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Preface 
 
MCEER is a national center of excellence dedicated to the discovery and development of 
new knowledge, tools and technologies that equip communities to become more disaster 
resilient in the face of earthquakes and other extreme events. MCEER accomplishes this 
through a system of multidisciplinary, multi-hazard research, in tandem with 
complimentary education and outreach initiatives.  
 
Headquartered at the University at Buffalo, The State University of New York, MCEER 
was originally established by the National Science Foundation in 1986, as the first National 
Center for Earthquake Engineering Research (NCEER). In 1998, it became known as the 
Multidisciplinary Center for Earthquake Engineering Research (MCEER), from which the 
current name, MCEER, evolved. 
 
Comprising a consortium of researchers and industry partners from numerous disciplines 
and institutions throughout the United States, MCEER’s mission has expanded from its 
original focus on earthquake engineering to one which addresses the technical and socio-
economic impacts of a variety of hazards, both natural and man-made, on critical 
infrastructure, facilities, and society. 
 
The Center derives support from several Federal agencies, including the National Science 
Foundation, Federal Highway Administration, Department of Energy, Nuclear Regulatory 
Commission, and the State of New York, foreign governments and private industry.   

 
This report presents results on the probability of failure in a lifetime of 50 years of non‐
isolated and seismically isolated transformers at ten locations in the Western US. This 
study considers: (a) scaling the ground motions for use in the incremental dynamic 
analysis by adjusting the spectral acceleration at the fundamental period (or effective 
period for isolated transformers) instead of the peak ground acceleration (PGA) in the 
earlier studies, (b) correcting for the spectral shape effects, which were ignored in the 
earlier studies, and (c) accounting for uncertainties, which were neglected in earlier 
studies. Moreover, the report presents sample results for near‐field motions, which do not 
differ much from the results obtained for far‐field motions. The results of this report, 
documented in numerous tables, may be used to decide on the benefits offered by a seismic 
isolation system depending on the location of the transformer and the form and properties 
of the seismic isolation system. The benefit is assessed on the basis of the probability of 
failure in a lifetime of 50 years. The information may also be used to assess the seismic 
performance of electric transmission networks under scenarios of component failures. 

 
 

 

 





iii 

PREFACE 

MCEER is a national center of excellence dedicated to the discovery and development of 

new knowledge, tools and technologies that equip communities to become more disaster 

resilient in the face of earthquakes and other extreme events. MCEER accomplishes this 

through  a  system  of  multidisciplinary,  multi‐hazard  research,  in  tandem  with 

complimentary education and outreach initiatives. 

Headquartered at the University at Buffalo, The State University of New York, MCEER 

was  originally  established  by  the National  Science  Foundation  in  1986,  as  the  fi  rst 

National  Center  for  Earthquake  Engineering  Research  (NCEER).  In  1998,  it  became 
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on critical infrastructure, facilities, and society. 

The Center derives support from several Federal agencies, including the National Science 

Foundation,  Federal  Highway  Administration,  National  Institute  of  Standards  and 

Technology,  Department  of  Homeland  Security/Federal  Emergency  Management 

Agency,  and  the  State  of New York,  other  state  governments,  academic  institutions, 

foreign governments and private industry. 

This report presents results on the probability of failure in a lifetime of 50 years of non‐

isolated and seismically  isolated  transformers at  ten  locations  in  the Western US. This 

study  considers:  (a)  scaling  the  ground motions  for  use  in  the  incremental  dynamic 

analysis by adjusting  the  spectral acceleration at  the  fundamental period  (or effective 

period for  isolated transformers)  instead of the peak ground acceleration (PGA)  in the 

earlier studies,  (b) correcting  for  the spectral shape effects, which were  ignored  in  the 

earlier  studies,  and  (c)  accounting  for  uncertainties, which were  neglected  in  earlier 

studies. Moreover, the report presents sample results for near‐field motions, which do 

not much differ from the results obtained for far‐field motions. The results of this report, 

documented  in numerous  tables, may be used  to decide on  the benefits offered by a 

seismic isolation system depending on the location of the transformer and the form and 

properties of  the seismic  isolation system.   The benefit  is assessed on  the basis of  the 

probability of failure in 50 years of lifetime.  The information may also be used to assess 
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ABSTRACT 

This report presents results on the probability of failure in a lifetime of 50 years of non-isolated and 

seismically isolated transformers at ten locations in the Western US. This report presents an investigation 

of the limitations of past studies by considering: (a) scaling the ground motions for use in the incremental 

dynamic analysis by adjusting the spectral acceleration at the fundamental period (or effective period for 

isolated transformers) instead  of the peak ground acceleration (PGA) in the earlier studies, (b) correcting 

for the spectral shape effects, which were ignored in the earlier studies, and (c) accounting for uncertainties, 

which were neglected in earlier studies. Moreover, the report presents sample results for near-field motions, 

which however, could not be corrected for spectral shape effects. 

Results obtained for far-field motions show that, in general, scaling of the ground motions based on the 

spectral acceleration at the fundamental period or the effective period results in significant increases in the 

probability of failure for the isolated transformers, which are significantly moderated by corrections for the 

spectral shape effects.  By comparison, the changes in the probability of failure of the studied non-isolated 

transformers were small due to the fact that the fundamental period was very small so that the spectral 

acceleration at the fundamental period was very close to the PGA which was used in the earlier studies for 

the scaling.   

Based on the new results in this report, combined horizontal-vertical seismic isolation systems offer the 

lowest probabilities of failure for all cases of transformer and isolation system parameters, and for all 

considered sites.  Horizontal only isolation offers no or offers insignificant advantages over non-isolation 

when the bushing transverse acceleration limit is 2g.  However, horizontal only isolation offers important 

advantages over non-isolation when the bushing transverse acceleration limit is 1g. 

The results of this report, documented in numerous tables, may be used to decide on the benefits offered by 

a seismic isolation system depending on the location of the transformer and the form and properties of the 

seismic isolation system.  The benefit is assessed on the basis of the probability of failure in 50 years of 

lifetime.  The information may also be used to assess the seismic performance of electric transmission 

networks under scenarios of component failures.
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SECTION 1 

INTRODUCTION 

Earlier studies on the assessment of seismic performance of seismically isolated electrical power 

transformers (Kitayama et al., 2016, 2017) utilized FEMA P695 procedures (FEMA, 2009) with 

the following limitations: 

1) The peak ground acceleration (PGA) was selected as the measure of seismic intensity in

the scaling of ground motions used in the incremental dynamic analysis for constructing

fragility curves. While many studies of seismic assessment of electrical transformers used

the PGA as a measure of seismic intensity (Shinozuka et al., 2007; Shumuta, 2007), the

spectral acceleration at the fundamental period Sa(T1) of the analyzed structure is thought

to be a more appropriate measure of intensity and has been used in building performance

studies. FEMA (2009), Masroor and Mosqueda (2015) and Kitayama and Constantinou

(2018a, 2018b, 2019a, 2019b) used the spectral acceleration at the fundamental period as

the measure of ground motion intensity for seismically isolated structures. The selection of

the measure of seismic intensity affects the scaling of the motions for analysis and

accordingly affects the results. An example in Section 2 demonstrates the effect.

2) The fragility analysis did not account for spectral shape effects. The analysis used a large

sample of actual ground motions and increased their intensity until failure was detected in

an approach that only accounted for the ground-motion intensity in the assessment of

failure. The approach did not account for the changing spectral shape of the motions as

intensity is increased. Appendix A presents more details of the spectral shape effects and

the procedure used to account for them in this study.

3) The fragility analysis results and the calculated probabilities of failure did not account for

uncertainties other than the record-to-record variability (aleatory uncertainty) and only

considered modeling uncertainties (epistemic uncertainty) through a limited bounding

analysis by considering a range of model parameters. The analysis did not consider

uncertainties related to the quality of the analysis model and the quality of construction of

the transformer. Kitayama and Constantinou (2018a, 2018b, 2019a, 2019b) demonstrated

the effects of uncertainties on the calculated probabilities of collapse of isolated buildings.

4) The study only considered far-field motions. Two of the ten considered sites in the

transformer performance evaluation are in close proximity to active faults so that near-fault
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motions (see Section 11.4.1 of ASCE/SEI 7-16 standard for identification; ASCE, 2017) 

should have been considered. Such motions often result in larger isolator displacement 

demands and thus may affect the failure performance. 

This report presents an investigation of the limitations of past studies by considering other 

measures of seismic intensity, including spectral shape effects, incorporating uncertainties and 

performing representative analyses with near-field ground motions. The studies are performed 

with a representative transformer model out of those studied in Kitayama et al. (2016). The reader 

should first read the report of Kitayama et al. (2016) to be able to follow the work in this report. 

The selected transformer is the one with 420kip weight and an inclined (20 degrees) bushing of 

4.3Hz or 7.7Hz or 11.3Hz frequency (W=420kip, fAI=4.3 or 7.7 or 11.3Hz). Table 1-1 lists the 

properties of the three considered bushings. In its non-isolated version, the transformer model has 

an inherent damping of 3% of critical in all its modes. Inherent damping was realized in the 

analysis model by adding translational and rotational viscous damping elements at selected 

locations as described in Kitayama et al. (2016). When isolated, the transformer model was placed 

on top of the seismic isolation model and interconnected without any specification for global 

damping in order to avoid affecting the behavior of the isolation system. 

Table 1-1 Properties of bushings used in study (after Kitayama et al., 2016) 

Unit Bushing 3 Bushing 6 Bushing 8 

Voltage capacity kV 550 196/230 550 

Total height meter 6.22 3.85 6.48 

Length over mounting flange: HUB meter 4.95 2.32 4.83 

Length below mounting flange: HLB meter 1.27 1.52 1.65 

Total weight kN 12.5 3.74 9.70 

Upper bushing weight: mUB∙g kN 9.59 1.99 6.98 

Location of upper bushing center of gravity: HCM_UB meter 2.23 0.86 2.16 

Lower bushing weight: mLB∙g kN 2.46 1.30 2.27 

Location of lower bushing center of gravity: HCM_LB meter 1.50 0.71 0.99 

Connection housing weight: mCH∙g kN 0.44 0.44 0.44 

Weight per unit length kN/m 1.94 0.86 1.43 

Distance to the flange (half of center pocket): HF meter 0.29 0.34 0.29 

Fixed frequency: fFix Hz 9.36 21.00 9.35 

As-installed frequency: fAI Hz 4.25 11.25 7.70 

Material of insulator - Porcelain Porcelain Porcelain 
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When seismically isolated, the horizontal isolators considered in the study were Triple FP isolators 

with ultimate displacement capacity of 17.7inch or 31.3inch without an inner restrainer.  The 

fiction properties considered were for the lower bound conditions as those always resulted in the 

largest probabilities of failure (W=420kip, fAI=4.3 or 7.7 or 11.3Hz, 20 degree inclined bushing, 

DCapacity=17.7inch or 31.3inch, lower bound conditions with μ1=μ4=0.12 and μ2=μ3=0.08) (the 

values of the friction coefficient μ1 and μ4 apply for the outer sliding interfaces 1 and 4 and the 

values of the friction coefficient μ2 and μ3 apply for the inner sliding interfaces 2 and 3 as shown 

in Figure 1-1). The intermediate size isolator with DCapacity=27.7inch considered in Kitayama et al. 

(2016) was not considered as its displacement capacity was close to the one with capacity of 

31.3inch. When vertically isolated, the vertical isolation system consisted of four isolators, each 

with stiffness K=44kip/in, damping constant C=3.4kip-sec/in and a stroke capacity of 5inch. The 

system in the vertical direction had a frequency of 2.0Hz and a damping ratio of 0.50. Vertical 

isolation systems with either complete restraint against rocking (using a second very stiff base) 

(results identified as “without rocking”) or free to rock (results identified as “with rocking”) were 

analyzed.  

 

Figures 1-1 and 1-2 present sections of the two isolators. Note that the two isolators differ in the 

displacement capacity and in the radius of curvature of the two main concave plates. This is 

important in understanding some of the results of this study. 

 

The bushing failure acceleration limits considered were (a) 1g or 2g in the bushing transverse 

direction, and (b) 5g in the bushing longitudinal direction. Other transformer failure criteria used 

in the fragility analysis were (a) exceedance of isolator horizontal displacement capacity DCapacity, 

(b) isolator uplift exceeding 2inch, and (c) numerical instability in the analysis.  The interested 

reader is referred to the report of Kitayama et al. (2016) for details on the selection of and 

justification for the acceleration limits of the bushings. In general, the failure criteria of the 

bushings are based on comparisons of predicted fragility curves of analyzed non-isolated 

transformers to empirical fragility curves based on observations of damage to electrical equipment 

in earthquakes. 
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Figure 1-1 Section of smallest isolator with displacement capacity DCapacity=17.7inch 

Figure 1-2 Section of largest isolator with displacement capacity DCapacity=31.3inch 

The locations considered for the transformer were the ten sites considered in the Kitayama et al. 

(2016) study (Vancouver, WA; Saranap, CA; Loma Linda, CA; Aberdeen, WA; Chehalis, WA; 

Hillsboro, OR; Eugene, OR; Wilsonville, OR; Curry County, OR; Troutdale, OR) (see Table 2-1 

in Kitayama et al., 2016). Figure 1-3 shows these locations. These locations have different seismic 

hazard curves, which should result in different probabilities of failure in 50 years. For example, 

Chehalis, WA is a moderate seismicity site, Loma Linda, CA is a high seismicity site, and 

Sliding Interfaces 1 and 4 
Sliding Interfaces 2 and 3 
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Troutdale, OR is a low seismicity site. Figures 1-4 to 1-13 presents seismic hazard curves for the 

10 locations at periods of zero, 0.1, 0.2, 2 and 3second. These periods are relevant to the analysis 

in this report. The seismic hazard curves were obtained from the United States Geological Survey 

(http://geohazards.usgs.gov/hazardtool/application.php) in the form of the annual frequency of 

exceedance as function of the spectral acceleration at selected values of period for the site locations 

and soil conditions. 

Figure 1-3 Location of transformers considered in this study 



6 

Figure 1-4 Seismic hazard curves for zero, 0.1, 0.2, 2 and 3sec period at Vancouver, WA 

Figure 1-5 Seismic hazard curves for zero, 0.1, 0.2, 2 and 3sec period at Saranap, CA 
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Figure 1-6 Seismic hazard curves for zero, 0.1, 0.2, 2 and 3sec period at Loma Linda, CA 

 

 

 

Figure 1-7 Seismic hazard curves for zero, 0.1, 0.2, 2 and 3sec period at Aberdeen, WA 
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Figure 1-8 Seismic hazard curves for zero, 0.1, 0.2, 2 and 3sec period at Chehalis, WA 

Figure 1-9 Seismic hazard curves for zero, 0.1, 0.2, 2 and 3sec period at Hillsboro, OR 
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Figure 1-10 Seismic hazard curves for zero, 0.1, 0.2, 2 and 3sec period at Eugene, OR 

Figure 1-11 Seismic hazard curves for zero, 0.1, 0.2, 2 and 3sec period at Wilsonville, OR 
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Figure 1-12 Seismic hazard curves for zero, 0.1, 0.2, 2 and 3sec period at Curry County, OR 

Figure 1-13 Seismic hazard curves for zero, 0.1, 0.2, 2 and 3sec period at Troutdale, OR 
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Results obtained for near-field and far-field motions, both without correction for spectral shape 

effects, reveal that for the studied isolated transformers there is a small difference between the 

results of the two sets of motions.   We suggest that the considered isolators of low stiffness and 

large displacement capacity for near-field applications did not experience failure and did not cause 

any significant increase in the bushing acceleration as the isolator displacement demand increased 

due to the effects of the near-field motions.  It was concluded that near-field motions do not 

appreciably change the results obtained for the far-field motions when isolators of appropriately 

larger displacement capacity and low stiffness are used.  

Results obtained for far-field motions show that, in general, scaling of the ground motions based 

on the spectral acceleration at the fundamental period or the effective period results in significant 

increases in the probability of failure for the isolated transformers, which are then significantly 

moderated by corrections for the spectral shape effects.  By comparison, the changes in the 

probability of failure of the studied non-isolated transformers were small due to the fact that the 

fundamental period was very small so that the spectral acceleration at the fundamental period was 

very close to the PGA which was used in the earlier studies for the scaling.   

Based on the new results in this report, combined horizontal-vertical seismic isolation systems 

offer the lowest probabilities of failure for all cases of transformer and isolation system parameters, 

and for all considered sites.  Horizontal only isolation offers no or offers insignificant advantages 

over non-isolation when the bushing transverse acceleration limit is 2g.  However, horizontal 

only isolation offers important advantages over non-isolation when the bushing transverse 

acceleration limit is 1g.   

The results of this report, documented in numerous tables, may be used to decide on the benefits 

offered by a seismic isolation system depending on the location of the transformer and the form 

and properties of the seismic isolation system.  The benefit is assessed on the basis of the 

probability of failure in 50 years of lifetime.  The information may also be used to assess the 

seismic performance of electric transmission networks under scenarios of component failures. 
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SECTION 2 

EVALUATING THE EFFECT OF SEISMIC GROUND MOTION INTENSITY 

MEASURES ON FRAGILITY 

Figure 2-1 illustrates how the selection of the measure of the ground motion intensity affects the 

calculation of the probability of failure (fragility curve) and by extension the mean annual 

frequency of failure F and the probability of failure over a specified time. The figure shows the 

5%-damped response spectra of ground motions used in Incremental Dynamic Analysis (IDA) for 

constructing the fragility curves. The ground motions are first scaled so that their 5%-damped 

spectral acceleration values are the same at a selected period. Figure 2-1 shows the result of the 

scaling when the selected period is (near) zero (so that the intensity measure is the PGA) and 

another period Ti (so that the intensity measure is Sa (Ti)). Response history analysis is then 

performed by increasing the ground motion intensity in small steps while detecting failure in each 

step. Conceptually, the results should be relatively insensitive to the conditioning period provided 

that the records are representative of the site in consideration and the number of records is large 

enough. However, in this study the same set of records is used for several sites and, therefore, it is 

expected that the scaling procedure should have some effect.  

Figure 2-1 Scaling of ground motions so that the spectral acceleration values of the horizontal 

components are the same at zero period (left) and at period Ti (right) 

Studies reported in Kitayama et al. (2016, 2017) presented results on the mean annual frequency 

of failure F and the probability of failure in a lifetime of 50 years of several isolated and non-

isolated electrical transformers at the ten locations shown in Figure 1-3. These results of F were 
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obtained by using the PGA as the measure of ground motion intensity. A procedure is described 

below for converting the results acquired on the basis of PGA scaling to new results based on 

scaling of the ground motions using the spectral acceleration at an arbitrary period Ti, which is 

now considered a variable. The information used from the results of the earlier studies is the peak 

ground acceleration at failure of the transformer in each conducted IDA with the scaling of the 

ground motions based on the PGA as the measure of seismic intensity. 

Consider the case of the far-field motions studied in Kitayama et al. (2016, 2017). There are 40 

pairs of horizontal-vertical components of ground motions. The following analysis steps are 

followed to convert the results: 

1. Start with a period Ti. We considered 300 different values of period, that is, i=1 to 300, with

the minimum value of Ti being 0.02second, the maximum value being 6.0second and the

increment being 0.02second.

2. From the jth un-scaled acceleration response spectrum of each of 40 horizontal ground

motions (j=1 to 40), obtain ratio of PGAj to Saj(Ti):

𝑅𝑎𝑡𝑖𝑜𝑆𝑎/𝑃𝐺𝐴𝑗
=

𝑆𝑎𝑗(𝑇𝑖)

𝑃𝐺𝐴𝑗
(2-1) 

Note that the value of RatioSa/PGA remains constant as the motions are scaled for conducting 

the IDA. 

3. The value of the peak ground acceleration at failure of a particular transformer PGAF,j for the

jth ground motion is known from Kitayama et al. (2016, 2017). Obtain the spectral

acceleration at period Ti that causes failure of transformer or SaF,j(Ti) as follows:

𝑆𝑎𝐹,𝑗(𝑇𝑖) = 𝑃𝐺𝐴𝐹,𝑗 ∙ 𝑅𝑎𝑡𝑖𝑜𝑆𝑎/𝑃𝐺𝐴𝑗
(2-2) 

4. Calculate the median of the natural logarithm of SaF,j(Ti):

𝑆�̂�𝐹(𝑇𝑖) = Median〈𝑆𝑎𝐹,1(𝑇𝑖), 𝑆𝑎𝐹,2(𝑇𝑖), 𝑆𝑎𝐹,3(𝑇𝑖), … , 𝑆𝑎𝐹,40(𝑇𝑖)〉     (2-3) 
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Quantity 𝑆�̂�𝐹(𝑇𝑖) is the measure of intensity (spectral acceleration at period Ti) that

results in a 50% probability of failure of the transformer (that is, 20 of 40 analyses 

result in failure). 

5. Calculate the standard deviation of the natural logarithm of SaF,j(Ti):

𝛽𝑅𝑇𝑅𝑖 = std〈ln[𝑆𝑎𝐹,1(𝑇𝑖)] , ln[𝑆𝑎𝐹,2(𝑇𝑖)] , ln[𝑆𝑎𝐹,3(𝑇𝑖)] , … , ln[𝑆𝑎𝐹,40(𝑇𝑖)]〉   (2-4) 

Quantity RTRi is the dispersion coefficient that accounts for the record-to-record 

variability in the ground motions. Note that “std” is the operation for calculating the 

standard deviation. 

Parameters 𝑆�̂�𝐹(𝑇𝑖) and RTRi describe the fragility curve as a lognormal distribution given

by Equation (2-5) in the form of the cumulative distribution function: 

( )
( )

2

F

20

ˆln ln ( )1
| ( ) exp

22

x i

F i

RTRiRTRi

s Sa T
P Sa T x ds

s  

 −
 = −
 
  

 (2-5) 

In Equation (2-5), PF|Sa(Ti) is the fragility curve (probability of failure given the value of 

Sa(Ti)) (variable x representing the spectral acceleration at period Ti). 

6. For the location of the transformer, construct the seismic hazard curve for period Ti (see figure

2-3 in Kitayama et al., 2016).

7. Calculate the mean annual frequency of failure, F,i, for ith period Ti, by using information on

the fragility curve (from steps 3 and 4) and the seismic hazard curve (from step 5). Quantity

F,i is given by Equation (2-6) (Krawinkler et al., 2006) in which (𝑃𝐹|𝑆𝑎) is the fragility

curve (probability of failure given the value of Sa) and 
𝑑𝜆𝑆𝑎

𝑑(𝑆𝑎)
 is the slope of the seismic hazard 

curve. 

𝜆𝐹,𝑖 = ∫ (𝑃𝐹|𝑆𝑎)
∞

0
|

𝑑𝜆𝑆𝑎

𝑑(𝑆𝑎)
| ∙ 𝑑(𝑆𝑎) (2-6) 
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Note that in the calculation of Equation (2-6) the seismic hazard curve is obtained from 

the curves shown in Figures 1-4 to 1-14 by interpolation at the value of the period used 

for the scaling of the records. 

8. The probability of failure over the lifetime of the transformer, n years, can be calculated by

assuming that the earthquake occurrence follows a Poisson distribution:

𝑃F,𝑖(𝑛 ∙ years) = 1 − exp(−𝜆F ∙ 𝑛) (2-7) 

9. Repeat for different period (Ti where i=1 to 300) and calculate PF,i for each value of period.

Note that in this process of converting the available results based on scaling using the PGA as the 

measure of intensity to one based on the spectral acceleration at another value of the period for the 

intensity measure, every pair of horizontal-vertical ground motion used in the analysis maintained 

its original as-recorded characteristics. That is, while all horizontal components used in the 

analysis have the same value of their spectral acceleration at the selected period, the vertical 

components have different spectral acceleration values at the same period. Guidelines for the 

scaling of the vertical ground motions for seismic performance evaluation do not exist in FEMA 

(2009). Some guidance provided for design practice in NIST (2011) implies that is appropriate to 

use horizontal and vertical ground motions scaled to represent conditional horizontal and vertical 

spectra where the conditioning periods in the horizontal and vertical directions are related to modal 

properties in those two directions. That is for the horizontally only isolated transformer the vertical 

conditioning period should be zero and for the horizontally-vertically isolated transformer should 

be 0.5sec. The procedure then to perform a failure performance evaluation would be to generate 

suites of such pairs of motions, each for several seismic intensities starting from very low to very 

high (say return periods of 50 to 10000 years) and perform dynamic analysis. Kitayama and 

Constantinou (2018a, 2019a) applied this approach to the seismic performance of isolated 

buildings but without the vertical ground motion. 

