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Preface 
 
MCEER is a national center of excellence dedicated to the discovery and development of 
new knowledge, tools and technologies that equip communities to become more disaster 
resilient in the face of earthquakes and other extreme events. MCEER accomplishes this 
through a system of multidisciplinary, multi-hazard research, in tandem with 
complimentary education and outreach initiatives.  
 
Headquartered at the University at Buffalo, The State University of New York, MCEER 
was originally established by the National Science Foundation in 1986, as the first National 
Center for Earthquake Engineering Research (NCEER). In 1998, it became known as the 
Multidisciplinary Center for Earthquake Engineering Research (MCEER), from which the 
current name, MCEER, evolved. 
 
Comprising a consortium of researchers and industry partners from numerous disciplines 
and institutions throughout the United States, MCEER’s mission has expanded from its 
original focus on earthquake engineering to one which addresses the technical and socio-
economic impacts of a variety of hazards, both natural and man-made, on critical 
infrastructure, facilities, and society. 
 
The Center derives support from several Federal agencies, including the National Science 
Foundation, Federal Highway Administration, Department of Energy, Nuclear Regulatory 
Commission, and the State of New York, foreign governments and private industry.   

 
This report presents and verifies a revised model of the behavior of triple friction pendulum 
bearings that explicitly computes the sliding displacements, sliding velocities and the rise 
in temperature at its four sliding interfaces.  This permits consideration of the effects of 
velocity and temperature on the coefficients of friction.  The model is based on the earlier 
model of Fenz and Constantinou, which did not explicitly compute the conditions at each 
sliding interface but correctly predicted the global force-displacement relationship of the 
bearing.  The model was implemented in program OpenSees and interested users may 
obtain the source code from the authors. 
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ABSTRACT 

A Triple FP bearing element currently available in program OpenSees is based on the series model, which 

consists of properly combined hysteretic/frictional and gap elements. The model can account for the 

dependency of the friction coefficient on axial pressure and on sliding velocity using modified parameters 

without explicitly calculating the velocity at each sliding surface.  The model cannot be directly used to 

account for frictional heating effects since for those calculations, the histories of velocity and displacement 

on each sliding surface are needed. 

This report presents a new triple FP element in OpenSees that is based on the existing element in program 

OpenSees but modified to account for the effect of frictional heating on the friction coefficient. To 

accomplish this, the displacement and velocity of the top of the bearing with respect to its bottom computed 

by the element are partitioned into components at each sliding surface.  This partitioning is based on two 

different procedures: (a) modification of the histories of displacements and velocities computed in the three 

individual FP elements in the series model of the bearing, and (b) retracing the histories of displacements 

and velocities based on the force-displacement relationship of the theory of Fenz and Constantinou.   

Verification of the modified Triple FP element is performed by computing force-displacement loops and 

histories of displacement, velocity, and temperature at each sliding surface for two configurations of the 

bearing under various imposed sinusoidal displacements of the top of the bearing and ground motions and 

comparing it with results obtained by the program 3pleANI. 
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SECTION 1  

INTRODUCTION 

The behavior of Triple Friction Pendulum™ (FP) bearings has been previously described by many of which 

the works of Fenz and Constantinou (2008a to d, 2009), Dao et al. (2013), and Sarlis and Constantinou 

(2013, 2016) are most relevant to this report.  Figure 1-1 shows the geometry of the Triple FP bearing and 

its parameters.  𝑅ଵ,𝑅ଶ,𝑅ଷ and 𝑅ସ are radii of curvature; ℎଵ,ℎଶ, ℎଷ and ℎସ are distances of the slide plate to 

the pivot point(O); 𝑑ଵ,𝑑ଶ,𝑑ଷ and 𝑑ସ are the nominal displacement capacities; 𝑏ଵ, 𝑏ଶ, and 𝑏ଷ are diameters 

of the rigid slider and the two inner slide plates; and 𝜇ଵ, 𝜇ଶ, 𝜇ଷ and 𝜇ସ are the friction coefficients of the 

four sliding interfaces. Figure 1-1 shows the Triple FP isolator with an inner ring (or displacement restrainer) 

which is not needed, and modern versions of the isolator do not have it.  In those cases, the displacement 

capacities 𝑑ଶ and 𝑑ଷ are larger than the nominal capacities shown in Figure 1-1.  

Figure 1-1 Geometry of the Triple FP Bearing (Sarlis and Constantinou, 2013) 

The behavior of Triple FP bearing has been described in Fenz and Constantinou (2008a to 2008d, 2009) 

and summarized in Constantinou et al. (2011). The following parameters determine the response of Triple 

FP bearing: friction coefficients at its four sliding interfaces, 𝜇, nominal displacement capacities, 𝑑, radii 

of curvature Ri, and heights hi, where i = 1 to 4.  The effective radii of curvature are defined as  𝑅 ൌ

𝑅 െ ℎ, and the actual displacement capacities are given by 𝑑
∗ ൌ

ோ
ோ

𝑑. When the inner ring is absent, 

the actual total displacement is increased by b2/2, at which point the isolator becomes unstable (Sarlis and 

Constantinou, 2013) 
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In the Fenz and Constantinou (2008a, c) model, the following conditions need to apply:  1) 𝑅ଵ ൌ

𝑅ଶ ≫ 𝑅ଶ ൌ 𝑅ଷ , 2) 𝜇ଶ ൌ 𝜇ଷ ൏ 𝜇ଵ ൏ 𝜇ସ , 3) 𝑑ଵ
∗  ሺ𝜇ସ െ 𝜇ଵሻ𝑅ଵ , 4) 𝑑ଶ

∗  ሺ𝜇ଵ െ 𝜇ଶሻ𝑅ଶ , 5) 

𝑑ଷ
∗  ሺ𝜇ସ െ 𝜇ଷሻ𝑅ଷ. These conditions typically apply for practical Triple FP bearings. The more complex 

theory of Sarlis and Constantinou (2013, 2016) is more general and is not restricted by these conditions. It 

can also explicitly calculate the state of motion at each of the four sliding surfaces of the bearing.  

A computational model for the Triple FP element was developed initially by Fenz and Constantinou (2008d, 

2009), and later Sarlis and Constantinou (2010) presented details of modeling the bearing in program 

SAP2000 (CSI, 2011) in a report to the engineering community.  Dao et al. (2013) implemented the same 

model in the program OpenSees (McKenna et al., 2010), having improved on the use of multi-directional 

gap elements, whereas the model in SAP2000 required the use of several one-directional gap elements. 

Sarlis and Constantinou (2013) then developed many advanced theories for the behavior of the Triple FP 

bearing, which were not bound by the conditions of the Fenz and Constantinou (2008a) theory.  They 

implemented these theories in computer program 3pleANI (Sarlis and Constantinou, 2013).  These theories 

can produce histories of displacement, velocity and temperature at each of the sliding interfaces of the 

bearing, can account for pressure, velocity and temperature dependency of the friction coefficient of each 

sliding interface, and can model uplift and collapse of the bearing.  Program 3pleANI was developed for 

motion in one horizontal and the vertical directions. It cannot be used for simulation of behavior or response 

history analysis under triaxial motion.  

There is no element in any commercial or open-source software capable of simulation of the triaxial 

behavior of the Triple FP bearing with due consideration for the dependency of friction on the temperature 

at each sliding interface.  Such a model is needed when performing simulations with significant heating 

effects, as in the case of long-duration ground motions.  The only available element that can do is for the 

simpler Single FP bearing element FPBearingPTV in OpenSees (Kumar et al., 2015). 

This work reports on a modification of the current Triple FP element in OpenSees (Dao et al., 2013) to 

account for the triaxial behavior of the Triple FP bearing with due consideration for the dependency of 

friction on the temperature, velocity, and pressure at each sliding interface.  Program 3pleANI is used in 

this work for verification of the model implemented in program OpenSees. 
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SECTION 2  

MODELING THE BEHAVIOR OF TRIPLE FRICTION PENDULUM 

BEARING 

2.1 Model of Triple FP Bearing in Program OpenSees by Dao et al. (2013)  

Figure 2-1 depicts the series model for the Triple FP bearing that was implemented by Dao et al. (2013) in 

the program OpenSees (McKenna et al., 2010).  In the numerical model, 𝑘ଶଵ, 𝑘ଶଷ and 𝑘ଶହ are normalized 

stiffnesses due to the curvature (inverse of pendulum length).  Quantities  𝑘ଵଵ, 𝑘ଵଷ and 𝑘ଵହ are high initial 

stiffnesses with small yield displacement to account for frictional behavior as shown in Figure 2-2. Also, 

𝑘ଶ, 𝑘ସ and 𝑘 are stiffnesses, with large values, of circular gap elements which are needed to represent the 

behavior of the element when there is contact with any of restrainers of the bearing.  The resulting backbone 

curve is shown in Figure 2-3.  The model is identical to the series model of Fenz and Constantinou (2008d, 

2009) but for the nomenclature used: L1 for effective radii Reff2=Reff3, L2 for effective radius Reff1, and L3 for 

effective radius Reff4.  This may be realized by comparing Figure 3-1 in Fenz and Constantinou (2008d) to 

Figure 2-1 below.   

Figure 2-1 Series model and Numerical model for Triple FP bearing (Dao et al., 2013) 



4 

Figure 2-2 Modeling Friction Behavior (Dao et al., 2013) 

(a) Theoretical “rigid-plastic" friction behavior

(b) “Elastoplastic” frictional behavior with very large initial stiffness in OpenSees

Figure 2-3 Normalized Backbone Curve (Dao et al., 2013) 

However, in the implementation of the element in OpenSees by Dao et al. (2013), multidirectional circular 

gap elements were used, whereas the implementation of the element in program SAP2000 by Fenz and 

Constantinou (2009), several one-directional gap elements were used as they were the only gap elements 

available in the program.   

Based on the nomenclature used in Figure 2-1, Table 2-1 presents the parameters in the series model in 

OpenSees.  The parameters are identical to the Fenz and Constantinou (2009) model.  Accordingly, the 

theory presented in Fenz and Constantinou, 2008c, d) is applicable to the Dao element in OpenSees. 
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Table 2-1 Parameters in Series Model 

Bidirectional Plasticity  

Element 

Friction Model Actual Displacement limit  

(Gap Element) 

𝐿തଵ ൌ 2𝐿ଵ �̅�ଵ ൌ 𝜇ଶ ൌ 𝜇ଷ 𝑢തଶ ൌ 𝑢௧ െ 𝑢തଶ െ 𝑢തଷ 

𝐿തଶ ൌ 𝐿ଶ െ 𝐿ଵ �̅�ଶ ൌ 𝜇ଵ 𝑢തଶ ൌ ൬1 െ
𝐿ଵ
𝐿ଶ
൰ 𝑑ଵ

∗

𝐿തଷ ൌ 𝐿ଷ െ 𝐿ଵ �̅�ଷ ൌ 𝜇ସ 𝑢തଷ ൌ ൬1 െ
𝐿ଵ
𝐿ଷ
൰ 𝑑ସ

∗

𝑢௧ ൌ 𝑑ଵ
∗  𝑑ଶ

∗  𝑑ଷ
∗  𝑑ସ

∗ 
𝑏ଶ
2

, where 𝑏ଶ ൌ 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑟𝑖𝑔𝑖𝑑 𝑠𝑙𝑖𝑑𝑒𝑟 

The series model captures well the behavior of Triple FP bearings that satisfy the restrictions listed in the 

Introduction (Fenz and Constantinou, 2008a, c and Constantinou et al., 2011).  It also captures acceptably 

well the velocity dependence of the coefficient of friction by use of adjusted friction model parameters as 

demonstrated in Fenz and Constantinou (2009).  However, the model does not compute the actual histories 

of displacements and velocities at each of the four sliding interfaces.  This topic will be addressed in Section 

3. 

2.2 Dependence of Friction Coefficient on Velocity, Pressure and Temperature 

Constantinou et al. (2007) presented information on the dependency of the coefficient of friction at 

interfaces of sliding bearings on the velocity of sliding, apparent bearing pressure, and temperature.  They 

also presented and validated by experimentation a theory on computing the change in temperature at a 

sliding interface as the result of frictional heating.  In general, the coefficient of friction increases with 

increasing velocity, drops with increasing pressure and drops with increasing temperature, and reaches a 

somehow stable value at some large velocity, pressure and temperature.  The behavior depends on the 

materials of the sliding interface and needs to be determined by testing, although some general rules apply 

and are discussed in Constantinou et al. (2007).  Always one of the two sliding surfaces is stainless steel, 

and the other is a much softer material (plastic or fabric in woven form or several layers of these materials). 

