Seismic Performance Assessment of Seismically Isolated Buildings Designed by the Procedures of ASCE/SEI 7

by

Shoma Kitayama and Michael C. Constantinou

Technical Report MCEER-18-0004

April 14, 2018

This research was conducted at the University at Buffalo, State University of New York, and was supported primarily by MCEER.
NOTICE

This report was prepared by the University at Buffalo, State University of New York, as a result of research sponsored by MCEER. Neither MCEER, associates of MCEER, its sponsors, University at Buffalo, State University of New York, nor any person acting on their behalf:

a. makes any warranty, express or implied, with respect to the use of any information, apparatus, method, or process disclosed in this report or that such use may not infringe upon privately owned rights; or

b. assumes any liabilities of whatsoever kind with respect to the use of, or the damage resulting from the use of, any information, apparatus, method, or process disclosed in this report.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of MCEER, the National Science Foundation or other sponsors.
Seismic Performance Assessment of Seismically Isolated Buildings Designed by the Procedures of ASCE/SEI 7

by

Shoma Kitayama¹ and Michael C. Constantinou²

Publication Date: April 14, 2018
Submittal Date: November 6, 2017

Technical Report MCEER-18-0004

¹ Post-Doctoral Associate, Department of Civil, Structural and Environmental Engineering, University at Buffalo, State University of New York
² Samuel P. Capen Professor, SUNY Distinguished Professor, Department of Civil, Structural and Environmental Engineering, University at Buffalo, State University of New York

MCEER
University at Buffalo, State University of New York
212 Ketter Hall, Buffalo, NY 14260
E-mail: mceer@buffalo.edu; Website: http://buffalo.edu/mceer
Preface

MCEER is a national center of excellence dedicated to the discovery and development of new knowledge, tools and technologies that equip communities to become more disaster resilient in the face of earthquakes and other extreme events. MCEER accomplishes this through a system of multidisciplinary, multi-hazard research, in tandem with complimentary education and outreach initiatives.

Headquartered at the University at Buffalo, The State University of New York, MCEER was originally established by the National Science Foundation in 1986, as the first National Center for Earthquake Engineering Research (NCEER). In 1998, it became known as the Multidisciplinary Center for Earthquake Engineering Research (MCEER), from which the current name, MCEER, evolved. Comprising a consortium of researchers and industry partners from numerous disciplines and institutions throughout the United States, MCEER’s mission has expanded from its original focus on earthquake engineering to one which addresses the technical and socio-economic impacts of a variety of hazards, both natural and man-made, on critical infrastructure, facilities, and society.

The Center derives support from several Federal agencies, including the National Science Foundation, Federal Highway Administration, Department of Energy, Nuclear Regulatory Commission, and the State of New York, foreign governments and private industry.

This report presents an analytical study of the seismic performance of seismically isolated buildings and comparable non-isolated buildings designed by the procedures of ASCE/SEI 7-10 and -16 at a particular location in California. The study concludes that seismically isolated buildings designed to the minimum criteria of either ASCE/SEI 7-10 or 7-16 at the considered location may have unacceptable probability of collapse in the maximum considered earthquake. The probability of collapse in the maximum considered earthquake becomes acceptable and the design may also meet criteria of improved performance in terms of story drift, residual drift and floor acceleration when they are designed with enhanced criteria of RI=1.0 and with isolators having a displacement capacity at initiation of stiffening equal to 1.5 times the average demand in the maximum considered earthquake. It is also observed that designs that meet the minimum criteria of ASCE/SEI 7-10 or 7-16 and without a displacement restrainer have unacceptably high probabilities of collapse. The study finds that seismically isolated structures designed by the enhanced criteria offer lower mean annual frequencies of exceeding important limits on story ract ratio, residual story drift ratio and peak floor acceleration than comparable non-isolated structures.
ABSTRACT

Seismically isolated buildings in the United States are currently designed and analyzed by the procedures of the ASCE/SEI 7-10 standard, Chapter 17 (ASCE, 2010). In the future, buildings will be designed and analyzed by the procedures of ASCE/SEI 7-16 (ASCE, 2017). Both ASCE standards require that the isolation system be detailed to accommodate the displacement demand calculated in the Risk-Targeted Maximum Considered Earthquake (MCER), where this displacement is the average of peak values calculated in seven nonlinear response history analyses. Both procedures permit the use of a response modification coefficient (R_f factor) between 1.0 and 2.0 depending on the seismic force-resisting system used. For the case of the ASCE/SEI 7-10 standard, the forces and drifts for the design are based on calculations using the design response (DE) spectrum, which is defined as being 2/3 of the MCER spectrum. For the case of the ASCE/SEI 7-16 standard, the forces and drifts for the design are based on calculations using the MCER spectrum.

This report investigates the reliability of the ASCE/SEI 7 provisions by studying an archetypical 6-story perimeter frame seismically isolated building designed with special concentrically braced frames (SCBF), ordinary concentrically braced frames (OCBF) and special moment resisting frames (SMF) for a location in California using the minimum criteria of ASCE/SEI 7-10 and ASCE/SEI 7-16 and also using enhanced design criteria. The isolation system consists of triple Friction Pendulum (FP) isolators with stiffening behavior at large displacement. Representative cases are also studied in which the stiffening behavior is replaced by the behavior of a moat wall. Additionally, double concave sliding isolators are considered and designed per minimum criteria and without a displacement restrainer, a practice permitted by the ASCE/SEI 7 standards. Non-isolated structures, also with braced and moment frame configurations, are designed and studied.

This study presents results on (1) the conditional probability of collapse on the occurrence of the MCER of the designed isolated structures and comparable non-isolated structures, and (2) information on the mean annual frequency of exceedance of the peak story drift ratio, the residual story drift ratio and the peak floor and roof acceleration. It is shown that (a) seismically isolated buildings designed to the minimum criteria of ASCE/SEI 7-10 or 7-16 may have
unacceptable probability of collapse in the MCE\textsubscript{R}, (b) the probability of collapse in the MCE\textsubscript{R} is acceptable and the design may also meet criteria of improved performance in terms of story drift, residual drift and floor acceleration when the structure is designed for $R_f=1.0$ (either for the DE or the MCE\textsubscript{R}) and the isolators have a displacement capacity at initiation of stiffening equal to $1.5D_M$, (c) the behavior described in item (b) is also achieved by the use of moat walls instead of stiffening isolators, also placed at distance $1.5D_M$, (d) reducing the R_f factor may not provide any advantage unless the displacement capacity of the isolators is accordingly increased, (e) designs that meet the minimum criteria of ASCE/SEI 7-10 or 7-16 and without any displacement restrainer have unacceptably high probabilities of collapse, (f) OCBF designed by the minimum criteria of ASCE/SEI 7-16 have marginally unacceptable probabilities of collapse which can be improved by increasing the displacement capacity of the isolators, (g) seismically isolated structures designed by the minimum criteria of ASCE/SEI 7 and supplemented with minimally designed moat walls have unacceptable probabilities of collapse that are essentially the same as those of similarly designed isolated structures without a moat wall, and (h) seismically isolated structures designed per criteria in item (b) above offer lower mean annual frequencies of exceeding important limits on story drift ratio, residual story drift ratio and peak floor acceleration than comparable non-isolated structures.
ACKNOWLEDGEMENTS

The authors acknowledge Huseyin Darama, Ph.D., PE, Associate, Arup, Los Angeles, CA, Victor Zayas, Ph.D., PE, President, Earthquake Protection Systems, Inc., Vallejo, CA, William J. McVitty, PE, Senior Structural Engineer, Aurecon, Wellington, New Zealand and an anonymous reviewer for providing comments that resulted in substantial changes and improvement of this report. The authors also acknowledge the late Professor Stephen A. Mahin of the University of California, Berkeley and his student Benshun Shao for making available some of their early results on studies of the collapse performance of seismically isolated structures.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>2</td>
<td>STRUCTURES AND ISOLATION SYSTEMS CONSIDERED</td>
</tr>
<tr>
<td>3</td>
<td>MODELS FOR ANALYSIS</td>
</tr>
<tr>
<td>4</td>
<td>STRUCTURAL COLLAPSE EVALUATION</td>
</tr>
<tr>
<td>5</td>
<td>PROBABILISTIC ASSESSMENT OF SEISMIC RESPONSE</td>
</tr>
<tr>
<td>6</td>
<td>COMPARISON OF RESULTS OF COLLAPSE ASSESSMENT OBTAINED BY FEMA P695 PROCEDURE AND BY A PROBABILISTIC APPROACH USING CONDITIONAL SPECTRA</td>
</tr>
<tr>
<td>7</td>
<td>CONCLUSIONS AND DISCUSSION</td>
</tr>
<tr>
<td>8</td>
<td>REFERENCES</td>
</tr>
<tr>
<td></td>
<td>APPENDIX A</td>
</tr>
<tr>
<td></td>
<td>PROCEDURE FOR CALCULATING THE MEDIAN COLLAPSE SPECTRAL ACCELERATION WHEN CONSIDERING SPECTRAL SHAPE EFFECTS</td>
</tr>
<tr>
<td></td>
<td>APPENDIX B</td>
</tr>
<tr>
<td></td>
<td>PROCEDURE FOR THE PROBABILISTIC SEISMIC PERFORMANCE ASSESSMENT</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 2-1 Archetypical Building Plan and Views of Braced and Moment Frames................................. 7
Figure 2-2 Triple FP (TFP) and Double Concave (DC) Isolators of Different Displacement Capacities; (a) TFP-1, (b) TFP-2, (c) TFP-3, (d) DC-1 and (e) DC-2 ... 9
Figure 2-3 Force-Displacement Relationships of Triple FP (Left) and Double Concave (Right) Isolators 10
Figure 2-4 Pushover Curves of SCBF in Case of Isolator TFP-1 with $D_{\text{Capacity}}=D_M=20.4\text{in}$ 15
Figure 2-5 Pushover Curves of SCBF in Case of Isolators TFP-1 with $D_{\text{Capacity}}=20.4\text{in} (=D_M)$ and TFP-2 with $D_{\text{Capacity}}=26.1\text{in} (=1.25D_M)$ and Moat Walls Placed at Distances D_M and $1.25D_M$ 17
Figure 2-6 Pushover Curves of SMF in Case of Isolators TFP-1 with $D_{\text{Capacity}}=20.4\text{in} (=D_M)$ and TFP-2 with $D_{\text{Capacity}}=26.1\text{in} (=1.25D_M)$ and Moat Walls Placed at Distances D_M and $1.25D_M$... 19

Figure 3-1 Representation of Gravity and Seismic Force-Resisting Frames of Isolated Building 21
Figure 3-2 Representation of Non-Isolated Building .. 22
Figure 3-3 Fiber Discretization Used for HSS Brace and Wide Flange Column and Beam 22
Figure 3-4 Details of Model of Connections .. 23

Figure 4-1 Peak Isolator Displacements at Collapse of Buildings with SCBF Designed for the DE per ASCE/SEI 7-10.. 36
Figure 4-2 Peak Isolator Displacements at Collapse of Buildings with SMF Designed for the DE per ASCE/SEI 7-10.. 37
Figure 4-3 Peak Isolator Displacements at Collapse of Buildings with SCBF Designed for the MCER per ASCE/SEI 7-16.. 38
Figure 4-4 Peak Isolator Displacements at Collapse of Buildings with SMF Designed for the MCER per ASCE/SEI 7-16.. 39
Figure 4-5 Peak Isolator Displacements at Collapse of Buildings with SCBF Designed per ASCE/SEI 7-10, Isolator TFP-1 with and without Moat Wall at Distance D_M .. 42
Figure 4-6 Peak Isolator Displacements at Collapse of Buildings with SCBF Designed per ASCE/SEI 7-10, Isolator TFP-2 with and without Moat Wall at Distance $1.25D_M$.. 42
Figure 4-7 Peak Isolator Displacements at Collapse of Buildings with SCBF Designed per ASCE/SEI 7-16, Isolator TFP-1 with and without Moat Wall at Distance D_M .. 42
LIST OF FIGURES (CONT'D)

Figure 4-8 Peak Isolator Displacements at Collapse of Buildings with SCBF Designed per ASCE/SEI 7-10, Isolator TFP-3 with and without Moat Wall at Distance 1.5D_M ... 43

Figure 5-1 Mean Annual Frequency of Exceeding Limits on Peak Story Drift Ratio ... 49
Figure 5-2 Mean Annual Frequency of Exceeding Limits on Peak Residual Story Drift Ratio .. 50
Figure 5-3 Mean Annual Frequency of Exceeding Limits on Floor Acceleration ... 51
Figure 5-4 Mean Annual Frequency of Exceeding Limits on Roof Acceleration .. 52
Figure 5-5 Comparisons of Mean Annual Frequency of Exceeding Limits on Drift, Residual Drift and
Peak Acceleration for SCBF Designed per Minimum Criteria of ASCE 7-10 (R_I=2, Isolator
TFP-1) without and with Moat Wall at D_M ... 53
Figure 5-6 Comparisons of Mean Annual Frequency of Exceeding Limits on Drift, Residual Drift and
Peak Acceleration for SCBF Designed per ASCE 7-10 for R_I=2, Isolator TFP-2 without and
with Moat Wall at 1.25D_M ... 54
Figure 5-7 Comparisons of Mean Annual Frequency of Exceeding Limits on Drift, Residual Drift and
Peak Acceleration for SCBF Designed per ASCE 7-10 for R_I=1, Isolator TFP-3 without and
with Moat Wall at 1.50D_M (design without moat wall meets criteria for continued
functionality per Zayas et al, 2017) .. 55
Figure 5-8 Comparisons of Mean Annual Frequency of Exceeding Limits on Drift, Residual Drift and
Peak Acceleration for SMF Designed per Minimum Criteria of ASCE 7-16 (R_I=2, Isolator
TFP-1) without and with Moat Wall at D_M ... 56
Figure 5-9 Comparisons of Mean Annual Frequency of Exceeding Limits on Drift, Residual Drift and
Peak Acceleration for SCBF Designed per ASCE 7-16 for R_I=2, Isolator TFP-2 without and
with Moat Wall at 1.25D_M ... 57

Figure 6-1 Comparison of Fragility Curves for Isolated SCBF, Case R_I=2, Isolator TFP-1 Obtained by
Different Methodologies .. 62

Figure A-1 Response Spectra of FEMA Far-Field Motions and Predicted Median Spectra 79
Figure A-2 Standard Deviation of Natural Logarithm of Spectral Acceleration .. 80
Figure A-3 Calculated values of ε(T_i) for each of 44 ground motions (Isolated SCBF: R_I=1.0 (DE), TFP-1) .. 80
LIST OF FIGURES (CONT'D)

Figure A-4 Relationship between \(\ln[S_{\text{Col},j}(T_1)] \) and \(\varepsilon_j(T_1) \) for SCBF Buildings ... 81

Figure A-5 Relationship between \(\ln[S_{\text{Col},j}(T_1)] \) and \(\varepsilon_j(T_1) \) for Isolated Buildings with SCBF Designed for \(R_f=2.0 \) per ASCE/SEI 7-10 and Isolator TFP-1 (\(D_{\text{Capacity}}=20.4\text{in}, D_{\text{Ultimate}}=26.9\text{inch} \)) with and without Moat Wall Relationship between \(\ln[S_{\text{Col},j}(T_1)] \) and \(\varepsilon_j(T_1) \) for SCBF Buildings 91

Figure A-6 Relationship between \(\ln[S_{\text{Col},j}(T_1)] \) and \(\varepsilon_j(T_1) \) for Isolated Buildings with SCBF Designed for \(R_f=2.0 \) and Isolator TFP-1 (\(D_{\text{Capacity}}=20.4\text{in}, D_{\text{Ultimate}}=26.9\text{inch} \)) or Isolator TFP-2 (\(D_{\text{Capacity}}=26.1\text{in}, D_{\text{Ultimate}}=32.6\text{inch} \)) with and without Moat Wall ... 92

Figure A-7 Relationship between \(\ln[S_{\text{Col},j}(T_1)] \) and \(\varepsilon_j(T_1) \) for Isolated Buildings with SCBF Designed for \(R_f=1.0 \) per ASCE/SEI 7-10 and Isolator TFP-3 (\(D_{\text{Capacity}}=31.8\text{in}, D_{\text{Ultimate}}=38.3\text{inch} \)) with and without Moat Wall ... 93

Figure B-1 Seismic Hazard Curves for \(T_1=0.524, 1.186 \) and 3.660 Seconds .. 96

Figure B-2 Mean Causal Earthquake Magnitude \(M \) and Distance \(R \) as Function of Return Period 97

Figure B-3 Conditional Mean Spectra for Return Period of 43, 144, 289, 475, 949, 1485, 2475, 3899, 7462 and 10000 Year and for Building Period \(T_1=0.524, 1.186 \) and 3.660 Second 98

Figure B-4 Spectra of scaled Motions and Conditional Spectra for Return Period of 43 Years and Period \(T_1 \) Equal to 0.524, 1.186 and 3.660 Seconds ... 99

Figure B-5 Spectra of Scaled Motions and Conditional Spectra for Return Period of 144 Years and Period \(T_1 \) Equal to 0.524, 1.186 and 3.660 Seconds ... 100

Figure B-6 Spectra of Scaled Motions and Conditional Spectra for Return Period of 289 Years and Period \(T_1 \) Equal to 0.524, 1.186 and 3.660 Seconds ... 101

Figure B-7 Spectra of Scaled Motions and Conditional Spectra for Return Period of 475 Years and Period \(T_1 \) Equal to 0.524, 1.186 and 3.660 Seconds ... 102

Figure B-8 Spectra of Scaled Motions and Conditional Spectra for Return Period of 949 Years and Period \(T_1 \) Equal to 0.524, 1.186 and 3.660 Seconds ... 103

Figure B-9 Spectra of Scaled Motions and Conditional Spectra for Return Period of 1485 Years and Period \(T_1 \) Equal to 0.524, 1.186 and 3.660 Seconds ... 104

Figure B-10 Spectra of Scaled Motions and Conditional Spectra for Return Period of 2475 Years and Period \(T_1 \) Equal to 0.524, 1.186 and 3.660 Seconds ... 105

Figure B-11 Spectra of Scaled Motions and Conditional Spectra for Return Period of 3899 Years and Period \(T_1 \) Equal to 0.524, 1.186 and 3.660 Seconds ... 106
LIST OF FIGURES (CONT'D)

Figure B-12 Spectra of Scaled Motions and Conditional Spectra for Return Period of 7462 Years and
Period T_1 Equal to 0.524, 1.186 and 3.660 Seconds ... 107

Figure B-13 Spectra of Scaled Motions and Conditional Spectra for Return Period of 10000 Years and
Period T_1 Equal to 0.524, 1.186 and 3.660 Seconds ... 108

Figure B-14 Comparison of Calculated Mean Annual Frequency Rates Based on Selected Ground
Motions (Solid Lines) and USGS Seismic Hazard Curves Dashed Lines) for (a) Isolated /
Buildings, (b) Non-isolated SMF Building and (c) Non-isolated SCBF Building 111
LIST OF TABLES

Table 2-1 Upper and Lower Bound Friction Properties of Triple FP and Double Concave Isolators........ 9
Table 2-2 Isolator Displacement, Peak Story Drift Ratio and Base Shear Force for Braced Frame.......... 13
Table 2-3 Isolator Displacement, Peak Story Drift Ratio and Base Shear Force for Moment Frame 13
Table 2-3 Sections of Columns and Braces of SCBF and SMF in Isolated and Non-Isolated Buildings... 14
Table 2-3 Sections of Beams of SCBF and SMF in Isolated and Non-Isolated Buildings..................... 14

Table 4-1 Results of Collapse Fragility Analysis for Buildings with SCBF and OCBF 30
Table 4-2 Results of Collapse Fragility Analysis for Buildings with SMF ... 31
Table 4-3 Extended Results of Fragility Analysis for Selected Systems with and without Moat Walls (all cases of wall with x1000 stiffness) ... 41

Table 5-1 Probabilities in % of Collapse in MCER and Probabilities of Exceeding in 50 Years Limits on Floor (Roof in Parenthesis) Acceleration, Story Drift Ratio and Residual Drift Ratio for Isolated and Non-Isolated Buildings (PSDR=Peak Story Drift Ratio, PRDR=Peak Residual Drift Ratio, PFA=Peak Floor Acceleration, PRA=Peak Roof Acceleration) ... 58

Table 6-1 Comparison of Probabilities of Collapse of SCBF Obtained by Different Methodologies....... 63
Table 6-2 Comparison of Probabilities of Collapse of SMF Obtained by Different Methodologies 64

Table A-1 Values of $\varepsilon(T_1)$, M and R for considered site and 2475 years return period...................... 79
SECTION 1
INTRODUCTION

Many seismically isolated buildings have been designed and analyzed according to the minimum requirements of Chapter 17 of ASCE/SEI 7-10 standard (ASCE, 2010). ASCE/SEI 7-16 (ASCE, 2017) specifies the current ASCE minimum requirements for isolated structures. Both ASCE standards require that the isolation system be detailed to accommodate the displacement demand calculated in the Risk-Targeted Maximum Considered Earthquake (MCE_R), where this displacement is the average of peak values calculated in seven nonlinear response history analyses. Both procedures permit the use of a response modification coefficient (R_I factor) between 1.0 and 2.0 depending on the seismic force-resisting system used. For the case of the ASCE/SEI 7-10 standard, the forces and drifts for the design are based on calculations using the design response (DE) spectrum, which is defined as being 2/3 of the MCE_R spectrum. For the case of the ASCE/SEI 7-16 standard, the forces and drifts for the design are based on calculations using the MCE_R spectrum. Many seismically isolated buildings in the United States have been designed using the ASCE/SEI 7-10 minimum requirements. There are exceptions in which stringent criteria have been employed. Examples are hospitals in California where often project-specific design criteria require the use of an R_I factor of unity for the effects of the DE or MCE_R and larger displacement capacity isolators than the minimum required.

