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Preface

MCEER is a national center of excellence dedicated to the discovery and development of new 
knowledge, tools and technologies that equip communities to become more disaster resilient in 
the face of earthquakes and other extreme events. MCEER accomplishes this through a system of 
multidisciplinary, multi-hazard research, in tandem with complimentary education and outreach 
initiatives. 

Headquartered at the University at Buff alo, The State University of New York, MCEER was originally 
established by the National Science Foundation in 1986, as the fi rst National Center for Earth-
quake Engineering Research (NCEER). In 1998, it became known as the Multidisciplinary Center 
for Earthquake Engineering Research (MCEER), from which the current name, MCEER, evolved.

Comprising a consortium of researchers and industry partners from numerous disciplines and 
institutions throughout the United States, MCEER’s mission has expanded from its original focus 
on earthquake engineering to one which addresses the technical and socio-economic impacts of a 
variety of hazards, both natural and man-made, on critical infrastructure, facilities, and society.

The Center derives support from several Federal agencies, including the National Science Founda-
tion, Federal Highway Administration, Department of Energy, Nuclear Regulatory Commission, 
and the State of New York, foreign governments and private industry.  
 
This report presents the development and validation of a practical three-directional seismic iso-
lation system for use in high-voltage power transformers, although the technology could  easily 
be transferred to building applications. Characteristics of the developed system are: (a) it is a 
modular extension of a horizontal seismic isolation system consisting of triple Friction Pendulum 
isolators currently used for power transformers, (b) it consist of two separate systems, one to 
achieve horizontal seismic isolation and the other to achieve vertical seismic isolation, (c) the 
horizontal system is highly fl exible in order to achieve a high degree of seismic isolation but sub-
ject to constraints on displacements for serviceability of the equipment, (d) the vertical system is 
able to support the weight of the equipment with limited defl ection in order to meet serviceabil-
ity requirements and compactness, (e) all components of the system are readily available from 
reputable manufacturers, and (f) all components of the system are passive and highly reliable.
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ABSTRACT 

 

The electric network of the United States is considered to be critical infrastructure.  Electric utility 

companies and electric power administrators (e.g., Bonneville Power Administration, a federal 

nonprofit agency) are increasingly interested in strengthening the security and resilience of their 

networks against earthquakes.  Important components of these networks are high voltage electrical 

transformers.  While the equipment or parts of it are tested, there are systematic failures in 

earthquakes as the equipment is very complex and motion of its internal components is not easily 

predictable.  Utility companies keep in storage a small number of high voltage transformers for 

use in cases of failures but a widespread failure of equipment in an earthquake would be 

catastrophic for the communities served by the utility companies as replacement of the failed 

equipment takes substantial time.  Transformers are manufactured by a few companies worldwide 

and delivery of ordered products typically has a long lead time.  Thus, the loss of a transformer 

has some economic impact but mostly the issue is that of down-time which is unacceptably high. 

Accordingly, the development of effective and reliable systems for providing seismic protection 

to electrical equipment is important. 

 

Earlier studies in the use of seismic protective systems for electrical transformers and other 

equipment produced results that clearly show the benefits of seismic isolation in the horizontal 

direction.  However, vertical ground motions were transmitted through the isolation system 

unchanged or even slightly magnified.   The work described in this report aims at addressing this 

issue by developing and validating a compact, effective, reasonably priced and highly reliable 

combined horizontal-vertical seismic isolation system for use on electrical equipment of weight in 

the range of 300 to 800kip, which is typical of high voltage transformers in the range of 230-

500kV.  The developed and tested system consists of triple Friction Pendulum bearings for the 

horizontal isolation system, which are supported by vertically driven spring-damper units.  These 

units form a highly damped vertical damping system.  
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SECTION 1  

INTRODUCTION 

Seismic isolation systems developed and widely implemented provide only protection against the 

horizontal components of earthquake motion.  The vertical ground motion is transmitted 

unchanged through or even magnified by the isolation system.  Furthermore, the vertical ground 

motion may affect and cause reduction of the effectiveness of the isolation system in the 

horizontal direction.  This behavior is illustrated in the figures below where spectra of recorded 

motion at the control point (connection of bushing to steel plate) are presented for the recent tests 

of a transformer model with full size Triple Friction Pendulum isolators and without isolation at 

the University at Buffalo (Oikonomou et al, 2016).  Figure 1-1 compares vertical response 

spectra at a point on the transformer above the horizontal-only isolators when identical three 

component earthquake excitations were applied to the isolated and the non-isolated model (the 

spectra were obtained from the recorded acceleration histories). The spectra also show the design 

spectrum (IEEE, 2005) for the vertical direction.  It is clear that there is no vertical isolation 

effect as the response spectra are about the same (or a little larger or a little smaller) for the 

isolated and the non-isolated models, with both being much higher than the design spectrum.  

Figure 1-2 shows the horizontal response spectra at the control point for three-component 

seismic excitation.  Evidently, the horizontal-only isolation system is very effective as the 

spectral accelerations of the isolated model are much less than those of the non-isolated model 

and fall well below the IEEE design spectrum. 

The utility of a practical seismic isolation system that is effective in all three directions is evident 

in these results.  Efforts to develop three-dimensional seismic isolation systems were hampered 

by the requirement to carry the weight of the isolated structure, to shift the vertical frequency to 

sufficiently low values and to have a compact system.  Many of these efforts targeted floor 

systems in buildings where the Japanese construction industry developed and implemented a 

number of similar systems based on sliding isolators and vertical spring-damper systems carrying 

light loads and being of unclear performance.  Yet a number of systems have been developed and 

are presented and critiqued in this document. All are implementable but they are characterized by 

either inefficiency or extreme complexity. 
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Figure 1-1 Vertical Response Spectra at Control Point of Non-isolated and Horizontally Isolated 

Electrical Transformer for Three-Component Excitation 

 

Figure 1-2 Horizontal Response Spectra (two directions) at Control Point of Non-isolated and 

Horizontally Isolated Electrical Transformer for Three-Component Excitation 

 

Helical coil springs capable of deforming in all three directions, and when needed enhanced by 

viscous or viscoelastic devices, have been used as effective shock and vibration isolation systems 

for decades.  In such applications where the dynamic excitation is of high frequency, the 
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isolation system is relatively stiff and static and dynamic displacements are very small, so that 

the system is easily implemented.  The same type of system has been proposed and actually used 

in a small number of applications for the seismic protection of equipment and small residential 

buildings (houses).  Makris and Constantinou (1992) experimentally and analytically 

investigated one such system consisting of helical springs and visco-elastic fluid dampers.  The 

system operated primarily as a three dimensional damping system owing to the fact that the 

frequencies of the isolated structure could not be sufficiently low for effective seismic isolation.  

Specifically for the case of two residential buildings constructed in the Los Angeles at that time, 

the least frequency was 1.6Hz in the rocking mode and the corresponding damping ratio was 

0.23.  Analysis showed that there was some benefit provided by the system but the high 

frequencies and the resulting rocking response tended to magnify accelerations to values larger 

than the peak ground accelerations.  This was later confirmed in recordings of the response of the 

buildings in the 1994 Northridge Earthquake (Makris and Deoskar, 1996).  A study is presented 

later in this report that better exposes the limitations of such a system when used in the seismic 

isolation of electrical transformers. 

The Japanese industry investigated three-dimensional seismic isolation systems for nearly 20 

years.  At around 2000, the Japan Energy Atomic Research Institute (JEARI) proposed two types 

of three-dimensional (3D) isolation systems for use in nuclear power structures.  Both included a 

horizontal seismic isolation system consisting of either (a) flat rolling (ball) bearings with 

stiffness provided by springs and damping provided by fluid dampers or (b) elastomeric bearings.  

The vertical isolation system consisted of either coil or air springs together with viscous dampers 

(Tsutsumi el al., 2000 and 2001).  Important characteristics of the systems are the separation of 

the vertical and horizontal isolation systems by the use of a very stiff base and the prevention of 

rocking by a variety of mechanisms.  Figure 1-3 shows a model tested in Japan consisting of four 

air springs serving as the vertical isolation system and coil springs with rolling (ball) bearings 

serving as the horizontal isolation system.  The coil springs were designed to provide a 1Hz 

horizontal frequency.  In testing, the frequencies were determined to be 0.37Hz in a combined 

rocking/horizontal mode and 1.06Hz in the vertical direction.  The system lacked any restraint 

against rotation although it included a complicated hydraulic leveling system for the rolling 

bearings.  The vertical frequency fv and the vertical static deflection δv are related through 
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δv=g/(4π2fv
2) so that a frequency of 1.06Hz corresponds to a static deflection of 220mm, which is 

large.  The complexity of the system, the use of unreliable components in the rolling bearings, air 

springs and hydraulic leveling systems, and the large static deflection makes this system 

unacceptable for the seismic isolation of electrical equipment. 

 

 

Figure 1-3 3D Seismic Isolation System Consisting of Air Spring Combined with Flat Rolling (Ball) 

Bearings and Coil Springs (Tsutsumi el al., 2000) 

 

The second 3D isolation system is illustrated in Figure 1-4.  This system consists of elastomeric 

isolators and fluid dampers for the horizontal isolation system and coil springs and dampers for 

the vertical isolation system.  The two systems are separated by a stiff base and the vertical 

springs are guided so that rocking is minimized.  In the model used in testing (Figure 1-4) multi-

staged elastomeric bearings were used due to the light weight of the model.  This is also the only 

option for use of elastomeric bearings in the isolation of equipment due to the light supported 

weight.  For a nuclear structure application, single elastomeric bearings are to be used.  Note the 

bent base frame separating the two systems which appears to be an attempt to reduce the height 

of the system and to lower the center of gravity.  Testing of the model revealed the following 
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frequencies: (a) 0.45Hz in the horizontal direction, (b) 1.45Hz in a combined rocking/horizontal 

mode and (c) 2.0Hz in the vertical direction.  This is a useful design that is similar in 

characteristics with the tested transformer isolation systems in this report.  Nevertheless, the 

complexity and cost in the use of the combined multi-stage elastomeric bearings and dampers for 

horizontal isolation, use of a double base, and its height make the use of this system problematic 

in an electrical transformer application. 

 

Figure 1-4 3D Seismic Isolation System Consisting of Multistage Elastomeric Bearings, Vertical 

Coil Springs and Horizontal and Vertical Dampers (Tsutsumi el al., 2001) 

 

During a five year period starting in 2000, the Japanese industry concentrated on the 

development of 3D seismic isolation systems for use in the protection of Fast Breeder Nuclear 
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Reactors (FBR).  The FBR design requires thin walls to reduce large thermal stresses in 

components, which contradicts the requirement for thick walls to resist large seismic loads 

(Inoue et al., 2004), so that seismic isolation was a necessity.  The Ministry of Economy, Trade 

and Industry of Japan funded a research and development effort by the Japanese construction 

industry.   Nine different 3D seismic isolation system concepts were proposed, six were selected 

for further evaluation and finally three were built and tested (Inoue et al, 2004).  These systems 

are (a) Elastomeric Bearing-Air Spring System (Suhara et al., 2003, 2005), (b) Elastomeric 

Bearing-Hydraulic Spring System (Kashiwazaki et al., 2003), and (c) Reinforced Air Spring 

System (Kageyama et al., 2004),  They are described in Table 1-1 and in the narrative below.   

 

(a)  Elastomeric Bearing-Air Spring System 

The system consists of rolling (vertically) air springs as the vertical isolators and elastomeric 

bearings as the horizontal isolators, placed as shown in Table 1-1 with the elastomeric bearing on 

top of the rolling air spring.  The vertical air spring device comprises of an air compartment to 

which the air pressure is maintained by a system of air tanks, piping and controls. The design 

vertical load per unit is 9.8MN and the vertical frequency is 0.5Hz with a corresponding 

damping ratio of 0.40.  The static deflection for a system with a 0.5Hz frequency is about 1m, 

which is excessive.  However, the height of the air spring is only 1.4m due to the fact that load 

will first be developed during construction while the system is unpressurized and then the system 

will be pressurized so that the static deflection will not materialize.  To restrain rocking motion, a 

rocking suppression system was developed utilizing vertical oil dampers, accumulators and other 

hydraulic hardware.  The oil dampers also provide viscous damping in the vertical direction.  

Note that the air springs are guided vertically by a rolling system which introduces friction.  

Testing of the system (Suhara et al., 2003) identified friction to be about 0.03 of the supported 

weight.  

The type of elastomeric bearing used in this system is not clear.  However, based on Japanese 

practice it could be (a) a high damping rubber bearing, (b) a low or high damping elastomeric 

bearing in combination with oil or steel dampers or (c) a lead-rubber bearing.   
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Table 1-1 Proposed 3D Seismic Isolation Systems for FBR Nuclear Power Plants (Inoue K. et al., 2004)  
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 (b) Elastomeric Bearing-Hydraulic Spring System 

The system consists of elastomeric high damping bearings for horizontal isolation, each of which 

is placed below a vertical oil spring and damper unit to provide the vertical flexibility and 

damping.  The vertical units are guided to only move vertically.  The vertical units utilize 

external accumulators to control the vertical stiffness together with external orificing to provide 

the damping.  A separate hydraulic system is used to control rocking.   The complexity of the 

rocking suppression system is evident in drawings of the system in Figure 1-5 (Kashiwazaki et al, 

2003).   

 

 
(a) System Layout                                 (b) Rocking Suppression Cylinder 

Figure 1-5 Rocking Suppression System used in 3D Elastomeric Bearing-Hydraulic Spring System 

(Kashiwazaki, 2003) 

 

(c) Reinforced Air Spring System 

The system consists of a three dimensional air spring capable of motion in all directions.  The air 

is maintained in the system by a rubber/polyester sheet reinforced with cables.  Damping is 

provided by vertical and horizontal oil dampers.  The vertical oil dampers are provided with a 

cable control system to prevent rocking.  The rocking prevention system is illustrated in Figure 

1-6.  An additional rocking prevention system was also proposed (Kageyama el al, 2003 and 

2004).   

The air spring unit is massive in size with about 10m diameter and 4m height to support a weight 

of up to 70MN and provide a vertical frequency of 0.35Hz and a horizontal frequency of 0.27Hz 

with damping ratio of 20% in both directions. 

5.2m 3.8m 5.2m 3.8m 5.2m 3.8m 5.2m 3.8m

80m

5
0

m
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Structure periphery
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Load-carrying cylinder
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Load-carrying cylinder ports

Accumulator unit ports

Swivel joint
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Figure 1-6 Rocking Prevention Device of Reinforced Air Spring System (Kageyama et al., 2003) 

 

More recently, Shimizu Corporation in collaboration with Kozo Keikaku Engineering refined the 

Elastomeric Bearing-Air Spring System of Table 1-1 resulting in the horizontal-vertical isolation 

system illustrated in Figure 1-7 (Tomizawa et al, 2011; Mori et al., 2012).  The system makes 

use of elastomeric bearings supported by a stiff base with vertical air springs below.  A guiding 

system is used to transfer shear force and prevent the air springs from being subjected to lateral 

deformation.  Vertical dampers that are hydraulically connected, per Figure 1-7, provide vertical 

damping and restrain rocking. Horizontal dampers are used to provide damping in the horizontal 

direction.  The images in Figure 1-7 are of a small 3-story apartment building (total floor area 

about 550m2), called “Chisuikan” that was built with this system in 2011. Measurements of 

response of the building during the March 2011 Tohoku Earthquake showed that the vertical 

frequency was 0.77Hz and the horizontal frequency was 0.43Hz.  The excitation was not strong 

(PGA of about 0.1g) and the recorded roof horizontal accelerations were essentially the same as 

those of the ground.  The recorded vertical accelerations in the building were 0.034g for a ground 

vertical acceleration of 0.046g.  

 

The complexities and potential costs of these systems are apparent.  Moreover, the use of air or 

fluid to support the weight, the use of accumulators, hydraulic piping and valves makes the entire 

system unreliable and in need of continued maintenance.  They are certainly unacceptable for use 

in electrical transformers where simplicity, reliability, lack of or minimum maintenance 

requirements and cost are the most important considerations.    
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Figure 1-7 Seismic Isolation System of Chisuikan Building (Tomizawa et al, 2011; Mori et al, 2012) 

 

A practical, but limited in effectiveness, 3D seismic isolation system has been proposed by 

GERB of Germany and actually studied at UB in the late1980s, including shake table testing 

(Makris and Constantinou, 1992).  The entire structure is mounted on helical (coil) springs which 

provide flexibility in all directions.  Due to the fact that the springs need to be stiff enough to 

carry the weight of the structure, the lateral flexibility is also limited.  The lowest frequency is 

Rocking Suppression Device

(installed for free vibration test)

3D Isolation UnitBuilding “Chisuikan”
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achieved in the rocking mode.  For the example building presented in Makris and Constantinou 

(1992), the lowest frequency was 1.6Hz, which is large for effective isolation. Figure 1-8 shows 

a view of the analyzed small residential building.  The system required complex analysis due to 

type of damper used.  Nevertheless, the system could provide limited isolation in all three 

directions.  Rocking would be an issue as it would amplify the response of sensitive vertical 

elements like bushings in transformers.  Other than two applications of residential structures in 

the Los Angeles area and a number of 230kV capacitor banks in Xian, China installed in 1999, 

the idea did not materialize into wide-spread applications.  The reason may have been the fact 

that for the benefit of some reduction of response in the vertical direction there was limited 

isolation in the horizontal direction.  Also, the system makes use of what is now considered 

obsolete damping devices that add to the stiffness of the springs and are highly dependent on 

temperature and frequency, and the system properties were not optimized. 

 

 

Figure 1-8 3D Seismic Isolation System for a House in California (Makris and Constantinou, 1992) 

 

Around 1999 a 3D seismic isolation system was developed and its parts tested for a radar facility 

of the US Missile Defense System on the Shemya Island in Alaska.  The system was complex 

and required near absolute rigidity under service loads and capability for quick and precise 
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repositioning after an earthquake.  The system was semi-active to achieve the requirements for 

rigidity and re-positioning.  However, the main components, excluding the semi-active part, were 

readily available (springs, dampers and single Friction Pendulum bearings).  Following the 

events of September 11, 2001, the priority for the missile defense system was changed and the 

radar facility was not built.  Figure 1-9 illustrates the main components of this isolation system.  

The vertical fuse positioners in this figure provided the required rigidity and repositioning 

following an earthquake.  The devices were activated (quickly released by either hydraulic or 

explosive means) on the basis of ground acceleration information provided by sensors.  Note that 

the horizontal truss members were used to prevent horizontal movement of the springs. 

 

 

Figure 1-9 3D Seismic Isolation System developed for a Radar Facility at Shemya Island, Alaska 

 

Elastomeric bearings with low shape factor were considered in an attempt to provide some 

vertical flexibility.   In 1969, a three-story elementary school building was built in Yugoslavia 

utilizing cubes of rubber in a crude attempt to provide a 3D seismic isolation system (Staudacher 

et al., 1970).  The unreinforced rubber bearings did not have sufficient capacity to sustain the 

gravity loads, had obvious signs of significant bulging and they experienced creep.  The building 

was eventually demolished.   

 

Kajima Corporation of Japan built, in the mid-1980s, one structure on their research campus in 

Tokyo with low shape factor (4) elastomeric bearings (Kelly, 1988).  The attempt was to provide 

some vertical flexibility for vibration isolation in the vertical direction, but not vertical seismic 
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isolation.  Nevertheless, significant creep in the low shape factor bearings required periodic 

adjustment of the height of the bearings, which were eventually removed and replaced.   

 

Aiken et al. (1989) and Tajirian et al. (1990) tested several types of elastomeric bearings with a 

shape factor of 2.5, which is aimed at achieving a horizontal frequency of 0.5Hz and a vertical 

frequency of 5Hz.   The purpose of the testing was to investigate the application of such bearings 

in the 3D seismic isolation of nuclear structures.  More recently, Okamura et al. (2011) tested 

scaled bearings of various shape factors in a range of 8 to 14, and concluded that elastomeric 

isolation systems with a horizontal frequency of 0.29Hz and a vertical frequency of 8Hz can 

reduce the seismic response of nuclear reactor structures.  The high vertical frequency of 5Hz or 

larger and the associated low damping (less than 15%) are insufficient to provide for seismic 

isolation in the vertical direction.  This will be demonstrated in Section 2 of this report when 

analytical studies are presented.  Also, low shape factors severely limit the capacity of the 

bearings to carry vertical load and deform laterally.  Moreover, the aforementioned issues with 

creep should persist although not evaluated in these studies.   

   

The preceding review of 3D seismic isolation system development demonstrated that (a) purely 

elastomeric isolation systems cannot provide effective vertical isolation due to their high 

frequency and other problems of creep and low capacity to carry vertical load and deform 

laterally, (b) helical spring and damper systems generally have all frequencies larger than about 

1.5Hz to be able to provide effective isolation in all directions, (c) effective 3D isolation systems 

developed in Japan are exceptionally complex utilizing air springs, accumulators, piping, valves 

and leveling systems that require continued maintenance, are likely unreliable and are costly.  

They are certainly unacceptable for use in the seismic isolation of electrical transformers where 

reliability, minimum maintenance, compactness and reasonable costs are required. 

 

The objective of the work described in this report was to develop and validate a practical three-

directional seismic isolation system for high-voltage power transformers.  Requirements of the 

system were as follows.  The system should be a modular extension of a horizontal seismic 

isolation system currently used for power transformers. The system should consist of two 
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separate systems, one to achieve horizontal seismic isolation and the other to achieve vertical 

seismic isolation.  The horizontal system should be highly flexible in order to achieve a high 

degree of seismic isolation within the constraints of displacements for serviceability of the 

equipment.  The vertical system should be able to support the weight of the equipment with 

limited deflection in order to meet serviceability requirements and compactness.  If needed, a 

rocking restraint system should be developed.  All components of the system should be readily 

available from reputable manufacturers.   All components of the system should be passive and 

highly reliable.    A large scale model of an electrical transformer should be built and tested on 

the shake table in real time scale.  The acquired test data should be used to demonstrate the 

effectiveness of the system and to validate analytical models for the prediction of the dynamic 

response. 

The report describes the development and experimental validation of a three-dimensional seismic 

isolation system that fulfils the requirements stated above.  It consists of highly flexible triple 

Friction Pendulum bearings for the horizontal isolation system, which are supported by vertically 

driven spring-damper units.  The units provide limited flexibility in the vertical direction in order 

to control deflections and meet serviceability requirements.  They also provide high damping so 

that the system in the vertical direction acts like a highly damped damping system rather than as 

a flexible seismic isolation system. 
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SECTION 2 

ANALYTICAL STUDY OF THREE-DIMENSIONAL SEISMIC ISOLATION 

SYSTEMS FOR HIGH-VOLTAGE POWER TRANSFORMERS 

2.1 Introduction 

This section presents an analytical study of the response of a sample electrical transformer with 

3D seismic isolation systems.  The purpose of the study is to (a) investigate the effectiveness of 

systems based on helical springs and dampers, (b) investigate the effectiveness of a combined 

system consisting of triple Friction Pendulum bearings for the horizontal isolation system and 

spring and viscous dampers for the vertical isolation system, and (c) determine practical 

parameters for the isolation systems that have promise for application. 

 

In the study, a transformer of a weight of 418 kip, including a concrete basemat supported by 

isolators, is considered.  The dimensions, weight and distribution of weight are those of a 

recently isolated transformer in Vancouver, WA (Oikonomou et al, 2016).  Figure 2-1 shows the 

isolated transformer.  The isolation system consists of triple Friction Pendulum bearings 

providing only horizontal isolation. The transformer is assumed to have three inclined bushings 

of as-installed frequencies of 3, 6 and 10Hz, which represent a wide range.   

 

 

Figure 2-1 Seismically Isolated Transformer in Vancouver, WA (courtesy L. Kempner, BPA) 
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Bushings are considered critical for assessing failure of a transformer (Kitayama et al, 2016).  

Accordingly, a range of frequencies for the bushings has been considered as it is important in the 

calculation of the response of the bushings.  The total weight, distribution of weight, size and 

connection details for the three bushings considered in this study are identical to those of the 

bushing used in the model for shake table testing.  The dimensional and weight distribution 

characteristics of various bushings are listed in Table 2-1 (Kitayama et al, 2016) with reference 

to Figure 2-2.  Of these, bushing No. 6 is essentially the same as the one used in the testing 

reported in this report but for the as-installed frequency which varied to cover a range of values 

representative of typical cases per Table 2-1 (3 to 10Hz).  Note that per Figure 2-2 a bushing is 

divided into upper and lower parts that are separated by a connection housing (termed plate in 

this report) to which the bushing is connected. This plate is shown in Figure 2-2 to have a 

thickness 2HF. Other geometric parameters are: HUB is the length of the bushing’s upper part, 

HLB is the length of the bushing’s lower part, HCM_UB is the distance of the flange to the center of 

mass of the bushing’s upper part, HCM_LB is the distance of the flange to the center of mass of the 

bushing’s lower part, mUB is the mass of the bushing’s upper part, mLB is the mass of the 

bushing’s lower part and mCH is the mass of the connection housing. 

 

 

 

Figure 2-2 Bushing Parameters (Kitayama et al, 2016) 
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Table 2-1 Characteristics of Bushings (Kitayama et al, 2016) 

Property Unit Bushing 1 Bushing 2 Bushing 3 Bushing 4a Bushing 4b Bushing 5 Bushing 6 Bushing 7 Bushing 8 

Manufacturer  G.E. G.E. G.E. HSP HSP Trench ABB ABB ABB 

Material of 

insulator 
 Porcelain Porcelain Porcelain Composite Composite Composite Porcelain Porcelain Porcelain 

Voltage 

capacity 
kV 500 550 550 230 230 500 196/230 550 550 

Designation  
GE-500 - 

TypeU 

GE-500 - 

TypeU 

GE-500 - 

TypeU 

HSP-230-

1200 

HSP-230-

1200 

500D004 

C_3 

196w0800 

bz 

T550W 

2000UD 

T550Z 

3000SE 

Total height in 290.0 244.8 244.8 150.7 150.7 257.2 151.4 295.0 255.2 

Length over 

mounting 

flange: HUB 

in 204.0 194.8 194.8 91.2 91.2 192.2 91.4 208.3 190.2 

Length 

below 

mounting 

flange: HLB 

in 86.0 50.0 50.0 59.5 59.5 65.0 60.0 86.7 65.0 

Max dia. 

Over 

mounting 

flange 

in 20.0 25.0 25.0 11.6 11.6 19.8 11.8 23.0 18.7 

Max. dia. 

Below 

mounting 

flange 

in 20.0 18.8 18.8 8.3 8.3 12.4 10.0 23.0 16.8 

Diameter of 

mounting 

flange 

in 35.0 33.0 33.0 24.0 24.0 28.5 24.0 34.2 27.0 

Total weight lbs 4000 2800 2810 510 385 1850 840 4330 2180 

Location of 

CG. (above 

flange) 

in 57.5 57.5 57.5 17.0 17.0 65.5 14.0 47.0 54.8 

Upper 

bushing 

weight: 

mUB.g 

lbs 2744 2148 2156 248 172 1307 447 3012 1570 

Location of 

upper 

bushing CG: 

HCM_UB 

in 96.0* 87.6* 87.6* 45.0 45.0 96.0 34.0 90.0 85.2 

Lower 

bushing 

weight: mLB.g 

lbs 1156 552 554 162 113 443 293 1218 510 

Location of 

lower 

bushing CG: 

HCM_LB 

in 38.9* 59.2* 59.2* 27.0 27.0 24.5 28.0 59.0 39.0 
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Property Unit Bushing 1 Bushing 2 Bushing 3 Bushing 4a Bushing 4b Bushing 5 Bushing 6 Bushing 7 Bushing 8 

Connection 

housing 

weight: 

mCH*g 

lbs 100 100 100 100 100 100 100 100 100 

Weight per 

unit length 
lb/in 13.45 11.03 11.07 2.72 1.89 6.80 4.89 14.34 8.15 

Distance to 

the flange 

(half of 

center 

pocket): HF 

in 13.6* 11.5* 11.5* 8.25 8.25 11.5 13.4 13.6 11.5 

Fixed base 

frequency: 

fFix 

Hz 5.15* 9.36* 9.36* 8.32 8.04 5.15 21.00 9.37 9.35 

As-installed 

frequency: 

fAI 

Hz 3.30-3.90 4.20 4.25 7.75 6.79 3.25 11.25 2.57 7.70 

*Estimated value 

 

A review of the performance of transformers in earthquakes (Kitayama et al, 2016) considering 

empirical data over at least 20 years has shown that failure of transformers may be predicted by 

the peak value of acceleration of the bushing at its upper part center of mass.  This single 

parameter is capable of predicting the behavior of the bushing provided it is modelled as a rigid 

element connected to the body of the transformer by flexible elements to properly represent the 

vertical and horizontal (or rocking) frequencies (the latter is the as-installed frequency in Table 

2-1).  Kitayama et al (2016) determined that values of acceleration at the center of mass of the 

upper part of porcelain bushings in the range of 1g to 2g represented well empirical data for 

which there was a 50% probability of failure.  The lower limit applied to failure of bushings by 

oil leakage while the upper limit applied to failures by breakage of bushings or failures at other 

components of the transformer.   Most commonly observed bushing failures are fracture of 

porcelain bushings, slippage at the bottom of porcelain bushing and subsequent oil leakage, and 

fracture at the bushing flange (Gilani et al, 2001). 
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2.2 Analyzed Combined Horizontal-Vertical Seismic Isolation Systems 

Two three-dimensional seismic isolation systems are considered:   

1) A system consisting of vertical helical (coil) springs and linear viscous dampers.  Figure 2-3 

shows images of how the system looks.  The image at the top is a vibration isolation system 

used to suppress vibrations of equipment in the launching platform of the space shuttle 

(courtesy of Taylor Devices, Inc.).  The image at the bottom is one of the aforementioned 

isolated capacitor banks in China (GERB system, circa 1999 or 2000). 