Figures 2-2 to 2-37 present results for the case of isolators with DCapacity=17.7inch for three out of 

the ten studied sites: Chehalis, WA, Loma Linda, CA and Troutdale, OR. Each of these figures 

presents graphs of the calculated probability of failure in a lifetime of 50 years PF (50 years) as 

function of the selected period Ti used in the scaling of the motions. Vertical lines in these figures 

show the value of the fundamental period of the analyzed system. For the non-isolated transformer 

this period is T1=0.24sec (=1/4.3Hz) or 0.13sec (=1/7.7Hz) or 0.088sec (=1/11.3Hz). For the 

isolated transformers, the period used is average effective isolation period in the horizontal 
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direction at the displacement of 13.0inch (a displacement just prior to initiation of stiffening in the 

smallest isolator) and in the lower bound conditions. This period was calculated as 2.1sec for the 

smallest isolator and as 2.7sec for the largest isolator. The difference is due to differences in the 

radii of curvature of the two isolators. The average value Teff=T1=2.4sec was used for all isolated 

transformers. When isolated in the vertical direction, the system has linear elastic and linear 

viscous behavior with vertical frequency of 2.0Hz and a corresponding damping ratio of 0.50. The 

corresponding vertical period is 0.5sec. 

The results demonstrate that the selection of the period for scaling the ground motions has an effect 

on the probability of failure, which is significant in the case of the isolated transformers. When the 

scaling of ground motions is based on the short periods of 0.088sec to 0.23sec, which is appropriate 

for the case of the non-isolated transformers, there is a small reduction of the probability of failure 

by comparison to when using the zero period for scaling. When the scaling is based on the effective 

period of 2.4sec, which is appropriate for the case of the horizontally isolated transformers, there 

is an increase of the probability of failure by comparison to when using the zero period for scaling. 

As an example, consider the Loma Linda, CA location in Figures 2-6 and 2-7 for the non-isolated 

and the horizontally isolated transformers, respectively. Consider the case of 1g limit for the 

bushing transverse acceleration. For the non-isolated transformer, the probability of failure in 50 

years is 0.398 when scaling is based on the PGA (as reported in Kitayama et al., 2016) and is 0.343 

when scaling is based on the spectral acceleration at the fundamental period of 0.13sec. For the 

isolated transformer, the probability of failure in 50 years is 0.102 when scaling is based on the 

PGA (as reported in Kitayama et al., 2016) and is 0.301 when scaling is based on the spectral 

acceleration at the fundamental period of 2.4sec. Based on these results, one would conclude that 

horizontal isolation does not offer any important advantage (probability of failure of 0.301 versus 

0.343 when non-isolated). However, the data in Figures 2-2 to 2-37 have not been corrected for 

the effects of spectral shape. When the correction is made, as described in Section 3, the results 

change drastically. The probability of failure for the non-isolated transformer changes from 0.343 

to 0.297 and for the isolated transformer from 0.301 to 0.100. The adjusted probabilities of failure 

now justify the use of horizontal isolation. 
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As-installed bushing of 7.7Hz 

Isolator DCapacity=17.7inch, Lower Bound Conditions with μ1=μ4=0.12 and μ2=μ3=0.08 

Location Chehalis, WA 

Figure 2-2 Probability of failure in lifetime of 50 years of non-isolated transformer (W=420kip, 

fAI=7.7Hz, inclined bushing) located at Chehalis, WA as function of period used for scaling the 

ground motions 

Figure 2-3 Probability of failure in lifetime of 50 years of horizontally isolated transformer 

(W=420kip, fAI=7.7Hz, inclined bushing, DCapacity=17.7inch, lower bound) located at Chehalis, 

WA as function of period used for scaling the ground motions  
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Figure 2-4 Probability of failure in lifetime of 50 years of horizontally-vertically isolated 

transformer without rocking (W=420kip, fAI=7.7Hz, inclined bushing, DCapacity=17.7inch, lower 

bound) located at Chehalis, WA as function of period used for scaling the ground motions  

 

Figure 2-5 Probability of failure in lifetime of 50 years of horizontally-vertically isolated 

transformer with rocking (W=420kip, fAI=7.7Hz, inclined bushing, DCapacity=17.7inch, lower 

bound) located at Chehalis, WA as function of period used for scaling the ground motions  
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As-installed bushing of 7.7Hz 

Isolator DCapacity=17.7inch, Lower Bound Conditions with μ1=μ4=0.12 and μ2=μ3=0.08 

Location Loma Linda, CA 

Figure 2-6 Probability of failure in lifetime of 50 years of non-isolated transformer (W=420kip, 

fAI=7.7Hz, inclined bushing) located at Loma Linda, CA as function of period used for scaling 

the ground motions 

 

Figure 2-7 Probability of failure in lifetime of 50 years of horizontally isolated transformer 

(W=420kip, fAI=7.7Hz, inclined bushing, DCapacity=17.7inch, lower bound) located at Loma 

Linda, CA as function of period used for scaling the ground motion  
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Figure 2-8 Probability of failure in lifetime of 50 years of horizontally-vertically isolated 

transformer without rocking (W=420kip, fAI=7.7Hz, inclined bushing, DCapacity=17.7inch, lower 

bound) located at Loma Linda, CA as function of period used for scaling the ground motions  

 

Figure 2-9 Probability of failure in lifetime of 50 years of horizontally-vertically isolated 

transformer with rocking (W=420kip, fAI=7.7Hz, inclined bushing, DCapacity=17.7inch, lower 

bound) located at Loma Linda, CA as function of period used for scaling the ground motions 
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As-installed bushing of 7.7Hz  

Isolator DCapacity=17.7inch, Lower Bound Conditions with μ1=μ4=0.12 and μ2=μ3=0.08 

Location Troutdale, OR 

 

 

 

Figure 2-10 Probability of failure in lifetime of 50 years of non-isolated transformer (W=420kip, 

fAI=7.7Hz, inclined bushing) located at Troutdale, OR as function of period used for scaling the 

ground motions 

 

  

 

Figure 2-11 Probability of failure in lifetime of 50 years of horizontally isolated transformer 

(W=420kip, fAI=7.7Hz, inclined bushing, DCapacity=17.7inch, lower bound) located at Troutdale, 

OR as function of period used for scaling the ground motions  
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Figure 2-12 Probability of failure in lifetime of 50 years of horizontally-vertically isolated 

transformer without rocking (W=420kip, fAI=7.7Hz, inclined bushing, DCapacity=17.7inch, lower 

bound) located at Troutdale, OR as function of period used for scaling the ground motions  

 

Figure 2-13 Probability of failure in lifetime of 50 years of horizontally-vertically isolated 

transformer with rocking (W=420kip, fAI=7.7Hz, inclined bushing, DCapacity=17.7inch, lower 

bound) located at Troutdale, OR as function of period used for scaling the ground motions 
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As-installed bushing of 4.3Hz 

Isolator DCapacity=17.7inch, Lower Bound Conditions with μ1=μ4=0.12 and μ2=μ3=0.08 

Location Chehalis, WA 

Figure 2-14 Probability of failure in lifetime of 50 years of non-isolated transformer (W=420kip, 

fAI=4.3Hz, inclined bushing) located at Chehalis, WA as function of period used for scaling the 

ground motions  

Figure 2-15 Probability of failure in lifetime of 50 years of horizontally isolated transformer 

(W=420kip, fAI=4.3Hz, inclined bushing, DCapacity=17.7inch, lower bound) located at Chehalis, 

WA as function of period used for scaling the ground motions  
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Figure 2-16 Probability of failure in lifetime of 50 years of horizontally-vertically isolated 

transformer without rocking (W=420kip, fAI=4.3Hz, inclined bushing, DCapacity=17.7inch, lower 

bound) located at Chehalis, WA as function of period used for scaling the ground motions  

 

  
 

 

Figure 2-17 Probability of failure in lifetime of 50 years of horizontally-vertically isolated 

transformer with rocking (W=420kip, fAI=4.3Hz, inclined bushing, DCapacity=17.7inch, lower 

bound) located at Chehalis, WA as function of period used for scaling the ground motions 
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As-installed bushing of 4.3Hz  

Isolator DCapacity=17.7inch, Lower Bound Conditions with μ1=μ4=0.12 and μ2=μ3=0.08 

Location Loma Linda, CA 

Figure 2-18 Probability of failure in lifetime of 50 years of non-isolated transformer (W=420kip, 

fAI=4.3Hz, inclined bushing) located at Loma Linda, CA as function of period used for scaling 

the ground motions  

Figure 2-19 Probability of failure in lifetime of 50 years of horizontally isolated transformer 

(W=420kip, fAI=4.3Hz, inclined bushing, DCapacity=17.7inch, lower bound) located at Loma 

Linda, CA as function of period used for scaling the ground motions  

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Period for Scaling Ti (second) 

P
F

 (
5

0
 y

ea
rs

) 

1g Bushing Transverse Acceleration Limit 

2g Bushing Transverse Acceleration Limit 

0.261 

0.047 

0.234 

0.038 

T1=0.24 sec 

Period for Scaling Ti (second) 

P
F

 (
5

0
 y

ea
rs

) 

1g Bushing Transverse Acceleration Limit 

2g Bushing Transverse 

Acceleration Limit

0.051 

0.042 T1=Teff=2.4sec 

0.212 

0.197 



27 

 

Figure 2-20 Probability of failure in lifetime of 50 years of horizontally-vertically isolated 

transformer without rocking (W=420kip, fAI=4.3Hz, inclined bushing, DCapacity=17.7inch, lower 

bound) located at Loma Linda, CA as function of period used for scaling the ground motions  

 

Figure 2-21 Probability of failure in lifetime of 50 years of horizontally-vertically isolated 

transformer with rocking (W=420kip, fAI=4.3Hz, inclined bushing, DCapacity=17.7inch, lower 

bound) located at Loma Linda, CA as function of period used for scaling the ground motions 
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As-installed bushing of 4.3Hz 

Isolator DCapacity=17.7inch, Lower Bound Conditions with μ1=μ4=0.12 and μ2=μ3=0.08 

Location Troutdale, OR 

  

 

Figure 2-22 Probability of failure in lifetime of 50 years of non-isolated transformer (W=420kip, 

fAI=4.3Hz, inclined bushing) located at Troutdale, OR as function of period used for scaling the 

ground motions  

 

  

 

 

Figure 2-23 Probability of failure in lifetime of 50 years of horizontally isolated transformer 

(W=420kip, fAI=4.3Hz, inclined bushing, DCapacity=17.7inch, lower bound) located at Troutdale, 

OR as function of period used for scaling the ground motions  
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Figure 2-24 Probability of failure in lifetime of 50 years of horizontay-vertically isolated 

transformer without rocking (W=420kip, fAI=4.3Hz, inclined bushing, DCapacity=17.7inch, lower 

bound) located at Troutdale, OR as function of period used for scaling the ground motions  

 

Figure 2-25 Probability of failure in lifetime of 50 years of horizontally-vertically isolated 

transformer with rocking (W=420kip, fAI=4.3Hz, inclined bushing, DCapacity=17.7inch, lower 

bound) located at Troutdale, OR as function of period used for scaling the ground motions 
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As-installed bushing of 11.3Hz  

Isolator DCapacity=17.7inch, Lower Bound Conditions with μ1=μ4=0.12 and μ2=μ3=0.08 

Location Chehalis, WA 

Figure 2-26 Probability of failure in lifetime of 50 years of non-isolated transformer (W=420kip, 

fAI=11.3Hz, inclined bushing) located at Chehalis, WA as function of period used for scaling the 

ground motions  

Figure 2-27 Probability of failure in lifetime of 50 years of horizontally isolated transformer 

(W=420kip, fAI=11.3Hz, inclined bushing, DCapacity=17.7inch, lower bound) located at Chehalis, 

WA as function of period used for scaling the ground motions  
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Figure 2-28 Probability of failure in lifetime of 50 years of horizontally-vertically isolated 

transformer without rocking (W=420kip, fAI=11.3Hz, inclined bushing, DCapacity=17.7inch, lower 

bound) located at Chehalis, WA as function of period used for scaling the ground motions  

 

Figure 2-29 Probability of failure in lifetime of 50 years of horizontally-vertically isolated 

transformer with rocking (W=420kip, fAI=11.3Hz, inclined bushing, DCapacity=17.7inch, lower 

bound) located at Chehalis, WA as function of period used for scaling the ground motions 
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As-installed bushing of 11.3Hz 

Isolator DCapacity=17.7inch, Lower Bound Conditions with μ1=μ4=0.12 and μ2=μ3=0.08 

Location Loma Linda, CA 

Figure 2-30 Probability of failure in lifetime of 50 years of non-isolated transformer (W=420kip, 

fAI=11.3Hz, inclined bushing) located at Loma Linda, CA as function of period used for scaling 

the ground motions 

Figure 2-31 Probability of failure in lifetime of 50 years of horizontally isolated transformer 

(W=420kip, fAI=11.3Hz, inclined bushing, DCapacity=17.7inch, lower bound) located at Loma 

Linda, CA as function of period used for scaling the ground motions  
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Figure 2-32 Probability of failure in lifetime of 50 years of horizontally-vertically isolated 

transformer without rocking (W=420kip, fAI=11.3Hz, inclined bushing, DCapacity=17.7inch, lower 

bound) located at Loma Linda, CA as function of period used for scaling the ground motions  

 

  
 

Figure 2-33 Probability of failure in lifetime of 50 years of horizontally-vertically isolated 

transformer with rocking (W=420kip, fAI=11.3Hz, inclined bushing, DCapacity=17.7inch, lower 

bound) located at Loma Linda, CA as function of period used for scaling the ground motions 
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As-installed bushing of 11.3Hz 

Isolator DCapacity=17.7inch, Lower Bound Conditions with μ1=μ4=0.12 and μ2=μ3=0.08 

Location Troutdale, OR 

Figure 2-34 Probability of failure in lifetime of 50 years of non-isolated transformer (W=420kip, 

fAI=11.3Hz, inclined bushing) located at Troutdale, OR as function of period used for scaling the 

ground motions 

 

Figure 2-35 Probability of failure in lifetime of 50 years of horizontally isolated transformer 

(W=420kip, fAI=11.3Hz, inclined bushing, DCapacity=17.7inch, lower bound) located at Troutdale, 

OR as function of period used for scaling the ground motions  
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Figure 2-36 Probability of failure in lifetime of 50 years of horizontally-vertically isolated 

transformer without rocking (W=420kip, fAI=11.3Hz, inclined bushing, DCapacity=17.7inch, lower 

bound) located at Troutdale, OR as function of period used for scaling the ground motions  

 

Figure 2-37 Probability of failure in lifetime of 50 years of horizontally-vertically isolated 

transformer with rocking (W=420kip, fAI=11.3Hz, inclined bushing, DCapacity=17.7inch, lower 

bound) located at Troutdale, OR as function of period used for scaling the ground motions  

0.000

0.004

0.008

0.012

0.016

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.000

0.002

0.004

0.006

0.008

0.010

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Period for Scaling Ti (second) 

P
F

 (
5

0
 y

ea
rs

) 
1g Bushing Transverse Acceleration Limit 

2g Bushing Transverse 

Acceleration Limit 

0.005 

0.004 T1=Teff=2.4sec 

0.009 

0.007 

Period for Scaling Ti (second) 

P
F

 (
5
0
 y

ea
rs

) 

1g Bushing Transverse Acceleration Limit 

2g Bushing Transverse 

Acceleration Limit 

0.003 

0.002 T1=Teff=2.4sec 

0.006 

0.004 





37 

SECTION 3 

EFFECT OF SPECTRAL SHAPE ON THE FRAGILITY OF ELECTRICAL 

TRANSFORMERS 

The results in Figures 2-2 to 2-37 are based on analyses in which the original as-recorded motions 

have been scaled without any consideration of the spectral shape effects. These effects are the 

subject of this section. In general, these effects are dependent on the value of the target expected 

“epsilon” (see Appendix A) which differs between the ten considered sites and is also dependent 

on the period.  

In general, consideration of the spectral shape effects results in a change in the median spectral 

acceleration at failure at the fundamental period Ti (quantity 𝑆�̂�𝐹(𝑇𝑖) obtained by use of Equation

2-3). In addition, consideration of uncertainties results in increases of the dispersion coefficient

(quantity RTR calculated using Equation 2-4). 

We corrected for the spectral shape effects for the non-isolated and the isolated transformers 

studied when the scaling is based on the spectral acceleration at the fundamental period Sa(Ti) 

where Ti is either 0.13sec or 2.3sec. Tables 3-1 to 3-60 present the results on the probability of 

failure in 50 years of lifetime for all considered cases (10 locations, 3 bushing frequencies and 2 

isolator displacement capacities for the 420 kip transformer). Appendix A describes the method 

for adjusting the results for spectral shape effects, and presents details of the method for 

representative cases.   

Tables 3-1 to 3-60 also include the value of the probability of failure reported in report MCEER-

16-0010 (Kitayama et al, 2016) for which the scaling of ground motions was based on the PGA

(spectral acceleration at zero period) and the spectral shape effects were not considered. We 

considered only the record-to-record uncertainty in the calculation of all values of the probability 

of failure in these tables, without any adjustment of the results for additional uncertainties. Section 

4 addresses uncertainties. 

The results in Tables 3-1 to 3-60 demonstrate that scaling of the ground motions at the fundamental 

period and consideration of spectral shape effects change the probabilities of failure which 

generally increase for the isolated transformers and slightly decrease for the non-isolated 

transformers. Note that there is a significant increase in the probability of failure for the isolated 

transformers due to the scaling using as measure of intensity the spectral acceleration at the 

fundamental period of 2.4sec instead of the PGA. This increase is then modified due to the effects 
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of the spectral shape in some cases by a minor amount, whereas in others (e.g., Loma Linda site) 

the probabilities of failure are reduced by significant amounts. Nevertheless, the probabilities of 

failure for seismically isolated transformers are smaller than those of non-isolated transformers, 

particularly for the case of the bushing acceleration limit of 1g. The benefits of seismic isolation 

further improve when the larger displacement capacity isolator is considered although, as it will 

be discussed later this is due, in some cases, to the increased displacement capacity, whereas in 

other cases is due to the lower stiffness of the isolator. 

Note that the values of the median spectral acceleration at the fundamental period 𝑆�̂�𝐹(𝑇1) and of

the dispersion coefficient βRTR that describe the fragility curve without the correction for the 

spectral shape effects are independent of the location of the transformer. However, the median 

spectral acceleration value changes when the correction for the spectral shape effects is applied 

and then it depends on the location. The dependence on the location results from the dependence 

of the correction for the spectral shape effects on the expected value of epsilon at the location of 

the transformer (see details in Appendix A). 

Moreover, note that the values of the dispersion coefficient are generally in the range of about 0.2 

to about 0.4 except for the case of the horizontally only isolated transformers where the values are 

larger and about 0.5 to 0.7. (In addition, one case of the horizontally-vertically isolated transformer 

with rocking, 4.3Hz frequency bushing of 1g acceleration limit resulted in a large value of the 

dispersion coefficient). Values of the dispersion coefficient beyond 0.4 have not been computed 

in any of the FEMA (2009) studies or any of those of Kitayama and Constantinou (2018a, 2018b; 

2019a, 2019b) for seismically isolated buildings, all of which utilized the same set of ground 

motions.  We believe this difference results in from the use of vertical ground motion. The 

vertical ground motion has important effects on the horizontally isolated transformer (as a result 

of uplift and impact-see Kitayama et al., 2016 for modeling details) but has lesser effects on the 

horizontally-vertically isolated transformer (uplift and impact are essentially eliminated), and has 

practically no effect on the non-isolated transformer. The origin of the problem is related to the 

methodology used to carry out the incremental dynamic analysis in which the scaling of the 

horizontal components of the ground motions was based on the horizontal spectral acceleration 

value at the fundamental period, whereas the vertical component maintained its original as-

recorded characteristics as discussed in more detail in Section 2. 

FEMA (2009) recommends the use of an upper bound value of 0.4 for the record-to-record 

dispersion coefficient. This has not been done in the results presented in Tables 30-1 to 3-60 that 

follow. Accordingly, the computed probabilities of failure for the horizontally only isolated 
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transformers may have been overestimated. Section 4 further addresses this issue and presents 

summary results on the probability of failure including adjusted results for the effects of additional 

uncertainties. 
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Table 3-1 Summary of results for probability of failure for isolated and non-isolated transformer 
with W=420kip, fAI=7.7Hz and inclined bushing. When isolated, DCapacity=17.7inch and lower 

bound friction properties. Location: Vancouver, WA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.13sec 

1g 0.735 0.276 0.063 0.704 0.276 0.069 0.089 

2g 1.470 0.276 0.012 1.408 0.276 0.013 0.016 

Horizontally 

isolated 

T1=2.4sec 

1g 0.331 0.656 0.028 0.284 0.656 0.036 0.015 

2g 0.410 0.492 0.014 0.369 0.492 0.018 0.007 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.442 0.393 0.010 0.415 0.393 0.012 0.008 

2g 0.466 0.296 0.008 0.462 0.296 0.008 0.005 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.439 0.411 0.011 0.411 0.411 0.013 0.006 

2g 0.525 0.293 0.006 0.512 0.293 0.006 0.003 

Table 3-2 Summary of results for probability of failure for isolated and non-isolated transformer 
with W=420kip, fAI=7.7Hz and inclined bushing. When isolated, DCapacity=17.7inch and lower 

bound friction properties. Location: Saranap, CA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.13sec 

1g 0.735 0.276 0.300 0.782 0.276 0.266 0.359 

2g 1.470 0.276 0.047 1.564 0.276 0.038 0.077 

Horizontally 

isolated 

T1=2.4sec 

1g 0.331 0.656 0.197 0.588 0.656 0.067 0.072 

2g 0.410 0.492 0.100 0.644 0.492 0.033 0.029 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.442 0.393 0.068 0.620 0.393 0.027 0.033 

2g 0.466 0.296 0.048 0.639 0.296 0.018 0.019 

Horizontally-

vertically 

isolated with 

rocking 
T1=2.4sec 

1g 0.439 0.411 0.072 0.646 0.411 0.025 0.024 

2g 0.525 0.293 0.034 0.704 0.293 0.013 0.013 
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Table 3-3 Summary of results for probability of failure for isolated and non-isolated transformer 
with W=420kip, fAI=7.7Hz and inclined bushing. When isolated, DCapacity=17.7inch and lower 

bound friction properties. Location: Loma Linda, CA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.13sec 

1g 0.735 0.276 0.108 0.782 0.276 0.309 0.398 

2g 1.470 0.276 0.075 1.565 0.276 0.063 0.108 

Horizontally 

isolated 

T1=2.4sec 

1g 0.331 0.656 0.301 0.744 0.656 0.103 0.102 

2g 0.410 0.492 0.206 0.770 0.492 0.078 0.049 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.442 0.393 0.175 0.706 0.393 0.081 0.053 

2g 0.466 0.296 0.151 0.709 0.296 0.073 0.033 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.439 0.411 0.177 0.748 0.411 0.074 0.041 

2g 0.525 0.293 0.123 0.780 0.293 0.059 0.024 

Table 3-4 Summary of results for probability of failure for isolated and non-isolated transformer 
with W=420kip, fAI=7.7Hz and inclined bushing. When isolated, DCapacity=17.7inch and lower 

bound friction properties. Location: Aberdeen, WA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.13sec 

1g 0.735 0.276 0.129 0.737 0.276 0.128 0.145 

2g 1.470 0.276 0.038 1.473 0.276 0.038 0.044 

Horizontally 

isolated 

T1=2.4sec 

1g 0.331 0.656 0.051 0.359 0.656 0.047 0.042 

2g 0.410 0.492 0.036 0.441 0.492 0.033 0.025 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.442 0.393 0.031 0.472 0.393 0.028 0.025 

2g 0.466 0.296 0.027 0.513 0.296 0.024 0.018 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.439 0.411 0.031 0.475 0.411 0.028 0.022 

2g 0.525 0.293 0.023 0.567 0.293 0.021 0.014 
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Table 3-5 Summary of results for probability of failure for isolated and non-isolated transformer 
with W=420kip, fAI=7.7Hz and inclined bushing.  When isolated, DCapacity=17.7inch and lower 

bound friction properties. Location: Chehalis, WA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.13sec 