The computation of the temperature at the sliding interfaces requires knowledge of the instantaneous values 

of the coefficient of friction, the apparent bearing pressure (load divided by apparent contact area), and 

sliding velocity at each interface.  The total temperature 𝑇 ൌ 𝑇  ∆𝑇 at time t > 0, consists of the starting 

value T0 at time zero and the rise  ∆𝑇 at the sliding interface. The temperature rise ∆𝑇 at time t is given by 

(Constantinou et al., 2007): 
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∆𝑇ሺ𝑡ሻ ൌ  
√𝐷

𝑘√𝜋
න

𝑞ሺ𝑡 െ 𝜏ሻ𝑑𝜏

√𝜏

௧


ሺ2 – 1ሻ 

where, D and k are the thermal diffusivity and conductivity of stainless steel, respectively,  𝜏 is a time 

parameter that varies between 0 and time t, and q(t) is the heat flux, which is calculated in accordance with 

the equation (2-2). 

𝑞ሺ𝑡ሻ ൌ ൜
𝜇ሺ𝑡ሻ𝑝ሺ𝑡ሻ𝑣ሺ𝑡ሻ, 𝑑  𝑟𝐶𝑜𝑛𝑡𝑎𝑐𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤ℎ𝑖𝑠𝑒
ሺ2 – 2ሻ 

In equation (2-2), μ(t) is a friction coefficient, p(t) is the apparent bearing pressure at the sliding surface, 

and v(t) is the absolute value of the resultant velocity at the sliding surface. Also, d is the absolute value of 

the resultant displacement of the slider and rContact is the radius of the circular apparent contact area, 

which can be obtained by 𝑏୧/2 (see Figure 1-1).  Equation (2-2) computes the temperature at the center of 

the bearing.  Note that the heat flux may be intermittent depending on the motion of the slider over the 

contact area (Constantinou et al., 2007).  Typical values of the thermal properties of stainless are presented 

in Table 2-2. 

Table 2-2 Thermal Properties of Stainless Steel 

Parameter Unit Value

Thermal Diffusivity 𝑚ଶ/𝑠𝑒𝑐 0.444 ∗ 10ିହ 

Thermal Conductivity 𝑊/ሺ𝑚°Cሻ 18 

A generally accepted relation for the velocity dependence of the friction coefficient is (Constantinou et al., 

2007): 

𝜇ሺ𝑣ሻ ൌ  𝜇௫ሺ1 െ ሺ1 െ 𝜇௩෦ሻ𝑒ି௩ሻ ሺ2 – 3ሻ 

In this equation,  𝜇ሺ𝑣ሻ is the friction coefficient at sliding velocity v, 𝜇௫ is friction coefficient at large 

sliding velocity, 𝜇௩෦ is the ratio of the friction coefficient at very small velocity to 𝜇௫, and a is the rate 

parameter, which has a value of about 100s/m for some of the materials used in sliding bearings 

(Constantinou et al., 2007).  When 𝜇௩෦ is assumed as 0.5, which is consistent with past studies (Constantinou 

et al., 2007), equation (2-3) reduces to the following form when the velocity is in units of meter/second: 

𝜇ሺ𝑣ሻ ൌ  𝜇௫ሺ1 െ 0.5𝑒ିଵ௩ሻ ሺ2 – 4ሻ 
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Sarlis and Constantinou (2013) used the following relation to model the coefficient of friction as function 

of temperature: 

 𝜇ሺ𝑇ሻ ൌ  𝜇  ሺ𝜇௫ି𝜇ሻ𝑒ି்      ሺ2 – 5ሻ 

In equation (2-5), h is a heating rate parameter, 𝜇௫ is the value of the high velocity coefficient of friction 

at the start (t=0), and 𝜇 is the value of the high velocity coefficient of friction at some large temperature 

(T ≅ 1/hሻ  where it is assumed to be stable. 

Tsopelas et al. (2005) implemented in program 3D-BASIS-ME-MB pressure dependency for the coefficient 

of friction based on the following relationship: 

  𝜇௫ ൌ  𝜇௫ െ ൫𝜇௫ି𝜇௫ሻtanh ሺ𝜀𝑝൯  ሺ2 – 6ሻ 

In this equation, 𝜇௫ is the value of the high velocity coefficient of friction at pressure p (axial load divided 

by apparent contact area), 𝜇௫ is the value of the high velocity coefficient of friction at almost zero 

pressure, 𝜇௫ is the value of the high velocity coefficient of friction at some high value of pressure, tanh 

is the tangent hyperbolic function, and ε is a constant that controls the rate of change of the coefficient of 

friction with pressure.  In this model it is assumed that the coefficient of friction at very low velocity is not 

dependent on pressure. 

Kumar et al. (2015) combined and simplified these models into one composite model for the dependency 

of friction on velocity, pressure and temperature, and had the model implemented in program OpenSees for 

an element of the Single FP bearing (FPBearingPTV).  The coefficient of friction is given by equations (2-

7) to (2-10) in which 𝜇  is the reference high speed coefficient of friction at the initial (time t=0)

temperature 𝑇 ൌ 20℃ and initial pressure 𝑝,  𝑎 is velocity rate parameter, p is the apparent pressure, and

v is the amplitude of the velocity.

𝜇ሺ𝑝, 𝑣,𝑇ሻ ൌ 𝜇𝑘𝑘௩𝑘் ሺ2 – 7ሻ 

𝑘୮ ൌ 0.7.ଶሺିబሻ ሺ2 – 8ሻ 

𝑘௩ ൌ ሺ1 െ 0.5𝑒ି௩ሻ ሺ2 – 9ሻ 

𝑘் ൌ 0.79 ∗ ሺ0.7.ଶ்  0.40ሻ ሺ2 – 10ሻ 
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Note that function 𝑘் for the dependency of the coefficient of friction on the temperature and function 𝑘୮ 

for the dependency of the coefficient of friction on instantaneous pressure have been calibrated using 

general data that apply for FP bearings.  Also, function 𝑘௩ for the dependency of the coefficient of friction 

on velocity is based on the assumption that the ratio of the very low speed to high-speed coefficient of 

friction equals to 0.5.  The model of equations (2-7) to (2-10) has been used in the developed new Triple 

FP bearing in OpenSees. 
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SECTION 3  

NEW TRIPLE FP ELEMENT TO ACCOUNT FOR HEATING EFFECTS 

The new Triple FP element to be used in OpenSees is named “TripleFrictionPendulumX” to complement 

the “TripleFrictionPendulum” element of Dao et al. (2013) already implemented in OpneSees. The new 

element determines the state of motion (displacement and velocity) at each of the four sliding interfaces 

based on two different procedures. The user has the choice of selecting one of these for the execution. 

These procedures are: (1) Modification of the element displacement histories computed in the three 

elements of the series model (based on Fenz and Constantinou, 2008d, 2009) and (2) Retracing through the 

force-displacement relationship, which again is based on Fenz and Constantinou (2008a-d). The sliding 

velocities are computed from the displacement histories using numerical differentiation (Burden and Faires, 

1989). 

3.1 Approach 1: Modification of the displacement histories in the series elements 

The series model of the Triple FP bearing employs three pendula with friction in order to represent the 

stiffnesses and strength that the bearing exhibits in its five regimes of operation.  Figures 3-1 and 3-2 show 

the series model and its parameters and the force-displacement loop as determined by Fenz and 

Constantinou (2008d). 

Figure 3-1 Series model for Triple FP bearing per Fenz and Constantinou (2008d) 
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Figure 3-2 Force-displacement loop of Triple FP bearing as computed in the series model 

Tables 3-1 and 3-2 depict the active ranges of motion in the four sliding interfaces and three pendula 

elements of the series model, in its five regimes of operation. Herein, 𝑢 and 𝑣 are the displacement and 

velocity on the four sliding interfaces (i=1 to 4), which comprise the bearing’s top to bottom motion. From 

analyzing the information in Tables 3-1 and 3-2, some characteristics of the series model can be described: 

(a) the second and third pendulum elements in the series model match their active ranges well with actual

motions in all five regimes, (b) the first pendulum element describes the actual motion of the inner slide

plates 𝑢ଶ  and 𝑢ଷ  only within specific regimes but can represent the motion properly in an overall

sense.(i. e. ,𝑢ଶ  𝑢ଷ)  From these characteristics, the motion of sliding interfaces can be approximately

obtained using compatibility conditions between the actual motion of the pendula and the three

representative motions in the series elements, and the methodology presented in Fenz and Constantinou

(2008d, 2009) which has been used for accounting for the velocity dependence of friction by modification

of the rate parameters in the three frictional elements of the series model.
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Table 3-1 Actual motion in each of four sliding interfaces in the five regimes of operation 

Table 3-2 Activated elements in the series model in the five regimes of operation 

In the sequel, there is a detailed presentation of the theory that leads to calculating the histories of 

displacement on the four sliding interfaces from the histories of displacement of three pendula.  Velocity 

histories are then calculated numerically from the displacement histories.  

1) Derivation for displacement history modification in Regime I

Initiation of motion occurs when the horizontal force exceeds the friction force on surfaces 2 and 3 (they 

are equal and less than the friction forces at surfaces 1 and 4).  This is regime I per Fenz and Constantinou 

(2008a).  During this regime, the force-displacement relationship for surfaces 2 and 3 can be expressed, 

respectively, as follows: 

𝐹 ൌ
𝑊

𝑅ଶ
𝑢ଶ  𝐹ଶ ሺ3 – 1ሻ 

𝐹 ൌ
𝑊

𝑅ଷ
𝑢ଷ  𝐹ଷ ሺ3 – 2ሻ 

In these equations, F is the horizontal force, W is vertical load, 𝑅ଶ and 𝑅ଷ are effective radius of 

curvature, 𝐹ଶ and 𝐹ଷ are friction forces on surfaces 2 and 3, and 𝑢ଶ and 𝑢ଷ are displacement histories on 

surfaces 2 and 3, respectively.  

In the series model, there is motion in element 1, and the corresponding force-displacement relationship 

can be written as follows: 
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𝐹 ൌ
𝑊

𝑅ଵതതതതതതത 𝑢ଵതതത  𝐹ଵതതതത ሺ3 – 3ሻ 

Where 𝑅ଵതതതതതതത ൌ 𝑅ଶ  𝑅ଷ ,  𝐹ଵതതതത ൌ 𝐹ଶ ൌ 𝐹ଷ  and 𝑢ଵതതത  is displacement in first series element. As 

𝑅ଶ ൌ 𝑅ଷ, the relationship between 𝑢ଶ,𝑢ଷ and 𝑢ଵതതത is expressed by combining equations (3-1) to (3-3). 

𝑢ଶ ൌ 𝑢ଷ ൌ 0.5 𝑢ଵതതത ሺ3 – 4ሻ 

In this regime, the displacements on the outer sliding surfaces are zero, as there is no motion on surfaces 1 

and 4. 

𝑢ଵ ൌ 𝑢ସ ൌ 0 ሺ3 – 5ሻ 

2) Derivation for displacement history modification in Regime II

In regime II, motion occurs on surfaces 1 and 3, leading to the following relationship governing motion on 

the surface:  

𝐹 ൌ
𝑊

𝑅ଵ
𝑢ଵ  𝐹ଵ ሺ3 – 6ሻ 

Here, 𝐹ଵ is friction force at surface 1. The equivalent motion in the second FP element in the series model 

initiates, and the relationship can be expressed as: 

𝐹 ൌ
𝑊

𝑅ଶതതതതതതത 𝑢ଶതതത  𝐹ଶതതതത ሺ3 – 7ሻ 

Where 𝑅ଶതതതതതതത ൌ 𝑅ଵ െ 𝑅ଶ ,   𝐹ଶതതതത ൌ 𝐹ଵ  and 𝑢ଶതതത is displacement in the second series element. By 

combining equation (3-6) and (3-7), the relation between 𝑢ଵ and 𝑢ଶതതത is obtained as: 

𝑢ଵ ൌ
𝑅ଵ

𝑅ଵ െ 𝑅ଶ
𝑢ଶതതത ሺ3 – 8ሻ 

The displacement history on surface 3 is still governed by the relation 3.4, with motion on surface 2 stopped 

and obtained by the following compatibility equation: 

𝑢௧௧ ൌ 𝑢ଵ  𝑢ଶ  𝑢ଷ  𝑢ସ ൌ 𝑢ଵതതത  𝑢ଶതതത  𝑢ଷതതത ሺ3 – 9ሻ 
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This leads to 

𝑢ଶ ൌ 𝑢௧௧ െ ሺ𝑢ଵ  𝑢ଷ  𝑢ସሻ ൌ 𝑢௧௧ െ ሺ
𝑅ଵ

𝑅ଵ െ 𝑅ଶ
𝑢ଶതതത  0.5 𝑢ଵതതതሻ ሺ3 – 10ሻ 

Note that 𝑢௧௧ is total displacement of the bearing, that is, the top to bottom relative displacement.  Also,  

𝑢ଷ and 𝑢ଵ are obtained by use of equations (3-4) and (3-8) with 𝑢ସ being zero. Note that 𝑢పഥ  can be obtained 

directly from the series elements. 