 

 

 

 

Figure 2-3 Examples of 3D Isolation Systems Consisting of Helical Springs and Dampers (top image 

courtesy of Taylor Devices, Inc.; bottom image courtesy of GERB) 

 

LINEAR 

VISCOUS 

DAMPER 
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ELASTIC 

FLUID 
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20 

 

The two systems shown in Figure 2-3 employ helical (coil) springs to provide the vertical 

and lateral flexibility.  The coil spring consists of material (steel) of modulus of elasticity E 

and shear modulus G, and has wire diameter d, mean winding diameter D, free (unloaded) 

height Lo and n windings.  When subjected to a vertical load P, the vertical stiffness is given 

by (Wahl, 1949): 

 

                                                     (2-1) 

 

Equation (2-1) is in the simplest possible form and does not account for changes in the slope 

of the mean diameter of the coils under deformation, which are of importance in precision 

springs.  The horizontal stiffness of coil springs depends on the boundary conditions and the 

vertical load so that testing is typically needed to obtain the stiffness value.  Herein, use is 

made of the equations provided in the German Standard DIN 2089 (1984) which is now 

superseded by the European Standards: 

 

                                                                                    

                (2-2) 
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In these equations, ξ is the spring compression normalized by the initial length Lo and λ is the 

slenderness ratio:   
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The horizontal stiffness is dependent on the vertical load and increases with increasing 

vertical load, although it is possible to effectively eliminate the dependency on load by 

proper selection of the spring dimensions.  For example, consider a spring of steel 

(E=29000ksi, G=11155ksi) with d=1.75inch, D=5.5inch, Lo=10inch and n=4.  Then 

KV=19.7kip/in and KH=14.6kip/inch for load P=26kip (KH=14.5kip/inch for P=13kip).  A 
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coil spring is stable for 0.1<ξ<2/3 and λ<2.6 (DIN 2089, 1984).  When checking the stability 

of the spring, it is stable as ξ=0.13 and λ=1.  The spring has a compression displacement 

capacity of less than 3inch. 

 

The damper shown in the top image of Figure 2-3 is a linear viscous damper for which the 

damper axial force FD is related to the velocity V in the direction of the damper axis by the 

following equation: 

                                                       (2-5) 

 

The damper shown in the bottom image of the figure is a visco-elastic fluid damper of which 

the behavior is complex and described in Makris and Constantinou (1991 and 1992).  In the 

simplest possible representation, the device may be represented by a linear spring and linear 

viscous damper. 

 

The results presented in this report apply for the particular configuration of the 3D spring and 

damper system shown in the top image of Figure 2-3, which allows for most flexibility in 

selecting the vertical and horizontal damping parameters based on the damper constant and 

inclination.  The results approximately apply for the second system shown in Figure 2-3. 

2) A system consisting of triple Friction Pendulum (FP) isolators placed on top of a vertically 

driven spring-damper system.  The FP isolators serve as the horizontal isolator and the 

spring-damper system as the vertical isolator.  This is the system tested in two different 

configurations, one as analyzed in this section with allowance for rocking of the supported 

equipment and one featuring a stiffening diaphragm to limit rocking.   

 

The spring-damper device is shown in Figure 2-4.  It features a telescopic sleeve system to 

act as a shear pin and to also prevent (limit) rotation (rocking of the top plate with respect to 

the bottom). Realistically, some small angle of rotation is possible, specified to be 0.1 

degrees in the constructed device but assumed zero in the analysis reported in this section. 

Also, the coil springs of the device have internal pins that limit the spring length available for 

shear deformation so that the shear and torsional stiffness are increased. This is needed as 

torsional ground motion and random transfer of torque from the FP isolator above will cause 

DF CV



22 

 

twisting of the springs and magnification of the angle of twist due to the large compressive 

forces in the springs (the device without restraint at individual springs has negative torsional 

stiffness and is unstable). 

 

 
 

Figure 2-4 Schematic of Spring-Viscous Damper Device 

 

 

Figure 2-5 illustrates the behavior of the considered system that allows free rocking of the 

isolated structure. In Figure 2-5 the isolated structure is supported by four triple FP isolators, 

which in turn are supported by four vertical spring-damper devices. The bottom concave 

plate of the triple FP isolators is allowed to rotate by an angle of rotation β that is limited by 

the telescopic sleeve system of the spring-damper unit. In general, angle β is small and 

limited to 0.1 degrees. The top plate of the triple FP isolators is free to rotate as the FP 

isolators have no resistance to rocking.  This is possible because the spring-damper system 

allows for relative vertical motion at each support. The rocking angle α is limited by the 

ability of the spring-damper system to move vertically. The study conducted in this section 

intends to also establish the limit for this angle.  In general, angle α is much larger than 

angle β.  Based on the actual system developed and tested, this angle is of the order of 1 

degree. 

Coil 

Spring Viscous damper 

within telescopic 

sleeve system 
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Figure 2-5 Behavior of 3D Isolation System Allowed to Freely Rock 

 

2.3 Analyzed Transformer Model 

The transformer of Figure 2-1 was modelled and analyzed.   The transformer has a weight of 

380kip.  The basic dimensions are shown in Figure 2-6.  Its center of mass (CM in Figure 2-6) is 

located at a height of 81 inches.  The center of mass is essentially located at the geometric center 

so that the reactions at four symmetrically located supports are essentially the same. The plan 

dimensions of the base are 227inch by 110inch.  We assume that the isolators will be centered at 

the corners of the footprint of the transformer.  The distance of 110inch in the transverse 

direction controls the rocking frequency of the isolated equipment, which will be low. 

 

                                   Longitudinal 1-2 direction                    Transverse 3-4 direction 

Figure 2-6 Transformer Basic Dimensions (units in inch) 

CM CM
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Figure 2-7 shows the model for dynamic analysis as implemented in the SAP2000 program 

(Computer and Structures, 2015) for the case of the 3D spring-damper system.  The model 

basically consisted of a very stiff frame with a rigid plate at the top having the plan dimensions 

of 227inch by 110inch and a height of 86inch, which represents the height to the center of mass 

plus an additional 5inch for the base.  The base supporting the equipment on top of the isolators 

is assumed to have a weight of 38kip, for a total isolated weight of 418kip.  This represents a 

typical weight, although the interest is to develop a system that can be used for loads in the range 

of 300 to 500kip (plus weight of basemat) without any redesign or modification of the isolation 

hardware.  For equipment of larger weights, each component of the isolation system will have to 

be modified.   

 

 

Figure 2-7 Model of Transformer with 3D Spring-Damper Isolation System  

 

The weight of the transformer (380kip) was lumped at the height of 86inch and at the four 

corners as shown in Figure 2-7.  Also, the weight of the base (38kip) was lumped at the four 

corners directly above the isolators.  The effect of the distribution of weight was investigated as 

it affects the rocking frequency of the system and will be presented later in this report. Three 

bushings were assumed installed as shown in Figure 2-7 with each adding a weight of 0.84kip to 

the model.  Each bushing was modeled as a rigid bar with weights of 0.447kip and 0.293kip 

110”

86”
(=81+5)

227”
▪ 81” – Distance from bottom plate to CG
▪ 5” – Half of the height of concrete basemat

(assumed)

Distributed weight of transformer tank
(380kip) at four corners at CG level

Distributed weights of concrete basemat (38kip) at four corners at 
tank base

3Hz Bushing 6Hz Bushing 10Hz Bushing

Kv = 80kip/in
Kh = 50kip/in
C=7.0kip-sec/in
(φ=54.7o, see Figure A-2 
Appendix A)

3

4 1

2

φ
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lumped at the location of the centers of mass for the upper and lower parts, and 0.1kip at the 

location where the bushing connects to the plate (per Table 2-1).  Details of the bushing model 

are shown in Figure 2-8.  The weight distribution and length are those of bushing No. 6 in Table 

2-1.  Beam elements around the bushing base as shown in Figure 2-8 were assigned properties so 

that the rocking (as-installed) frequencies of the three bushings were 3, 6, and 10Hz.  The 

corresponding vertical frequencies were 7.6Hz, 15.4Hz, and 25.7Hz, respectively.  Note that the 

beam elements shown in Figure 2-8 are rigid and that the vertical and rocking flexibilities of the 

bushing are obtained from the stiffness assigned to each vertical spring shown in Figure 2-8.  

Inherent damping in the transformer model was specified as 5% of critical damping in each 

mode of vibration. 

 

Figure 2-8 Bushing Representation in Analysis Model  

 

The parameters used for the 3D spring-damper isolation system are presented in Figure 2-7.  It is 

assumed that coil springs placed at each of the four corners of the model have a vertical stiffness 

of 80kip/in and a horizontal stiffness of 50kip/in. Note that these values are rounded stiffness 

values for group of four springs of the properties previously discussed (d=1.75inch, D=5.5inch, 

Lo=10inch and n=4).  Also, four dampers (configured as shown in the top image of Figure 2-3 

and in the illustration of Figure 2-9) are used with a damping constant C=7.0kip-sec/in (per 

0.447 kip,

CM of Upper Bushing

0.293 kip

CM of Lower Bushing

Vertical Spring 

Bushing Top

Bushing Mount 

(Base)

Bushing Bottom

0.1 kip,

Connection Housing

57.4in

34in

28in

32in

24 in
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Equation 2-5) and placed one at each corner inclined with respect to the three axes by an angle 

=54.7degrees (see Figure A-2 in Appendix A for damper installation angles).  The effective 

damping constant in each of the three orthogonal directions at each support is Ccos2=2.33kip-

sec/in.  For the supported weight of 418kip (the additional 2.5kip weight of bushings was not 

considered), the vertical frequency is 2.74Hz and the vertical damping ratio is 0.25.  For 

comparison, the building shown in Figure 1-8 and described in Makris and Constantinou (1992) 

had a weight of 138kip and a vertical frequency based only on the stiffness of the supporting 

springs equal to 2.67Hz.  However, the visco-elastic dampers used in that building contributed to 

the stiffness so that the vertical frequency was instead nearly 3.5Hz and the corresponding 

damping ratio was 0.27.  While it is desirable to further reduce the vertical frequency, this 

requires reduction of the vertical stiffness, which results in reduction of the horizontal stiffness 

and significantly affects the fundamental frequency, which becomes too low.  The fundamental 

mode is one that combines rocking and lateral displacement, so that a low fundamental 

frequency results in significant rocking and magnification of response.  This was predicted by 

analysis and observed in recordings during an earthquake (Makris and Deoskar, 1996).  For the 

building in Makris and Constantinou (1992) the fundamental frequency was 1.6Hz and for the 

isolated transformer of Figure 2-7 is about 1.3Hz (see Table 2-3 and Table 2-4 for eigenvalue 

analysis results for three mass distribution cases discussed in below).  The value of a frequency, 

other than the vertical frequency, depends on the assumed distribution of mass as the related 

modes contain an important rocking component (related to the mass moment of inertia).  

Appendix A presents details of the results of analysis for the frequencies, mode shapes and 

damping ratios of the analyzed system.  Below we present summary results for the case of the 3D 

spring-damper system of Figure 2-7. 

 

Figure 2-9 Schematic of Spring-Damper Unit at Each Corner of Transformer 

10”
Linear Viscous Damper

(C=7.0kip-sec/in)

Coil Springs
(KH=50kip/in, KV=80kip/in)

54.7o
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Consider three cases of lumped mass distribution as shown in Table 2-2.  Tables 2-3 and 2-4 

present values of the frequencies and damping ratio (based on complex eigenvalue analysis) and 

mode shapes (based on the undamped equations of motion) for the three cases of mass 

distribution for the 3D spring-damper system of Figure 2-7.  The analysis was two-dimensional 

(see Appendix A) in the transverse (3-4) and vertical directions, and in the longitudinal (1-2) and 

vertical directions.   The mode shapes are normalized so that the larger of the displacements of 

the center of mass in the horizontal direction, u, or the vertical direction, v, is equal to unity. The 

rotational displacement is denoted as θh, where θ is the rotation of the center of mass and h is the 

distance of the isolator top to the center of mass (=86in).  Thus, θh denotes the horizontal 

displacement at some point away of the center of mass due to rotation.  

 

Table 2-2 Lumped Mass Distribution Cases Considered in Study 
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Table 2-3 Frequencies, Damping Ratio and Mode Shapes of Transformer with 3D Spring-Damper 

Isolation System (vertical and longitudinal direction model) 

Mass 

Distribution 
Case 1 Case 2 Case 3 

Parameter Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 

Frequency (Hz) 1.76 2.74 3.29 1.83 2.74 4.36 1.90 2.74 14.27 

Damping Ratio 0.21 0.25 0.39 0.23 0.25 0.48 0.25 0.25 1.51 

Mode 

Shape 

u 1 0 1 1 0 1 1 0 1 

v 0 1 0 0 1 0 0 1 0 

θh 0.38 0 -1.45 0.31 0 -3.38 0.29 0 -47.28 

 

Table 2-4 Frequencies, Damping Ratio and Mode Shapes of Transformer with 3D Spring-Damper 

Isolation System (vertical and transverse direction model) 

Mass 

Distribution 
Case 1 Case 2 Case 3 

Parameter Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 

Frequency (Hz) 1.31 2.74 4.13 1.36 2.74 5.19 1.38 2.74 5.88 

Damping Ratio 0.14 0.25 0.54 0.15 0.25 0.66 0.16 0.25 1.15 

Mode 

Shape 

u 1 0 1 1 0 1 1 0 1 

v 0 1 0 0 1 0 0 1 0 

θh 0.70 0 -2.91 0.66 0 -5.22 0.63 0 -19.23 

 

The results in Tables 2-3 and 2-4 demonstrate that the mass distribution only affects the third 

mode of vibration that is dominated by rocking and some out-of-phase horizontal displacement, 

and is highly damped.  The first mode (horizontal motion with a significant in-phase rocking 

contribution) and the second mode (vertical motion) are practically unaffected by the assumption 

of mass distribution.  Note that the vertical static deflection δV is related to the vertical frequency 

fv by Equation (2-6) so for a vertical frequency of 2.74Hz the static deflection is 1.3inch, which 

is appropriate given the size of the considered springs.   

 δ𝑉 =
𝑔

4𝜋2𝑓𝑣
2 (2-6) 

The lowest frequency of the system is about 1.3Hz (Table 2-4) associated with a mode of 

combined horizontal and rocking motion.  Further reduction of the frequency to values 
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comparable to those of a horizontal-only seismic isolation system (less than 0.5Hz) would 

require substantial reduction of the vertical frequency too, which would have rendered the 

system impractical due to large static deflections. 

 

Results of dynamic analysis are presented for the case 1 mass distribution having in mind that in 

reality the mass distribution when lumped should be somewhere in-between cases 1 and 2.  Case 

3 is unrealistic. 

 

The second 3D seismic isolation system considered in the study consisted of four triple FP 

isolators identical to those installed at the Vancouver, WA transformer (see Figure 2-1 and 

Oikonomou, 2016).  Each of these isolators was supported by a spring-viscous damper unit 

configured as shown in Figure 2-4. Figure 2-10 shows a schematic of the model in program 

SAP2000 used for the dynamic analysis.  Note that a mass weighing 0.5kip is placed in-between 

the each triple FP isolator model and the vertical spring-damper unit to represent the combined 

weight of the bottom part of the FP isolator and of top half of the spring-damper unit.   The 

spring-damper unit is restrained to only move vertically so that per the description of the system 

in Figure 2-5, angle β is zero.  Nevertheless, the Triple FP isolator model in the analysis allows 

for free rotation of the bearing in all directions which leads to unrestrained rocking of the 

isolated transformer.   

The properties of the Triple FP isolators were those determined in the production testing of the 

isolators of the Vancouver, WA transformer and then adjusted to obtain upper and lower bound 

friction coefficient values for the analysis.  The procedures followed for the determination of the 

properties and the adjustment are those described in McVitty and Constantinou (2015).  Details 

of the properties and the configuration of the Triple FP isolator are provided in Appendix B.  

Table 2-5 presents a summary of the properties.   

Inherent damping in the model was specified as 5% of critical in each mode of vibration but for 

the first three modes (translation in the two horizontal directions and torsion).  For the 

construction of the damping matrix in SAP2000, the post-elastic stiffness of the triple FP 

isolators was used in order to avoid “leakage of damping” per directions in Sarlis and 

Constantinou (2010).  
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Figure 2-10 Model of Transformer with 3D Triple FP-Spring-Damper Isolation System 

 

Table 2-5 Properties of Triple FP Isolator Used in Analytical Study 

Property 

 

Description Value 

μ1=μ4  (lower/upper bound) 
Coefficient of friction of surfaces  1 

and 4 at high speed (fmax) 
0.11/0.15 

μ2=μ3  (lower/upper bound) 
Coefficient of friction of surfaces  2 

and 3 at high speed (fmax) 
0.08/0.09 

R1eff=R4eff   
Effective radii of surfaces 1 and 4 

36.0inch 

R2eff=R3eff   
Effective radii of surfaces 2 and 3 

6.0inch 

d1*=d4* 
Actual displacement capacity on 

surfaces 1 and 4 
6.46inch 

d2*=d3* 
Actual displacement capacity on 

surfaces 2 and 3 
0.75inch 

fmin=fmax/2, rate parameter=1.27sec/in for all surfaces 

 

The vertical spring stiffness at each support spring-damper unit is K=80kip/in and the damping 

constant of the linear viscous damper is C=2.3kip-sec/in, which result in a vertical frequency of 

2.74Hz and a vertical damping ratio equal to 0.25.  Some studies were also conducted for a 

damping ratio in the vertical direction equal to 0.50.     

Spring / Damper    
K = 80 kip/in
C = 2.3 kip-s/in

Triple FP Isolator  

Weight=0.5kip

110”

86”
(=81+5)

227”
▪ 81” – Distance from bottom plate to CG
▪ 5” – Half of the height of concrete basemat (assumed)

Distributed weight of transformer tank
(380kip) at four corners at CG level

Distributed weights of concrete basemat (38kip) at four corners at tank base

3Hz Bushing 6Hz Bushing 10Hz Bushing
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Tables 2-6 and 2-7 present values of the frequencies and damping ratio (based on complex 

eigenvalue analysis) and mode shapes (based on the undamped equations of motion) for the 3D 

triple FP and spring-damper system when the FP isolators are represented in the horizontal 

direction as springs with stiffness equal to their shear stiffness when friction is neglected 

(W/2R1eff=104.5kip/(2x36in)=1.45kip/in).  The results in Table 2-6 are for the case 1 of lumped 

mass distribution which was the one utilized in the dynamic analysis (as described in Figure 2-10 

and Table 2-2).  The results in Table 2-7 are for case 2 of mass distribution as described in Table 

2-2.  More detailed results are presented in Appendix C.  The analysis was two-dimensional (see 

Appendix C) in the transverse (3-4) and vertical directions, and in the longitudinal (1-2) and 

vertical directions.   The mode shapes are normalized so that the largest displacement of the 

center of mass in the horizontal direction, u, or the vertical direction, v, is equal to unity. The 

rotational displacement is denoted as θh, where θ is the rotation of the center of mass and h is the 

distance of the isolator top to the center of mass (86in).  Note that there was no effective 

damping assigned for the effect of friction so that the calculated damping ratio in the mode 

associated with horizontal motion is zero.  

 

Table 2-6 Frequencies, Damping Ratio and Mode Shapes of Transformer with 3D Triple FP and 

Spring-Damper Isolation System (Case 1 Mass Distribution) 

Direction Longitudinal (1-2)-Vertical Transverse (3-4)-Vertical 

Parameter Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 

Frequency (Hz) 0.37 2.68 2.74 0.36 2.54 2.74 

Damping Ratio 0 0.24 0.25 0 0.22 0.25 

Mode 

Shape 

u 1 1 0 1 1 0 

v 0 0 1 0 0 1 

θh 0.009 -57.46 0 0.043 -51.37 0 
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Table 2-7 Frequencies, Damping Ratio and Mode Shapes of Transformer with 3D Triple FP and 

Spring-Damper Isolation System (Case 2 Mass Distribution) 

 

Direction Longitudinal (1-2)-Vertical Transverse (3-4)-Vertical 

Parameter Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 

Frequency (Hz) 0.37 2.74 3.71 0.36 2.74 3.32 

Damping Ratio 0 0.25 0.33 0 0.25 0.29 

Mode 

Shape 

u 1 0 1 1 0 1 

v 0 1 0 0 1 0 

θh 0.009 0 -110.96 0.043 0 -88.72 

 

The results in Tables 2-6 and 2-7 reveal a behavior that is very different than that of the 3D 

spring-damper system (Tables 2-3 and 2-4).  Specifically: 

 

1) The fundamental mode is characterized by nearly a pure horizontal motion (rotation 

contributes less than one twentieth of the motion at the center of mass) with a low frequency 

of 0.37Hz.  By comparison the 3D spring-damper system has a fundamental frequency of 

1.3Hz.  Accordingly, it is expected that the triple FP and spring-damper system will be much 

more effective in isolating in the horizontal direction. 

 

2) The second mode of vibration (or the third mode in case 2, Table 2-7) is one of purely 

rocking motion (with a minute horizontal motion component).  By comparison, the 3D 

spring-damper system has its third mode associated with rocking but the mode is one of 

combined rocking and horizontal displacement motion.   

 

3) The third mode of vibration (or the second mode in case 2, Table 2-7) is one of purely 

vertical motion which for the assumed distribution of mass is closely spaced to the second 

mode of vibration. The two modes separate when the distribution of mass is changed to that 

of case 2 in Table 2-2.  Nevertheless, the use of the mass distribution per case 1 with closely 

spaced modes should result in some worsening of the response and it is thus appropriate to 

conduct the study using this distribution. 
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2.4 Results of Dynamic Response History Analysis 

Dynamic response history analysis was conducted with the historic earthquake motions listed in 

Table 2-8 together with their characteristics.  The selected motions include far-field and near-

field motions at a range of distances from the fault and with strong ground motion.  Particularly, 

the Pacoima motion is of near-fault with pulse-like characteristics and also a dominant vertical 

frequency of about 3Hz, which is very close to the vertical frequency of the isolation system.  

The motions were used in the analysis exactly as recorded with the exception of the El Centro 

record that was scaled up by a factor of 3.  All three components of motion were used in the 

analysis with the stronger of the two horizontal components applied in the transverse (3-4) 

direction of the model. 

Table 2-8 Motions used in Response History Analysis and Characteristics as Recorded 

 Designation Earthquake 
Recording 

Station 

Moment 

Magnitude 
rRup 
 (km) 

Component 

Peak  

Ground  

Acceleration 

(g) 

1 El Centro 
1940 

Imperial Valley, CA 
El Centro 6.9 6.09 

S00E 0.35 

N90W 0.21 

Vertical 0.21 

2 Pacoima 
1971 

San Fernando, CA 

Pacoima 

Dam 
6.6 1.8 

164 1.22 

254 1.24 

Vertical 0.69 

3 Jensen 
1994 

Northridge, CA 

Jensen Filter 

Plant 
6.7 5.4 

022 0.57 

292 0.99 

Vertical 0.76 

4 Chile 
2010 

Chile 
Concepcion 8.8 105.0 

97 0.61 

07 0.65 

Vertical 0.58 

5 LGPC 
1989 

Loma Prieta, CA 
LGPC 6.9 3.9 

00 0.57 

90 0.61 

Vertical 0.90 

6 Kobe 
1995 

Kobe, Japan 

Kobe  

University 
6.9 0.9 

00 0.28 

90 0.31 

Vertical 0.45 

7 Rio 

1992 

Cape 

Mendocino, CA 

Rio Dell 7.0 28.0 

270 0.39 

360 0.55 

Vertical 0.20 

8 Sylmar 
1994 

Northridge, CA 

Sylmar, 

County  

Hospital 

6.7 9.9 

000 0.60 

360 0.84 

Vertical 0.54 
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Results are presented in terms of the following quantities. 

1) Response Spectra Above Isolators 

Acceleration response spectra for 5%-damping are presented for the motion calculated at 

mount (base) of the 6Hz bushing (see Figures 2-7 and 2-8 for location).  Note that the 

model above the isolators is essentially rigid so the calculated spectra are practically the 

same as the spectra at the mount of the 3Hz and the 10Hz bushings but for some 

differences caused by rocking and the effect of the distance of the three bushings from 

the center of rotation.  Spectra are presented for the three directions: longitudinal (1-2), 

transverse (3-4) and vertical (V).  For the case of the triple FP isolator-spring-damper 

system, the spectra are presented only for the case of upper bound friction, which resulted 

in the highest acceleration response. 

 

Figures 2-11 to 2-18 compare the calculated spectra for the two analyzed 3D isolation 

systems for the eight motions of Table 2-8.  The graphs include the ground motion 

spectra for revealing the effect of isolation and also include the IEEE 693(2005) Required 

Response Spectrum (RRS, 5%-damped) for a peak horizontal ground acceleration of 0.5g 

(high), the corresponding IEEE vertical spectrum defined as 80% of the horizontal 

spectrum, and the IEEE 693 spectra magnified by a factor of 2 to denote the spectra 

typically used for the qualification of high voltage bushings mounted on a transformer. 

 

Note that in the figures, solid colored lines represent the ground motion spectra and the 

dashed colored lines represent the response spectra at the mount of the 6Hz bushing.  It is 

clear in these spectra that the 3D Triple FP-spring-damper system has a substantially 

better performance than the 3D spring-damper system.  This is particularly pronounced in 

the horizontal response spectra where in the 3D triple FP-spring-damper system the 

spectra above the isolators are substantially reduced by comparison to the ground spectra, 

whereas in the 3D spring-damper system the spectra are either slightly reduced or in 

some cases are even increased.    
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In the vertical direction the FP-spring-damper system shows a better performance than 

the spring-damper system as typified in the results for the El Centro and Jensen motions 

in Figures 2-11 and 2-13.  In the case of the Pacoima motion in Figure 2-12 (and to a 

lesser extent in Figure 2-15 for the LGPC motion), there is a magnification of the spectral 

acceleration in the 2-5Hz frequency range, due to the fact that this motion has a dominant 

vertical frequency in that range which coincides the fundamental vertical frequency of the 

system (2.74Hz). This is a motion with near fault, pulse-like characteristics and a strong 

vertical component. An additional analysis of the 3D FP-spring-damper system was 

conducted in the Pacoima motion with the damping in the vertical direction increased 

from 0.25 to 0.50.  The vertical frequency was kept at 2.74Hz.  Spectra of the motion at 

the 6Hz bushing mount are presented in Figure 2-19 where they are compared to the 

spectra for the system with damping ratio of 0.25.  Evidently, there is reduction of the 

vertical response with increasing damping without any effect on the horizontal response.   
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Figure 2-11 Acceleration Response Spectra at 6Hz Bushing Mount in El Centro 300% Motion   
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Figure 2-12 Acceleration Response Spectra at 6Hz Bushing Mount in Pacoima 100% Motion 
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Figure 2-13 Acceleration Response Spectra at 6Hz Bushing Mount in Jensen 100% Motion 
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Figure 2-14 Acceleration Response Spectra at 6Hz Bushing Mount in Chile 100% Motion 
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Figure 2-15 Acceleration Response Spectra 6Hz Bushing Mount Corner in LGPC 100% Motion 
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Figure 2-16 Acceleration Response Spectra at 6Hz Bushing Mount in Kobe 100% Motion 
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Figure 2-17 Acceleration Response Spectra at 6Hz Bushing Mount in Rio 100% Motion 
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Figure 2-18 Acceleration Response Spectra at 6Hz Bushing Mount in Sylmar 100% Motion 
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Figure 2-19 Acceleration Response Spectra at 6Hz Bushing Mount for FP-spring-damper System 

with Vertical Frequency of 2.74Hz and Vertical Damping Ratio of 0.25 (solid line) or 0.50 (dashed 

line) in Pacoima 100% Motion 

Having concluded that the 3D FP-spring-damper system provides for superior isolation 

performance, additional studies were conducted in which (a) the 2D version of the system (just 

the triple FP isolators) was compared to the 3D version for the same FP isolators supported by 

the vertical spring-damper system, and (b) the parameters of the vertical isolation system were 

changed to a vertical frequency of 2.0Hz and to a damping ratio of 0.50.  The frequency of 2.0Hz 

is presumed to be the lowest practical value that results in a manageable static deflection 

(2.45inch per Equation 2-6).  The higher damping ratio reduces the vertical acceleration as 

observed in the results of Figure 2-19.  Calculated 5%-damped response spectra at the 6Hz 

bushing mount for the 2D and 3D systems are compared in Figures 2-20 to 2-24 for five of the 

motions in Table 2-8.  Again, solid colored lines represent the ground motion spectra and the 

dashed colored lines represent the response spectra at the 6Hz bushing.  It is evident that the 2D 

and the 3D isolation systems have nearly identical response spectra in the horizontal directions.  