The use of the minimum requirements of the ASCE/SEI 7 standards presumably ensures the minimum acceptable level of safety by preserving the lives of the occupants. It is well recognized that these minimum ASCE design requirements do not serve the resiliency objective of avoiding damage in order to maintain facility functionality. An Executive Order issued in 2016 by the President of the United States (Executive Order 13717, 2016, Hayes et al., 2017) clearly recognizes this fact and states the following: “The Federal Government recognizes that building codes and standards primarily focus on ensuring minimum acceptable levels of earthquake safety for preserving the lives of building occupants. To achieve true resilience against earthquakes, however, new and existing buildings need to exceed those codes and standards to ensure, for example, that the buildings can continue to perform their essential functions following future
earthquakes.” The Executive Order continues to instruct all federal agencies to “go beyond the codes and standards and ensure that buildings are fully earthquake resilient.”

Questions may then arise. (a) Is the probability of collapse of seismically isolated structures designed by the minimum design criteria acceptably low? (b) What should be the criteria for design in terms of R_I and isolator displacement capacity to achieve acceptable probability of collapse? (c) What does isolation achieve in terms of performance measures like peak story drift, residual story drift and floor accelerations?

Some studies have already addressed issues related to these questions. Kikuchi et al. (1995) studied the inelastic response of a two-degree-of-freedom (2-DOF) representation of seismically isolated structures without any consideration for failure of either the structural or the isolation system. The study raised a concern that designs of seismically isolated structures with reduced lateral shear force (equivalently, with a large R factor) can have significant inelastic action and unacceptable behavior. A more recent study (Nakazawa et al., 2011) again made use of the 2-DOF system but enhanced to have non-simulated generic isolation system failure and superstructure failure (assumed to occur at ductility of 4.0) and employed contemporary procedures to determine the collapse margin ratio based on the FEMA P695 procedures (FEMA, 2009). The main contribution of the work was to study the effects of limiting the displacement demand on the isolators by use of moat walls of varied clearance and behavior. Following the Japanese practice of seismic design, the strength of the superstructure was assumed in the range of 0.15 to 0.40 of the superstructure weight (common practice in Japan is the use of 0.3). The study observed that isolated structures have a low level of damage (essentially elastic response) until a certain level of seismic intensity is reached where significant inelastic action occurs for small increases in the seismic intensity.

Studies of Erduran et al. (2011) and Sayani et al. (2011) compared the inelastic response of conventional and seismically isolated steel braced and moment-resisting 3-story frames designed by the minimum criteria of ASCE 7 (that of 2005) and with unlimited capacity for the isolators. The studies concluded that the seismically isolated frames exhibited lower structural yielding, story drifts, residual story drifts and floor accelerations than comparable conventional frames for seismic events characterized as frequent, design and maximum earthquake. The studies did not
provide any information on the collapse of the analyzed structures as the structural model did not have capability of simulating large deformations in the elements of structural systems. However, the studies pointed to interesting observations that (a) allowing for inelastic behavior of the isolated structure limited the displacement demand in the isolators and (b) designing for elastic behavior could have resulted in failure of the isolators if they had limited displacement capacity.

A study of Terzic et al (2012) compared the lifecycle cost of seismically isolated structures designed with different structural systems of various R_I factors. The study demonstrated improved performance and significant reduction of lifecycle cost when the design utilizes an R_I factor of unity in the DE.

The development of the performance assessment methodologies of FEMA P695 (FEMA, 2009) allowed for more rigorous studies of the performance of isolated structures. One of the examples in FEMA P695 involves seismically isolated buildings in which failure of the superstructure was simulated and the isolation system was represented by a generic model together with a displacement-limiting moat wall of various clearances. The structure was a 4-story reinforced concrete building of either a special perimeter moment frame or a special space frame. Concentrating on the code-complaint designs (with $R_I=2$ in the DE), the study demonstrated acceptable collapse margin ratios, which progressively reduced as the moat wall clearance reduced and the space frame was changed from space to perimeter frame.

A more recent study of Masroor and Mosqueda (2015) utilized models similar to those in the studies of Erduran et al (2011) and Sayani et al (2011) and followed the paradigm of examples of the seismically isolated buildings in FEMA (2009), utilized three-dimensional building models with an improved moat wall model and bi-directional seismic excitation but did not consider failure of the isolators. The results showed that steel intermediate moment frames designed for the DE with an $R_I =1.67$ and steel ordinary concentrically braced frames designed with $R_I =1$ had acceptable collapse margin ratios per FEMA (2009) when the size of isolators was sufficiently large to avoid failure of the isolator. Barely acceptable probabilities of collapse were calculated when the moat wall was placed at the minimum required displacement capacity in the MCEh. The calculations were based on the use of adjusted values of the probability of collapse for accounting
for the spectral shape effects (epsilon) using the simplified FEMA P695 procedures (FEMA, 2009). It will be argued in this report that the simplified procedure for the spectral shape effects provided in FEMA P695 does not apply for seismically isolated structures with stiffening behavior and that direct studies, as those used in FEMA P695 for the development of the simplified procedure, are required to properly calculate the effects of spectral shape.

Chimamphant and Kasai (2016) investigated the seismic response of nonstructural components in seismically isolated buildings and compared it to that of comparable conventionally designed buildings by using multi-degree-of-freedom shear-beam models. Failure in the superstructure or the isolation system was ignored and mechanisms that limit the isolator displacement (ex. retaining walls) were not considered. The study used the methodologies described in FEMA P695 (FEMA, 2009) and FEMA P58 (FEMA, 2012a) and demonstrated that seismically isolated buildings have better performance than comparable non-isolated buildings but the improvement of performance reduces as the height of the building increases.

Recently, Shao et al. (2017) focused on a 3-story concentrically braced steel frame structure designed for $R_t=1$ in the MCE$_R$ and investigated the reliability of the ASCE/SEI 7-16 minimum provisions, as well as enhanced designs by providing either increased isolator displacement capacity or providing isolators with hard (moat wall) or soft stopping mechanisms. The main conclusions of the study were that: (a) the isolator displacement capacity needs to be increased by at least 1.8 of the minimum code-prescribed value in order to achieve the code-targeted reliability when no displacement restrainers are provided; (b) smaller displacement capacities can be used when displacement restrainers are utilized but with additional requirements for increased ductility capacity in the superstructure and (c) a total isolator displacement capacity (including the capacity of soft stops) of at least 1.5 times the displacement demand in the MCE$_R$ and an isolator shear strength of at least 3.0 times the base shear in the MCE$_R$ are needed to achieve the required reliability. The study did not consider the spectral shape effects per FEMA P695 (FEMA, 2009) as the simplified method presented in FEMA P695 for considering these effects does not truly apply for seismically isolated structures of large effective period. Accordingly, probabilities of failure must have been overestimated.
This report also investigates the reliability of the ASCE/SEI 7 provisions by concentrating on an archetypical 6-story perimeter frame building that has been previously studied in examples of seismic isolation design and analysis in McVitty and Constantinou (2015). Perimeter steel special concentrically braced frames (SCBF) and special moment resisting frames (SMRF) for this building are designed for a location in California with an R_I factor of 2.0 (per minimum requirements of ASCE/SEI 7-10), 1.5 and 1.0 in the DE and with $R_I=2.0$ (per minimum requirements of ASCE/SEI 7-16) and 1.0 in the MCER when seismically isolated. Also, the case of steel ordinary concentrically braced frames (OCBF) permitted by ASCE/SEI 7-16 with $R_I=1.0$ is considered. The isolation system for these cases consists of triple Friction Pendulum (FP) isolators having a displacement capacity at initiation of stiffening equal to $1.0D_M$ (per minimum requirements of ASCE/SEI 7-10 and 7-16), $1.25D_M$ and $1.5D_M$, where D_M is the displacement demand in the MCER (torsion is not accounted for so the displacement considered is D_M instead of D_{TM}, which would be 1.1 to 1.2 times larger than D_M in the studied systems). For the OCBF the displacement capacity of the isolators at initiation of stiffening is $1.25D_M$, which is permitted by ASCE/SEI 7-16. The stiffening behavior of the triple FP isolators serves as a displacement restrainer for larger displacements than the assumed capacities. Additionally, double concave sliding isolators are considered and designed per minimum criteria and without a displacement restrainer, a practice permitted by the ASCE/SEI 7 standards (and a common practice in Europe, e.g., Ponzo et al, 2017). Moreover, representative results are presented for cases in which a moat wall is used at the minimally allowed distance per ASCE/SEI 7 standards (displacement capacity D_M) and at larger distances. Non-isolated structures, also with braced and moment frame configurations, are designed and studied.

This study presents results on (1) the conditional probability of collapse on the occurrence of the MCER of the designed isolated structures and comparable non-isolated structures, and (2) information on the mean annual frequency of exceedance of the peak story drift ratio, the residual story drift ratio and the peak floor and roof acceleration. It is shown that (a) seismically isolated buildings designed by the minimum criteria of ASCE/SEI 7-10 or 7-16 may have unacceptable probability of collapse in the MCER, (b) the probability of collapse in the MCER is acceptable (and depending on the structural system much less than 10%) and the design may also meet criteria of improved performance in terms of story drift, residual drift and floor acceleration when the structure is designed for $R_I=1.0$ (either for the DE or the MCER) and the isolators have a
displacement capacity at initiation of stiffening equal to $1.5D_M$, (c) the behavior described in item (b) is also achieved by the use of moat walls instead of stiffening isolators, also placed at distance $1.5D_M$, (d) reducing the R_I factor may not provide any advantage unless the displacement capacity of the isolators is accordingly increased (as then collapse is due to failure of the isolators), (e) designs that meet the minimum criteria of ASCE/SEI 7-10 or 7-16 and without any displacement restrainer have unacceptably high probabilities of collapse, (f) OCBF designed by the minimum criteria of ASCE/SEI 7-16 have marginally unacceptable probabilities of collapse which can be improved by increasing the displacement capacity of the isolators, (g) seismically isolated structures designed by the minimum criteria of ASCE/SEI 7 and supplemented with moat walls having a gap equal to the displacement demand in the MCE$_R$ as calculated by the procedures of ASCE/SEI 7 have unacceptable probabilities of collapse that are essentially the same as those of similarly designed isolated structures without a moat wall, and (h) seismically isolated structures designed per criteria in item (b) above offer lower mean annual frequencies of exceeding important limits on story drift ratio, residual story drift ratio and peak floor acceleration than comparable non-isolated structures.
A 6-story archetypical steel building is considered. The building was used in examples in the SEAONC Volume 5 Seismic Design Manual (SEAONC, 2014) and later used in examples of application of the ASCE/SEI 7-16 analysis and design procedures for isolated buildings in McVitty and Constantinou (2015). Figure 2-1 shows plan and view of the building. Its lateral force resisting system consists of four perimeter frames that are configured as special concentrically braced frames (SCBF), or special moment resisting frame (SMF) or ordinary concentrically braced frames (OCBF). The total seismic weight of the building when seismically isolated is 12065.4kip. When non-isolated the weight is 10180.6kip. The building is assumed located on soil class D in San Francisco, CA (Latitude 37.783°, Longitude -122.392°) with MCE_R spectral acceleration values of $S_{MS}=1.5g$ and $S_{M1}=0.9g$. For the DE, the parameters are $S_{DS}=1.0g$ and $S_{D1}=0.6g$.

The isolation system consists of triple FP isolators (placed below each column) having the geometric and frictional properties determined in McVitty and Constantinou (2015) but the outer concave plates of the isolators were selected to have three different sizes so that the displacement capacities were varied. Figure 2-2 shows cross sections of the three triple FP isolators considered, having displacement capacities of (a) the minimum required by the criteria of ASCE/SEI 7 (capacity D_M at initiation of stiffening) and (b) increased capacities of $1.25 D_M$ and $1.5 D_M$ at initiation of stiffening. Note that the internal construction of the three isolators is the same so that their frictional properties are the same for the same conditions of load and motion. The force-
displacement relationship for these isolators is shown in Figure 2-3 together with values of the
displacement capacity at initiation of stiffening, D_{Capacity}, and the ultimate displacement, D_{Ultimate}, when the isolator internal parts collapse as calculated on the basis of the theory of Sarlis and Constantinou (2016) in the lower bound friction condition. Note that the isolators may also yield prior to reaching D_{Ultimate} when the lateral force in the stiffening regime of the bearings exceeds the strength of the restrainer ring. While this was modelled in the analysis it did not occur as the shear force did not reach the strength of the ring as calculated using the theory of Sarlis and Constantinou (2016). The displacement capacity provided was D_M (or a multiple of it) and not D_{TM} (which includes the effects of torsion) as the analysis for the reliability assessment was based on two-dimensional representations of the building and torsion was not included.

Two more isolator types were considered without a restrainer ring so that they did not exhibit stiffening behavior. They were designed as Double Concave (DC) isolators (Fenz and Constantinou, 2006) with the same curvature as the triple FP isolators. Both isolators have the same contact area of 11inch as the triple FP isolators. Of the two DC isolators, isolator DC-1 has an ultimate displacement capacity equal to D_M, whereas isolator DC-2 has the same concave plate diameter as the smallest triple FP isolator (TFP-1) and thus a larger ultimate displacement capacity than D_M, determined to be $1.25D_M$ (displacement when the inner slider reaches the edge of the concave plate plus half of the contact diameter of 11inch). Isolators DC-1 is permitted by the ASCE/SEI 7 standards. Isolators with the characteristics of DC-1 and DC-2 have been used in applications in Europe and South America. Force-displacement relationships for these isolators are presented in Figure 2-3.

The frictional properties of the triple FP isolators for high-speed conditions are presented in Table 1 together with values of the property modification factors used to determine the frictional properties (McVitty and Constantinou, 2015). Note that the properties were determined on the basis of prototype test data for similar isolators and use of the procedures in ASCE/SEI 7-16. The values of friction in Table 1 are for high-speed conditions and are different for the interior and exterior isolators due to the different gravity load carried by them. The large difference between the lower and upper bound values of friction reflect (a) the uncertainties due to availability of test data on similar rather than the actual isolators, and (b) the large pressure at which the isolators operate that result in more variability due to heating (McVitty and Constantinou, 2015). For the DC bearings the values of friction coefficient are also presented in Table 1 where are seen to be slightly less than those of the outer surface of the triple FP isolators. The friction force has been calculated as the zero displacement force intercept for the triple FP bearings divided by the normal load. The system property modification factors were assumed to be the same.
Figure 2-2 Triple FP (TFP) and Double Concave (DC) Isolators of Different Displacement Capacities; (a) TFP-1, (b) TFP-2, (c) TFP-3, (d) DC-1 and (e) DC-2

Table 2-1 Upper and Lower Bound Friction Properties of Triple FP and Double Concave Isolators

<table>
<thead>
<tr>
<th>Isolator Type</th>
<th>Sliding Surface</th>
<th>Interior Isolators</th>
<th>Exterior Isolators</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Outer (μ₁=μ₆ or μ)</td>
<td>Inner (μ₂=μ₅)</td>
</tr>
<tr>
<td>Triple Friction Pendulum</td>
<td>Nominal</td>
<td>0.052</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>λₘ₃ₙ</td>
<td>0.073</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>λₘ₃ₙ</td>
<td>1.67</td>
<td>1.29</td>
</tr>
<tr>
<td></td>
<td>λₘ₃ₙ</td>
<td>0.81</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>Upper bound</td>
<td>0.087</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>Lower bound</td>
<td>0.042</td>
<td>0.015</td>
</tr>
<tr>
<td>Double Concave</td>
<td>Upper bound</td>
<td>0.080</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Lower bound</td>
<td>0.039</td>
<td>NA</td>
</tr>
</tbody>
</table>
Figure 2-3 Force-Displacement Relationships of Triple FP (Left) and Double Concave (Right) Isolators

Analyses of the isolated building were conducted per procedures in ASCE/SEI 7 for the MCE_R to determine the isolator displacement demands and the base shear force. Analyses were also conducted for the DE per ASCE/SEI 7-10 in order to calculate the base shear force in the DE. Response History Analysis (RHA) and Equivalent Lateral Force (ELF) procedures were used. For the RHA, the model of analysis was three-dimensional of which details, including details on the motions used and the scaling procedure, are presented in McVitty and Constantinou (2015). Results are summarized in Tables 2 and 3. These results were obtained using seven pairs of amplitude-scaled motions per procedures in ASCE/SEI 7 (both 2010 and 2016). The superstructure was assumed elastic. Torsion was not considered. That is, the calculation of the isolator displacement demand included the effects of bi-directional excitation but not torsional effects. The frame properties used in the RHA and ELF are those in Tables 4 and 5 for SCBF and SMF with $R=2.0$. The effects that the superstructure increased stiffness for the other designs may have had on the isolator displacement demand and base shear force were assumed insignificant.

The tables include design values of base shear per frame and the value of isolator displacement D_M for design based on the criteria of ASCE/SEI 7. There are no or insignificant differences in the calculated isolator displacements and in the base shear force for the two configurations. Accordingly, for both configurations the following values were used in design: isolator displacement $D_M=20.7\text{ in}$ (average of the two values) and base shear force of 727.6kip in the DE and 883.5kip in the MCE_R (shear force for elastic conditions). Based on these values, frames were
designed as follows: (a) per minimum criteria for $R_I=2.0$ for the DE (per ASCE/SEI 7-10) and for the MCE$_R$ (per ASCE/SEI 7-16), (b) for $R_I=1.5$ and 1.0 for the DE and (c) for $R_I=1$ for the MCE$_R$. Also, comparable non-isolated structures were designed with $R_I=6$, $\Omega_0=2$, $C_d=5$ for the SCBF and with $R_I=8$, $\Omega_0=3$, $C_d=5.5$ for the SMF. The design utilized member forces determined in static analysis using the lateral forces prescribed by the ELF procedures of ASCE/SEI 7. Note that for the non-isolated structures the lateral forces were based on the DE (2/3rd of the MCE$_R$) for both versions of the ASCE/SEI 7 standard. The section properties for the beams, columns and braces of the designed frames are presented in Tables 3 and 4. Steel has minimum yield strength F_y equal to 42ksi for braces (round HSS) and 50ksi for columns and beams. The expected yield strengths F_{ye} are 58.8ksi and 55ksi, respectively (American Institute of Steel Construction, 2010).

The results in Tables 2 and 3 demonstrate that the frames meet the drift criteria of the ASCE/SEI 7 standards (ASCE, 2010 and 2016), Section 17.5.6 as the maximum story drift is less than 0.015 of the story height. Note that analysis was performed for the frames designed with $R_I=2.0$ (the drift is less than the values in Tables 2 and 3 when R_I is less than 2.0). The results of RHA on drift are not presented as the superstructure was assumed elastic and there are no specified limits for such conditions (rather there are limits in Section 17.6.4.4 of ASCE /SEI 7 for analysis using nonlinear force-displacement characteristics for the structural elements).

The SCBF designed with $R_I=1.0$ in the MCE$_R$ was also analyzed assuming that it behaves as an ordinary concentrically braced frame (OCBF) with isolators having the characteristics of isolators TFP-2 with displacement capacity equal to $1.25D_M$ and TFP-3 with displacement capacity equal to $1.5D_M$. This structural configuration and is permitted per Section 17.2.5.4 of ASCE/SEI 7-16 provided that the isolators have a displacement capacity of at least $1.2D_M$. In the RHA for the assessment of performance, the story drift ratio limit at collapse was assumed to be 2% for the OCBF (Masroor and Mosqueda 2015), whereas it was 5% for the SCBF (Sabelli et al., 2013).

Two of the developed designs (SCBF and SMF, $R_I=1.0$ in the DE, triple FP isolator TFP-3 with $D_{\text{Capacity}}=1.5D_M$ and $D_{\text{Ultimate}}=1.9D_M$, see Figure 2-3) were further analyzed to investigate whether they meet the “Enhanced Structural and Non-structural Design Criteria” of the REDi Rating System (Arup, 2013) for a rating of “Gold” or “Platinum”. This enhanced design includes a recommendation to design for an isolator displacement capacity of $1.9D_M$, and to have essentially elastic response with a residual drift ratio of less than 0.5% for the “Design Level Earthquake”, defined as having a 475 year return period. Analysis of the isolated structures was conducted with the inelastic two-dimensional representation used in the incremental dynamic analysis (to be described later) using the fault-normal (FN) components of the seven motions used in the three-
dimensional analysis. These components needed to be scaled by a different factor than in the three-dimensional analysis. (See Table A-1 in McVitty and Constantinou, 2015 where the scale factors are 3.9, 1.7, 3.0, 3.2, 3.9, 3.9 and 3.9 for motions 1 to 7). In the two dimensional analysis, the FN components of these motions were scaled by factors 4.0, 1.3, 1.2, 3.0, 3.5, 5.0 and 5.0, respectively, based on Sections 16.1.3.1 and 17.3.2 of ASCE/SEI 7-10 and 16.2.3 and 17.3.3 of ASCE/SEI 7-16. The analysis resulted in peak drift ratio (average of seven analyses) of 0.15% and a residual drift ratio of 0.01% for the SCBF and in a peak drift ratio of 0.87% and a residual drift ratio of 0.03% for the SMF. Both designs meet the drift criteria of the REDi Rating System (Arup, 2013) for a rating of “gold” or “platinum”.

