in figure
5-3, particularly theose corresponding to the higher values of Go/Gi’ must
be considered as suspect. There is no question, however, regarding the
accuracy of the presented curves in the moderate and high frequency ranges.
The curves for By in the latter figure have the same high-frequency limit,
whereas those for o have different Timits.

In the study of vertically excited layers presented in reference 8, it
was noted that the high-frequency limit of % for a layer with no material
damping and a continuous variation of shear modulus is given by

= 1 +%f(1) (36a)

aw‘af+m
in which f (1) = the slope of G(g) at £ = 1 normalized with respect to
Gi“ For the variation defined by equation (24), equation (36a) reduces
to

“w’ai»-oo =1 +~f‘2~(§% . 1) (36b)
As a demonstration of the reliability of equations {(36) and as a further
confirmation of the high-frequency behavior of the curves for Bry? the impe-
dance coefficients for the bounded variation of shear modulus defined by
equation (24) are compared in figure 5-4 with those cobtained for the varia-
tion defined by equation (la) without dimposing an upper limit on ¢.
Increasing without bound, the latter variation has been examined previousiy
in reference 8 and by Gazetas and Dobry [1]. The exponents m and n in
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Figure 5-3. Impedance Coefficients for Vertically Excited Layers with
Radial Variations of Shear Modulus Defined by Equation (23);
tanao = (.05
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the two expressions are chosen such the values of both the shear modulus
and of 1its slope at the boundary of the hole are identical in the two
cases. These conditions require that

G
ofi)

The particular data displayed are for layers without material damping and
a value of Go/Gi = 2 for the bounded variation. Equation (37) in this
case reduces to m=n.

Note that the high-frequency Timits of both the stiffness and damping coef-
ficients in figure 5-4 are identical for the two variations. Note further
that there are significant differences between the two sets of data 1in
the practically important range of a; values of one or less. It follows
that, within this frequency range, the unbounded variation should be used
as a substitute for the more realistic bounded variations only with the
greatest possible care. The errors in such usage would be expected to
be particularly large for the higher values of m and n which are associated
with rather abrupt modulus variations.
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Comparisons of Impedance Coefficients for Vertically Excited
Layers with Unbounded and Bounded Radial Variations of Shear

Figure 5-4,
= n

Modulus; tans = 0; f (1) =m
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SECTION 6
CONCLUSTON

With the information and insight intc the response that have been provided
in this paper, the vertical and torsional impedances of radially inhomo-
geneous viscoelastic soil Tlayers with a circular hole and ramp-like,
continuous variations in shear modulus may be evaluated readily. When
plotted as a function of the frequency parameter, these impedances are
not nearly as undulatory as those obtained for layers with discontinuous
variations in material properties, but are not entirely without undulations
due to the discontinuity in the slope of the shear modulus at the interface
of the two zones. The high-frequency limit of the real part of the impe-
dance function has been shown to be controlled by the values of the shear
moduTus and its slope at the boundary of the central hole.
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SECTION 7
APPENDIX. SOLUTIONS OF EQUATIONS (5) AND (13) FOR m = 2

When the exponent in equation (la) is m=2, the differential equations
governing the motion of the vertically excited layer reduce to

P
2dw dw 2
£ 5 4+ o= - asw =10 for 1 s ¢ s ¢ (38a)
dgz ds 1 0
2 d%u dw 2.2 _
T AW = 0 for £ = Eq {38b)
gt
and those governing the torsionally excited layer reduce to
2 d%y dv 2
574-353}_-(;\1,+3)va foriégégo {39a)
dg =
2 d%v | dv 2 2
g-§+gfa--(>\g+1)v=0 for £ z & {39b)
d £ 0 0
The solutions of equations (38) are
] a, q, L
W o= Awg + ng for 1 2 ¢ < go {(40a)
W = CWKO()\Og) + DWIO(AOE) for £ 2 £ {40b)
and those of equations (39) are
q, a,
v = Aeg + Beg forlggggo (41a)
Vo= Ok (E) * DI () for £ 2 g (41b)
in which
g, = -1+ V14)? (42a)
a, = -1- Vil (42b)
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w1+ V[“_AZ (42¢)

93 i

-1- Vol (424)

i}

9%

Dw = D8 = 0; and Aw through C8 are constants of integration which may
be determined from the solution of the following systems of equations.
Obtained by satisfying the appropriate boundary and interface conditions

identified previously, the equations for the vertically excited layer

are
T 3 S
1 1 0 AW 1
€q} qu K (» £ ) £B %=<¢0 % (43)
4] 4] 0" 0°0 W
4, q, 1+ itanéo
£, 9584 m(loéo)i{l(kogo)“ ;ij §LOJ

and those for the torsionaliy excited layer are

2 " 7 " oy
1 1 0 Ae R
£ 3 e K (n £ ) {8, =40} (44)
0 0 1'"0~0 f
4, q, 1+ itans
(CI3"’ 1)5 (Q4' 1)50 ()‘ £ )KZ(AOED)_ aCGJ LOJ

1+ itanéi 0°0

With the integration constants determined, the impedances of the verti-
cally excited layer are computed from equation (12a) to be

= . £ 4
K,y 2n G (Awa + Bqu) (45)

and those of the torsionally excited layer are computed from eguation
{16a) to be

Ky = mzﬂe’;‘a [Aglag-1) + Bylg, - 1)] (46)
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SECTION 8
NOTATION

dimensionless frequency parameter for inhomogeneous Tlayer,
defined by equation (7)

dimensionless frequency parameter for homogeneous layer, defined
by equation (9)

constants of integration for vertically excited layer

constants of integration for torsionally excited layer

coefficients in polynomial defined by egquation (32)
value of G'(c) at ¢ = 1 normalized with respect to Gi
6*(c) normalized with respect to G,

shear modulus of elasticity for material of layer at ¢

shear modulus of elasticity for material at the boundary of the
hole

shear modulus of elasticity for material in undisturbed outer
zone

complex-valued shear modulus of elasticity for material of layer
at ¢

value of G*(£) for material at the boundary of the hole
value of G™(¢) for material in undisturbed outer zone
V-1

modified Bessel function of first kind of order «
modified Bessel function of second kind of order k
vertical dynamic impedance of soil layer

torsional dynamic impedance of soil layer
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constant in equation (1) that defines variation of 6¥(¢)

constant in equation {24) that defines variation of 6¥(z)

complex-valued dimensionless parameters defined by equation (42)
radial distance to arbitrary point

radius of central circular hole

radius of interface of inner and outer zones of soil layer
time

damping factor for material at the boundary of the hole
damping factor for material of undisturbed outer zone
circumferential displacement for arbitrary point on layer
shear wave velocity for material at the boundary of the hole
shear wave velocity for material in undisturbed outer zone
vertical displacement for arbitrary point on layer
stiffness coefficient for vertically excited layer
stiffness coefficient for torsionally excited lTayer
damping coefficient for vertically excited layer

damping coefficient for torsionally excited Tayer

constant in equation {29) for vertical displacement

width of softened boundary zone

2/(2-m)

dimensionless parameter defined by equation (6)
dimensionless parameter defined by equation (8)

r/R = dimensionless radial position coordinate

RO/R

mass density for material of Tayer

vertical shearing stress at arbitrary point on layer
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approximating function for vertical displacement
,"* *
Go/Gi

circular frequency of excitation and of resulfing steady-state
response
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