In the vertical direction, the response spectra of the 2D isolated transformer are identical or a 

little higher than the ground spectra, whereas the response spectra of the 3D isolated transformer 

show substantial reduction. 
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Figure 2-20 Acceleration Response Spectra at 6Hz Bushing Mount of 2D Isolation System (solid line) 

and 3D Isolation System with Vertical Frequency of 2.0Hz and Damping of 0.50 (dashed line) in 

Chile 100% Motion 
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 Figure 2-21 Acceleration Response Spectra at 6Hz Bushing Mount of 2D Isolation System (solid 

line) and 3D Isolation System with Vertical Frequency of 2.0Hz and Damping of 0.50 (dashed line) 

in LGPC 100% Motion 
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 Figure 2-22 Acceleration Response Spectra at 6Hz Bushing Mount of 2D Isolation System (solid 

line) and 3D Isolation System with Vertical Frequency of 2.0Hz and Damping of 0.50 (dashed line) 

in Kobe 100% Motion 
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 Figure 2-23 Acceleration Response Spectra at 6Hz Bushing Mount of 2D Isolation System (solid 

line) and 3D Isolation System with Vertical Frequency of 2.0Hz and Damping of 0.50 (dashed line) 

in Rio 100% Motion 
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Figure 2-24 Acceleration Response Spectra at 6Hz Bushing Mount of 2D Isolation System (solid line) 

and 3D Isolation System with Vertical Frequency of 2.0Hz and Damping of 0.50 (dashed line) in 

Sylmar 100% Motion 

2) Peak Acceleration Values 

Peak values of acceleration were calculated for each motion at each of the three bushing 

tops and at a location just above the isolators (see Figure 2-8 for locations), and compared 

in Table 2-9 for the two 3D isolation systems and for the non-isolated transformer 

assuming that the transformer base is pinned to the foundation at the four corners.  The 

systems compared in Table 2-9 are: 
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a) 3D-FP-spring-damper system (fv=2.74Hz and βv=0.25) in the upper bound friction   

conditions, denoted as FP-S-D (UB), 

b) 3D-FP-spring-damper system (fv=2.74Hz and βv=0.25) in the lower bound friction 

conditions, denoted as FP-S-D (LB), 

c) 3D-Spring-damper system, denoted as S-D (fv=2.74Hz and βv=0.25), and 

d) Non-isolated transformer. 

The results in Table 2-9 demonstrate the following: 

a) The 3D FP-spring-damper system has substantially lower accelerations than the 

non-isolated transformer in all directions at all locations.  Exception is the special 

case of the Pacoima motion in the vertical direction and for the acceleration of the 

rigid frame and of the 10Hz frequency bushing.  This case is further investigated 

later in this report. 

 

b) The 3D spring-damper system has mixed performance when compared to the non-

isolated transformer.  For some response quantities and for some motions there is 

reduction of response and for some other response quantities and for other motions 

there is increase of response. 

 

Additional analyses were conducted by increasing the vertical damping (value of constant C 

increased from 2.3kip-sec/in to 4.6kip-sec/in-see Figure 2-19) so that the damping ratio increased 

from 0.25 to 0.50.  Table 2-10 presents results for the peak acceleration of the 6 Hz bushing of 

the 3D FP-spring-damper isolated transformer where it is demonstrated that the increased 

damping has a beneficial effect in reducing the acceleration in the vertical direction but also in 

the horizontal direction as a result of reduced rocking.  Note that the increase in vertical damper 

constant resulted in an increase of the vertical mode damping ratio from 0.25 to 0.50 and also 

caused an increase in the damping ratio in the rocking mode by a factor of 2 too.  These results 

indicate that a damping ratio of 0.50 in the vertical direction may be desirable in reducing 

rocking and in reducing the vertical acceleration response. 
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Table 2-9 Peak Acceleration Values for 3D Isolated and Non-isolated Transformer (in g) 

Earthquake Model 
3Hz Bushing Top 6Hz Bushing Top 10Hz Bushing Top Above Isolator 

1-2 3-4 V 1-2 3-4 V 1-2 3-4 V 1-2 3-4 V 

El Centro 

300% 

FP-S-D(LB) 0.69 0.77 0.55 0.53 1.06 0.47 0.55 0.79 0.42 0.40 0.32 0.39 

FP-S-D(UB) 0.95 1.01 0.55 0.78 1.27 0.47 0.59 1.03 0.42 0.34 0.30 0.40 

S-D 2.29 3.61 0.70 0.96 2.97 0.48 0.88 2.14 0.53 0.73 1.02 0.45 

Non-isolated 2.10 3.00 1.50 1.39 2.36 1.39 0.81 1.21 0.79 0.64 1.05 0.63 

Pacoima 

100% 

FP-S-D(LB) 0.94 0.91 1.08 0.77 0.91 0.90 0.68 0.82 0.91 0.30 0.24 0.84 

FP-S-D(UB) 1.15 1.21 1.06 0.87 1.22 0.92 0.81 1.33 0.91 0.29 0.29 0.86 

S-D 3.37 2.35 1.16 0.88 2.00 0.93 0.72 1.20 0.97 0.66 0.50 0.92 

Non-isolated 6.61 7.26 1.74 6.40 7.36 1.10 5.80 6.63 0.77 1.22 1.24 0.69 

Jensen 

100% 

FP-S-D(LB) 0.77 0.79 0.62 0.71 0.76 0.34 0.72 0.45 0.34 0.24 0.21 0.29 

FP-S-D(UB) 0.85 1.14 0.60 0.74 1.05 0.33 0.70 0.74 0.35 0.26 0.26 0.27 

S-D 2.79 4.21 0.74 0.77 2.23 0.45 0.70 1.72 0.51 0.53 0.52 0.39 

Non-isolated 1.48 3.51 1.80 0.98 2.62 1.13 0.89 2.62 0.89 0.57 0.99 0.76 

Chile 

100% 

FP-S-D(LB) 1.00 0.96 0.68 0.77 0.85 0.40 0.60 0.82 0.34 0.17 0.13 0.34 

FP-S-D(UB) 1.14 1.14 0.69 0.82 1.06 0.49 0.69 1.01 0.36 0.20 0.18 0.37 

S-D 1.71 2.21 0.68 0.58 1.84 0.44 0.49 0.91 0.34 0.48 0.32 0.39 

Non-isolated 1.99 2.92 1.78 1.91 2.28 1.27 1.62 2.45 0.74 0.61 0.65 0.58 

LGPC 

100% 

FP-S-D(LB) 0.96 0.86 0.69 0.56 0.82 0.50 0.85 0.59 0.47 0.32 0.19 0.47 

FP-S-D(UB) 1.03 0.90 0.63 0.91 0.78 0.52 0.89 0.64 0.44 0.31 0.19 0.50 

S-D 2.59 1.59 0.88 0.97 1.22 0.53 0.73 0.75 0.53 0.56 0.41 0.47 

Non-isolated 4.48 4.08 1.44 4.53 4.20 1.65 4.12 3.67 1.64 0.57 0.61 0.90 

Kobe 

100% 

FP-S-D(LB) 0.47 0.57 0.44 0.47 0.56 0.26 0.46 0.44 0.27 0.19 0.14 0.26 

FP-S-D(UB) 0.59 0.65 0.41 0.59 0.52 0.25 0.55 0.39 0.27 0.23 0.17 0.19 

S-D 1.13 0.87 0.54 0.37 0.49 0.26 0.34 0.43 0.22 0.36 0.24 0.25 

Non-isolated 0.58 0.74 1.27 0.51 0.79 0.65 0.46 0.61 0.54 0.28 0.31 0.45 

Rio 

100% 

FP-S-D(LB) 0.66 0.63 0.24 0.49 0.93 0.24 0.42 0.67 0.14 0.12 0.08 0.13 

FP-S-D(UB) 0.77 0.69 0.27 0.73 1.14 0.25 0.57 0.80 0.15 0.14 0.09 0.13 

S-D 1.43 1.39 0.37 0.45 1.66 0.42 0.33 0.78 0.24 0.35 0.24 0.37 

Non-isolated 1.76 2.53 0.37 1.78 2.52 0.41 1.79 2.15 0.25 0.39 0.55 0.20 

Sylmar 

100% 

FP-S-D(LB) 0.54 0.50 0.30 0.43 0.72 0.24 0.36 0.56 0.18 0.13 0.15 0.18 

FP-S-D(UB) 0.80 0.67 0.30 0.71 0.92 0.28 0.63 0.63 0.19 0.17 0.20 0.17 

S-D 1.96 2.45 0.49 0.61 3.08 0.48 0.42 1.17 0.32 0.41 0.64 0.41 

Non-isolated 2.66 6.47 0.39 2.18 5.82 1.17 1.98 5.15 0.77 0.60 0.84 0.54 
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Table 2-10 Effect of Vertical Damping on Peak Acceleration Values for 3D FP-Spring-Damper 

System in Pacoima Motion  

Earthquake 
Location Model 

Peak Acceleration of 6Hz Bushing (g) 

1-2 3-4 V 

Pacoima 

100% 

Bushing Top 

FP-S-D  

(C=2.3kip-s/in) 
0.87 1.22 0.92 

FP-S-D  

(C=4.6kip-s/in) 
0.81 1.07 0.71 

Bushing 

Mount 

FP-S-D  

(C=2.3kip-s/in) 
0.29 0.29 0.86 

FP-S-D  

(C=4.6kip-s/in) 
0.30 0.29 0.71 

 

3) Peak Displacements with Respect to Ground 

Peak values of displacement with respect to the ground were calculated for each motion 

at each bushing top (see Figure 2-8 for location) and at the isolator level and are 

presented in Table 2-11 for the two 3D isolated and the non-isolated transformer.  The 

displacement values presented is the peak resultant horizontal displacement and the peak 

vertical displacement, all with respect to the ground.  The reported values do not include 

the static component of displacement in the vertical direction, which equals 1.3inch (for 

frequency of 2.74Hz).  For the 3D FP-spring-damper system, the results are for the case 

of vertical damping ratio equal to 0.25. 

 

The results show that the vertical dynamic spring displacement of the FP-spring-damper 

system is about 1inch which is small enough to result in a compact vertical system. 
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Table 2-11 Peak Dynamic Displacement Values for 3D Isolated and Non-isolated Transformer (in 

inch) 

Earthquake Model 
3Hz Bushing 6Hz Bushing 10Hz Bushing Isolator 

HRESULTANT V HRESULTANT V HRESULTANT V HRESULTANT V 

El Centro 

300% 

FP-S-D(LB) 18.58 0.88 19.06 0.79 19.11 0.49 17.90 2.17 

FP-S-D(UB) 14.16 0.77 14.22 0.85 14.10 0.50 13.65 2.31 

S-D 7.95 1.10 8.01 0.95 7.55 0.64 1.42 2.35 

Non-isolated 1.13 0.30 0.24 0.08 0.18 0.01 NA NA 

Pacoima 

100% 

FP-S-D(LB) 16.01 1.07 16.10 1.01 16.13 1.02 14.93 2.53 

FP-S-D(UB) 14.47 1.06 14.51 1.03 14.49 1.02 13.42 2.56 

S-D 5.95 1.11 4.26 1.54 4.20 1.01 1.20 2.18 

Non-isolated 1.10 0.35 0.29 0.06 0.28 0.01 NA NA 

Jensen 

100% 

FP-S-D(LB) 10.92 0.63 11.06 0.40 11.14 0.44 10.83 1.80 

FP-S-D(UB) 9.97 0.59 9.90 0.41 10.02 0.45 8.52 1.94 

S-D 6.34 0.78 4.46 0.79 4.06 0.50 1.02 1.77 

Non-isolated 1.87 0.37 0.16 0.06 0.20 0.02 NA NA 

Chile 

100% 

FP-S-D(LB) 4.38 0.49 4.63 0.42 4.63 0.38 4.42 1.88 

FP-S-D(UB) 3.69 0.49 3.79 0.44 3.87 0.38 3.58 1.97 

S-D 3.65 0.51 2.73 0.49 2.51 0.47 0.79 0.99 

Non-isolated 0.89 0.37 0.21 0.07 0.12 0.01 NA NA 

LGPC 

100% 

FP-S-D(LB) 14.50 0.83 14.92 0.62 14.96 0.56 14.09 0.77 

FP-S-D(UB) 11.40 0.87 11.54 0.71 11.58 0.58 10.98 0.73 

S-D 4.60 1.01 3.37 0.93 3.17 0.63 1.20 1.36 

Non-isolated 0.76 0.29 0.21 0.08 0.15 0.03 NA NA 

Kobe 

100% 

FP-S-D(LB) 6.32 0.34 6.26 0.22 6.28 0.29 5.70 1.67 

FP-S-D(UB) 5.65 0.36 5.76 0.24 5.85 0.28 5.37 1.73 

S-D 2.46 0.47 1.97 0.33 1.90 0.33 0.65 0.71 

Non-isolated 0.43 0.26 0.14 0.03 0.09 0.01 NA NA 

Rio 

100% 

FP-S-D(LB) 2.49 0.18 2.43 0.16 2.44 0.19 2.30 0.30 

FP-S-D(UB) 2.50 0.19 2.60 0.16 2.61 0.19 2.33 0.30 

S-D 2.46 0.43 1.53 0.27 1.52 0.30 0.63 0.63 

Non-isolated 0.53 0.07 0.18 0.02 0.11 0.00 NA NA 

Sylmar 

100% 

FP-S-D(LB) 4.29 0.24 4.09 0.28 4.10 0.26 3.41 0.40 

FP-S-D(UB) 4.41 0.26 4.39 0.31 4.50 0.28 3.56 0.51 

S-D 3.83 0.51 4.66 0.78 3.96 0.39 1.01 1.46 

Non-isolated 1.02 0.09 0.30 0.06 0.19 0.01 NA NA 
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2.5 Study for the Selection of Properties of the Vertical Isolation System 

The studied 3D FP-spring-damper system has been determined to be an effective three-

dimensional seismic isolation system.  However, the analyzed system was relatively stiff in the 

vertical direction (fv=2.74Hz) and lightly damped (βv=0.25) so its isolation effectiveness in the 

vertical direction may be improved.  Note that the vertical stiffness of the FP-spring-damper 

system was selected to be comparable to that of the 3D spring-damper isolation system, but it 

can be lower without affecting the fundamental frequency of the isolated equipment.  

 

A parametric study of the isolated transformer with the characteristics of Figure 2-10 was 

conducted in which the following three parameters were varied, whereas all other parameters 

remained the same: 

1) The weight of the equipment was 320, 418 and 520kip, 

2) The vertical isolator stiffness was varied so that the vertical frequency varied in the range 

of 1.5 to 2.75Hz, and  

3) The vertical isolator damping constant was varied so that the vertical damping ratio 

varied in the range of 0.2 to 0.7. 

Figures 2-25 and 2-26 present the calculated peak vertical accelerations at the 6Hz bushing 

mount and at the top, respectively, as function of the vertical frequency and damping ratio for the 

eight three-component ground motions of Table 2-8.  The peak acceleration values are 

normalized by the peak ground acceleration of each motion (PGA per Table 2-8, for the case of 

the El Centro earthquake, the PGA in Table 2-8 was scaled up by factor of 3).  The results are for 

the case of the 418kip transformer model and for the triple FP isolators having the upper bound 

friction properties per Table 2-5 as these conditions resulted in the largest acceleration response.  

The results demonstrate that (a) reducing the vertical frequency has benefits in reducing the 

vertical acceleration and (b) increasing the vertical damping to about 0.50 has further benefits in 

reducing sensitivity to the value of the vertical frequency.  On the basis of these results it is 

desirable to select the properties of the vertical isolation system so that the vertical frequency is 

2.0Hz and damping ratio is 0.50, depending however on the demands for vertical displacement, 
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which is investigated in Figures 2-27 and 2-28 where the vertical displacement demands are 

presented. 

 

Figure 2-25 Peak Vertical Acceleration at 6Hz Bushing Mount Normalized by Peak Vertical 

Ground Acceleration 

Figure 2-26 Peak Vertical Acceleration at 6Hz Bushing Top Normalized by Peak Vertical Ground 
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Figure 2-27 Static and Peak Dynamic Vertical Isolator Displacement Demands  

 

Figure 2-28 Static and Total Vertical Isolator Displacement Demands  

Note that the results in Figures 2-27 and 2-28 are for the vertical isolator with the maximum 

dynamic demand which differs depending on the motion used and the characteristics of the 

vertical isolation system due to effects these have on the rocking response.  Based on the results 

of these figures, a system with vertical frequency of 2.0Hz and a damping ratio of 0.50 will have 
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a static vertical displacement of 2.4inch and a dynamic displacement of 1.6inch for a total of 

4.0inch, which is entire practical. 

The 2.0Hz frequency and 0.50 damping ratio vertical isolation system was further investigated 

and results are presented in Table 2-12 where the peak vertical acceleration at the 6Hz bushing 

mount and top are compared for the 418kip transformer when non-isolated, when isolated by the 

2D triple FP system (2D-isolated) and when isolated by the 3D triple FP and spring-damper 

system with fv=2.0hz and βv=0.50 (3D-isolated).  The upper bound friction values were used as 

they resulted in the largest accelerations.  The comparison in Table 2-12 together with the 

acceleration response spectra presented in Figures 2-20 to 2-24 demonstrate the benefits offered 

by the 3D isolation system with the selected parameters of 2.0Hz vertical frequency and 0.50 

vertical damping ratio.  

 

Table 2-12 Peak Vertical Acceleration Values (in g) for Non-isolated 418kip Transformer, 2D 

Isolated 418kip Transformer with Triple FP System and 3D Isolated 418kip Transformer with 

Triple FP and Spring-Damper System with fv=2.0Hz and βv=0.50 

 

Model 
Response Location 

El 

Centro 

300% 

Pacoima 

100% 

Jensen 

100% 

Chile 

100% 

LGPC 

100% 

Kobe 

100% 

Rio 

100% 

Sylmar 

100% 

Non-

isolated 

6Hz Bushing 

Mount 
0.63 0.69 0.76 0.58 0.90 0.45 0.20 0.54 

6 Hz Bushing Top 1.39 1.10 1.13 1.27 1.65 0.65 0.41 1.17 

2D- 

isolated 

6Hz Bushing 

Mount 
0.60 0.69 0.80 0.57 0.91 0.45 0.19 0.47 

6 Hz Bushing Top 1.55 1.16 1.27 1.55 1.83 0.68 0.48 1.28 

3D-

isolated 

6Hz Bushing 

Mount 
0.31 0.53 0.26 0.32 0.31 0.23 0.14 0.14 

6 Hz Bushing Top 0.41 0.58 0.37 0.43 0.43 0.27 0.24 0.26 

 

The effect of the weight of the transformer is investigated next.  It is presumed that the properties 

of the vertical isolation system are fixed so that at each of the four supports the stiffness is 

K=44kip/in and the damping constant is C=3.4kip-sec/in which result in a frequency of 2.0Hz 

and damping ratio of 0.50 for the transformer of 418kip weight.  The weight is now considered 

to be 320kip, 418kip and 520kip, while the transformer dimensions are assumed un-changed, and 

analyses are performed to obtain information on the effect on the isolator displacement demands.  
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This enables the selection of the design parameters for the vertical isolation system to be used in 

applications of transformer weights of 300 to 500kip (plus additional weight for the isolation 

system installation).  

 

Table 2-13 presents the properties of the isolation system in the three cases of transformer 

weight.  Note that the weight affects friction in addition to the vertical frequency and damping.  

The frictional properties of the triple FP isolators were determined based on test data of isolators 

at a load of 105kip (thus representative of the 418kip transformer) and then adjusted to reflect the 

effect of larger or lesser vertical loads following the paradigm in the examples in McVitty and 

Constantinou (2015).  

 

Table 2-13 Properties of Analyzed Transformers with 3D FP-spring-damper Isolation System 

Transformer 

Weight 

(kip) 

 

Vertical Stiffness (K) and 

Vertical Damping Constant (C)  

Per Support 

Vertical Frequency (fv) and 

Vertical Damping Ratio (βv) 

Friction Coefficient  

in Triple FP Isolators 

(Lower Bound/Upper Bound) 

µ1= µ4 µ2= µ3 

320 K=44 kip/in and C=3.4kip-s/in fv=2.3Hz and βv=0.56 0.120/0.160 0.100/0.115 

418 K=44 kip/in and C=3.4kip-s/in fv=2.0Hz and βv=0.50 0.110/0.150 0.080/0.090 

520 K=44 kip/in and C=3.4kip-s/in fv=1.8Hz and βv=0.44 0.100/0.140 0.070/0.085 

 

Results of the analysis are presented in Table 2-14 where the peak displacements of the top of 

the 6Hz bushing and of the isolators are presented.  The isolator displacement demands are the 

resultant horizontal displacement of the FP isolators and the vertical displacement of the spring-

damper units (static component and total components are reported).  These values are useful in 

the isolation system design.  The value of displacement (peak resultant in the horizontal direction 

and the peak vertical displacement of the bushing top) are useful in the design of electric cables 

connected to the bushings.  Two values of the vertical displacement of the spring-damper unit are 

reported.  They are the static displacement due to the transformer weight and the total value 

(static plus dynamic displacement).  For example, the values 1.91/2.37 mean that the static 

displacement is 1.91inch and a total displacement (static plus dynamic) is 2.37inch.  The 
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dynamic component is 2.37-1.91=0.46inch. Note that for the El Centro 300% and Pacoima 100% 

motions the isolator displacement demands exceed the capacity of the bearings which is about 

13inch so that the results would apply for bearings with larger concave plate diameter.   

 

Additional results on the peak displacement and peak forces for spring-damper units are 

presented in Table 2-15.  The values are those calculated in the upper bound friction case, which 

resulted in the largest values.  On the basis of these results Table 2-16 has been prepared to 

present the parameters for the vertical spring-damper isolation system.  Note that four units are 

used each with vertical stiffness of K=44kip/inch and linear viscous damping constant C=3.4kip-

sec/inch to support transformers of total weight of 320 to 520kip.  The static displacement 

demand is 3inch and an additional dynamic displacement capacity required of ±2.0inch (total is 

5.0inch) is required.  The peak total vertical force per spring-damper unit is 235kip and the 

lateral force that the unit needs to resist is about 0.3 times the supported weight or about 40kip.  

The overturning moment in this table is the overturning moment (including PΔ effects) of the FP 

isolator at its displacement capacity. 

 

The table also includes information on the parameters of an alternative vertical isolation system 

with a vertical frequency of 2.5Hz at the nominal weight of 418kip.  The parameters of the 

system were obtained in Figures 2-27 and 2-28 that are limited to displacement demands so that 

there is no information on the required force demands. 
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Table 2-14 Displacement Demands at Bushing Top, FP Isolators, and Spring-Damper Units for 

System with K=44 kip/in and C=3.4kip-s/in (HRES: resultant horizontal displacement) 

Earthquake 

Triple FP  

Friction 

W=320kip W=418kip W=520kip 
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HRES V HRES V1 HRES V HRES V1 HRES V HRES V1 

El Centro 
100% 

Lower 

Bound 
2.78 2.23 1.77 

1.91 

/2.37 
3.22 2.88 1.97 

2.49/ 

3.06 
3.47 3.02 2.05 

3.09 

/3.76 

Upper 

Bound 
2.16 2.38 1.36 

1.91 

/2.43 
2.82 2.97 1.70 

2.49 

/3.14 
3.01 3.07 1.69 

3.09 

/3.86 

El Centro 
200% 

Lower 

Bound 
9.81 6.47 7.17 

1.91 

/2.59 
11.06 7.90 8.04 

2.49 

/3.32 
12.35 9.36 8.85 

3.09 

/4.14 

Upper 

 Bound 
6.86 5.44 5.11 

1.91 

/2.73 
7.20 6.56 6.02 

2.49 

/3.50 
7.72 6.95 6.09 

3.09 

/4.28 

El Centro 
300% 

Lower 

Bound 
22.71 16.03 16.62 

1.91 

/2.99 
24.45 18.13 17.75 

2.49 

/3.95 
26.52 20.09 19.11 

3.09 

/4.94 

Upper 
Bound 

17.08 11.86 12.54 
1.91 
/2.88 

18.43 13.95 13.44 
2.49 
/3.81 

19.80 15.58 14.25 
3.09 
/4.78 

Pacoima 

100% 

Lower 

Bound 
18.18 8.26 13.95 

1.91 

/3.03 
19.32 8.64 14.58 

2.49 

/3.84 
20.11 8.90 14.98 

3.09 

/4.64 

Upper 
Bound 

15.32 7.66 11.83 
1.91 
/3.05 

16.84 8.30 12.75 
2.49 
/3.88 

17.50 8.68 13.07 
3.09 
/4.70 

Jensen 

100% 

Lower 

Bound 
11.38 9.61 8.63 

1.91 

/2.74 
12.59 10.48 10.50 

2.49 

/3.57 
15.15 10.91 12.49 

3.09 

/4.46 

Upper 

Bound 
9.05 8.70 6.72 

1.91 

/2.71 
10.30 10.52 7.92 

2.49 

/3.50 
10.98 11.18 8.05 

3.09 

/4.34 

Chile 

100% 

Lower 
Bound 

5.48 3.24 3.67 
1.91 
/2.44 

6.42 3.15 4.28 
2.49 
/3.16 

7.06 3.42 4.67 
3.09 
/3.88 

Upper 

Bound 
4.26 3.21 2.76 

1.91 

/2.53 
5.36 3.50 3.46 

2.49 

/3.27 
5.71 3.83 3.62 

3.09 

/3.99 

LGPC 

100% 

Lower 
Bound 

16.72 7.04 12.45 
1.91 
/2.68 

18.46 7.40 13.50 
2.49 
/3.45 

19.80 7.71 14.29 
3.09 
/4.26 

Upper 

Bound 
12.36 5.86 9.01 

1.91 

/2.78 
14.69 6.45 10.47 

2.49 

/3.48 
15.80 6.95 11.17 

3.09 

/4.20 

Kobe 
100% 

Lower 

Bound 
7.38 3.15 5.24 

1.91 

/2.41 
8.01 3.63 5.64 

2.49 

/3.12 
8.15 3.95 5.66 

3.09 

/3.83 

Upper 

Bound 
5.88 2.86 4.10 

1.91 

/2.46 
7.66 3.45 5.32 

2.49 

/3.17 
8.00 3.76 5.48 

3.09 

/3.92 

Rio 
100% 

Lower 

Bound 
3.39 0.96 2.28 

1.91 

/2.14 
3.33 1.07 2.26 

2.49 

/3.12 
3.18 1.16 2.16 

3.09 

/3.83 

Upper 
Bound 

3.35 0.93 2.25 
1.91 
/2.16 

3.26 1.07 2.17 
2.49 
/2.74 

3.30 1.18 2.14 
3.09 
/3.37 

Sylmar 

100% 

Lower 

Bound 
3.39 3.94 2.92 

1.91 

/2.36 
3.33 4.35 3.05 

2.49 

/3.07 
3.18 4.76 3.16 

3.09 

/3.75 

Upper 
Bound 

3.88 3.87 2.92 
1.91 
/2.51 

3.78 4.34 2.84 
2.49 
/3.20 

3.48 4.52 2.47 
3.09 
/3.94 

1 Static displacement/total displacement of spring-damper units 
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Table 2-15 Peak Displacements and Forces in Spring-Damper Units for System with K=44  

kip/in and C=3.4kip-s/in in Upper Bound Friction Case 

Earthquake 
Total Weight 

(kip) 

Peak 

Displacement 

(in) 

Peak Spring 

Force 

(kip) 

Peak Damper 

Force 

(kip) 

Peak Total 

Force 

(kip) 

Static 

320 1.91 84.2 - 84.2 

418 2.49 109.5 - 109.5 

520 3.09 135.8 - 135.8 

El Centro 

100% 

320 2.43 107.1 16.8 109.7 

418 3.14 138.0 18.1 140.7 

520 3.86 170.0 21.4 172.4 

El Centro 

200% 

320 2.73 119.9 25.9 127.3 

418 3.50 153.9 28.3 163.4 

520 4.28 188.5 32.6 199.2 

El Centro 

300% 

320 2.88 126.9 30.6 138.4 

418 3.81 167.5 34.3 175.7 

520 4.78 210.5 40.0 217.6 

Pacoima 

100% 

320 3.05 134.0 51.6 151.5 

418 3.88 170.9 58.4 190.3 

520 4.70 206.8 60.2 227.4 

Jensen 

100% 

320 2.71 119.1 42.2 128.8 

418 3.50 154.2 42.3 164.6 

520 4.34 191.1 41.7 201.1 

Chile 

100% 

320 2.53 111.3 33.0 124.4 

418 3.27 143.7 33.9 154.8 

520 3.99 175.5 37.4 188.5 

LGPC 

100% 

320 2.78 122.4 30.7 131.4 

418 3.48 153.1 36.2 163.8 

520 4.20 184.7 40.9 199.1 

Kobe 

100% 

320 2.46 108.3 24.5 115.2 

418 3.17 139.3 23.0 147.5 

520 3.92 172.4 23.7 179.5 

Rio 

100% 

320 2.16 94.9 14.4 102.5 

418 2.74 120.4 15.6 126.8 

520 3.37 148.2 17.9 155.2 

Sylmar 

100% 

320 2.51 110.6 21.4 118.5 

418 3.20 140.9 25.4 151.9 

520 3.94 173.2 28.4 184.8 
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Table 2-16 Design Parameters for Vertical Isolation System Unit 

System Characteristics for 418kip Transformer fv=2.0Hz, βv=0.50 fv=2.5Hz, βv=0.50 

Static load (maximum value) 130kip 130kip 

Static deflection (for maximum load) 3.0inch 1.5inch 

Stiffness per unit 44kip/inch 65kip/inch 

Damping constant per unit (linear viscous damping) 3.4kip‐sec/inch 4.2kip‐sec/inch 

Dynamic deflection ±2.0inch ±1.5inch 

Total deflection 5.0inch 3.0inch 

Peak axial force per unit 235kip - 

Peak damping force per unit 85kip - 

Peak lateral force per unit (to be resisted by unit) 65kip - 

Peak overturning moment  per unit (to be resisted by unit) 1800kip‐inch - 
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SECTION 3 

DESCRIPTION AND PROPERTIES OF MODEL FOR TESTING 

3.1 Introduction    

The combined triple FP isolators and vertical spring-damper system studied in Section 2 is selected 

as the system to develop its components and to test.  It is noted that the extensive research efforts 

in Japan, described in Section 1, have resulted in the development of a number of systems with 

similar configurations as the one envisioned in this work.  However, none of those systems was 

found to be acceptable for application in the seismic protection of electrical transformers due to 

their complexity, use of active components, lack of reliability and obviously prohibitive cost.  