However, it will be shown later in this document that the SMF design has higher mean annual frequencies of exceeding specific residual drift ratio and floor peak acceleration limits than the SCBF design. It will be shown that the SMF design that meets the REDi criteria for gold rating has a 30% probability of exceeding the limit of 0.5% in peak drift ratio and 37% probability of exceeding the peak floor acceleration limit of 0.3g in 50 years. In contrast, the SCBF design that meets the REDi criteria for gold rating has, respectively, probabilities of 2.3% and 6.9%. The SCBF design that has these low probabilities of developing any damage in the lifetime of 50 years also meets the criteria of a seismic isolation standard for continued functionality developed by Zayas et al (2017) and implemented in the design and construction of some hospitals and important structures utilizing triple FP isolators. In this standard, seismically isolated structures meet the REDi “gold” rating when designed with $R_i=1$ in the DE and the peak story drift ratio is limited to 0.4% and the 5%-damped floor acceleration response spectra are less than 0.6g (in a sense that the median value within the period range of zero to 5sec is less than 0.6g) in the DE. In the same standard the criteria for the REDi “platinum” rating call for limits of 0.3% on peak drift ratio and 0.4g on floor spectral accelerations in the DE. The SCBF design meets the criteria of the standard for continued functionality for “platinum” rating (Zayas, 2017) as it has a peak story drift ratio of 0.15% and a median floor spectral acceleration of 0.3g. The SMF design does not meet the criteria of the standard for continued functionality as the peak story drift ratio is 0.87%.
Table 2-2 Isolator Displacement, Peak Story Drift Ratio and Base Shear Force for Braced Frame

<table>
<thead>
<tr>
<th>Earthquake</th>
<th>Quantity</th>
<th>Lower Bound Friction</th>
<th>Upper Bound Friction</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>RHA Base Shear X (kip)</td>
<td>514.8</td>
<td>705.0</td>
</tr>
<tr>
<td></td>
<td>RHA Base Shear Y (kip)</td>
<td>485.1</td>
<td>706.0</td>
</tr>
<tr>
<td></td>
<td>ELF Base Shear (kip)</td>
<td>699.7</td>
<td>799.4</td>
</tr>
<tr>
<td></td>
<td>Design Base Shear (kip) per ASCE/SEI 7-10</td>
<td></td>
<td>727.6</td>
</tr>
<tr>
<td></td>
<td>ELF Peak Story Drift Ratio</td>
<td></td>
<td>0.0018</td>
</tr>
<tr>
<td>MCE_R</td>
<td>RHA Base Shear X (kip)</td>
<td>796.0</td>
<td>852.7</td>
</tr>
<tr>
<td></td>
<td>RHA Base Shear Y (kip)</td>
<td>687.3</td>
<td>856.5</td>
</tr>
<tr>
<td></td>
<td>ELF Base Shear (kip)</td>
<td>1049.5</td>
<td>1212.5</td>
</tr>
<tr>
<td></td>
<td>Design Base Shear (kip) per ASCE/SEI 7-16</td>
<td></td>
<td>883.5</td>
</tr>
<tr>
<td></td>
<td>ELF Peak Story Drift Ratio</td>
<td></td>
<td>0.0018</td>
</tr>
<tr>
<td></td>
<td>RHA Isolator Resultant Displacement (in)</td>
<td>21.1</td>
<td>13.6</td>
</tr>
<tr>
<td></td>
<td>ELF Isolator Displacement (in)</td>
<td>25.1</td>
<td>15.8</td>
</tr>
<tr>
<td></td>
<td>D_M (in)</td>
<td></td>
<td>21.1</td>
</tr>
</tbody>
</table>

Base shear force is per frame

Table 2-3 Isolator Displacement, Peak Story Drift Ratio and Base Shear Force for Moment Frame

<table>
<thead>
<tr>
<th>Earthquake</th>
<th>Quantity</th>
<th>Lower Bound Friction</th>
<th>Upper Bound Friction</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>RHA Base Shear X (kip)</td>
<td>515.5</td>
<td>726.3</td>
</tr>
<tr>
<td></td>
<td>RHA Base Shear Y (kip)</td>
<td>491.7</td>
<td>656.8</td>
</tr>
<tr>
<td></td>
<td>ELF Base Shear (kip)</td>
<td>699.7</td>
<td>799.4</td>
</tr>
<tr>
<td></td>
<td>Design Base Shear (kip) per ASCE/SEI 7-10</td>
<td></td>
<td>727.6</td>
</tr>
<tr>
<td></td>
<td>ELF Peak Story Drift Ratio</td>
<td></td>
<td>0.0148</td>
</tr>
<tr>
<td>MCE_R</td>
<td>RHA Base Shear X (kip)</td>
<td>757.7</td>
<td>885.8</td>
</tr>
<tr>
<td></td>
<td>RHA Base Shear Y (kip)</td>
<td>695.7</td>
<td>822.1</td>
</tr>
<tr>
<td></td>
<td>ELF Base Shear (kip)</td>
<td>1049.5</td>
<td>1212.5</td>
</tr>
<tr>
<td></td>
<td>Design Base Shear (kip) per ASCE/SEI 7-16</td>
<td></td>
<td>883.5</td>
</tr>
<tr>
<td></td>
<td>ELF Peak Story Drift Ratio</td>
<td></td>
<td>0.0144</td>
</tr>
<tr>
<td></td>
<td>RHA Isolator Resultant Displacement (in)</td>
<td>20.4</td>
<td>13.7</td>
</tr>
<tr>
<td></td>
<td>ELF Isolator Displacement (in)</td>
<td>25.1</td>
<td>15.8</td>
</tr>
<tr>
<td></td>
<td>D_M (in)</td>
<td></td>
<td>20.4</td>
</tr>
</tbody>
</table>

Base shear force is per frame
Table 2-4 Sections of Columns and Braces of SCBF and SMF in Isolated and Non-Isolated Buildings

<table>
<thead>
<tr>
<th>Story</th>
<th>SCBF</th>
<th>SMF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASCE 7-10</td>
<td>ASCE 7-16</td>
</tr>
<tr>
<td></td>
<td>Isolated</td>
<td>Non-isolated</td>
</tr>
<tr>
<td></td>
<td>$E=1.0$</td>
<td>$E=1.5$</td>
</tr>
<tr>
<td>0</td>
<td>Column</td>
<td>W12x35</td>
</tr>
<tr>
<td></td>
<td>Brace</td>
<td>HS3 6x237</td>
</tr>
<tr>
<td>5</td>
<td>Column</td>
<td>W12x35</td>
</tr>
<tr>
<td></td>
<td>Brace</td>
<td>HS6 6x0.375</td>
</tr>
<tr>
<td>4</td>
<td>Column</td>
<td>W12x58</td>
</tr>
<tr>
<td></td>
<td>Brace</td>
<td>HS6 875x0.5</td>
</tr>
<tr>
<td>3</td>
<td>Column</td>
<td>W12x58</td>
</tr>
<tr>
<td></td>
<td>Brace</td>
<td>HS6 875x0.5</td>
</tr>
<tr>
<td>2</td>
<td>Column</td>
<td>W12x96</td>
</tr>
<tr>
<td></td>
<td>Brace</td>
<td>HS7 5x0.5</td>
</tr>
<tr>
<td>1</td>
<td>Column</td>
<td>W12x96</td>
</tr>
<tr>
<td></td>
<td>Brace</td>
<td>HS7 5x0.5</td>
</tr>
</tbody>
</table>

Table 2-5 Sections of Beams of SCBF and SMF in Isolated and Non-Isolated Buildings

<table>
<thead>
<tr>
<th>Floor</th>
<th>SCBF</th>
<th>SMF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASCE 7-10</td>
<td>ASCE 7-16</td>
</tr>
<tr>
<td></td>
<td>Isolated</td>
<td>Non-isolated</td>
</tr>
<tr>
<td></td>
<td>$E=1.0$</td>
<td>$E=1.5$</td>
</tr>
<tr>
<td>Roof</td>
<td>W18x50</td>
<td>W18x50</td>
</tr>
<tr>
<td>6</td>
<td>W18x50</td>
<td>W18x50</td>
</tr>
<tr>
<td>5</td>
<td>W18x50</td>
<td>W18x50</td>
</tr>
<tr>
<td>4</td>
<td>W18x50</td>
<td>W18x50</td>
</tr>
<tr>
<td>3</td>
<td>W18x50</td>
<td>W18x50</td>
</tr>
<tr>
<td>2</td>
<td>W18x50</td>
<td>W18x50</td>
</tr>
<tr>
<td>1</td>
<td>W18x50</td>
<td>W18x50</td>
</tr>
</tbody>
</table>
Figure 2-4 presents representative pushover curves for the analyzed SCBF. The model used is described in Section 3. The results shown represent the base shear force versus the roof displacement of half of the building when the lateral force pattern used in the analysis is proportional to the floor mass times the floor modal displacement. The pushover curves of the non-isolated and six isolated braced frames are shown. The latter apply for the case of isolator TFP-1 with $D_{\text{Capacity}}=20.4\text{in (}D_{\text{M}}\text{)}$, $D_{\text{Ultimate}}=26.9\text{in (}1.3D_{\text{M}}\text{)}$ (see Figures 2-2 and 2-3) with various values of the R_I factor reflecting increasing strengths in the superstructure per ASCE/SEI 7-10 ($R_I=1$, 1.5 and 2) and ASCE/SEI 7-16 ($R_I=1$ and 2). Also, the case of the minimally designed frame ($R_I=2$) per ASCE/SEI 7-10 and with a moat wall placed at a distance equal to $D_{\text{Capacity}}=20.4\text{in (}D_{\text{M}}\text{)}$ is presented. The properties of the isolators are those of the lower bound condition per Table 2-1. The graphs indicate the point when the isolator failed (by collapse of its internal parts). Each pushover curve is shown beyond the isolator collapse point (in dashed line) to denote the behavior when isolators of unlimited ultimate displacement but the same D_{Capacity} (=20.4in) are assumed. Another point on the pushover curves shows the base shear and roof displacement when the maximum story drift reaches the limit of 5%, which is presumed to be the ultimate drift for the braced frame. Quantity x denotes the story at which the maximum drift occurs (first story for all cases).

![Pushover Curves of SCBF in Case of Isolator TFP-1 with $D_{\text{Capacity}}=D_{\text{M}}=20.4\text{in}$](image)
An immediate observation in these pushover curves is that failure of the isolator occurs prior to failure in the superstructure only in the case of the strongest frame designed for $R_I=1$ in the MCE$_R$. This behavior is the result of delayed inelastic action in the superstructure as R_I is reduced, which in turn results in increased demand for isolator displacement. When the structure yields, the isolators stop deforming. This demonstrates that increases in the strength of the superstructure must be accompanied by increases in the displacement capacity of the isolators.

An important observation is on the shape of the pushover curves. While the shape of the curve for the non-isolated structure can be reasonably approximated by an elastoplastic representation, the pushover curves of the isolated structures cannot. This observation led the authors to avoid the use of the simplified procedure of FEMA P-695 (FEMA, 2009) for accounting for the spectral shapes effects as that would have required an elastoplastic representation of the pushover curves. Instead, a direct procedure was used for the estimation of the spectral shape effects. We should note that in examples of collapse performance evaluation of isolated structure in FEMA P-695 (FEMA, 2009) and in Masroor and Mosqueda (2015), stiffening behavior as that shown in Figure 2-4 was not considered so that the pushover curves could be used in the application of the simplified procedure for spectral shape effect estimation. While this is inappropriate given the nature of the pushover curves seen in Figure 2-4, errors in the estimation of the spectral shape effects must be small as the spectral shape factors estimates by direct procedures in this report are not very different from those of the aforementioned studies based on the simplified procedure of FEMA P-695.

Important in Figure 2-4 is the behavior of the system with a moat wall, which has a pushover curve that is essentially the same as the pushover curve of the system with just stiffening FP isolators. It should be noted that for the analysis the stiffness of the moat wall was assumed to be 1000 times larger than the stiffness of the TFP-1 isolator in the stiffening regime (see Figure 2-3), although use of smaller stiffness values did not produce any notably different results. The reason for this behavior is that inelastic action in the superstructure commences shortly after entering the stiffening regime of the isolator or after engaging the moat wall. This is better illustrated in the pushover curves of additional cases with moat walls that are presented in Figure 2-5. Only cases of $R_I=2$ in the MCE$_R$ (per ASCE/SEI 7-16) are considered with:

1) The minimally designed isolator TFP-1 without a moat wall and with a moat wall at the minimum distance D_M and then at a distance of $1.25D_M$. In the latter case, placing the moat wall (at $1.25D_M$) which is just short of the ultimate displacement capacity of the isolator ($1.3D_M$) would appear appropriate. However, it makes no difference in the pushover curves as the superstructure undergoes inelastic action prior to engaging the moat wall and the
isolators stop deforming. That is, the moat wall is not needed. It could have been needed if the superstructure was stronger (R_t factor less than 2) but the location of the wall would have depended on the superstructure strength.

2) The enhanced capacity isolator TFP-2 without a moat wall and with a moat wall placed at a distance of $1.25D_M$, which is the same as the displacement capacity of the isolator at initiation of stiffening.

![Figure 2-5 Pushover Curves of SCBF in Case of Isolators TFP-1 with $D_{\text{Capacity}}=20.4\text{in}$ ($=D_M$) and TFP-2 with $D_{\text{Capacity}}=26.1\text{in}$ ($=1.25D_M$) and Moat Walls Placed at Distances D_M and $1.25D_M$](image)

The pushover curves in Figure 2-5 demonstrate that for a design with $R_t=2$ (for MCE$_R$) per ASCE/SEI 7-16 (also in Figure 2-4 the pushover curves for designs with the TFP-1 isolator and with and without a moat wall placed at distance at D_M) failure occurs due to excessive deformation in the superstructure and not by failure of the isolators. Also, the pushover curves show small differences when a moat wall is added by comparison to the system without the moat wall provided that the moat wall is placed at a distance equal to D_{Capacity} of the isolator (i.e., isolator TFP-1 with $D_{\text{Capacity}}=D_M$ and moat wall at D_M or isolator TFP-2 with $D_{\text{Capacity}}=1.25D_M$ and moat wall at $1.25D_M$). Accordingly, we expect that the addition of the moat wall will not significantly affect the probability of collapse by comparison to the use of triple FP isolators with stiffening behavior. Simply the stiffness for displacements beyond D_{Capacity} is different but not substantially different.
as seen in Figure 2-5. Note that while in the analyses the stiffness of the moat wall was assumed equal to 1000 times that of the FP isolator in the stiffening regime, the difference in stiffness seen in Figures 2-4 and 2-5 is much less. This is due to the fact that the total stiffness is controlled by the stiffness of the yielding superstructure which is much less than that of the moat wall. This behavior is expected to dominate as long as collapse of the structure is not controlled by collapse of the isolators. However, when collapse of the structures is controlled by collapse of the isolators, it is expected that the use of moat walls may reduce the probability of collapse. Examples presented in Section 4 show this to be sometimes the case.

While the results in Figures 2-4 and 2-5 apply for the SCBF, the discussion and conclusions also apply for the SMF. Figure 2-6 shows pushover curves for the SMF. The cases of stiffening isolators and moat walls result in even closer curves than those of the SCBF in Figure 2-5. Nevertheless, results presented in Section 4 show that for the SMF the probability of collapse is reduced when moat walls are used by comparison to the case of the use of equivalent stiffening triple FP isolators. While in the two cases the probabilities of collapse are very low, the difference is due to differences in the mechanisms of collapse: failure of the superstructure in the case of use of moat walls and collapse of the isolators in the case of using stiffening isolators without moat walls. This behavior is exaggerated when the R_1 factor is reduced so that inelastic action in the superstructure is delayed and there are larger isolator displacement demands.
Figure 2-6 Pushover Curves of SMF in Case of Isolators TFP-1 with $D_{\text{capacity}}=20.4\text{in} (=D_M)$ and TFP-2 with $D_{\text{capacity}}=26.1\text{in} (=1.25D_M)$ and Moat Walls Placed at Distances D_M and $1.25D_M$.
Analysis was performed in program OpenSees (McKenna, 1997) using a two-dimensional representation of the structure as illustrated in Figures 3-1 and 3-2. Figure 3-1 presents the model for the braced isolated building. One of the two seismic force-resisting frames in a principal direction was explicitly modelled with details that will be described below. Each of the columns of the seismic force-resisting frame was supported by one exterior isolator. Half of the remaining building (two rows of columns) was also modelled with all its beams simply connected to the columns but for the connections of the girders on top of the isolators. Each of the columns of the gravity frame was supported by two interior isolators. The gravity and seismic force-resisting frames were placed parallel to each other and interconnected with horizontal rigid links at the locations marked in Figure 3-1 with “H” and with rigid links in the horizontal, vertical and rotational directions at the locations marked “H”, “V” and “R”, respectively. Tributary weights are also shown in the figure. Figure 3-2 presents the model for a non-isolated building where now is possible to locate the columns of the gravity frame at the two sides of the seismic force-resisting frame. The total seismic weight is 6032.7kip for the isolated model and 5090.3kip for the non-isolated model.

Figure 3-1 Representation of Gravity and Seismic Force-Resisting Frames of Isolated Building
Columns, girders and braces were modeled based on Uriz and Mahin (2008) and Chen and Mahin (2012). The column and girder sections were modeled with eight fibers for each flange and with eight fibers for the web as shown in Figure 3-3. HSS round hollow tubes used for the braces were modeled with two fibers along the thickness and 16 fibers along the perimeter for a total of 32 fibers. Force-based nonlinear beam-column elements with four integration points were used to model the spread of plasticity across each fiber. The Giuffre-Menegotto-Pinto model (“Steel02” material in OpenSees; Fillippou et al., 1983) was used for the braces, girders and columns to describe smooth bi-linear behavior. The strain-hardening modulus was assigned values of 3% of the elastic modulus for the beams, 0.2% for the columns and 1% for the braces.
The connections of girders to columns and to braces were modeled as shown in Figure 3-4. The connections between braces and their gusset plates were modeled as pins with zero-length as has been used in the many studies (Erduran et al, 2011, Chen and Mahin, 2012). An initial camber of 1% of the effective brace length (see Figure 3-4 for details) was applied at the brace midpoint to initiate buckling (Figure 3-4, bottom left). Gusset plates were modeled using the “Elastic Beam Column” element in OpenSees with 10 times the area and moment of inertia of the connecting brace element as recommended by Erduran et al (2011). Panel zones were modeled as essentially rigid by using the “Elastic Beam Column” element with length equal to half the section depth and with 10 times the area and moment of area of the corresponding beam or column element. Member capacities were calculated using the expected yield strength of the materials: 55ksi for beams and columns and 58.8ksi for braces.

Figure 3-4 Details of Model of Connections
Failure of braces, girders and columns was not explicitly modelled. Rather, the deteriorating behavior of the elements was modelled and failure was implicitly accounted for by considering limits on the story drift.

Inherent damping in the isolated buildings was modelled using the “modal damping” (Chopra and McKenna, 2016) to provide a damping ratio of 0.02 in all modes but the first two (“isolated” modes) for which the damping ratio was set equal to zero per directions in Sarlis and Constantinou (2011). For the non-isolated buildings, the damping ratio was specified as 0.02 in all modes. In the modal damping model, the elastic properties of the structure are used to construct a damping matrix, which is then used in the RHA. The application of the procedure for the isolated building model is complicated by the fact that the isolator models are extremely stiff in the elastic range (the elastic stiffness is the friction force at initiation of motion divided by some very small “yield” displacement which was 0.05in). Instead, the correct stiffness of the isolators for the construction of the damping matrix is the post-elastic stiffness (or the stiffness when friction is disregarded and sliding occurs on the main concave surfaces) (Sarlis and Constantinou, 2011). Accordingly, horizontal, vertical and rotational springs were placed below each isolator element to represent the desired stiffness in the horizontal direction only for the construction of the damping matrix. These springs were restrained to only deflect by 0.001inch so that under inelastic conditions in the nonlinear RHA they do not affect the behavior of the isolators.

The model used in the analysis of the SMF was developed with due considerations for the ultimate behavior of the components and large rotation and displacement effects. Important details of the model follow (more details are presented in Kitayama and Constantinou, 2016): (a) beams and columns were modelled using the Modified Ibarra-Krawinkler bilinear-hysteretic model (Lignos and Krawinkler, 2011), which is capable of simulating deteriorating hysteretic moment-rotation relationship, (b) columns were modeled using a concentrated plasticity bi-linear hysteretic model without strength or stiffness deterioration and with a ratio of elastic to post-elastic stiffness of 0.002 and (c) plastic hinges in columns were located at beam faces and plastic hinges at the column bases were located at a distance equal to the column depth from the base.