1g 0.735 0.276 0.108 0.717 0.276 0.113 0.128 

2g 1.470 0.276 0.022 1.434 0.276 0.024 0.028 

Horizontally 

isolated 

T1=2.4sec 

1g 0.331 0.656 0.036 0.286 0.656 0.045 0.026 

2g 0.410 0.492 0.020 0.372 0.492 0.024 0.012 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.442 0.393 0.015 0.415 0.393 0.017 0.013 

2g 0.466 0.296 0.012 0.462 0.296 0.012 0.008 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.439 0.411 0.016 0.411 0.411 0.018 0.010 

2g 0.525 0.293 0.009 0.513 0.293 0.010 0.006 

Table 3-6 Summary of results for probability of failure for isolated and non-isolated transformer 
with W=420kip, fAI=7.7Hz and inclined bushing. When isolated, DCapacity=17.7inch and lower 

bound friction properties. Location: Hillsboro, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.13sec 

1g 0.735 0.276 0.071 0.711 0.276 0.076 0.094 

2g 1.470 0.276 0.015 1.422 0.276 0.017 0.021 

Horizontally 

isolated 

T1=2.4sec 

1g 0.331 0.656 0.032 0.284 0.656 0.040 0.020 

2g 0.410 0.492 0.018 0.369 0.492 0.022 0.009 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.442 0.393 0.014 0.415 0.393 0.016 0.010 

2g 0.466 0.296 0.011 0.462 0.296 0.011 0.006 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.439 0.411 0.014 0.411 0.411 0.016 0.008 

2g 0.525 0.293 0.008 0.512 0.293 0.009 0.005 
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Table 3-7 Summary of results for probability of failure for isolated and non-isolated transformer 
with W=420kip, fAI=7.7Hz and inclined bushing. When isolated, DCapacity=17.7inch and lower 

bound friction properties. Location: Eugene, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.13sec 

1g 0.735 0.276 0.049 0.704 0.276 0.052 0.038 

2g 1.470 0.276 0.014 1.407 0.276 0.015 0.007 

Horizontally 

isolated 

T1=2.4sec 

1g 0.331 0.656 0.030 0.279 0.656 0.038 0.007 

2g 0.410 0.492 0.019 0.364 0.492 0.023 0.004 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.442 0.393 0.015 0.411 0.393 0.017 0.004 

2g 0.466 0.296 0.013 0.458 0.296 0.013 0.003 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.439 0.411 0.016 0.406 0.411 0.018 0.003 

2g 0.525 0.293 0.010 0.508 0.293 0.011 0.002 

Table 3-8 Summary of results for probability of failure for isolated and non-isolated transformer 
with W=420kip, fAI=7.7Hz and inclined bushing. When isolated, DCapacity=17.7inch and lower 

bound friction properties. Location: Wilsonville, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.13sec 

1g 0.735 0.276 0.064 0.705 0.276 0.069 0.087 

2g 1.470 0.276 0.012 1.410 0.276 0.014 0.018 

Horizontally 

isolated 

T1=2.4sec 

1g 0.331 0.656 0.028 0.285 0.656 0.036 0.017 

2g 0.410 0.492 0.015 0.370 0.492 0.018 0.008 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.442 0.393 0.011 0.416 0.393 0.013 0.008 

2g 0.466 0.296 0.009 0.463 0.296 0.009 0.005 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.439 0.411 0.012 0.412 0.411 0.013 0.006 

2g 0.525 0.293 0.006 0.513 0.293 0.007 0.004 
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Table 3-9 Summary of results for probability of failure for isolated and non-isolated transformer 
with W=420kip, fAI=7.7Hz and inclined bushing. When isolated, DCapacity=17.7inch and lower 

bound friction properties. Location: Curry County, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.24sec 

1g 0.735 0.276 0.111 0.778 0.276 0.103 0.123 

2g 1.470 0.276 0.038 1.556 0.276 0.034 0.047 

Horizontally 

isolated 

T1=2.4sec 

1g 0.331 0.656 0.085 0.571 0.656 0.046 0.046 

2g 0.410 0.492 0.062 0.629 0.492 0.036 0.029 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.441 0.393 0.055 0.610 0.393 0.035 0.030 

2g 0.466 0.296 0.049 0.630 0.296 0.031 0.022 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.439 0.411 0.055 0.634 0.411 0.033 0.026 

2g 0.525 0.293 0.041 0.695 0.293 0.027 0.017 

Table 3-10 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=7.7Hz and inclined bushing. When isolated, DCapacity=17.7inch 

and lower bound friction properties. Location: Troutdale, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.13sec 

1g 0.735 0.276 0.056 0.702 0.276 0.061 0.071 

2g 1.470 0.276 0.009 1.403 0.276 0.011 0.014 

Horizontally 

isolated 

T1=2.4sec 

1g 0.331 0.656 0.025 0.277 0.656 0.035 0.013 

2g 0.410 0.492 0.013 0.362 0.492 0.017 0.006 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.442 0.393 0.009 0.410 0.393 0.011 0.006 

2g 0.466 0.296 0.007 0.457 0.296 0.007 0.004 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.439 0.411 0.009 0.405 0.411 0.012 0.005 

2g 0.525 0.293 0.005 0.507 0.293 0.005 0.003 
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Table 3-11 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=4.3Hz and inclined bushing. When isolated, DCapacity=17.7inch 

and lower bound friction properties. Location: Vancouver, WA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.24sec 

1g 1.033 0.173 0.043 1.019 0.173 0.045 0.045 

2g 2.066 0.173 0.006 2.038 0.173 0.006 0.007 

Horizontally 

isolated 

T1=2.4sec 

1g 0.418 0.551 0.015 0.378 0.551 0.019 0.007 

2g 0.425 0.477 0.013 0.414 0.477 0.014 0.006 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.457 0.322 0.009 0.464 0.322 0.008 0.006 

2g 0.471 0.278 0.008 0.502 0.278 0.006 0.005 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.395 0.620 0.019 0.355 0.620 0.023 0.011 

2g 0.520 0.289 0.006 0.529 0.289 0.006 0.004 

Table 3-12 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=4.3Hz and inclined bushing. When isolated, DCapacity=17.7inch 

and lower bound friction properties. Location: Saranap, CA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.24sec 

1g 1.033 0.173 0.182 1.105 0.173 0.153 0.211 

2g 2.066 0.173 0.016 2.211 0.173 0.012 0.027 

Horizontally 

isolated 

T1=2.4sec 

1g 0.418 0.551 0.108 0.696 0.551 0.032 0.031 

2g 0.425 0.477 0.089 0.702 0.477 0.024 0.024 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.457 0.322 0.054 0.644 0.322 0.019 0.025 

2g 0.471 0.278 0.045 0.662 0.278 0.015 0.019 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.395 0.620 0.137 0.724 0.620 0.037 0.048 

2g 0.520 0.289 0.034 0.706 0.289 0.012 0.016 
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Table 3-13 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=4.3Hz and inclined bushing. When isolated, DCapacity=17.7inch 

and lower bound friction properties. Location: Chehalis, WA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.24sec 

1g 1.033 0.173 0.070 1.042 0.173 0.069 0.074 

2g 2.066 0.173 0.012 2.085 0.173 0.011 0.012 

Horizontally 

isolated 

T1=2.4sec 

1g 0.418 0.551 0.021 0.354 0.551 0.028 0.013 

2g 0.425 0.477 0.018 0.391 0.477 0.021 0.010 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.457 0.322 0.013 0.448 0.322 0.014 0.010 

2g 0.471 0.278 0.012 0.487 0.278 0.011 0.008 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.395 0.620 0.025 0.328 0.620 0.035 0.018 

2g 0.520 0.289 0.009 0.512 0.289 0.010 0.007 

Table 3-14 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=4.3Hz and inclined bushing. When isolated, DCapacity=17.7inch 

and lower bound friction properties. Location: Aberdeen, WA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.24sec 

1g 1.033 0.173 0.095 1.064 0.173 0.091 0.095 

2g 2.066 0.173 0.027 2.130 0.173 0.026 0.025 

Horizontally 

isolated 

T1=2.4sec 

1g 0.418 0.551 0.036 0.439 0.551 0.034 0.026 

2g 0.425 0.477 0.034 0.471 0.477 0.030 0.022 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.457 0.322 0.029 0.503 0.322 0.025 0.021 

2g 0.471 0.278 0.027 0.537 0.278 0.022 0.018 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.395 0.620 0.041 0.423 0.620 0.038 0.032 

2g 0.520 0.289 0.024 0.568 0.289 0.021 0.016 
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Table 3-15 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=4.3Hz and inclined bushing. When isolated, DCapacity=17.7inch 

and lower bound friction properties. Location: Loma Linda, CA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.24sec 

1g 1.033 0.173 0.234 1.109 0.173 0.203 0.261 

2g 2.066 0.173 0.038 2.220 0.173 0.029 0.047 

Horizontally 

isolated 

T1=2.4sec 

1g 0.418 0.551 0.212 0.865 0.551 0.068 0.051 

2g 0.425 0.477 0.197 0.847 0.477 0.064 0.042 

Horizontally-

vertically 

isolated 

without rocking 

T1=2.4sec 

1g 0.457 0.322 0.161 0.724 0.322 0.071 0.041 

2g 0.471 0.278 0.149 0.730 0.278 0.067 0.032 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.395 0.620 0.024 0.935 0.620 0.066 0.072 

2g 0.520 0.289 0.012 0.782 0.289 0.059 0.029 

Table 3-16 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=4.3Hz and inclined bushing. When isolated, DCapacity=17.7inch 

and lower bound friction properties. Location: Hillsboro, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.24sec 

1g 1.033 0.173 0.052 1.037 0.173 0.051 0.055 

2g 2.066 0.173 0.009 2.074 0.173 0.009 0.009 

Horizontally 

isolated 

T1=2.4sec 

1g 0.418 0.551 0.019 0.352 0.551 0.025 0.010 

2g 0.425 0.477 0.016 0.390 0.477 0.019 0.008 

Horizontally-

vertically isolated 

without rocking 

T1=2.4sec 

1g 0.457 0.322 0.012 0.447 0.322 0.012 0.008 

2g 0.471 0.278 0.010 0.487 0.278 0.010 0.006 

Horizontally-

vertically isolated 

with rocking 

T1=2.4sec 

1g 0.395 0.620 0.023 0.328 0.620 0.031 0.014 

2g 0.520 0.289 0.008 0.512 0.289 0.009 0.006 
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Table 3-17 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=4.3Hz and inclined bushing. When isolated, DCapacity=17.7inch 

and lower bound friction properties. Location: Eugene, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.24sec 

1g 1.033 0.173 0.042 1.030 0.173 0.043 0.019 

2g 2.066 0.173 0.010 2.062 0.173 0.010 0.004 

Horizontally 

isolated 

T1=2.4sec 

1g 0.418 0.551 0.019 0.347 0.551 0.026 0.004 

2g 0.425 0.477 0.018 0.385 0.477 0.021 0.003 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.457 0.322 0.013 0.443 0.322 0.012 0.003 

2g 0.471 0.278 0.012 0.483 0.278 0.010 0.003 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.395 0.620 0.023 0.321 0.620 0.030 0.005 

2g 0.520 0.289 0.010 0.508 0.289 0.011 0.003 

Table 3-18 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=4.3Hz and inclined bushing. When isolated, DCapacity=17.7inch 

and lower bound friction properties. Location: Wilsonville, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.24sec 

1g 1.033 0.173 0.045 1.030 0.173 0.045 0.050 

2g 2.066 0.173 0.007 2.061 0.173 0.007 0.007 

Horizontally 

isolated 

T1=2.4sec 

1g 0.418 0.551 0.016 0.354 0.551 0.022 0.008 

2g 0.425 0.477 0.014 0.392 0.477 0.016 0.006 

Horizontally-

vertically isolated 

without rocking 

T1=2.4sec 

1g 0.457 0.322 0.009 0.448 0.322 0.010 0.006 

2g 0.471 0.278 0.008 0.488 0.278 0.008 0.005 

Horizontally-

vertically isolated 

with rocking 

T1=2.4sec 

1g 0.395 0.620 0.020 0.329 0.620 0.029 0.012 

2g 0.520 0.289 0.006 0.513 0.289 0.011 0.004 
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Table 3-19 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=4.3Hz and inclined bushing. When isolated, DCapacity=17.7inch 

and lower bound friction properties. Location: Curry County, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.24sec 

1g 1.033 0.173 0.095 1.107 0.173 0.087 0.092 

2g 2.066 0.173 0.031 2.215 0.173 0.027 0.029 

Horizontally 

isolated 

T1=2.4sec 

1g 0.418 0.551 0.063 0.676 0.551 0.034 0.031 

2g 0.425 0.477 0.059 0.685 0.477 0.031 0.026 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.457 0.322 0.051 0.634 0.322 0.032 0.025 

2g 0.471 0.278 0.048 0.653 0.278 0.029 0.021 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.395 0.620 0.069 0.701 0.620 0.034 0.036 

2g 0.520 0.289 0.042 0.696 0.289 0.027 0.020 

Table 3-20 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=4.3Hz and inclined bushing.  When isolated, DCapacity=17.7inch 

and lower bound friction properties. Location: Troutdale, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.24sec 

1g 1.033 0.173 0.037 1.023 0.173 0.038 0.038 

2g 2.066 0.173 0.005 2.047 0.173 0.005 0.005 

Horizontally 

isolated 

T1=2.4sec 

1g 0.418 0.551 0.014 0.345 0.551 0.020 0.006 

2g 0.425 0.477 0.011 0.383 0.477 0.015 0.005 

Horizontally-

vertically 

isolated 

without rocking 

T1=2.4sec 

1g 0.457 0.322 0.008 0.442 0.322 0.008 0.005 

2g 0.471 0.278 0.007 0.482 0.278 0.006 0.004 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.395 0.620 0.017 0.320 0.620 0.026 0.009 

2g 0.520 0.289 0.005 0.507 0.289 0.005 0.003 
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Table 3-21 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=11.3Hz and inclined bushing. When isolated, DCapacity=17.7inch 

and lower bound friction properties. Location: Vancouver, WA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.09sec 

1g 1.031 0.303 0.020 0.955 0.303 0.024 0.017 

2g 2.063 0.303 0.002 1.909 0.303 0.003 0.002 

Horizontally 

isolated 

T1=2.4sec 

1g 0.352 0.600 0.023 0.302 0.600 0.030 0.014 

2g 0.406 0.548 0.016 0.344 0.548 0.022 0.008 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.430 0.323 0.010 0.420 0.323 0.011 0.006 

2g 0.462 0.316 0.008 0.442 0.316 0.009 0.006 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.497 0.291 0.007 0.500 0.291 0.007 0.003 

2g 0.541 0.271 0.005 0.526 0.271 0.006 0.003 

Table 3-22 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=11.3Hz and inclined bushing. When isolated, DCapacity=17.7inch 

and lower bound friction properties. Location: Saranap, CA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.09sec 

1g 1.031 0.303 0.105 1.140 0.303 0.078 0.079 

2g 2.063 0.303 0.008 2.281 0.303 0.005 0.006 

Horizontally 

isolated 

T1=2.4sec 

1g 0.352 0.600 0.163 0.677 0.600 0.041 0.064 

2g 0.406 0.548 0.114 0.717 0.548 0.029 0.034 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.430 0.323 0.064 0.616 0.323 0.022 0.026 

2g 0.462 0.316 0.051 0.637 0.316 0.019 0.024 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.497 0.291 0.040 0.702 0.291 0.013 0.013 

2g 0.541 0.271 0.029 0.715 0.271 0.011 0.011 
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Table 3-23 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=11.3Hz and inclined bushing.  When isolated, 

DCapacity=17.7inch and lower bound friction properties. Location: Chehalis, WA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.09sec 

1g 1.031 0.303 0.041 0.959 0.303 0.048 0.029 

2g 2.063 0.303 0.006 1.918 0.303 0.007 0.003 

Horizontally 

isolated 

T1=2.4sec 

1g 0.352 0.600 0.030 0.315 0.600 0.036 0.024 

2g 0.406 0.548 0.021 0.358 0.548 0.028 0.014 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.430 0.323 0.015 0.428 0.323 0.015 0.011 

2g 0.462 0.316 0.013 0.451 0.316 0.013 0.010 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.497 0.291 0.010 0.509 0.291 0.010 0.006 

2g 0.541 0.271 0.008 0.534 0.271 0.009 0.005 

Table 3-24 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=11.3Hz and inclined bushing. When isolated, DCapacity=17.7inch 

and lower bound friction properties. Location: Aberdeen, WA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.09sec 

1g 1.031 0.303 0.059 1.025 0.303 0.060 0.047 

2g 2.063 0.303 0.014 2.049 0.303 0.014 0.010 

Horizontally 

isolated 

T1=2.4sec 

1g 0.352 0.600 0.046 0.402 0.600 0.039 0.040 

2g 0.406 0.548 0.038 0.447 0.548 0.033 0.027 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.430 0.323 0.031 0.481 0.323 0.027 0.022 

2g 0.462 0.316 0.028 0.503 0.316 0.025 0.021 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.497 0.291 0.025 0.564 0.291 0.021 0.014 

2g 0.541 0.271 0.022 0.587 0.271 0.020 0.013 
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Table 3-25 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=11.3Hz and inclined bushing.  When isolated, 

DCapacity=17.7inch and lower bound friction properties. Location: Loma Linda, CA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.09sec 

1g 1.031 0.303 0.143 1.135 0.303 0.114 0.113 

2g 2.063 0.303 0.019 2.271 0.303 0.013 0.013 

Horizontally 

isolated 

T1=2.4sec 

1g 0.352 0.600 0.267 0.866 0.600 0.074 0.094 

2g 0.406 0.548 0.221 0.897 0.548 0.064 0.055 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.430 0.323 0.176 0.693 0.323 0.078 0.043 

2g 0.462 0.316 0.156 0.712 0.316 0.073 0.039 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.497 0.291 0.135 0.779 0.291 0.060 0.024 

2g 0.541 0.271 0.115 0.786 0.271 0.057 0.021 

Table 3-26 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=11.3Hz and inclined bushing. When isolated, DCapacity=17.7inch 

and lower bound friction properties. Location: Hillsboro, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.09sec 

1g 1.031 0.303 0.024 0.967 0.303 0.028 0.022 

2g 2.063 0.303 0.004 1.934 0.303 0.005 0.003 

Horizontally 

isolated 

T1=2.4sec 

1g 0.352 0.600 0.027 0.314 0.600 0.032 0.018 

2g 0.406 0.548 0.020 0.357 0.548 0.025 0.010 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.430 0.323 0.013 0.428 0.323 0.013 0.008 

2g 0.462 0.316 0.011 0.450 0.316 0.012 0.008 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.497 0.291 0.009 0.508 0.291 0.009 0.005 

2g 0.541 0.271 0.007 0.534 0.271 0.008 0.004 
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Table 3-27 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=11.3Hz and inclined bushing. When isolated, DCapacity=17.7inch 

and lower bound friction properties. Location: Eugene, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.09sec 

1g 1.031 0.303 0.019 0.949 0.303 0.023 0.007 

2g 2.063 0.303 0.004 1.898 0.303 0.005 0.002 

Horizontally 

isolated 

T1=2.4sec 

1g 0.352 0.600 0.026 0.308 0.600 0.032 0.006 

2g 0.406 0.548 0.020 0.351 0.548 0.025 0.004 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.430 0.323 0.015 0.424 0.323 0.015 0.003 

2g 0.462 0.316 0.013 0.446 0.316 0.014 0.003 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.497 0.291 0.011 0.504 0.291 0.011 0.002 

2g 0.541 0.271 0.009 0.530 0.271 0.010 0.002 

Table 3-28 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=11.3Hz and inclined bushing. When isolated, DCapacity=17.7inch 

and lower bound friction properties. Location: Wilsonville, OR  

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.09sec 

1g 1.031 0.303 0.021 0.953 0.303 0.025 0.019 

2g 2.063 0.303 0.003 1.907 0.303 0.004 0.002 

Horizontally 

isolated 

T1=2.4sec 

1g 0.352 0.600 0.023 0.316 0.600 0.028 0.015 

2g 0.406 0.548 0.017 0.359 0.548 0.021 0.009 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.430 0.323 0.011 0.429 0.323 0.011 0.007 

2g 0.462 0.316 0.009 0.451 0.316 0.010 0.006 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.497 0.291 0.007 0.509 0.291 0.007 0.004 

2g 0.541 0.271 0.006 0.535 0.271 0.006 0.003 
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Table 3-29 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=11.3Hz and inclined bushing. When isolated, DCapacity=17.7inch 

and lower bound friction properties. Location: Curry County, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.09sec 

1g 1.031 0.303 0.055 1.123 0.303 0.048 0.052 

2g 2.063 0.303 0.015 2.247 0.303 0.012 0.013 

Horizontally 

isolated 

T1=2.4sec 

1g 0.352 0.600 0.077 0.656 0.600 0.037 0.045 

2g 0.406 0.548 0.065 0.697 0.548 0.032 0.032 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.430 0.323 0.055 0.607 0.323 0.034 0.026 

2g 0.462 0.316 0.050 0.628 0.316 0.032 0.024 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.497 0.291 0.045 0.693 0.291 0.027 0.017 

2g 0.541 0.271 0.039 0.707 0.271 0.026 0.016 

Table 3-30 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=11.3Hz and inclined bushing.  When isolated, 
DCapacity=17.7inch and lower bound friction properties. Location: Troutdale, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.09sec 

1g 1.031 0.303 0.014 0.948 0.303 0.021 0.014 

2g 2.063 0.303 0.002 1.895 0.303 0.003 0.013 

Horizontally 

isolated 

T1=2.4sec 

1g 0.352 0.600 0.021 0.307 0.600 0.027 0.012 

2g 0.406 0.548 0.014 0.349 0.548 0.020 0.006 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.430 0.323 0.009 0.423 0.323 0.009 0.005 

2g 0.462 0.316 0.007 0.445 0.316 0.008 0.004 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.497 0.291 0.006 0.503 0.291 0.006 0.003 

2g 0.541 0.271 0.004 0.529 0.271 0.005 0.002 
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Table 3-31 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=7.7Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Vancouver, WA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.13sec 

1g 0.735 0.276 0.063 0.706 0.276 0.069 0.089 

2g 1.470 0.276 0.012 1.411 0.276 0.013 0.016 

Horizontally 

isolated 

T1=2.4sec 

1g 0.345 0.744 0.030 0.304 0.744 0.037 0.014 

2g 0.512 0.611 0.012 0.430 0.611 0.016 0.004 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.459 0.405 0.010 0.414 0.405 0.012 0.003 

2g 0.483 0.319 0.008 0.451 0.319 0.009 0.002 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.458 0.404 0.010 0.423 0.404 0.012 0.002 

2g 0.523 0.302 0.006 0.481 0.302 0.008 0.001 

Table 3-32 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=7.7Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Saranap, CA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.13sec 

1g 0.735 0.276 0.300 0.782 0.276 0.266 0.359 

2g 1.470 0.276 0.047 1.564 0.276 0.038 0.077 

Horizontally 

isolated 

T1=2.4sec 

1g 0.345 0.744 0.210 0.700 0.744 0.058 0.067 

2g 0.512 0.611 0.080 0.911 0.611 0.019 0.015 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.459 0.405 0.064 0.653 0.405 0.024 0.010 

2g 0.483 0.319 0.046 0.665 0.319 0.017 0.006 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.458 0.404 0.064 0.676 0.404 0.021 0.006 

2g 0.523 0.302 0.035 0.699 0.302 0.013 0.003 
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Table 3-33 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=7.7Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Loma Linda, CA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.13sec 

1g 0.735 0.276 0.108 0.782 0.276 0.297 0.398 

2g 1.470 0.276 0.075 1.565 0.276 0.059 0.108 

Horizontally 

isolated 

T1=2.4sec 

1g 0.345 0.744 0.307 0.902 0.744 0.087 0.093 

2g 0.512 0.611 0.170 1.146 0.611 0.044 0.026 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.459 0.405 0.167 0.751 0.405 0.073 0.019 

2g 0.483 0.319 0.146 0.749 0.319 0.066 0.012 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.458 0.404 0.168 0.780 0.404 0.068 0.012 

2g 0.523 0.302 0.127 0.783 0.302 0.060 0.006 

Table 3-34 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=7.7Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Aberdeen, WA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.13sec 