Rather, the components of the system should be passive, highly reliable and readily available from 

reputable manufacturers.   The analytical study in Section 2 established the desired characteristics 

of the system. 

 

A decision was made to test a large model in real time scale and at the largest possible weight that 

could be safely supported on the shake table at the University at Buffalo.  This led to a model of 

weight of 68.1kip and 72.4kip in two tested configurations.  This weight is the one supported by 

the spring-damper units.  The weight supported by the FP isolators is less by the weight of the top 

part of the spring damper units (each 0.3kip), the bottom part of the FP isolators (each 0.5kip) and 

the additional base (4.35kip) in one of the two tested configurations.  The gravity load on the FP 

isolators was 64.9kip or 16.2kip per isolator. 

 

Four triple FP isolators identical to those used in the Washington, WA were obtained from 

Earthquake Protection Systems, Inc.  Tests of the isolators at the University at Buffalo showed that 

friction in these bearings was larger than in the actual application due to the reduced load on each 

bearing of the tested model (16.2kip vs 105kip in the actual application) leading to a nominal 

friction value of 0.20 instead of 0.12.  In some tests the bearings were lubricated in the laboratory 

in a rudimentary effort to reduce friction and a nominal friction of about 0.07 was achieved but in 

somehow unstable conditions.  Then a second set of isolators was acquired from Earthquake 

Protection Systems, Inc. in which the contact surfaces were altered so that the contact pressure 
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increased and a nominal friction of 0.12 was achieved, as desired for the actual application.  Thus 

tests were conducted with three different FP isolator friction values.  The three sets of FP isolators 

also had some other small differences that will be described later in this section. 

 

The vertical spring-damper units were designed and manufactured at Taylor Devices, Inc. on the 

basis of specifications described in this report.  The main characteristics of the spring-damper units 

were to provide a vertical frequency of 2.0Hz and a corresponding damping ratio of 0.50 for the 

initially estimated model weight of 67kip.  The actual model weight varied from 68.1 to 72.4kip 

so that the vertical frequency and damping were slightly different.  The units were then tested at 

the University at Buffalo and their properties verified. 

 

Two configurations of the isolation system were tested on the shake table.  One was as studied in 

Section 2 and schematically depicted in Figure 2-5.  In this configuration, the transformer is 

allowed to freely rock on the supporting springs.  Rocking can be limited by a combination of 

increased rocking frequency (by placement of the bearings at larger distance from each other) and 

high vertical damping (hence the use of damping ratio of 0.50).  The system with allowance for 

free rocking is very desirable because of its simplicity and ease in construction.  However, there 

are special cases where rocking needs to be restricted (Kitayama et al, 2016).  For such cases, a 

second configuration was developed and tested in which a stiff base was placed between the 

vertical spring-damper units and the triple FP isolators above.  

 

The experimental program included (a) testing of the triple FP isolators, (b) testing of the spring-

damper devices, (c) identification of as-installed properties of the bushing on top of the frame 

representing the transformer, (d) identification of the properties of the isolated test model, and (e) 

shake table testing of the isolated test model.  There was no testing performed without the isolation 

system or with only the horizontal isolation system. 

3.2 Description of Transformer Test Model 

Figure 3-1 presents the transformer model.   Figure 3-1 (a) shows the model prior to adding steel 

plates to represent the weight of the transformer and prior to adding the isolation system.  As shown 

it was used in the identification of the as-installed properties of the bushing.  The frame is 8ft x 8ft 
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x 8ft braced frame of which details are presented in Appendix D.  A 0.75inch thick steel cover 

plate supported a bushing at the center.  Figure 3-1 (b) shows the completed transformer model.  

The frame of Figure 3-1(a) was bolted on top of a base consisting of two inter-connected plates 

and then four additional plates were placed on the frame sides for added mass.  Each of these plates 

had a weight of 8.6kip.  The total weight of the model including the top concave plates of the triple 

FP isolators (that is the horizontally seismically isolated weight) was 64.9kip.  The total weight 

supported by the spring-damper units (64.9kip plus weight of bottom part of FP isolators and top 

part of spring-damper units) was 68.1kip.  In this configuration, the vertical frequency of the 

isolated model is 1.92Hz and the corresponding damping ratio is 0.50.  These values are based on 

the actual stiffness and damping constant of the spring-damper units as measured in tests (6.4kip/in 

vs the specified 6.8kip/in and 0.53kip-sec/in vs the specified 0.54kip-sec/in).  The frequency and 

damping ratio would have been 1.98Hz and 0.49, respectively, if the stiffness and damping 

constant were 6.8kip/in and 0.54kip-sec/in, respectively.  Figure 3-2 shows schematics of the 

isolated transformer model with information on the basic dimensions and the location of the center 

of mass. The mass moment of inertia about the center of mass of the test model was calculated to 

be ICM=621kip-in-s2.   In the calculation only the mass above the center of the FP isolators was 

considered (corresponding weight is 64.9kip). 

 

The bushing used in the testing was measured and found to have the dimensional properties of 

bushing No. 6 of Table 2-1 but its weight was measured at 890lb instead of 840lb.  It was assumed 

that the locations of the centers of mass of the upper and lower bushing parts were the same as 

those of bushing No. 6 of Table 2-1 and that the weight was distributed as 490lb at the upper part, 

100lb at the connection to the plate and 300lb at the lower part.   
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                                 (a)                                                                          (b) 

Figure 3-1 Transformer Model for Shake Table Testing: (a) Braced Frame with Cover Plate and 

Bushing and (b) Complete Test Model with Added Mass and Seismic Isolation System 

(configuration allowed to freely rock) 

8ft x 8ft x 8ft 

Braced Steel Frame

3/4 inch Steel 

Plate
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Figure 3-2 Basic Dimensions of Isolated Transformer Test Model, Free Rocking Configuration  

 

A second isolation system configuration was also tested in which a stiff steel base was installed 

between the vertical spring-damper units and the triple FP isolators as shown in the photograph of 

Figure 3-3 and the schematic of Figure 3-4. 

96 in
105in

BASE LINE

CM
dCM = 43.8in

96in
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CM of Bushing
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Figure 3-3 View of Model of Isolated Transformer with Added Base for Limiting Rocking  

Added Base 

for Limiting Rocking
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(a) 

 

                                                  (b)                                                                                  (d) 

Figure 3-4 Schematics of Added Base for Limited Rocking: (a) Front View (b) Plan View (c) Section 

A-A’ and (d) Detail of Connection between Vertical Spring-Damper Unit and Added Plate 

Added Base

Shim Plates

A

A’
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HSS 5x4x3/8

Outline of Spring-Damper and Isolator 

(24inx24in)

Shim Plates

Pin Support
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The addition of the base was only partially effective in restraining rocking as an extremely stiff 

base was required to do so.  This is evident in the Japanese systems reviewed in Section 1 where 

the size of the bases used for restraining rocking is substantial.  It is also demonstrated in the design 

examples presented in Section 6.  Moreover, there is an added complexity in adding the base.  

When placed on top of the spring-damper units, load is not concentrically transferred to the unit 

due to imperfections in the base.  Load is transferred somewhere on top of the 24inch by 24inch 

top plate of each unit towards the interior of the model.  As a result of this unavoidable event, the 

spring-damper units are subject to large eccentric load that results in lateral load on the vertical 

telescopic system used to drive the unit in vertical motion.  The result is added friction in the 

vertical direction which may be substantial and is unknown.  To prevent this from occurring, a 

rocker plate was placed at the center of each spring-damper device as shown in Figure 3-4 so that 

load is transferred concentrically.  To provide the required stiffness, the space between the rocker 

plate, the base above and the plate below was shimmed with thin steel plates.  In the field the 

operation will have to include careful shimming and grouting in similarity to what is often done in 

the installation of Friction Pendulum bearings for the seismic retrofit of existing structures.  In the 

model only shims were used without grouting so that additional flexibilities were introduced and 

the added base did not have an important effect in restraining rocking.  This issue is discussed in 

more detail in Section 4. 

 

The addition of the rocking restraining base added a weight of 4.35kip on top of the spring-damper 

units for a total of 72.44kip on top of the spring-damper units so that the vertical frequency was 

1.86Hz and the damping ratio was 0.48 when calculated based on the measured values of spring 

stiffness and viscous damping constant. 

 

3.3 Description of Seismic Isolation System 

The seismic isolation system consisted of four triple FP isolators and four vertical spring-damper 

units.  Figure 3-5 shows sections of the two different types of triple FP isolators used in the testing.  

Note that the two types have only small differences in geometry with the most important difference 

being that one has an interior restrainer ring and the other does not.  Three different sets of frictional 

properties of the isolators were tested.  They are designated by the “nominal friction” values of 
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0.20, 0.12 and 0.07.  The nominal friction is defined as the lateral force at zero displacement 

normalized by the vertical load.  The actual frictional properties require description of friction for 

each sliding surface per Appendix B.  Nominal friction of 0.20 was achieved with the isolator type 

A of Figure 3-5.  This high friction value, which is undesirable, was the result of the low load 

(16.2kip) carried by this full size isolator in the shake table testing (designed to have a nominal 

friction of about 0.12 at load of about 105kip).  Isolator type A was then partially lubricated in the 

laboratory at the University at Buffalo using liquid lubricants to result in a nominal friction of 0.07 

but with somehow unstable conditions.  Isolator type B, shown in Figure 3-5, was obtained from 

Earthquake Protection Systems, Inc. and was designed to provide the desired nominal friction of 

0.12.  The friction value of 0.12 is the lower bound value of nominal friction for the full size 

bearing per Appendix B.  This corresponds to the friction values on each sliding surface as 

presented in Appendix B for the lower bound conditions. 

 

Triple FP Isolator of Type A  

(with nominal friction of 0.20 and 0.07) 

Triple FP Isolator of Type B  

(with nominal friction of 0.12) 

  

 

Figure 3-5 Triple FP Isolator Types used in Testing 

 

A spring-damper unit is shown in Figure 3-6 in a three-dimensional rendering and a section with 

basic dimensions.  The spring-damper supports a load of 17.0kip in the configuration without the 

added base used limiting rocking.  With the added base, it carried a load of 18.1kip.  Its design 

parameters and properties are listed in Table 3-1. 
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Figure 3-6 Spring-Damper Unit 

 

Figure 3-7 shows details of the spring-damper unit.  Each spring was fitted with an interior pin 

used to limit the length available for shear deformation while maintaining the full length for axial 

deformation.  This was needed in order to increase the shear stiffness and prevent torsional 

instability of individual units.   This is of importance only in the configuration without the rocking-

restraining base.  Torsional instability is caused by the random transfer of torque from the FP 

isolator above and the fact that when the vertical springs are compressed they develop negative 

shear stiffness.  That is, when the springs are compressed by a large vertical force, upon small 

lateral deformation (due to torque) they apply force in the direction of motion, which is thus 

amplified.  This force when combined with the shear stiffness of the springs may result in negative 

stiffness (Sarlis et al, 2013).  Figure 3-7 demonstrates the ease of installation of the system.  The 

triple FP isolators are simply placed on top of the spring units without the need to have load-

transfer rocker plates and shimming as discussed earlier.   By comparison, Figure 3-8 shows a 

detail of the connection of the triple FP isolator to the spring-damper unit when the stiffening base 

is used (in this case the pins for increasing the spring shear stiffness are not needed as the added 

base provides for stability of the system). 

 

 

 

 

 

2 in

2 in
24 in

24 in

Linear Viscous Damper

(Within Telescopic System)

Coil Springs

(Total 4)
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Table 3-1 Design Parameters for Spring-Damper Unit for Shake Table Testing 

Static load (kip) 17.0 

Static deflection (inch) 2.5 

Stiffness (kip/inch) 6.8 

Damping constant (linear viscous damping) (kip-sec/in) 0.54 

Dynamic deflection (inch) ±1.25 

Total deflection (inch) 3.75 

Peak axial force (kip) 27.0 

Peak damping force (kip) 11.0 

Peak lateral force to be resisted by unit (kip) 6.5 

Peak overturning moment to be resisted by unit (kip-inch) 200.0 

 

 

  

Figure 3-7 Detail of Spring-Damper Unit for Increasing Shear Spring Stiffness 

 

When the triple FP isolators are placed directly on top of the spring-damper units, the resulting 3D 

seismic isolation system is free to rotate (rock) due to the lack of any bending resistance in the FP 

isolators (in the absence of friction, the isolators behave as rollers).  Rocking occurs while the 

spring-damper units only move vertically.  Therefore, the spring-damper units experience 

differential vertical motion.  This is illustrated in Figure 3-9. 

 

Pin 
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Figure 3-8 Details of Connection for System with Base for Limiting Rocking (prior to shimming) 

 

 

 

Figure 3-9 Illustration of Rocking Motion of System Allowing for Free Rocking 

 

The modal properties of the isolated transformer test model in the configuration that is free to rock 

(as shown in Figure 3-9) has been investigated and compared to the modal properties of the sample 

transformer studied in Section 2 and Appendices A and C.  Note that the properties of the studied 

transformer are those of the transformer isolated in Vancouver, WA, and shown in Figure 2-1.  For 

the modal analysis of the transformer test model, the undamped version of Equations (A-3) was 

used but reduced to the form below since the vertical degree-of-freedom is uncoupled from the 

others.   

ROCKER 

PLATE 
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 [
𝑚 0
0 𝐼𝐶𝑀

] (
�̈�
�̈�
) + [

4𝐾ℎ −4𝐾ℎ𝑑𝐶𝑀
−4𝐾ℎ𝑑𝐶𝑀 4𝐾ℎ𝑑𝐶𝑀

2 + 𝐾𝑣𝑙
2] (

𝑢
𝜃
) = (

0
0
) (3-1)  

 

In Equation (3-1), dCM is the vertical distance between the center of mass of the test model and the 

pivot point of the FP isolators (=43.8inch), l is the distance between the spring-damper units 

(=96inch) and ICM is the mass moment of inertia (=621kip-in-s2) (see Figure 3-2).  The mass 

corresponds to the tested weight of 64.9kip (the weight supported by the spring-damper units is 

68.1kip but the weight supported by the FP isolators is 64.9kip).  Solution of the eigenvalue 

problem resulted in the following expressions for the two frequencies: 

 

 𝑓1,2 =
1

2𝜋
√(

2𝐾ℎ

𝑚
+

4𝐾ℎ𝑑𝐶𝑀
2 +𝐾𝑣𝑙

2

2𝐼𝐶𝑀
) ± √(

2𝐾ℎ

𝑚
+

4𝐾ℎ𝑑𝐶𝑀
2 +𝐾𝑣𝑙

2

2𝐼𝐶𝑀
)
2

−
4𝐾ℎ𝐾𝑣𝑙

2

𝑚𝐼𝐶𝑀

 (3-2)  

 

In Equations (3-1) and (3-2), Kv is the vertical stiffness of an individual spring-damper unit 

(=6.4kip/in as determined in the testing of the devices) and Kh is the horizontal stiffness of an 

individual triple FP isolator.  During motion of the triple FP isolator, its actual horizontal stiffness 

varies from W/2Reff1 to W/2Reff2 where Reff1 is equal to 36inch for the isolator of type A in Figure 

3-5 and 35.5in for the isolator of type B in the same figure.  The radius Reff2 is equal to 6inch for 

the isolator of type A in Figure 3-5 and 3.5in for the isolator of type B in the same figure (Fenz 

and Constantinou, 2008).   The third frequency of the model is the vertical frequency which is 

1.92Hz.  The three frequencies of the model were calculated and plotted in Figure 3-10 as function 

of the ratio of stiffness Kh/ Kv.  Note that actual values of this ratio are between 0.037 and 0.38.  

The figure also includes values of the three frequencies of the isolated transformer models studied 

in Section 2 for total weight of 320, 418 and 520kip distributed per mass distribution cases 1 and 

2 in Table 2-2, and with the vertical spring-damper unit stiffness being such that the vertical 

frequency is 2.0Hz.  Note that the exact distribution of mass in the actual transformer is not known 

and is assumed to be somewhere between cases 1 and 2 in Table 2-2. 

 

The results in Figure 3-10 show that the test model has its fundamental frequency within the 

bounds of the fundamental frequency of the actual transformer.  However, the second frequency 
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(one with a dominant rocking component) is lower in the test model than in the actual transformer.  

The reason is the smaller distance between supports in the test model (96inch versus 110inch to 

227inch in the actual transformer) and the distribution of mass in the test model.  The second 

frequency could be increased in the test model by lowering the center of mass of the model and by 

increasing the distance between supports.  The latter could not be done given the large weight of 

the model and the requirement to support it at specific locations.  The distribution of mass could 

not be changed without reducing the weight (removal of two vertical plates at the East and West 

sides as shown in Figure 3-1 and replacing with two smaller plates) and then adding weight directly 

on the base plate of the model.  Both actions required additional costs in the acquisition of steel 

plates and were not considered.  As a result the tested transformer model exhibited a lower rocking 

frequency than in a real application which resulted in some magnification of the rocking response.  

This was thought to be acceptable and desirable as (a) it provided for a more challenging 

interrogation of the isolation system, and (b) the acquired response data included a strong rocking 

component and thus were more challenging to predict analytically and validate the analytical 

models.  The prediction of the response in the presence of rocking motion was further complicated 

when it was observed that the shake table exhibited some undesirable rocking motion due to 

inability to fully control the shake table at the tested large model weight. 

 

 



77 

 

 

Figure 3-10 Frequencies of Isolated Transformer Test Model (red text and red line) and of Actual 

Transformer (black text and black line), Free Rocking Configuration 
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3.4 Testing and Properties of Spring-Damper Units 

The four Spring-damper units were tested at the University at Buffalo.  Each device was installed 

in the bearing testing machine as shown in Figure 3-11.  The loading beam of the machine weighted 

4.18kip so that it could induce a vertical displacement of 0.6inch to the device.  Accordingly, the 

vertical machine actuators were first activated to lift the beam weight and eliminate the 

displacement and then vertical motion was imposed as follows: (a) a slow motion to a static 

deflection of 2.3inch over a period of 200second, (b) four and half cycles of harmonic motion of 

1inch amplitude and frequency of 0.005Hz or 0.5Hz or 1Hz, and (c) a slow return to the origin.  

Note that the static deflection and dynamic displacement amplitude were reduced by comparison 

to the design parameters of the units due to limitations in the displacement capacity of the vertical 

actuators.     

 

 

Figure 3-11 Test Set-up for Spring-Damper Unit 

Figure 3-12 presents the recorded force-displacement loops in a test at frequency of 0.005Hz and 

Figure 3-13 the loops in a test at frequency of 1Hz.   In the first test the peak velocity of motion 

was 0.03 in/s so that there no measureable viscous damping force.  The force-displacement loops 

at this frequency can be used to obtain the device stiffness and friction.  Note that friction is caused 

by the telescopic system used to drive the spring-damper unit in the vertical direction, where tight 

tolerances result in some friction force and from friction in the seals of the dampers.  The friction 
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force measured in the results of Figures 3-12 and 3-13 per device is about 0.7kip.  The loops in the 

test at frequency of 1Hz (peak velocity is 6.28in/sec) clearly show the effect of the viscous force.   

 

 
Figure 3-12 Force-Displacement Loop of Spring-Damper Unit 1 in at Peak Velocity of 0.03in/sec 

 

Figure 3-13 Force-Displacement Loop of Spring-Damper Unit 1 at Peak Velocity of 6.28in/sec 

A complete set of test data (loops as those of Figure 3-13) for each test and unit are presented in 

Appendix E.  Figure 3-14 presents results on the measured peak damping force as function of the 
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peak velocity from the tests conducted at the University at Buffalo and from the tests of only the 

dampers (prior to assembly) conducted at Taylor Devices, Inc. (tested at velocities of 

approximately 10.5 and 21.0in/sec).  The data shown in Figure 3-14 include 6 points at each of the 

two velocities for each of the dampers tested at Taylor Devices (these were data for tension and 

compression for each of three cycles).  Note that the force in the graph of Figure 3-14 includes a 

friction force, which was obtained in the testing of the complete spring-damper-telescopic tube 

units at the University at Buffalo (see Figure 3-13 for definition of damping and friction forces). 

The data in Figure 3-14 reveal the friction force in each device (as the damping force at zero 

velocity) and the damping constant (as the slope of the force-velocity curve).  Indeed, the relation 

may be represented as linear.  The test data in Figures 3-12 to 3-14 and those of Appendix E reveal: 

 

1) The friction force varies between about 0.5 and 0.9kip (average 0.65kip).  The total friction 

force is 2.6kip, which amounts to 0.038 of the supported model weight.  

2) The damping constant per unit is 0.53kip-sec/in (best fit of curves in Figure 3-14).  The 

specified value (Table 3-1) is 0.54kip-sec/in. 

3) The spring stiffness per unit is 6.4kip/in.   The specified value (Table 3-1) is 6.8kip/in. 

 

The friction force measured in the spring-damper units originates in the seal of the dampers and in 

the telescopic system used to drive the system in the vertical direction.  While tested on the shake 

table for identification of the properties in the vertical direction (see later in this section), there was 

no evidence of friction in the devices as the transfer functions obtained could be very accurately 

predicted by a linear elastic and linear viscous representation (see Figure 3-29).  Also, in the 

analytical prediction of the experimental response presented in Section 5 use of friction in the 

spring-damper units resulted in a worse prediction of the response than a model in which friction 

was neglected (results to be provided in Section 5).  This led to the assumption that the friction 

measured in the tests (Figure 3-14) was the result of some significant lateral force applied at the 

spring units in the test machine due to the high horizontal stiffness of the units and rotation of the 

loading beam of the test machine.  Accordingly, it should not be included in the analytical 

prediction of the response.   
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Figure 3-14 Peak Damping Force versus Peak Velocity Relationship in Testing at Spring-Damper 

Units at University at Buffalo and Testing of Dampers at Taylor Devices 

 

3.5 Testing and Properties of Triple Friction Pendulum Isolators  

Three sets of four Triple FP isolators (per Figure 3-5) were tested in the isolator test machine at 

University at Buffalo.  All tests were conducted with the outer seal removed in order to expose the 

internal components as shown in the photograph of Figure 3-15.  Each test consisted of the 

following protocol: (a) the bearing was loaded to a vertical force of about 16.2kip (actual load on 

bearings was 16.2kip), (b) slow lateral motion was imposed to a displacement of 5.5inch (capacity 

of system is 6.0inch) over a period of 60 seconds, see Figure 3-16, (c) a pause for 5 seconds was 

imposed, and (d) a return to the origin at amplitude of 5.5inch plus two fully reversed cycles were 

imposed at frequencies of 0.005, 0.01, 0.2 and 0.3Hz (total of four tests).  The peak velocities 

achieved in the tests at each of the frequencies were 0.2, 3.5, 6.9, and 10.4 in/s.  Figure 3-16 

presents the recorded histories of the imposed lateral motion and of the axial load on a bearing in 

the 0.3Hz test. There is some fluctuation of the vertical force in the test, which diminished as the 

frequency of testing was reduced. 
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Figure 3-15 Image of Triple FP Isolator Type A of 0.20 Nominal Friction in Test Machine 

 

 
Figure 3-16 Recorded Histories of Lateral Motion and Vertical Load in Test with Frequency of 

0.3Hz 
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were identical to the isolators used in the Vancouver, WA transformer (Figure 2-1; also 

Oikonomou et al, 2016).  They were intended for use under load of 105kip for which the expected 

nominal friction (force at zero displacement divided by vertical force) is 0.12.  The tests showed 

that at the tested load of 16.7kip the nominal friction is about 0.20.  The isolators were tested with 

the inner seal intact as shown in Figure 3-16. 

 

Analytically derived force-displacement loops based on the theory of Fenz and Constantinou 

(2008) are also shown in Figure 3-17 where the values of friction used for each sliding surface are 

listed in each graph.  Note that friction changes as the velocity of motion increases, hence friction 

is velocity dependent.  (The friction coefficient µi, i = 1 to 4 is numbered from the lower to upper 

sliding surface). The data in Figure 3-17 provide the information needed to calibrate the model of 

friction for this bearing. A complete set of test data (loops as those of Figure 3-17) for each test 

and isolator are presented in Appendix E. 

 

It is noted that the analytical model under-estimates the stiffness of the unloading branch of the 

force-displacement loops.  This was due to the fact that the analytical model did not consider the 

effect on stiffness of the inner seal (see Figure 3-15). The significance of the inner seal stiffness 

diminishes at large vertical load (as the bearing stiffness is proportional to the vertical load) but is 

of some influence at lighter loads.  The effect of the rubber seal becomes important under uplift 

conditions for which the newly develop theory of Sarlis and Constantinou (2013) can be used.  