The triple FP isolators were modelled using a modification of the series model (Fenz and Constantinou, 2008a) in order to simulate the ultimate behavior of the isolator as predicted by the theory of (Sarlis and Constantinou, 2016), including uplift. Specifically, the modified series model includes the stiffness of the restraining ring k_r and its ultimate capacity. The shear stiffness of the restraining ring was calculated by the following equation, which is based on the shear strength of a 60° wedge of the ring divided by an appropriate value of a yield displacement Y_r:

$$
k_r = \frac{\text{shear strength of a 60° wedge}}{\text{appropriate value of a yield displacement}}$$
In Equation (3-1), \(b \) and \(t_r \) are the outside diameter and thickness of the restraining ring, respectively, and \(F_y \) is the shear yield stress of the material (25ksi is a representative value for ductile iron per Sarlis and Constantinou, 2016). The strength of the restraining ring is equal to \(k_r F_y \). The value of \(Y_r \) was set equal to the thickness \(t_r \). The restrainer is considered acting as long as the restraining ring deformation is less than the thickness \(t_r \). When this displacement is exceeded for the first time, the restraining ring is removed from the model.

The model is assumed valid until the displacement reaches a critical value, which results in collapse or overturning of the internal parts of the bearing. This displacement is denoted as \(D_{\text{Ultimate}} \) and is equal to the displacement capacity \(D_{\text{Capacity}} \) as predicted by the theory in (Fenz and Constantinou, 2008\(^b\)) plus half of the diameter of the rigid slider (see Figures 2-2 and 2-3). Note that the model does not explicitly simulate collapse. Simply when this limit of displacement is exceeded, the isolator is considered failed and execution of the program is terminated. Given that collapse is not directly simulated, a user of this model may opt to use a different limit for the ultimate displacement as for example the one calculated by more advanced models in (Sarlis and Constantinou, 2016). Moreover, uplift of the isolators was modelled. The interested reader is referred to (Kitayama et al., 2016) for more details of the modified series model. Note that while there are more detailed models that can simulate failure of the isolator (Sarlis and Constantinou, 2016; Bao et al., 2017), these models are computationally very complex to be used in this study where over 10,000 nonlinear RHA were conducted.

Failure of the analyzed structures was assumed when any of the following conditions occurred: (a) the maximum story drift ratio exceeded 0.02 (Masnoor and Mosqueda, 2015) for buildings with OCBF, 0.05 (Sabelli et al., 2013) for buildings with SCBF and 0.1 (FEMA, 2000) for buildings with SMF, (b) the isolator displacement exceeded \(D_{\text{Ultimate}} \), (c) the triple FP isolator uplift displacement exceeded the height of the restraining ring (1.5in), (d) there was instability detected by termination of the analysis program or (e) the slope of the \(S_o(T_i) \) vs maximum story drift ratio curve (e.g., the slope of the incremental dynamic analysis or IDA curve) was less than 0.1 times the slope of the same curve in the initial analysis (a condition that indicates a “flat” IDA curve).

It should be noted that the definition of failure of the isolated structure includes the case of failure of the isolators either by excessive lateral displacement or uplift. It may be argued that failure of the isolators does not lead to collapse of the structure if proper detailing is provided to prevent collapse of the structure above the isolators, such as when a large pedestal or foundation area are
provided, and provisions are made to raise the structure and replace the isolators. Such cases, while a good practice, are not considered as they are not required by ASCE/SEI-7 and the behavior is not fully understood.
SECTION 4
STRUCTURAL COLLAPSE EVALUATION

Structural collapse of the developed designs was evaluated based on FEMA P695 (2009) using the set of 44 far-field ground motions in this FEMA document. First, IDA (Vamvatsikos and Cornell, 2002) was conducted and data were obtained and used to calculate the collapse capacity. This collapse capacity does not include the spectral shape effects, which are known to be important (Haselton et al, 2011; Baker and Cornell, 2006). While FEMA (2009) includes a simple procedure for accounting for these effects, the procedure is based on the analysis of non-isolated concrete moment frame and wood frame buildings. Application of the procedure to seismically isolated buildings given the behavior depicted in the pushover curves of Figures 2-4 to 2-6 is problematic as discussed in Section 2. A specific study, presented in Appendix A, was conducted to determine the median collapse spectral acceleration at the fundamental period with the spectral shape effects accounted for based on the approach proposed by Haselton et al (2011). The median collapse spectral acceleration at the fundamental period $\tilde{a}_{Col, adj}(T_1)$, as adjusted for the spectral shape effects, is provided by Equation (4-1) in which factors c_0 and c_1 were obtained by regression analysis of IDA data and are presented in Tables 4-1 and 4-2.

$$\tilde{a}_{Col, adj}(T_1) \ (units \ g) = \exp[c_0 + c_1 \cdot \bar{\epsilon}_0(T_1)] \quad (4-1)$$

Values of period T_1 were 0.524 sec for the non-isolated SCBF, 1.186 sec for non-isolated SMF and 3.66 sec ($= T_M$, which is the effective period of the isolated structure in the MCE) for all isolated structures. Values of the target epsilon $\bar{\epsilon}_0(T_1)$ are 1.44 for all isolated structures, 1.46 for the non-isolated SCBF and 1.71 for the non-isolated SMF (see Table A-1).

Tables 4-1 and 4-2 present the results of the collapse evaluation for all considered systems in terms of parameters c_0 and c_1 of Equation (4-1), the median collapse capacity, $\tilde{a}_{Col}(T_1)$, without due consideration for the spectral shape effects (as directly obtained from the IDA results), the median collapse capacity with due consideration for the spectral shape effects per Equation (4-1), $\tilde{a}_{Col, adj}(T_1)$, the dispersion coefficient due to the record-to-record variability (as obtained from the IDA results), β_{RTR}, and the assumed total system collapse uncertainty β_{TOT}. The adjusted collapse margin ratio or $ACMR$ per FEMA P695 is given by:

$$ACMR = \frac{\tilde{a}_{Col, adj}(T_1)}{s_{a_{MCE}}(T_1)} \quad (4-2)$$
In Equation (4-2), $S_{aMCE}(T_1)$ is the MCER spectral acceleration at the fundamental period $T_1 (= T_M$ for isolated structures). Values of $S_{aMCE}(T_1)$ are 1.5g for the non-isolated SCBF structure ($T_1=0.524$sec), 0.759g for the non-isolated SMF structure ($T_1=1.186$sec) and 0.246g for all isolated structures ($T_1=T_M=3.66$sec).

The collapse margin ratio CMR without the adjustment for spectra shape effects is given by:

$$ CMR = \frac{\bar{S}_aCol(T_1)}{S_{aMCE}(T_1)} $$

(4-3)

The spectral shape factor or SSF is given by:

$$ SSF = \frac{\bar{S}_aCol,adj(T_1)}{\bar{S}_aCol(T_1)} = \frac{ACMR}{CMR} $$

(4-4)

The total system uncertainty β_{TOT} was calculated using Equation (4-5) per FEMA P695 (2009) where each component of uncertainty is related to a quality rating.

$$ \beta_{TOT} = \sqrt{\beta_{RTR}^2 + \beta_{DR}^2 + \beta_{TD}^2 + \beta_{MDL}^2} $$

(4-5)

In Equation (4-5), β_{DR} is the design requirements-related collapse uncertainty, β_{TD} is the test data-related collapse uncertainty and β_{MDL} is the modeling-related collapse uncertainty. For the seismically isolated structures with SCBF and SMF the following quality ratings and related uncertainties were used: good with $\beta_{MDL}=0.2$ for modeling; good with $\beta_{TD}=0.2$ for test data and superior with $\beta_{DR}=0.1$ for design requirements (same assumptions made in Masroor and Mosqueda, 2015 and FEMA, 2009). For the non-isolated structure with SCBF, $\beta_{MDL}=0.2$, $\beta_{TD}=0.2$, and $\beta_{DR}=0.2$ were used based on Chen and Mahin (2012) and NIST (2010). For the non-isolated structure with SMF, $\beta_{MDL}=0.2$, $\beta_{TD}=0.2$, and $\beta_{DR}=0.1$ were selected based on Elkady and Lignos (2014) and NIST (2010). Note that the assumptions made for the calculation of the total uncertainty in the seismically isolated structures have been also used in the case of analysis with a moat wall for which there is considerable uncertainty on its behavior, primarily on the basis of the observation that analyses with drastically different moat wall stiffness did not result in significant differences. Nevertheless, the interested reader may adjust the values of the uncertainty parameters and recalculate the probabilities of collapse without the need for additional analyses.
Instead of values of the ACMR, Tables 5 and 6 present the conditional probability of collapse caused by the MCE\(_R\) or \(P_{\text{COL,MCE}}\), calculated as:

\[
P_{\text{COL,MCE}} = \int_0^1 \frac{1}{s\beta_{\text{TOT}} \sqrt{2\pi}} \exp \left[- \frac{(\ln s - \text{ACMR})^2}{2\beta_{\text{TOT}}^2} \right] ds
\]

(4-6)

Note that the probability of collapse without the spectral shape effects is also given by Equation (4-6) but with ACMR replaced by CMR. Also, Equation (4-6) may be used for any value of the system uncertainty \(\beta\) by replacing \(\beta_{\text{TOT}}\) with \(\beta\).

The calculated probabilities of collapse depend on the assumed values of uncertainty parameters. For example, if the total uncertainty \(\beta_{\text{TOT}}\) is assumed equal to 0.3, as in Shao et al. (2017), the probability of collapse for the isolated SCBF system with \(R_I=1.0\) in the DE and TFP-3 isolator of \(D_{\text{Capacity}}=1.5D_M\) would become 2.7% instead of 4.5% (see Table 4-1). The values of probabilities of collapse in the tables are based on reasonably conservative assumptions on the values of uncertainties. In addition, the results in Tables 4-1 and 4-2 are based on analyses using the lower bound values of friction for the isolators, which systematically resulted in the largest probabilities of collapse. Results are presented for one case using the upper bound values of friction per Table 2-1 to demonstrate the effect. The reason for the reduction in the probability of collapse is the fact that failure is dominated by excessive isolator displacements (they lead to isolator failure or to superstructure collapse after the isolators enter the stiffening regime) and higher values of friction result in smaller displacement demands.
Table 4-1 Results of Collapse Fragility Analysis for Buildings with SCBF and OCBF

<table>
<thead>
<tr>
<th>System</th>
<th>Coeffs. in Eq. (2)</th>
<th>$S_{acol}(T1)$ (g) (w/o epsilon adjustment)</th>
<th>$S_{acol,adj}(T1)$ (g) (w. epsilon adjustment)</th>
<th>β_{TOT} (β_{ER})</th>
<th>Prob. Collapse in MCE$_R$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c_0</td>
<td>c_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_I=1.0$, TFP-1</td>
<td>-1.219</td>
<td>0.146</td>
<td>0.281</td>
<td>0.365</td>
<td>0.366 (0.209)</td>
</tr>
<tr>
<td>$R_I=1.0$, TFP-2</td>
<td>-1.083</td>
<td>0.129</td>
<td>0.320</td>
<td>0.408</td>
<td>0.350 (0.181)</td>
</tr>
<tr>
<td>*$R_I=1.0$, TFP-3</td>
<td>-0.990</td>
<td>0.115</td>
<td>0.355</td>
<td>0.438</td>
<td>0.341 (0.163)</td>
</tr>
<tr>
<td>*$R_I=1.0$, TFP-3, Moat Wall at 1.5D_M (1000xstiffness)</td>
<td>-1.019</td>
<td>0.138</td>
<td>0.347</td>
<td>0.440</td>
<td>0.353 (0.187)</td>
</tr>
<tr>
<td>*$R_I=1.0$, TFP-3 (Upper bound friction)</td>
<td>-0.551</td>
<td>0.156</td>
<td>0.557</td>
<td>0.729</td>
<td>0.391 (0.255)</td>
</tr>
<tr>
<td>$R_I=1.5$, TFP-1</td>
<td>-1.241</td>
<td>0.121</td>
<td>0.271</td>
<td>0.344</td>
<td>0.352 (0.185)</td>
</tr>
<tr>
<td>$R_I=1.5$, TFP-2</td>
<td>-1.138</td>
<td>0.109</td>
<td>0.307</td>
<td>0.375</td>
<td>0.343 (0.166)</td>
</tr>
<tr>
<td>$R_I=1.5$, TFP-3</td>
<td>-1.056</td>
<td>0.097</td>
<td>0.331</td>
<td>0.400</td>
<td>0.339 (0.158)</td>
</tr>
<tr>
<td>$R_I=2.0$, TFP-1</td>
<td>-1.262</td>
<td>0.123</td>
<td>0.275</td>
<td>0.338</td>
<td>0.348 (0.176)</td>
</tr>
<tr>
<td>$R_I=2.0$, TFP-1, Moat Wall at D_M (50xstiffness)</td>
<td>-1.272</td>
<td>0.138</td>
<td>0.272</td>
<td>0.342</td>
<td>0.353 (0.187)</td>
</tr>
<tr>
<td>$R_I=2.0$, TFP-1, Moat Wall at D_M (1000xstiffness)</td>
<td>-1.286</td>
<td>0.166</td>
<td>0.262</td>
<td>0.351</td>
<td>0.374 (0.224)</td>
</tr>
<tr>
<td>$R_I=2.0$, TFP-2, Moat Wall at D_M (1000xstiffness)</td>
<td>-1.196</td>
<td>0.136</td>
<td>0.293</td>
<td>0.368</td>
<td>0.357 (0.194)</td>
</tr>
<tr>
<td>$R_I=2.0$, TFP-3</td>
<td>-1.083</td>
<td>0.093</td>
<td>0.323</td>
<td>0.387</td>
<td>0.340 (0.159)</td>
</tr>
</tbody>
</table>

Designed per ASCE 7-16

<table>
<thead>
<tr>
<th>System</th>
<th>Coeffs. in Eq. (2)</th>
<th>$S_{acol}(T1)$ (g) (w/o epsilon adjustment)</th>
<th>$S_{acol,adj}(T1)$ (g) (w. epsilon adjustment)</th>
<th>β_{TOT} (β_{ER})</th>
<th>Prob. Collapse in MCE$_R$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c_0</td>
<td>c_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_I=1.0$, TFP-1</td>
<td>-1.302</td>
<td>0.129</td>
<td>0.253</td>
<td>0.328</td>
<td>0.356 (0.193)</td>
</tr>
<tr>
<td>$R_I=1.0$, TFP-1, Moat Wall at D_M (1000xstiffness)</td>
<td>-1.154</td>
<td>0.186</td>
<td>0.294</td>
<td>0.412</td>
<td>0.395 (0.257)</td>
</tr>
<tr>
<td>$R_I=1.0$, TFP-2</td>
<td>-1.140</td>
<td>0.114</td>
<td>0.300</td>
<td>0.377</td>
<td>0.350 (0.181)</td>
</tr>
<tr>
<td>$R_I=1.0$, TFP-3</td>
<td>-1.020</td>
<td>0.105</td>
<td>0.341</td>
<td>0.419</td>
<td>0.341 (0.161)</td>
</tr>
<tr>
<td>$R_I=1.0$, TFP-2 OCBF</td>
<td>-1.153</td>
<td>0.105</td>
<td>0.299</td>
<td>0.368</td>
<td>0.346 (0.173)</td>
</tr>
<tr>
<td>$R_I=1.0$, TFP-3 OCBF</td>
<td>-1.060</td>
<td>0.088</td>
<td>0.332</td>
<td>0.393</td>
<td>0.333 (0.145)</td>
</tr>
<tr>
<td>$R_I=2.0$, TFP-1</td>
<td>-1.215</td>
<td>0.139</td>
<td>0.279</td>
<td>0.362</td>
<td>0.357 (0.194)</td>
</tr>
<tr>
<td>$R_I=2.0$, TFP-1, Moat Wall</td>
<td>-1.225</td>
<td>0.172</td>
<td>0.281</td>
<td>0.376</td>
<td>0.378</td>
</tr>
<tr>
<td>System</td>
<td>c_0</td>
<td>c_1</td>
<td>$S_{ACol}(T_i)$ (g) w/o epsilon adjustment</td>
<td>$S_{ACol,adj}(T_i)$ (g) w. epsilon adjustment</td>
<td>β_{TOT} (β_{TR})</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Designed per ASCE 7-10</td>
<td></td>
<td></td>
<td>Coeffs. in Eq. (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_t=1.0$, TFP-1</td>
<td>-1.042</td>
<td>0.177</td>
<td>0.331</td>
<td>0.455</td>
<td>0.387 (0.245)</td>
</tr>
<tr>
<td>$R_t=1.0$, TFP-2</td>
<td>-0.911</td>
<td>0.164</td>
<td>0.383</td>
<td>0.510</td>
<td>0.372 (0.221)</td>
</tr>
<tr>
<td>$R_t=1.0$, TFP-3</td>
<td>-0.827</td>
<td>0.154</td>
<td>0.398</td>
<td>0.546</td>
<td>0.365 (0.208)</td>
</tr>
<tr>
<td>$R_t=1.0$, TFP-3 (Upper bound friction)</td>
<td>-0.402</td>
<td>0.190</td>
<td>0.635</td>
<td>0.891</td>
<td>0.428 (0.305)</td>
</tr>
<tr>
<td>$R_t=1.5$, TFP-1</td>
<td>-0.996</td>
<td>0.141</td>
<td>0.373</td>
<td>0.453</td>
<td>0.378 (0.230)</td>
</tr>
<tr>
<td>$R_t=1.5$, TFP-2</td>
<td>-0.896</td>
<td>0.121</td>
<td>0.393</td>
<td>0.486</td>
<td>0.368 (0.213)</td>
</tr>
<tr>
<td>$R_t=1.5$, TFP-3</td>
<td>-0.855</td>
<td>0.098</td>
<td>0.411</td>
<td>0.490</td>
<td>0.360 (0.199)</td>
</tr>
<tr>
<td>$R_t=2.0$, TFP-1</td>
<td>-0.998</td>
<td>0.134</td>
<td>0.364</td>
<td>0.447</td>
<td>0.385 (0.241)</td>
</tr>
<tr>
<td>$R_t=2.0$, DC-1 no restraining ring</td>
<td>-1.462</td>
<td>0.1053</td>
<td>0.223</td>
<td>0.270</td>
<td>0.360 (0.200)</td>
</tr>
<tr>
<td>$R_t=2.0$, DC-2 no restraining ring</td>
<td>-1.307</td>
<td>0.091</td>
<td>0.266</td>
<td>0.309</td>
<td>0.357 (0.194)</td>
</tr>
<tr>
<td>$R_t=2.0$, TFP-2</td>
<td>-0.954</td>
<td>0.128</td>
<td>0.390</td>
<td>0.463</td>
<td>0.377 (0.229)</td>
</tr>
<tr>
<td>$R_t=2.0$, TFP-3</td>
<td>-0.892</td>
<td>0.091</td>
<td>0.390</td>
<td>0.467</td>
<td>0.358 (0.195)</td>
</tr>
</tbody>
</table>

Designed per ASCE 7-16						
$R_t=1.0$, TFP-1	-1.143	0.155	0.292	0.398	0.371 (0.218)	9.68
$R_t=1.0$, TFP-1, Moat Wall at D_M (1000Xstiffness)	-0.619	0.233	0.537	0.753	0.442 (0.325)	0.57
$R_t=1.0$, TFP-2	-1.008	0.142	0.327	0.448	0.374 (0.223)	5.46
$R_t=1.0$, TFP-3	-0.896	0.131	0.377	0.493	0.369 (0.215)	2.98
$R_t=2.0$, TFP-1	-1.037	0.191	0.333	0.467	0.389 (0.247)	4.97

* Design meets criteria for continued functionality per Zayas et al (2017)
Note that the results in Tables 4-1 and 4-2 include cases in which moat walls are used. In Table 4-1 two cases are presented in which the moat wall stiffness is assumed to be 50 times or 1000 times larger than the stiffness of the TFP-1 isolator in the stiffening regime (see Figures 2-2 and 2-3). The two cases result in essentially the same results (see also pushover curves in Figures 2-4 to 2-6 and the related commentary in Section 2 for explanation). Accordingly, other analyses with moat wall make use of the stiffness multiplier of 1000.

In discussing the results of Tables 4-1 and 4-2, the target reliabilities that are stipulated in Section 1.3.1.1 of ASCE 7-16 (ASCE, 2016) can be used. This requires conditional probabilities of collapse caused by the MCEr not to exceed 10% for typical buildings of risk category I or II, 2.5% for essential buildings of risk category IV and 5% for other structures. The following are observed:

1) SCBF buildings designed by the minimum criteria of ASCE/SEI 7-10 or 7-16 (isolator TFP-1 or DC-1, or TFP-1 with moat wall placed at distance D_M; $R_I=2.0$) have unacceptable probabilities of collapse in the MCEr (exceeding 10%). These probabilities of collapse are also larger than that of the non-isolated comparable structure designed by the minimum criteria of ASCE/SEI 7, which has an acceptable probability of collapse in the MCEr.

2) The probability of collapse decreases with increasing isolator displacement capacity while R_I is fixed. However, the probability of collapse may increase as R_I is reduced while the isolator displacement capacity is fixed. The latter case may appear counterintuitive, as it would be expected that increases in the strength of the superstructure would result in reduction of the probability of collapse. While this is true for non-isolated structures, it is not always true for isolated structures when collapse is dominated by excessive isolator displacement. As the strength of the superstructure is increased, inelastic action in the superstructure is delayed leading to larger isolator displacement demands. Accordingly,
specifications for values of R_I should be consistent with specifications for the displacement capacity of isolators.