1g 0.735 0.276 0.129 0.737 0.276 0.135 0.145 

2g 1.470 0.276 0.038 1.473 0.276 0.040 0.044 

Horizontally 

isolated 

T1=2.4sec 

1g 0.345 0.744 0.053 0.409 0.744 0.043 0.038 

2g 0.512 0.611 0.029 0.562 0.611 0.026 0.015 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.459 0.405 0.030 0.487 0.405 0.027 0.012 

2g 0.483 0.319 0.026 0.518 0.319 0.024 0.009 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.458 0.404 0.030 0.500 0.404 0.026 0.009 

2g 0.523 0.302 0.024 0.550 0.302 0.022 0.006 
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Table 3-35 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=7.7Hz and inclined bushing.  When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Chehalis, WA 
 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1) 

(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1) 

(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated  

T1=0.13sec 

1g 0.735 0.276 0.108 0.717 0.276 0.113 0.128 

2g 1.470 0.276 0.022 1.434 0.276 0.024 0.028 

Horizontally 

isolated 

T1=2.4sec 

1g 0.345 0.744 0.039 0.318 0.744 0.044 0.024 

2g 0.512 0.611 0.016 0.448 0.611 0.021 0.007 

Horizontally-

vertically 

isolated 

without 

rocking 

 T1=2.4sec 

1g 0.459 0.405 0.014 0.424 0.405 0.017 0.005 

2g 0.483 0.319 0.012 0.460 0.319 0.013 0.003 

Horizontally-

vertically 

isolated with 

rocking 

 T1=2.4sec 

1g 0.458 0.404 0.014 0.433 0.404 0.016 0.003 

2g 0.523 0.302 0.010 0.491 0.302 0.011 0.002 

 
 

Table 3-36 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=7.7Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Hillsboro, OR 
 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1) 

(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1) 

(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated  

T1=0.13sec 

1g 0.735 0.276 0.071 0.711 0.276 0.076 0.094 

2g 1.470 0.276 0.015 1.422 0.276 0.017 0.021 

Horizontally 

isolated 

T1=2.4sec 

1g 0.345 0.744 0.034 0.317 0.744 0.038 0.018 

2g 0.512 0.611 0.014 0.447 0.611 0.018 0.005 

Horizontally-

vertically 

isolated without 

rocking 

 T1=2.4sec 

1g 0.459 0.405 0.013 0.423 0.405 0.015 0.004 

2g 0.483 0.319 0.010 0.460 0.319 0.011 0.002 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.458 0.404 0.013 0.433 0.404 0.014 0.002 

2g 0.523 0.302 0.008 0.490 0.302 0.010 0.001 
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Table 3-37 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=7.7Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Eugene, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.13sec 

1g 0.735 0.276 0.049 0.704 0.276 0.052 0.038 

2g 1.470 0.276 0.014 1.407 0.276 0.015 0.007 

Horizontally 

isolated 

T1=2.4sec 

1g 0.345 0.744 0.031 0.311 0.744 0.035 0.007 

2g 0.512 0.611 0.015 0.439 0.611 0.019 0.002 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.459 0.405 0.014 0.419 0.405 0.017 0.002 

2g 0.483 0.319 0.012 0.456 0.319 0.014 0.001 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.458 0.404 0.014 0.428 0.404 0.016 0.001 

2g 0.523 0.302 0.010 0.486 0.302 0.012 0.001 

Table 3-38 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=7.7Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Wilsonville, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.13sec 

1g 0.735 0.276 0.064 0.705 0.276 0.069 0.087 

2g 1.470 0.276 0.012 1.410 0.276 0.014 0.018 

Horizontally 

isolated 

T1=2.4sec 

1g 0.345 0.744 0.030 0.319 0.744 0.034 0.002 

2g 0.512 0.611 0.012 0.449 0.611 0.015 0.004 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.459 0.405 0.010 0.425 0.405 0.012 0.003 

2g 0.483 0.319 0.008 0.461 0.319 0.009 0.002 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.458 0.404 0.010 0.434 0.404 0.012 0.002 

2g 0.523 0.302 0.007 0.492 0.302 0.008 0.001 
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Table 3-39 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=7.7Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Curry County, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.24sec 

1g 0.735 0.276 0.111 0.778 0.276 0.107 0.123 

2g 1.470 0.276 0.038 1.556 0.276 0.036 0.047 

Horizontally 

isolated 

T1=2.4sec 

1g 0.345 0.744 0.085 0.677 0.744 0.040 0.042 

2g 0.512 0.611 0.051 0.885 0.611 0.024 0.019 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.459 0.405 0.052 0.642 0.405 0.033 0.015 

2g 0.483 0.319 0.047 0.655 0.319 0.030 0.011 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.458 0.404 0.052 0.664 0.404 0.030 0.011 

2g 0.523 0.302 0.042 0.689 0.302 0.027 0.007 

Table 3-40 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=7.7Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Troutdale, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.13sec 

1g 0.735 0.276 0.056 0.702 0.276 0.061 0.071 

2g 1.470 0.276 0.009 1.403 0.276 0.011 0.014 

Horizontally 

isolated 

T1=2.4sec 

1g 0.345 0.744 0.028 0.310 0.744 0.033 0.012 

2g 0.512 0.611 0.010 0.437 0.611 0.014 0.003 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.459 0.405 0.009 0.418 0.405 0.011 0.002 

2g 0.483 0.319 0.007 0.454 0.319 0.008 0.001 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.458 0.404 0.009 0.427 0.404 0.010 0.001 

2g 0.523 0.302 0.005 0.485 0.302 0.006 0.001 
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Table 3-41 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=4.3Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Vancouver, WA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.24sec 

1g 1.033 0.173 0.043 1.030 0.173 0.045 0.045 

2g 2.066 0.173 0.006 2.061 0.173 0.006 0.007 

Horizontally 

isolated 

T1=2.4sec 

1g 0.472 0.672 0.015 0.408 0.672 0.020 NA 

2g 0.592 0.607 0.009 0.470 0.607 0.014 NA 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.676 0.423 0.004 0.563 0.423 0.006 NA 

2g 0.718 0.341 0.003 0.647 0.341 0.004 NA 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.454 0.746 0.019 0.370 0.746 0.027 NA 

2g 0.738 0.388 0.003 0.664 0.388 0.004 NA 

Table 3-42 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=4.3Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Saranap, CA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.24sec 

1g 1.033 0.173 0.182 1.105 0.173 0.153 0.211 

2g 2.066 0.173 0.016 2.211 0.173 0.012 0.027 

Horizontally 

isolated 

T1=2.4sec 

1g 0.472 0.672 0.109 0.920 0.672 0.024 NA 

2g 0.592 0.607 0.057 1.014 0.607 0.014 NA 

Horizontally-

vertically isolated 

without rocking 

T1=2.4sec 

1g 0.676 0.423 0.023 0.928 0.423 0.008 NA 

2g 0.718 0.341 0.014 0.973 0.341 0.004 NA 

Horizontally-

vertically isolated 

with rocking 

T1=2.4sec 

1g 0.454 0.746 0.135 0.959 0.746 0.029 NA 

2g 0.738 0.388 0.015 1.037 0.388 0.004 NA 
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Table 3-43 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=4.3Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Chehalis, WA 
 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1) 

(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1) 

(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated  

T1=0.24sec 

1g 1.033 0.173 0.070 1.043 0.173 0.069 0.074 

2g 2.066 0.173 0.012 2.087 0.173 0.011 0.012 

Horizontally 

isolated 

T1=2.4sec 

1g 0.472 0.672 0.021 0.426 0.672 0.025 NA 

2g 0.592 0.607 0.012 0.489 0.607 0.017 NA 

Horizontally-

vertically 

isolated without 

rocking 

 T1=2.4sec 

1g 0.676 0.423 0.007 0.579 0.423 0.009 NA 

2g 0.718 0.341 0.005 0.661 0.341 0.006 NA 

Horizontally-

vertically 

isolated with 

rocking 

 T1=2.4sec 

1g 0.454 0.746 0.025 0.389 0.746 0.032 NA 

2g 0.738 0.388 0.005 0.680 0.388 0.006 NA 

 
 

Table 3-44 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=4.3Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Aberdeen, WA 
 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1) 

(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1) 

(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated  

T1=0.24sec 

1g 1.033 0.173 0.095 1.064 0.173 0.091 0.095 

2g 2.066 0.173 0.027 2.130 0.173 0.026 0.025 

Horizontally 

isolated 

T1=2.4sec 

1g 0.472 0.672 0.034 0.545 0.672 0.029 NA 

2g 0.592 0.607 0.024 0.618 0.607 0.023 NA 

Horizontally-

vertically 

isolated without 

rocking 

 T1=2.4sec 

1g 0.676 0.423 0.017 0.673 0.423 0.017 NA 

2g 0.718 0.341 0.015 0.748 0.341 0.014 NA 

Horizontally-

vertically 

isolated with 

rocking 

 T1=2.4sec 

1g 0.454 0.746 0.038 0.519 0.746 0.033 NA 

2g 0.738 0.388 0.015 0.778 0.388 0.013 NA 
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Table 3-45 Summary of results for probability of failure for isolated and non-
isolated transformer with W=420kip, fAI=4.3Hz and inclined bushing. When isolated, 
DCapacity=31.3inch and lower bound friction properties. Location: Loma Linda, CA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.24sec 

1g 1.033 0.173 0.234 1.119 0.173 0.203 0.261 

2g 2.066 0.173 0.038 2.241 0.173 0.029 0.047 

Horizontally 

isolated 

T1=2.4sec 

1g 0.472 0.672 0.201 0.925 0.672 0.074 NA 

2g 0.592 0.607 0.138 1.019 0.607 0.055 NA 

Horizontally-

vertically 

isolated 

without rocking 

T1=2.4sec 

1g 0.676 0.423 0.090 0.931 0.423 0.048 NA 

2g 0.718 0.341 0.074 0.976 0.341 0.039 NA 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.454 0.746 0.226 0.965 0.746 0.078 NA 

2g 0.738 0.388 0.074 1.040 0.388 0.036 NA 

Table 3-46 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=4.3Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Hillsboro, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.24sec 

1g 1.033 0.173 0.052 1.037 0.173 0.051 0.055 

2g 2.066 0.173 0.009 2.074 0.173 0.009 0.009 

Horizontally 

isolated 

T1=2.4sec 

1g 0.472 0.672 0.018 0.425 0.672 0.022 NA 

2g 0.592 0.607 0.011 0.488 0.607 0.016 NA 

Horizontally-

vertically isolated 

without rocking 

T1=2.4sec 

1g 0.676 0.423 0.006 0.578 0.423 0.008 NA 

2g 0.718 0.341 0.004 0.660 0.341 0.005 NA 

Horizontally-

vertically isolated 

with rocking 

T1=2.4sec 

1g 0.454 0.746 0.022 0.388 0.746 0.028 NA 

2g 0.738 0.388 0.004 0.679 0.388 0.005 NA 
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Table 3-47 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=4.3Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Eugene, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.24sec 

1g 1.033 0.173 0.042 1.030 0.173 0.043 0.019 

2g 2.066 0.173 0.010 2.062 0.173 0.010 0.004 

Horizontally 

isolated 

T1=2.4sec 

1g 0.472 0.672 0.018 0.417 0.672 0.022 NA 

2g 0.592 0.607 0.012 0.479 0.607 0.017 NA 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.676 0.423 0.007 0.571 0.423 0.010 NA 

2g 0.718 0.341 0.006 0.654 0.341 0.007 NA 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.454 0.746 0.021 0.380 0.746 0.027 NA 

2g 0.738 0.388 0.006 0.672 0.388 0.007 NA 

Table 3-48 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=4.3Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Wilsonville, OR  

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.24sec 

1g 1.033 0.173 0.045 1.030 0.173 0.045 0.050 

2g 2.066 0.173 0.007 2.061 0.173 0.007 0.007 

Horizontally 

isolated 

T1=2.4sec 

1g 0.472 0.672 0.016 0.427 0.672 0.019 NA 

2g 0.592 0.607 0.009 0.491 0.607 0.013 NA 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.676 0.423 0.004 0.580 0.423 0.006 NA 

2g 0.718 0.341 0.003 0.662 0.341 0.004 NA 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.454 0.746 0.019 0.391 0.746 0.025 NA 

2g 0.738 0.388 0.003 0.681 0.388 0.004 NA 
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Table 3-49 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=4.3Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Curry County, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.24sec 

1g 1.033 0.173 0.095 1.107 0.173 0.087 0.092 

2g 2.066 0.173 0.031 2.215 0.173 0.027 0.029 

Horizontally 

isolated 

T1=2.4sec 

1g 0.472 0.672 0.058 0.891 0.672 0.025 NA 

2g 0.592 0.607 0.042 0.984 0.607 0.020 NA 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.676 0.423 0.031 0.910 0.423 0.019 NA 

2g 0.718 0.341 0.026 0.958 0.341 0.016 NA 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.454 0.746 0.064 0.924 0.746 0.026 NA 

2g 0.738 0.388 0.026 1.019 0.388 0.015 NA 

Table 3-50 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=4.3Hz and inclined bushing.  When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Troutdale, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.24sec 

1g 1.033 0.173 0.037 1.023 0.173 0.038 0.038 

2g 2.066 0.173 0.005 2.047 0.173 0.005 0.005 

Horizontally 

isolated 

T1=2.4sec 

1g 0.472 0.672 0.014 0.415 0.672 0.018 NA 

2g 0.592 0.607 0.008 0.477 0.607 0.012 NA 

Horizontally-

vertically 

isolated 

without rocking 

T1=2.4sec 

1g 0.676 0.423 0.003 0.569 0.423 0.005 NA 

2g 0.718 0.341 0.002 0.653 0.341 0.003 NA 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.454 0.746 0.017 0.377 0.746 0.024 NA 

2g 0.738 0.388 0.002 0.670 0.388 0.003 NA 
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Table 3-51 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=11.3Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Vancouver, WA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.09sec 

1g 1.031 0.303 0.020 0.955 0.303 0.024 0.017 

2g 2.063 0.303 0.002 1.909 0.303 0.003 0.002 

Horizontally 

isolated 

T1=2.4sec 

1g 0.439 0.714 0.019 0.350 0.714 0.028 NA 

2g 0.583 0.672 0.010 0.425 0.672 0.019 NA 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.636 0.437 0.005 0.546 0.437 0.007 NA 

2g 0.657 0.415 0.004 0.572 0.415 0.006 NA 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.729 0.381 0.003 0.648 0.381 0.004 NA 

2g 0.763 0.346 0.002 0.692 0.346 0.003 NA 

Table 3-52 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=11.3Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Saranap, CA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.09sec 

1g 1.031 0.303 0.105 1.139 0.303 0.079 0.079 

2g 2.063 0.303 0.008 2.277 0.303 0.005 0.006 

Horizontally 

isolated 

T1=2.4sec 

1g 0.439 0.714 0.135 0.656 0.714 0.062 NA 

2g 0.583 0.672 0.071 0.767 0.672 0.038 NA 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.636 0.437 0.028 0.771 0.437 0.016 NA 

2g 0.657 0.415 0.024 0.795 0.415 0.013 NA 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.729 0.381 0.015 0.875 0.381 0.008 NA 

2g 0.763 0.346 0.011 0.914 0.346 0.006 NA 
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Table 3-53 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=11.3Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Chehalis, WA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.09sec 

1g 1.031 0.303 0.041 0.959 0.303 0.048 0.029 

2g 2.063 0.303 0.006 1.918 0.303 0.007 0.003 

Horizontally 

isolated 

T1=2.4sec 

1g 0.439 0.714 0.025 0.367 0.714 0.034 NA 

2g 0.583 0.672 0.014 0.445 0.672 0.023 NA 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.636 0.437 0.008 0.561 0.437 0.010 NA 

2g 0.657 0.415 0.007 0.587 0.415 0.009 NA 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.729 0.381 0.005 0.663 0.381 0.006 NA 

2g 0.763 0.346 0.004 0.707 0.346 0.005 NA 

Table 3-54 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=11.3Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Aberdeen, WA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.09sec 

\ 1.031 0.303 0.059 1.025 0.303 0.060 0.047 

2g 2.063 0.303 0.014 2.049 0.303 0.014 0.010 

Horizontally 

isolated 

T1=2.4sec 

1g 0.439 0.714 0.039 0.487 0.714 0.034 NA 

2g 0.583 0.672 0.026 0.580 0.672 0.026 NA 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.636 0.437 0.019 0.655 0.437 0.018 NA 

2g 0.657 0.415 0.018 0.681 0.415 0.017 NA 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.729 0.381 0.015 0.759 0.381 0.014 NA 

2g 0.763 0.346 0.014 0.801 0.346 0.013 NA 
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Table 3-55 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=11.3Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Loma Linda, CA 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.09sec 

1g 1.031 0.303 0.143 1.135 0.303 0.114 0.113 

2g 2.063 0.303 0.019 2.271 0.303 0.013 0.013 

Horizontally 

isolated 

T1=2.4sec 

1g 0.439 0.714 0.229 1.183 0.714 0.051 NA 

2g 0.583 0.672 0.152 1.333 0.672 0.037 NA 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.636 0.437 0.102 1.065 0.437 0.037 NA 

2g 0.657 0.415 0.094 1.083 0.415 0.034 NA 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.729 0.381 0.075 1.160 0.381 0.027 NA 

2g 0.763 0.346 0.066 1.186 0.346 0.024 NA 

Table 3-56 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=11.3Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Hillsboro, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.09sec 

1g 1.031 0.303 0.024 0.967 0.303 0.028 0.022 

2g 2.063 0.303 0.004 1.934 0.303 0.005 0.003 

Horizontally 

isolated 

T1=2.4sec 

1g 0.439 0.714 0.022 0.365 0.714 0.030 NA 

2g 0.583 0.672 0.013 0.443 0.672 0.020 NA 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.636 0.437 0.007 0.560 0.437 0.009 NA 

2g 0.657 0.415 0.006 0.586 0.415 0.008 NA 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.729 0.381 0.004 0.662 0.381 0.006 NA 

2g 0.763 0.346 0.004 0.706 0.346 0.004 NA 
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Table 3-57 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=11.3Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Eugene, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.09sec 

1g 1.031 0.303 0.019 0.949 0.303 0.023 0.007 

2g 2.063 0.303 0.004 1.898 0.303 0.005 0.002 

Horizontally 

isolated 

T1=2.4sec 

1g 0.439 0.714 0.022 0.358 0.714 0.029 NA 

2g 0.583 0.672 0.013 0.434 0.672 0.021 NA 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.636 0.437 0.008 0.553 0.437 0.011 NA 

2g 0.657 0.415 0.007 0.579 0.415 0.010 NA 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.729 0.381 0.006 0.655 0.381 0.007 NA 

2g 0.763 0.346 0.005 0.699 0.346 0.006 NA 

Table 3-58 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=11.3Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Wilsonville, OR  

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.09sec 

1g 1.031 0.303 0.021 0.953 0.303 0.025 0.019 

2g 2.063 0.303 0.003 1.906 0.303 0.004 0.002 

Horizontally 

isolated 

T1=2.4sec 

1g 0.439 0.714 0.019 0.369 0.714 0.026 NA 

2g 0.583 0.672 0.011 0.447 0.672 0.017 NA 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.636 0.437 0.005 0.562 0.437 0.007 NA 

2g 0.657 0.415 0.005 0.588 0.415 0.006 NA 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.729 0.381 0.003 0.665 0.381 0.004 NA 

2g 0.763 0.346 0.003 0.708 0.346 0.003 NA 
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Table 3-59 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=11.3Hz and inclined bushing. When isolated, DCapacity=31.3inch 

and lower bound friction properties. Location: Curry County, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.09sec 

1g 1.031 0.303 0.055 1.123 0.303 0.048 0.052 

2g 2.063 0.303 0.015 2.247 0.303 0.012 0.013 

Horizontally 

isolated 

T1=2.4sec 

1g 0.439 0.714 0.065 0.857 0.714 0.028 NA 

2g 0.583 0.672 0.045 0.986 0.672 0.022 NA 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.636 0.437 0.034 0.893 0.437 0.020 NA 

2g 0.657 0.415 0.032 0.915 0.415 0.018 NA 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.729 0.381 0.026 0.995 0.381 0.015 NA 

2g 0.763 0.346 0.024 1.029 0.346 0.014 NA 

Table 3-60 Summary of results for probability of failure for isolated and non-isolated 
transformer with W=420kip, fAI=11.3Hz and inclined bushing.  When isolated, 
DCapacity=31.3inch and lower bound friction properties. Location: Troutdale, OR 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 
With Spectral Shape Effects 

Reported in 

MCEER-16-0010 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) 

Non-isolated 

T1=0.09sec 

1g 1.031 0.303 0.014 0.948 0.303 0.021 0.014 

2g 2.063 0.303 0.002 1.895 0.303 0.003 0.013 

Horizontally 

isolated 

T1=2.4sec 

1g 0.439 0.714 0.017 0.356 0.714 0.025 NA 

2g 0.583 0.672 0.009 0.432 0.672 0.016 NA 

Horizontally-

vertically 

isolated without 

rocking 

T1=2.4sec 

1g 0.636 0.437 0.004 0.551 0.437 0.006 NA 

2g 0.657 0.415 0.004 0.577 0.415 0.005 NA 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.729 0.381 0.002 0.653 0.381 0.003 NA 

2g 0.763 0.346 0.002 0.697 0.346 0.003 NA 
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SECTION 4 

CONSIDERATIONS FOR UNCERTAINTIES 

Many sources of uncertainties contribute to variability in the calculated probability of failure. 

These uncertainties include the record-to-record variability, which is accounted for by the use of a 

large number of actual ground motions in the incremental dynamic analysis, and by correcting the 

results for the spectral shape effects as discussed in Section 3. It may be seen in the results of 

Tables 3-1 to 3-60 that the record-to-record variability is reflected in the value of the dispersion 

coefficient βRTR whereas the correction for the spectral shape effects is reflected in an adjusted 

value of the median of the spectral acceleration at the fundamental period 𝑆�̂�𝐹(𝑇1). These two

parameters describe the fragility curve in the form of the lognormal distribution in Equation (2-5) 

which is presented again below in the form of a cumulative distribution function with a slightly 

different interpretation of parameters: 

( )
( )

2

F 1

1 20

ˆln ln ( )1
| ( ) exp

22

x

F

s Sa T
P Sa T x ds

s  

 −
 = −
 
  

 (4-1) 

In Equation (4-1), PF|Sa(T1) is the fragility curve (probability of failure given the value of Sa(T1)) 

(variable x representing the spectral acceleration at the fundamental period). Parameter β is the 

total value of the dispersion coefficient that includes all uncertainties. Note that the values of 

probabilities reported in Tables 3-1 to 3-60 are based on the use of Equations (2-6) and (2-7) for 

computing the probability of failure in the lifetime of the equipment with due consideration for 

only the record-to-record variability. 

In general, uncertainties should affect the fragility curve, thus both the median value 𝑆�̂�𝐹(𝑇1) and

the dispersion coefficient. Uncertainties exist in the transformer model for analysis, the isolation 

system mechanical properties, the isolation system force and displacement capacities, the bushing 

failure limits and the ground motions used in the analysis. In addition, uncertainties should affect 

the seismic hazard curve used in Equation (2-6) to compute the mean annual frequency of failure, 

from which the probability of failure over a specific time period is calculated (Equation 2-7). The 

approach followed in this study is to adjust the dispersion coefficient to account for uncertainties 

in the transformer model whereas all other uncertainties are accounted for by limited deterministic 

analyses using bounding values of properties of the isolation system and bushings. Specifically: 
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1) A simple model of a representative generic transformer is used with the understanding that

uncertainties in the model can be accounted for by adjustments of the dispersion coefficient

obtained in the IDA and reported in Tables 3-1 to 3-60. Moreover, the results presented in

this report are meant to be representative results for ten locations in the Western United

States for use by responsible officials to aid in their decision to implement seismic

isolation. This decision needs to be made on the basis of the potential benefit to be provided

by seismic isolation by comparing probabilities of failure of non-isolated and isolated

models of transformers of identical parameters, which are parametrically varied.

2) The transformer model utilizes a typical weight of 420kip. Studies in Kitayama et al. (2016)

(see Figure 8-7 of the Kitayama reference) have demonstrated insignificant difference in

the fragilities curves as the weight varied from 320 to 520kip while the same isolators were

used (however, the isolator properties were adjusted to reflect the effect of changes of

weight on the friction coefficient). Accordingly, weight does not have any important effect

to warrant additional studies.