Figure 3-18 compares the experimental force-displacement loop of isolator No.1 in the highest 

speed test with an analytical loop predicted by the theory of Sarlis and Constantinou (2013) with 

due account of the seal contribution.  In the analytical model, the seal stiffness was calculated as a 

function of seal deformation us, given by: 

 

 

 𝐾𝑠 =
𝜋𝐸𝑏𝑥

2(𝑥+𝑢𝑠)2
𝑡 (3-3) 
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Figure 3-17 Experimental and Analytical Normalized Force-Displacement Loops of Triple FP 

Isolator No. 1 of Type A without Lubrication (nominal friction 0.20) 

In (3-3), E is the elastic modulus of the rubber (1400psi), b is the diameter of the inner slider 

(8inch), x (1inch) is the vertical clearance distance between inner sliders, and t (0.125inch) is the 

thickness of the rubber seal.  The analytical prediction is now excellent but of little significance as 

analysis of dynamic response without the effect of the seal does not result in any important 

difference in the response. 
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Figure 3-18 Experimental and Analytical Normalized Force-Displacement Loops of Triple FP 

Isolator No. 1 of Type A without Lubrication (nominal friction 0.20) in High Speed Motion and 

with due Consideration of Stiffness of Inner Rubber Seal 

The velocity dependence of the coefficient of friction is typically described by the following 

equation (Constantinou et al, 1990): 

 

 𝑓 = 𝑓max − (𝑓max − 𝑓min)𝑒
−𝑎𝑉 (3-4) 

 

where fmax and fmin are values of the coefficient of sliding friction valid for large velocity and for 

quasi-static conditions, respectively, V is the velocity of sliding and “a” is the rate parameter used 

to describe the velocity-dependence of friction.  In obtaining the parameters of the model from the 

test data, the sliding velocity on surfaces 1 and 4 was assumed to be half of the total velocity (test 

velocity).  The value of the friction coefficient was taken as the average of the values of the four 

isolators tested.  Figure 3-19 presents the experimental values of the coefficient of friction on the 

two large surfaces (μ1=μ4) as function of velocity and analytically predicted values using Equation 

(3-4).  The model parameters that best fit the data for surfaces 1 and 4 are fmax=0.24, fmin=0.14 and 

a = 0.7sec/in.  For the inner surfaces 2 and 3 the test data in Figure 3-17 support a model with 

parameters fmax=0.04, fmin=0.02 and a = 0.7sec/in (parameter a was arbitrarily selected to be the 

same as that of surfaces 1 and 4). 
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Figure 3-19 Friction Coefficient-Velocity Relation of Triple FP Isolator of Type A without 

Lubrication (nominal friction 0.20) 

The triple FP isolators of type A without lubrication were used in the shake table testing and then 

they were removed from the model, the internal seals were removed and the inner and outer sliding 

surfaces were lubricated using liquid lubricants in a rudimentary method to reduce friction to the 

desired level of a nominal friction of 0.12.  The inner sliding surfaces were completely lubricated 

whereas the outer sliding surfaces were lubricated over portion of the contact area.  For both 

surfaces, the lubricant was applied to the soft material that is in contact with stainless steel and 

was rubbed-in in an effort to infuse the material with the lubricant.  Testing was then conducted 

without the inner seal, which were cut for reaching the interior of the bearing. 

 

Figure 3-20 presents experimental and analytical loops (Fenz and Constantinou, 2008) at the four 

velocities for isolator No. 1 of the tested bearings.  The loops show some irregularity in behavior 

due likely to the rudimentary lubrication applied in the laboratory.  Nevertheless, the general 

behavior is predictable by theory and the results have been used to calibrate the model of friction 

as shown in the results of Figure 3-21.  Nominal friction is 0.07, which is low. The model 

parameters that best fit the data for surfaces 1 and 4 are fmax=0.08, fmin=0.055 and a = 0.5sec/in.  

For the inner surfaces 2 and 3 the test data in Figure 3-20 support a model with parameters 

fmax=0.02, fmin=0.015 and a = 0.5sec/in (parameter a was arbitrarily selected to be the same as that 

of surfaces 1 and 4). 
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Figure 3-20 Experimental and Analytical Normalized Force-Displacement Loops of Triple FP 

Isolator No. 1 of Type A with Lubrication (nominal friction 0.07) 
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Figure 3-21 Friction Coefficient-Velocity Relation of Triple FP Isolator of Type A with Lubrication 

(nominal friction 0.07) 

 

Figure 3-22 presents experimental loops of lateral force (normalized by instantaneous vertical 

load) versus displacement of one isolator of type B (per Figure 3-5) with modified contact surfaces 

to achieve the desired friction. This set of isolators is slightly different in geometry than the 

isolators of type A. The isolators were tested with the inner seal removed.  Analytically derived 

force-displacement loops (Fenz and Constantinou, 2008) are also shown in Figure 3-22 where the 

values of friction used for each sliding surface are listed in each graph.  The nominal friction is 

0.12, as desired, but the experimental loops show stiffness that is less that what the theory predicts.  

Efforts were made to check the fidelity of the measurements and it was concluded that the recorded 

behavior is real.  We theorize that this behavior is the result of the changes in the contact area in 

order to achieve higher pressure at the load of 16.2kip (bearings are intended for load of over 

100kip) and thus achieve lower friction.  The inner sliders were machined to have an outer radius 

of curvature larger than 39inch (see Figure 3-5) so that contact was on an annular disk at the 

perimeter of the surface.  This is illustrated in Figure 3-23. Upon lateral deformation, the 

distribution of force drastically changes so that load is transferred through contact areas at 

opposing edges of the top and bottom surfaces.  This certainly affects moment equilibrium which 

is known to affect behavior per the theory of Sarlis and Constantinou (2013) (which, however, is 

based on the assumption that the contact area is circular and not annular as in this case).  There is 
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no theory to account for this case.  Nevertheless, analyses using the model of Fenz and 

Constantinou (2008) with the actual radii of curvature values of the bearings and then again using 

artificial values of the radii so that the test data are matched, resulted in insignificant differences 

in the calculated response of the isolated model.  Accordingly, analytical results will be presented 

using models with the actual radii of the bearings. 

 

 

Figure 3-22 Experimental and Analytical Normalized Force-Displacement Loops of Triple FP 

Isolator No. 1 of Type B (nominal friction 0.12) 
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Figure 3-23 Contact Areas in (a) Un-deformed and (b) Deformed Bearing 

Figure 3-24 presents the experimental values of the coefficient of friction for the bearing of type 

B on the two large surfaces (μ1=μ4) as function of velocity and analytically predicted values using 

Equation (3-4).  The model parameters that best fit the data for surfaces 1 and 4 are fmax=0.13, 

fmin=0.09 and a = 0.7sec/in.  For the inner surfaces 2 and 3 the test data in Figure 3-22 support a 

model with parameters fmax=0.02, fmin=0.015 and a = 0.7sec/in (parameter a was arbitrarily 

selected to be the same as that of surfaces 1 and 4). 

 

Figure 3-24 Friction Coefficient-Velocity Relation of Triple FP Isolator of Type B (nominal friction 

0.12) 
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3.6 Identification of As-Installed Properties of Bushing 

The as-installed frequency and the corresponding damping ratio of the bushing were identified in 

testing of the model shown in Figure 3-1(a).  Testing consisted of white noise excitation in the two 

horizontal directions and the vertical direction.   The white noise excitation was banded in the 

range of 0.05 to 50Hz and its amplitude was 0.1g.  Instruments used were accelerometers at the 

bushing top, the bushing connection to the supporting plate, at the shake table extension and at the 

shake table as shown in Figure 3-25. Note that accelerometers are denoted as “abtx”, etc. (“abtx” 

is the name for the accelerometer at the bushing top in the x direction).  Also, the motion of the 

shake table extension was monitored with string potentiometers (named “spextxn” etc.) 

 

 

Figure 3-25 Instrumentation Diagram used in Bushing Identification 

Figure 3-26 presents graphs of the amplitude of the transfer functions obtained as the amplitude of 

the Fourier Transform of the acceleration history recorded at the bushing top divided by the Fourier 

Transform of the acceleration history recorded at the shake table extension.  Transfer functions for 

the two horizontal and the vertical directions are presented.   
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Direction Transfer Function Amplitude Extracted Parameters 

North- 

South 
 

f=10.8Hz 

ξ=0.010 

East- 

West 
 

f=10.5Hz 

ξ=0.009 

Vertical  
f=13.3Hz 

ξ=0.013 

Figure 3-26 Amplitude of Transfer Functions of Top of Bushing Acceleration to Shake Table 

Extension Acceleration  

 

The transfer functions contain only one peak, thus indicating a single mode of vibration within the 

range of zero to 30Hz.  The system is lightly damped so the location of the single peak reveals the 

frequency and the peak of the amplitude of the transfer function TRp is related to the damping ratio 

ξ by: 

                             𝑇𝑅𝑝 =
1

2𝜉
                                      (3-5) 

 

The results in Figure 3-26 reveal that as-installed frequencies of the bushing in the two horizontal 

directions are essentially the same and close to the as-installed frequency for bushing No. 6 in 

Table 2-1.  The vertical frequency is larger than the horizontal frequencies in consistency with 

TFp=51.0.

4 

TFp=54.7.

4 

TFp=38.1

.4 
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other studies reported in Kitayama et al (2016).  The identification testing also revealed that the 

bushing is very lightly damped with damping ratio of about 0.01. 

3.7 Identification of Vertical Frequency and Damping Ratio of Isolated Model  

The model was assembled on the shake table as shown in Figure 3-1(b) in the configurations 

allowing for free rocking.  In this condition, the triple FP isolators were locked to prevent lateral 

deformation by installing side plates.  The model was fully instrumented as shown in Figures 3-27 

and 3-28.  A list of the instruments is presented in Table 3-2.  Figures 3-27 and 3-28 show the 

location and names of accelerometers, displacement transducers and light emitting diodes (LED) 

used with a Krypton video-based motion recording system (capable of acquiring data on position, 

velocity and acceleration).   

 

 

 

Figure 3-27 Instrumentation Diagram Showing Accelerometers and Krypton LED 
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Figure 3-28 Instrumentation Diagram Showing Displacement Transducers  

 

Table 3-2 List of Instruments used in Identification and Seismic Tests of Model on Shake Table 

Notation Instrument Measured Quantity Location Direction 

astx Accelerometer Table acceleration Center of shake table E-W 

asty Accelerometer Table acceleration Center of shake table N-S 

astz Accelerometer Table acceleration Center of shake table Vertical 

aextx Accelerometer Table extension acceleration Center of table extension E-W 

aexty Accelerometer Table extension acceleration Center of table extension N-S 

aextz Accelerometer Table extension acceleration Center of table extension Vertical 

abtx Accelerometer Bushing top acceleration Top of bushing E-W 

abty Accelerometer Bushing top acceleration Top of bushing N-S 

abtz Accelerometer Bushing top acceleration Top of bushing Vertical 

spextswx

spfbswx

spfbnwx

spextnwx

spfbnwy

spextnwy

spfbney

spextney

spftnwyspftney
spftnwx

spftswx

spbtxspbty

spsd1 @ 4 corners
spsd4

spsd3
spsd2

spextz

spmpvn
spmpvw

Not shown:

spmpve, spmpvs

NE Corner 

Spring-Damper Unit



95 

 

Table 3-2 (continued) 

Notation Instrument Measured Quantity Location Direction 

abbx Accelerometer Bushing base acceleration Base plate of bushing E-W 

abby Accelerometer Bushing base acceleration Base plate of bushing N-S 

abbz Accelerometer Bushing base acceleration Base plate of bushing Vertical 

aftnex Accelerometer Frame top acceleration NE corner of frame top E-W 

aftsex Accelerometer Frame top acceleration SE corner of frame top E-W 

aftney Accelerometer Frame top acceleration NE corner of frame top N-S 

aftnwy Accelerometer Frame top acceleration NW corner of frame top N-S 

aftnez Accelerometer Frame top acceleration NE corner of frame top Vertical 

aftsez Accelerometer Frame top acceleration SE corner of frame top Vertical 

aftswz Accelerometer Frame top acceleration SW corner of frame top Vertical 

aftnwz Accelerometer Frame top acceleration NW corner of frame top Vertical 

afbnex Accelerometer Frame bottom acceleration NE corner of frame base E-W 

afbsex Accelerometer Frame bottom acceleration SE corner of frame base E-W 

afbney Accelerometer Frame bottom acceleration NE corner of frame base N-S 

afbnwy Accelerometer Frame bottom acceleration NW corner of frame base N-S 

afbnez Accelerometer Frame bottom acceleration NE corner of frame base Vertical 

afbsez Accelerometer Frame bottom acceleration SE corner of frame base Vertical 

afbswz Accelerometer Frame bottom acceleration SW corner of frame base Vertical 

afbnwz Accelerometer Frame bottom acceleration NW corner of frame base Vertical 

aibnez Accelerometer 
Table extension 

acceleration 
Base of Spring-damper at NE corner Vertical 

aibsez Accelerometer 
Table extension 

acceleration 
Base of Spring-damper at SE corner Vertical 

aibswz Accelerometer 
Table extension 

acceleration 
Base of Spring-damper at SW corner Vertical 

aibnwz Accelerometer 
Table extension 

acceleration 
Base of Spring-damper at NW corner Vertical 

spextnwx String-pot 
Table extension 

displacement 
West side of table extension at north E-W 

spextswx String-pot 
Table extension 

displacement 
West side of table extension at south E-W 

spextney String-pot 
Table extension 

displacement 
North side of table extension at east N-S 

spextnwy String-pot 
Table extension 

displacement 
North side of table extension at west N-S 

spextz String-pot 
Table extension 

displacement 
West side of table extension Vertical 

spbtx String-pot Bushing displacement Top of bushing E-W 
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Table 3-2 (continued) 

Notation Instrument Measured Quantity Location Direction 

spbty String-pot Bushing displacement Top of bushing N-S 

spftnwx String-pot Frame displacement NW corner of frame top E-W 

spftswx String-pot Frame displacement SW corner of frame top E-W 

spftney String-pot Frame displacement NE corner of frame top N-S 

spftnwy String-pot Frame displacement NW corner of frame top N-S 

spfbnwx String-pot Frame displacement NW corner of frame base E-W 

spfbswx String-pot Frame displacement SW corner of frame base E-W 

spfbney String-pot Frame displacement NE corner of frame base N-S 

spfbnwy String-pot Frame displacement NW corner of frame base N-S 

spsd1e String-pot 
Relative displacement 

of Spring-damper 
East corner of Spring-damper at NE side Vertical 

spsd1w String-pot 
Relative displacement 

of Spring-damper 
West corner of Spring-damper at NE side Vertical 

spsd1n String-pot 
Relative displacement 

of Spring-damper 
North corner of Spring-damper at NE side Vertical 

spsd1s String-pot 
Relative displacement 

of Spring-damper 
South corner of Spring-damper at NE side Vertical 

spsd2 String-pot 
Relative displacement 

of Spring-damper 
East corner of Spring-damper at SE side Vertical 

spsd3 String-pot 
Relative displacement 

of Spring-damper 
West corner of Spring-damper at SW side Vertical 

spsd4 String-pot 
Relative displacement 

of Spring-damper 
West corner of Spring-damper at NW side Vertical 

spmpve String-pot 
Relative displacement 

of base mass plate 
East middle of base plate Vertical 

spmpvw String-pot 
Relative displacement 

of base mass plate 
West middle of base plate Vertical 

spmpvs String-pot 
Relative displacement 

of base mass plate 
South middle of base plate Vertical 

spmpvn String-pot 
Relative displacement 

of base mass plate 
North middle of base plate Vertical 

dbw Krypton LED 
Table extension 

displacement 
Bottom west of Spring-damper at SW side 

E-W, 

N-S, V 

dbm Krypton LED 
Table extension 

displacement 

Bottom middle of Spring-damper at SW 

side 

E-W, 

N-S, V 

dbe Krypton LED 
Table extension 

displacement 
Bottom east of Spring-damper at SW side 

E-W, 

N-S, V 

table Krypton LED 
Table extension 

displacement 
Center of shake table 

E-W, 

N-S, V 

dtw Krypton LED 
Spring-damper 

displacement 
Top west of Spring-damper at SW side 

E-W, 

N-S, V 

dtm Krypton LED 
Spring-damper 

displacement 
Top middle of Spring-damper at SW side 

E-W, 

N-S, V 

dte Krypton LED 
Spring-damper 

displacement 
Top east of Spring-damper at SW side 

E-W, 

N-S, V 

btw Krypton LED 
Triple FP isolator 

displacement 
Top west of Triple FP isolator 

E-W, 

N-S, V 
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Table 3-2 (continued) 

Notation Instrument Measured Quantity Location Direction 

Btm Krypton LED 
Triple FP isolator 

displacement 
Top middle of Triple FP isolator 

E-W, 

N-S, V 

bte Krypton LED 
Triple FP isolator 

displacement 
Top east of Triple FP isolator 

E-W, 

N-S, V 

massplt Krypton LED 
Triple FP isolator 

displacement 
Middle of base plate 

E-W, 

N-S, V 

 

Identification of the properties of the model in the vertical direction was performed by exciting the 

model in the vertical direction using a 0.05 to 50Hz banded white noise of 0.1g amplitude. 

Amplitudes of transfer functions and phase angles were obtained from the Fourier Transform of 

the recorded vertical acceleration above and below the spring-damper units and are shown in 

Figure 3-29.  Specifically the data used was as follows: (a) the average value of the four vertical 

acceleration values recorded at each time step at the four bases of vertical spring-damper units was 

the input, and (b) the average value of the four vertical acceleration values recorded at each time 

step at the four bases of the frame was the output.  Figure 3-29 also shows the analytically derived 

amplitude of the transfer function (TR) and the phase angle given by the following equations for 

a single-degree-of-freedom linear elastic and linear viscous system (Harris and Piersol, 2002): 

 

 TR = {
1+[2𝜉(𝑓 𝑓𝑛⁄ )2]

[1−(𝑓 𝑓𝑛⁄ )2]2+[2𝜉(𝑓 𝑓𝑛⁄ )]2
}
1 2⁄

 (3-6) 

 

 Phase Angle = tan−1
2𝜉(𝑓 𝑓𝑛⁄ )3

1−(𝑓 𝑓𝑛⁄ )2+(2𝜉𝑓 𝑓𝑛⁄ )2
 (3-7) 

 

In these equations, fn and ξ are the undamped frequency and damping ratio of the single-degree-

of-freedom system, respectively.  The figure shows that the experimental data are in very good 

agreement with predictions of the single-degree-of-freedom representation for a frequency of 

1.92Hz and a damping ratio of 0.50.  These represent the experimental values of the frequency and 

damping ratio in the vertical direction.  They are identical to the analytically calculated values.  
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Figure 3-29 Amplitude of Transfer Function and Phase Angle of Isolated Transformer Model in 

Vertical Direction 
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SECTION 4 

RESULTS OF SHAKE TABLE TESTING AND ASSESSMENT OF 

PERFORMANCE 

4.1 Introduction 

This section presents experimental results obtained in the shake table testing of the test model 

described in Section 3.  Two configurations were tested, one allowing for free rocking of the 

isolated transformer model (see Figures 3-1, 3-2 and 3-7) and one with an added base to limit 

rocking of the isolated model (see Figures 3-3, 3-4 and 3-8).  Additional experimental data are 

presented in Appendix F. 

 

4.2 Motions Used in Shake Table Testing and Test Matrix 

Table 4-1 presents the motions used in the shake table testing and their main characteristics.  The 

table lists the characteristics of the motions as recorded, whereas in the shake table testing the 

motions were scaled either up or down in amplitude only without any scaling in time.  That is, all 

tests were conducted in real time.  The test results are identified by the “designation” of the 

earthquake record per Table 4-1 and a percentage value.  The value denotes the scale factor 

applied to the acceleration histories of the original record.  For example, El Centro 300% denotes 

a motion with three components as recorded at the station mentioned in Table 4-1 but scaled up 

by a factor of 3. 

 

The 5%-damper spectra of the components of these six motions used in the testing are presented 

in Figures 4-1 to 4-6.  The spectra are of the motions as recorded in the field. 
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Table 4-1 Characteristics of Earthquake Motions Used in Shake Table Testing at 100% Level 

Designation Earthquake 
Recording 

Station 

Moment 

Magnitude 

rRup 

 (km) 
Component 

Peak Ground Motion 

Accel. 

(g) 

Vel. 

(in/sec) 

Displ. 

(in) 

El Centro 

1940 

Imperial 

Valley 

El Centro 6.9 6.09 

S00E 0.35 13.2 4.3 

N90W 0.21 14.5 7.8 

V 0.21 4.3 2.2 

Pacoima 

1971 

San 

Fernando 

Pacoima 

Dam 
6.6 1.8 

164 1.22 45.0 15.4 

254 1.24 22.5 5.0 

V 0.69 23.3 11.5 

Chile 
2010 

Chile 
Concepcion 8.8 105.0 

97 0.61 17.0 5.1 

07 0.65 14.6 3.6 

V 0.58 8.6 2.5 

Taft 
1952 

Kern County 

Taft 

Lincoln 

School 

7.4 38.9 

N21E 0.16 6.2 2.6 

S69E 0.18 7.0 3.6 

V 0.11 2.6 2.0 

Kobe 
1995 

Kobe, Japan 
Takarazuka 6.9 3.0 

90 0.65 28.6 8.2 

00 0.70 32.7 10.5 

V 0.43 13.7 4.9 

Jensen 
1994 

Northridge 

Jensen 

Filter 

Plant 

6.7 5.4 

022 0.57 30.0 16.5 

292 1.00 26.5 9.6 

V 0.76 11.0 3.0 

 



101 

 

 
 

Figure 4-1 5%-Damped Vertical and Horizontal Response Spectra of El Centro Motion Recorded in 

the Field 

 

 

 

 
 

Figure 4-2 5%-Damped Vertical and Horizontal Response Spectra of Pacoima Motion Recorded in 

the Field 

PACOIMA 

EL CENTRO 
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Figure 4-3 5%-Damped Vertical and Horizontal Response Spectra of Chile Motion Recorded in the 

Field 

 

 

 

 
 

Figure 4-4 5%-Damped Vertical and Horizontal Response Spectra of Taft Motion Recorded in the 

Field 

 

CHILE 

TAFT 
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Figure 4-5 5%-Damped Vertical and Horizontal Response Spectra of Kobe Motion Recorded in the 

Field 

 

 

 

 
 

Figure 4-6 5%-Damped Vertical and Horizontal Response Spectra of Jensen Motion Recorded in 

the Field 

  

JENSEN 

KOBE 
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Two configurations of the test model were tested (a configuration allowing for free rocking and a 

configuration limiting rocking) with three different value of nominal friction.  Table 4-2 presents 

the test matrix.  The tests in Table 4-2 are those of the largest seismic intensity for each of the 

systems tested.  Other tests have also been conducted at lower intensities, results of which will be 

presented in selected cases where responses of different systems are compared for the same 

earthquake intensity. 

 

Table 4-2 Test Matrix 

Isolation System 
Model Configuration 

Allowing Free Rocking Limiting Rocking 

FP Isolator 

Nominal Friction 
0.12  0.20  0.12  0.07  

Earthquake  

Motion 

El Centro 

250% 

El Centro 

200% 

El Centro 

250% 

El Centro 

250% 

Pacoima 

60% 

Pacoima 

65% 

Pacoima 

75% 

Pacoima 

65% 

Chile 

100% 

Chile 

100% 

Chile 

100% 

Chile 

100% 

Taft 

400% 

Taft 

300% 

Taft 

400% 

Taft 

400% 

Kobe 

50% 

Kobe 

50% 

Kobe 

65% 

Kobe 

65% 

Jensen 

100% 
- 

Jensen 

85% 

Jensen 

50% 

 

4.3 Instrumentation 

The instruments used in the testing of the configuration with free rocking were presented in 

Figures 3-25, 3-27 and 3-28 and were listed in Table 3-2.  When the additional base was installed 

for limiting rocking, additional instruments were used as shown in Figures 4-7 and 4-8. Table 4-

3 lists these additional instruments. 
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Figure 4-7 Additional Krypton LED Transducers Used in Testing of Configuration with Limited 

Rocking  

 

Figure 4-8 Additional Displacement Transducers Used in Testing of Configuration with Limited 

Rocking 

Bushing Top

Shake Table

(NE corner)

Frame Top

at NE corner
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Krypton LED

(added or displaced)
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at SW corner
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Added Base for 

Limiting Rocking

spmpve

Not shown:
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Table 4-3 List of Additional Instruments Used in Testing of Configuration with Limited Rocking 

Notation Instrument Measured Quantity Location Direction 

spmpve String-pot 
Relative displacement of 

added base w.r.t. shake table 
East middle of added base Vertical 

spmpvw String-pot 
Relative displacement of 

added base w.r.t. shake table 
West middle of added base Vertical 

spmpvs String-pot 
Relative displacement of 

added base w.r.t. shake table 
South middle of added base Vertical 

spmpvn String-pot 
Relative displacement of 

added base w.r.t. shake table 
North middle of added base Vertical 

dtw Krypton LED Spring-damper displacement 

Added base at the same horizontal 

position as used in rocking free 

configuration 

E-W, 

N-S, V 

dtm Krypton LED Spring-damper displacement 

Added base at the same horizontal 

position as used in rocking free 

configuration 

E-W, 

N-S, V 

dte Krypton LED Spring-damper displacement 

Added base at the same horizontal 

position as used in rocking free 

configuration 

E-W, 

N-S, V 

bplt Krypton LED Table extension displacement South middle of added base 
E-W, 

N-S, V 

 

4.4 Results of Shake Table Testing 

Results of the shake table testing are presented in tables where peak response quantities are 

presented and in response spectra of the acceleration histories recorded at various locations of the 

tested model. The response quantities presented are: 

 

1)  Response spectra for 5% damping calculated using the recorded acceleration histories at 

the NE corner of the model frame top and at the shake table below the isolator at the NE 

corner as shown in Figure 4-7.  In selected cases spectra for other locations at the top corners 

of the frame are presented in order to demonstrate differences caused by rocking of the model. 

 

2)  Peak acceleration values recorded at the accelerometers installed at the bushing top, 

bushing base and frame top at the NE corner, and the shake table at the NE corner as shown in 

Figure 4-7. 

 

3)  Peak FP isolator horizontal resultant displacement at the SW corner of the model. 

 

4) Peak spring-damper unit vertical displacement at the NE corner.  
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5)  Peak angle of rotation of test model obtained as described below. 

 

While the horizontal displacement of the isolation system was measured at a single isolator, 

there was no torsion of the isolated structure so that all isolators experienced the same 

displacements.  This result was verified by the measurement of horizontal displacement by the 

string-pots installed at each corner of the test model (for example, instruments “spftswx” and 

“spftnwx” in Figure 3-28).  For the configuration with limited rocking, the horizontal 

displacement of the isolator was calculated as the difference of the displacement at the lower 

part of the isolator (recorded at the added base between the FP isolators and the spring-damper 

unit below) and the displacement at the upper part of the isolator (recorded at the base plate).  

The Krypton system was used in the measurement of displacements.   For the configuration 

that allowed for free rocking (the additional base between FP isolators and spring-dampers 

units was removed), the measurement of the displacement for the lower part of the isolator 

was based on the Krypton LED installed at the top of the spring-damper unit (see Figure 3-27 

and Figure 4-7).   

 

The vertical displacement of the spring-damper units is reported only for the NE corner unit 

where four string-pots were installed at the four sides of the unit.  The reported value is the 

average of the four values recorded so that the reported value is the vertical displacement of the 

center of the unit.  Note that there was some small rotation of the spring-damper units, the 

maximum value of which was recorded in the test with motion Jensen 100% to be 0.01rad 

(0.57degrees).    

 

The angle of rotation of the model in the configuration allowing for free rocking was obtained by 

dividing the difference in vertical displacements at the opposite sides of the base plate above the 

FP isolators by the distance between those instruments.  The vertical displacements were 

measured by string-pots installed between the shake table extension and the mid-point of each 

side on the base plate above the FP isolators at EW and NS locations.  In the configuration with 

limited rocking, the same string-pots were used but they were attached between the shake table 

extension and the added base plate in-between the FP isolators and the spring-damper units (see 

Figure 3-28 and Figure 4-8).   
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The isolation system with isolator type B of nominal friction equal to 0.12 was tested in both 

configurations with limited rocking and with free rocking (see Figure 3-5 for the configuration of 

type B isolator).  This level of nominal friction is the one desired and achievable with the tested 

isolator type for the full size transformer.  This case is selected to present results of the response 

spectra and to compare the two configurations.   