3) Use of isolators with $D_{\text{Capacity}}=1.5D_M$ and $D_{\text{Ultimate}}=1.9D_M$ (TFP-3), and designed for any acceptable value of parameter R_I have a probability of collapse that is less than 10%, thus acceptable for typical structures of risk category I and II (ASCE, 2016). However, probabilities of collapse less than 5% as required for important structures can be achieved when $R_I=1$ in the DE per ASCE/SEI 7-10 but not when $R_I=1$ in the MCE$_R$ per ASCE/SEI 7-16. For the latter case, the isolator displacement capacity should be further increased to be consistent with the strength of the superstructure per comments in item 2 above.

4) The use of moat walls (herein investigated for the cases of (a) $R_I=2$, isolator TFP-1 with $D_{\text{Capacity}}=D_M$ and moat wall at D_M or isolator TFP-2 with $D_{\text{Capacity}}=1.25D_M$ and moat wall at $1.25D_M$, and (b) $R_I=1$, isolator TFP-3 with $D_{\text{Capacity}}=1.5D_M$ and moat wall at $1.5D_M$) resulted in essentially the same results on the probability of collapse as analyzed cases without the moat walls for the SCBF. Apparently and as evident in pushover curves presented in Section 2, the stiffening behavior of the triple FP isolators serves a function similar to a moat wall provided that the isolators do not collapse (that is, there is collapse of the superstructure). This is the case for the SCBF in which collapse is controlled by drift in the superstructure, which is limited (5% drift ratio) for the SCBF.

5) The comment in item 2 above on the need for specifications for values of R_I that are consistent with specifications for the displacement capacity of isolators also applies in the case of the use of moat walls. A clear example is the cases of $R_I=1$ or 2 and isolator TFP-1 in Table 4-1 for the SCBF designed by the procedures of ASCE/SEI 7-16. For the case of $R_I=2$, both cases with and without a moat wall placed at D_M result in similar and unacceptable probabilities of collapse of about 13 to 14%. However, when $R_I=1$, the probability of collapse without the moat wall increases to 21% but reduces to about 10% when a wall is utilized.

6) In the case of the SMF, use of moat wall (herein investigated for the cases of $R_I=2$, isolator TFP-1 with $D_{\text{Capacity}}=D_M$ and moat wall at D_M, and isolator TFP-2 with $D_{\text{Capacity}}=1.25D_M$ and moat wall at $1.25D_M$) resulted in a lower probability of collapse than when using the
stiffening isolator, although the probabilities of collapse for both cases are small. Further comments that are presented later in this section attribute the difference to the mode of failure being different in the two cases: collapse of superstructure in the case of the use of moat walls versus collapse of the isolator otherwise. Given that for the SMF the superstructure has significantly larger ability to deform than the SCBF, the probability of collapse is reduced.

7) The importance of the stiffening behavior of the triple FP isolators (or equivalently of some displacement restrainer) is evident in the increase of the probability of collapse when the restrainer ring is removed. (For \(R = 2 \) per ASCE/SEI 7-10, SCBF buildings with TFP-1 and DC-1 isolators have probability of collapse of 18.1% and 27.3%, respectively).

8) The collapse performance of the OCBF design per criteria of ASCE/SEI 7-16 (ASCE, 2016) \((R = 1.0 \text{ in MCEr, isolators with } D_{\text{Capacity}} \geq 1.2D_M)\) is unacceptable as the probability of collapse exceeds 10%. To achieve acceptable probability of collapse the isolator displacement capacity has to be increased to \(D_{\text{Capacity}} = 1.5D_M \). Note that the study of Masroor and Mosquesda (2015) computed a just acceptable probability of collapse (just over 10%) for a 3-story OCBF building designed by criteria that meet the minimum criteria of ASCE/SEI 7-16. The differences are likely due to the differences in height of the two buildings with the taller building of this study having a larger probability of collapse. This observation is consistent with the results of the study of Chimamphant and Kasai (2016).

9) The results in Table 6 for the SMF are qualitatively similar to those for the SCBF but the probabilities of collapse are lower. This is due to the capability of the SMF to deform more than the SCBF before collapse (assumed 10% story drift ratio for SMF and 5% for SCBF). Nevertheless, SMF designed by the minimum criteria of ASCE/SEI 7-10 without a restrainer ring \((R = 2.0, \text{ isolator DC-1})\) still has unacceptable probability of collapse (39.9%). Even when the displacement capacity is increased (design with isolator DC-2), still the probability of collapse is unacceptable (26.3%).

10) All isolated SMF structures of whatever design details have higher probabilities of collapse than the comparable non-isolated design. A question then arises: what does seismic isolation offer? This will be investigated in the next section where studies of the
performance of the studied structures in terms of peak floor acceleration, peak story drift ratio and peak residual drift ratio are presented.

Explanation for the collapse behavior of the studied isolated structures is provided in the results of Figure 4-1 through 4-4 which present the calculated peak isolator displacement when collapse occurs for the SCBF and SMF in the designs with $R_I=1.0$, 1.5 and 2.0 (for the DE, per ASCE/SEI 7-10) and 1.0 and 2.0 (for MCE in ASCE 7-16) and the three cases of TFP isolators. Note that in these figures each ground motion has the seismic intensity that causes collapse. That is, each ground motions is scaled to a different seismic intensity. Each graph contains two types of lines: a dashed line that denote the displacement capacity D_{Capacity} and a solid line that denote the ultimate displacement capacity D_{Ultimate}. Colors are used to distinguish the different size of the considered isolators. Results are presented for each of the 44 motions used in the analysis. The results show that as the R_I factor is increased from the value of 1.0 to 2.0, there is an increasing number of collapses by failure of the superstructure. For example, it may be seen in Figure 4-3 that for the design with $R_I=2.0$, the percentage of cases when the isolator ultimate capacity is exceeded is about 35% in the design with the minimum displacement capacity isolators TFP-1, is 23% in the design with isolators TFP-2 and is 12% in the design with isolators TFP-3. By comparison for the design with $R_I=1.0$ in the same figure, all failures are by failure of the isolators. It is apparent that reducing the R_I factor requires also increases in the displacement capacity of the isolators in order to affect the probability of collapse.

The calculated probability of collapse for the 6-story SCBF of the enhanced design with $R_I=1.0$ and isolators with displacement capacity at initiation of stiffening equal to $1.5D_M$ and an ultimate displacement capacity of $1.9D_M$ are very close to those calculated in the study of Shao et al. (2017) for a 3-story SCBF designed by similar procedures. Particularly, Shao et al (2017) calculated a 2.5% probability of collapse in the MCE when assuming a dispersion factor of 0.3, whereas this study calculated a 4.5% probability of collapse for a dispersion factor of 0.341 as obtained from the analysis and after adjustment for uncertainties. The probability of collapse is 2.7% when a dispersion factor of 0.3 is assumed, thus essentially the same as that of the Shao et al. (2017) study.

The results of this study demonstrate that designing by the minimum requirements of ASCE/SEI 7 may result in unacceptable probabilities of collapse in the MCE. Probabilities of collapse less than 5% in the MCE were achieved for designs with $R_I=1.0$ (either for DE or the MCE) and designing triple FP isolators with a displacement capacity at initiation of stiffening equal to $1.5D_M$ and an ultimate displacement capacity of $1.9D_M$. The stiffening behavior of the isolators or equivalently the use of moat walls is important in preventing collapse. Without it, as when using
double concave isolators without a restrainer ring or moat walls, there are unacceptably high probabilities of collapse. Also, a design with OCBF that satisfies the minimum criteria of ASCE/SEI 7-16 resulted in a marginally unacceptable probability of collapse in the MCEr, which could be improved to acceptable by using isolators with displacement capacity at initiation of stiffening equal to $1.5D_M$ instead of $1.2D_M$.

Figure 4-1 Peak Isolator Displacements at Collapse of Buildings with SCBF Designed for the DE per ASCE/SEI 7-10 and without moat walls
Figure 4-2 Peak Isolator Displacements at Collapse of Buildings with SMF Designed for the DE per ASCE/SEI 7-10 and without moat walls
Figure 4-3 Peak Isolator Displacements at Collapse of Buildings with SCBF Designed for the MCE_R per ASCE/SEI 7-16 and without moat walls
Of interest is to further investigate and compare the results of the cases with moat wall to those without. Table 4-3 presents extended results that were extracted from the condensed Tables 4-1 and 4-2 using Equations 4-3 to 4-6. An observation to be made in the results is on the values of the spectral shape factor SSF which are about 1.2 to 1.4, thus comparable with results based on the simplified method of FEMA P695 (e.g., FEMA, 2009 reports values of about 1.2 and Masroor and Mosqueda, 2015 report values of about 1.1 to 1.5). While these values are relatively small, they have a significant impact on the probabilities of collapse. Data in Table 4-3 for the probability of collapse in the MCE\textsubscript{R} as directly calculated in the incremental dynamic analysis without adjustments for spectral shape effects show large probabilities of collapse which increase when a moat wall is utilized for the SCBF but reduce when a moat wall is utilized for the SMF.

Figures 4-5 to 4-8 provide some additional information on the mode of failure of the systems with and without a moat wall. Like Figures 4-1 to 4-4, the figures present the calculated peak isolator displacement when collapse occurs for each of the 44 motions (each motion is scaled to a different
intensity so that it causes collapse). It is noted that all failures of the system with moat wall occur by failure of the superstructure. The SCBF system without a moat wall in Figure 4-5 has 2 out of 44 cases failing due to excessive isolator displacement (design $R_i=2$ per ASCE 7-10, isolator TFP-1) and 13 out of 44 cases of isolator failure in Figure 4-8 (design $R_i=1$ per ASCE 7-10, isolator TFP-3).

When the spectral shape effects are considered, the probabilities of collapse drastically reduce but then increased again when uncertainties are accounted for based on Equation 4-5. The data used in the calculation of the spectral acceleration at collapse with due consideration of spectra shape effects are presented in Appendix A. They are described by Equation 4-1 with parameters listed in Table 4-1. A review of the data in Appendix A reveals uncertainties in the lines fitted through the data due to the spread in the data and due to the value of the period T_1-the latter affects the value of quantity $\bar{\varepsilon}_0(T_1)$.

Table 4-3 Extended Results of Fragility Analysis for Selected Systems with and without Moat Walls (all cases of wall with x1000 stiffness)

<table>
<thead>
<tr>
<th>System</th>
<th>CMR</th>
<th>ACMR</th>
<th>SSF</th>
<th>(\beta_{RTR})</th>
<th>(\beta_{TOT})</th>
<th>Prob. Collapse in MCE(_R) (%) Without Spectral Shape Effects</th>
<th>Prob. Collapse in MCE(_R) (%) With Spectral Shape Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCBF, (R_I=1.0,) TFP-3 per ASCE 7-10’</td>
<td>1.44</td>
<td>1.78</td>
<td>1.23</td>
<td>0.163</td>
<td>0.341</td>
<td>1.22</td>
<td>14.11</td>
</tr>
<tr>
<td>SCBF, (R_I=1.0,) TFP-3 per ASCE 7-10’ Moat Wall at 1.5DM</td>
<td>1.41</td>
<td>1.79</td>
<td>1.27</td>
<td>0.187</td>
<td>0.353</td>
<td>3.29</td>
<td>16.49</td>
</tr>
<tr>
<td>SCBF, (R_I=1.0,) TFP-1 per ASCE 7-16</td>
<td>1.03</td>
<td>1.33</td>
<td>1.30</td>
<td>0.193</td>
<td>0.356</td>
<td>44.22</td>
<td>46.86</td>
</tr>
<tr>
<td>SCBF, (R_I=1.0,) TFP-1 per ASCE 7-16 Moat Wall at DM</td>
<td>1.19</td>
<td>1.67</td>
<td>1.40</td>
<td>0.257</td>
<td>0.395</td>
<td>24.50</td>
<td>32.68</td>
</tr>
<tr>
<td>SCBF, (R_I=2.0,) TFP-1, per ASCE 7-10</td>
<td>1.12</td>
<td>1.37</td>
<td>1.23</td>
<td>0.176</td>
<td>0.348</td>
<td>26.33</td>
<td>37.43</td>
</tr>
<tr>
<td>SCBF, (R_I=2.0,) TFP-1, per ASCE 7-10 Moat Wall at DM</td>
<td>1.07</td>
<td>1.43</td>
<td>1.34</td>
<td>0.224</td>
<td>0.374</td>
<td>38.87</td>
<td>43.31</td>
</tr>
<tr>
<td>SCBF, (R_I=2.0,) TFP-2, per ASCE 7-10</td>
<td>1.19</td>
<td>1.48</td>
<td>1.24</td>
<td>0.166</td>
<td>0.343</td>
<td>14.62</td>
<td>30.52</td>
</tr>
<tr>
<td>SCBF, (R_I=2.0,) TFP-2, per ASCE 7-10 Moat Wall at 1.25DM</td>
<td>1.19</td>
<td>1.49</td>
<td>1.25</td>
<td>0.194</td>
<td>0.357</td>
<td>18.38</td>
<td>31.22</td>
</tr>
<tr>
<td>SMF, (R_I=1.0,) TFP-1, per ASCE 7-16 Moat Wall at DM</td>
<td>2.18</td>
<td>3.06</td>
<td>1.40</td>
<td>0.325</td>
<td>0.442</td>
<td>0.81</td>
<td>3.87</td>
</tr>
<tr>
<td>SMF, (R_I=2.0,) TFP-2, per ASCE 7-16</td>
<td>1.57</td>
<td>2.09</td>
<td>1.33</td>
<td>0.226</td>
<td>0.376</td>
<td>2.31</td>
<td>11.54</td>
</tr>
<tr>
<td>SMF, (R_I=2.0,) TFP-2, per ASCE 7-16 Moat Wall at 1.25DM</td>
<td>2.02</td>
<td>2.60</td>
<td>1.29</td>
<td>0.265</td>
<td>0.400</td>
<td>0.39</td>
<td>3.89</td>
</tr>
</tbody>
</table>

* Design meets criteria for continued functionality per Zayas et al (2017)
Figure 4-5 Peak Isolator Displacements at Collapse of Buildings with SCBF Designed per ASCE/SEI 7-10, Isolator TFP-1 with and without Moat Wall at Distance D_M

Figure 4-6 Peak Isolator Displacements at Collapse of Buildings with SCBF Designed per ASCE/SEI 7-10, Isolator TFP-2 with and without Moat Wall at Distance $1.25D_M$

Figure 4-7 Peak Isolator Displacements at Collapse of Buildings with SCBF Designed per ASCE/SEI 7-16, Isolator TFP-1 with and without Moat Wall at Distance D_M
Figure 4-8 Peak Isolator Displacements at Collapse of Buildings with SCBF Designed per ASCE/SEI 7-10, Isolator TFP-3 with and without Moat Wall at Distance 1.5Dm.
SECTION 5
PROBABILISTIC ASSESSMENT OF SEISMIC RESPONSE

The seismic performance of the designed isolated and non-isolated buildings is probabilistically assessed in terms of the following engineering demand parameters (EDP): maximum story drift ratio, maximum residual story drift ratio and peak floor acceleration. For the evaluation, the mean annual frequency of exceeding specific limits of these EDP was calculated by considering increasing levels of seismic intensity. The story drift ratio is related to the damage of buildings and is a generally used index of structural damage. It is also related to damage to non-structural components that run vertically (Elenas and Meskouris, 2001; FEMA, 2012a). The residual story drift ratio is an important indicator in the decision to repair or demolish damaged buildings (McCormick et al, 2008; FEMA, 2012a; Bojorquez and Ruiz-Garcia, 2013). The peak floor acceleration is related to damage of non-structural components attached to floors (suspended ceilings, lighting fixtures, caster-supported furniture, sprinklers, etc.) (FEMA, 2012ab; Furukawa et al, 2013; Soroushian et al, 2015ab, Ryu and Reinhorn, 2017). In general, a peak floor acceleration of 0.3g indicates very low or no damage to mechanical, electrical, plumbing, suspended ceilings and sprinklers systems, and to building contents (Elenas and Meskouris, 2001; FEMA, 2012a; Furukawa et al, 2013; Soroushian et al, 2015ab; Ryu and Reinhorn, 2017). A maximum story drift ratio of 0.5% indicates the onset of damage for mechanical, electrical and plumbing systems (Elenas and Meskouris, 2001) and content damage and loss of use (Zayas, 2017), and a 0.5% to 1.0% residual drift ratio indicates that it may be more economical to demolish than to repair (McCormick et al, 2008; FEMA, 2012a; Bojorquez and Ruiz-Garcia, 2013).

Incremental dynamic analysis is appropriate and useful in assessing the seismic performance of buildings in terms of collapse based on FEMA P695 (FEMA, 2009). However, the use of IDA may not be suitable for the assessment of seismic response other than collapse primarily due to the fact that is based on the use of non-frequent strong earthquake motions (the motions used in the collapse evaluation had magnitude larger than 6.5, peak ground acceleration larger than 0.2g, random epsilon values and scaled up to intensities beyond the MCE). Moreover, the adjustment of results of IDA to account for spectral shape effects was shown in Section 4 to include ambiguities and to have a significant effect on the calculated probability of collapse.

For the assessment of seismic response that causes minor or moderate damage under more frequent earthquakes, the selection and scaling of ground motions should be consistent with the local seismic hazard as described in the probabilistic seismic performance procedure of Lin et al (2013a) with details on the selection and scaling of motions and a summary of the procedure presented in
NIST (2011). This procedure makes use of conditional spectra. Also, the multiple stripe analysis technique (Jalayer, 2003) was selected to conduct the analyses of this study as it allowed the use of different sets of hazard-consistent ground motions at each intensity level. The results of the study are presented in the form of relationships between the selected EDP and the annual frequency of exceeding specific EDP limits. For the analysis, in total 1,200 motions were selected and scaled to represent ten different earthquake return periods (43 to 10,000 years) and three different building periods (40 motions per return period; 400 motions per building period). Given that the procedure utilizes hazard-consistent ground motions for each considered intensity level, it properly considers spectral shape effects so no corrections are needed. The procedure for the selection and scaling of the motions is described in Appendix B.

The procedure described in Lin et al (2013a) and NIST (2011) may also be used to assess the collapse performance for any of the considered seismic intensity levels. This is done in this study in selected cases in order to compare with results obtained by the FEMA P695 procedure. This required some adjustment of the probabilistic assessment procedure to account for uncertainties beyond those inherent in the record-to-record variability of the ground motions. Results of this comparison are presented in Section 6.

Figures 5-1 to 5-9 present the mean annual frequency of exceeding limits on the peak story drift ratio, the peak residual story drift ratio, the peak floor acceleration and the peak roof acceleration, respectively. Results are presented for the non-isolated SCBF and SMF and for the isolated SCBF and SMF structures with $R_I=1$ and 2 (in the DE or the MCEr) and with triple FP isolators of the minimum displacement capacity D_M (TFP-1) and the maximum $1.5D_M$ (TFP-3). Also, the following cases with moat walls (all with 1000xstiffness) are included:

(a) The SCBF with $R_I=2$ (in the DE), isolator TFP-1 with a moat wall placed at distance D_M and the enhanced design with isolator TFP-2 and a moat wall placed at distance $1.25D_M$.
(b) The SCBF with $R_I=1$ (in the DE), isolator TFP-3 with a moat wall placed at distance $1.5D_M$.
(c) The SMF with $R_I=2$ (in the MCEr), isolator TFP-1 with a moat wall placed at distance D_M and the enhanced design with isolator TFP-2 and a moat wall placed at distance $1.25D_M$.

For the generation of results shown in Figures 5-1 to 5-9, Equation (B-4) was used with $P(EDP > y | S_a(T_l) = x_l)$ calculated as follows:

1) For the peak story drift ratio ($PSDR$) (EDP replaced by $PSDR$) (NIST, 2011; Lin et al, 2013a):
\[P(PSDR > y|S_a(T_1) = x_i) = P(C) + (1 - P(C)) \left(1 - \Phi \left(\frac{\ln y - \mu_{\ln PSDR}}{\sigma_{\ln PSDR}} \right) \right) \]

\text{(5-1)}

In Equation (5-1), \(P(C) \) is the probability of collapse given \(S_a(T_1) = x_i \). It was obtained by first constructing a collapse fragility curve using the method of maximum likelihood (Shinozuka et al, 2000; Baker, 2015) and then obtaining \(P(C) \) for \(x_i \). Also, \(\mu_{\ln PSDR} \) and \(\sigma_{\ln PSDR} \) are the mean and standard deviation of the \(\ln PSDR \) values given \(S_a(T_1) = x_i \) in which collapse did not occur. \(\Phi \) is the normal cumulative distribution function given by an expression similar to Equation (4-4) but with the limit of integration extending to “\(y \)” instead of 1. Collapse was defined using the same criteria as those used in the structural collapse evaluation. The peak story drift ratio was assumed infinitely large when collapse occurs and was removed from the calculation of term “\(\Phi(\ln y - \mu_{\ln RSDR}/\sigma_{\ln PSDR}) \)” in Equation (4-4).

2) For the case of the peak residual drift ratio (PRDR), the same procedure applies with Equation (6) used but \(PSDR \) replaced by \(PRDR \).