3) Derivation for displacement history modification in Regime III

In Regime Ⅲ, motion occurs on surfaces, 1 and 4. Using equation (3-6) for surface 1, the governing 

relationship for motion on surface 4 can be expressed as: 

𝐹 ൌ
𝑊

𝑅ସ
𝑢ସ  𝐹ସ ሺ3 – 11ሻ 

Here,  𝐹ସ is friction force on surface 4. The onset of motion in the third FP element in Series occurs when 

applied horizontal force 𝐹 exceeds 𝐹ଷതതതത ൌ 𝐹ସ and corresponding force-displacement relationship is: 

𝐹 ൌ
𝑊

𝑅ଷതതതതതതത 𝑢ଷതതത  𝐹ଷതതതത ሺ3 – 12ሻ 

Where 𝑅ଷതതതതതതത ൌ 𝑅ସ െ 𝑅ଷ and 𝑢ଷതതത is displacement in the third series element. Combining equations (3-

11) and (3-12), results in:

𝑢ସ ൌ
𝑅ସ

𝑅ସ െ 𝑅ଷ
𝑢ଷതതത ሺ3 – 13ሻ 

Equation (3-8) still describes the motion on surface 1. Motion in inner two surfaces stops in Regime Ⅲ, but 

the series model cannot capture these phenomena for surfaces 2 and 3 individually.  Instead, the motion can 

be approximately captured based on the following compatibility equation: 

𝑢ଶ  𝑢ଷ ൌ 𝑢௧௧ െ ሺ𝑢ଵ  𝑢ସሻ ൌ 𝑢௧௧ െ ቆ
𝑅ଵ

𝑅ଵ െ 𝑅ଶ
𝑢ଶതതത 

𝑅ସ
𝑅ସ െ 𝑅ଷ

𝑢ଷതതതቇ ሺ3 – 14ሻ 
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Note that displacements 𝑢ଶ and 𝑢ଷ in Regime III have values equal to the last values recorded at the last 

time step in Regime Ⅰ and Ⅱ. Note that 𝑢തଵ varies during this regime, but it is very small and considered 

negligible. 

4) Derivation for displacement history modification in Regime Ⅳ

Stiffening behavior occurs in Regime IV as motion stops on surface 1 and re-starts on surface 2, which has 

a smaller effective radius of curvature than surface 1. In the series model (Figures 2-1 and 3-1), the gap 

element in the second series element is activated with very high stiffness so that motion stops on surface 1. 

Displacements 𝑢ଶ and 𝑢ସ are governed by equations (3-4) and (3-13), whereas 𝑢ଷ has a constant value that 

is obtained by use of the following compatibility equation: 

𝑢ଷ ൌ 𝑢௧௧ െ ሺ𝑢ଵ  𝑢ଶ  𝑢ସሻ ൌ 𝑢௧௧ െ ቆ
𝑅ଵ

𝑅ଵ െ 𝑅ଶ
𝑢ଶതതത  0.5𝑢ଵതതത 

𝑅ସ
𝑅ସ െ 𝑅ଷ

𝑢ଷതതതቇ ሺ3 – 15ሻ 

5) Derivation for displacement history modification in Regime Ⅴ

Further stiffening behavior is achieved as motion on surface 4 stops and motion of surface 3 re-starts. The 

gap element in the third series element is activated and generates additional stiffness during this regime. 

Displacements = 𝑢ଶ and 𝑢ଷ are governed by equation (3-4). 

6) Summary and considerations to account for heating effects

Table 3-3 summarizes the state of motion (displacement) at each of the four sliding interfaces.  

Table 3-3 Displacement at each sliding interfaces (Approach 1) 

Regime Equations for Displacement 

Ⅰ 

𝑢ଵ ൌ 𝑢ସ ൌ 0 

𝑢ଶ ൌ 𝑢ଷ ൌ 0.5𝑢ଵതതത 

(based on 𝑢ଶ  𝑢ଷ ൌ 𝑢ଵതതതሻ 

Ⅱ 

𝑢ଵ ൌ
𝑅ଵ

𝑅ଵ െ 𝑅ଶ
𝑢ଶതതത 

𝑢ଶ ൌ 𝑢௧௧ െ ቆ
𝑅ଵ

𝑅ଵ െ 𝑅ଶ
𝑢ଶതതത  0.5 𝑢ଵതതതቇ ൌ 𝑢ଶ__Ⅰ 

𝑢ଷ ൌ 0.5𝑢ଵതതത 

𝑢ସ ൌ 0 
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(based on 𝑢ଶ  𝑢ଷ ൌ 𝑢௧௧ െ
ோభ

ோభିோమ
𝑢ଶതതത) 

Ⅲ 

𝑢ଵ ൌ
𝑅ଵ

𝑅ଵ െ 𝑅ଶ
𝑢ଶതതത 

𝑢ଶ  𝑢ଷ ൌ 𝑢௧௧ െ ቆ
𝑅ଵ

𝑅ଵ െ 𝑅ଶ
𝑢ଶതതത 

𝑅ସ
𝑅ସ െ 𝑅ଷ

𝑢ଷതതതቇ ൌ 𝑢ଶ__Ⅰ  𝑢ଷ__ⅠⅠ 

𝑢ସ ൌ
𝑅ସ

𝑅ସ െ 𝑅ଷ
𝑢ଷതതത 

No explicit expressions for 𝑢ଶ and 𝑢ଷ (assumed to be constant) 

Ⅳ 

𝑢ଵ ൌ
𝑅ଵ

𝑅ଵ െ 𝑅ଶ
𝑢ଶതതത ൌ 𝑢ଵ__Ⅲ ሺ𝐺𝑎𝑝 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑ሻ 

𝑢ଶ ൌ 0.5𝑢ଵതതത ሺ𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑎𝑡 𝑢ଶ__Ⅰሻ  

𝑢ଷ ൌ 𝑢௧௧ െ ቆ0.5𝑢ଵതതത 
𝑅ଵ

𝑅ଵ െ 𝑅ଶ
𝑢ଶതതത 

𝑅ସ
𝑅ସ െ 𝑅ଷ

𝑢ଷതതതቇ ൌ 𝑢ଷ__ⅠⅠ 

𝑢ସ ൌ
𝑅ସ

𝑅ସ െ 𝑅ଷ
𝑢ଷതതത 

(based on 𝑢ଶ  𝑢ଷ ൌ 𝑢௧௧ െ ൬
ோభ

ோభିோమ
𝑢ଶതതത 

ோర
ோరିோయ

𝑢ଷതതത൰ 

 

Ⅴ 

𝑢ଵ ൌ
𝑅ଵ

𝑅ଵ െ 𝑅ଶ
𝑢ଶതതത ൌ 𝑢ଵ__Ⅲ ሺ𝐺𝑎𝑝 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑ሻ 

𝑢ଶ ൌ 0.5𝑢ଵതതത 

𝑢ଷ ൌ 0.5𝑢ଵതതത ሺ𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑎𝑡 𝑢ଷ__Ⅱሻ 

𝑢ସ ൌ
𝑅ସ

𝑅ସ െ 𝑅ଷ
𝑢ଷതതത ൌ 𝑢ସ__Ⅳ ሺ𝐺𝑎𝑝 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑ሻ 

(based on 𝑢ଶ  𝑢ଷ ൌ 𝑢௧௧ െ ൬
ோభ

ோభିோమ
𝑢ଶതതത 

ோర
ோరିோయ

𝑢ଷതതത൰ 

 

In Table 3-3,  𝑢ଶ__Ⅰ is the value of displacement on surface 2 recorded at the last time step of Regime 

Ⅰ, 𝑢ଷ__ⅠⅠ  is the value of displacement on surface 3 recorded at the last time step of Regime Ⅲ, 

𝑢ଵ__Ⅲ is the value of displacement on surface 1 recorded at the last time step of Regime ⅠⅠⅠ, and 

𝑢ସ__Ⅳ is the value of displacement on surface 4 recorded at the last time step of Regime Ⅳ.   The 

calculated histories of motion are then used for calculating the heat flux and updating values of the friction 

coefficients during analysis.  The average value of 𝑢ଶ and 𝑢ଷ is used for updating the value of the friction 

coefficients 𝜇ଶ ൌ 𝜇ଷ ൌ 𝜇ଵതതത.  
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Table 3-4 summarizes important equations used to calculate the displacement histories of individual 

surfaces in OpenSees element “TripleFrictionPendulumX”. 

Table 3-4 Equations to calculate surface displacements in element TripleFrictionPendulumX 

Element    Equations 

Element 1 𝑢ଵധധധ ൌ
𝑢ଶ  𝑢ଷ

2
ൌ 0.5 ቊ𝑢௧௧ െ ቆ

𝑅ଵ
𝑅ଵ െ 𝑅ଶ

𝑢ଶതതത 
𝑅ସ

𝑅ସ െ 𝑅ଷ
𝑢ଷതതതቇቋ 

Element 2 𝑢ଶധധധ ൌ 𝑢ଵ ൌ
𝑅ଵ

𝑅ଵ െ 𝑅ଶ
𝑢ଶതതത 

Element 3 𝑢ଷധധധ ൌ 𝑢ସ ൌ
𝑅ସ

𝑅ସ െ 𝑅ଷ
𝑢ଷതതത 

In Table 3-4, 𝑢ଵധധധ, 𝑢ଶധധധ, and 𝑢ଷധധധ are modified element displacements (modifications of displacements 𝑢ଵതതത, 𝑢ଶതതത 

and 𝑢ଷതതത) in order to obtain the actual displacement at each sliding surface. Note that 𝑢ଶതതത ≅ 0 in Regime Ⅰ and 

𝑢ଷതതത  ≅ 0 during Regimes Ⅰ and Ⅱ. These displacements have very small but non-zero values.  They occur 

due to the elasto-plastic representation of friction in the model (they are less than the “yield displacement”). 

3.2 Approach 2: Retracing Histories based on Force-displacement relationship  

Approach 1 is incapable of capturing the start-stop-start behavior at all sliding surfaces so that it cannot 

provide the exact displacements of the inner surfaces 2 and 3 during the entire motion. However, with a 

small time increment in the analysis, the displacement and velocity histories on individual surfaces can be 

obtained based on the force obtained in the previous time step. Fenz and Constantinou (2008a) presented 

the force-displacement relationships for each sliding regime of the Triple FP bearing. In the modified Triple 

FP OpenSees element, forces and displacements are stored in each analysis step, and these are used for 

retracing displacement and velocity histories on the four sliding surfaces. The main purpose for developing 

Approach 2 is to verify the results of the simpler Approach 1.  

In the sequel we present the steps needed for the calculations in Approach 2.  Table 3-5 presents the force-

displacement relationships in each regime and details of the computations for the initial (starting) loading 

phase. 
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1) Starting Loading Phase

Table 3-5 Force-displacement Relationships during Loading Phase 

Regime Force-Displacement Relationship

0 𝑢ଵ ൌ 𝑢ଶ ൌ 𝑢ଷ ൌ 𝑢ସ ൌ 0 

Valid until: 𝑓 ൏ 𝐹ଶ, Store sign of loading (say “sign”) 

Ⅰ 

𝑢ଵ ൌ 𝑢ସ ൌ 0, 𝑢ଶ ൌ 𝑢ଷ ൌ
ିୱ୧୬∗ிమ

ௐ
𝐿ଵ 

Store 𝑢ଵ,𝑢ଶ,𝑢ଷ,𝑢ସ, 𝑓 

Valid until: sign ∗ 𝑓  𝐹ଵ 

Ⅱ 

𝑢ଵ ൌ
ିୱ୧୬∗ிభ

ௐ
∗ 𝐿ଶ, 𝑢ଷ ൌ

ିୱ୧୬∗ிమ
ௐ

𝐿ଵ 

𝑢ଶ ൌ 𝑢ଶ_௦௧ௗ ,𝑢ସ ൌ 𝑢ସ_௦௧ௗ 

Store 𝑢ଵ,𝑢ଶ,𝑢ଷ,𝑢ସ, 𝑓 

Valid until: 𝐹ଵ ൏ sign ∗ 𝑓  𝐹ସ 

Ⅲ 

𝑢ଵ ൌ
ିୱ୧୬∗ிభ

ௐ
∗ 𝐿ଶ,   uସ ൌ

ିୱ୧୬∗ிర
ௐ

∗ 𝐿ଷ 

𝑢ଶ ൌ 𝑢ଶ_௦௧ௗ, 𝑢ଷ ൌ 𝑢ଷ_௦௧ௗ 

Store 𝑢ଵ,𝑢ଶ,𝑢ଷ,𝑢ସ, 𝑓 

Valid until: 𝐹ସ ൏ sign ∗ 𝑓  𝐹ௗଵ 

Ⅳ 

𝑢ଶ ൌ ቀ
ିୱ୧୬∗ிమ

ௐ
െ

ୱ୧୬∗ௗమ
మ

ቁ 𝐿ଵ,  uସ ൌ
ିୱ୧୬∗ிర

ௐ
∗ 𝐿ଷ 

𝑢ଵ ൌ 𝑢ଵ_௦௧ௗ, 𝑢ଷ ൌ 𝑢ଷ_௦௧ௗ  

Store 𝑢ଵ,𝑢ଶ,𝑢ଷ,𝑢ସ, 𝑓 

Valid until: 𝐹ௗଵ ൏ sign ∗ 𝑓  𝐹ௗସ 

Ⅴ 

𝑢ଶ ൌ ቀ
ିୱ୧୬∗ிమ

ௐ
െ

ୱ୧୬∗ௗమ
మ

ቁ 𝐿ଵ, 𝑢ଷ ൌ ቀ
ିୱ୧୬∗ிమ

ௐ
െ

ୱ୧୬∗ௗయ
య

ቁ 𝐿ଵ  

𝑢ଵ ൌ 𝑢ଵ_௦௧ௗ, 𝑢ସ ൌ 𝑢ସ_௦௧ௗ  

Store 𝑢ଵ,𝑢ଶ,𝑢ଷ,𝑢ସ, 𝑓 

Valid until: 𝐹ௗସ ൏ sign ∗ 𝑓 

 Note: See Tables 2-1 and 3-7 for nomenclature

In this table, L1 is the effective radius Reff2=Reff3, L2 is the effective radius Reff1, L3 is the effective radius Reff4, 

𝐹 are friction forces on surfaces i, 𝐹ௗ are forces when the inner slide plates contact the restrainers on the 

outer surface i.  
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During the numerical analysis it is assumed that the bearing is in the loading phase until a change in the 

sign of the derivative of the force with respect to the displacement (slope of force-displacement curve) 

changes, in which case unloading occurs.  The behavior during unloading depends on the regime in which 

the bearing is at the instant of change of sign of the slope.  As an example, Table 3-6 presents details of one 

of the possible cases of behavior when the force is in Regime Ⅴ during the unloading phase.  