 

Figures 4-9 to 4-14 present 5%-damped response spectra of the acceleration histories recorded at 

the shake table below the isolators and at the frame NE corner top above the isolators in the 

configuration with limited rocking and with isolator type B with nominal friction of 0.12 in the 

six tests of Table 4-2.   The substantial reduction in the peak values of acceleration is evident 

(highlighted in the spectra at the frequency of 50Hz) but in a couple of cases discussed later.  

Moreover, there is substantial reduction in all horizontal spectra over a wide range of frequencies 

and in the vertical spectra over a smaller frequency range.  The latter is apparently the result of 

the higher frequency of the vertical isolation system (1.86Hz) by comparison to that of the 

horizontal isolation system (0.37Hz, see first mode frequency curve at Kh=W/2Reff1 in Figure 3-

10, although the figure applies for the configuration of free rocking). 

 

Figures 4-15 to 4-20 present 5%-damped response spectra of the accelerations histories recorded 

at the shake table below the isolators and at the frame NE corner top above the isolators in the 

configuration with free rocking and with isolator type B with nominal friction of 0.12 in the six 

tests of Table 4-2.  Again, the benefits of isolation are seen in the reduction of the peak values of 

acceleration (highlighted in the spectra at the frequency of 50Hz) and the reduction in the 

horizontal spectra over a wide range of frequencies and in the vertical spectra over a smaller 

frequency range. 

 

The results demonstrate that in two tests (Taft and Kobe) there was small reduction in the peak 

vertical acceleration on the frame above the isolators.  Also, in the configuration with free 

rocking there was even a small increase in the vertical peak value of acceleration in the Kobe 

motion (Figure 4-19).  The reason is that both these motions have strong spectral components in 

the horizontal and vertical directions in the range of 2 to 3Hz, which relate to the rocking and 

vertical frequencies of the model. 
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Figure 4-9  5%-Damped Response Spectra at Frame Top at NE Corner and at Shake Table for 

Configuration with Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in El Centro 

250% Motion 

 

Figure 4-10  5%-Damped Response Spectra at Frame Top at NE Corner and at Shake Table for 

Configuration with Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Pacoima 

75% Motion 

El Centro 250%, 0.12-Friction Isolator, Rocking-Limited 

Pacoima 75%, 0.12-Friction Isolator, Rocking-Limited 
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Figure 4-11 5%-Damped Response Spectra at Frame Top at NE Corner and at Shake Table for 

Configuration with Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Chile 100% 

Motion 

 

 Figure 4-12  5%-Damped Response Spectra at Frame Top at NE Corner and at Shake Table for 

Configuration with Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Taft 400% 

Motion 

Chile 100%, 0.12-Friction Isolator, Rocking-Limited 

Taft 400%, 0.12-Friction Isolator, Rocking-Limited 
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Figure 4-13  5%-Damped Response Spectra at Frame Top at NE Corner and at Shake Table for 

Configuration with Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Kobe 65% 

Motion 

 

Figure 4-14  5%-Damped Response Spectra at Frame Top at NE Corner and at Shake Table for 

Configuration with Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Jensen 85% 

Motion 

Jensen 85%, 0.12-Friction Isolator, Rocking-Limited 

Kobe 65%, 0.12-Friction Isolator, Rocking-Limited 
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Figure 4-15  5%-Damped Response Spectra at Frame Top at NE Corner and at Shake Table for 

Configuration with Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in El Centro 

250% Motion 

 

Figure 4-16  5%-Damped Response Spectra at Frame Top at NE Corner and at Shake Table for 

Configuration with Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in Pacoima 60% 

Motion 

Pacoima 60%, 0.12-Friction Isolator, Free to Rock 

El Centro 250%, 0.12-Friction Isolator, Free to Rock 
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Figure 4-17  5%-Damped Response Spectra at Frame Top at NE Corner and at Shake Table for 

Configuration with Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in Chile 100% 

Motion 

 

Figure 4-18  5%-Damped Response Spectra at Frame Top at NE Corner and at Shake Table for 

Configuration with Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in Taft 400% 

Motion 

Taft 400%, 0.12-Friction Isolator, Free to Rock 

Chile 100%, 0.12-Friction Isolator, Free to Rock 
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Figure 4-19  5%-Damped Response Spectra at Frame Top at NE Corner and at Shake Table for 

Configuration with Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in Kobe 50% 

Motion 

 

Figure 4-20  5%-Damped Response Spectra at Frame Top at NE Corner and at Shake Table for 

Configuration with Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in Jensen 85% 

Motion 

Jensen 100%, 0.12-Friction Isolator, Free to Rock 

Kobe 50%, 0.12-Friction Isolator, Free to Rock 
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It should be noted that the tested model exhibited rocking, including the case of the configuration 

with limited rocking.  To show the effect of rocking on the response spectra, Figures 4-21 and 4-

22 compare the response spectra of the vertical and horizontal accelerations measured at the 

frame at various corner top locations for two selected motions in the system with free rocking.  

There are small differences in the horizontal response spectra at opposing corners of the model 

but there are substantial differences in the vertical spectra.  The results in Figures 4-21 and 4-22 

indicate significant rocking about an axis perpendicular to the diagonal NE-SW direction. 

 

The two tested configurations, with free rocking and with limited rocking, did not have 

significant differences in response.  Figures 4-23 to 4-28 compare the 5%-damped spectra of the 

acceleration histories recorded at the frame top at the NE corner in the six motions of the test 

matrix in Table 4-2 and for the two tested configurations.  Note that in some tests the highest 

intensity motion used in the testing was not the same for the two configurations.  The 

comparisons are presented for tests of the same seismic intensity.  

 

Figure 4-21  5%-Damped Vertical and Horizontal Response Spectra at Various Frame Top 

Locations in Horizontal and Vertical Directions for Configuration with Free Rocking, FP Isolator 

Type B with 0.12 Nominal Friction in Taft 400% Motion   
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Figure 4-22  5%-Damped Vertical and Horizontal Response Spectra at Various Frame Top 

Locations in Horizontal and Vertical Directions for Configuration with Free Rocking, FP Isolator 

Type B with 0.12 Nominal Friction in Kobe 50% Motion 

 

 

Figure 4-23 Comparison of 5%-Damped Response Spectra at Frame Top at NE Corner of Two 

Tested Configurations with Free Rocking and Limited Rocking, FP Isolator Type B with 0.12 

Nominal Friction in El Centro 250% Motion 

El Centro 250%, 0.12-Friction Isolator 

Kobe 50%, 0.12-Friction Isolator, Free to Rock 
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Figure 4-24 Comparison of 5%-Damped Response Spectra at Frame Top at NE Corner of Two 

Tested Configurations with Free Rocking and Limited Rocking, FP Isolator Type B with 0.12 

Nominal Friction in Pacoima 50% Motion 

 

 

Figure 4-25 Comparison of 5%-Damped Response Spectra at Frame Top at NE Corner of Two 

Tested Configurations with Free Rocking and Limited Rocking, FP Isolator Type B with 0.12 

Nominal Friction in Chile 100% Motion 

Pacoima 50%, 0.12-Friction Isolator 

Chile 100%, 0.12-Friction Isolator 
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Figure 4-26 Comparison of 5%-Damped Response Spectra at Frame Top at NE Corner of Two 

Tested Configurations with Free Rocking and Limited Rocking, FP Isolator Type B with 0.12 

Nominal Friction in Taft 400% Motion 

 

 

Figure 4-27 Comparison of 5%-Damped Response Spectra at Frame Top at NE Corner of Two 

Tested Configurations with Free Rocking and Limited Rocking, FP Isolator Type B with 0.12 

Nominal Friction in Kobe 50% Motion 

Taft 400%, 0.12-Friction Isolator 

Kobe 50%, 0.12-Friction Isolator 
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Figure 4-28 Comparison of 5%-Damped Response Spectra at Frame Top at NE Corner of Two 

Tested Configurations with Free Rocking and Limited Rocking, FP Isolator Type B with 0.12 

Nominal Friction in Jensen 85% Motion 

 

The results in Figures 4-23 to 4-28 reveal small differences in the spectra of the recorded 

acceleration response.  It appears that the system with limited rocking has a little lower peak 

vertical acceleration response (value of spectral acceleration at large frequency) but the 

difference may actually be due to small differences in the shake table motion given the 

difficulties to control the table and the large model weight (to be discussed in Section 5).  More 

information on the response of the two configurations is revealed by inspecting the results of 

Tables 4-4 to 4-6 which present (a) the recorded peak values of acceleration at the shake table, 

frame top, bushing base and bushing top, (b) the FP isolator resultant horizontal displacement, 

(c) the spring-damper unit vertical displacement, and (d) the peak value of the model angle of 

rotation about the two horizontal axes.   

 

The results for the two configurations of the same isolation system properties (isolator type B, 

nominal friction 0.12) reveal that (a) there are differences in the peak vertical shake table 

acceleration that may explain the small differences in the vertical response spectra, (b) the 

bushing top peak accelerations and the FP isolator peak resultant horizontal displacements are 

Jensen 85%, 0.12-Friction Isolator 
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less in the configuration with free rocking than in the configuration with limited rocking, and (c)  

the spring-damper unit peak vertical displacement and the peak angle of rotation of the model are 

less in the configuration with limited rocking than in the configuration with free rocking, 

although the differences are small. 

 

The results of Tables 4-4 to 4-6 also reveal the effect of friction on the response of the isolated 

model of the configuration with limited rocking.  In general, increases in friction result in the 

expected reduction in FP isolator displacements and increase in horizontal accelerations at the 

frame top, bushing base and bushing top.    
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Table 4-4 Recorded Values of Peak Acceleration of Tested Systems 

Peak Acceleration (g) 

Configuration Free to Rock Limited Rocking 

FP Isolator 
Type B  

0.12 Friction 

Type A 

0.20 Friction 

Type B 

0.12 Friction 

Type A 

0.07 Friction 

Motion Location EW NS V EW NS V EW NS V EW NS V 

El 

Centro 

200% 

Bushing Top 0.54 0.45 0.36 0.78 0.72 0.39 0.67 0.63 0.42 0.74 0.52 0.41 

Bushing Base 0.22 0.21 0.37 0.38 0.37 0.39 0.23 0.20 0.41 0.26 0.19 0.42 

Frame Top1 0.21 0.20 0.19 0.36 0.36 0.24 0.22 0.20 0.19 0.28 0.20 0.19 

Shake Table2 0.63 0.43 0.53 0.64 0.44 0.63 0.66 0.46 0.62 0.65 0.46 0.61 

Pacoima 

50% 

Bushing Top 0.46 0.41 0.42 0.73 0.62 0.50 0.63 0.63 0.48 0.47 0.52 0.50 

Bushing Base 0.19 0.15 0.44 0.34 0.25 0.49 0.18 0.17 0.49 0.16 0.13 0.50 

Frame Top1 0.18 0.15 0.33 0.32 0.24 0.33 0.16 0.18 0.29 0.17 0.13 0.31 

Shake Table2 0.70 0.60 0.38 0.64 0.57 0.34 0.64 0.57 0.32 0.63 0.58 0.34 

Chile 

100% 

Bushing Top 0.57 0.48 0.83 0.78 0.75 0.77 0.70 0.69 0.79 0.57 0.61 0.66 

Bushing Base 0.22 0.23 0.81 0.30 0.35 0.77 0.20 0.23 0.75 0.18 0.22 0.67 

Frame Top1 0.19 0.21 0.25 0.29 0.33 0.31 0.19 0.24 0.24 0.17 0.21 0.21 

Shake Table2 0.74 0.68 0.63 0.75 0.65 0.69 0.76 0.67 0.70 0.78 0.67 0.69 

Taft 

300% 

Bushing Top 0.41 0.50 0.31 0.73 0.74 0.37 0.64 0.64 0.31 0.69 0.56 0.31 

Bushing Base 0.21 0.21 0.30 0.29 0.37 0.35 0.23 0.20 0.33 0.22 0.18 0.31 

Frame Top1 0.21 0.20 0.36 0.27 0.35 0.39 0.22 0.19 0.33 0.21 0.19 0.32 

Shake Table2 0.60 0.56 0.37 0.58 0.56 0.36 0.57 0.54 0.32 0.58 0.53 0.34 

Kobe 

50% 

Bushing Top 0.35 0.36 0.25 0.67 0.57 0.25 0.47 0.45 0.24 0.43 0.58 0.27 

Bushing Base 0.19 0.21 0.22 0.30 0.29 0.25 0.21 0.18 0.25 0.19 0.20 0.26 

Frame Top1 0.18 0.20 0.30 0.28 0.30 0.31 0.19 0.19 0.26 0.16 0.20 0.27 

Shake Table2 0.44 0.38 0.26 0.45 0.36 0.28 0.42 0.36 0.25 0.44 0.37 0.25 

Jensen 

50% 

Bushing Top 0.57 0.52 0.32 - - - 0.62 0.61 0.33 0.58 0.66 0.34 

Bushing Base 0.19 0.17 0.33 - - - 0.19 0.14 0.36 0.18 0.15 0.34 

Frame Top1 0.19 0.17 0.24 - - - 0.19 0.16 0.24 0.16 0.14 0.19 

Shake Table2 0.58 0.27 0.36 - - - 0.56 0.26 0.42 0.61 0.25 0.42 

1. Frame top:   Peak acceleration recorded at NE corner of top of frame  

2. Shake table: Peak acceleration recorded at NE corner of shake table extension 
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Table 4-5 Recorded Values of Peak Isolator Displacement of Tested Systems 

Peak Isolator Displacement (inch) 

Configuration Free to Rock Limited Rocking 

FP Isolator 
Type B  

0.12 Friction 

Type A 

0.20 Friction 

Type B 

0.12 Friction 

Type A 

0.07 Friction 

Motion Resultant H1 V2 Resultant H1 V2 
Resultant H

1 
V2 Resultant H1 V2 

El Centro 

200% 
4.73 

+0.65 

-0.68 
4.44 

+0.81 

-0.74 
5.38 

+0.65 

-0.50 
6.84 

+0.60 

-0.44 

Pacoima 

50% 
5.17 

+0.78 

-0.91 
4.86 

+0.89 

-0.86 
5.21 

+0.79 

-0.66 
6.18 

+0.90 

-0.54 

Chile 

100% 
4.11 

+0.75 

-0.85 
4.07 

+1.06 

-0.96 
4.89 

+0.82 

-0.79 
7.03 

+0.66 

-0.72 

Taft 

300% 
4.25 

+0.87 

-0.85 
5.14 

+1.09 

-1.08 
4.39 

+0.79 

-0.71 
5.29 

+0.72 

-0.62 

Kobe 

50% 
2.95 

+0.83 

-1.17 
3.30 

+0.92 

-1.10 
3.22 

+0.78 

-1.05 
4.93 

+0.67 

-0.86 

Jensen 

50% 
3.09 

+0.56 

-0.64 
- - 3.24 

+0.64 

-0.57 
4.23 

+0.51 

-0.35 

1:  Peak resultant horizontal displacement measured by Krypton LED sensors installed at Triple FP isolator at the  

  SW corner. 

2:  Peak dynamic component of vertical displacement is the average value of four string-pots installed at the NE    

spring-damper unit.  (+) sign is upwards and (-) sign is downwards.  
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Table 4-6 Recorded Values of Peak Model Angle of Rotation of Tested Systems 

Peak Angle of Rotation (degrees) 

Configuration Free to Rock Limited Rocking 

FP Isolator 
Type B  

0.12 Friction 

Type A 

0.20 Friction 

Type B 

0.12 Friction 

Type A 

0.07 Friction 

Motion EW Axis NS Axis EW Axis NS Axis EW Axis NS Axis EW Axis NS Axis 

El Centro 

200% 
0.66 0.57 0.74 0.76 0.56 0.55 0.55 0.48 

Pacoima 

50% 
0.66 0.38 0.61 0.46 0.50 0.39 0.44 0.36 

Chile 

100% 
0.54 0.61 0.70 0.71 0.55 0.57 0.40 0.50 

Taft 

300% 
0.68 0.55 0.61 0.73 0.54 0.48 0.44 0.46 

Kobe 

50% 
0.49 0.54 0.58 0.62 0.51 0.52 0.45 0.45 

Jensen 

50% 
0.49 0.39 - - 0.51 0.38 0.48 0.32 

 

 

In an attempt to explain the small differences in the recorded response of the two configurations 

of free rocking and of limited rocking for the same isolator properties, results on the frequencies 

of the two configurations are presented.  The model used in the calculation of the frequencies 

was developed in program SAP2000 and was also used in the dynamic response history analysis 

of the model.  Details of the model are presented in Section 5.  Herein we only describe 

important aspects of the model.  The model included the flexibilities of the frame above the 

isolators and a realistic representation of the flexibilities of the steel cover plate that supported 

the bushing.  The mass of the model was mostly lumped at the eight corners of the frame with 

additional mass distributed per length of each skeletal member and in plane for the cover plate 

(details are provided in Section 5).  The bushing was modeled as rigid with the mass lumped at 

the centers of mass of the upper and lower parts (see Figure 2-2).  This model differs in the 

distribution of mass than the model used in the analytical calculation of frequencies which are 

presented in the graph of Figure 3-10.  This has a small effect on the calculation of the rocking 

frequency of the model. 
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Figure 4-29 illustrates details of two models developed for the isolated transformer model with 

the added base for limiting rocking.  The first model assumes that the added base is rigidly 

connected to the top of each spring-damper unit.  The added base was represented by a beam of 

moment of inertia calculated for the cross section of the added plate and two square tube sections 

(see Figure 3-4).  The second model assumes that there is some rotational flexibility at the 

connection of the added base to the top of the spring-damper unit.   Also, the distribution of 

stiffness of the added base is more refined to better represent the actual details shown in Figure 

3-4.    

Model with Rigid Connection Model with Rotational Flexibility 

 

 

Figure 4-29 Two Models used in the Representation of the Added Base Connection to the FP 

Isolator 

 

The value of the rotational spring constant Kr shown in Figure 4-29 was determined by trial and 

error procedures to be 1050kip-in/rad so that the calculated response of the tested model in 

seismic excitation was the closest (subjectively) to the measured response in most but not all 
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tests.  Results of eigenvalue analysis with this model and the model without the added base (free 

to rock) are presented in Table 4-7.  In the eigenvalue analysis, each FP isolator was represented 

by its post-elastic stiffness W/2Reff1.   Modes 1 and 2 (also 4 and 5) are identical as the model is 

symmetric.  The torsional mode has the same frequency as the translational modes as a result of 

using a lumped mass representation with most of the mass placed directly above the isolators.  

Note that the model with limited rocking is heavier by the 4.35kip weight of the added base.  

This explains the difference in the vertical frequency.  Also it should be noted that the rocking 

frequency of the free to rock model is lower than the one in Figure 3-10 (1.44Hz vs 1.57Hz).  

This is due differences in the distribution of mass used in the two analysis models. 

 

The results of the eigenvalue analysis demonstrate insignificant differences between the 

configuration that is free to rock and the configuration with limited rocking in which the added 

plate connection to the FP isolator is flexible.  The case of the rigid connection would be 

representative when the gap between the added plate and the spring-damper unit (the two were 

separated by a rocker plate-see Figure 3-8 and Section 5) is grouted with high stiffness material.  

However, in the test model the gap was filled with steel shims over small plan areas that 

certainly allowed for some small rotation.  The situation is better represented with the model 

with rotational flexibility but with uncertainty on the value of the rotational stiffness.   

 

Table 4-7 Calculated Frequencies of Model of Configurations with Free Rocking and Limited 

Rocking in Program SAP2000 

Mode 
Configuration 

Free to Rock 
Limited Rocking 

Rigid Connection 

Limited Rocking  

Flexible Connection 

1,2 

and 3 

Horizontal 

X and Y, 

Torsion 
0.37Hz 0.37Hz 0.37Hz 

4 and 

5 

Rocking 

about X and 

about Y axis 
1.44Hz 5.24Hz 1.47Hz 

6 Vertical 1.92Hz 1.86Hz 1.86Hz 

 

Figures 4-30 to 4-35 present comparisons of experimental and analytical response spectra at the 

NE top corner of the tested frame in six tests of the configuration with limited rocking, FP 
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isolators of type B with nominal friction of 0.12.  The seismic input for the analysis was the one 

recorded at the base of the model during testing and included only the three translational 

components.  As discussed in Section 5, the shake table exhibited some rocking motion as a 

result of the large weight of the model and inability to fully control the shake table.  The rocking 

shake table motion did not have a significant effect on the isolator motion or the response spectra 

at the frame of the model so that the rocking shake table motion was not included in the analysis 

of which results are presented in Figures 4-30 to 4-35.  However, the shake table rocking motion 

had an important effect on the horizontal acceleration of the top of the bushing.  Details are 

provided in Section 5. 

 

It is evident in the results of Figures 4-30 to 4-35 that in some tests the rigid connection model 

provides for a better prediction whereas in others the flexible connection model provides for a 

better prediction.  It is likely that the shims used in securing the connection between the added 

base and the spring-damper unit (a) provided for some rotational flexibility that may have been 

different in the two principal directions (due to different number of shims used as the gap varied 

and due to differences in the applied preload) and (b) the rotational flexibility may have changed 

from test to test due to loosening and re-application of the preload on the shims (tightening of 

bolts).  Particularly, the results in Figure 4-30 for the El Centro motion were acquired first in the 

testing of the model and the connection was likely closest to the rigid condition than the flexible 

condition.  The results in Figure 4-30 show a better prediction by the rigid connection model 

than the flexible connection model for the horizontal response.  However, based on the majority 

of results and particularly when comparing the vertical response, it is very likely that the 

connection of the added plate to the spring-damper unit was flexible as determined in the model 

calibration and reported in more detail in Section 5.  The authors believe that the configuration of 

limited rocking had a flexible connection in most tests so that it had small differences with the 

configuration of free rocking.  Accordingly, analytical results are presented only for the case of 

flexible connection. 

 

 

 



127 

 

 

 

 

Figure 4-30 Comparison of 5%-Damped Experimental and Analytical Response Spectra at Frame 

Top at NE Corner of Configuration of Limited Rocking, FP Isolator Type B with 0.12 Nominal 

Friction in El Centro 250% Motion 

Rigid Connection Model 

Flexible Connection Model 
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Figure 4-31 Comparison of 5%-Damped Experimental and Analytical Response Spectra at Frame 

Top at NE Corner of Configuration of Limited Rocking, FP Isolator Type B with 0.12 Nominal 

Friction in Pacoima 75% Motion 

 

Rigid Connection Model 

Flexible Connection Model 
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Figure 4-32 Comparison of 5%-Damped Experimental and Analytical Response Spectra at Frame 

Top at NE Corner of Configuration of Limited Rocking, FP Isolator Type B with 0.12 Nominal 

Friction in Chile 100% Motion 

Rigid Connection Model 

Flexible Connection Model 
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Figure 4-33 Comparison of 5%-Damped Experimental and Analytical Response Spectra at Frame 

Top at NE Corner of Configuration of Limited Rocking, FP Isolator Type B with 0.12 Nominal 

Friction in Taft 400% Motion 

Rigid Connection Model 

Flexible Connection Model 
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Figure 4-34 Comparison of 5%-Damped Experimental and Analytical Response Spectra at Frame 

Top at NE Corner of Configuration of Limited Rocking, FP Isolator Type B with 0.12 Nominal 

Friction in Kobe 65% Motion 

Rigid Connection Model 

Flexible Connection Model 
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Figure 4-35 Comparison of 5%-Damped Experimental and Analytical Response Spectra at Frame 

Top at NE Corner of Configuration of Limited Rocking, FP Isolator Type B with 0.12 Nominal 

Friction in Jensen 85% Motion 

 

 

 

 

Rigid Connection Model 

Flexible Connection Model 
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SECTION 5 

ANALYTICAL PREDICTION OF RESPONSE 

5.1 Introduction 

This section describes the analytical model developed to predict the response of the test model 

and compares the analytically predicted response to the experimental response. The analytical 

model was developed in the commercial analysis program SAP2000 (Computer and Structures, 

2016). 

5.2 Analytical Model of Tested Structure 

Figure 5-1 illustrates a three-dimensional image of the analytical model in the configuration that 

allowed for free rocking.  Detailed drawings of the test model are presented in Appendix D.  The 

analytical model consists of a space frame with a top plate that supports the bushing, the bushing 

connection to the top plate, lumped masses at the frame top and bottom corners and the isolation 

system representation below.  The model of the space frame with the cover plate and bushing on 

top differed from the model developed by Kong and Reinhorn (2010) and also used in the studies 

of Fahad and Reinhorn (2012), Koliou et al (2012) and Oikonomou et al (2016) in the study of 

the seismic response of fixed and horizontally isolated transformers, in the way the top plate and 

the bushing connection to the top plate were modeled. 

 

Beam elements were used to model the frame using the actual geometry and material properties.  

The cover plate was modeled by plate elements that were rigid in plane and in bending.  The 

connection of the bushing to the cover plate through an adapter plate was modeled by rigid beam 

elements and springs in similarity to the modeling in Section 2 and as described below in detail.  

The plates used to form a base and to provide the needed mass also provided significant in-plane 

and out-of-plane stiffness at the supports of the frame so that their effect was accounted for by 

using the rigid body constraints of SAP2000 at the bottom joints of the columns of the analytical 

model.  Each spring-damper unit was modeled by vertically driven spring and linear viscous 

damper of constants K=6.44kip/in and C=0.53kip-sec/in.  Friction was not included in the 

spring-damper unit model.  The effect of friction will be investigated later in this section. 
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Figure 5-1 Analytical Model of Tested Model in Configuration of Free Rocking  

 

Figure 5-2 presents a close-up view of the bushing model and its connection to the adapter plate.  

The connection was modeled using beam elements with properties selected such that the vertical 

and horizontal frequencies of the as-installed bushing were those determined in the identification 

tests described in Section 3.  Specifically, 16 rigid beam elements of 35.5inch length were 

symmetrically placed as shown in Figure 5-2 and connected to the rigidly modelled plate below 

by vertical springs (the lateral degrees of freedom are restrained), each of which had a stiffness 

of 1kip/in.  The bushing was modeled as rigid with its mass lumped at the point of connection to 

the adapter plate (0.1kip) and at the centers of mass of the upper part (0.49kip) and the lower part 

(0.3kip) as shown in Figures 5-1 and 5-2.  In this configuration, the bushing model has a vertical 

frequency of 13.3Hz and a horizontal (rocking) frequency was 10.7Hz (actual frequencies as 

determined in identification tests were 13.3Hz in the vertical, 10.5Hz in E-W direction and 

10.8Hz in N-S direction-see Figure 3-26).   
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Figure 5-2 Bushing Model Details 

 

When an added base plate was installed to limit rocking, the model used for the analysis was 

identical to the one of Figures 5-1 and 5-2 but for added beam elements and masses between the 

FP isolator model and the mass (0.8kip) representing the bottom of the FP isolator and the top of 

the spring-damper unit, as shown in Figure 5-3.  The added base was represented by a beam of 

moment of inertia calculated for the cross section of the added plate and two square tube sections 

(see Figure 3-4).  The model includes some rotational flexibility at the connection of the added 

base to the top of the spring-damper unit.   The value of the rotational stiffness Kr=1050kip-

in/rad was determined by trial and error procedures so that the results of the analytical model in 

response history analysis were closest to the experimental results.  Note that the source of the 

rotational flexibility at the connection of the added base plate to spring-damper unit top is the use 

of the four piles of the shims without grouting as shown in Figures 5-3 and 5-4.  The shims 

allowed for some limited rotation, so the result was that the two tested configurations of free 

rocking (without the added base) and of limited rocking had very close response.  As discussed 

Rigid Massless Beam Element

Vertical Spring 

(K=1.0kip/in)

Rigid Plate Elements

Rigid Massless Beam Element

0.49kip

0.3kip

0.1kip

34.5in

57.4in

34in

28in

32in

Rigid Massless Beam Element

Rigid Massless Beam Element

Rigid Massless Beam Element



136 

 

in Section 4, it is likely that the situation evolved from a condition closer to the rigid connection 

at the start of testing to one of the flexible connection as testing progressed and the connection 

loosened.  Ideally, the space between the base plate and the top plate of the spring-damper unit 

(separated by the rocker plate) should be grouted but this was avoided in the laboratory for 

simplicity and due to the long time needed for the grout to achieve the required strength. 