3) For the case of the peak floor (PFA) Equation (B-4) is used (EDP replaced by PFA) with \(P(PFA > y|S_a(T_1) = x_i) \) calculated by (NIST, 2011; Lin et al, 2013\(^a\)):

\[P(PFA > y|S_a(T_1) = x_i) = 1 - \Phi \left(\frac{\ln y - \mu_{\ln PFA}}{\sigma_{\ln PFA}} \right) \]

\text{(5-2)}

Here, \(\mu_{\ln PFA} \) and \(\sigma_{\ln PFA} \) are the mean and standard deviation of the \(\ln PFA \) values given \(S_a(T_1) = x_i \).

The results on the mean annual frequency of an EDP exceeding a limit \(y \), \(\lambda(EDP > y) \), can be used to calculate the probability of exceeding the EDP limit \(y \) in “\(N \)” year, \(P(EDP > y) \), by assuming that the earthquake occurrence follows a Poisson distribution so that (FEMA, 2012\(^a\)):

\[P(EDP > y) = 1 - e^{-\lambda(EDP > y)N} \]

\text{(5-3)}

The results in Figures 5-3 and 5-4 show higher mean annual frequencies for the roof acceleration than the floor acceleration of isolated buildings. Typically, the roof acceleration was higher than that of the floors below in the isolated buildings but not so for the non-isolated buildings. In the discussion that follows some results will be presented that demonstrate the differences.

The results in Figures 5-1 to 5-9 show that: (a) the mean annual frequency of exceeding any acceleration values at the floor or roof level are lower in the isolated buildings of any design than
in the comparable non-isolated buildings, (b) isolated buildings have lower mean annual frequencies of exceeding most but not all values of peak story drift ratio and peak residual story drift ratio than comparable non-isolated buildings, (c) isolated buildings designed by the enhanced criteria of $R_I=1.0$ in the DE (or MCE) and stiffening isolators with displacement capacity at initiation of stiffening equal to $1.5D_M$ have lower mean annual frequencies of exceeding all values of peak story drift ratio and peak residual story drift ratio than comparable non-isolated buildings, and (d) the use of moat walls has generally small effects on the mean annual frequency of exceedance of peak drift ratio and residual drift ratio by comparison to comparable designs with stiffening triple FP isolators without a moat wall. However, the use of moat walls results in systematically higher mean annual frequency of exceedance of high values for the peak floor acceleration. Accordingly, in enhanced designs such as those that meet the criteria in Zayas et al (2017) the use of moat walls do not offer any advantage.

Some sample results in terms of the probability of exceeding specific values of the floor or roof acceleration (0.3g), of the peak story drift ratio (0.5%) and of the residual drift ratio (0.5% and 1%) in 50years (per Equation (5-3)) are presented in Table 5-1. The table also includes the probabilities of collapse in the MCE as given in Tables 4-1 and 4-2. The selected EDP limits of 0.3g and 0.5% for peak floor or roof acceleration and peak story drift ratio indicate the onset of damage to non-structural components and to the building contents (Elenas and Meskouris, 2001; Furukawa et al, 2013; Soroushian et al, 2014). The limits of 0.5% to 1.0% for the residual story drift ratio denote that the building will likely have to be demolished as it would be uneconomical to repair (McCormick et al., 2008; FEMA, 2012a; Bojorquez and Ruiz-Garcia, 2013).

The results in Table 5-1 show that isolated structures designed with the minimum or by enhanced design criteria have lower probabilities than comparable non-isolated structures to develop, within a lifetime of 50 years, some form of minor damage to non-structural components and building contents or to have large enough residual story drift to require demolition. When isolated structures are designed by the enhanced criteria of $R_I=1$ in the DE and with stiffening isolators having $D_{\text{Capacity}}=1.5D_M$ and $D_{\text{Ultimate}}=1.9D_M$, there is substantial reduction of the probabilities to develop damage or to require demolition. It is noted that the enhanced braced frame designs (SCBF with $R_I=1.0$ in the DE and OCBF with $R_I=1.0$ in the MCE) and isolators with $D_{\text{Capacity}}=1.5D_M$ and $D_{\text{Ultimate}}=1.9D_M$) have the lowest probabilities to develop minor damage or to require demolition which are noticeably less than those of the isolated moment frames. Characteristic of the two designs is that they have a calculated peak drift ratio of less than 0.2% (for the DE or the MCE) per Table 2-2, whereas the enhanced moment frame designs have a drift ratio of less than 1.5% per Table 2-3. This difference is important in controlling damage.
Figure 5-1 Mean Annual Frequency of Exceeding Limits on Peak Story Drift Ratio
Figure 5-2 Mean Annual Frequency of Exceeding Limits on Peak Residual Story Drift Ratio
Figure 5-3 Mean Annual Frequency of Exceeding Limits on Floor Acceleration
Figure 5-4 Mean Annual Frequency of Exceeding Limits on Roof Acceleration
Figure 5-5 Comparisons of Mean Annual Frequency of Exceeding Limits on Drift, Residual Drift and Peak Acceleration for SCBF Designed per Minimum Criteria of ASCE 7-10 ($R_t=2$, Isolator TFP-1) without and with Moat Wall at D_M
Figure 5-6 Comparisons of Mean Annual Frequency of Exceeding Limits on Drift, Residual Drift and Peak Acceleration for SCBF Designed per ASCE 7-10 for $R_f=2$, Isolator TFP-2 without and with Moat Wall at $1.25D_M$
Figure 5-7 Comparisons of Mean Annual Frequency of Exceeding Limits on Drift, Residual Drift and Peak Acceleration for SCBF Designed per ASCE 7-10 for $R_f=1$, Isolator TFP-3 without and with Moat Wall at $1.50D_M$ (design without moat wall meets criteria for continued functionality per Zayas et al, 2017)
Figure 5-8 Comparisons of Mean Annual Frequency of Exceeding Limits on Drift, Residual Drift and Peak Acceleration for SMF Designed per Minimum Criteria of ASCE 7-16 ($R_f=2$, Isolator TFP-1) without and with Moat Wall at D_M
Figure 5-9 Comparisons of Mean Annual Frequency of Exceeding Limits on Drift, Residual Drift and Peak Acceleration for SCBF Designed per ASCE 7-16 for $R_I=2$, Isolator TFP-2 without and with Moat Wall at $1.25D_M$
Table 5-1 Probabilities in % of Collapse in MCEr and Probabilities of Exceeding in 50 Years Limits on Floor (Roof in Parenthesis) Acceleration, Story Drift Ratio and Residual Drift Ratio for Isolated and Non-Isolated Buildings (PSDR=Peak Story Drift Ratio, PRDR=Peak Residual Drift Ratio, PFA=Peak Floor Acceleration, PRA=Peak Roof Acceleration)

<table>
<thead>
<tr>
<th>Design Description</th>
<th>Prob. of Collapse in MCEr (per FEMA P695)</th>
<th>Prob. of Exceeding 0.005 PSDR in 50 years</th>
<th>Prob. of Exceeding 0.005 PRDR in 50 years</th>
<th>Prob. of Exceeding 0.01 PRDR in 50 years</th>
<th>Prob. of Exceeding 0.3g PFA (PRA) in 50 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-isolated SMF, R=8, minimum requirements of ASCE 7-10 and 7-16</td>
<td>0.46</td>
<td>68.4</td>
<td>9.9</td>
<td>4.1</td>
<td>65.1 (68.2)</td>
</tr>
<tr>
<td>Isolated SMF, minimum requirements of ASCE 7-10 $R_I=2$ (DE), TFP-1</td>
<td>6.06</td>
<td>49.7</td>
<td>4.3</td>
<td>3.2</td>
<td>16.9 (38.8)</td>
</tr>
<tr>
<td>Isolated SMF, minimum requirements of ASCE 7-16 $R_I=2$ (MCEr), TFP-1</td>
<td>4.97</td>
<td>25.0</td>
<td>2.6</td>
<td>2.0</td>
<td>16.1 (36.0)</td>
</tr>
<tr>
<td>Isolated SMF, minimum requirements of ASCE 7-16 $R_I=2$ (MCEr), TFP-1, moat wall at D_M</td>
<td>0.81</td>
<td>25.1</td>
<td>2.9</td>
<td>2.1</td>
<td>16.7 (36.0)</td>
</tr>
<tr>
<td>Isolated SMF, enhanced requirements $R_I=1$ (DE), TFP-3, $D_{capacity}=1.5D_M$, $D_{Ultimate}=1.9D_M$</td>
<td>1.44</td>
<td>30.3</td>
<td>2.0</td>
<td>1.5</td>
<td>15.9 (36.7)</td>
</tr>
<tr>
<td>Non-isolated SCBF, R=6, minimum requirements of ASCE 7-10 and 7-16</td>
<td>8.15</td>
<td>54.4</td>
<td>5.6</td>
<td>2.7</td>
<td>68.0 (68.6)</td>
</tr>
<tr>
<td>Isolated SCBF, minimum requirements of ASCE 7-10 $R_I=2$ (DE), TFP-1</td>
<td>18.06</td>
<td>4.9</td>
<td>3.2</td>
<td>2.8</td>
<td>11.0 (28.0)</td>
</tr>
<tr>
<td>Isolated SCBF, minimum requirements of ASCE/SEI 7-10 $R_I=2$ (DE), TFP-1, moat wall at D_M</td>
<td>17.13</td>
<td>5.1</td>
<td>3.4</td>
<td>3.0</td>
<td>12.0 (28.1)</td>
</tr>
<tr>
<td>Isolated SCBF, minimum requirements of ASCE/SEI 7-10 $R_I=2$ (DE), TFP-2</td>
<td>12.66</td>
<td>4.1</td>
<td>2.5</td>
<td>2.2</td>
<td>10.5 (27.7)</td>
</tr>
<tr>
<td>Isolated SCBF, minimum requirements of ASCE/SEI 7-10 $R_I=2$ (DE), TFP-2, moat wall at 1.25D_M</td>
<td>12.96</td>
<td>4.2</td>
<td>2.6</td>
<td>2.4</td>
<td>11.1 (27.8)</td>
</tr>
<tr>
<td>Isolated SCBF, minimum requirements of ASCE/SEI 7-16 $R_I=2$ (MCEr), TFP-1</td>
<td>13.94</td>
<td>3.8</td>
<td>2.6</td>
<td>2.4</td>
<td>9.2 (27.0)</td>
</tr>
<tr>
<td>Isolated SCBF, enhanced requirements $R_I=1$ (DE), TFP-3, $D_{capacity}=1.5D_M$, $D_{Ultimate}=1.9D_M$</td>
<td>4.52</td>
<td>2.3</td>
<td>1.5</td>
<td>1.4</td>
<td>6.9 (23.0)</td>
</tr>
<tr>
<td>Description</td>
<td>RI</td>
<td>TF</td>
<td>D<sub>capacity</sub></td>
<td>D<sub>ultimate</sub></td>
<td>Moat Wall at D<sub>M</sub></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Isolated SCBF, enhanced requirements R<sub>f</sub>=1 (DE), TFP-3,</td>
<td></td>
<td></td>
<td>1.5 D<sub>M</sub></td>
<td>1.9 D<sub>M</sub></td>
<td>4.98 (23.2)</td>
</tr>
<tr>
<td>D<sub>ultimate</sub>=1.9 D<sub>M</sub>, Moat Wall at 1.5 D<sub>M</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolated OCBF, minimum requirements R<sub>f</sub>=1 (MCE<sub>R</sub>),</td>
<td></td>
<td></td>
<td>1.25 D<sub>M</sub></td>
<td>1.6 D<sub>M</sub></td>
<td>12.31 (21.5)</td>
</tr>
<tr>
<td>TFP-2, D<sub>capacity</sub>=1.25 D<sub>M</sub>,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D<sub>ultimate</sub>=1.6 D<sub>M</sub>, Moat wall at 1.25 D<sub>M</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolated OCBF, enhanced requirements R<sub>f</sub>=1 (MCE<sub>R</sub>),</td>
<td></td>
<td></td>
<td>1.5 D<sub>M</sub></td>
<td>1.9 D<sub>M</sub></td>
<td>7.96 (21.2)</td>
</tr>
<tr>
<td>TFP-3, D<sub>capacity</sub>=1.5 D<sub>M</sub>,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D<sub>ultimate</sub>=1.9 D<sub>M</sub>, Moat wall at 1.25 D<sub>M</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolated SMF, minimum requirements of ASCE 7-16 R<sub>f</sub>=2 (MCE<sub>R</sub>), TFP-2</td>
<td></td>
<td></td>
<td>25.0</td>
<td>1.7</td>
<td>2.46 (35.9)</td>
</tr>
<tr>
<td>D<sub>capacity</sub>=25.0, D<sub>ultimate</sub>=17.0, Moat wall at 1.25 D<sub>M</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolated SMF, minimum requirements of ASCE 7-16 R<sub>f</sub>=2 (MCE<sub>R</sub>), TFP-2</td>
<td></td>
<td></td>
<td>25.0</td>
<td>1.7</td>
<td>0.85 (35.9)</td>
</tr>
<tr>
<td>D<sub>capacity</sub>=25.0, D<sub>ultimate</sub>=17.0, Moat wall at 1.25 D<sub>M</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SECTION 6
COMPARISON OF RESULTS OF COLLAPSE ASSESSMENT OBTAINED BY FEMA
P695 PROCEDURE AND BY A PROBABILISTIC APPROACH USING CONDITIONAL
SPECTRA

The procedure used in Section 5 to obtain results on the probabilistic response of isolated structures
(NIST, 2011; Lin et al, 2013a) is also suitable to obtain information on the probability of collapse
given a particular level of seismic intensity. This allows comparison of results obtained by this
procedure to those obtained using the FEMA P695 procedure (FEMA, 2009) and presented in
Section 4.

The probabilistic approach of Section 5 (with additional information in Appendix B) makes use of
sets of motions (sample of 40) compatible with conditional spectra for seismic intensities related
to return periods in the range of 43 to 10000 years (10 intensities). The motions used for each
seismic intensity are different (unlike the IDA procedure used in FEMA P695 which utilizes of the
same motions for all seismic intensities). Accordingly, the results of the procedure directly account
for the spectral shape effects.

The probabilistic approach involves analysis of each considered structural system with 400
motions. These motions differ depending on the fundamental period of the structural system as the
conditional spectra depend on this period. Given that the structural models used in the analysis
include features that directly or indirectly detect collapse as described in Section 3, the procedure
may be used to obtain results on the probability of collapse as function of the seismic intensity.

Figure 6-1 illustrates the procedure for obtaining results using the probabilistic approach of Section
5 (and Appendix B) and how the results compare with those obtained by use of the FEMA P695
procedure. The results presented in Figure 6-1 apply for the isolated SCBF designed for \(R_f=2 \) per
ASCE/SEI 7-10 with isolator TFP-1. The top graphs in the figure show the fragility curves as
obtained by fitting the data of the IDA analysis following the FEMA P695 procedure and the
NIST/Lin analysis using the 400 motions compatible with conditional spectra for ten different
return periods. The data of the FEMA P695 analysis are the adjusted for the effect of the spectral
shape (\(SSF=1.23 \)) resulting in a fragility curve with the same dispersion factor but a larger median.
The fragility curve obtained by the NIST/Lin procedure does not require any adjustment. The two
fragility curves are shown again in the bottom graph of the figure in solid lines in which the media
and dispersion factors are included in the graphs. Note that the dispersion factor in the fragility
curves only accounts for the record-to-record variability in the ground motions (is denoted as \(\beta_{RTR} \)).
The value of the dispersion factor is then adjusted to account for uncertainties as described by Equation 4-5 and the following quality ratings and related uncertainties based on FEMA P695: good with $\beta_{MDL}=0.2$ for modeling; good with $\beta_{TD}=0.2$ for test data and superior with $\beta_{DR}=0.1$ for design requirements. The resulting values of the total dispersion factor β_{TOT} are shown in the figure with the corresponding fragility curves shown in dashed lines.

![Figure 6-1 Comparison of Fragility Curves for Isolated SCBF, Case $R=2$, Isolator TFP-1 Obtained by Different Methodologies](image)

Table 6-1 presents results of comparison of results obtained for several studied systems using the FEMA P695 and the NIST/Lin methodologies as described above. In calculating the probability of collapse for MCE$_R$ in the table, the value of $S_{aMCE}(T_1)$ as obtained from the MCE$_R$ spectrum was used. This value is equal to 0.246g for the isolated structures ($T_1=T_M=3.66$sec). The results in the table demonstrate difference in the values of the probabilities but also consistency in how changes in design (in terms of value of R_i, isolator displacement capacity and isolation system characteristics) affect the probability of collapse. The differences in the calculated values of the probability of collapse are relatively small given the significant differences in the two methodologies. This is may be a viewed as validation of the two methodologies.
Table 6-1 Comparison of Probabilities of Collapse of SCBF Obtained by Different Methodologies

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>$S_{Acot}(T_i)$ (g)</td>
<td>β_{TOT} (β_{TR})</td>
</tr>
<tr>
<td>$R_t=1.0$, TFP-1</td>
<td>0.365</td>
<td>0.366 (0.209)</td>
</tr>
<tr>
<td>*$R_t=1.0$, TFP-3</td>
<td>0.438</td>
<td>0.341 (0.163)</td>
</tr>
<tr>
<td>*$R_t=1.0$, TFP-3 Moat wall at 1.5DM</td>
<td>0.440</td>
<td>0.353 (0.187)</td>
</tr>
<tr>
<td>$R_t=2.0$, TFP-1</td>
<td>0.338</td>
<td>0.348 (0.176)</td>
</tr>
<tr>
<td>$R_t=2.0$, TFP-1 Moat wall at DM</td>
<td>0.351</td>
<td>0.374 (0.224)</td>
</tr>
<tr>
<td>$R_t=2.0$, TFP-2 Moat wall at 1.25DM</td>
<td>0.368</td>
<td>0.357 (0.194)</td>
</tr>
<tr>
<td>$R_t=2.0$, TFP-3</td>
<td>0.387</td>
<td>0.340 (0.159)</td>
</tr>
<tr>
<td>Designed per ASCE 7-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_t=1.0$, TFP-1</td>
<td>0.328</td>
<td>0.356 (0.193)</td>
</tr>
<tr>
<td>$R_t=1.0$, TFP-3</td>
<td>0.419</td>
<td>0.341 (0.161)</td>
</tr>
<tr>
<td>$R_t=2.0$, TFP-1</td>
<td>0.362</td>
<td>0.357 (0.194)</td>
</tr>
<tr>
<td>$R_t=2.0$, TFP-3</td>
<td>0.412</td>
<td>0.338 (0.156)</td>
</tr>
</tbody>
</table>

* Design meets criteria for continued functionality per Zayas et al (2017)
Table 6-2 Comparison of Probabilities of Collapse of SMF Obtained by Different Methodologies

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$S_{\text{acol}}(T_1)$ (g)</td>
<td>$\beta_{\text{TOT}} (\beta_{\text{RTR}})$</td>
</tr>
<tr>
<td>Designed per ASCE 7-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_f=1.0$, TFP-1</td>
<td>0.455</td>
<td>0.387 (0.245)</td>
</tr>
<tr>
<td>$R_f=1.0$, TFP-3</td>
<td>0.546</td>
<td>0.365 (0.208)</td>
</tr>
<tr>
<td>$R_f=2.0$, TFP-1</td>
<td>0.447</td>
<td>0.385 (0.241)</td>
</tr>
<tr>
<td>$R_f=2.0$, TFP-3</td>
<td>0.467</td>
<td>0.358 (0.195)</td>
</tr>
<tr>
<td>Designed per ASCE 7-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_f=1.0$, TFP-1</td>
<td>0.398</td>
<td>0.371 (0.218)</td>
</tr>
<tr>
<td>$R_f=1.0$, TFP-3</td>
<td>0.493</td>
<td>0.369 (0.215)</td>
</tr>
<tr>
<td>$R_f=2.0$, TFP-1</td>
<td>0.467</td>
<td>0.389 (0.247)</td>
</tr>
<tr>
<td>$R_f=2.0$, TFP-1 Moat wall at $1.00D_M$</td>
<td>0.695</td>
<td>0.432 (0.311)</td>
</tr>
<tr>
<td>$R_f=2.0$, TFP-2 Moat wall at $1.25D_M$</td>
<td>0.640</td>
<td>0.400 (0.265)</td>
</tr>
<tr>
<td>$R_f=2.0$, TFP-3</td>
<td>0.543</td>
<td>0.363 (0.204)</td>
</tr>
</tbody>
</table>
SECTION 7
CONCLUSIONS AND DISCUSSION

It has been shown that seismically isolated structures designed by the minimum criteria of ASCE/SEI 7-10 or 7-16 (ASCE, 2010 or 2016) may have unacceptable probabilities of collapse in the MCE\textsubscript{R}, whereas comparable non-isolated structures, also designed by the minimum criteria of ASCE/SEI 7, have acceptable probabilities of collapse. Improvement of the collapse performance is achieved by designing for an \(R_I = 1.0 \) in the DE and providing isolators with stiffening behavior and with a displacement capacity at initiation of stiffening equal to \(1.5D_M \) and ultimate displacement capacity of \(1.9D_M \), where \(D_M \) is the displacement capacity in the MCE\textsubscript{R} as stipulated by the minimum criteria of ASCE/SEI 7. In general, increasing the strength of seismically isolated structures (by reducing \(R_I \)) does not result in improvement of the collapse performance unless the displacement capacity of the isolators is proportionally increased. The reason for this behavior is that by increasing the strength, inelastic action in the superstructure is delayed so that the isolator displacement demand is increased leading to collapse by failure of the isolators.