2) Unloading Phase, Force-displacement loop starts in Regime Ⅴ

Table 3-6 Triple FP Element Behavior in Unloading Phase Starting in Regime Ⅴ 

Preparation Call stored 𝑢ଵ,𝑢ଶ,𝑢ଷ,𝑢ସ and 𝑓 from previous loading phase and assign 

as reference points 

Regime Force-Displacement Relationship

0 𝑢ଵ ൌ 𝑢ଵ_௦௧ௗ, 𝑢ଶ ൌ 𝑢ଶ_௦௧ௗ , 𝑢ଷ ൌ 𝑢ଷ_௦௧ௗ , 𝑢ସ ൌ 𝑢ସ_௦௧ௗ

Store 𝑢ଵ,𝑢ଶ,𝑢ଷ,𝑢ସ, 𝑓 

Valid until: 𝑓 െ 2𝐹ଶ ൏ 𝑓 

Ⅰ 

𝑢ଶ ൌ
ିೞೝ

ௐ
𝐿ଵ  𝑢ଶೞೝ    𝑠𝑖𝑔𝑛ሺ𝑢ଶሻ ∗ 𝑑ଵ

∗

𝑢ଷ ൌ
ିೞೝ

ௐ
𝐿ଵ  𝑢ଷೞೝ     𝑠𝑖𝑔𝑛ሺ𝑢ଷሻ ∗ 𝑑ଵ

∗

𝑢ଵ ൌ 𝑢ଵ_௦௧ௗ, 𝑢ସ ൌ 𝑢ସ_௦௧ௗ  

Store 𝑢ଵ,𝑢ଶ,𝑢ଷ,𝑢ସ, 𝑓 

Valid until: 𝐹ௗଵ െ 2𝐹ଵ ൏ 𝑓  𝑓 െ 2𝐹ଶ 

Ⅱ 

𝑢ଵ ൌ
ି_௦௧ௗ

ௐ
𝐿ଶ  𝑢ଵೞೝ   𝑠𝑖𝑔𝑛ሺ𝑢ଵሻ ∗ 𝑑ଶ

∗

𝑢ଷ ൌ
ିೞೝ

ௐ
𝐿ଵ  𝑢ଷೞೝ     𝑠𝑖𝑔𝑛ሺ𝑢ଷሻ ∗ 𝑑ଵ

∗

𝑢ଶ ൌ 𝑢ଶ_௦௧ௗ ,𝑢ସ ൌ 𝑢ସ_௦௧ௗ 

Store 𝑢ଵ,𝑢ଶ,𝑢ଷ,𝑢ସ, 𝑓 

Valid until: 𝐹ௗସ െ 2𝐹ସ ൏ 𝑓  𝐹ௗଵ െ 2𝐹ଵ 

Ⅲ 

𝑢ଵ ൌ
ି_௦௧ௗ

ௐ
𝐿ଶ  𝑢ଵೞೝ   𝑠𝑖𝑔𝑛ሺ𝑢ଵሻ ∗ 𝑑ଶ

∗

𝑢ସ ൌ
ିೞೝ

ௐ
𝐿ଷ  𝑢ସೞೝ     𝑠𝑖𝑔𝑛ሺ𝑢ସሻ ∗ 𝑑ଷ

∗

𝑢ଶ ൌ 𝑢ଶ_௦௧ௗ, 𝑢ଷ ൌ 𝑢ଷ_௦௧ௗ 

Store 𝑢ଵ,𝑢ଶ,𝑢ଷ,𝑢ସ, 𝑓 

Valid until: െ𝐹ௗଵ ൏ 𝑓  𝐹ௗସ െ 2𝐹ସ 

Ⅳ 𝑢ଶ ൌ
ିೞೝ

ௐ
𝐿ଵ  𝑢ଶೞೝ    𝑠𝑖𝑔𝑛ሺ𝑢ଶሻ ∗ 𝑑ଵ

∗
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𝑢ସ ൌ
ିೞೝ

ௐ
𝐿ଷ  𝑢ସೞೝ     𝑠𝑖𝑔𝑛ሺ𝑢ସሻ ∗ 𝑑ଷ

∗

𝑢ଵ ൌ 𝑢ଵ_௦௧ௗ, 𝑢ଷ ൌ 𝑢ଷ_௦௧ௗ  

Store 𝑢ଵ,𝑢ଶ,𝑢ଷ,𝑢ସ, 𝑓 

Valid until: െ𝐹ௗସ ൏ 𝑓  െ𝐹ௗଵ 

Ⅴ 

𝑢ଶ ൌ
ିೞೝ

ௐ
𝐿ଵ  𝑢ଶೞೝ    𝑠𝑖𝑔𝑛ሺ𝑢ଶሻ ∗ 𝑑ଵ

∗

𝑢ଷ ൌ
ିೞೝ

ௐ
𝐿ଵ  𝑢ଷೞೝ     𝑠𝑖𝑔𝑛ሺ𝑢ଷሻ ∗ 𝑑ଵ

∗

𝑢ଵ ൌ 𝑢ଵ_௦௧ௗ, 𝑢ସ ൌ 𝑢ସ_௦௧ௗ  

Store 𝑢ଵ,𝑢ଶ,𝑢ଷ,𝑢ସ, 𝑓 

Valid until: 𝑓  െ𝐹ௗସ 

 Note: See Tables 2-1 and 3-7 for nomenclature 

In Table 3-6, 𝑑
∗  are the actual displacement capacities. Expressions for the force and corresponding 

displacement limits that define the boundaries of each regime are presented in Tables 3-7 and 3-8. 

Table 3-7 Force and Displacement Limits in Each Regime 

Force Limit Displacement Limit  

𝐹ଵ 𝜇ଵ𝑊 𝑢∗ 2ሺ𝜇ଵ െ 𝜇ଶሻ𝐿ଵ 

𝐹ସ 𝜇ସ𝑊 𝑢∗∗ 𝑢∗  ሺ𝜇ସ െ 𝜇ଵሻሺ𝐿ଶ െ 𝐿ଵሻ 

𝐹ௗଵ 𝑊൬
𝑑ଵ
∗

𝐿ଶ
 𝜇ଵ൰ 𝑢ௗଵ 𝑢∗∗  𝑑ଵ

∗ ൬1 
𝐿ଷ
𝐿ଶ
൰ െ ሺ𝜇ସ െ 𝜇ଵሻሺ𝐿ଶ  𝐿ଷሻ

𝐹ௗସ 𝑊൬
𝑑ସ
∗

𝐿ଷ
 𝜇ସ൰ 𝑢ௗସ 𝑢ௗଵ  ൭൬

𝑑ସ
∗

𝐿ଷ
 𝜇ସ൰ െ ൬

𝑑ଵ
∗

𝐿ଶ
 𝜇ଵ൰൱ ሺ𝐿ଵ  𝐿ଷሻ

Table 3-8 Boundary Conditions in Each Regime (In Unloading Phase) 

Regime 𝑓 starts at regime 5 𝑓 starts at regime 4 𝑓 starts at regime 3,2,1 

0 (START) 𝑓 െ 2𝐹ଶ ൏ 𝑓 𝑓 െ 2𝐹ଶ ൏ 𝑓 𝑓 െ 2𝐹ଶ ൏ 𝑓 

Ⅰ 
𝐹ௗଵ െ 2𝐹ଵ ൏ 𝑓  𝑓

െ 2𝐹ଶ 
𝐹ௗଵ െ 2𝐹ଵ ൏ 𝑓  𝑓 െ 2𝐹ଶ 𝑓 െ 2𝐹ଵ ൏ 𝑓  𝑓 െ 2𝐹ଶ 

Ⅱ 
𝐹ௗସ െ 2𝐹ସ ൏ 𝑓  𝐹ௗଵ

െ 2𝐹ଵ 
𝑓 െ 2𝐹ସ ൏ 𝑓  𝐹ௗଵ െ 2𝐹ଵ 𝑓 െ 2𝐹ସ ൏ 𝑓  𝑓 െ 2𝐹ଵ 

Ⅲ െ𝐹ௗଵ ൏ 𝑓  𝐹ௗସ െ 2𝐹ସ െ𝐹ௗଵ ൏ 𝑓  𝑓 െ 2𝐹ସ െ𝐹ௗଵ ൏ 𝑓  𝑓 െ 2𝐹ସ 

Ⅳ െ𝐹ௗସ ൏ 𝑓  െ𝐹ௗଵ െ𝐹ௗସ ൏ 𝑓  െ𝐹ௗଵ െ𝐹ௗସ ൏ 𝑓  െ𝐹ௗଵ 

Ⅴ 𝑓  െ𝐹ௗସ 𝑓  െ𝐹ௗସ 𝑓  െ𝐹ௗସ 
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Approach 2, like in Approach 1, makes use of the average value of 𝑢ଶ  and 𝑢ଷ  in accounting for the 

dependency of the friction coefficient on temperature in inner sliding interfaces. 

3.3 Calculation of Velocities on Sliding Surfaces 

The sliding velocities at each sliding surface are needed for the calculation of the coefficient of friction 

when velocity-dependent and for the calculation of the heat flux to be used in computing the temperature 

at each sliding surface.  Following the calculation of the displacements at each sliding surface, the sliding 

velocities are calculated by numerical differentiation.  The numerical scheme used is based on the three-

point formula (Burden and Faires, 1989): 

𝑓ᇱሺ𝑥ሻ ൌ
1

2ℎ
ሾሺ𝑓ሺ𝑥  ℎሻ െ 𝑓ሺ𝑥 െ ℎሻሿ െ

ℎଶ

6
𝑓ᇱᇱᇱሺ𝜉ሻ ሺ3 – 16ሻ 

In this equation the first derivative of function f at point 𝑥 is computed as the slope of the function between 

points 𝑥  ℎ and 𝑥 െ ℎ, where ℎ is the step (or time-step).  The error is order 𝑂ሺℎଶሻ, which together with 

a small time-step results in an estimate of velocity with small error.  Table 3-9 presents the equations used 

for each surface and for the two approaches used.  In this table, subscript i denotes the current time. 

Table 3-9 Calculation of Velocities 

Surface Approach 1 Approach 2 

1 𝑣ଶധധധ ൌ
1

2ℎ
ሺ𝑢ଶധധധ, െ 𝑢ଶധധധ,ିଶሻ 𝑣ଵ ൌ

1
2ℎ

ሺ𝑢ଵ െ 𝑢ଵିଶሻ 

2 𝑣ଵധധധ ൌ
1

2ℎ
ሺ𝑢ଵധധധ, െ 𝑢ଵധധധ,ିଶሻ 𝑣ଶ ൌ

1
2ℎ

ሺ𝑢ଶ െ 𝑢ଶିଶሻ 

3 𝑣ଵധധധ ൌ
1

2ℎ
ሺ𝑢ଵധധധ, െ 𝑢ଵധധധ,ିଶሻ 𝑣ଷ ൌ

1
2ℎ

ሺ𝑢ଷ െ 𝑢ଷିଶሻ 

4 𝑣ଷധധധ ൌ
1

2ℎ
ሺ𝑢ଷധധധ, െ 𝑢ଷധധധ,ିଶሻ 𝑣ସ ൌ

1
2ℎ

ሺ𝑢ସ െ 𝑢ସିଶሻ 

Equation (3-16) makes use of the displacement at a forward time, which is not known during analysis. 