 

 

Figure 5-3 Schematic of Modeling of Added Base Plate and Plan View of Added Base Plate 

(dimensions in inch) 
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Figure 5-4 Illustration of Ineffectiveness of Shims to Restrain Rotation of the Connection of Added 

Base Plate to Isolators 

 

The triple FP isolators were modeled using the parallel model (Sarlis and Constantinou, 2010) 

and with the frictional properties identified in the isolator tests presented in Section 3.5.  Table 5-

1 presents the model parameters for the three isolator types used in the testing.  The parameters 

in the table were calculated based on the supported weight by each isolator (including half of the 

isolator weight), which was 16.2kip for each FP isolator for both tested configurations.  Note that 

the parallel model is valid for displacements prior to initiation of stiffening of the isolator, which 

was the case for all tests.  

 

 

  

Compressed Shim Plates

Compressed Shim Plates
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Table 5-1 Triple FP Isolator Parallel Model Parameters in Program SAP2000 (see Figure 3-5 for 

dimensions of the isolators) 

Isolation System 

Model Configuration 

Free to Rock Limited Rocking 

FP Isolator Type and Nominal Friction 
Type B 

0.12 Friction 

Type A 

0.20 Friction 

Type B 

0.12 Friction 

Type A 

0.07 Friction 

Single FP Element of Parallel Model FP1 FP2 FP1 FP2 FP1 FP2 FP1 FP2 

Supported Weight kip 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 

Element Height inch 10.5 10.5 9.5 9.5 10.5 10.5 9.5 9.5 

Shear Deformation 

Location 
inch 5.25 5.25 4.25 4.25 5.25 5.25 4.25 4.25 

Vertical Stiffness kip/in 13558 13558 14985 14985 13558 13558 14985 14985 

Elastic Stiffness kip/in 10.1 2.1 12.6 1.1 10.1 2.1 9.5 1.1 

Effective Stiffness kip/in 0 0.229 0 0.225 0 0.229 0 0.225 

Radius inch 0 35.5 0 36.0 0 35.5 0 36.0 

Friction Coefficient 

SLOW 
- 0.03 0.14 0.03 0.23 0.03 0.14 0.03 0.07 

Friction Coefficient 

FAST 
- 0.04 0.20 0.04 0.40 0.04 0.20 0.04 0.10 

Rate Parameter sec/in 0.35 0.35 0.35 0.35 0.35 0.35 0.25 0.25 

Rotational Inertia kip-in-sec2 
5.72

x10-3 

5.72

x10-3 

5.72

x10-3 

5.72

x10-3 

5.72

x10-3 

5.72

x10-3 

5.72

x10-3 

5.72

x10-3 

Rotational/Torsional 

Stiffness (R1,R2,R3) 
kip-in/rad 0 0 0 0 0 0 0 0 

 

Each spring-damper unit was modeled using a linear spring element with spring constant equal to 

0.64kip/inch and a linear viscous damper element with damper constant equal to 0.53kip-

sec/inch as shown in Figure 5-3.  The spring and damper elements were constrained to only 

move in the vertical direction.   

 

Eigenvalue analysis of the model in which the horizontal stiffness of the triple FP isolators was 

specified to be the post-elastic stiffness (weight/2Reff1) resulted in the frequencies and modes 

presented in Table 5-2.  Inherent damping in the model was specified as 0.01 only for the modes 

associated with dominant bushing motion as presented in Table 5-2.  All other modes were 

specified zero damping but were actually damped either by the vertical dampers in the isolation 

system or effectively by friction in the FP isolators. 
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Table 5-2 Calculated Frequencies of Model and Assigned Damping Ratio  

Mode Mode Description Configuration Assigned  

Damping Ratio Free to Rock Limited Rocking 

1,2 and 

3 

Entire model in two horizontal

 directions and torsion 

0.37Hz 0.37Hz 0.0 

4 and 5 Entire model in rocking   

about two horizontal axes 

1.44Hz 1.47Hz 0.0 

6 Entire model vertical 1.92Hz 1.86Hz 0.0 

7 and 8 Bushing rocking motion about

 two  horizontal axes  

11.0Hz 11.2Hz 0.01 

9 Bushing vertical motion 13.4Hz 13.4Hz 0.01 

 

Nonlinear response history analysis was conducted using the Fast Nonlinear Analysis (FNA) 

option in the program SAP2000 in which 200 Ritz vectors were used.  To develop the vertical 

load of the transformer, a vertical acceleration of 1g was applied, developed gradually over a 

period of 10 second, then followed by 10 second of idle time and then followed by dynamic tri-

axial seismic motion.  For each analyzed case the isolators were assumed to be in the initial 

centered position without accounting for the non-centered position that the FP isolators may have 

been as a result of random permanent offsets.  The observed permanent FP isolator 

displacements were small to have any important effect on the prediction of the behavior of the 

analyzed model.  In the experimental data presented in the figures that follow the histories of 

isolator displacement were adjusted to start at zero so they are directly comparable to the 

analytical histories. 
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5.3 Comparison of Analytical and Experimental Results  

Comparisons of experimental and analytical results are presented for the selected cases of tests 

presented in Table 5-3.  These cases represent the tests of the highest seismic intensity for each 

of the isolation systems and model configurations tested.  For each case in Table 5-3 graphs are 

presented that compare the following responses: 

1) Response spectra (5%-damped) and histories of the horizontal (in two principal model 

directions) and vertical acceleration at the NE top corner of the model (see Figure 4-7). 

2) Histories of the FP isolator at the SW corner (see Figure 3-27) displacements in the two 

principal directions and orbit. 

3) Vertical spring-damper unit displacement history at the NE corner (see Figure 3-28).  The 

experimental value is the average of the values recorded at the four corners of the NE 

spring-damper unit as shown in Figure 3-28. 

Figures 5-5 to 5-50 present the comparisons of experimental and analytical results for all cases in 

Table 5-3.  

Table 5-3 Tests for which Experimental Results are Compared to Analytical Results 

Model Configuration Free to Rock Limited Rocking 

FP Isolator Type and 

Nominal Friction 

Type B 

0.12 Friction 

Type A 

0.20 Friction 

Type B 

0.12 Friction 

Type A 

0.07 Friction 

Earthquake Motion 

El Centro 

250% 

El Centro 

200% 

El Centro 

250% 

El Centro 

250% 

Pacoima 

60% 

Pacoima 

65% 

Pacoima 

75% 

Pacoima 

65% 

Chile 

100% 

Chile 

100% 

Chile 

100% 

Chile 

100% 

Taft 

400% 

Taft 

300% 

Taft 

400% 

Taft 

400% 

Kobe 

50% 

Kobe 

50% 

Kobe 

65% 

Kobe 

65% 

Jensen 

100% 
 

Jensen 

85% 

Jensen 

50% 
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Configuration with Free Rocking, 0.12 Nominal Friction 

 

(a) 5%-damped Response Spectra at NE Top Corner 

 

 

(b) Acceleration Histories at NE Top Corner 

 
Figure 5-5 Comparison of Experimental and Analytical Results for Configuration of Free Rocking, 

FP Isolator Type B with 0.12 Nominal Friction in El Centro 250% Motion: (a) 5%-damped 

Response Spectra at Frame NE Top Corner, (b) Acceleration Histories at Frame NE Top Corner  
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Configuration with Free Rocking, 0.12 Nominal Friction 

 

 

(a) FP Displacement Histories and Orbit at SW Corner 

 

 

(b) Vertical Displacement at Spring-damper Unit at NE Corner 

 

Figure 5-6 Comparison of Experimental and Analytical Results for Configuration of Free Rocking, 

FP Isolator Type B with 0.12 Nominal Friction in El Centro 250% Motion: (a) FP Displacement 

Histories and Orbit at SW Corner, (b) Vertical Displacement at Spring-damper Unit at NE Corner 
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Configuration with Free Rocking, 0.12 Nominal Friction 

 

(a) 5%-damped Response Spectra at NE Top Corner 

 

 

(b) Acceleration Histories at NE Top Corner 

 
Figure 5-7 Comparison of Experimental and Analytical Results for Configuration of Free Rocking, 

FP Isolator Type B with 0.12 Nominal Friction in Pacoima 60% Motion: (a) 5%-damped Response 

Spectra at Frame NE Top Corner, (b) Acceleration Histories at Frame NE Top Corner  
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Configuration with Free Rocking, 0.12 Nominal Friction 

 

 

(a) FP Displacement Histories and Orbit at SW Corner 

 

 

(b) Vertical Displacement at Spring-damper Unit at NE Corner 

 

Figure 5-8 Comparison of Experimental and Analytical Results for Configuration of Free Rocking, 

FP Isolator Type B with 0.12 Nominal Friction in Pacoima 60% Motion: (a) FP Displacement 

Histories and Orbit at SW Corner, (b) Vertical Displacement at Spring-damper Unit at NE Corner 
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Configuration with Free Rocking, 0.12 Nominal Friction 

 

(a) 5%-damped Response Spectra at NE Top Corner 

 

 

(b) Acceleration Histories at NE Top Corner 

 
Figure 5-9 Comparison of Experimental and Analytical Results for Configuration of Free Rocking, 

FP Isolator Type B with 0.12 Nominal Friction in Chile 100% Motion: (a) 5%-damped Response 

Spectra at Frame NE Top Corner, (b) Acceleration Histories at Frame NE Top Corner  
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Configuration with Free Rocking, 0.12 Nominal Friction 

 

 

(a) FP Displacement Histories and Orbit at SW Corner 

 

 

(b) Vertical Displacement at Spring-damper Unit at NE Corner 

 

Figure 5-10 Comparison of Experimental and Analytical Results for Configuration of Free 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in Chile 100% Motion: (a) FP 

Displacement Histories and Orbit at SW Corner, (b) Vertical Displacement at Spring-damper Unit 

at NE Corner 
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Configuration with Free Rocking, 0.12 Nominal Friction 

 

(a) 5%-damped Response Spectra at NE Top Corner 

 

 

(b) Acceleration Histories at NE Top Corner 

 
Figure 5-11 Comparison of Experimental and Analytical Results for Configuration of Free 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in Taft 400% Motion: (a) 5%-damped 

Response Spectra at Frame NE Top Corner, (b) Acceleration Histories at Frame NE Top Corner  
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Configuration with Free Rocking, 0.12 Nominal Friction 

 

 

(a) FP Displacement Histories and Orbit at SW Corner 

 

 

(b) Vertical Displacement at Spring-damper Unit at NE Corner 

 

Figure 5-12 Comparison of Experimental and Analytical Results for Configuration of Free 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in Taft 400% Motion: (a) FP Displacement 

Histories and Orbit at SW Corner, (b) Vertical Displacement at Spring-damper Unit at NE Corner 
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Configuration with Free Rocking, 0.12 Nominal Friction 

 

(a) 5%-damped Response Spectra at NE Top Corner 

 

 

(b) Acceleration Histories at NE Top Corner 

 
Figure 5-13 Comparison of Experimental and Analytical Results for Configuration of Free 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in Kobe 50% Motion: (a) 5%-damped 

Response Spectra at Frame NE Top Corner, (b) Acceleration Histories at Frame NE Top Corner  



150 

 

 
Configuration with Free Rocking, 0.12 Nominal Friction 

 

 

(a) FP Displacement Histories and Orbit at SW Corner 

 

 

(b) Vertical Displacement at Spring-damper Unit at NE Corner 

 

Figure 5-14 Comparison of Experimental and Analytical Results for Configuration of Free 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in Kobe 50% Motion: (a) FP Displacement 

Histories and Orbit at SW Corner, (b) Vertical Displacement at Spring-damper Unit at NE Corner 
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Configuration with Free Rocking, 0.12 Nominal Friction 

 

(a) 5%-damped Response Spectra at NE Top Corner 

 

 

(b) Acceleration Histories at NE Top Corner 

 
Figure 5-15 Comparison of Experimental and Analytical Results for Configuration of Free 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in Jensen 100% Motion: (a) 5%-damped 

Response Spectra at Frame NE Top Corner, (b) Acceleration Histories at Frame NE Top Corner  
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Configuration with Free Rocking, 0.12 Nominal Friction 

 

 

(a) FP Displacement Histories and Orbit at SW Corner 

 

 

(b) Vertical Displacement at Spring-damper Unit at NE Corner 

 

Figure 5-16 Comparison of Experimental and Analytical Results for Configuration of Free 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in Jensen 100% Motion: (a) FP 

Displacement Histories and Orbit at SW Corner, (b) Vertical Displacement at Spring-damper Unit 

at NE Corner 
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Configuration with Limited Rocking, 0.20 Nominal Friction 

 

(a) 5%-damped Response Spectra at NE Top Corner 

 

 

(b) Acceleration Histories at NE Top Corner 

 

Figure 5-17 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type A with 0.20 Nominal Friction in El Centro 200% Motion: (a) 5%-

damped Response Spectra at Frame NE Top Corner, (b) Acceleration Histories at Frame NE Top 

Corner  
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Configuration with Limited Rocking, 0.20 Nominal Friction 

 

 

(a) FP Displacement Histories and Orbit at SW Corner 

 

 

(b) Vertical Displacement at Spring-damper Unit at NE Corner 

 

Figure 5-18 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type A with 0.20 Nominal Friction in El Centro 200% Motion: (a) FP 

Displacement Histories and Orbit at SW Corner, (b) Vertical Displacement at Spring-damper Unit 

at NE Corner  
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Configuration with Limited Rocking, 0.20 Nominal Friction 

 

(a) 5%-damped Response Spectra at NE Top Corner 

 

 

(b) Acceleration Histories at NE Top Corner 

 

Figure 5-19 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type A with 0.20 Nominal Friction in Pacoima 65% Motion: (a) 5%-damped 

Response Spectra at Frame NE Top Corner, (b) Acceleration Histories at Frame NE Top Corner  
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Configuration with Limited Rocking, 0.20 Nominal Friction 

 

 

(a) FP Displacement Histories and Orbit at SW Corner 

 

 

(b) Vertical Displacement at Spring-damper Unit at NE Corner 

 

Figure 5-20 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type A with 0.20 Nominal Friction in Pacoima 65% Motion: (a) FP 

Displacement Histories and Orbit at SW Corner, (b) Vertical Displacement at Spring-damper Unit 

at NE Corner  
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Configuration with Limited Rocking, 0.20 Nominal Friction 

 

(a) 5%-damped Response Spectra at NE Top Corner 

 

 

(b) Acceleration Histories at NE Top Corner 

 

Figure 5-21 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type A with 0.20 Nominal Friction in Chile 100% Motion: (a) 5%-damped 

Response Spectra at Frame NE Top Corner, (b) Acceleration Histories at Frame NE Top Corner  
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Configuration with Limited Rocking, 0.20 Nominal Friction 

 

 

(a) FP Displacement Histories and Orbit at SW Corner 

 

 

(b) Vertical Displacement at Spring-damper Unit at NE Corner 

 

Figure 5-22 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type A with 0.20 Nominal Friction in Chile 100% Motion: (a) FP 

Displacement Histories and Orbit at SW Corner, (b) Vertical Displacement at Spring-damper Unit 

at NE Corner  
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Configuration with Limited Rocking, 0.20 Nominal Friction 

 

(a) 5%-damped Response Spectra at NE Top Corner 

 

 

(b) Acceleration Histories at NE Top Corner 

 

Figure 5-23 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type A with 0.20 Nominal Friction in Taft 300% Motion: (a) 5%-damped 

Response Spectra at Frame NE Top Corner, (b) Acceleration Histories at Frame NE Top Corner  
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Configuration with Limited Rocking, 0.20 Nominal Friction 

 

 

(a) FP Displacement Histories and Orbit at SW Corner 

 

 

(b) Vertical Displacement at Spring-damper Unit at NE Corner 

 

Figure 5-24 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type A with 0.20 Nominal Friction in Taft 300% Motion: (a) FP Displacement 

Histories and Orbit at SW Corner, (b) Vertical Displacement at Spring-damper Unit at NE Corner 
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Configuration with Limited Rocking, 0.20 Nominal Friction 

 

(a) 5%-damped Response Spectra at NE Top Corner 

 

 

(b) Acceleration Histories at NE Top Corner 

 

Figure 5-25 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type A with 0.20 Nominal Friction in Kobe 50% Motion: (a) 5%-damped 

Response Spectra at Frame NE Top Corner, (b) Acceleration Histories at Frame NE Top Corner  
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Configuration with Limited Rocking, 0.20 Nominal Friction 

 

 

(a) FP Displacement Histories and Orbit at SW Corner 

 

 

(b) Vertical Displacement at Spring-damper Unit at NE Corner 

 

Figure 5-26 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type A with 0.20 Nominal Friction in Kobe 50% Motion: (a) FP Displacement 

Histories and Orbit at SW Corner, (b) Vertical Displacement at Spring-damper Unit at NE Corner 
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Configuration with Limited Rocking, 0.12 Nominal Friction 

 

(a) 5%-damped Response Spectra at NE Top Corner 

 

 

(b) Acceleration Histories at NE Top Corner 

 

Figure 5-27 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in El Centro 250% Motion: (a) 5%-

damped Response Spectra at Frame NE Top Corner, (b) Acceleration Histories at Frame NE Top 

Corner  
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Configuration with Limited Rocking, 0.12 Nominal Friction 

 

 

(a) FP Displacement Histories and Orbit at SW Corner 

 

 

(b) Vertical Displacement at Spring-damper Unit at NE Corner 

 

Figure 5-28 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in El Centro 250% Motion: (a) FP 

Displacement Histories and Orbit at SW Corner, (b) Vertical Displacement at Spring-damper Unit 

at NE Corner 
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Configuration with Limited Rocking, 0.12 Nominal Friction 

 

(a) 5%-damped Response Spectra at NE Top Corner 

 

 

(b) Acceleration Histories at NE Top Corner 

 

Figure 5-29 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in Pacoima 75% Motion: (a) 5%-damped 

Response Spectra at Frame NE Top Corner, (b) Acceleration Histories at Frame NE Top Corner  
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Configuration with Limited Rocking, 0.12 Nominal Friction 

 

 

(a) FP Displacement Histories and Orbit at SW Corner 

 

 

(b) Vertical Displacement at Spring-damper Unit at NE Corner 

 

Figure 5-30 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in Pacoima 75% Motion: (a) FP 

Displacement Histories and Orbit at SW Corner, (b) Vertical Displacement at Spring-damper Unit 

at NE Corner 
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Configuration with Limited Rocking, 0.12 Nominal Friction 

 

(a) 5%-damped Response Spectra at NE Top Corner 

 

 

(b) Acceleration Histories at NE Top Corner 

 

Figure 5-31 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in Chile 100% Motion: (a) 5%-damped 

Response Spectra at Frame NE Top Corner, (b) Acceleration Histories at Frame NE Top Corner  
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Configuration with Limited Rocking, 0.12 Nominal Friction 

 

 

(a) FP Displacement Histories and Orbit at SW Corner 

 

 

(b) Vertical Displacement at Spring-damper Unit at NE Corner 

 

Figure 5-32 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in Chile 100% Motion: (a) FP 

Displacement Histories and Orbit at SW Corner, (b) Vertical Displacement at Spring-damper Unit 

at NE Corner 
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Configuration with Limited Rocking, 0.12 Nominal Friction 

 

(a) 5%-damped Response Spectra at NE Top Corner 

 

 

(b) Acceleration Histories at NE Top Corner 

 

Figure 5-33 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in Taft 400% Motion: (a) 5%-damped 

Response Spectra at Frame NE Top Corner, (b) Acceleration Histories at Frame NE Top Corner  
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Configuration with Limited Rocking, 0.12 Nominal Friction 

 

 

(a) FP Displacement Histories and Orbit at SW Corner 

 

 

(b) Vertical Displacement at Spring-damper Unit at NE Corner 

 

Figure 5-34 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in Taft 400% Motion: (a) FP Displacement 

Histories and Orbit at SW Corner, (b) Vertical Displacement at Spring-damper Unit at NE Corner 
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Configuration with Limited Rocking, 0.12 Nominal Friction 

 

(a) 5%-damped Response Spectra at NE Top Corner 

 

 

(b) Acceleration Histories at NE Top Corner 

 

Figure 5-35 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in Kobe 65% Motion: (a) 5%-damped 

Response Spectra at Frame NE Top Corner, (b) Acceleration Histories at Frame NE Top Corner  
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Configuration with Limited Rocking, 0.12 Nominal Friction 

 

 

(a) FP Displacement Histories and Orbit at SW Corner 

 

 

(b) Vertical Displacement at Spring-damper Unit at NE Corner 

 

Figure 5-36 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in Kobe 65% Motion: (a) FP Displacement 

Histories and Orbit at SW Corner, (b) Vertical Displacement at Spring-damper Unit at NE Corner 
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Configuration with Limited Rocking, 0.12 Nominal Friction 

 

(a) 5%-damped Response Spectra at NE Top Corner 

 

 

(b) Acceleration Histories at NE Top Corner 

 

Figure 5-37 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in Jensen 85% Motion: (a) 5%-damped 

Response Spectra at Frame NE Top Corner, (b) Acceleration Histories at Frame NE Top Corner  
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Configuration with Limited Rocking, 0.12 Nominal Friction 

 

 

(a) FP Displacement Histories and Orbit at SW Corner 

 

 

(b) Vertical Displacement at Spring-damper Unit at NE Corner 

 

Figure 5-38 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in Jensen 85% Motion: (a) FP 

Displacement Histories and Orbit at SW Corner, (b) Vertical Displacement at Spring-damper Unit 

at NE Corner 
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Configuration with Limited Rocking, 0.07 Nominal Friction 

 

(a) 5%-damped Response Spectra at NE Top Corner 

 

 

(b) Acceleration Histories at NE Top Corner 

 

Figure 5-39 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type A with 0.07 Nominal Friction in El Centro 250% Motion: (a) 5%-

damped Response Spectra at Frame NE Top Corner, (b) Acceleration Histories at Frame NE Top 

Corner  
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Configuration with Limited Rocking, 0.07 Nominal Friction 

 

 

(a) FP Displacement Histories and Orbit at SW Corner 

 

 

(b) Vertical Displacement at Spring-damper Unit at NE Corner 

 

Figure 5-40 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type A with 0.07 Nominal Friction in El Centro 250% Motion: (a) FP 

Displacement Histories and Orbit at SW Corner, (b) Vertical Displacement at Spring-damper Unit 

at NE Corner  
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Configuration with Limited Rocking, 0.07 Nominal Friction 

 

(a) 5%-damped Response Spectra at NE Top Corner 

 

 

(b) Acceleration Histories at NE Top Corner 

 

Figure 5-41 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type A with 0.07 Nominal Friction in Pacoima 65% Motion: (a) 5%-damped 

Response Spectra at Frame NE Top Corner, (b) Acceleration Histories at Frame NE Top Corner  
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Configuration with Limited Rocking, 0.07 Nominal Friction 

 

 

(a) FP Displacement Histories and Orbit at SW Corner 

 

 

(b) Vertical Displacement at Spring-damper Unit at NE Corner 

 

Figure 5-42 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type A with 0.07 Nominal Friction in Pacoima 65% Motion: (a) FP 

Displacement Histories and Orbit at SW Corner, (b) Vertical Displacement at Spring-damper Unit 

at NE Corner  
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Configuration with Limited Rocking, 0.07 Nominal Friction 

 

(a) 5%-damped Response Spectra at NE Top Corner 

 

 

(b) Acceleration Histories at NE Top Corner 

 

Figure 5-43 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type A with 0.07 Nominal Friction in Chile 100% Motion: (a) 5%-damped 

Response Spectra at Frame NE Top Corner, (b) Acceleration Histories at Frame NE Top Corner  
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Configuration with Limited Rocking, 0.07 Nominal Friction 

 

 

(a) FP Displacement Histories and Orbit at SW Corner 

 

 

(b) Vertical Displacement at Spring-damper Unit at NE Corner 

 

Figure 5-44 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type A with 0.07 Nominal Friction in Chile 100% Motion: (a) FP 

Displacement Histories and Orbit at SW Corner, (b) Vertical Displacement at Spring-damper Unit 

at NE Corner  
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Configuration with Limited Rocking, 0.07 Nominal Friction 

 

(a) 5%-damped Response Spectra at NE Top Corner 

 

 

(b) Acceleration Histories at NE Top Corner 

 

Figure 5-45 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type A with 0.07 Nominal Friction in Taft 400% Motion: (a) 5%-damped 

Response Spectra at Frame NE Top Corner, (b) Acceleration Histories at Frame NE Top Corner  
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Configuration with Limited Rocking, 0.07 Nominal Friction 

 

 

(a) FP Displacement Histories and Orbit at SW Corner 

 

 

(b) Vertical Displacement at Spring-damper Unit at NE Corner 

 

Figure 5-46 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type A with 0.07 Nominal Friction in Taft 400% Motion: (a) FP Displacement 

Histories and Orbit at SW Corner, (b) Vertical Displacement at Spring-damper Unit at NE Corner 
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Configuration with Limited Rocking, 0.07 Nominal Friction 

 

(a) 5%-damped Response Spectra at NE Top Corner 

 

 

(b) Acceleration Histories at NE Top Corner 

 

Figure 5-47 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type A with 0.07 Nominal Friction in Kobe 65% Motion: (a) 5%-damped 

Response Spectra at Frame NE Top Corner, (b) Acceleration Histories at Frame NE Top Corner  
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Configuration with Limited Rocking, 0.07 Nominal Friction 

 

 

(a) FP Displacement Histories and Orbit at SW Corner 

 

 

(b) Vertical Displacement at Spring-damper Unit at NE Corner 

 

Figure 5-48 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type A with 0.07 Nominal Friction in Kobe 65% Motion: (a) FP Displacement 

Histories and Orbit at SW Corner, (b) Vertical Displacement at Spring-damper Unit at NE Corner 
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Configuration with Limited Rocking, 0.07 Nominal Friction 

 

(a) 5%-damped Response Spectra at NE Top Corner 

 

 

(b) Acceleration Histories at NE Top Corner 

 

Figure 5-49 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type A with 0.07 Nominal Friction in Jensen 50% Motion: (a) 5%-damped 

Response Spectra at Frame NE Top Corner, (b) Acceleration Histories at Frame NE Top Corner  
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Configuration with Limited Rocking, 0.07 Nominal Friction 

 

 

(a) FP Displacement Histories and Orbit at SW Corner 

 

 

(b) Vertical Displacement at Spring-damper Unit at NE Corner 

 

Figure 5-50 Comparison of Experimental and Analytical Results for Configuration of Limited 

Rocking, FP Isolator Type A with 0.07 Nominal Friction in Jensen 50% Motion: (a) FP 

Displacement Histories and Orbit at SW Corner, (b) Vertical Displacement at Spring-damper Unit 

at NE Corner 
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The comparisons of analytical and experimental responses in Figures 5-5 to 5-50 demonstrate a 

good capability to predict the experimental response in a relatively complex system exhibiting 

three-dimensional motion with significant rotations and highly nonlinear behavior.  Specifically, 

it appears that the prediction is better in the case of the systems with friction of 0.12 and 0.07 in 

both tested configurations despite uncertainties in the behavior of the bearings (see Section 3 on 

behavior of bearing of type B, nominal friction of 0.12 and on bearing type A of nominal friction 

of 0.07).   

 

5.4 Effect of Rocking Motion of the Shake Table on Prediction of Response 

 

The results in Figure 5-5 to 5-50 do not include the acceleration response of the bushing top of 

which the response was amplified by comparison to the acceleration of the frame top corner for 

which comparisons of responses were presented.  Figure 5-51 compares the experimental 

acceleration histories at the bushing top and at the frame NE top corner in the horizontal EW and 

the vertical direction in the test with El Centro 250% motion for the configuration of free rocking 

and FP isolator type B with 0.12 nominal friction.  The recorded accelerations at the bushing top 

are significantly larger than the accelerations recorded at the frame top.  The magnification is 

apparently caused by the flexibility of the bushing supporting plate given that the motion at the 

bushing top contains dominant frequencies of about 10Hz in the horizontal direction and 13Hz in 

the vertical direction, which are the as-installed frequencies of the bushing in the horizontal and 

vertical directions, respectively (see Figure 3-26).   

 

Moreover, the response of the bushing was affected by the shake table rocking motion which 

also contained high frequencies of the order of the as-installed frequencies of the bushing.    The 

effect of rocking shake table motion is revealed in comparisons of experimental and analytical 

results of the bushing top acceleration history in analyses in which the shake table input is 

neglected and then considered.  Figures 5-52 to 5-63 present these comparisons for several cases 

of configurations with free rocking and limited rocking and FP isolators type B with 0.12 

nominal friction.  The shake table rocking motion was determined by using the difference in 

vertical acceleration records of accelerometers of “aibsez” and “aibswz” in the E-W axis and 
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“aibnez” and “aibsez” in the N-S axis, and then dividing by the distance between the instruments 

(see Figure 3-27).   It should be noted that the rocking table motion was calculated from 

measurements that included some errors (due to lack of rigidity of the shake table extension).  