3) The damping ratio of the transformer model was set at 3% of critical for all modes. It is an

appropriate value based on field studies (Villaverde et al., 2001). Higher values certainly

result in reduction of the probabilities of failure. Accordingly, the results based on the 3%

value are representative of real conditions.

4) The plan dimension of the planar transformer model had a single value of 110inch between

supports. While this dimension does not affect the results of the non-isolated model, it does

for the isolated model through uplift of the isolators. The 110-inch value represents the

smaller plan dimension of some actual transformers (see examples in Oikonomou et al.,

2016 and Lee and Constantinou, 2017). Placing isolators at a distance equal to the smaller

dimension is neither necessary, nor recommended (in Lee and Constantinou, 2017 the

isolators were placed further away under a concrete base). Accordingly, the results for the

horizontally isolated transformers may be slightly conservative, particularly for the cases

of the smallest displacement capacity isolator and the largest bushing acceleration limit

where impact on the displacement restraint and uplift were more likely to occur.

5) A single inclined bushing having an as-installed frequency of either 4.3 or 7.7 or 11.3Hz

(three cases) was used to represent the transformer. This represents a realistic range of

frequencies for most bushings (Kitayama et al., 2016). The as-installed frequency has an

important effect on the probability of failure as seen in the results of Tables 3-1 to 3-60.
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Given that there is uncertainty on the as-installed frequency of a bushing, and that 

transformers have many bushings of different as-installed frequencies, it is appropriate to 

consider the results of all three cases in this report in assessing the benefits of isolation for 

a transformer. 

6) The bushing failure acceleration limits considered were 1g and 2g in the transverse

direction at its upper part center of mass (see Kitayama et al., 2016 for details). These two

limits were established by comparing analytically constructed fragility curves of non-

isolated transformers to empirical fragility curves of seven different types of transformers

with two different bushing voltages (230 or 500kV) (Kitayama et al., 2016). It was

observed that the 2g limit was representative of failures not attributed to bushing failure

but rather of some other component, whereas the 1g limit appeared as an appropriate lower

bound limit.  We believe that an assessment of performance based on the data presented

in this report should be based on the 1g bushing acceleration limit as it results in

conservative estimates of the probability of failure.  Any consideration of uncertainties

on the value of the acceleration would have caused a further increase of a conservatively

estimated probability of failure.

7) The isolation system frictional properties considered are the lower bound values as studies

in Kitayama et al. (2016) demonstrated generally small differences between the two cases

of upper and lower bound friction, with the lower bound resulting in slightly larger

probabilities of failure.  For the case of 1g bushing acceleration limit in the study of

Kitayama et al. (2016), the two cases of bounds for friction produced very close fragility

curves.

8) Two FP isolator sizes in terms of their displacement capacity were considered, one small

(DCapacity=17.7inch) and one large (DCapacity=31.3inch).  These two isolators can be readily

produced, with the small one having been used in some applications in the Western United

States.  The larger isolator has a different radius of curvature (R=61inch) than the small

isolator (R=39inch) and is intended for use in areas of higher seismic hazard.  These two

cases should provide sufficient information for deciding on the use of seismic isolation.

We note that larger displacement capacity isolators can be produced, but their use will

likely be very special due primarily to the requirement to detail the electrical connections

of the isolated transformer for accommodating large displacements.
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9) A single set of vertical isolator properties has been considered with parameters identical to

those of a tested system in Lee and Constantinou (2017, 2018).  The results show some

benefits with the use of the vertical isolation system for some locations but the decision to

use it should consider the complexities in its construction (for example the system “without

rocking” requires a massive base-see example in Lee and Constantinou, 2017).

Realistically only the system “with rocking” is practical but should be reserved for very

special cases where the vertical ground acceleration of a horizontally-only isolated

transformer causes global uplift and bouncing.  Recognizing that there are additional

uncertainties in the model of analysis for the horizontally-vertically isolated transformer

by comparison to the horizontally only transformer, we will propose different parameters

when computing the probabilities of collapse in the two cases.

Based on the considerations discussed above, it is assumed that the results on the probability of 

failure presented in this report in Section 3 encompass a range of possible properties of 

transformers and are useful in assessing performance and in deciding on the utility of seismic 

isolation. The only remaining consideration is to adjust the results for additional uncertainties 

related to the transformer model, which are perceived different for the various considered 

configurations. Following the paradigm of FEMA P695 (FEMA, 2009), we define the value of the 

dispersion coefficient in Equation (4-1) as  

𝛽 = √𝛽RTR
2 + 𝛽MDL

2 (4-2) 

In this equation, βRTR is the dispersion coefficient due to the record-to-record variability (or record-

to-record failure uncertainty) as reported in Tables 3-1 to 3-60, and βMDL is the modeling 

uncertainty to account for how well the model of analysis represents the actual transformer, 

isolated or non-isolated. We use of the following values based on FEMA (2009) and the following 

considerations: 

1) For non-isolated transformers βMDL=0.3 as the model captures a wide range of the

transformer properties space but the model accuracy and robustness is fair.

2) For horizontally-vertically isolated transformers βMDL=0.2 as the model captures a wide

range of the transformer properties space and the model accuracy and robustness is

medium.
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3) For horizontally isolated transformers βMDL=0.1 as the model captures a wide range of the

transformer properties space and the model accuracy and robustness is superior.

Moreover, we recognize that the selection and scaling of the pairs of horizontal-vertical ground 

motions may have not been appropriate for incremental dynamic analysis and this affected the 

calculated record-to-record dispersion for the horizontally only transformer models. Accordingly, 

calculations will be performed for the values of βRTR and then again using an upper bound of 0.4 

for βRTR. This will better inform the user of the results in deciding which probabilities of failure 

are relevant in the decision process. 
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SECTION 5 

SUMMARY OF RESULTS FOR FAR-FIELD MOTIONS 

Tables 5-1 to 5-60 present a summary of the fragility analysis results and the probabilities of failure 

in a lifetime of 50 years for all analyzed cases using the far-field motions. The presented fragility 

analysis results (values of 𝑆�̂�𝐹(𝑇1) and βRTR) include the spectral shape effects. The probabilities

of failure are presented for two cases, one using the computed value of βRTR and one based on an 

upper bound of 0.4 for βRTR. All probabilities of collapse have been computed using the total value 

of the dispersion coefficient per Equation (4-2) and using the values of βMDL in Section 4. 

Table 5-1 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=7.7Hz and inclined bushing. When 
isolated, DCapacity=17.7inch and lower bound friction properties. Location: Vancouver, WA. 

Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 0.704 0.276 0.069 0.408 0.080 0.408 0.080 

2g 1.408 0.276 0.013 0.408 0.017 0.408 0.017 

Horizontally 

isolated 

T1=2.4sec 

1g 0.284 0.656 0.036 0.664 0.036 0.412 0.026 

2g 0.369 0.492 0.018 0.502 0.018 0.412 0.016 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.415 0.393 0.012 0.441 0.013 0.441 0.013 

2g 0.462 0.296 0.008 0.357 0.009 0.357 0.009 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.411 0.411 0.013 0.457 0.014 0.447 0.013 

2g 0.512 0.293 0.006 0.355 0.007 0.355 0.007 
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Table 5-2 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=7.7Hz and inclined bushing. When 

isolated, DCapacity=17.7inch and lower bound friction properties. Location: Saranap, CA.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 0.782 0.276 0.266 0.408 0.307 0.408 0.307 

2g 1.564 0.276 0.038 0.408 0.058 0.408 0.058 

Horizontally 

isolated 

T1=2.4sec 

1g 0.588 0.656 0.067 0.664 0.068 0.412 0.033 

2g 0.644 0.492 0.033 0.502 0.034 0.412 0.025 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.620 0.393 0.027 0.441 0.031 0.441 0.031 

2g 0.639 0.296 0.018 0.357 0.022 0.357 0.022 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.646 0.411 0.025 0.457 0.029 0.447 0.028 

2g 0.704 0.293 0.013 0.355 0.016 0.355 0.016 
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Table 5-3 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=7.7Hz and inclined bushing. When 
isolated, DCapacity=17.7inch and lower bound friction properties. Location: Loma Linda, CA. 

Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 0.782 0.276 0.309 0.408 0.346 0.408 0.346 

2g 1.565 0.276 0.063 0.408 0.084 0.408 0.084 

Horizontally 

isolated 

T1=2.4sec 

1g 0.744 0.656 0.103 0.664 0.104 0.412 0.075 

2g 0.770 0.492 0.078 0.502 0.079 0.412 0.070 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.706 0.393 0.081 0.441 0.085 0.441 0.085 

2g 0.709 0.296 0.073 0.357 0.077 0.357 0.077 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.748 0.411 0.074 0.457 0.078 0.447 0.077 

2g 0.780 0.293 0.059 0.355 0.064 0.355 0.064 
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Table 5-4 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=7.7Hz and inclined bushing. When 
isolated, DCapacity=17.7inch and lower bound friction properties. Location: Aberdeen, WA.  

Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 0.737 0.276 0.128 0.408 0.141 0.408 0.141 

2g 1.473 0.276 0.038 0.408 0.044 0.408 0.044 

Horizontally 

isolated 

T1=2.4sec 

1g 0.359 0.656 0.047 0.664 0.047 0.412 0.040 

2g 0.441 0.492 0.033 0.502 0.033 0.412 0.031 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.472 0.393 0.028 0.441 0.029 0.441 0.029 

2g 0.513 0.296 0.024 0.357 0.025 0.357 0.025 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.475 0.411 0.028 0.457 0.029 0.447 0.029 

2g 0.567 0.293 0.021 0.355 0.021 0.355 0.021 
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Table 5-5 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=7.7Hz and inclined bushing. When 

isolated, DCapacity=17.7inch and lower bound friction properties. Location: Chehalis, WA.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 0.717 0.276 0.113 0.408 0.129 0.408 0.129 

2g 1.434 0.276 0.024 0.408 0.030 0.408 0.030 

Horizontally 

isolated 

T1=2.4sec 

1g 0.286 0.656 0.045 0.664 0.046 0.412 0.034 

2g 0.372 0.492 0.024 0.502 0.024 0.412 0.022 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.415 0.393 0.017 0.441 0.018 0.441 0.018 

2g 0.462 0.296 0.012 0.357 0.013 0.357 0.013 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.411 0.411 0.018 0.457 0.019 0.447 0.019 

2g 0.513 0.293 0.010 0.355 0.011 0.355 0.011 
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Table 5-6 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=7.7Hz and inclined bushing. When 

isolated, DCapacity=17.7inch and lower bound friction properties. Location: Hillsboro, OR.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 0.711 0.276 0.076 0.408 0.085 0.408 0.085 

2g 1.422 0.276 0.017 0.408 0.021 0.408 0.021 

Horizontally 

isolated 

T1=2.4sec 

1g 0.284 0.656 0.040 0.664 0.041 0.412 0.031 

2g 0.369 0.492 0.022 0.502 0.022 0.412 0.020 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.415 0.393 0.016 0.441 0.016 0.441 0.016 

2g 0.462 0.296 0.011 0.357 0.012 0.357 0.012 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.411 0.411 0.016 0.457 0.017 0.447 0.017 

2g 0.512 0.293 0.009 0.355 0.010 0.355 0.010 
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Table 5-7 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=7.7Hz and inclined bushing. When 

isolated, DCapacity=17.7inch and lower bound friction properties. Location: Eugene, OR.  
Far-field motions. 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 0.704 0.276 0.052 0.408 0.056 0.408 0.056 

2g 1.407 0.276 0.015 0.408 0.017 0.408 0.017 

Horizontally 

isolated 

T1=2.4sec 

1g 0.279 0.656 0.038 0.664 0.038 0.412 0.032 

2g 0.364 0.492 0.023 0.502 0.023 0.412 0.021 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.411 0.393 0.017 0.441 0.018 0.441 0.018 

2g 0.458 0.296 0.013 0.357 0.014 0.357 0.014 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.406 0.411 0.018 0.457 0.019 0.447 0.018 

2g 0.508 0.293 0.011 0.355 0.011 0.355 0.011 
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Table 5-8 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=7.7Hz and inclined bushing. When 
isolated, DCapacity=17.7inch and lower bound friction properties. Location: Wilsonville, OR. 

Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 0.705 0.276 0.069 0.408 0.079 0.408 0.079 

2g 1.410 0.276 0.014 0.408 0.018 0.408 0.018 

Horizontally 

isolated 

T1=2.4sec 

1g 0.285 0.656 0.036 0.664 0.036 0.412 0.027 

2g 0.370 0.492 0.018 0.502 0.019 0.412 0.017 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.416 0.393 0.013 0.441 0.014 0.441 0.014 

2g 0.463 0.296 0.009 0.357 0.010 0.357 0.010 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.412 0.411 0.013 0.457 0.014 0.447 0.014 

2g 0.513 0.293 0.007 0.355 0.007 0.355 0.007 
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Table 5-9 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=7.7Hz and inclined bushing. When 

isolated, DCapacity=17.7inch and lower bound friction properties. Location: Curry County, OR. 
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 0.778 0.276 0.103 0.408 0.108 0.408 0.108 

2g 1.556 0.276 0.034 0.408 0.039 0.408 0.039 

Horizontally 

isolated 

T1=2.4sec 

1g 0.571 0.656 0.046 0.664 0.046 0.412 0.039 

2g 0.629 0.492 0.036 0.502 0.036 0.412 0.034 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.610 0.393 0.035 0.441 0.036 0.441 0.036 

2g 0.630 0.296 0.031 0.357 0.033 0.357 0.033 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.634 0.411 0.033 0.457 0.035 0.447 0.034 

2g 0.695 0.293 0.027 0.355 0.028 0.355 0.028 
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Table 5-10 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=7.7Hz and inclined bushing. When 

isolated, DCapacity=17.7inch and lower bound friction properties. Location: Troutdale, OR.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 0.702 0.276 0.061 0.408 0.071 0.408 0.071 

2g 1.403 0.276 0.011 0.408 0.015 0.408 0.015 

Horizontally 

isolated 

T1=2.4sec 

1g 0.277 0.656 0.035 0.664 0.035 0.412 0.025 

2g 0.362 0.492 0.017 0.502 0.017 0.412 0.015 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.410 0.393 0.011 0.441 0.012 0.441 0.012 

2g 0.457 0.296 0.007 0.357 0.008 0.357 0.008 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.405 0.411 0.012 0.457 0.013 0.447 0.012 

2g 0.507 0.293 0.005 0.355 0.006 0.355 0.006 
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Table 5-11 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=4.3Hz and inclined bushing. When 
isolated, DCapacity=17.7inch and lower bound friction properties. Location: Vancouver, WA. 

Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.24sec 

1g 1.019 0.173 0.045 0.346 0.053 0.346 0.053 

2g 2.038 0.173 0.006 0.346 0.009 0.346 0.009 

Horizontally 

isolated 

T1=2.4sec 

1g 0.378 0.551 0.019 0.560 0.019 0.412 0.015 

2g 0.414 0.477 0.014 0.487 0.014 0.412 0.013 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.464 0.322 0.008 0.379 0.009 0.379 0.009 

2g 0.502 0.278 0.006 0.342 0.007 0.342 0.007 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.355 0.620 0.023 0.651 0.025 0.447 0.018 

2g 0.529 0.289 0.006 0.351 0.006 0.351 0.006 
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Table 5-12 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=4.3Hz and inclined bushing. When 

isolated, DCapacity=17.7inch and lower bound friction properties. Location: Saranap, CA.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.24sec 

1g 1.105 0.173 0.153 0.346 0.192 0.346 0.192 

2g 2.211 0.173 0.012 0.346 0.023 0.346 0.023 

Horizontally 

isolated 

T1=2.4sec 

1g 0.696 0.551 0.032 0.560 0.033 0.412 0.020 

2g 0.702 0.477 0.024 0.487 0.025 0.412 0.019 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.644 0.322 0.019 0.379 0.023 0.379 0.023 

2g 0.662 0.278 0.015 0.342 0.018 0.342 0.018 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.724 0.620 0.037 0.651 0.041 0.447 0.020 

2g 0.706 0.289 0.012 0.351 0.015 0.351 0.015 
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Table 5-13 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=4.3Hz and inclined bushing. When 

isolated, DCapacity=17.7inch and lower bound friction properties. Location: Chehalis, WA.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.24sec 

1g 1.042 0.173 0.069 0.346 0.081 0.346 0.081 

2g 2.085 0.173 0.011 0.346 0.016 0.346 0.016 

Horizontally 

isolated 

T1=2.4sec 

1g 0.354 0.551 0.028 0.560 0.029 0.412 0.024 

2g 0.391 0.477 0.021 0.487 0.022 0.412 0.020 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.448 0.322 0.014 0.379 0.015 0.379 0.015 

2g 0.487 0.278 0.011 0.342 0.012 0.342 0.012 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.328 0.620 0.035 0.651 0.037 0.447 0.028 

2g 0.512 0.289 0.010 0.351 0.011 0.351 0.011 
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Table 5-14 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=4.3Hz and inclined bushing. When 
isolated, DCapacity=17.7inch and lower bound friction properties. Location: Aberdeen, WA.  

Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.24sec 

1g 1.064 0.173 0.091 0.346 0.100 0.346 0.100 

2g 2.130 0.173 0.026 0.346 0.030 0.346 0.030 

Horizontally 

isolated 

T1=2.4sec 

1g 0.439 0.551 0.034 0.560 0.034 0.412 0.031 

2g 0.471 0.477 0.030 0.487 0.030 0.412 0.029 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.503 0.322 0.025 0.379 0.026 0.379 0.026 

2g 0.537 0.278 0.022 0.342 0.023 0.342 0.023 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.423 0.620 0.038 0.651 0.038 0.447 0.034 

2g 0.568 0.289 0.021 0.351 0.021 0.351 0.021 
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Table 5-15 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=4.3Hz and inclined bushing. When 
isolated, DCapacity=17.7inch and lower bound friction properties. Location: Loma Linda, CA. 

Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.24sec 

1g 1.109 0.173 0.203 0.346 0.236 0.346 0.236 

2g 2.220 0.173 0.029 0.346 0.043 0.346 0.043 

Horizontally 

isolated 

T1=2.4sec 

1g 0.865 0.551 0.068 0.560 0.069 0.412 0.056 

2g 0.847 0.477 0.064 0.487 0.065 0.412 0.058 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.724 0.322 0.071 0.379 0.076 0.379 0.076 

2g 0.730 0.278 0.067 0.342 0.072 0.342 0.072 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.935 0.620 0.066 0.651 0.070 0.447 0.050 

2g 0.782 0.289 0.059 0.351 0.063 0.351 0.063 
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Table 5-16 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=4.3Hz and inclined bushing. When 

isolated, DCapacity=17.7inch and lower bound friction properties. Location: Hillsboro, OR.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.24sec 

1g 1.037 0.173 0.051 0.346 0.059 0.346 0.059 

2g 2.074 0.173 0.009 0.346 0.012 0.346 0.012 

Horizontally 

isolated 

T1=2.4sec 

1g 0.352 0.551 0.025 0.560 0.026 0.412 0.022 

2g 0.390 0.477 0.019 0.487 0.020 0.412 0.018 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.447 0.322 0.012 0.379 0.013 0.379 0.013 

2g 0.487 0.278 0.010 0.342 0.010 0.342 0.010 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.328 0.620 0.031 0.651 0.032 0.447 0.025 

2g 0.512 0.289 0.009 0.351 0.009 0.351 0.009 
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Table 5-17 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=4.3Hz and inclined bushing. When 

isolated, DCapacity=17.7inch and lower bound friction properties. Location: Eugene, OR.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.24sec 

1g 1.030 0.173 0.043 0.346 0.046 0.346 0.046 

2g 2.062 0.173 0.010 0.346 0.012 0.346 0.012 

Horizontally 

isolated 

T1=2.4sec 

1g 0.347 0.551 0.026 0.560 0.026 0.412 0.023 

2g 0.385 0.477 0.021 0.487 0.021 0.412 0.020 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.443 0.322 0.012 0.379 0.015 0.379 0.015 

2g 0.483 0.278 0.010 0.342 0.012 0.342 0.012 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.321 0.620 0.030 0.651 0.031 0.447 0.027 

2g 0.508 0.289 0.011 0.351 0.011 0.351 0.011 
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Table 5-18 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=4.3Hz and inclined bushing. When 
isolated, DCapacity=17.7inch and lower bound friction properties. Location: Wilsonville, OR. 

Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.24sec 

1g 1.030 0.173 0.045 0.346 0.053 0.346 0.053 

2g 2.061 0.173 0.007 0.346 0.010 0.346 0.010 

Horizontally 

isolated 

T1=2.4sec 

1g 0.354 0.551 0.022 0.560 0.022 0.412 0.018 

2g 0.392 0.477 0.016 0.487 0.016 0.412 0.015 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.448 0.322 0.010 0.379 0.011 0.379 0.011 

2g 0.488 0.278 0.008 0.342 0.008 0.342 0.008 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.329 0.620 0.029 0.651 0.029 0.447 0.022 

2g 0.513 0.289 0.007 0.351 0.007 0.351 0.007 
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Table 5-19 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=4.3Hz and inclined bushing. When 

isolated, DCapacity=17.7inch and lower bound friction properties. Location: Curry County, OR. 
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.24sec 

1g 1.107 0.173 0.087 0.346 0.092 0.346 0.092 

2g 2.215 0.173 0.027 0.346 0.031 0.346 0.031 

Horizontally 

isolated 

T1=2.4sec 

1g 0.676 0.551 0.034 0.560 0.034 0.412 0.030 

2g 0.685 0.477 0.031 0.487 0.031 0.412 0.030 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.634 0.322 0.032 0.379 0.033 0.379 0.033 

2g 0.653 0.278 0.029 0.342 0.031 0.342 0.031 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.701 0.620 0.034 0.651 0.035 0.447 0.029 

2g 0.696 0.289 0.027 0.351 0.028 0.351 0.028 
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Table 5-20 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=4.3Hz and inclined bushing. When 

isolated, DCapacity=17.7inch and lower bound friction properties. Location: Troutdale, OR.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.24sec 

1g 1.023 0.173 0.038 0.346 0.046 0.346 0.046 

2g 2.047 0.173 0.005 0.346 0.007 0.346 0.007 

Horizontally 

isolated 

T1=2.4sec 

1g 0.345 0.551 0.020 0.560 0.021 0.412 0.016 

2g 0.383 0.477 0.015 0.487 0.015 0.412 0.013 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.442 0.322 0.008 0.379 0.009 0.379 0.009 

2g 0.482 0.278 0.006 0.342 0.007 0.342 0.007 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.320 0.620 0.026 0.651 0.027 0.447 0.020 

2g 0.507 0.289 0.005 0.351 0.006 0.351 0.006 
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Table 5-21 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=11.3Hz and inclined bushing. When 
isolated, DCapacity=17.7inch and lower bound friction properties. Location: Vancouver, WA.  

Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.09sec 

1g 0.955 0.303 0.024 0.426 0.030 0.426 0.030 

2g 1.909 0.303 0.003 0.426 0.005 0.426 0.005 

Horizontally 

isolated 

T1=2.4sec 

1g 0.302 0.600 0.030 0.608 0.030 0.412 0.024 

2g 0.344 0.548 0.022 0.557 0.022 0.412 0.018 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.420 0.323 0.011 0.380 0.012 0.380 0.012 

2g 0.442 0.316 0.009 0.374 0.010 0.374 0.010 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.500 0.291 0.007 0.353 0.007 0.353 0.007 

2g 0.526 0.271 0.006 0.337 0.006 0.337 0.006 
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Table 5-22 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=11.3Hz and inclined bushing. When 

isolated, DCapacity=17.7inch and lower bound friction properties. Location: Saranap, CA.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 1.140 0.303 0.078 0.426 0.106 0.426 0.106 

2g 2.281 0.303 0.005 0.426 0.011 0.426 0.011 

Horizontally 

isolated 

T1=2.4sec 

1g 0.677 0.600 0.041 0.608 0.042 0.412 0.022 

2g 0.717 0.548 0.029 0.557 0.030 0.412 0.018 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.616 0.323 0.022 0.380 0.026 0.380 0.026 

2g 0.637 0.316 0.019 0.374 0.023 0.374 0.023 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.702 0.291 0.013 0.353 0.016 0.353 0.016 

2g 0.715 0.271 0.011 0.337 0.014 0.337 0.014 
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Table 5-23 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=11.3Hz and inclined bushing. When 

isolated, DCapacity=17.7inch and lower bound friction properties. Location: Chehalis, WA.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 0.959 0.303 0.048 0.426 0.058 0.426 0.058 

2g 1.918 0.303 0.007 0.426 0.011 0.426 0.011 

Horizontally 

isolated 

T1=2.4sec 

1g 0.315 0.600 0.036 0.608 0.037 0.412 0.029 

2g 0.358 0.548 0.028 0.557 0.028 0.412 0.023 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.428 0.323 0.015 0.380 0.016 0.380 0.016 

2g 0.451 0.316 0.013 0.374 0.014 0.374 0.014 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.509 0.291 0.010 0.353 0.011 0.353 0.011 

2g 0.534 0.271 0.009 0.337 0.010 0.337 0.010 
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Table 5-24 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=11.3Hz and inclined bushing. When 

isolated, DCapacity=17.7inch and lower bound friction properties. Location: Aberdeen, WA.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 1.025 0.303 0.060 0.426 0.068 0.426 0.068 

2g 2.049 0.303 0.014 0.426 0.017 0.426 0.017 

Horizontally 

isolated 

T1=2.4sec 

1g 0.402 0.600 0.039 0.608 0.040 0.412 0.035 

2g 0.447 0.548 0.033 0.557 0.034 0.412 0.031 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.481 0.323 0.027 0.380 0.027 0.380 0.027 

2g 0.503 0.316 0.025 0.374 0.026 0.374 0.026 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.564 0.291 0.021 0.353 0.022 0.353 0.022 

2g 0.587 0.271 0.020 0.337 0.020 0.337 0.020 
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Table 5-25 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=11.3Hz and inclined bushing. When 
isolated, DCapacity=17.7inch and lower bound friction properties. Location: Loma Linda, CA. 

Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.09sec 

1g 1.135 0.303 0.114 0.426 0.140 0.426 0.140 

2g 2.271 0.303 0.013 0.426 0.021 0.426 0.021 

Horizontally 

isolated 

T1=2.4sec 

1g 0.866 0.600 0.074 0.608 0.075 0.412 0.055 

2g 0.897 0.548 0.064 0.557 0.064 0.412 0.052 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.693 0.323 0.078 0.380 0.082 0.380 0.082 

2g 0.712 0.316 0.073 0.374 0.078 0.374 0.078 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.779 0.291 0.060 0.353 0.064 0.353 0.064 

2g 0.786 0.271 0.057 0.337 0.061 0.337 0.061 
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Table 5-26 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=11.3Hz and inclined bushing. When 

isolated, DCapacity=17.7inch and lower bound friction properties. Location: Hillsboro, OR.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.09sec 

1g 0.967 0.303 0.028 0.426 0.034 0.426 0.034 

2g 1.934 0.303 0.005 0.426 0.006 0.426 0.006 

Horizontally 

isolated 

T1=2.4sec 

1g 0.314 0.600 0.032 0.608 0.033 0.412 0.026 

2g 0.357 0.548 0.025 0.557 0.258 0.412 0.236 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.428 0.323 0.013 0.380 0.014 0.380 0.014 

2g 0.450 0.316 0.012 0.374 0.013 0.374 0.013 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.508 0.291 0.009 0.353 0.010 0.353 0.010 

2g 0.534 0.271 0.008 0.337 0.008 0.337 0.008 
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Table 5-27 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=11.3Hz and inclined bushing. When 

isolated, DCapacity=17.7inch and lower bound friction properties. Location: Eugene, OR.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.09sec 

1g 0.949 0.303 0.023 0.426 0.026 0.426 0.026 

2g 1.898 0.303 0.005 0.426 0.006 0.426 0.006 

Horizontally 

isolated 

T1=2.4sec 

1g 0.308 0.600 0.032 0.608 0.032 0.412 0.028 

2g 0.351 0.548 0.025 0.557 0.025 0.412 0.023 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.424 0.323 0.015 0.380 0.016 0.380 0.016 

2g 0.446 0.316 0.014 0.374 0.015 0.374 0.015 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.504 0.291 0.011 0.353 0.012 0.353 0.012 

2g 0.530 0.271 0.010 0.337 0.010 0.337 0.010 
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Table 5-28 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=11.3Hz and inclined bushing. When 

isolated, DCapacity=17.7inch and lower bound friction properties. Location: Wilsonville, OR.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.09sec 

1g 0.953 0.303 0.025 0.426 0.030 0.426 0.030 

2g 1.907 0.303 0.004 0.426 0.005 0.426 0.005 

Horizontally 

isolated 

T1=2.4sec 

1g 0.316 0.600 0.028 0.608 0.029 0.412 0.022 

2g 0.359 0.548 0.021 0.557 0.021 0.412 0.018 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.429 0.323 0.011 0.380 0.012 0.380 0.012 

2g 0.451 0.316 0.010 0.374 0.010 0.374 0.010 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.509 0.291 0.007 0.353 0.008 0.353 0.008 

2g 0.535 0.271 0.006 0.337 0.007 0.337 0.007 
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Table 5-29 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=11.3Hz and inclined bushing. When 
isolated, DCapacity=17.7inch and lower bound friction properties. Location: Curry County, OR. 

Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 1.123 0.303 0.048 0.426 0.053 0.426 0.053 

2g 2.247 0.303 0.012 0.426 0.015 0.426 0.015 

Horizontally 

isolated 

T1=2.4sec 

1g 0.656 0.600 0.037 0.608 0.037 0.412 0.032 

2g 0.697 0.548 0.032 0.557 0.033 0.412 0.029 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.607 0.323 0.034 0.380 0.035 0.380 0.035 

2g 0.628 0.316 0.032 0.374 0.033 0.374 0.033 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.693 0.291 0.027 0.353 0.028 0.353 0.028 

2g 0.707 0.271 0.026 0.337 0.027 0.337 0.027 
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Table 5-30 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=11.3Hz and inclined bushing. When 

isolated, DCapacity=17.7inch and lower bound friction properties. Location: Troutdale, OR.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 0.948 0.303 0.021 0.426 0.027 0.426 0.027 

2g 1.895 0.303 0.003 0.426 0.004 0.426 0.004 

Horizontally 

isolated 

T1=2.4sec 

1g 0.307 0.600 0.027 0.608 0.027 0.412 0.021 

2g 0.349 0.548 0.020 0.557 0.020 0.412 0.016 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.423 0.323 0.009 0.380 0.010 0.380 0.010 

2g 0.445 0.316 0.008 0.374 0.009 0.374 0.009 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.503 0.291 0.006 0.353 0.006 0.353 0.006 

2g 0.529 0.271 0.005 0.337 0.005 0.337 0.005 
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Table 5-31 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=7.7Hz and inclined bushing. When 
isolated, DCapacity=31.3inch and lower bound friction properties. Location: Vancouver, WA. 

Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 0.706 0.276 0.069 0.408 0.080 0.408 0.080 

2g 1.411 0.276 0.013 0.408 0.017 0.408 0.017 

Horizontally 

isolated 

T1=2.4sec 

1g 0.304 0.744 0.037 0.751 0.037 0.412 0.023 

2g 0.430 0.611 0.016 0.619 0.017 0.412 0.012 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.414 0.405 0.012 0.452 0.013 0.447 0.013 

2g 0.451 0.319 0.009 0.377 0.010 0.377 0.010 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.423 0.404 0.012 0.451 0.013 0.447 0.013 

2g 0.481 0.302 0.008 0.362 0.008 0.362 0.008 
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Table 5-32 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=7.7Hz and inclined bushing. When 

isolated, DCapacity=31.3inch and lower bound friction properties. Location: Saranap, CA.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 0.782 0.276 0.266 0.408 0.307 0.408 0.307 

2g 1.564 0.276 0.038 0.408 0.058 0.408 0.058 

Horizontally 

isolated 

T1=2.4sec 

1g 0.700 0.744 0.058 0.751 0.060 0.412 0.019 

2g 0.911 0.611 0.019 0.619 0.020 0.412 0.008 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.653 0.405 0.024 0.452 0.028 0.447 0.027 

2g 0.665 0.319 0.017 0.377 0.020 0.377 0.020 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.676 0.404 0.021 0.451 0.025 0.447 0.025 

2g 0.699 0.302 0.013 0.362 0.016 0.362 0.016 
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Table 5-33 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=7.7Hz and inclined bushing. When 
isolated, DCapacity=31.3inch and lower bound friction properties. Location: Loma Linda, CA. 

Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 0.782 0.276 0.297 0.408 0.346 0.408 0.346 

2g 1.565 0.276 0.059 0.408 0.084 0.408 0.084 

Horizontally 

isolated 

T1=2.4sec 

1g 0.902 0.744 0.087 0.751 0.088 0.412 0.051 

2g 1.146 0.611 0.044 0.619 0.045 0.412 0.030 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.751 0.405 0.073 0.452 0.077 0.447 0.077 

2g 0.749 0.319 0.066 0.377 0.071 0.377 0.071 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.780 0.404 0.068 0.451 0.072 0.447 0.071 

2g 0.783 0.302 0.060 0.362 0.064 0.362 0.064 
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Table 5-34 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=7.7Hz and inclined bushing. When 

isolated, DCapacity=31.3inch and lower bound friction properties. Location: Aberdeen, WA. .Far-
field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 0.737 0.276 0.135 0.408 0.141 0.408 0.141 

2g 1.473 0.276 0.040 0.408 0.044 0.408 0.044 

Horizontally 

isolated 

T1=2.4sec 

1g 0.409 0.744 0.043 0.751 0.044 0.412 0.034 

2g 0.562 0.611 0.026 0.619 0.026 0.412 0.022 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.487 0.405 0.027 0.452 0.028 0.447 0.028 

2g 0.518 0.319 0.024 0.377 0.025 0.377 0.025 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.500 0.404 0.026 0.451 0.027 0.447 0.027 

2g 0.550 0.302 0.022 0.362 0.023 0.362 0.023 
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Table 5-35 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=7.7Hz and inclined bushing. When 

isolated, DCapacity=31.3inch and lower bound friction properties. Location: Chehalis, WA.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 0.717 0.276 0.113 0.408 0.129 0.408 0.129 

2g 1.434 0.276 0.024 0.408 0.030 0.408 0.030 

Horizontally 

isolated 

T1=2.4sec 

1g 0.318 0.744 0.044 0.751 0.044 0.412 0.029 

2g 0.448 0.611 0.021 0.619 0.021 0.412 0.015 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.424 0.405 0.017 0.452 0.018 0.447 0.018 

2g 0.460 0.319 0.013 0.377 0.014 0.377 0.014 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.433 0.404 0.016 0.451 0.017 0.447 0.017 

2g 0.491 0.302 0.011 0.362 0.012 0.362 0.012 
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Table 5-36 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=7.7Hz and inclined bushing. When 

isolated, DCapacity=31.3inch and lower bound friction properties. Location: Hillsboro, OR.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 0.711 0.276 0.076 0.408 0.085 0.408 0.085 

2g 1.422 0.276 0.017 0.408 0.021 0.408 0.021 

Horizontally 

isolated 

T1=2.4sec 

1g 0.317 0.744 0.038 0.751 0.039 0.412 0.026 

2g 0.447 0.611 0.018 0.619 0.019 0.412 0.014 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.423 0.405 0.015 0.452 0.016 0.447 0.016 

2g 0.460 0.319 0.011 0.377 0.012 0.377 0.012 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.433 0.404 0.014 0.451 0.015 0.447 0.015 

2g 0.490 0.302 0.010 0.362 0.011 0.362 0.011 
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Table 5-37 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=7.7Hz and inclined bushing. When 

isolated, DCapacity=31.3inch and lower bound friction properties. Location: Eugene, OR.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 0.704 0.276 0.052 0.408 0.056 0.408 0.056 

2g 1.407 0.276 0.015 0.408 0.017 0.408 0.017 

Horizontally 

isolated 

T1=2.4sec 

1g 0.311 0.744 0.035 0.751 0.036 0.412 0.027 

2g 0.439 0.611 0.019 0.619 0.019 0.412 0.016 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.419 0.405 0.017 0.452 0.018 0.447 0.018 

2g 0.456 0.319 0.014 0.377 0.014 0.377 0.014 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.428 0.404 0.016 0.451 0.017 0.447 0.017 

2g 0.486 0.302 0.012 0.362 0.012 0.362 0.012 
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Table 5-38 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=7.7Hz and inclined bushing. When 
isolated, DCapacity=31.3inch and lower bound friction properties. Location: Wilsonville, OR. 

Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 0.705 0.276 0.069 0.408 0.079 0.408 0.079 

2g 1.410 0.276 0.014 0.408 0.018 0.408 0.018 

Horizontally 

isolated 

T1=2.4sec 

1g 0.319 0.744 0.034 0.751 0.034 0.412 0.022 

2g 0.449 0.611 0.015 0.619 0.016 0.412 0.011 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.425 0.405 0.012 0.452 0.013 0.447 0.013 

2g 0.461 0.319 0.009 0.377 0.010 0.377 0.010 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.434 0.404 0.012 0.451 0.013 0.447 0.013 

2g 0.492 0.302 0.008 0.362 0.008 0.362 0.008 
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Table 5-39 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=7.7Hz and inclined bushing. When 

isolated, DCapacity=31.3inch and lower bound friction properties. Location: Curry County, OR. 
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 0.778 0.276 0.107 0.408 0.108 0.408 0.108 

2g 1.556 0.276 0.036 0.408 0.039 0.408 0.039 

Horizontally 

isolated 

T1=2.4sec 

1g 0.677 0.744 0.040 0.751 0.040 0.412 0.030 

2g 0.885 0.611 0.024 0.619 0.024 0.412 0.019 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.642 0.405 0.033 0.452 0.034 0.447 0.034 

2g 0.655 0.319 0.030 0.377 0.031 0.377 0.031 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.664 0.404 0.030 0.451 0.032 0.447 0.032 

2g 0.689 0.302 0.027 0.362 0.028 0.362 0.028 
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Table 5-40 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=7.7Hz and inclined bushing. When 

isolated, DCapacity=31.3inch and lower bound friction properties. Location: Troutdale, OR.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.13sec 

1g 0.702 0.276 0.061 0.408 0.071 0.408 0.071 

2g 1.403 0.276 0.011 0.408 0.015 0.408 0.015 

Horizontally 

isolated 

T1=2.4sec 

1g 0.310 0.744 0.033 0.751 0.033 0.412 0.020 

2g 0.437 0.611 0.014 0.619 0.014 0.412 0.010 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.418 0.405 0.011 0.452 0.012 0.447 0.011 

2g 0.454 0.319 0.008 0.377 0.008 0.377 0.008 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.427 0.404 0.010 0.451 0.011 0.447 0.010 

2g 0.485 0.302 0.006 0.362 0.007 0.362 0.007 
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Table 5-41 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=4.3Hz and inclined bushing. When 
isolated, DCapacity=31.3inch and lower bound friction properties. Location: Vancouver, WA. 

Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.24sec 

1g 1.030 0.173 0.045 0.346 0.053 0.346 0.053 

2g 2.061 0.173 0.006 0.346 0.009 0.346 0.009 

Horizontally 

isolated 

T1=2.4sec 

1g 0.408 0.672 0.020 0.679 0.020 0.412 0.013 

2g 0.470 0.607 0.014 0.615 0.014 0.412 0.009 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.563 0.423 0.006 0.468 0.007 0.447 0.007 

2g 0.647 0.341 0.004 0.395 0.004 0.395 0.004 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.370 0.746 0.027 0.772 0.028 0.447 0.017 

2g 0.664 0.388 0.004 0.437 0.004 0.437 0.004 
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Table 5-42 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=4.3Hz and inclined bushing. When 

isolated, DCapacity=31.3inch and lower bound friction properties. Location: Saranap, CA.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.24sec 

1g 1.105 0.173 0.153 0.346 0.192 0.346 0.192 

2g 2.211 0.173 0.012 0.346 0.023 0.346 0.023 

Horizontally 

isolated 

T1=2.4sec 

1g 0.920 0.672 0.024 0.679 0.025 0.412 0.008 

2g 1.014 0.607 0.014 0.615 0.015 0.412 0.005 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.928 0.423 0.008 0.468 0.010 0.447 0.009 

2g 0.973 0.341 0.004 0.395 0.006 0.395 0.006 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.959 0.746 0.029 0.772 0.032 0.447 0.008 

2g 1.037 0.388 0.004 0.437 0.006 0.437 0.006 



119 

Table 5-43 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=4.3Hz and inclined bushing. When 

isolated, DCapacity=31.3inch and lower bound friction properties. Location: Chehalis, WA.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.24sec 

1g 1.043 0.173 0.069 0.346 0.081 0.346 0.081 

2g 2.087 0.173 0.011 0.346 0.016 0.346 0.016 

Horizontally 

isolated 

T1=2.4sec 

1g 0.426 0.672 0.025 0.679 0.025 0.412 0.017 

2g 0.489 0.607 0.017 0.615 0.018 0.412 0.013 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.579 0.423 0.009 0.468 0.010 0.447 0.010 

2g 0.661 0.341 0.006 0.395 0.007 0.395 0.007 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.389 0.746 0.032 0.772 0.034 0.447 0.021 

2g 0.680 0.388 0.006 0.437 0.007 0.437 0.007 
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Table 5-44 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=4.3Hz and inclined bushing. When 

isolated, DCapacity=31.3inch and lower bound friction properties. Location: Aberdeen, WA.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.24sec 

1g 1.064 0.173 0.091 0.346 0.100 0.346 0.100 

2g 2.130 0.173 0.026 0.346 0.030 0.346 0.030 

Horizontally 

isolated 

T1=2.4sec 

1g 0.545 0.672 0.029 0.679 0.029 0.412 0.023 

2g 0.618 0.607 0.023 0.615 0.023 0.412 0.020 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.673 0.423 0.017 0.468 0.018 0.447 0.018 

2g 0.748 0.341 0.014 0.395 0.014 0.395 0.014 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.519 0.746 0.033 0.772 0.033 0.447 0.026 

2g 0.778 0.388 0.013 0.437 0.014 0.437 0.014 
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Table 5-45 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=4.3Hz and inclined bushing. When 
isolated, DCapacity=31.3inch and lower bound friction properties. Location: Loma Linda, CA. 

Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.24sec 

1g 1.119 0.173 0.203 0.346 0.236 0.346 0.236 

2g 2.241 0.173 0.029 0.346 0.043 0.346 0.043 

Horizontally 

isolated 

T1=2.4sec 

1g 0.925 0.672 0.074 0.679 0.075 0.412 0.048 

2g 1.019 0.607 0.055 0.615 0.056 0.412 0.039 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.931 0.423 0.048 0.468 0.052 0.447 0.050 

2g 0.976 0.341 0.039 0.395 0.042 0.395 0.042 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.965 0.746 0.078 0.772 0.081 0.447 0.047 

2g 1.040 0.388 0.036 0.437 0.039 0.437 0.039 
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Table 5-46 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=4.3Hz and inclined bushing. When 

isolated, DCapacity=31.3inch and lower bound friction properties. Location: Hillsboro, OR.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.24sec 

1g 1.037 0.173 0.051 0.059 0.346 0.059 0.059 

2g 2.074 0.173 0.009 0.012 0.346 0.012 0.012 

Horizontally 

isolated 

T1=2.4sec 

1g 0.425 0.672 0.022 0.679 0.022 0.412 0.015 

2g 0.488 0.607 0.016 0.615 0.016 0.412 0.011 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.578 0.423 0.008 0.468 0.009 0.447 0.008 

2g 0.660 0.341 0.005 0.395 0.006 0.395 0.006 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.388 0.746 0.028 0.772 0.029 0.447 0.019 

2g 0.679 0.388 0.005 0.437 0.006 0.437 0.006 
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Table 5-47 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=4.3Hz and inclined bushing. When 

isolated, DCapacity=31.3inch and lower bound friction properties. Location: Eugene, OR.  
Far-field motions. 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.24sec 

1g 1.030 0.173 0.043 0.346 0.046 0.346 0.046 

2g 2.062 0.173 0.010 0.346 0.012 0.346 0.012 

Horizontally 

isolated 

T1=2.4sec 

1g 0.417 0.672 0.022 0.679 0.022 0.412 0.017 

2g 0.479 0.607 0.016 0.615 0.017 0.412 0.013 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.571 0.423 0.010 0.468 0.010 0.447 0.010 

2g 0.654 0.341 0.007 0.395 0.007 0.395 0.007 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.380 0.746 0.027 0.772 0.028 0.447 0.021 

2g 0.672 0.388 0.007 0.437 0.007 0.437 0.007 
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Table 5-48 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=4.3Hz and inclined bushing. When 
isolated, DCapacity=31.3inch and lower bound friction properties. Location: Wilsonville, OR. 

Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.24sec 

1g 1.030 0.173 0.045 0.346 0.053 0.346 0.053 

2g 2.061 0.173 0.007 0.346 0.010 0.346 0.010 

Horizontally 

isolated 

T1=2.4sec 

1g 0.427 0.672 0.019 0.679 0.019 0.412 0.012 

2g 0.491 0.607 0.013 0.615 0.013 0.412 0.009 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.580 0.423 0.006 0.468 0.007 0.447 0.007 

2g 0.662 0.341 0.004 0.395 0.004 0.395 0.004 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.391 0.746 0.025 0.772 0.026 0.447 0.016 

2g 0.681 0.388 0.004 0.437 0.004 0.437 0.004 
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Table 5-49 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=4.3Hz and inclined bushing. When 

isolated, DCapacity=31.3inch and lower bound friction properties. Location: Curry County, OR. 
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.24sec 

1g 1.107 0.173 0.087 0.346 0.092 0.346 0.092 

2g 2.215 0.173 0.027 0.346 0.031 0.346 0.031 

Horizontally 

isolated 

T1=2.4sec 

1g 0.891 0.672 0.025 0.679 0.026 0.412 0.019 

2g 0.984 0.607 0.020 0.615 0.020 0.412 0.016 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.910 0.423 0.019 0.468 0.020 0.447 0.019 

2g 0.958 0.341 0.016 0.395 0.017 0.395 0.017 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.924 0.746 0.026 0.772 0.027 0.447 0.019 

2g 1.019 0.388 0.015 0.437 0.016 0.437 0.016 
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Table 5-50 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=4.3Hz and inclined bushing. When 

isolated, DCapacity=31.3inch and lower bound friction properties. Location: Troutdale, OR.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.24sec 

1g 1.023 0.173 0.038 0.346 0.046 0.346 0.046 

2g 2.047 0.173 0.005 0.346 0.007 0.346 0.007 

Horizontally 

isolated 

T1=2.4sec 

1g 0.415 0.672 0.018 0.679 0.018 0.412 0.011 

2g 0.477 0.607 0.012 0.615 0.012 0.412 0.008 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.569 0.423 0.005 0.468 0.006 0.447 0.006 

2g 0.653 0.341 0.003 0.395 0.003 0.395 0.003 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.377 0.746 0.024 0.772 0.025 0.447 0.014 

2g 0.670 0.388 0.003 0.437 0.004 0.437 0.004 
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Table 5-51 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=11.3Hz and inclined bushing. When 

isolated, DCapacity=31.3inch and lower bound friction properties. Location: Vancouver, WA.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.09sec 

1g 0.955 0.303 0.024 0.426 0.030 0.426 0.030 

2g 1.909 0.303 0.003 0.426 0.005 0.426 0.005 

Horizontally 

isolated 

T1=2.4sec 

1g 0.350 0.714 0.028 0.721 0.028 0.412 0.018 

2g 0.425 0.672 0.019 0.679 0.019 0.412 0.012 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.546 0.437 0.007 0.481 0.008 0.447 0.007 

2g 0.572 0.415 0.006 0.461 0.007 0.447 0.006 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.648 0.381 0.004 0.430 0.005 0.430 0.005 

2g 0.692 0.346 0.003 0.400 0.004 0.400 0.004 
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Table 5-52 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=11.3Hz and inclined bushing. When 

isolated, DCapacity=31.3inch and lower bound friction properties. Location: Saranap, CA.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.09sec 

1g 1.139 0.303 0.079 0.426 0.106 0.426 0.106 

2g 2.277 0.303 0.005 0.426 0.011 0.426 0.011 

Horizontally 

isolated 

T1=2.4sec 

1g 0.656 0.714 0.062 0.721 0.063 0.412 0.024 

2g 0.767 0.672 0.038 0.679 0.039 0.412 0.015 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.771 0.437 0.016 0.481 0.019 0.447 0.016 

2g 0.795 0.415 0.013 0.461 0.016 0.447 0.015 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.875 0.381 0.008 0.430 0.010 0.430 0.010 

2g 0.914 0.346 0.006 0.400 0.008 0.400 0.008 
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Table 5-53 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=11.3Hz and inclined bushing. When 

isolated, DCapacity=31.3inch and lower bound friction properties. Location: Chehalis, WA.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.09sec 

1g 0.959 0.303 0.048 0.426 0.058 0.426 0.058 

2g 1.918 0.303 0.007 0.426 0.011 0.426 0.011 

Horizontally 

isolated 

T1=2.4sec 

1g 0.367 0.714 0.034 0.721 0.034 0.412 0.022 

2g 0.445 0.672 0.023 0.679 0.023 0.412 0.015 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.561 0.437 0.010 0.481 0.011 0.447 0.010 

2g 0.587 0.415 0.009 0.461 0.009 0.447 0.009 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.663 0.381 0.006 0.430 0.007 0.430 0.007 

2g 0.707 0.346 0.005 0.400 0.006 0.400 0.006 
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Table 5-54 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=11.3Hz and inclined bushing. When 

isolated, DCapacity=31.3inch and lower bound friction properties. Location: Aberdeen, WA.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.09sec 

1g 1.025 0.303 0.060 0.426 0.068 0.426 0.068 

2g 2.049 0.303 0.014 0.426 0.017 0.426 0.017 

Horizontally 

isolated 

T1=2.4sec 

1g 0.487 0.714 0.034 0.721 0.034 0.412 0.027 

2g 0.580 0.672 0.026 0.679 0.027 0.412 0.022 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.655 0.437 0.018 0.481 0.019 0.447 0.018 

2g 0.681 0.415 0.017 0.461 0.018 0.447 0.017 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.759 0.381 0.014 0.430 0.014 0.430 0.014 

2g 0.801 0.346 0.013 0.400 0.013 0.400 0.013 
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Table 5-55 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=11.3Hz and inclined bushing. When 
isolated, DCapacity=31.3inch and lower bound friction properties. Location: Loma Linda, CA. 

Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.09sec 

1g 1.135 0.303 0.114 0.426 0.140 0.426 0.140 

2g 2.271 0.303 0.013 0.426 0.021 0.426 0.021 

Horizontally 

isolated 

T1=2.4sec 

1g 1.183 0.714 0.051 0.721 0.052 0.412 0.028 

2g 1.333 0.672 0.037 0.679 0.038 0.412 0.021 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 1.065 0.437 0.037 0.481 0.040 0.447 0.038 

2g 1.083 0.415 0.034 0.461 0.037 0.447 0.036 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 1.160 0.381 0.027 0.430 0.030 0.430 0.030 

2g 1.186 0.346 0.024 0.400 0.027 0.400 0.027 
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Table 5-56 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=11.3Hz and inclined bushing. When 

isolated, DCapacity=31.3inch and lower bound friction properties. Location: Hillsboro, OR.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.09sec 

1g 0.967 0.303 0.028 0.426 0.034 0.426 0.034 

2g 1.934 0.303 0.005 0.426 0.006 0.426 0.006 

Horizontally 

isolated 

T1=2.4sec 

1g 0.365 0.714 0.030 0.721 0.030 0.412 0.020 

2g 0.443 0.672 0.020 0.679 0.021 0.412 0.014 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.560 0.437 0.009 0.481 0.010 0.447 0.009 

2g 0.586 0.415 0.008 0.461 0.008 0.447 0.008 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.662 0.381 0.006 0.430 0.006 0.430 0.006 

2g 0.706 0.346 0.004 0.400 0.005 0.400 0.005 
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Table 5-57 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=11.3Hz and inclined bushing. When 

isolated, DCapacity=31.3inch and lower bound friction properties. Location: Eugene, OR.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.09sec 

1g 0.949 0.303 0.023 0.426 0.026 0.426 0.026 

2g 1.898 0.303 0.005 0.426 0.006 0.426 0.006 

Horizontally 

isolated 

T1=2.4sec 

1g 0.358 0.714 0.029 0.721 0.029 0.412 0.022 

2g 0.434 0.672 0.021 0.679 0.021 0.412 0.016 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.553 0.437 0.011 0.481 0.011 0.447 0.011 

2g 0.579 0.415 0.010 0.461 0.010 0.447 0.010 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.655 0.381 0.007 0.430 0.008 0.430 0.008 

2g 0.699 0.346 0.006 0.400 0.006 0.400 0.006 
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Table 5-58 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=11.3Hz and inclined bushing. When 

isolated, DCapacity=31.3inch and lower bound friction properties. Location: Wilsonville, OR.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.09sec 

1g 0.953 0.303 0.025 0.426 0.030 0.426 0.030 

2g 1.906 0.303 0.004 0.426 0.005 0.426 0.005 

Horizontally 

isolated 

T1=2.4sec 

1g 0.369 0.714 0.026 0.721 0.026 0.412 0.017 

2g 0.447 0.672 0.017 0.679 0.018 0.412 0.011 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.562 0.437 0.007 0.481 0.008 0.447 0.007 

2g 0.588 0.415 0.006 0.461 0.007 0.447 0.006 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.665 0.381 0.004 0.430 0.005 0.430 0.005 

2g 0.708 0.346 0.003 0.400 0.004 0.400 0.004 
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Table 5-59 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=11.3Hz and inclined bushing. When 
isolated, DCapacity=31.3inch and lower bound friction properties. Location: Curry County, OR. 

Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.09sec 

1g 1.123 0.303 0.048 0.426 0.053 0.426 0.053 

2g 2.247 0.303 0.012 0.426 0.015 0.426 0.015 

Horizontally 

isolated 

T1=2.4sec 

1g 0.857 0.714 0.028 0.721 0.028 0.412 0.021 

2g 0.986 0.672 0.022 0.679 0.022 0.412 0.016 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.893 0.437 0.020 0.481 0.021 0.447 0.020 

2g 0.915 0.415 0.018 0.461 0.019 0.447 0.019 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.995 0.381 0.015 0.430 0.016 0.430 0.016 

2g 1.029 0.346 0.014 0.400 0.015 0.400 0.015 
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Table 5-60 Summary of results for probability of failure when considering uncertainties for 
isolated and non-isolated transformer with W=420kip, fAI=11.3Hz and inclined bushing. When 

isolated, DCapacity=31.3inch and lower bound friction properties. Location: Troutdale, OR.  
Far-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Fragility Parameters with 

Spectral Shape Effects 

RTR as computed. 
βMDL as defined in 

Section 4 

RTR bound by 0.4. 
βMDL as defined in 

Section 4 
Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
β 

PF (50 

years) 
β 

PF (50 

years) 

Non-isolated 

T1=0.09sec 

1g 0.948 0.303 0.021 0.426 0.027 0.426 0.027 

2g 1.895 0.303 0.003 0.426 0.004 0.426 0.004 

Horizontally 

isolated 

T1=2.4sec 

1g 0.356 0.714 0.025 0.721 0.025 0.412 0.015 

2g 0.432 0.672 0.016 0.679 0.017 0.412 0.010 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.551 0.437 0.006 0.481 0.007 0.447 0.006 

2g 0.577 0.415 0.005 0.461 0.006 0.447 0.005 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.653 0.381 0.003 0.430 0.004 0.430 0.004 

2g 0.697 0.346 0.003 0.400 0.003 0.400 0.003 

The results presented in Tables 5-1 to 5-60 show that there is no or there is insignificant benefit in 

isolating the considered transformers in any of the ten sites when the transverse acceleration 

bushing limit is 2g.  There are benefits in isolating the considered transformers when the 

transverse acceleration bushing limit is 1g.  Table 5-61 presents a summary of results for the 

probability of failure in 50 years at the 10 considered sites in the case of the 1g transverse 

acceleration bushing limit and for horizontal isolation only.  The results are for the case RTR≤0.4 

(last column in each of Tables 5-1 to 5-60).  Note that when the transformers are horizontally-vertically 

isolated, the calculated probabilities of failure are lower than those of the horizontally isolated transformers. 

The results in Table 5-61 clearly show the benefits of seismic isolation in the reduction of the probabilities 

of failure.  Figure 5-1 presents the results of Table 5-61 in graphical form where the benefits can be better 

viewed.   

The results in Figure 5-1 show that the probability of failure generally improves when the largest 

displacement capacity isolator is used.  The improvement is partially due to the increased 

displacement capacity (particularly for the locations of the highest seismic hazard-Loma Linda and 

Saranac, CA) but primarily is due to the difference in the radius of curvature of the largest 
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displacement capacity isolator.  Due to the larger radius of curvature (see Figures 1-1 and 1-2) 

the stiffness is smaller, which results in a reduction in peak acceleration. 

Table 5-61 Probabilities of failure in 50 years for non-isolated and horizontally isolated 
transformers with transverse bushing acceleration limit of 1g (case of RTR≤0.4) 

Site Non-isolated 
Horizontally isolated 

DCapacity=17.7in 
Horizontally isolated 

DCapacity=31.3in 
Bushing 

Frequency 
(Hz) 

4.3 7.7 11.3 4.3 7.7 11.3 4.3 7.7 11.3 

Vancouver, 

WA: 1 
0.053 0.080 0.030 0.015 0.026 0.024 0.013 0.023 0.018 

Saranap, 

CA: 2 
0.192 0.307 0.106 0.020 0.033 0.022 0.008 0.019 0.024 

Loma Linda, 

CA: 3 
0.236 0.346 0.140 0.056 0.075 0.055 0.048 0.051 0.028 

Aberdeen, 

WA: 4 
0.100 0.141 0.068 0.031 0.040 0.035 0.023 0.034 0.027 

Chehalis, 

WA: 5 
0.081 0.129 0.058 0.024 0.034 0.029 0.017 0.029 0.022 

Hillsboro, 

OR: 6 
0.059 0.085 0.034 0.022 0.031 0.026 0.015 0.026 0.020 

Eugene, 

OR: 7 
0.046 0.056 0.026 0.023 0.032 0.028 0.017 0.027 0.022 

Wilsonville, 

OR: 8 
0.053 0.079 0.030 0.018 0.027 0.022 0.012 0.022 0.017 

Curry County, 

OR: 9 
0.092 0.108 0.053 0.030 0.039 0.032 0.019 0.030 0.021 

Trousdale, 

OR: 10 
0.046 0.071 0.027 0.016 0.025 0.021 0.011 0.020 0.015 
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Figure 5-1 Probabilities of failure in 50 years for non-isolated and horizontally isolated 

transformers with transverse bushing acceleration limit of 1g (case of RTR≤0.4) for ten sites 
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SECTION 6 

RESULTS FOR NEAR-FIELD MOTIONS 

Two of the ten considered sites, the Loma Linda and the Saranap, CA sites, qualify for 

classification as being in the proximity of active faults, with the closest fault being within 1km to 

4km.  For these locations, the fragility analysis results presented in Sections 2 to 5 need to be re-

assessed by conducting the incremental dynamic analysis using motions with near-field 

characteristics.  FEMA (2009) provided a set of such motions consisting of 28 records of bi-

directional components (56 individual horizontal components) for use in these cases. Table 6-1 

presents a subset of 25 of these records for which the vertical ground motion component was 

available. In total 50 pairs of horizontal-vertical were available for use in the incremental dynamic 

analysis. 

Figures 6-1 and 6-2 present the 5%-damped acceleration response spectra for the horizontal and 

vertical ground motions, respectively. The horizontal spectra consist of the 50 spectra of fault 

normal and fault parallel components, and the vertical spectra consist of the 25 spectra of the 

vertical components. The average spectra are also shown for each direction.  Figure 6-3 presents 

the ratio of the average vertical spectrum to the average horizontal spectrum of the motions (V/H 

ratio). 
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Figure 6-1 Horizontal acceleration response spectra of selected 25 near-field ground motions 

(total of 50 components) 

Figure 6-2 Vertical acceleration response spectra of selected 25 near-field ground motions (total 

of 25 components) 
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Figure 6-3 Vertical to horizontal average spectral (V/H) ratio of 50 sets of near-field motions 

Incremental dynamic analysis was performed using the near-field motions for the three cases of 

bushing as-installed frequencies (4.3, 7.7 and 11.3Hz) of the 420kip transformer without and with 

isolators of displacement capacity DCapacity=31.3inch. When vertically isolated, the vertical 

isolation frequency and damping were 2Hz and 0.50, respectively. The isolator friction properties 

had the lower bound values.  The scaling of the motions was based on the use of the spectral 

acceleration at the fundamental period as the measure of seismic intensity (period equal to 2.4sec 

for the isolated transformers and equal to the inverse of the as-installed bushing frequency for the 

non-isolated transformers). The fragility parameters were determined but not adjusted for spectral 

shape effects based on the procedures of Appendix A. Based on Haselton et al. (2011), the 

approach of Appendix A is inapplicable to near-field motions with large forward-directivity pulses. 

Many of the records (see Table 6-1) do contain such pulses. The only way to correctly account for 

the spectral shape effects is to follow the approach of Lin et al. (2013), which was applied in the 

study of Kitayama and Constantinou (2019a). However, the approach requires a seismic hazard 

analysis for each site, construction of conditional spectra for increasing earthquake intensities, and 

selection and scaling of motions to represent each of these spectra.  In the study of Kitayama and 

Constantinou (2019a), 400 motions were used in the analysis for earthquake intensities 

representing spectra with 43 years to 10000 return periods. Such study is beyond the scope of this 

work.   
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Probabilities of failure in 50 years were calculated based on Equations (2-6) and (2-7) using the 

same seismic hazard curves used earlier for the results of Section 3. Tables 6-2 to 6-7 present the 

results where they are compared to those obtained using the far-field motions in Section 3. To be 

able to better assess the significance of the near-field results, results for the far-field motions 

without and with the spectral shape effects correction are included in Tables 6-2 to 6-7. As seen in 

these tables and in the results of Section 3, the correction for spectral shape effects for the far-field 

motions may result in significant reduction of the probability of failure for isolated transformers 

at the Saranac and Lima Linda, CA locations, whereas there was increase in the probability of 

failure for the non-isolated transformers at the same locations. 

Table 6-2 Summary of results for probability of failure for isolated and non-isolated transformer 

with W=420kip, fAI=4.3Hz and inclined bushing. When isolated, DCapacity=31.3inch and lower 

bound friction properties. Location: Saranap, CA. Near-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 

Value reported in 

Section 3 for Far-

field Motions 

(without spectral 

shape effects) 

Value reported in 

Section 3 for Far-

field Motions (with 

spectral shape 

effects) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) PF (50 years) 

Non-isolated 

T1=0.24sec 

1g 1.029 0.157 0.181 0.182 0.153 

2g 2.030 0.214 0.019 0.016 0.012 

Horizontally 

isolated 

T1=2.4sec 

1g 0.497 0.696 0.103 0.109 0.024 

2g 0.563 0.692 0.080 0.057 0.014 

Horizontally-

vertically 

isolated 

without 

rocking 

T1=2.4sec 

1g 0.684 0.416 0.021 0.023 0.008 

2g 0.710 0.308 0.012 0.014 0.004 

Horizontally-

vertically 

isolated with 

rocking 

T1=2.4sec 

1g 0.644 0.598 0.046 0.135 0.029 

2g 0.753 0.317 0.011 0.015 0.004 
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Table 6-3 Summary of results for probability of failure for isolated and non-isolated transformer 
with W=420kip, fAI=4.3Hz and inclined bushing. When isolated, DCapacity=31.3inch and lower 

bound friction properties. Location: Loma Linda, CA. Near-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 

Value reported in 

Section 3 for Far-

field Motions 

(without spectral 

shape effects) 

Value reported in 

Section 3 for Far-

field Motions (with 

spectral shape 

effects) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) PF (50 years) 

Non-isolated 

T1=0.24sec 

1g 1.029 0.157 0.234 0.234 0.203 

2g 2.030 0.214 0.042 0.038 0.029 

Horizontally 

isolated 

T1=2.4sec 

1g 0.497 0.696 0.193 0.201 0.074 

2g 0.563 0.692 0.163 0.138 0.055 

Horizontally-

vertically isolated 

without rocking 

T1=2.4sec 

1g 0.684 0.416 0.088 0.090 0.048 

2g 0.710 0.308 0.073 0.074 0.039 

Horizontally-

vertically isolated 

with rocking 

T1=2.4sec 

1g 0.644 0.598 0.120 0.226 0.078 

2g 0.753 0.317 0.066 0.074 0.036 

Table 6-4 Summary of results for probability of failure for isolated and non-isolated transformer 
with W=420kip, fAI=7.7Hz and inclined bushing. When isolated, DCapacity=31.3inch and lower 

bound friction properties. Location: Saranap, CA. Near-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 

Value reported in 

Section 3 for Far-

field Motions 

(without spectral 

shape effects) 

Value reported in 

Section 3 for Far-

field Motions (with 

spectral shape 

effects) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) PF (50 years) 

Non-isolated 

T1=0.13sec 

1g 0.681 0.305 0.353 0.300 0.266 

2g 1.365 0.303 0.065 0.047 0.038 

Horizontally 

isolated 

T1=2.4sec 

1g 0.324 0.822 0.255 0.210 0.058 

2g 0.511 0.707 0.100 0.080 0.019 

Horizontally-

vertically isolated 

without rocking 

T1=2.4sec 

1g 0.483 0.357 0.050 0.064 0.024 

2g 0.492 0.296 0.041 0.046 0.017 

Horizontally-

vertically isolated 

with rocking 
T1=2.4sec 

1g 0.488 0.465 0.063 0.064 0.021 

2g 0.503 0.282 0.037 0.035 0.013 
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Table 6-5 Summary of results for probability of failure for isolated and non-isolated transformer 
with W=420kip, fAI=7.7Hz and inclined bushing. When isolated, DCapacity=31.3inch and lower 

bound friction properties. Location: Loma Linda, CA. Near-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 

Value reported in 

Section 3 for Far-

field Motions 

(without spectral 

shape effects) 

Value reported in 

Section 3 for Far-

field Motions (with 

spectral shape 

effects) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) PF (50 years) 

Non-isolated 

T1=0.13sec 

1g 0.681 0.305 0.393 0.108 0.297 

2g 1.365 0.303 0.096 0.075 0.059 

Horizontally isolated 

T1=2.4sec 

1g 0.324 0.822 0.348 0.307 0.087 

2g 0.511 0.707 0.188 0.170 0.044 

Horizontally-

vertically isolated 

without rocking 

T1=2.4sec 

1g 0.483 0.357 0.150 0.167 0.073 

2g 0.492 0.296 0.140 0.146 0.066 

Horizontally-

vertically isolated 

with rocking 

T1=2.4sec 

1g 0.488 0.465 0.160 0.168 0.068 

2g 0.503 0.282 0.134 0.127 0.060 

Table 6-6 Summary of results for probability of failure for isolated and non-isolated transformer 
with W=420kip, fAI=11.3Hz and inclined bushing. When isolated, DCapacity=31.3inch and lower 
bound friction properties. Location: Saranap, CA. Near-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 

Value reported in 

Section 3 for Far-

field Motions 

(without spectral 

shape effects) 

Value reported in 

Section 3 for Far-

field Motions (with 

spectral shape 

effects) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) PF (50 years) 

Non-isolated 

T1=0.09sec 

1g 0.956 0.332 0.136 0.105 0.079 

2g 1.910 0.337 0.014 0.008 0.005 

Horizontally isolated 

T1=2.4sec 

1g 0.385 0.852 0.210 0.135 0.062 

2g 0.515 0.713 0.100 0.071 0.038 

Horizontally-

vertically isolated 

without rocking 

T1=2.4sec 

1g 0.669 0.429 0.024 0.028 0.016 

2g 0.693 0.374 0.018 0.024 0.013 

Horizontally-

vertically isolated 

with rocking 
T1=2.4sec 

1g 0.734 0.406 0.016 0.015 0.008 

2g 0.769 0.315 0.010 0.011 0.006 
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Table 6-7 Summary of results for probability of failure for isolated and non-isolated transformer 
with W=420kip, fAI=11.3Hz and inclined bushing. When isolated, DCapacity=31.3inch and lower 

bound friction properties. Location: Loma Linda, CA. Near-field motions 

System 

Transverse 

Bushing 

Acceleration 

Limit (g) 

Without Spectral Shape 

Effects 

Value reported in 

Section 3 for Far-

field Motions 

(without spectral 

shape effects) 

Value reported in 

Section 3 for Far-

field Motions (with 

spectral shape 

effects) 

Median 

𝑆�̂�𝐹(𝑇1)
(g) 

RTR 
PF (50 

years) 
PF (50 years) PF (50 years) 

Non-isolated 

T1=0.09sec 

1g 0.956 0.332 0.176 0.143 0.114 

2g 1.910 0.337 0.027 0.019 0.013 

Horizontally 

isolated 

T1=2.4sec 

1g 0.385 0.852 0.300 0.229 0.051 

2g 0.515 0.713 0.187 0.152 0.037 

Horizontally-

vertically isolated 

without rocking 

T1=2.4sec 

1g 0.669 0.429 0.093 0.102 0.037 

2g 0.693 0.374 0.082 0.094 0.034 

Horizontally-

vertically isolated 

with rocking 

T1=2.4sec 

1g 0.734 0.406 0.076 0.075 0.027 

2g 0.769 0.315 0.063 0.066 0.024 

The results in Tables 6-2 to 6-7 demonstrate relatively small changes, particularly for the isolated 

transformers, in the probability of failure in 50 years of lifetime obtained for near-field motions by 

comparison to far-field motions without the correction for the spectral shape effects.    This 

result may appear surprising given the significant differences between the two sets of motions. 

However, it should be noted that for the isolated transformers, the isolation system allows for small 

increases in the bushing acceleration as the isolator displacement increases given the fact that the 

isolators are of large radius of curvature.  Also, the isolators considered are of large displacement 

capacity so that failure of the isolators does not occur in the more demanding near-field motions. 

That is, the results are valid but limited to the isolator studied (radius of curvature of 61inch for 

each concave plate and displacement capacity at failure equal to 31.3inch) and cannot be 

generalized to the other studied isolator of different properties. 

Assuming that a correction for the spectral shape effects would produce similar results in the two 

cases of ground motions, we conclude that consideration of near-field motions did not produce any 

significant change in the results obtained using the set of far-field motions.   
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SECTION 7 

SUMMARY AND CONCLUSIONS 

This report presents results on the probability of failure in a lifetime of 50 years of non-isolated 

and seismically isolated transformers at ten locations in the Western US. The transformer and 

isolation system models are the same as those used in the earlier studies of Kitayama et al. (2016, 

2017). However, this study deviated from the earlier studies of Kitayama et al. (2016, 2017) by (a) 

scaling the ground motions for use in the incremental dynamic analysis by adjusting the spectral 

acceleration at the fundamental period (or effective period for isolated transformers) instead  of 

the peak ground acceleration (PGA) in the earlier studies, (b) correcting for the spectral shape 

effects, which were ignored in the earlier studies, and (c) accounting for uncertainties, which were 

neglected in earlier studies.   

Moreover, the report presents sample results for near-field motions, which however, could not be 

corrected for spectral shape effects. A comparison of results obtained for near-field and far-field 

motions, both without correction for spectral shape effects, revealed that for the isolated 

transformers there is a small difference between the results of the two sets of motions. This was 

explained by the fact that the considered isolators were of large radius of curvature (so low 

stiffness) and large displacement capacity so that any increases in isolator displacement demand 

caused by near-field motions did not cause failure of the isolators or any significant increase in the 

bushing acceleration. Accordingly, it was concluded that near-field motions do not appreciably 

change the results obtained by the use of far-field motions, provided that for the two locations 

considered (Saranap and Loma Linda in California, which are in close proximity to active faults), 

isolators of the larger displacement capacity and low stiffness are used.  

Results obtained for far-field motions show that, in general, scaling of the ground motions based 

on the spectral acceleration at the fundamental period or the effective period results in significant 

increases in the probability of failure for the isolated transformers, which are significantly 

moderated by corrections for the spectral shape effects. By comparison, the changes in the 

probability of failure of the studied non-isolated transformers were small due to the fact that the 

fundamental period was very small so that the spectral acceleration at the fundamental period was 

very close to the PGA which was used in the earlier studies for the scaling.   
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Based on the new results in this report, combined horizontal-vertical seismic isolation systems 

offer the lowest probabilities of failure for all cases of transformer and isolation system parameters, 

and for all considered sites. Horizontal only isolation offers no or offers insignificant advantages 

over non-isolation when the bushing transverse acceleration limit is 2g. However, horizontal only 

isolation offers important advantages over non-isolation when the bushing transverse acceleration 

limit is 1g.   