The significance of providing isolator displacement restraint through the use of stiffening isolators or the use of moat walls was demonstrated by the substantial increase in the probability of collapse when the restrainer ring of the isolators was removed and no moat walls were used. For example, the probability of collapse in the MCE\textsubscript{R} of the isolated SMF designed by the minimum criteria of ASCE/SEI 7-10 and triple FP isolators (TFP-1) was 6.1%. It was 39.9% when the isolator restrainer ring was removed and the isolators were converted to double concave with the minimum displacement capacity per ASCE/SEI 7-10 (DC-1) (the probabilities were 18.1% and 27.4%, respectively, for the SCBF designed by the minimum criteria of ASCE/SEI 7-10).

The use of moat walls was shown to result in essentially the same collapse behavior as similarly designed buildings with triple FP isolators that exhibit stiffening behavior. For example, minimally designed SCBF per ASCE/SEI 7-10 \((R_I = 2) \) had essentially the same probability of collapse in the MCE\textsubscript{R} when the minimum size isolator TFP-1 was used (displacement capacity at initiation of stiffening equal to \(D_M \) and ultimate displacement capacity of \(1.3D_M \), where \(D_M \) is the displacement capacity in the MCE\textsubscript{R} as stipulated by the minimum criteria of ASCE/SEI 7) and when a moat wall was placed at distance \(D_M \) or when the moat wall was removed. Use of the moat wall was shown to result in essentially the same pushover curves as when stiffening triple FP isolators were used, thus explaining the close results on the probability of collapse for the two cases. Increasing the gap in moat walls beyond the minimum required distance of \(D_M \) resulted in reduction of the probability of collapse similarly to the use of triple FP isolators of larger displacement capacity at initiation of
stiffening. It should be noted that analysis without consideration of the spectral shape effects and considering only record-to-record uncertainties (as produced directly by incremental dynamic analysis) resulted in substantially larger probabilities of collapse when moat walls were used than when stiffening triple FP isolators were used. The differences in the probabilities of collapse diminished when the spectral shape effects and uncertainties were considered.

Moreover, it has been observed that the use of moat walls may improve the collapse performance by comparison to comparable designs with stiffening isolators in cases where collapse is dominated by failure of the isolators due to excessive displacement demand. This is the case when the design utilizes inconsistent combinations of superstructure strength (small R_1, say 1.0) and minimal displacement capacity isolators (say isolator TFP-1).

The conclusions of this study in terms of requirements for the superstructure design and the isolator displacement capacity to achieve acceptable collapse performance are consistent with the results of a similar study conducted for 3-story isolated structures (Shao et al, 2017).

Nearly all studied isolated structures of whatever design details had higher probabilities of collapse than the comparable non-isolated designs (actually all isolated SMF but not all other buildings had higher probability of collapse). Given this fact, studies of the performance of the designed isolated and non-isolated structures in terms of peak floor acceleration, peak story drift ratio and peak residual drift ratio were conducted in order to clarify any advantages offered by seismic isolation. These studies showed that isolated structures designed by any design criteria (minimum or enhanced) have lower probabilities than comparable non-isolated structures to develop, within a lifetime of 50 years, some form of minor damage to non-structural components and building contents or to have large enough residual story drift to require demolition. When isolated structures are designed by the enhanced criteria of $R_t=1$ in the DE and with stiffening isolators having $D_{\text{Capacity}}=1.5D_M$ and $D_{\text{Ultimate}}=1.9D_M$, there is substantial reduction of the probabilities to develop damage or to require demolition. Best performance was obtained with the enhanced braced frame designs (SCBF with $R_t=1.0$ in the DE or OCBF with $R_t=1.0$ in the MCE R and isolators with $D_{\text{Capacity}}=1.5D_M$ and $D_{\text{Ultimate}}=1.9D_M$). These designs had noticeably less probabilities to develop minor damage or to require demolition than the isolated moment frames. Characteristic of the braced frame designs was a peak drift ratio of 0.2%, whereas the moment frame designs have a drift ratio of 1.5% - a difference of important in controlling damage. Also, these enhanced braced frame designs met the criteria of a standard for continued functionality developed by Zayas et al (2017). These enhanced brace frame designs have been shown to exhibit a reduction in
effectiveness (in terms of increases in the mean annual probability of exceedance of floor peak acceleration) when moat walls were used.

The study also demonstrated the significance of utilizing restraint in the isolation system to limit displacements and prevent collapse of the isolators. The use of stiffening triple FP isolators is one of the options available. The other is the use of moat walls. However, the displacement capacity of the isolators and the location of the moat wall should be consistent with the superstructure design (value of R_I). Designs based on the minimum criteria of ASCE/SEI 7 and with a moat wall placed at the MCER displacement does not ensure an acceptable probability of collapse. Moreover, the lack of any restraint, either in the form of stiffening isolators or moat walls, ensures an unacceptable probability of collapse.

The presented studies were limited to examples of perimeter braced and moment 6-story steel frames with sliding isolators at one particular location in California. A study of Shao et al. (2017) included similar 3-story braced frames, also with sliding isolators. Neither of the two studies considered the effect of vertical ground shaking. There is a need to extend these studies to taller structures and to other structural systems (e.g., concrete space frames) in order to cover a wider range of structures of interest in seismic isolation. Moreover, these studies have been limited to the analysis of two-dimensional representations of isolated structures, whereas three-dimensional representations would have likely resulted in the prediction of higher probabilities of collapse. Similarly, consideration of the vertical ground shaking should result in even higher probabilities of collapse.

Nevertheless, the results of these studies clearly show a need to re-visit the ASCE/SEI 7 criteria for the design of seismically isolated structures. Ideally, the specified R_I factor, the minimum displacement capacity of the isolators and the isolator stiffening characteristics should be dependent on the seismic force-resisting system. In the absence of such detailed studies, it justified to require designs with $R_I=1.0$ and isolators with $D_{\text{Capacity}}=1.5D_M$ and $D_{\text{Ultimate}}=1.9D_M$ in order to ensure acceptable collapse performance for important structures. Such a design also offers additional benefits in terms reduction of the probability to develop minor damage to non-structural components and the building contents, and in reducing the probability of having to demolish the building in its lifetime. These benefits become substantial when additional requirements on drift and floor acceleration are imposed, such as the limits of 0.3% or 0.4% on the peak drift and 0.4g or 0.6g on the floor spectral acceleration (median in period range of zero to 5sec). An option for
achieving this desired performance is to apply the provisions of ASCE/SEI 7-16 (ASCE, 2017) together with the criteria of the standard for continued functionality developed by Zayas (2017). This may ensure acceptable probabilities of collapse and also sufficiently limit building damage to qualify for the Arup (2013) REDi platinum or gold rating on seismic resiliency.

APPENDIX A
PROCEDURE FOR CALCULATING THE MEDIAN COLLAPSE SPECTRAL ACCELERATION WHEN CONSIDERING SPECTRAL SHAPE EFFECTS

The procedure involves the following steps:

1. Obtain the target epsilon \(\bar{\varepsilon}_0(T_1) \), magnitude \(M \), and distance \(R \) from de-aggregation of the ground motion hazard (probabilistic seismic hazard analysis) for the specific location of the structure (longitude and latitude), site class (average shear-wave velocity \(V_{s30}=259 \) m/sec for class D), spectral period and return period. The return period of 2475 years (corresponding to a probability of exceedance of 2% in 50 years) is used based on Haselton et al (2011) because the primary purpose of collapse evaluation is to compute the conditional collapse probability for a 2% in 50 years ground motion. Information was obtained from the USGS website (https://earthquake.usgs.gov/hazards/interactive/ accessed on July 16, 2017) where results of de-aggregation for period of 0.2, 1.0 and 2.0 second were available. Linear interpolation and extrapolation in logarithmic space of the seismic hazard curves (annual frequency of exceedance vs spectral acceleration) was used for other values of period (\(T_1=0.524 \)sec for non-isolated SCBF, \(T_1=1.186 \)sec for non-isolated SMF and \(T_1=T_M=3.66 \)sec for all isolated structures).

2. Perform incremental dynamic analysis (IDA) (Vamvatsikos and Cornell, 2012) (for this study the 44 ground motions of FEMA P695) to obtain the collapse capacity in terms of the spectral acceleration at fundamental period \(T_1 \) at collapse for each ground motion, \(S_{a_{\text{col}},j}(T_1) \) (\(T_M \) in case of base-isolated structures and \(j \) is the identification number for the ground motions; \(j =1 \) to 44).

3. Calculate epsilon at \(T_1, \varepsilon_j(T_1) \) for the \(j^{\text{th}} \) ground motion (\(j=1 \) to 44), defined as the number of standard deviations by which the natural logarithm of \(S_{a_j}(T_1) \), \(\ln[S_{a_j}(T_1)] \), differs from the mean predicted \(\ln[S_{a}(T_1)] \) for a given magnitude and distance (Baker, 2011):

\[
\varepsilon_j(T_1) = \frac{\ln[S_{a_j}(T_1)] - \mu_{\ln[S_{a}(M,R,T_1)]}}{\sigma_{\ln[S_{a}(T_1)]}}
\]

(A-1)
In Equation (A-1), $\mu_{\ln Sa}(M,R,T_1)$ is the predicted mean of $\ln[Sa(T_1)]$ at a given magnitude M, distance R and period T_1, and $\sigma_{\ln Sa}(T_1)$ is the predicted standard deviation of $\ln[Sa(T_1)]$ at a given M, R and T_1. Note that $\mu_{\ln Sa}(M,R,T_1)$ and $\sigma_{\ln Sa}(T_1)$ are obtained from any ground motion prediction model (herein the model of Abrahamson and Silva, 1997 was used, which was also used by Haselton et al, 2011). Quantity $\ln[Sa(T_1)]$ in Equation (A-1) is the natural logarithm of the spectral acceleration at T_1 of each of 44 original (before scaling) ground motions.

4. Perform a linear regression analysis between $\ln[Sa_{Col,j}(T_1)]$ and $\varepsilon(T_1)$ and determine parameters c_0 and c_1 based on the following equation:

$$\ln[Sa_{Col}(T_1)] = c_0 + c_1 \cdot \varepsilon(T_1)$$ (A-2)

Note that based on Appendix B of FEMA (2009), for establishing a relationship between the $\ln[Sa_{Col}(T_1)]$ and $\varepsilon(T_1)$, the p-value (Neter et al, 1996) must be less than 0.05 for the trend to be statistically defensible.

5. Replace $\varepsilon(T_1)$ with $\bar{\varepsilon}_0(T_1)$ in Equation (A-2) and solve to obtain the adjusted mean collapse capacity, $\widehat{Sa}_{Col,adj}(T_1)$:

$$\widehat{Sa}_{Col,adj}(T_1) \ (units \ g) = \exp[c_0 + c_1 \cdot \bar{\varepsilon}_0(T_1)]$$ (A-3)

The record-to-record dispersion coefficient, β_{RTR}, is calculated as the standard deviation of the natural logarithm of $Sa_{Col}(T_1)$ of the 44 motions without any further adjustment. Note that Haselton et al (2011) described a procedure for further reduction of the dispersion using the residuals of the regression analysis but the effect was found to be insignificant in this study and was not included in the presented results.

Values of the target epsilon $\bar{\varepsilon}_0(T_1)$, magnitude M and distance R for return period of 2475 years obtained by de-aggregation of the seismic hazard are presented in Table A-1.
Table A-1 Values of $\bar{\varepsilon}_0(T_1)$, M and R for Considered Site and 2475 Years Return Period

<table>
<thead>
<tr>
<th></th>
<th>$\bar{\varepsilon}_0(T_1)$</th>
<th>M</th>
<th>R(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolated</td>
<td>1.44</td>
<td>7.96</td>
<td>16.0</td>
</tr>
<tr>
<td>Non-isolated (SCBF)</td>
<td>1.46</td>
<td>7.35</td>
<td>16.0</td>
</tr>
<tr>
<td>Non-isolated (SMF)</td>
<td>1.71</td>
<td>7.63</td>
<td>16.0</td>
</tr>
</tbody>
</table>

Using the ground motion prediction model of Abrahamson and Silva (1997) the median 5%-damped response spectra were constructed for isolated and non-isolated structures and are presented in Figure A-1 together with the spectra of the 44 ground motions used in the IDA. Program OpenSHA (Field et al, 2003) was used to construct the spectra using the Abrahamson and Silva prediction model. The same model also predicted the standard deviation, which is presented in Figure A-2. The standard deviation is the same for the isolated and non-isolated structures.

![Figure A-1 Response Spectra of FEMA Far-Field Motions and Predicted Median Spectra](image-url)
The values of $\varepsilon_j(T_1)$ for each of the 44 ground motions ($j=1$ to 44) for the isolated and non-isolated structures where then calculated by use of Equation (A-1) and are presented in Figure A-3 for the case of the SCBF where it is seen that the values of epsilon are higher for the non-isolated structure.

Based on the results of IDA and the information on $\varepsilon_j(T_1)$ in Figure A-3, linear regression analysis was performed to establish the relationship between the $\ln[S_{aCol,j}(T_1)]$ and $\varepsilon(T_1)$. Figures A-4 present the relationship between $\ln[S_{aCol,j}(T_1)]$ and $\varepsilon(T_1)$ for all cases considered. The figures
also present the fitted linear regression model of Equation (A-2) for each case. The calculated
\(p \)-values (Neter et al, 1996) were less than \(10^{-3} \), thus statistically meaningful (less than 0.05).
Also, Figures A-5 to A-7 compare the relationships between \(\ln[S_{aCOL}(T_1)] \) and \(\varepsilon(T_1) \) for the
analyzed isolated SCBF buildings with and without moat walls.

\[
\ln[S_{aCOL}(T_1)] = -1.2193 + 0.1458 \cdot \varepsilon(T_1)
\]

\[
\ln[S_{aCOL}(T_1)] = -1.0416 + 0.1772 \cdot \varepsilon(T_1)
\]

\[
\ln[S_{aCOL}(T_1)] = -1.0832 + 0.129 \cdot \varepsilon(T_1)
\]

\[
\ln[S_{aCOL}(T_1)] = -0.9105 + 0.1641 \cdot \varepsilon(T_1)
\]

Isolated SCBF structure (TFP-1, \(R_I=1.0 \) in DE)

Isolated SMF structure (TFP-1, \(R_I=1.0 \) in DE)

Isolated SCBF structure (TFP-2, \(R_I=1.0 \) in DE)

Isolated SMF structure (TFP-2, \(R_I=1.0 \) in DE)

Figure A-4 Relationship between \(\ln[S_{aCOL}(T_1)] \) and \(\varepsilon(T_1) \) for Buildings without Moat Wall
\[
\ln [S_{a_{COL}} (T_1)] = -0.9895 + 0.1154 \cdot \varepsilon (T_1)
\]

Isolated SCBF structure (TFP-3, \(R_i=1.0\) in DE)

\[
\ln [S_{a_{COL}} (T_1)] = -0.8268 + 0.1541 \cdot \varepsilon (T_1)
\]

Isolated SMF structure (TFP-3, \(R_i=1.0\) in DE)

\[
\ln [S_{a_{COL}} (T_1)] = -0.5507 + 0.1558 \cdot \varepsilon (T_1)
\]

Isolated SCBF structure (TFP-3, \(R_i=1.0\) in DE, Upper Bound)

\[
\ln [S_{a_{COL}} (T_1)] = -0.4017 + 0.1899 \cdot \varepsilon (T_1)
\]

Isolated SMF structure (TFP-3, \(R_i=1.0\) in DE, Upper Bound)

Figure A-4 Continued
\[\ln[S_{aCOL}(T_1)] = -1.2406 + 0.1209 \cdot \varepsilon(T_1) \]

\[\ln[S_{aCOL}(T_1)] = -0.9956 + 0.1413 \cdot \varepsilon(T_1) \]

\[\ln[S_{aCOL}(T_1)] = -1.1382 + 0.1087 \cdot \varepsilon(T_1) \]

\[\ln[S_{aCOL}(T_1)] = -0.8959 + 0.1213 \cdot \varepsilon(T_1) \]

Isolated SCBF structure (TFP-1, \(R_I = 1.5 \) in DE)

Isolated SMF structure (TFP-1, \(R_I = 1.5 \) in DE)

Isolated SCBF structure (TFP-2, \(R_I = 1.5 \) in DE)

Isolated SMF structure (TFP-2, \(R_I = 1.5 \) in DE)

Figure A-4 Continued
\[
\ln[S_{aCOL}(T_1)] = -1.0555 + 0.0966 \cdot \varepsilon(T_1)
\]

\[
\ln[S_{aCOL}(T_1)] = -0.8548 + 0.0984 \cdot \varepsilon(T_1)
\]

\[
\ln[S_{aCOL}(T_1)] = -1.262 + 0.1225 \cdot \varepsilon(T_1)
\]

\[
\ln[S_{aCOL}(T_1)] = -0.9983 + 0.1336 \cdot \varepsilon(T_1)
\]

Figure A-4 Continued
Figure A-4 Continued
Isolated SCBF structure ($R_i=2.0$, DC-1 no restraining ring)

Isolated SMF structure ($R_i=2.0$, DC-1 no restraining ring)

Isolated SCBF structure ($R_i=2.0$, DC-2 no restraining ring)

Isolated SMF structure ($R_i=2.0$, DC-2 no restraining ring)

Figure A-4 Continued
\[
\ln[S_{a\text{COL}}(T_1)] = 0.8091 + 0.2378 \cdot \varepsilon(T_1)
\]

\[
\ln[S_{a\text{COL}}(T_1)] = 0.475 + 0.242 \cdot \varepsilon(T_1)
\]

\[
\ln[S_{a\text{COL}}(T_1)] = -1.3017 + 0.1289 \cdot \varepsilon(T_1)
\]

\[
\ln[S_{a\text{COL}}(T_1)] = -1.1431 + 0.1547 \cdot \varepsilon(T_1)
\]

Figure A-4 Continued
\[\ln[S_{\text{aCOL}}(T_1)] = -1.1393 + 0.1141 \cdot \varepsilon(T_1) \]

Isolated SCBF structure (TFP-2, \(R_t = 1.0 \) in MCE_R)

\[\ln[S_{\text{aCOL}}(T_1)] = -1.0083 + 0.1424 \cdot \varepsilon(T_1) \]

Isolated SMF structure (TFP-2, \(R_t = 1.0 \) in MCE_R)

\[\ln[S_{\text{aCOL}}(T_1)] = -1.0198 + 0.1047 \cdot \varepsilon(T_1) \]

Isolated SCBF structure (TFP-3, \(R_t = 1.0 \) in MCE_R)

\[\ln[S_{\text{aCOL}}(T_1)] = -0.896 + 0.1312 \cdot \varepsilon(T_1) \]

Isolated SMF structure (TFP-3, \(R_t = 1.0 \) in MCE_R)

Figure A-4 Continued
Figure A-4 Continued
\[
\ln[S_{aCOL}(T_1)] = -1.056 + 0.1054 \cdot \varepsilon(T_1)
\]

Figure A-4 Continued
Figure A-5 Relationship between $\ln[S_{aCOL}(T_1)]$ and $\varepsilon(T_1)$ for Isolated Buildings with SCBF Designed for $R=2.0$ per ASCE/SEI 7-10 and Isolator TFP-1 ($D_{\text{Capacity}}=20.4\text{in}, D_{\text{Ultimate}}=26.9\text{inch}$) with and without Moat Wall
Figure A-6 Relationship between \(\ln[S_{\text{Col,j}}(T_1)] \) and \(\varepsilon(T_1) \) for Isolated Buildings with SCBF Designed for \(R_I=2.0 \) and Isolator TFP-1 (\(D_{\text{Capacity}}=20.4\text{in}, D_{\text{Ultimate}}=26.9\text{inch} \)) or Isolator TFP-2 (\(D_{\text{Capacity}}=26.1\text{in}, D_{\text{Ultimate}}=32.6\text{inch} \)) with and without Moat Wall.
Figure A-7 Relationship between $\ln[S_{\text{Col},j}(T_1)]$ and $\varepsilon(T_1)$ for Isolated Buildings with SCBF Designed for $R=1.0$ per ASCE/SEI 7-10 and Isolator TFP-3 ($D_{\text{Capacity}}=31.8\text{in}, D_{\text{Ultimate}}=38.3\text{inch}$) with and without Moat Wall
APPENDIX B
PROCEDURE FOR THE PROBABILISTIC SEISMIC PERFORMANCE ASSESSMENT

The procedure involves the following steps:

1. Obtain magnitude M and distance R from de-aggregation of the ground motion hazard for the specific location of the structure (longitude and latitude), site class (V_{s30}), spectral period and selected return period. This step is identical to step 1 of Appendix A but there are several return periods. Obtain the seismic hazard curves for each building period T_i. Obtain the spectral acceleration $S_a(T_i)$ for each of the return periods selected. In this work the return periods of 43, 144, 289, 475, 949, 1485, 2475, 3899, 7462 and 10000 years were selected (corresponding to the probabilities of exceedance ranging from 50% in 30 years to 2% in 200 years).

2. Construct a Conditional Mean Spectrum (CMS) (Baker, 2011) for each of the selected return periods using a ground motion predictive model. In this work, the model of Boore et al. (2014) was used in conjunction with Baker and Jayaram (2008).