Accordingly, the velocity is computed at one time-step backwards and used at the current time.  This 

requires the use of a small time-step. 
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SECTION 4  

VERIFICATION EXAMPLES FOR PRESCRIBED BEARING MOTION 

AND CONSTANT FRICTION 

This section presents examples of verification of the modified Triple FP element (TripleFrictionPendulumX 

element) in OpenSees. Table 4-1 presents information on two configurations in a total of four different 

cases of Triple FP bearing used in the examples. The isolators have an inner displacement restrainer or ring. 

In this section the friction coefficient values are considered constant and independent of pressure, velocity 

and temperature.  This assumption is relaxed in other examples presented in Section 5.  Values of 

parameters used in the analysis in addition to those below are presented in Appendix A. 

Table 4-1 Geometric and Frictional Properties used in Analysis (see Figure 1-1 for nomenclature) 

Geometric and Frictional 

Properties 
Configuration A Configuration B 

R1=R4 (mm) 3962.4 (156”) 2235 (88”) 

R2=R3 (mm) 558.8 (22”) 305 (12”) 

h1=h4 (mm) 215.9 (8.5”) 114.5 (4.5”) 

h2=h3 (mm) 165.1 (6.5”) 76 (3”) 

Reff1=Reff4 (mm) 3746.5 (147.5”) 2120.5 (83.5”) 

Reff2=Reff3 (mm) 393.7 (15.5”) 229 (9”) 

b1=b4 (mm) 711.2 (28”) 279 (11”) 

b2=b3 (mm) 508 (20”) 196 (7.7”) 

d1=d4 (mm) 533.4 (21”) 267 (10.5”) 

d2=d3 (mm) 101.6 (4”) 40 (1.6”) 

d1
*=d4

* (mm) 504.3 (19.9”) 253.3 (10.0”) 

d2
*=d3

* (mm) 71.6 (2.8”) 30.0 (1.2”) 

Vertical Stiffness (MN/mm) 8.0 (45720 kip/in) 8.0 (45720 kip/in) 

Friction Case Case 1 Case 2 Case 1 Case 2 

𝝁𝟏 0.04 0.04 0.04 0.04

𝝁𝟒 0.08 0.04 0.08 0.04

𝝁𝟐 ൌ 𝝁𝟑 0.01 0.01 0.01 0.01

Load W (kN) 13345 (3000kip) 6672 (1500kip) 
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4.1 Examples of Displacement Control Analysis 

This subsection presents the results of displacement control analysis in programs OpenSees and 3pleANI. 

In these analyses, a displacement history is imposed at the top of the bearing with respect to its bottom. 

The results include force-displacement loops, and displacement, velocity and temperature histories at the 

four sliding interfaces. In the figures that follow, results are presented with (a) color green and denoted as 

APP1 when Approach 1 is used in OpenSees, and (b) color blue and denoted as APP2 when Approach 2 is 

used.    

Harmonic Motion: Amplitude of 20in and Period of 20sec  

Figure 4-1 Imposed Harmonic Motion (Amplitude: 20in, Period: 20sec) 

A) Configuration A

a. Case 1: Different Coefficient of Friction for Surfaces 1 and 4



23 

Figure 4-2 Comparison of Force-Displacement Loops 

Figure 4-3 Comparison of Displacement Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 4-4 Comparison of Displacement Histories on Inner Surfaces (Surfaces 2 and 3) 

Figure 4-5 Comparison of Velocity Histories on Outer Surfaces (Surfaces 1 and 4) 
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Figure 4-6 Comparison of Velocity Histories on Inner Surfaces (Surfaces 2 and 3) 

Figure 4-7 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 4-8 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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b. Case 2: Same Coefficient of Friction for Surfaces 1 and 4

Figure 4-9 Comparison of Force-Displacement Loops 

Figure 4-10 Comparison of Displacement Histories on Outer Surfaces (Surfaces 1 and 4) 
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Figure 4-11 Comparison of Displacement Histories on Inner Surfaces (Surfaces 2 and 3) 

 

 

Figure 4-12 Comparison of Velocity Histories on Outer Surfaces (Surfaces 1 and 4) 

 

 

Figure 4-13 Comparison of Velocity Histories on Inner Surfaces (Surface 2 and 3) 
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Figure 4-14 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 4-15 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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B) Configuration B

a. Case 1: Different Coefficient of Friction for Surfaces 1 and 4

Figure 4-16 Comparison of Force-Displacement Loops 

Figure 4-17 Comparison of Displacement Histories on Outer Surfaces (Surfaces 1 and 4) 
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Figure 4-18 Comparison of Displacement Histories on Inner Surfaces (Surfaces 2 and 3) 

 

 

Figure 4-19 Comparison of Velocity Histories on Outer Surfaces (Surfaces 1 and 4) 

 

 

Figure 4-20 Comparison of Velocity Histories on Inner Surfaces (Surfaces 2 and 3) 



30 

Figure 4-21 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 4-22 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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b. Case 2: Same Coefficient of Friction for Surfaces 1 and 4

Figure 4-23 Comparison of Force-Displacement Loops 

Figure 4-24 Comparison of Displacement Histories on Outer Surfaces (Surfaces 1 and 4) 
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Figure 4-25 Comparison of Displacement Histories on Inner Surfaces (Surfaces 2 and 3) 

Figure 4-26 Comparison of Velocity Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 4-27 Comparison of Velocity Histories on Inner Surfaces (Surfaces 2 and 3) 
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Figure 4-28 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 4-29 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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Harmonic Motion: Amplitude of 22in and Period of 10sec  

Figure 4-30 Imposed Harmonic Motion (Amplitude: 22in, Period: 10sec) 

A) Configuration A

a. Case 1: Different Coefficient of Friction for Surfaces 1 and 4

Figure 4-31 Comparison of Force-Displacement Loops 
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Figure 4-32 Comparison of Displacement Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 4-33 Comparison of Displacement Histories on Inner Surfaces (Surfaces 2 and 3) 
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Figure 4-34 Comparison of Velocity Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 4-35 Comparison of Velocity Histories on Inner Surfaces (Surfaces 2 and 3) 
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Figure 4-36 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 4-37 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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b. Case 2: Same Coefficient of Friction for Surfaces 1 and 4

Figure 4-38 Comparison of Force-Displacement Loops 

Figure 4-39 Comparison of Displacement Histories on Outer Surfaces (Surface 1 and 4) 
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Figure 4-40 Comparison of Displacement Histories on Inner Surfaces (Surface 2 and 3) 

Figure 4-41 Comparison of Velocity Histories on Outer Surfaces (Surface 1 and 4) 

Figure 4-42 Comparison of Velocity Histories on Inner Surfaces (Surfaces 2 and 3) 
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Figure 4-43 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 4-44 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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B) Configuration B

a. Case 1: Different Coefficient of Friction for Surface 1 and 4

Figure 4-45 Comparison of Force-Displacement Loops 

Figure 4-46 Comparison of Displacement Histories on Outer Surfaces (Surfaces 1 and 4) 
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Figure 4-47 Comparison of Displacement Histories on Inner Surfaces (Surfaces 2 and 3) 

Figure 4-48 Comparison of Velocity Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 4-49 Comparison of Velocity Histories on Inner Surfaces (Surfaces 2 and 3) 
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Figure 4-50 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 4-51 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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b. Case 2: Same Coefficient of Friction for Surface 1 and 4

Figure 4-52 Comparison of Force-Displacement Loops 

Figure 4-53 Comparison of Displacement Histories on Outer Surfaces (Surfaces 1 and 4) 
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Figure 4-54 Comparison of Displacement Histories on Inner Surfaces (Surfaces 2 and 3) 

Figure 4-55 Comparison of Velocity Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 4-56 Comparison of Velocity Histories on Inner Surfaces (Surfaces 2 and 3) 
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Figure 4-57 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 4-58 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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Harmonic Motion: Amplitude of 20in and Period of 5sec  

Figure 4-59 Imposed Harmonic Motion (Amplitude: 20in, Period: 5sec) 

A) Configuration A

a. Case 1: Different Coefficient of Friction for Surfaces 1 and 4

Figure 4-60 Comparison of Force-Displacement Loops 
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Figure 4-61 Comparison of Displacement Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 4-62 Comparison of Displacement Histories on Inner Surfaces (Surfaces 2 and 3) 

Figure 4-63 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 
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Figure 4-64 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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b. Case 2: Same Coefficient of Friction for Surfaces 1 and 4

Figure 4-65 Comparison of Force-Displacement Loops 

Figure 4-66 Comparison of Displacement Histories on Outer Surfaces (Surface 1 and 4) 
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Figure 4-67 Comparison of Displacement Histories on Inner Surfaces (Surface 2 and 3) 

Figure 4-68 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 4-69 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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B) Configuration B

a. Case 1: Different Coefficient of Friction for Surface 1 and 4

Figure 4-70 Comparison of Force-Displacement Loops 

Figure 4-71 Comparison of Displacement Histories on Outer Surfaces (Surfaces 1 and 4) 
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Figure 4-72 Comparison of Displacement Histories on Inner Surfaces (Surfaces 2 and 3) 

 

 

Figure 4-73 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

 

 

Figure 4-74 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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b. Case 2: Same Coefficient of Friction for Surface 1 and 4 

 

 

Figure 4-75 Comparison of Force-Displacement Loops 

 

 

Figure 4-76 Comparison of Displacement Histories on Outer Surfaces (Surfaces 1 and 4) 
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Figure 4-77 Comparison of Displacement Histories on Inner Surfaces (Surfaces 2 and 3) 

Figure 4-78 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 4-79 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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4.2 Observations and Comments 

The following observations are made in the comparison of results in Section 4. 

1) The force-displacement loops obtained by the model in program OpenSees and the more advanced

model in program 3pleANI are in good agreement.

2) In general, the two models (Approach 1 and Approach 2) in program OpenSees produce nearly

identical results for all computed quantities.

3) In general, the two models in program OpenSees produce results on the displacement, velocity and

temperature of the main surfaces 1 and 4 that are in good agreement with those produced by the

more advanced model in program 3pleANI.

4) In general, the two models in program OpenSees produce results on the displacement, velocity and

temperature of the inner surfaces 2 and 3 that differ from those produced by the more advanced

model in program 3pleANI.  The temperature is underpredicted by the models in program

OpenSees.  However, the motion and temperature in the inner surfaces are significantly smaller

than those of the main surfaces 1 and 4 (e.g., the temperature rise in the outer surfaces is an order

of magnitude larger than that in the inner surfaces) so that the effect on the behavior of the bearing

is insignificant.
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SECTION 5  

VERIFICATION EXAMPLES FOR PRESCRIBED BEARING MOTION 

AND VARIABLE FRICTION 

This section presents verification examples when the friction coefficients are temperature-dependent. 

Dependencies on velocity and pressure are not considered in this section.  The geometric properties of the 

Triple FP bearings are same as those used in Section 4 (Table 4-1) with the exemption that friction is not 

constant.  In the examples of this section, the values of friction coefficient in Table 4-1 represent the 

reference values, that is, the values at high speed of motion, and at the initiation of motion prior to any 

increase in temperature of the sliding interfaces. Values of parameters used in the analysis in addition to 

those below are presented in Appendix A. Moreover, the values of thermal diffusivity and conductivity 

listed in Table 2-2 are used. 

5.1 Examples of Displacement Control Analysis with Temperature-Dependent 

Friction Coefficient 

In program OpenSees, the dependency of the friction coefficients on velocity, pressure and temperature is 

described by equation (2-7).  Parameters kp and kv are set equal to unity so that pressure and velocity effects 

are excluded.  The remaining equation describes the dependency of friction on only temperature: 

𝜇ሺ𝑇ሻ ൌ 𝜇, ∗ 0.79 ∗ ሺ0.7.ଶ்  0.40ሻ ሺ5 – 1ሻ 

In this equation, 𝜇 is the reference high speed coefficient of friction at the initial (time t=0) temperature 

𝑇 ൌ 20℃ at surface i, and 𝑇 is temperature rise.  