The results of this report, documented in numerous tables, may be used to decide on the benefits 

offered by a seismic isolation system depending on the location of the transformer and the form 

and properties of the seismic isolation system. The benefit is assessed on the basis of the 

probability of failure in 50 years of lifetime. The information may also be used to assess the seismic 

performance of electric transmission networks under scenarios of component failures.   
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APPENDIX A 

PROCEDURE FOR CONSIDERATION OF SPECTRAL SHAPE EFFECTS AND 

RESULTS 

A.1 Introduction 

The construction of fragility curves is based on incremental dynamic analysis (IDA) in which a 

large sample of actual ground motions is used by increasing their intensity until collapse (or 

failure by exceeding a certain acceleration level at the bushing) is detected in the analysis model. 

This approach accounts only for ground-motion intensity in the assessment of collapse or failure. 

It does not account for the spectral shape of the motions. The shape of the uniform hazard 

response spectrum for which a design is performed (for example, design of the seismic isolation 

system for an electrical transformer; one described by a ground-motion hazard of 2% chance of 

exceedance in 50 years or a return period of 2475 years) can be significantly different than the 

response spectrum of a real ground motion that is scaled to an equal spectral amplitude at the 

period of interest.   

The following example from FEMA (2009) and Haselton and Baker (2006) demonstrates the 

issue. Figure A-1 shows the acceleration spectrum of a ground motion recorded in the Loma 

Prieta earthquake. The Loma Prieta spectrum has a spectral value of 0.9g at 1.0sec period, which 

has a 2% chance of exceedance in 50 years. The figure also shows the mean expected spectrum 

predicted by an attenuation prediction model (BJF for Boore, Joyner and Fuma) that is consistent 

with the event magnitude, distance, and site characteristics associated with this ground motion. 

Figure A-1 shows that this ground motion has a much different shape than the mean predicted 

spectrum.   
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Figure A-1. Comparison of observed and predicted response spectra (from FEMA, 2009 and 

Haselton and Baker, 2006) 

At the1.0sec period, the spectral value of the Loma Prieta record is 1.9 standard deviations above 

the predicted mean spectral value from the attenuation relationship so this record is said to have 

an “epsilon” ε=1.9 at the 1.0sec period.  “Epsilon” is defined as the number of logarithmic 

standard deviations between the observed spectral value and the mean spectral acceleration 

predicted by a ground-motion prediction model.  Parameter epsilon is used to characterize the 

spectral shape.   

The approach developed by Haselton et al. (2011) for seismic performance evaluation is based 

on the use of a general ground-motion set for analysis (the motions in FEMA, 2009) that are 

selected independently of the ε values for the particular site of the analyzed structure.  The 

results on the failure fragility are then corrected to account for the spectral shape. The correction 

adjustment is calculated by using values of ε at the considered period (fundamental or effective 

period T1 in this study) which are computed for the site of the transformer and the considered 

hazard level (2475 year return period) through the disaggregation of the seismic hazard for the 

site. 
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A.2 Procedure for Correction for Spectral Shape Effects 

The procedure involves the following steps: 

1. Obtain the target epsilon 𝜀0̅(𝑇1), magnitude M, and distance R from de-aggregation of

the ground motion hazard (probabilistic seismic hazard analysis) for the specific location

of the structure (longitude and latitude), site class (average shear-wave velocity Vs30=259

m/sec for class D), spectral period and return period. The return period of 2475 years

(corresponding to a probability of exceedance of 2% in 50 years) is used because the

primary purpose of collapse or failure evaluation is to compute the conditional collapse

or failure probability for a 2% in 50 years ground motion. Information was obtained from

the USGS website (https://earthquake.usgs.gov/hazards/interactive/ accessed on

September 25, 2018) where results of de-aggregation for period of 0.2, 1.0 and 2.0

second were available. Linear interpolation and extrapolation in logarithmic space of the

seismic hazard curves (annual frequency of exceedance vs spectral acceleration) was

used for other values of period (T1=0.13sec for non-isolated transformer, and T1=2.40sec

for isolated transformer).

2. Perform incremental dynamic analysis (IDA) (Vamvatsikos and Cornell, 2002) (for this

study the 40 far-field ground motions of FEMA P695) to obtain the collapse capacity in

terms of the spectral acceleration at fundamental period T1 at failure for each ground

motion, SaCol,j(T1) (j is the identification number for the ground motions;  j = 1 to 40).

3. Calculate epsilon at T1, j(T1) for the jth ground motion (j=1 to 40), defined as the number

of standard deviations by which the natural logarithm of Saj(T1), ln[Saj(T1)], differs from

the mean predicted ln[Sa(T1)] for a given magnitude and distance (Baker, 2011):

𝜀𝑗(𝑇1) =
ln[𝑆𝑎𝑗(𝑇1)]−𝜇ln 𝑆𝑎(𝑀,𝑅,𝑇1)

𝜎ln 𝑆𝑎(𝑇1)
(A-1) 

In Equation A-1, lnSa(M,R,T1) is the predicted mean of ln[Sa(T1)] at a given magnitude M, 

distance R and period T1, and lnSa(T1) is the predicted standard deviation of ln[Sa(T1)] at 

a given M, R and T1. Note that lnSa(M,R,T1) and lnSa(T1) are obtained from any ground 

motion prediction model (herein the model of Abrahamson and Silva, 1997 was used, 

which was also used by Haselton et al., 2011). Quantity ln[Saj(T1)] in Equation A-1 is the 

natural logarithm of the spectral acceleration at T1 of each of 40 original (before scaling) 

https://earthquake.usgs.gov/hazards/interactive/
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ground motions. 

4. Perform a linear regression analysis between ln[SaCol,j(T1)] and j(T1) and determine

parameters c0 and c1 based on the following equation:

ln[𝑆𝑎Col(𝑇1)]  = 𝑐0 + 𝑐1 ∙ 𝜀(𝑇1) (A-2) 

5. Replace (T1) with 𝜀0̅(𝑇1) in Equation A-2 and solve to obtain the adjusted mean

collapse capacity, 𝑆�̂�Col,adj(𝑇1):

𝑆�̂�Col,adj(𝑇1) (𝑢𝑛𝑖𝑡𝑠 𝑔) = exp[𝑐0 + 𝑐1 ∙ 𝜀0̅(𝑇1)] (A-3) 

The record-to-record dispersion coefficient, RTR, is calculated as the standard deviation 

of the natural logarithm of SaColj(T1) of the 40 motions without any further adjustment. 

Note that Haselton et al. (2011) described a procedure for further reduction of the 

dispersion using the residuals of the regression analysis but the effect was found to be 

insignificant in this study and was not included in the presented results. 

Values of the target epsilon 𝜀0̅(𝑇1), magnitude M and distance R for return period of 2475 years

obtained by de-aggregation of the seismic hazard are presented in Table A-1 at three 

representative sites out of the ten studied. 

Table A-1 Values of 𝜀0̅(𝑇1), M and R at three representative sites for 2475 years return period

earthquake 

Site Structure 𝜀0̅(𝑇1) M R (km) 

Chehalis, WA 
Non-isolated 

4.3 Hz 1.27 7.75 53.92 

7.7 Hz 1.22 7.78 53.24 

11.3 Hz 1.19 7.82 53.01 

Isolated 0.72 8.78 66.48 

Loma Linda, CA 
Non-isolated 

4.3 Hz 0.74 7.38 6.88 

7.7 Hz 0.63 7.43 6.65 

11.3 Hz 0.58 7.48 6.43 

Isolated 1.10 8.01 3.61 

Troutdale, OR 
Non-isolated 

4.3 Hz 1.11 7.03 47.74 

7.7 Hz 1.07 7.02 46.98 

11.3 Hz 1.05 7.04 47.25 

Isolated 0.94 8.43 100.45 
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The ground motion prediction model of Abrahamson and Silva (1997) was used to construct the 

median 5%-damped response spectra for the isolated and non-isolated transformers.  The 

spectra are presented in Figures A-2 to A-4 together with the spectra of the 44 ground motions 

used in the IDA for three of the considered sites. We used program OpenSHA (Field et al., 2003) 

to construct the spectra based on the Abrahamson and Silva prediction model. The same model 

also predicted the standard deviation of the 5%-damped response spectrum.  It is presented in 

Figures A-5 to A-7. Isolated and non-isolated transformers have the same standard deviation at 

each of the three locations. 

Figure A-2 Response spectra of FEMA far-field motions and predicted median spectra at 

Chehalis, WA location 

 

Figure A-3 Response spectra of FEMA far-field motions and predicted median spectra at Loma 

Linda, CA location  
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Figure A-4 Response spectra of FEMA far-field motions and predicted median spectra at 

Troutdale, OR location 

Figure A-5 Standard deviation of natural logarithm of spectral acceleration at Chehalis, WA 

Figure A-6 Standard deviation of natural logarithm of spectral acceleration at Loma Linda, CA 
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Figure A-7 Standard deviation of natural logarithm of spectral acceleration at Troutdale, OR 

The values of j(T1) for each of the 40 ground motions (j=1 to 40) for the isolated and 

non-isolated structures were then calculated by use of Equation A-1 and are presented in Figures 

A-8 to A-10 for the case of the isolated and non-isolated transformers at the three sites.  Values

of epsilon are higher for the non-isolated transformer. 

Figure A-8 Calculated values of j(T1) for the 40 ground motions used in analysis for Chehalis, 

WA location 

Figure A-9 Calculated values of j(T1) for the 40 ground motions used in analysis for Loma

Linda, CA location 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

-2

-1

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40

-4

-3

-2

-1

0

1

2

0 5 10 15 20 25 30 35 40

Ground motion 

 j
(T

1
) 

Predicted median spectrum for non-isolated transformer (fAI=7.7Hz) 

Predicted median spectrum for isolated transformer 

Predicted median spectrum for non-isolated transformer (fAI=4.3Hz) 

Predicted median spectrum for non-isolated transformer (fAI=11.3Hz) 

non-isolated transformer (fAI=7.7Hz) non-isolated transformer (fAI=4.3Hz) 

non-isolated transformer (fAI=11.3Hz) Isolated transformer 


ln
S
a

(T
1

) 

Period (second) 

Ground motion 

 j
(T

1
) 

non-isolated transformer (fAI=7.7Hz) non-isolated transformer (fAI=4.3Hz) 

non-isolated transformer (fAI=11.3Hz) Isolated transformer 



160 

Figure A-10 Calculated values of j(T1) for the 40 ground motions used in analysis for Troutdale, 

OR location 

Based on the results of IDA and the information on j(T1) in Figures A-8 to A-10, linear 

regression analysis was performed to establish the relationship between the ln[SaCol,j(T1)] and 

j(T1). Figures A-11 to A-46 present the relationship between ln[SaCol,j(T1)] and j(T1) for the 

non-isolated transformer and the isolated transformers at the three representative sites. The 

figures also present the fitted linear regression model of Equation A-2.  

(a) 1g limit (c0=-0.372, c1=0.032) (b) 2g limit (c0=-0.322, c1=0.032)

Figure A-11 Relationship between ln[SaCol,j(T1)] and j(T1) of non-isolated transformer with 

bushing of 7.7Hz as-installed frequency at Chehalis, WA 
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(a) 1g limit (c0=-0.3716, c1=0.0318) (b) 2g limit (c0=-1.230, c1=0.336)

Figure A-12 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally isolated transformer 

(DCapacity=17.7inch, lower bound) with as-installed bushing frequency of 7.7Hz at Chehalis, WA 

(a) 1g limit (c0=-1.053, c1=0.2427) (b) 2g limit (c0=-0.912, c1=0.196)

Figure A-13 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally-vertically isolated 

without rocking transformer (DCapacity=17.7inch, lower bound) with as-installed bushing 

frequency of 7.7Hz at Chehalis, WA 
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(a) 1g limit (c0=-1.085, c1=0.273) (b) 2g limit (c0=-0.806, c1=0.192)

Figure A-14 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally-vertically isolated 

with rocking transformer (DCapacity=17.7inch, lower bound) with as-installed bushing frequency 

of 7.7Hz at Chehalis, WA 

(a) 1g limit (c0=-0.010, c1=0.025) (b) 2g limit (c0=0.704, c1=0.025)

Figure A-15 Relationship between ln[SaCol,j(T1)] and j(T1) of non-isolated transformer with 

bushing of 4.3Hz as-installed frequency at Chehalis, WA 
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(a) 1g limit (c0=-1.331, c1=0.409) (b) 2g limit (c0=-1.193, c1=0.353)

Figure A-16 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally isolated transformer 

(DCapacity=17.7inch, lower bound) with as-installed bushing frequency of 4.3Hz at Chehalis, WA 

(a) 1g limit (c0=-0.962, c1=0.220) (b) 2g limit (c0=-0.852, c1=0.185)

Figure A-17 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally-vertically isolated 

without rocking transformer (DCapacity=17.7inch, lower bound) with as-installed bushing 

frequency of 4.3Hz at Chehalis, WA 
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(a) 1g limit (c0=-1.457, c1=0.478) (b) 2g limit (c0=-0.807, c1=0.194)

Figure A-18 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally-vertically isolated 

with rocking transformer (DCapacity=17.7inch, lower bound) with as-installed bushing frequency 

of 4.3Hz at Chehalis, WA 

(a) 1g limit (c0=-0.136, c1=0.079) (b) 2g limit (c0=0.557, c1=0.079)

Figure A-19 Relationship between ln[SaCol,j(T1)] and j(T1) of non-isolated transformer with 

bushing of 11.3Hz as-installed frequency at Chehalis, WA 
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(a) 1g limit (c0=-1.486, c1=0.461) (b) 2g limit (c0=-1.330, c1=0.420)

Figure A-20 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally isolated transformer 

(DCapacity=17.7inch, lower bound) with as-installed bushing frequency of 11.3Hz at Chehalis, WA 

(a) 1g limit (c0=-1.006, c1=0.220) (b) 2g limit (c0=-0.947, c1=0.209)

Figure A-21 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally-vertically isolated 

without rocking transformer (DCapacity=17.7inch, lower bound) with as-installed bushing 

frequency of 11.3Hz at Chehalis, WA 
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(a) 1g limit (c0=-0.816, c1=0.195) (b) 2g limit (c0=-0.754, c1=0.177)

Figure A-22 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally-vertically isolated 

with rocking transformer (DCapacity=17.7inch, lower bound) with as-installed bushing frequency 

of 11.3Hz at Chehalis, WA 

(a) 1g limit (c0=-0.265, c1=0.032) (b) 2g limit (c0=0.428, c1=0.032)

Figure A-23 Relationship between ln[SaCol,j(T1)] and j(T1) of non-isolated transformer with 

bushing of 7.7Hz as-installed frequency at Loma Linda, CA 
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(a) 1g limit (c0=-0.781, c1=0.440) (b) 2g limit (c0=-0.632, c1=0.337)

Figure A-24 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally isolated transformer 

(DCapacity=17.7inch, lower bound) with as-installed bushing frequency of 7.7Hz at Loma Linda, 

CA 

(a) 1g limit (c0=-0.616, c1=0.243) (b) 2g limit (c0=-0.560, c1=0.196)

Figure A-25 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally-vertically isolated 

without rocking transformer (DCapacity=17.7inch, lower bound) with as-installed bushing 

frequency of 7.7Hz at Loma Linda, CA 
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(a) 1g limit (c0=-0.593, c1=0.274) (b) 2g limit (c0=-0.461, c1=0.192)

Figure A-26 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally-vertically isolated 

with rocking transformer (DCapacity=17.7inch, lower bound) with as-installed bushing frequency 

of 7.7Hz at Loma Linda, CA 

(a) 1g limit (c0=-0.085, c1=0.025) (b) 2g limit (c0=0.779, c1=0.025)

Figure A-27 Relationship between ln[SaCol,j(T1)] and j(T1) of non-isolated transformer with 

bushing of 4.3Hz as-installed frequency at Loma Linda, CA 
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(a) 1g limit (c0=-0.597, c1=0.410) (b) 2g limit (c0=-0.556, c1=0.354)

Figure A-28 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally isolated transformer 

(DCapacity=17.7inch, lower bound) with as-installed bushing frequency of 4.3Hz at Loma Linda, 

CA 

(a) 1g limit (c0=-0.566, c1=0.221) (b) 2g limit (c0=-0.519, c1=0.185)

Figure A-29 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally-vertically isolated 

without rocking transformer (DCapacity=17.7inch, lower bound) with as-installed bushing 

frequency of 4.3Hz at Loma Linda, CA 
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(a) 1g limit (c0=-0.596, c1=0.479) (b) 2g limit (c0=-0.459, c1=0.194)

Figure A-30 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally-vertically isolated 

with rocking transformer (DCapacity=17.7inch, lower bound) with as-installed bushing frequency 

of 4.3Hz at Loma Linda, CA 

(a) 1g limit (c0=0.097, c1=0.052) (b) 2g limit (c0=0.790, c1=0.052)

Figure A-31 Relationship between ln[SaCol,j(T1)] and j(T1) of non-isolated transformer with 

bushing of 11.3Hz as-installed frequency at Loma Linda, CA 
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(a) 1g limit (c0=-0.655, c1=0.463) (b) 2g limit (c0=-0.573, c1=0.422)

Figure A-32 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally isolated transformer 

(DCapacity=17.7inch, lower bound) with as-installed bushing frequency of 11.3Hz at Loma Linda, 

CA 

(a) 1g limit (c0=-0.610, c1=0.220) (b) 2g limit (c0=-0.571, c1=0.209)

Figure A-33 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally-vertically isolated 

without rocking transformer (DCapacity=17.7inch, lower bound) with as-installed bushing 

frequency of 11.3Hz at Loma Linda, CA 
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(a) 1g limit (c0=-0.465, c1=0.196) (b) 2g limit (c0=-0.436, c1=0.177) 

Figure A-34 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally-vertically isolated 

with rocking transformer (DCapacity=17.7inch, lower bound) with as-installed bushing frequency 

of 11.3Hz at Loma Linda, CA 

 

  

(a) 1g limit (c0=-0.389, c1=0.032)  (b) 2g limit (c0=0.305, c1=0.032) 

   

Figure A-35 Relationship between ln[SaCol,j(T1)] and j(T1) of non-isolated transformer with 

bushing of 7.7Hz as-installed frequency at Troutdale, OR 
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(a) 1g limit (c0=-1.695, c1=0.440) (b) 2g limit (c0=-1.330, c1=0.337)

Figure A-36 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally isolated transformer 

(DCapacity=17.7inch, lower bound) with as-installed bushing frequency of 7.7Hz at Troutdale, OR 

(a) 1g limit (c0=-1.120, c1=0.243) (b) 2g limit (c0=-0.966, c1=0.196)

Figure A-37 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally-vertically isolated 

without rocking transformer (DCapacity=17.7inch, lower bound) with as-installed bushing 

frequency of 7.7Hz at Troutdale, OR 
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(a) 1g limit (c0=-1.161, c1=0.274) (b) 2g limit (c0=-0.859, c1=0.192)

Figure A-38 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally-vertically isolated 

with rocking transformer (DCapacity=17.7inch, lower bound) with as-installed bushing frequency 

of 7.7Hz at Troutdale, OR 

(a) 1g limit (c0=-0.005, c1=0.025) (b) 2g limit (c0=0.688, c1=0.025)

Figure A-39 Relationship between ln[SaCol,j(T1)] and j(T1) of non-isolated transformer with 

bushing of 4.3Hz as-installed frequency at Troutdale, OR 
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(a) 1g limit (c0=-1.448, c1=0.410) (b) 2g limit (c0=-1.291, c1=0.354)

Figure A-40 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally isolated transformer 

(DCapacity=17.7inch, lower bound) with as-installed bushing frequency of 4.3Hz at Troutdale, OR 

(a) 1g limit (c0=-1.023, c1=0.221) (b) 2g limit (c0=-0.903, c1=0.185)

Figure A-41 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally-vertically isolated 

without rocking transformer (DCapacity=17.7inch, lower bound) with as-installed bushing 

frequency of 4.3Hz at Troutdale, OR 
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(a) 1g limit (c0=-1.589, c1=0.479) (b) 2g limit (c0=-0.861, c1=0.194)

Figure A-42 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally-vertically isolated 

with rocking transformer (DCapacity=17.7inch, lower bound) with as-installed bushing frequency 

of 4.3Hz at Troutdale, OR 

(a) 1g limit (c0=-0.109, c1=0.052) (b) 2g limit (c0=0.584, c1=0.052)

Figure A-43 Relationship between ln[SaCol,j(T1)] and j(T1) of non-isolated transformer with 

bushing of 11.3Hz as-installed frequency at Troutdale, OR 
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(a) 1g limit (c0=-1.615, c1=0.463) (b) 2g limit (c0=-1.447, c1=0.422)

Figure A-44 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally isolated transformer 

(DCapacity=17.7inch, lower bound) with as-installed bushing frequency of 11.3Hz at Troutdale, OR 

(a) 1g limit (c0=-1.067, c1=0.220) (b) 2g limit (c0=-1.005, c1=0.209)

Figure A-45 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally-vertically isolated 

without rocking transformer (DCapacity=17.7inch, lower bound) with as-installed bushing 

frequency of 11.3Hz at Troutdale, OR 
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(a) 1g limit (c0=-0.870, c1=0.196) (b) 2g limit (c0=-0.803, c1=0.177)

Figure A-46 Relationship between ln[SaCol,j(T1)] and j(T1) of horizontally-vertically isolated 

with rocking transformer (DCapacity=17.7inch, lower bound) with as-installed bushing frequency 

of 11.3Hz at Troutdale, OR 
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MCEER Technical Reports 

MCEER publishes technical reports on a variety of subjects written by authors funded through MCEER.  These reports can be 
downloaded from the MCEER website at http://www.buffalo.edu/mceer.  They can also be requested through NTIS, P.O. Box 
1425, Springfield, Virginia 22151.  NTIS accession numbers are shown in parenthesis, if available. 

NCEER-87-0001 "First-Year Program in Research, Education and Technology Transfer," 3/5/87, (PB88-134275, A04, MF-
A01). 

NCEER-87-0002 "Experimental Evaluation of Instantaneous Optimal Algorithms for Structural Control," by R.C. Lin, T.T. 
Soong and A.M. Reinhorn, 4/20/87, (PB88-134341, A04, MF-A01). 

NCEER-87-0003 "Experimentation Using the Earthquake Simulation Facilities at University at Buffalo," by A.M. Reinhorn 
and R.L. Ketter, not available. 

NCEER-87-0004 "The System Characteristics and Performance of a Shaking Table," by J.S. Hwang, K.C. Chang and G.C. 
Lee, 6/1/87, (PB88-134259, A03, MF-A01).  This report is available only through NTIS (see address given 
above). 

NCEER-87-0005 "A Finite Element Formulation for Nonlinear Viscoplastic Material Using a Q Model," by O. Gyebi and G. 
Dasgupta, 11/2/87, (PB88-213764, A08, MF-A01). 

NCEER-87-0006 "Symbolic Manipulation Program (SMP) - Algebraic Codes for Two and Three Dimensional Finite Element 
Formulations," by X. Lee and G. Dasgupta, 11/9/87, (PB88-218522, A05, MF-A01). 

NCEER-87-0007 "Instantaneous Optimal Control Laws for Tall Buildings Under Seismic Excitations," by J.N. Yang, A. 
Akbarpour and P. Ghaemmaghami, 6/10/87, (PB88-134333, A06, MF-A01). This report is only available 
through NTIS (see address given above). 

NCEER-87-0008 "IDARC: Inelastic Damage Analysis of Reinforced Concrete Frame - Shear-Wall Structures," by Y.J. Park, 
A.M. Reinhorn and S.K. Kunnath, 7/20/87, (PB88-134325, A09, MF-A01). This report is only available
through NTIS (see address given above).

NCEER-87-0009 "Liquefaction Potential for New York State: A Preliminary Report on Sites in Manhattan and Buffalo," by 
M. Budhu, V. Vijayakumar, R.F. Giese and L. Baumgras, 8/31/87, (PB88-163704, A03, MF-A01).  This
report is available only through NTIS (see address given above).
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