3. Select and scale ground motions to match the target Conditional Spectra (CS) for each hazard level. Note that CS includes conditional standard deviation in addition to conditional mean (CMS). In this work 40 motions (one directional as the analysis is for plane frames) were selected and scaled. For this purpose, publicly available computer programs can be used (e.g., Jayaram et al, 2011; Baker and Lee, 2017). Check that the selected ground motions are consistent with the seismic hazard curves at the relevant periods (Lin et al., 2013a). For the evaluation of the “hazard consistency” of the selected ground motions, the rate of exceedance of $S_a(T)$ implied by the ground motions selected conditional on $S_a(T_i)$ is calculated by the following equation (Lin et al, 2013a):

$$\lambda(S_a(T) > y) = \sum_{i=1}^{n} P(S_a(T) > y|S_a(T_i) = x_i) \lambda(S_a(T_i) = x_i) \quad (B-1)$$

In this equation, n is the number of considered $S_a(T_i)$ amplitudes and $P(S_a(T) > y|S_a(T_i) = x_i)$ is the probability that a ground motion selected and scaled to have $S_a(T_i) = x_i$ has an spectral acceleration at period T that is greater than y. Here this probability is estimated as
the fraction of the 40 ground motions with $S_d(T_1) = x_i$ that have $S_d(T) > y$. The calculated rate of exceedance $\lambda(S_d(T) > y)$ is compared with the seismic hazard curve. If the selected ground motion does not satisfy the hazard consistency criteria, the selection of motions is repeated based on NIST (2011) and Lin et al. (2013a).

4. Conduct seismic response analysis and calculate Engineering Response Parameters (EDP) of interest (in this study EDP are the maximum story drift ratio, the maximum residual story drift ratio and the maximum floor and roof accelerations). The mean annual rate of EDP exceeding y, $\lambda(EDP > y)$, is then calculated. This is mathematically expressed as:

$$\lambda(EDP > y) = \sum_{i=1}^{n} P(EDP > y | (S_d(T_1) = x_i)) \lambda(S_d(T_1) = x_i)$$

where $P(EDP > y | S_d(T_1) = x_i)$ is the probability of EDP exceeding y given a ground motion with $S_d(T_1) = x_i$ and seismic hazard curve $\lambda(S_d(T_1) = x_i)$.

The seismic hazard curves are shown in Figure B-1 for building period T_1 equal to 0.524, 1.186 and 3.660 seconds. The mean causal earthquake magnitude M and distance R for the location of the building and for $V_{s30}=259$ m/sec were obtained for the selected values of return period and are shown in Figure B-2.

![Figure B-1 Seismic Hazard Curves for $T_1=0.524$, 1.186 and 3.660 Seconds](image)
Conditional mean spectra for each of the three periods T_i are presented in Figure B-3. Note that there are 10 spectra, one for each of the considered return periods.
Figure B-3 Conditional Mean Spectra for Return Period of 43, 144, 289, 475, 949, 1485, 2475, 3899, 7462 and 10000 Year and for Building Period $T_1=0.524, 1.186$ and 3.660 Second

The algorithm developed by Baker and Lee (2017) were used for the selection and scaling of ground motions. Forty ground motions were selected and scaled for each return period (total 1200 different ground motions for the three building period cases). Scaling was only in amplitude with a maximum scale factor of 5. Figures B-4 to B-13 present the response spectra of 40 scaled ground motions for each of the 10 return periods, their mean values and the mean values ± two standard deviations ($\text{mean} \pm 2\sigma$). The graphs also show the target CMS and the
Figure B-4 Spectra of Scaled Motions and Conditional Spectra for Return Period of 43 Years and
Period T_1 Equal to 0.524, 1.186 and 3.660 Seconds
Figure B-5 Spectra of Scaled Motions and Conditional Spectra for Return Period of 144 Years and Period T_1 Equal to 0.524, 1.186 and 3.660 Seconds
Figure B-6 Spectra of Scaled Motions and Conditional Spectra for Return Period of 289 Years and Period T_1 Equal to 0.524, 1.186 and 3.660 Seconds
Figure B-7 Spectra of Scaled Motions and Conditional Spectra for Return Period of 475 Years and Period T_1 Equal to 0.524, 1.186 and 3.660 Seconds
Figure B-8 Spectra of Scaled Motions and Conditional Spectra for Return Period of 949 Years and Period T_1 Equal to 0.524, 1.186 and 3.660 Seconds
Figure B-9 Spectra of Scaled Motions and Conditional Spectra for Return Period of 1485 Years and Period T_1 Equal to 0.524, 1.186 and 3.660 Seconds
Figure B-10 Spectra of Scaled Motions and Conditional Spectra for Return Period of 2475 Years and Period T_1 Equal to 0.524, 1.186 and 3.660 Seconds
Figure B-11 Spectra of Scaled Motions and Conditional Spectra for Return Period of 3899 Years and Period T_1 Equal to 0.524, 1.186 and 3.660 Seconds
Figure B-12 Spectra of Scaled Motions and Conditional Spectra for Return Period of 7462 Years and Period T_1 Equal to 0.524, 1.186 and 3.660 Seconds
Figure B-13 Spectra of Scaled Motions and Conditional Spectra for Return Period of 10000 Years and Period T_1 Equal to 0.524, 1.186 and 3.660 Seconds
The selected and scaled ground motions used for the probabilistic evaluation must be representative of those that would be experienced in the future (Kohrangi et al., 2017). To ensure this the selected motions are evaluated for “hazard consistency”. For the evaluation the rate of exceedance of $S_a(T)$ by the selected ground motions, conditional on $S_a(T_1)$, is calculated by the following equation (NIST, 2011; Lin et al., 2013a):

$$\lambda(Sa(T) > y) = \sum_{i=1}^{n} P(Sa(T) > y | Sa(T_1) = x_i) \lambda(Sa(T_1) = x_i)$$ \hspace{1cm} \text{(B-3)}

In Equation (B-3) n is the number of considered $S_a(T_1)$ amplitudes. Also, $P(Sa(T)>y|Sa(T_1)=x_i)$ is the probability that a ground motion selected and scaled to have $S_a(T_1)=x_i$ has a spectral acceleration at period T that is greater than y. This probability was estimated as the fraction of the 40 ground motions with $S_a(T_1)=x_i$ that have $S_a(T)>y$. Note that $\lambda(Sa(T_1) = x_i)$ can be calculated as follows (NIST, 2011; Lin et al., 2013a):

$$\lambda(Sa(T_1) = x_i) = \frac{\lambda(Sa(T_1)>x_{i-1})-\lambda(Sa(T_1)>x_{i+1})}{2}$$ \hspace{1cm} \text{(B-4)}

For the hazard consistency, the calculated rate of exceedance $\lambda(Sa(T)>y)$ as function of $S_a(T_1)$ is compared with the seismic hazard curve obtained for the site from USGS (https://earthquake.usgs.gov/hazards/interactive/), with the two curves expected to be in close agreement. If the curves are not sufficiently close, the selected ground motions are assumed to violate hazard consistency and the process is re-started with new motions.

Figure B-14 compares the rates of exceedance with the seismic hazard curves obtained from the USGS website (https://earthquake.usgs.gov/hazards/interactive/) for the three values of period T_1 corresponding to the considered isolated structures ($T_1=T_m=3.66$sec), the non-isolated SMF structure ($T_1=1.866$sec) and the non-isolated SCBF structure ($T_1=0.524$sec). The seismic hazard curves in Figure B-14 were constructed for different periods T depending on the structure analyzed. Specifically, for the case of the seismically isolated structures (Fig. B-14(a)), the three periods were $T=3.66$, 0.989 and 0.377 seconds. The periods are the fundamental period (=3.66 sec), the second period for the case of the isolated SMF (=0.989 sec) and the second period for the case of the isolated SCBF (=0.377 sec) obtained by modal analysis for the frames designed with $R_I=1.5$ and with the isolators represented by the effective properties in the MCE. (The second and third period values for the isolated frames designed for $R_I=1.0$ and 2.0 were within 10% of period values in the curves of Figure B-14). The curves in Figure B-14(b) apply for the case of the non-isolated SMF building. The three values of period T are the fundamental
(1.186sec), the second period (0.437sec) and a value twice the fundamental period (2T=2.372sec). Similarly, the curves in Figure B-14(c) apply for the case of the non-isolated SCBF building, with the three values of period T being the fundamental (0.524sec), the second period (0.195sec) and a value twice the fundamental period (2T=1.048sec).) Note that these ranges of period are examined because the goal of the analysis is to compute values of the maximum story drift ratio, the residual story drift ratio and the peak floor acceleration which are sensitive to motions of different frequency content. The shorter periods are examined because the peak floor acceleration is sensitive to motions of large frequencies (short period). The longer periods (2T values) are examined because the maximum story drift and the residual story drift are sensitive to motions containing components with large periods that may be close to the lengthened period of the analyzed buildings when they undergo inelastic action in strong ground motions (NIST, 2011; Lin et al., 2013a).

The computed curves for the mean annual rate of exceedance for the selected ground motions are in good agreement with the seismic hazard curves obtained from USGS for the site except for the case of the isolated structures (Fig. B-14(a)) and for the lower periods (T=0.377 and 0.989sec). In these cases the computed rates are less than those of the seismic hazard curves, suggesting that the computed mean annual frequencies of exceedance for the floor accelerations of the isolated buildings are somehow underestimated (as they are affected by motions with low period content). Nonetheless, the selection of ground motions was deemed acceptable given that the fidelity of the computed curves for the mean annual rate of exceedance of the selected ground motions (as compared to the seismic hazard curves obtained from USGS) was comparable to those presented in other studies (NIST, 2011; Lin et al, 2013a; Kohrangi et al, 2017).
Figure B-14 Comparison of Calculated Mean Annual Frequency Rates Based on Selected Ground Motions (Solid Lines) and USGS Seismic Hazard Curves Dashed Lines) for (a) Isolated Buildings, (b) Non-isolated SMF Building and (c) Non-isolated SCBF Building
MCEER Technical Reports

MCEER publishes technical reports on a variety of subjects written by authors funded through MCEER. These reports can be downloaded from the MCEER website at http://www.buffalo.edu/mceer. They can also be requested through NTIS, P.O. Box 1425, Springfield, Virginia 22151. NTIS accession numbers are shown in parenthesis, if available.

NCEER-87-0003 "Experimentation Using the Earthquake Simulation Facilities at University at Buffalo," by A.M. Reinhorn and R.L. Ketter, not available.

NCEER-87-0004 "The System Characteristics and Performance of a Shaking Table," by J.S. Hwang, K.C. Chang and G.C. Lee, 6/1/87, (PB88-134259, A03, MF-A01). This report is available only through NTIS (see address given above).

NCEER-87-0007 "Instantaneous Optimal Control Laws for Tall Buildings Under Seismic Excitations," by J.N. Yang, A. Akbarpour and P. Ghaemmaghami, 6/10/87, (PB88-134333, A06, MF-A01). This report is only available through NTIS (see address given above).

NCEER-87-0008 "IDARC: Inelastic Damage Analysis of Reinforced Concrete Frame - Shear-Wall Structures," by Y.J. Park, A.M. Reinhorn and S.K. Kunnath, 7/20/87, (PB88-134325, A09, MF-A01). This report is only available through NTIS (see address given above).

NCEER-87-0009 "Liquefaction Potential for New York State: A Preliminary Report on Sites in Manhattan and Buffalo," by M. Budhu, V. Vijayakumar, R.F. Giese and L. Baumgras, 8/31/87, (PB88-163704, A03, MF-A01). This report is available only through NTIS (see address given above).

NCEER-87-0010 "Vertical and Torsional Vibration of Foundations in Inhomogeneous Media," by A.S. Veletsos and K.W. Dotson, 6/1/87, (PB88-134291, A03, MF-A01). This report is only available through NTIS (see address given above).

NCEER-87-0011 "Seismic Probabilistic Risk Assessment and Seismic Margins Studies for Nuclear Power Plants," by Howard H.M. Hwang, 6/15/87, (PB88-134267, A03, MF-A01). This report is only available through NTIS (see address given above).

NCEER-87-0012 "Parametric Studies of Frequency Response of Secondary Systems Under Ground-Acceleration Excitations," by Y. Yong and Y.K. Lin, 6/10/87, (PB88-134309, A03, MF-A01). This report is only available through NTIS (see address given above).

NCEER-87-0014 "Modelling Earthquake Ground Motions in Seismically Active Regions Using Parametric Time Series Methods," by G.W. Ellis and A.S. Cakmak, 8/25/87, (PB88-134283, A08, MF-A01). This report is only available through NTIS (see address given above).

NCEER-87-0015 "Detection and Assessment of Seismic Structural Damage," by E. DiPasquale and A.S. Cakmak, 8/25/87, (PB88-163712, A05, MF-A01). This report is only available through NTIS (see address given above).

NCEER-88-0010 "Base Isolation of a Multi-Story Building Under a Harmonic Ground Motion - A Comparison of Performances of Various Systems," by F-G Fan, G. Ahmadi and I.G. Tadjbakhsh, 5/18/88, (PB89-122238, A06, MF-A01). This report is only available through NTIS (see address given above).

NCEER-88-0018 "An Experimental Study of Seismic Structural Response With Added Viscoelastic Dampers," by R.C. Lin, Z. Liang, T.T. Soong and R.H. Zhang, 6/30/88, (PB89-122212, A05, MF-A01). This report is available only through NTIS (see address given above).

NCEER-88-0021 "Seismic Interaction of Structures and Soils: Stochastic Approach," by A.S. Veletsos and A.M. Prasad, 7/21/88, (PB89-122196, A04, MF-A01). This report is only available through NTIS (see address given above).

NCEER-88-0022 "Identification of the Serviceability Limit State and Detection of Seismic Structural Damage," by E. DiPasquale and A.S. Cakmak, 6/15/88, (PB89-122188, A05, MF-A01). This report is available only through NTIS (see address given above).

NCEER-88-0024 "Automated Seismic Design of Reinforced Concrete Buildings," by Y.S. Chung, C. Meyer and M. Shinozuka, 7/5/88, (PB89-122170, A06, MF-A01). This report is available only through NTIS (see address given above).

NCEER-88-0031 "Design Approaches for Soil-Structure Interaction," by A.S. Veletos, A.M. Prasad and Y. Tang, 12/30/88, (PB89-174437, A03, MF-A01). This report is available only through NTIS (see address given above).

NCEER-88-0038 "Teflon Bearings in Aseismic Base Isolation: Experimental Studies and Mathematical Modeling," by A. Mokha, M.C. Constantinou and A.M. Reinhorn, 12/5/88, (PB89-218457, A10, MF-A01). This report is available only through NTIS (see address given above).

NCEER-89-0005 "Experiment on Performance of Buried Pipelines Across San Andreas Fault," by J. Isenberg, E. Richardson and T.D. O'Rourke, 3/10/89, (PB89-218440, A04, MF-A01). This report is available only through NTIS (see address given above).

NCEER-89-0011 "Inelastic Three-Dimensional Response Analysis of Reinforced Concrete Building Structures (IDARC-3D), Part I - Modeling," by S.K. Kunnath and A.M. Reinhorn, 4/17/89, (PB90-114612, A07, MF-A01). This report is available only through NTIS (see address given above).

NCEER-89-0017 "Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake Education in Our Schools," Edited by K.E.K. Ross, 12/31/89, (PB90-207895, A012, MF-A02). This report is available only through NTIS (see address given above).

NCEER-89-0019 "Nonlinear Dynamic Analysis of Three-Dimensional Base Isolated Structures (3D-BASIS)," by S. Nagarajaiah, A.M. Reinhorn and M.C. Constantinou, 8/3/89, (PB90-161936, A06, MF-A01). This report has been replaced by NCEER-93-0011.

NCEER-89-0025 "DYNA1D: A Computer Program for Nonlinear Seismic Site Response Analysis - Technical Documentation," by Jean H. Prevost, 9/14/89, (PB90-161944, A07, MF-A01). This report is available only through NTIS (see address given above).

NCEER-89-0026 "1:4 Scale Model Studies of Active Tendon Systems and Active Mass Dampers for Aseismic Protection," by A.M. Reinhorn, T.T. Soong, R.C. Lin, Y.P. Yang, Y. Fukao, H. Abe and M. Nakai, 9/15/89, (PB90-173246, A10, MF-A02). This report is available only through NTIS (see address given above).

NCEER-90-0019 "Experimental and Analytical Study of a Combined Sliding Disc Bearing and Helical Steel Spring Isolation System," by M.C. Constantinou, A.S. Mokha and A.M. Reinhorn, 10/4/90, (PB91-125385, A06, MF-A01). This report is available only through NTIS (see address given above).

<table>
<thead>
<tr>
<th>Report Number</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
<th>PB Number</th>
<th>A#</th>
<th>MF-A#</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCEER-91-0005</td>
<td>"3D-BASIS - Nonlinear Dynamic Analysis of Three Dimensional Base Isolated Structures: Part II," by S. Nagarajaiah, A.M. Reinhorn and M.C. Constantinou, 2/28/91</td>
<td>(PB91-190553, A07, MF-A01). This report has been replaced by NCEER-93-0011.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCEER-91-0009</td>
<td>"Earthquake Education Materials for Grades K-12," by K.E.K. Ross, 4/30/91</td>
<td>(PB91-212142, A06, MF-A01). This report has been replaced by NCEER-92-0018.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCEER-91-0017</td>
<td>"Shake Table Test of a 1/6 Scale Two-Story Lightly Reinforced Concrete Building," by A.G. El-Attar, R.N. White and P. Gergely, 2/28/91</td>
<td>(PB92-222447, A06, MF-A02).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCEER-91-0018</td>
<td>"Shake Table Test of a 1/8 Scale Three-Story Lightly Reinforced Concrete Building," by A.G. El-Attar, R.N. White and P. Gergely, 2/28/91</td>
<td>(PB93-116630, A08, MF-A02).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NCEER-91-0020 "Hybrid Control of Seismic-Excited Nonlinear and Inelastic Structural Systems," by J.N. Yang, Z. Li and A. Danielians, 8/1/91, (PB92-143171, A06, MF-A02).

NCEER-92-0005 "Seismic Ground Motion from a Haskell-Type Source in a Multiple-Layered Half-Space," A.P. Theoharis, G. Deodatis and M. Shinozuka, 1/2/92, not available.

126

NCEER-97-0017 "Seismic Fragility of Existing Conventional Reinforced Concrete Highway Bridges," by C.L. Mullen and A.S. Cakmak, 12/30/97, (PB98-153406, A08, MF-A02).

MCEER-98-0006 “Structural Steel and Steel/Concrete Interface Details for Bridges,” by P. Ritchie, N. Kauhl and J. Kulicki, 7/13/98, (PB99-118945, A06, MF-A01).

130

MCEER-00-0007 "Low-Cycle Fatigue Behavior of Longitudinal Reinforcement in Reinforced Concrete Bridge Columns," by J. Brown and S.K. Kunnath, 7/23/00, (PB2001-104392, A08, MF-A02).

MCEER-00-0009 "Proceedings of the First MCEER Workshop on Mitigation of Earthquake Disaster by Advanced Technologies (MEDAT-1)," edited by M. Shinozuka, D.J. Inman and T.D. O'Rourke, 11/10/00, (PB2001-105399, A14, MF-A03).

MCEER-00-0013 "Effect of Spatial Variation of Ground Motion on Highway Structures," by M. Shinozuka, V. Saxena and G. Deodatis, 12/31/00, (PB2001-108755, A13, MF-A03).

MCEER-06-0002 “Multi-Dimensional Fragility of Structures,” by G.P. Cimellaro, A.M. Reinhorn and M. Bruneau, 3/1/06 (PB2007-106974, A09, MF-A02, CD A00).

MCEER-07-0006 “Seismic Analysis of Conventional and Isolated Liquefied Natural Gas Tanks Using Mechanical Analogs,” by I.P. Christovasilis and A.S. Whittaker, 5/1/07, not available.

MCEER-08-0003 “Analytical and Experimental Investigation of a Controlled Rocking Approach for Seismic Protection of Bridge Steel Truss Piers,” by M. Pollino and M. Bruneau, 1/21/08 (PB2008-112233).

MCEER-08-0010 “Experimental Investigation of Full-Scale Two-Story Steel Plate Shear Walls with Reduced Beam Section Connections,” by B. Qu, M. Bruneau, C-H. Lin and K-C. Tsai, 3/17/08 (PB2009-106368).

MCEER-08-0012 “Seismic Behavior and Design of Boundary Frame Members of Steel Plate Shear Walls,” by B. Qu and M. Bruneau, 4/26/08 . (PB2009-106744).

MCEER-16-0002 “Seismic Demand in Columns of Steel Frames,” by Lisa Shrestha and Michel Bruneau, June 17, 2016.

MCEER-17-0003 “Response of Steel-plate Concrete (SC) Wall Piers to Combined In-plane and Out-of-plane Seismic Loadings,” by Brian Terranova, Andrew S. Whittaker, Siamak Epackachi and Nebojsa Orbovic, July 17, 2017.

Characterizing the Rotational Components of Earthquake Ground Motion

by Dhiman Basu, Andrew S. Whittaker and Michael C. Constantinou

Technical Report MCEER-12-0005
June 15, 2012

This research was conducted at the University at Buffalo, State University of New York and was supported by MCEER Thrust Area 3, Innovative Technologies.