In program 3pleANI, the dependency of the friction coefficients on temperature is given by the following 

exponential form: 

𝜇ሺ𝑇ሻ ൌ 𝜇,  ൫𝜇௫, െ 𝜇,൯𝑒ିሺ்ି బ்ሻ ሺ5 – 2ሻ 

In this equation,  𝜇 is friction coefficient at surface i, ℎ is the heating rate parameter, 𝑇 is temperature rise, 

𝑇 is initial temperature, 𝜇௫, is the friction coefficient at initial temperature, 𝜇, is minimum value of 

friction coefficient at a large temperature.  For the examples of this section,  𝜇, ൌ 𝜇௫,/2  and 

parameter h=0.01/oC are used. 
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Moreover, the values of the coefficient of friction in the Sarlis and Constantinou (2013, 2016) model differ 

from those of the Fenz and Constantinou (2008a-d) model which is used in program OpenSees.  In general, 

the two values are identical when the sliding interfaces have infinitely large radii of curvature.  Otherwise, 

they are related through the geometry of the sliding surfaces by the following equations: 

𝜇,ଶ ൌ 𝜇௫,ଶ
𝑅ଶ

𝑅ଶ
ሺ5 – 3ሻ 

𝜇,ଵ ൌ
𝜇௫,ଵ𝑅ଵ െ 𝜇௫,ଶ𝑅ଶ

𝑅ଵ െ 𝑅ଶ
ሺ5 – 4ሻ 

𝜇,ସ ൌ
𝜇௫,ସ𝑅ସ െ 𝜇௫,ଶ𝑅ଶ

𝑅ଵ െ 𝑅ଶ
ሺ5 – 5ሻ 

In these equations,  𝜇, is the friction coefficient used in OpenSees, 𝜇௫, is the friction coefficient used 

in 3pleANI, Ri is the radius of curvature, 𝑅 is effective radius of curvature which is equal to 𝑅 ൌ

𝑅 െ ℎ, and subscript i indicates sliding surface i=1 to 4. Based on the geometric parameters of the Triple 

FP bearing configuration A listed in Table 4-1, the values of the friction coefficients, 𝜇, and 𝜇௫,, are 

listed in Table 5-1 and plotted in Figure 5-1.  Note that for comparison of the two models of friction-

temperature dependency, the values of the Sarlis and Constantinou (2013, 2016) were adjusted per 

equations (5-3) to (5-5) and shown in Figure 5-1 for an initial temperature of 20oC. 

Table 5-1 Friction Coefficients used in OpenSees and 3pleANI 

Friction Coefficient Value of 𝜇, in OpenSees Value of  𝜇௫, in 3pleANI 

𝝁𝒓𝒆𝒇𝟏 0.04 0.03484

𝝁𝒓𝒆𝒇𝟒 0.08 0.06869

𝝁𝒓𝒆𝒇𝟐 ൌ 𝝁𝒓𝒆𝒇𝟑 0.01 0.00705
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Figure 5-1 Friction-Temperature Dependency in OpenSees and 3pleANI 

The two friction models differ but the differences are small in the range of 20℃ to about 100℃ so results 

of the two programs in this range of temperatures should be comparable. 

 

Results by the two programs are presented and compared for prescribed conditions of motion of the top of 

the bearing.  Approach 1 has been used in program OpenSees.  These results include force-displacement 

loops, and displacement, velocity and temperature histories at the four sliding interfaces. Also, results are 

presented in the form of histories of the coefficient of friction. In the figures that follow,  results of program 

OpenSees are in color blue and results of program 3pleANI are in color red. Note that in the comparison of 

histories of the friction coefficient, the two programs produce comparable results but the values differ based 

on the interpretation provided above and demonstrated in the results of Table 5-1 and Figure 5-1. 

  

Adjusted 3pleANI 

Actual 3pleANI 

Actual OpenSees 
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Harmonic Motion: Amplitude of 20in and Period of 20sec  

Figure 5-2 Imposed Harmonic Motion (Amplitude: 20in, Period: 20sec) 

A) Configuration A

a. Case 1: Different Coefficient of Friction for Surfaces 1 and 4

Figure 5-3 Comparison of Force-Displacement Loops 
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Figure 5-4 Comparison of Displacement Histories on Outer Surfaces (Surfaces 1 and 4) 

 

 

Figure 5-5 Comparison of Displacement Histories on Inner Surfaces (Surfaces 2 and 3) 

 

 

Figure 5-6 Comparison of Velocity Histories on Outer Surfaces (Surfaces 1 and 4) 
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Figure 5-7 Comparison of Velocity Histories on Inner Surfaces (Surfaces 2 and 3) 

 

 

Figure 5-8 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

 

 

Figure 5-9 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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Figure 5-10 Histories of Friction Coefficients on Outer Surfaces (note that the friction coefficient 

values are not the same but related through equations 5-3 to 5-5) 
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b. Case 2: Same Coefficient of Friction for Surfaces 1 and 4 

 

 

Figure 5-11 Comparison of Force-Displacement Loops 

 

 

Figure 5-12 Comparison of Displacement Histories on Outer Surfaces (Surfaces 1 and 4) 
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Figure 5-13 Comparison of Displacement Histories on Inner Surfaces (Surfaces 2 and 3) 

 

 

Figure 5-14 Comparison of Velocity Histories on Outer Surfaces (Surfaces 1 and 4) 

 

 

Figure 5-15 Comparison of Velocity Histories on Inner Surfaces (Surface 2 and 3) 
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Figure 5-16 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 
 

 

Figure 5-17 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 

 

Figure 5-18 Histories of Friction Coefficients on Outer Surfaces (note that the friction coefficient 

values are not the same but related through equations 5-3 to 5-5) 
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B) Configuration B 

a. Case 1: Different Coefficient of Friction for Surfaces 1 and 4 

 

Figure 5-19 Comparison of Force-Displacement Loops 

 

  

Figure 5-20 Comparison of Displacement Histories on Outer Surfaces (Surfaces 1 and 4) 
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Figure 5-21 Comparison of Displacement Histories on Inner Surfaces (Surfaces 2 and 3) 

 

 

Figure 5-22 Comparison of Velocity Histories on Outer Surfaces (Surfaces 1 and 4) 

 

 

Figure 5-23 Comparison of Velocity Histories on Inner Surfaces (Surfaces 2 and 3) 
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Figure 5-24 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 5-25 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 



 

70 

 

b. Case 2: Same Coefficient of Friction for Surfaces 1 and 4 

 

 

Figure 5-26 Comparison of Force-Displacement Loops 

 

 

Figure 5-27 Comparison of Displacement Histories on Outer Surfaces (Surfaces 1 and 4) 
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Figure 5-28 Comparison of Displacement Histories on Inner Surfaces (Surfaces 2 and 3) 

 

 

Figure 5-29 Comparison of Velocity Histories on Outer Surfaces (Surfaces 1 and 4) 

 

 

Figure 5-30 Comparison of Velocity Histories on Inner Surfaces (Surfaces 2 and 3) 
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Figure 5-31 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

 

 

Figure 5-32 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3)  
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Harmonic Motion: Amplitude of 22in and Period of 10sec  

Figure 5-33 Imposed Harmonic Motion (Amplitude: 22in, Period: 10sec) 

A) Configuration A

a. Case 1: Different Coefficient of Friction for Surfaces 1 and 4

Figure 5-34 Comparison of Force-Displacement Loops 
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Figure 5-35 Comparison of Displacement Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 5-36 Comparison of Displacement Histories on Inner Surfaces (Surfaces 2 and 3) 

Figure 5-37 Comparison of Velocity Histories on Outer Surfaces (Surfaces 1 and 4) 
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Figure 5-38 Comparison of Velocity Histories on Inner Surfaces (Surfaces 2 and 3) 

Figure 5-39 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 5-40 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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b. Case 2: Same Coefficient of Friction for Surfaces 1 and 4

Figure 5-41 Comparison of Force-Displacement Loops 

Figure 5-42 Comparison of Displacement Histories on Outer Surfaces (Surface 1 and 4) 
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Figure 5-43 Comparison of Displacement Histories on Inner Surfaces (Surface 2 and 3) 

Figure 5-44 Comparison of Velocity Histories on Outer Surfaces (Surface 1 and 4) 

Figure 5-45 Comparison of Velocity Histories on Inner Surfaces (Surfaces 2 and 3) 
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Figure 5-46 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 5-47 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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B) Configuration B 

a. Case 1: Different Coefficient of Friction for Surface 1 and 4 

 

Figure 5-48 Comparison of Force-Displacement Loops 

 

  

Figure 5-49 Comparison of Displacement Histories on Outer Surfaces (Surfaces 1 and 4) 
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Figure 5-50 Comparison of Displacement Histories on Inner Surfaces (Surfaces 2 and 3) 

Figure 5-51 Comparison of Velocity Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 5-52 Comparison of Velocity Histories on Inner Surfaces (Surfaces 2 and 3) 
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Figure 5-53 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 5-54 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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b. Case 2: Same Coefficient of Friction for Surface 1 and 4 

 

 

Figure 5-55 Comparison of Force-Displacement Loops 

 

 

Figure 5-56 Comparison of Displacement Histories on Outer Surfaces (Surfaces 1 and 4) 
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Figure 5-57 Comparison of Displacement Histories on Inner Surfaces (Surfaces 2 and 3) 

Figure 5-58 Comparison of Velocity Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 5-59 Comparison of Velocity Histories on Inner Surfaces (Surfaces 2 and 3) 



84 

Figure 5-60 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 5-61 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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 Harmonic Motion: Amplitude of 20in and Period of 5sec  

 

Figure 5-62 Imposed Harmonic Motion (Amplitude: 20in, Period: 5sec) 

 

A) Configuration A 

a. Case 1: Different Coefficient of Friction for Surfaces 1 and 4 

 

Figure 5-63 Comparison of Force-Displacement Loops 
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Figure 5-64 Comparison of Displacement Histories on Outer Surfaces (Surfaces 1 and 4) 

 

 

Figure 5-65 Comparison of Displacement Histories on Inner Surfaces (Surfaces 2 and 3) 

 

 

 

Figure 5-66 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 
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Figure 5-67 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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b. Case 2: Same Coefficient of Friction for Surfaces 1 and 4

Figure 5-68 Comparison of Force-Displacement Loops 

Figure 5-69 Comparison of Displacement Histories on Outer Surfaces (Surface 1 and 4) 
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Figure 5-70 Comparison of Displacement Histories on Inner Surfaces (Surface 2 and 3) 

Figure 5-71 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 5-72 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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B) Configuration B 

a. Case 1: Different Coefficient of Friction for Surface 1 and 4 

 

Figure 5-73 Comparison of Force-Displacement Loops 

 

  

Figure 5-74 Comparison of Displacement Histories on Outer Surfaces (Surfaces 1 and 4) 
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Figure 5-75 Comparison of Displacement Histories on Inner Surfaces (Surfaces 2 and 3) 

Figure 5-76 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 5-77 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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b. Case 2: Same Coefficient of Friction for Surface 1 and 4 

 

 

Figure 5-78 Comparison of Force-Displacement Loops 

 

 

Figure 5-79 Comparison of Displacement Histories on Outer Surfaces (Surfaces 1 and 4) 
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Figure 5-80 Comparison of Displacement Histories on Inner Surfaces (Surfaces 2 and 3) 

Figure 5-81 Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 5-82 Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 



94 

5.2 Observations and Comments 

The observations made in the comparison of results when friction is temperature independent in Section 4 

(presented in subsection 4.1.3) are valid for the case of friction that is temperature dependent.  Specifically: 

1) The force-displacement loops obtained by the model in program OpenSees and the more advanced

model in program 3pleANI are in good agreement.

2) In general, the two models in program OpenSees produce results on the displacement, velocity and

temperature of the main surfaces 1 and 4 that are in good agreement with those produced by the

more advanced model in program 3pleANI.

3) In general, the two models in program OpenSees produce results on the displacement, velocity and

temperature of the inner surfaces 2 and 3 that differ from those produced by the more advanced

model in program 3pleANI.  Nevertheless, the motion and temperature in the inner surfaces are

significantly smaller than those of the main surfaces 1 and 4 (e.g., the temperature rise in the outer

surfaces is an order of magnitude larger than that in the inner surfaces) so that effect on the behavior

of the bearing is insignificant.

It is also observed that in examples where there is large increase in the temperature at the sliding surfaces, 

the two models in OpenSees and 3pleANI have predictions of temperature histories that differ more than 

that observed in examples with smaller temperature increases.  This is best seen in comparing the results of 

Figure 5-24 (temperatures reaching about 110oC) and Figure 5-81 (temperatures reaching about 180oC)-

both are for the same configurations (B with same friction coefficients on surfaces 1 and 4) and subjected 

to the same amplitude motion but with period of 20sec in the case of Figure 5-24 and period of 5sec in the 

case of Figure 5-81.  This is due to differences in the temperature-dependency of the friction coefficient in 

the models in programs OpenSees and 3pleANI, as explained in Section 5.1 (see also Figure 5-1). 
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SECTION 6  

RESPONSE HISTORY ANALYSIS OF BUILDINGS WITH TRIPLE FP 

BEARINGS 

6.1 Example: Response History Analysis of a Rigid Structure 

A rigid structure supported on triple FP isolators is subjected to ground motion in bidirectional horizontal 

and in the vertical directions.  Results produced by programs OpenSees and 3pleANI on isolation system 

force-displacement loops, and the histories of isolator displacement, structural acceleration and temperature 

at the sliding surfaces are compared.  In the analysis, only one isolator of Configuration B and two cases of 

friction (different and equal at the two main sliding interfaces-see Table 4-1) is utilized.   The weight of the 

structure carried by the single isolator is W=2225kN (W=500kip). Analyses were performed with only 

temperature-dependent friction for comparison to results of program 3pleANI, which is limited to only this 

option. Additional results of program OpenSees with temperature, velocity and pressure-dependent friction 

are presented and evaluated.  The parameters used in the analysis when friction is temperature-dependent 

are listed in Table 6-1.  Also, values of parameters used in the analysis other than those in Section 4 and 

below are presented in Appendix A. 

Table 6-1 Parameters for accounting for dependency of friction coefficient on temperature 

Parameter Unit Value

Thermal Diffusivity 𝑚ଶ/𝑠𝑒𝑐 0.444 ∗ 10ିହ 

Thermal Conductivity 𝑊/ሺ𝑚°Cሻ 18 

Initial Temperature °C 20 

When analyzing with only temperature-dependent friction, equations (2-7) to (2-10) are used but with 

parameters kv and kp set equal to unity.  When analyzing with pressure and velocity-dependent friction, 

equations (2-8) and (2-9) are used with the following values for the initial pressure po, and velocity 

parameter. 

Table 6-2 Values in equations 2-8 and 2-9 to account for dependency of friction on pressure and 

velocity 

Parameter Unit Value

Axial Load on Isolator kN 2225 

Initial Pressure at Surfaces 2 and 3 𝑀𝑃𝑎 73.7 
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Initial Pressure at Surface 1 𝑀𝑃𝑎 36.4 

Initial Pressure at Surface 4 𝑀𝑃𝑎 36.4 

Velocity Rate Parameter 𝑠𝑒𝑐/𝑚 100 (2.54sec/inch) 
 

The ground motion used in analysis consists of the fault-normal (FN), fault-parallel (FP), and vertical (V) 

components of the ground motion recorded at the Kaminoyama station in the 2011 Tohoku earthquake, 

scaled in amplitude by factor of 8.0. The ground motion data were obtained from the K-NET (Kyoshin 

Network) operated by the National Research Institute for Earth Science and Disaster Resilience (NIED) in 

Japan. This motion is of long duration having a 𝐷௦ହିହ duration (Chandramohan et al., 2016) equal to 

85.9sec for the FN component, 81.0sec for the FP component, and 82.4sec for the vertical component. 

Figures 6-1 to 6-3 present histories of the ground acceleration of the three components, after scaling by 

factor of 8 as used in the analyses, and their normalized Arias intensity histories in order to identify the 

sections of the Ds5-75 duration. 

 

Figure 6-1 Scaled 2011 Tohoku Motion at Kaminoyama (FN) and Normalized Arias Intensity 
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Figure 6-2 Scaled 2011 Tohoku Motion at Kaminoyama (FP) and Normalized Arias Intensity 

Figure 6-3 Scaled 2011 Tohoku Motion at Kaminoyama (V) and Normalized Arias Intensity 

Results are presented for the following four cases: 

1) Analysis using only the fault-normal (FN) component of the ground motion and with only temperature-

dependent-friction for the two cases of friction of isolator of configuration B.  The results of program

OpenSees are compared to those of program 3pleANI.

2) Analysis using the fault-normal (FN) and vertical components of ground motion and with only

temperature-dependent-friction and then again with temperature and pressure-dependent friction and

then again with temperature, velocity and pressure-dependent friction.  Results produced by program

OpenSees are presented and evaluated.
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3) Analysis using triaxial ground motions and with constant friction and with only temperature-

dependent-friction, and then again with temperature, velocity and pressure-dependent friction.  Results

produced by program OpenSees are presented and evaluated.

4) Analysis using triaxial ground motions and with constant friction. Results produced by the two

different triple FP bearing elements “TripleFrictionPendulum” and “TripleFrictionPendulumX” in

program OpenSees are presented and evaluated.
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 Analysis with Temperature-Dependent Friction and Horizontal Ground Motion 

 

Results produced by program OpenSees and 3pleANI are compared for the case of only temperature-

dependent friction. The scale factor for the FN component is 8. 

A) Different Friction Coefficients (𝝁𝟏 ൌ 𝟎.𝟎𝟒,𝝁𝟒 ൌ 𝟎.𝟎𝟖, 𝝁𝟐 ൌ 𝝁𝟑 ൌ 𝟎.𝟎𝟏) 

 

Figure 6-4 Comparison of Force-Displacement Loops (W=500kip) 

 

 

Figure 6-5 Comparison of Horizontal Acceleration Histories 
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Figure 6-6 Comparison of Isolator Displacement Histories 

 

Figure 6-7  Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

 

 

Figure 6-8  Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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B) Same Friction Coefficients (𝝁𝟏 ൌ 𝝁𝟒 ൌ 𝟎.𝟎𝟒, 𝝁𝟐 ൌ 𝝁𝟑 ൌ 𝟎.𝟎𝟏)

Figure 6-9 Comparison of Force-Displacement Loops (W=500kip) 

Figure 6-10 Comparison of Horizontal Acceleration Histories 
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Figure 6-11 Comparison of Isolator Displacement History 

 

Figure 6-12  Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

 

 

Figure 6-13  Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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Observations and Comments 

For the case of only temperature-dependent friction, the observations made in Section 5 are valid as 

programs OpenSees and 3pleANI produce results on force-displacement loops, acceleration and 

displacement histories that are in very good agreement.  The histories of temperature on surfaces 1 and 4 

differ a little when temperatures are large but that has been explained by the differences in the model of the 

differences in the friction-temperature relationships in the two programs (see Figure 5-1).  Also, there are 

some differences in the computed histories of temperature on surfaces 2 and 3 which are of the same order 

as those observed in the analyses in Section 5.  These differences have apparently insignificant effects on 

the important force-displacement loops and the histories of isolator displacement and acceleration. 
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 Analysis with Pressure and Temperature-Dependent Friction and Combined 

Horizontal-Vertical Ground Motion 

Results produced by program OpenSees are compared for the two cases of combined pressure and 

temperature-dependent friction and only temperature-dependent friction (𝜇ሺ𝑃,𝑇ሻ versus 𝜇ሺ𝑇ሻ in the graphs 

that follow). The scale factor for FN and V components is 8. 

A) Different Friction Coefficients (𝝁𝟏 ൌ 𝟎.𝟎𝟒,𝝁𝟒 ൌ 𝟎.𝟎𝟖, 𝝁𝟐 ൌ 𝝁𝟑 ൌ 𝟎.𝟎𝟏)

Figure 6-14 Comparison of Force-Displacement Loops (W=500kip) 

Figure 6-15 Comparison of Horizontal Acceleration Histories 
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Figure 6-16 Comparison of Isolator Displacement Histories 

Figure 6-17  Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 6-18  Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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B) Same Friction Coefficients (𝝁𝟏 ൌ 𝝁𝟒 ൌ 𝟎.𝟎𝟒, 𝝁𝟐 ൌ 𝝁𝟑 ൌ 𝟎.𝟎𝟏) 

 

Figure 6-19 Comparison of Force-Displacement Loops (W=500kip) 

 

 

 

Figure 6-20 Comparison of Horizontal Acceleration Histories 
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Figure 6-21 Comparison of Isolator Displacement Histories 

 

Figure 6-22  Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

 

 

Figure 6-23  Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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Observations and Comments 

There are insignificant differences in the computed response by program OpenSees when temperature-

dependent only and when combined pressure and temperature-dependent friction are considered.  The 

fluctuating vertical load, and thus fluctuating pressure, are not large enough to cause a significant change 

in behavior.  Rather, temperature is important in modifying friction and has an effect on response. 
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 Analysis with Pressure, Velocity and Temperature-Dependent Friction and 

Combined Horizontal-Vertical Ground Motion 

 

Results produced by program OpenSees are compared for the two cases of combined pressure, velocity and 

temperature-dependent friction and only temperature-dependent friction (𝜇ሺ𝑃,𝑇,𝑉ሻ versus 𝜇ሺ𝑇ሻ in the 

graphs that follow). The scale factor for FN and V components is 8. 
 

A) Different Friction Coefficients (𝝁𝟏 ൌ 𝟎.𝟎𝟒,𝝁𝟒 ൌ 𝟎.𝟎𝟖, 𝝁𝟐 ൌ 𝝁𝟑 ൌ 𝟎.𝟎𝟏) 

 

Figure 6-24 Comparison of Force-Displacement Loops (W = 500kip) 

 

Figure 6-25 Comparison of Horizontal Acceleration Histories 
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Figure 6-26 Comparison of Isolator Displacement Histories 

 

Figure 6-27  Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

 

 

Figure 6-28  Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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B) Same Friction Coefficients (𝝁𝟏 ൌ 𝝁𝟒 ൌ 𝟎.𝟎𝟒, 𝝁𝟐 ൌ 𝝁𝟑 ൌ 𝟎.𝟎𝟏) 

 

Figure 6-29 Comparison of Force-Displacement Loops (W= 500kip) 

 

 

Figure 6-30 Comparison of Horizontal Acceleration Histories 
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Figure 6-31 Comparison of Isolator Displacement Histories 

Figure 6-32  Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 6-33  Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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 Observations and Comments 

Including the velocity dependence in the model of friction did not have any important change in the 

computed response for the analyzed rigid structure (it could have for the accelerations in a flexible multi-

degree-of-freedom structure).  The only important observation has to do with permanent displacements 

which are less when velocity-dependent friction is utilized.  This is illustrated for the case of  𝜇ଵ ് 𝜇ସ for 

which the force-displacement loop and displacement history of the isolator are shown in Figures 6-24 and 

6-26, respectively.   Figure 6-34 below compares the displacement histories for surfaces 1 and 4 (unlike 

Figure 6-26 which shows the displacement of the top of the bearing with respect to its bottom).   For surface 

1 of friction coefficient equal to 0.04, there is insignificant permanent offset computed with both models.  

However, for surface 4 of higher friction (=0.08) there is permanent offset when the velocity dependence 

of friction is ignored.    

 

Figure 6-34 Displacement History on Surface 1 and 4 in case of unequal friction  𝝁𝟏 ് 𝝁𝟒 
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It is interesting to observe the instantaneous values of friction computed during the analysis by the two 

models and shown in Figure 6-35.  In the 𝜇ሺ𝑃,𝑇,𝑉ሻ model, there is a rapid fluctuation of the friction 

coefficient value between the lower and upper limits as the sliding velocity varies from zero to its 

maximum value in every cycle of motion. In the 𝜇ሺ𝑇ሻ model, the friction coefficient varies much less 

and smoothly with temperature.  Evidently, consideration of the velocity dependence of friction is 

important when permanent offsets are assessed. 

 

Figure 6-35 Friction Coefficient on Surface 1 and 4 in case of unequal friction 𝝁𝟏 ് 𝝁𝟒 
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 Analysis with Pressure, Velocity and Temperature-Dependent Friction and 

Triaxial Ground Motion 

 

Results produced by program OpenSees are compared for the three cases of combined pressure, velocity 

and temperature-dependent friction, only temperature-dependent friction, and Coulomb friction (𝜇ሺ𝑃,𝑇,𝑉ሻ 

versus 𝜇ሺ𝑇ሻ versus 𝜇 ൌ 𝐶𝑜𝑢𝑙𝑜𝑚𝑏 in the graphs that follow). In the analysis, the FN and FP components 

are used in X and Y directions, respectively. The scale factor for the FN, FP, and V components is 7.  

Moreover, the isolators are assumed to be without an interior ring or displacement restrainer so that the 

total displacement capacity is increased by b2/2 and 𝑢௧=26.2in. (see Table 2-1). 

 
 

A) Different Friction Coefficients (𝝁𝟏 ൌ 𝟎.𝟎𝟒,𝝁𝟒 ൌ 𝟎.𝟎𝟖, 𝝁𝟐 ൌ 𝝁𝟑 ൌ 𝟎.𝟎𝟏) 

 

Figure 6-36 Comparison of Force-Displacement Loops in X direction for Three Cases of Friction 

(W = 500kip) 

 

Figure 6-37 Comparison of Force-Displacement Loops in Y direction for Three Cases of Friction 

(W = 500kip) 
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Figure 6-38 Comparison of Force-Displacement Loops in X direction (W = 500kip) 

 

 

Figure 6-39 Comparison of Force-Displacement Loops in Y direction (W = 500kip) 
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Figure 6-40 Comparison of Isolator Displacement Orbits (Circle shows 𝒖𝒍𝒊𝒎𝒊𝒕=26.2in) 
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Figure 6-41  Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 
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Figure 6-42  Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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B) Same Friction Coefficients (𝝁𝟏 ൌ 𝝁𝟒 ൌ 𝟎.𝟎𝟒, 𝝁𝟐 ൌ 𝝁𝟑 ൌ 𝟎.𝟎𝟏)

Figure 6-43 Comparison of Force-Displacement Loops in X direction for Three Cases of Friction 

(W = 500kip) 

Figure 6-44 Comparison of Force-Displacement Loops in Y direction for Three Cases of Friction 

(W = 500kip) 
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Figure 6-45 Comparison of Force-Displacement Loops in X direction (W = 500kip) 

 

 

Figure 6-46 Comparison of Force-Displacement Loops in Y direction (W = 500kip) 
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Figure 6-47 Comparison of Isolator Displacement Orbits (Circle shows 𝒖𝒍𝒊𝒎𝒊𝒕=26.2in) 
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Figure 6-48  Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 
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Figure 6-49  Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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 Observations and Comments 

Overall, observations and comments made in subsection 6.1.6 are still valid. The most important parameter 

that affects the response is the temperature dependence of the coefficient of friction, whereas the pressure 

and velocity effects are minor. As expected, the triaxial ground motion results in increases in the isolator 

response in terms of displacements and temperature at the sliding interfaces.  The increase in displacement 

demand results in the isolators entering regime V (high stiffness) so that the shear force is significantly 

increased.   

 



 

126 

 

 Comparison of Results Produced by Elements TripleFrictionPendulum and 

TripleFrictionPendulumX in OpenSees 

 
Results for triaxial ground motion produced by TripleFrictionPendulum and TripleFrictionPendulumX 

elements in program OpenSees are compared in the case of constant friction coefficients when the two 

elements should produce identical results. In the analysis, the FN and FP components are used in X and Y 

directions, respectively. The temperature is calculated only by element TripleFrictionPendulumX and its 

histories are presented. The scale factor for FN, FP, and V components is 7. 

 

A) Different Friction Coefficients (𝝁𝟏 ൌ 𝟎.𝟎𝟒,𝝁𝟒 ൌ 𝟎.𝟎𝟖, 𝝁𝟐 ൌ 𝝁𝟑 ൌ 𝟎.𝟎𝟏) 

 

Figure 6-50 Comparison of Force-Displacement Loops (W = 500kip) 
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Figure 6-51 Comparison of Isolator Displacement Orbits (Circle shows 𝒖𝒍𝒊𝒎𝒊𝒕=26.2in) 

Figure 6-52  Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 6-53  Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 
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A) Same Friction Coefficients (𝝁𝟏 ൌ 𝝁𝟒 ൌ 𝟎.𝟎𝟒, 𝝁𝟐 ൌ 𝝁𝟑 ൌ 𝟎.𝟎𝟏) 

 

Figure 6-54 Comparison of Force-Displacement Loops (W= 500kip) 

 

Figure 6-55 Comparison of Isolator Displacement Orbits (Circle shows 𝒖𝒍𝒊𝒎𝒊𝒕=26.2in) 
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Figure 6-56  Comparison of Temperature Histories on Outer Surfaces (Surfaces 1 and 4) 

Figure 6-57  Comparison of Temperature Histories on Inner Surfaces (Surfaces 2 and 3) 

 Observations and Comments 

Elements TripleFrictionPendulum and TripleFrictionPendulumX in program OpenSees produce identical 

results in the case of constant friction coefficients. 
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SECTION 7  

IMPLEMENTING NEW TRIPLE FP BEARING ELEMENT IN PROGRAM 

OPENSEES 

Element TripleFrictionPendulumX has not been implemented in program OpenSees for direct use.  Rather, 

interested users need to obtain the source code of program OpenSees and attach to it the source code for 

element TripleFrictionPendulumX.  Details on how to do this and the source code for element 

TripleFrictionPendulumX are provided in a digital appendix entitled IMPLEMENTING 

“TRIPLEFRICTIONPENDULUMX” ELEMENT IN OPENSEES which can be obtained from the authors. 
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SECTION 8  

SUMMARY AND CONCLUSIONS 

This report presented an enhancement of the theory for the Triple FP isolators presented by Fenz et al 

(2018a, b, c, d, 2019) which was used in the implementation of a Triple FP element in program OpenSees 

(Dao et al., 2013). The enhanced theory computes the displacement and velocity histories at each of the 

four sliding interfaces of the isolator which are then used to introduce dependence of the coefficient of 

friction on axial pressure, sliding velocity, and temperature.  The Dao et al. (2013) element in program 

OpenSees has been modified to introduce dependencies on pressure, velocity and temperature.  The 

dependency on temperature is a new development, whereas the dependency on velocity is direct and based 

on the actual sliding velocities rather than based on the partitioning of velocity of the Fenz et al. (2008a, b, 

c, d, 2019) model. 

Several examples have been presented in which results obtained by this model in program OpenSees were 

compared with results obtained by a much more complex and advanced model implemented in program 

3pleANI (Sarlis et al., 2013, 2016).  There is good agreement in the results in terms of displacement, 

velocity and temperature histories at the four sliding interfaces, and of force-displacement loops. 

Furthermore, the enhanced Triple FP element in OpenSees has been verified. 
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APPENDIX A 

PARAMETERS USED IN ANALYSIS IN PROGRAM OPENSEES 

Table A-1 presents values of the parameters used in each example presented in Sections 4, 5 and 6.  All 

parameters are defined in the report except for the following: Y is yield displacement in the friction model; 

dtload is loading time step; dt is analysis time step; Tol is a convergence tolerance parameter utilized by the 

Newton-Raphson method that is used in the numerical solution; a is friction velocity rate parameter (see 

equation 2-3).  

Table A-1 Parameters Used in Analysis 

Section Model Motion Isolator Configuration Model Parameters 

4.1.1 Constant 𝜇 
Amplitude = 20in 

Period = 20sec 

Configuration A 

(𝜇1 = 0.04, 𝜇4 = 0.08,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in, dtload = 0.001sec, 

dt = 0.001sec, Tol = 10-5  

Configuration A 

(𝜇1 = 𝜇4 = 0.04, 

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in, dtload = 0.001sec, 

dt = 0.001sec, Tol = 10-5  

Configuration B 

(𝜇1 = 0.04, 𝜇4 = 0.08, 

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in dtload = 0.001sec, 

dt = 0.001sec, Tol = 10-5 

Configuration B 

(𝜇1 = 𝜇4 = 0.04,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in dtload = 0.001sec, 

dt = 0.001sec, Tol = 10-5 

4.1.2 Constant 𝜇 
Amplitude = 22in 

Period = 10sec 

Configuration A 

(𝜇1 = 0.04, 𝜇4 = 0.08,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in, dtload = 0.001sec, 

dt = 0.001sec, Tol = 10-5 

Configuration A 

(𝜇1 = 𝜇4 = 0.04,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in, dtload = 0.001sec, 

dt = 0.001sec, Tol = 10-5 

Configuration B 

(𝜇1 = 0.04, 𝜇4 = 0.08,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in, dtload = 0.001sec, 

dt = 0.001sec, Tol = 10-5 

Configuration B 

(𝜇1 = 𝜇4 = 0.04,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in, dtload = 0.001sec, 

dt = 0.001sec, Tol = 10-5 
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4.1.3 Constant 𝜇 
Amplitude = 20in 

Period = 5sec 

Configuration A 

(𝜇1 = 0.04, 𝜇4 = 0.08,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in, dtload = 0.001sec, 

dt = 0.001sec, Tol = 10-5 

Configuration A 

(𝜇1 = 𝜇4 = 0.04,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in, dtload = 0.001sec, 

dt = 0.001sec, Tol = 10-5 

Configuration B 

(𝜇1 = 0.04, 𝜇4 = 0.08,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in, dtload = 0.001sec, 

dt = 0.001sec, Tol = 10-5 

Configuration B 

(𝜇1 = 𝜇4 = 0.04,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in, dtload = 0.001sec, 

dt = 0.001sec, Tol = 10-5 

5.1.1 𝜇ሺ𝑇ሻ 
Amplitude = 20in 

Period = 20sec 

Configuration A 

(𝜇1 = 0.04, 𝜇4 = 0.08,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in, dtload = 0.0167sec,  

dt = 0.0167sec, Tol = 10-5  

Configuration A 

(𝜇1 = 𝜇4 = 0.04,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in, dtload = 0.0167sec,  

dt = 0.0167sec, Tol = 10-5 

Configuration B 

(𝜇1 = 0.04, 𝜇4 = 0.08,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in, dtload = 0.0167sec,  

dt = 0.0167sec, Tol = 10-5 

Configuration B 

(𝜇1 = 𝜇4 = 0.04,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in, dtload = 0.0167sec,  

dt = 0.0167sec, Tol = 10-5 

5.1.2 𝜇ሺ𝑇ሻ 
Amplitude = 22in 

Period = 10sec 

Configuration A 

(𝜇1 = 0.04, 𝜇4 = 0.08,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in, dtload = 0.0167sec,  

dt = 0.0167sec, Tol = 10-5  

Configuration A 

(𝜇1 = 𝜇4 = 0.04,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in, dtload = 0.0167sec,  

dt = 0.0167sec, Tol = 10-5  

Configuration B 

(𝜇1 = 0.04, 𝜇4 = 0.08,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in, dtload = 0.001sec, 

dt = 0.0167sec, Tol = 10-5  

Configuration B 

(𝜇1 = 𝜇4 = 0.04,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in, dtload = 0.001sec, 

dt = 0.0167sec, Tol = 10-5 

5.1.3 𝜇ሺ𝑇ሻ 
Amplitude = 20in 

Period = 5sec 

Configuration A 

(𝜇1 = 0.04, 𝜇4 = 0.08,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in, dtload = 0.001sec, 

dt = 0.008sec, Tol = 10-5 
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Configuration A 

(𝜇1 = 𝜇4 = 0.04,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in, dtload = 0.001sec, 

dt = 0.001sec, Tol = 10-5 

Configuration B 

(𝜇1 = 0.04, 𝜇4 = 0.08,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in, dtload = 0.001sec, 

dt = 0.008sec, Tol = 10-5 

Configuration B 

(𝜇1 = 𝜇4 = 0.04,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.04in, dtload = 0.001sec, 

dt = 0.001sec, Tol = 10-5 

6.1.1 𝜇ሺ𝑇ሻ 

2011 Tohoku 

Earthquake at 

Kaminoyama 

station  

(FN, Scaled by 8) 

Configuration B 

(𝜇1 = 0.04, 𝜇4 = 0.08,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.01in,  

dtload = 0.001sec,  

dt = 0.0016sec, Tol = 10-3 

Configuration B 

(𝜇1 = 𝜇4 = 0.04,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.01in,  

dtload = 0.001sec,  

dt = 0.0016sec, Tol = 10-3 

6.1.3 
𝜇ሺ𝑇ሻ 

and 𝜇ሺ𝑃,𝑇ሻ 

2011 Tohoku 

Earthquake at 

Kaminoyama 

station 

(FN and V, Scaled 

by 8) 

Configuration B 

(𝜇1 = 0.04, 𝜇4 = 0.08,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.01in,  

dtload = 0.001sec, 

dt = 0.004sec, Tol = 10-3 

Configuration B 

(𝜇1 = 𝜇4 = 0.04,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.01in,  

dtload = 0.001sec,  

dt = 0.004sec, Tol = 10-3 

6.1.5 

𝜇ሺ𝑇ሻ  

and 

𝜇ሺ𝑃,𝑇,𝑉ሻ 

2011 Tohoku 

Earthquake at 

Kaminoyama 

station 

(FN and V, Scaled 

by 8) 

Configuration B 

(𝜇1 = 0.04, 𝜇4 = 0.08,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.01in,  

dtload = 0.001sec, a = 2.54sec/inch 

(100sec/m) 

dt = 0.006sec, Tol = 10-3 

Configuration B 

(𝜇1 = 𝜇4 = 0.04,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.01in,  

dtload = 0.001sec, a = 2.54sec/inch 

(100sec/m) 

dt = 0.004sec, Tol = 10-3 

6.1.7 

Constant 𝜇 

and 

𝜇ሺ𝑇ሻ  

and 

𝜇ሺ𝑃,𝑇,𝑉ሻ 

2011 Tohoku 

Earthquake at 

Kaminoyama 

station 

(FN, FP, and V, 

Scaled by 7) 

Configuration B 

(𝜇1 = 0.04, 𝜇4 = 0.08,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.01in,  

dtload = 0.001sec, a = 2.54sec/inch 

(100sec/m) 

dt = 0.006sec, Tol = 10-3 

Configuration B 

(𝜇1 = 𝜇4 = 0.04,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.01in,  

dtload = 0.001sec, a = 2.54sec/inch 

(100sec/m) 

dt = 0.004sec, Tol = 10-3 



140 

6.1.9 Constant 𝜇 

2011 Tohoku 

Earthquake at 

Kaminoyama 

station 

(FN, FP, and V, 

Scaled by 7) 

Configuration B 

(𝜇1 = 0.04, 𝜇4 = 0.08,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.01in,  

dtload = 0.001sec, a = 2.54sec/inch 

(100sec/m) 

dt = 0.001sec, Tol = 10-3 

Configuration B 

(𝜇1 = 𝜇4 = 0.04,  

𝜇2 = 𝜇3 = 0.01) 

Y = 0.01in,  

dtload = 0.001sec, a = 2.54sec/inch 

(100sec/m) 

dt = 0.001sec, Tol = 10-3 
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