These errors introduced parasitic high frequency components at frequencies of 20Hz and larger.   

Nevertheless, the effect of the table rocking motion on the response of the tested model presented 

in Figures 5-5 to 5-50 was minor and was not included in the analytical calculation.  The results 

in Figures 5-52 to 5-63 clearly demonstrate that the rocking shake table motion affected the 

bushing top accelerations and particularly the horizontal acceleration.  Regardless, the analytical 

model with or without the rocking shake table input still under-predicted the bushing top 

acceleration in some cases and it appears that this is the result of the amount of damping 

assumed in the analytical model. Based on the identification results of Figure 3-26, the damping 

ratio in modes associated with the bushing motion was assigned the value of 0.01 (see Table 5-

2).  The value may have been lower as analyses with lower value of damping produced results 

closer to the experimental results than those obtained with damping ratio of 0.01. 
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Figure 5-51 Experimental Acceleration Histories at Bushing Top and Frame Top NE Corner in 

Horizontal EW and Vertical Directions for Configuration of Free Rocking, FP Isolator Type B with 

0.12 Nominal Friction in El Centro 250% Motion 
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Figure 5-52 Comparison of Experimental and Analytical Results of Acceleration Histories at 

Bushing Top with and without Consideration of Rocking Shake Table Motion in Configuration of 

Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in El Centro 250% Motion 
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Figure 5-53 Comparison of Experimental and Analytical Results of Acceleration Histories at 

Bushing Top with and without Consideration of Rocking Shake Table Motion in Configuration of 

Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in Pacoima 60% Motion 
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Figure 5-54 Comparison of Experimental and Analytical Results of Acceleration Histories at 

Bushing Top with and without Consideration of Rocking Shake Table Motion in Configuration of 

Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in Chile 100% Motion 
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Figure 5-55 Comparison of Experimental and Analytical Results of Acceleration Histories at 

Bushing Top with and without Consideration of Rocking Shake Table Motion in Configuration of 

Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in Taft 400% Motion 
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Figure 5-56 Comparison of Experimental and Analytical Results of Acceleration Histories at 

Bushing Top with and without Consideration of Rocking Shake Table Motion in Configuration of 

Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in Kobe 50% Motion 
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Figure 5-57 Comparison of Experimental and Analytical Results of Acceleration Histories at 

Bushing Top with and without Consideration of Rocking Shake Table Motion in Configuration of 

Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in Jensen 100% Motion 
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Figure 5-58 Comparison of Experimental and Analytical Results of Acceleration Histories at 

Bushing Top with and without Consideration of Rocking Shake Table Motion in Configuration of 

Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in El Centro 250% Motion 
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Figure 5-59 Comparison of Experimental and Analytical Results of Acceleration Histories at 

Bushing Top with and without Consideration of Rocking Shake Table Motion in Configuration of 

Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Pacoima 75% Motion 
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Figure 5-60 Comparison of Experimental and Analytical Results of Acceleration Histories at 

Bushing Top with and without Consideration of Rocking Shake Table Motion in Configuration of 

Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Chile 100% Motion 
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Figure 5-61 Comparison of Experimental and Analytical Results of Acceleration Histories at 

Bushing Top with and without Consideration of Rocking Shake Table Motion in Configuration of 

Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Taft 400% Motion 
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Figure 5-62 Comparison of Experimental and Analytical Results of Acceleration Histories at 

Bushing Top with and without Consideration of Rocking Shake Table Motion in Configuration of 

Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Kobe 65% Motion 
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Figure 5-63 Comparison of Experimental and Analytical Results of Acceleration Histories at 

Bushing Top with and without Consideration of Rocking Shake Table Motion in Configuration of 

Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Jensen 85% Motion 
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5.5 Effect of Friction in the Spring-Damper Units 

All analytical results presented in Section 5.4 were based on the model of Figure 5-1 in which 

the spring-damper units were modelled by a linear elastic and linear viscous representation using 

the measured values of stiffness and damping constant.  The results of testing of the units (see 

Section 3.4) indicated the existence of friction, which was measured to be on the average 0.65kip 

per unit.  However, identification tests of the entire model on the shake table produced transfer 

functions that could be exactly predicted by analytical models without friction, thus indicating 

the absence of friction.  It was theorized in Section 3 that the measured friction force was the 

result of some significant lateral loading of the spring-damper units during component testing.   

 

The lateral force transferred by the FP isolators to the spring-damper unit below varied 

depending on the friction and value of displacement.  Considering a lateral displacement of 5inch 

or less in the isolator type B with 0.12 nominal friction (this is the recorded response, see 

response parameters in Table 4-5), the lateral force for the configuration that is free to rock 

(W=68.1kip is about 0.19W=12.9kip or less).  This corresponds to 3.23kip per support.  The 

ratio of the friction force of 0.65kip to the lateral force of 3.23kip per support is 0.20.  This 

would have been the coefficient of friction at the sliding interface of the telescopic tube system 

of the spring-damper units (see Figure 3-6).  In the case of the FP isolator of type A with nominal 

friction of 0.07 (peak displacement in the tests was 7inch or less, see Table 4-5, and lateral force 

equal to 2.85kip or less per support), the friction coefficient in the spring-damper unit telescopic 

system would have been 0.65/2.85=0.23.  Accordingly, analysis with a constant friction force of 

0.65kip per support corresponds to the use of a friction coefficient in the spring-damper 

telescopic unit of the order of 0.20 or more.  This is large. 

 

Analyses were performed with the model of Figure 5-64, which is identical to the model of 

Figure 5-1 but with added friction force of 0.65kip at each support. Results are presented in 

Figures 5-65 to 5-100 in which experimental results are compared to analytical results with and 

without the effect of friction in the spring-damper units.  In all analyses the rocking motion of the 

shake table was not included.  Results are compared for the response spectra at the frame top NE 

corner, acceleration histories at the frame top NE corner, and the isolator horizontal and vertical 

displacements.  The comparison demonstrates that the inclusion of the friction force in the 
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spring-damper units does not improve the accuracy of the analytical prediction.  It actually 

results in under-prediction of the vertical isolator displacements.  We conclude that friction in the 

spring-damper units during shake table testing was smaller than what was measured in the 

component testing of Section 3 and it did not have any important effect on the response. 

 

 

Figure 5-64 Analytical Model of Tested Model in Configuration of Free Rocking with Spring-

Damper Unit Friction Included 
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Configuration with Free Rocking, 0.12 Nominal Friction, El Centro 250%  

 

 
 

 

Figure 5-65 Comparison of Experimental and Analytical 5%-damped Response Spectra at Frame 

NE Top Corner With and Without Due Consideration for Friction Forces in Spring-damper Units 

in Configuration of Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in El Centro 250% 

Motion 
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Configuration with Free Rocking, 0.12 Nominal Friction, El Centro 250% 

 
 

 

Figure 5-66 Comparison of Experimental and Analytical Acceleration Histories at Frame NE Top 

Corner With and Without Due Consideration for Friction Forces in Spring-damper Units in 

Configuration of Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in El Centro 250% 

Motion  
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Configuration with Free Rocking, 0.12 Nominal Friction, El Centro 250% 

 

FP Isolator Horizontal Displacement 

 
Spring-damper Unit at NE Corner Vertical Displacement 

 
 

 

Figure 5-67 Comparison of Experimental and Analytical Isolator Displacement Histories With and 

Without Due Consideration for Friction Forces in Spring-damper Units in Configuration of Free 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in El Centro 250% Motion  
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Configuration with Free Rocking, 0.12 Nominal Friction, Pacoima 60%  

 

 
 

 

Figure 5-68 Comparison of Experimental and Analytical 5%-damped Response Spectra at Frame 

NE Top Corner With and Without Due Consideration for Friction Forces in Spring-damper Units 

in Configuration of Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in Pacoima 60% 

Motion 
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Configuration with Free Rocking, 0.12 Nominal Friction, Pacoima 60% 

 
 

 

Figure 5-69 Comparison of Experimental and Analytical Acceleration Histories at Frame NE Top 

Corner With and Without Due Consideration for Friction Forces in Spring-damper Units in 

Configuration of Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in Pacoima 60% 

Motion  
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Configuration with Free Rocking, 0.12 Nominal Friction, Pacoima 60% 

 

FP Isolator Horizontal Displacement 

 
Spring-damper Unit at NE Corner Vertical Displacement 

 
 

 

Figure 5-70 Comparison of Experimental and Analytical Isolator Displacement Histories With and 

Without Due Consideration for Friction Forces in Spring-damper Units in Configuration of Free 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in Pacoima 60% Motion 
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Configuration with Free Rocking, 0.12 Nominal Friction, Chile 100%  

 

 
 

 

Figure 5-71 Comparison of Experimental and Analytical 5%-damped Response Spectra at Frame 

NE Top Corner With and Without Due Consideration for Friction Forces in Spring-damper Units 

in Configuration of Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in Chile 100% 

Motion 
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Configuration with Free Rocking, 0.12 Nominal Friction, Chile 100% 

 
 

 

Figure 5-72 Comparison of Experimental and Analytical Acceleration Histories at Frame NE Top 

Corner With and Without Due Consideration for Friction Forces in Spring-damper Units in 

Configuration of Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in Chile 100% 

Motion  
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Configuration with Free Rocking, 0.12 Nominal Friction, Chile 100% 

 

FP Isolator Horizontal Displacement 

 
Spring-damper Unit at NE Corner Vertical Displacement 

 
 

 

Figure 5-73 Comparison of Experimental and Analytical Isolator Displacement Histories With and 

Without Due Consideration for Friction Forces in Spring-damper Units in Configuration of Free 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in Chile 100% Motion  
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Configuration with Free Rocking, 0.12 Nominal Friction, Taft 400%  

 

 
 

 

Figure 5-74 Comparison of Experimental and Analytical 5%-damped Response Spectra at Frame 

NE Top Corner With and Without Due Consideration for Friction Forces in Spring-damper Units 

in Configuration of Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in Taft 400% 

Motion 
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Configuration with Free Rocking, 0.12 Nominal Friction, Taft 400% 

 
 

 

Figure 5-75 Comparison of Experimental and Analytical Acceleration Histories at Frame NE Top 

Corner With and Without Due Consideration for Friction Forces in Spring-damper Units in 

Configuration of Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in Taft 400% 

Motion  
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Configuration with Free Rocking, 0.12 Nominal Friction, Taft 400% 

 

FP Isolator Horizontal Displacement 

 
Spring-damper Unit at NE Corner Vertical Displacement 

 
 

 

Figure 5-76 Comparison of Experimental and Analytical Isolator Displacement Histories With and 

Without Due Consideration for Friction Forces in Spring-damper Units in Configuration of Free 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in Taft 400% Motion  
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Configuration with Free Rocking, 0.12 Nominal Friction, Kobe 50%  

 

 
 

 

Figure 5-77 Comparison of Experimental and Analytical 5%-damped Response Spectra at Frame 

NE Top Corner With and Without Due Consideration for Friction Forces in Spring-damper Units 

in Configuration of Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in Kobe 50% 

Motion 
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Configuration with Free Rocking, 0.12 Nominal Friction, Kobe 50% 

 
 

 

Figure 5-78 Comparison of Experimental and Analytical Acceleration Histories at Frame NE Top 

Corner With and Without Due Consideration for Friction Forces in Spring-damper Units in 

Configuration of Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in Kobe 50% 

Motion  
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Configuration with Free Rocking, 0.12 Nominal Friction, Kobe 50% 

 

FP Isolator Horizontal Displacement 

 
Spring-damper Unit at NE Corner Vertical Displacement 

 
 

 

Figure 5-79 Comparison of Experimental and Analytical Isolator Displacement Histories With and 

Without Due Consideration for Friction Forces in Spring-damper Units in Configuration of Free 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in Kobe 50% Motion 
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Configuration with Free Rocking, 0.12 Nominal Friction, Jensen 100%  

 

 
 

 

Figure 5-80 Comparison of Experimental and Analytical 5%-damped Response Spectra at Frame 

NE Top Corner With and Without Due Consideration for Friction Forces in Spring-damper Units 

in Configuration of Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in Jensen 100% 

Motion 
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Configuration with Free Rocking, 0.12 Nominal Friction, Jensen 100% 

 
 

 

Figure 5-81 Comparison of Experimental and Analytical Acceleration Histories at Frame NE Top 

Corner With and Without Due Consideration for Friction Forces in Spring-damper Units in 

Configuration of Free Rocking, FP Isolator Type B with 0.12 Nominal Friction in Jensen 100% 

Motion  
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Configuration with Free Rocking, 0.12 Nominal Friction, Jensen 100% 

 

FP Isolator Horizontal Displacement 

 
Spring-damper Unit at NE Corner Vertical Displacement 

 
 

 

Figure 5-82 Comparison of Experimental and Analytical Isolator Displacement Histories With and 

Without Due Consideration for Friction Forces in Spring-damper Units in Configuration of Free 

Rocking, FP Isolator Type B with 0.12 Nominal Friction in Jensen 100% Motion 
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Configuration with Limited Rocking, 0.12 Nominal Friction, El Centro 250%  

 

 
 

 

Figure 5-83 Comparison of Experimental and Analytical 5%-damped Response Spectra at Frame 

NE Top Corner With and Without Due Consideration for Friction Forces in Spring-damper Units 

in Configuration of Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in El Centro 

250% Motion 
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Configuration with Limited Rocking, 0.12 Nominal Friction, El Centro 250% 

 
 

 

Figure 5-84 Comparison of Experimental and Analytical Acceleration Histories at Frame NE Top 

Corner With and Without Due Consideration for Friction Forces in Spring-damper Units in 

Configuration of Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in El Centro 250% 

Motion  
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Configuration with Limited Rocking, 0.12 Nominal Friction, El Centro 250% 

 

FP Isolator Horizontal Displacement 

 
Spring-damper Unit at NE Corner Vertical Displacement 

 
 

 

Figure 5-85 Comparison of Experimental and Analytical Isolator Displacement Histories With and 

Without Due Consideration for Friction Forces in Spring-damper Units in Configuration of 

Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in El Centro 250% Motion  
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Configuration with Limited Rocking, 0.12 Nominal Friction, Pacoima 75%  

 

 
 

 

Figure 5-86 Comparison of Experimental and Analytical 5%-damped Response Spectra at Frame 

NE Top Corner With and Without Due Consideration for Friction Forces in Spring-damper Units 

in Configuration of Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Pacoima 75% 

Motion 
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Configuration with Limited Rocking, 0.12 Nominal Friction, Pacoima 75% 

 
 

 

Figure 5-87 Comparison of Experimental and Analytical Acceleration Histories at Frame NE Top 

Corner With and Without Due Consideration for Friction Forces in Spring-damper Units in 

Configuration of Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Pacoima 75% 

Motion  
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Configuration with Limited Rocking, 0.12 Nominal Friction, Pacoima 75% 

 

FP Isolator Horizontal Displacement 

 
Spring-damper Unit at NE Corner Vertical Displacement 

 
 

 

Figure 5-88 Comparison of Experimental and Analytical Isolator Displacement Histories With and 

Without Due Consideration for Friction Forces in Spring-damper Units in Configuration of 

Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Pacoima 75% Motion 
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Configuration with Limited Rocking, 0.12 Nominal Friction, Chile 100%  

 

 
 

 

Figure 5-89 Comparison of Experimental and Analytical 5%-damped Response Spectra at Frame 

NE Top Corner With and Without Due Consideration for Friction Forces in Spring-damper Units 

in Configuration of Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Chile 100% 

Motion 
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Configuration with Limited Rocking, 0.12 Nominal Friction, Chile 100% 

 
 

 

Figure 5-90 Comparison of Experimental and Analytical Acceleration Histories at Frame NE Top 

Corner With and Without Due Consideration for Friction Forces in Spring-damper Units in 

Configuration of Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Chile 100% 

Motion  
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Configuration with Limited Rocking, 0.12 Nominal Friction, Chile 100% 

 

FP Isolator Horizontal Displacement 

 
Spring-damper Unit at NE Corner Vertical Displacement 

 
 

 

Figure 5-91 Comparison of Experimental and Analytical Isolator Displacement Histories With and 

Without Due Consideration for Friction Forces in Spring-damper Units in Configuration of 

Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Chile 100% Motion  
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Configuration with Limited Rocking, 0.12 Nominal Friction, Taft 400%  

 

 
 

 

Figure 5-92 Comparison of Experimental and Analytical 5%-damped Response Spectra at Frame 

NE Top Corner With and Without Due Consideration for Friction Forces in Spring-damper Units 

in Configuration of Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Taft 400% 

Motion 
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Configuration with Limited Rocking, 0.12 Nominal Friction, Taft 400% 

 
 

 

Figure 5-93 Comparison of Experimental and Analytical Acceleration Histories at Frame NE Top 

Corner With and Without Due Consideration for Friction Forces in Spring-damper Units in 

Configuration of Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Taft 400% 

Motion  
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Configuration with Limited Rocking, 0.12 Nominal Friction, Taft 400% 

 

FP Isolator Horizontal Displacement 

 
Spring-damper Unit at NE Corner Vertical Displacement 

 
 

 

Figure 5-94 Comparison of Experimental and Analytical Isolator Displacement Histories With and 

Without Due Consideration for Friction Forces in Spring-damper Units in Configuration of 

Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Taft 400% Motion  



234 

 

Configuration with Limited Rocking, 0.12 Nominal Friction, Kobe 65%  

 

 
 

 

Figure 5-95 Comparison of Experimental and Analytical 5%-damped Response Spectra at Frame 

NE Top Corner With and Without Due Consideration for Friction Forces in Spring-damper Units 

in Configuration of Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Kobe 65% 

Motion 
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Configuration with Limited Rocking, 0.12 Nominal Friction, Kobe 65% 

 
 

 

Figure 5-96 Comparison of Experimental and Analytical Acceleration Histories at Frame NE Top 

Corner With and Without Due Consideration for Friction Forces in Spring-damper Units in 

Configuration of Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Kobe 65% 

Motion  
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Configuration with Limited Rocking, 0.12 Nominal Friction, Kobe 65% 

 

FP Isolator Horizontal Displacement 

 
Spring-damper Unit at NE Corner Vertical Displacement 

 
 

 

Figure 5-97 Comparison of Experimental and Analytical Isolator Displacement Histories With and 

Without Due Consideration for Friction Forces in Spring-damper Units in Configuration of 

Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Kobe 65% Motion 
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Configuration with Limited Rocking, 0.12 Nominal Friction, Jensen 85%  

 

 
 

 

Figure 5-98 Comparison of Experimental and Analytical 5%-damped Response Spectra at Frame 

NE Top Corner With and Without Due Consideration for Friction Forces in Spring-damper Units 

in Configuration of Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Jensen 85% 

Motion 
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Configuration with Limited Rocking, 0.12 Nominal Friction, Jensen 85% 

 
 

 

Figure 5-99 Comparison of Experimental and Analytical Acceleration Histories at Frame NE Top 

Corner With and Without Due Consideration for Friction Forces in Spring-damper Units in 

Configuration of Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Jensen 85% 

Motion  
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Configuration with Limited Rocking, 0.12 Nominal Friction, Jensen 85% 

 

FP Isolator Horizontal Displacement 

 
Spring-damper Unit at NE Corner Vertical Displacement 

 
 

 

Figure 5-100 Comparison of Experimental and Analytical Isolator Displacement Histories With 

and Without Due Consideration for Friction Forces in Spring-damper Units in Configuration of 

Limited Rocking, FP Isolator Type B with 0.12 Nominal Friction in Jensen 85% Motion 
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5.6 Summary 

It has been demonstrated in this section that it is possible to predict the response of the tested 

model of a transformer supported by a combined horizontal and vertical seismic isolation system 

in tri-axial seismic excitation with sufficient accuracy.   Specifically, the acceleration histories on 

the main body of the model and their response spectra and the isolator’s horizontal and vertical 

displacements could be predicted with sufficient accuracy.  However, the acceleration histories 

of the top of the flexibly-installed bushing of the model were significantly under-estimated.  It 

was determined that rocking motion of the shake table contributed to the motion of the bushing 

top in the horizontal direction and its inclusion in the analysis improved the accuracy of the 

prediction.  However, the main contributor to the underestimation of the acceleration at the top 

of the bushing was that the actual damping in the bushing was less than the value used in the 

analytical model. 

On the basis of the results of the analysis and comparisons to experimental results, and on the 

basis of observations in identification tests of the tested model, it was concluded that the spring-

damper units of the isolation system did not exhibit large enough friction to affect the response.  

Particularly, the inclusion of friction in the model of the devices resulted in under-prediction of 

the vertical motion of the isolators and some deterioration in the accuracy of the analytical 

prediction of other response quantities by comparison to a model without friction. 
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SECTION 6 

EXAMPLES OF ANALYSIS AND DESIGN 

6.1 Introduction 

Example designs are presented with the intention of providing guidance in the application of 

seismic isolation to electrical transformers rather than presenting one detailed design. A typical 

transformer and a site of moderate seismicity (in terms of qualification of the equipment) were 

selected and a detailed analysis study was conducted.  Then additional assumptions were made on 

the seismic hazard for the design and additional summary results were obtained.  Specifically: 

 

a) The site of the transformer was selected to be in Eugene, Oregon in an area with a peak 

ground acceleration of 0.34g (per ASCE 7-2010, Ss=0.85g, PGA=Ss/2.5=0.34g) for which 

the equipment qualification level per IEEE (2005) is moderate.  The seismic hazard for the 

site and triplets of ground motions for the site were developed and used for the analysis 

and design. 

 

b) A second hypothetical site was then assumed in which the PGA exceeds 0.5g so that the 

equipment qualification level per IEEE (2005) is high.  The site-specific response spectrum 

and ground motions representing it were assumed to be those of the site at Eugene, Oregon 

multiplied by factor of 1.5.    

 
c) A typical transformer was selected for the example.  It is the one shown in Figure 2-1 which 

is isolated with a horizontal isolation system only in a location different than that the site 

of the example.  The transformer features three bushings of which the as-installed dynamic 

characteristics are unknown but assumed in consistency with values in Table 2-1.  The 

assessment of performance of the developed seismic isolation design includes calculations 

of the accelerations at the center of mass of the bushings.  Accordingly, a more detailed 

model of the bushings (particularly the location of their center of mass with respect to the 

isolation system) was developed.  Based on the fragility analysis results for electrical 

transformers reported in Kitayama et al (2016), seismic isolation for the considered 

location in Eugene, Oregon provides significant benefits summarized as follows.  For a 
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transformer of similar configuration as the one of Figure 2-1, the probability of failure in 

50 years of lifetime is about (a) 3.84% when non-isolated, (b) 0.60% when isolated with a 

two-dimensional isolation system, and (c) 0.33% (allowed to freely rock) to 0.39% 

(rocking restrained) when isolated by a three-dimensional isolation system (Kitayama et 

al, 2016, Table 9-10, 1g bushing acceleration limit at its center of mass, location 7).  These 

results indicate that three-dimensional seismic isolation does not offer a significant 

advantage and just two-dimensional isolation is sufficient for this case.  This is verified in 

the study of this section.  (The results on the probability of failure quoted above were based 

on a model in which failure was dominated by the acceleration at the center of mass of the 

bushings, which was assumed to be located lower than as assumed in the design presented 

in this section. Accordingly, we expect the probability of failure for the transformer 

considered in the study of this section when allowed to freely rock to be higher than in the 

study of Kitayama et al, 2016). 

 

d) The transformer with the designed two-dimensional and three-dimensional isolation 

systems is then transported to the hypothetical location of higher seismicity as described in 

item b above and re-analyzed.  The benefits of three-dimensional isolation become then 

clearer. 

 

6.2 Seismic Hazard Analysis for the Site and Selection and Scaling of Motions for Dynamic Analysis 

The site for the example transformer is near Eugene, Oregon and has latitude of 44.0507°N and 

longitude of 123.2322°W (coordinates are not shown in the publicly available report).  The site 

class is characterized as C with a shear wave velocity Vs30=535m/sec.  A seismic hazard analysis 

for this site and selection and scaling of motions for response history analysis was performed by 

Mazzoni and Bozorgnia (2017).  The main results of this study are presented in this report. 

 

The target spectrum was defined as the Uniform Hazard Spectrum (UHS) with a return period of 

2475 years (2% probability of being exceeded in 50 years).  The UHS was obtained by 

interpolating the seismic hazard curves at the selected annual frequency of exceedance (inverse of 

return period in years) using the data (in text form) of the 2008 USGS Hazard-Curve Application 
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(the data were validated by comparison to data obtained using the NEHRP 2015 Uniform Hazard 

Tool-https://earthquake.usgs.gov/designmaps/beta/us/ ).  Figure 6-1 presents the 5%-damped 

target spectrum (UHS).  For comparison the figure also presents the spectrum of maximum 

considered earthquake (MCER) obtained on the basis of the procedures in ASCE 7-2010 

(https://earthquake.usgs.gov/designmaps/us/application.php) and in NEHRP 2015 

(https://earthquake.usgs.gov/designmaps/beta/us/).  The parameters of the MCER spectra in Figure 

6-1 are presented in Table 6-1.  The comparison in the figure demonstrates that the uniform hazard 

spectrum with 2475 year return period is consistent with the maximum earthquake design-map 

values.  Note that the MCER spectra in Figure 6-1 are maximum direction spectra while the uniform 

hazard spectrum values represent the “average” of two horizontal components (RotD50). 

 
Figure 6-1 Target UHS Spectrum (2475 year return period) and MCER Spectra for Site  

Table 6-1 Spectral Parameters for Site   
Parameter ASCE 7-10 (2009 NEHRP) NEHRP 2015 

Ss 0.846g 0.779g 
S1 0.439g 0.439g 
Fa 1.062 1.2 
Fv 1.361 1.5 

SMS (=Fa×Ss) 0.898g 0.934g 
SM1 (=Fv×S1) 0.597g 0.659g 

SDS (=2/3×SMS) 0.599g 0.623g 
SD1 (=2/3×SM1) 0.398g 0.439g 
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De-aggregation of hazard was used to determine a range of magnitude and distance for the 

selection of ground motions (the 2015 USGS Unified Hazard Tool was used- 

https://earthquake.usgs.gov/hazards/interactive/index.php).  The analysis determined that 

appropriate records are of magnitude above 8 and of rRup distance (closest distance to rupture 

plane) between 40 and 120km.  Of the subduction zones across the world, only the regions of Japan 

and South America have records with large magnitude to meet the requirements of the de-

aggregation study.   

 

Table 6-2 presents eleven records that were selected for scaling in order to represent the target 

spectrum for the site.  All satisfy the magnitude and distance criteria obtained in the de-aggregation 

study.  The 11 selected records were then scaled by a single factor (applied to both horizontal and 

vertical components of the seed motions) such that the average of the horizontal spectrum RotD50 

resultant of the suite closely matched the target spectrum by minimizing the mean square error in 

the period range of 0.1 to 5 seconds.  The scale factors are presented in Table 6-2. 

 

Figure 6-2 presents the 5%-damped horizontal resultant spectra of the 11 scaled motions, their 

average spectrum and the target spectrum.  Figure 6-3 presents the 5%-damped vertical spectra of 

the 11 scaled motions and their average spectrum. 

 

  

https://earthquake.usgs.gov/hazards/interactive/index.php
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Table 6-2 Characteristics of Selected Motions and Scale Factors 

Designation Earthquake 
Recording 

Station 

Moment 

Magnitude 

rRup 

(km) 
Peak Ground Motion (g) 

Scale 

Factor 

Valparaiso 2010 
Chile 

Valparaiso 
Almendral 8.8 101.15 

H1 0.22 
2.61 H2 0.27 

V 0.15 

Talca 1985 
Chile Talca 8.16 92.79 

H1 0.17 
3.97 H2 0.17 

V 0.07 

Hualane 1985 
Chile Hualane 8.16 47.71 

H1 0.14 
4.16 H2 0.17 

V 0.09 

Chile 2015 
Chile GO04 8.3 73.11 

H1 0.24 
2.01 H2 0.34 

V 0.16 

Hokkaido 1994 
Hokkaido 47420 8.32 130.22 

H1 0.33 
1.77 H2 0.38 

V 0.19 

Hanasaki 1994 
Hokkaido Hanasaki-f 8.32 131.83 

H1 0.36 
1.55 H2 0.37 

V 0.27 

Peru 2001 
Peru MOQ1 8.2 77.19 

H1 0.30 
2.16 H2 0.22 

V 0.17 

Tohoku-A 2011 
Tohoku 41207 9.13 89.33 

H1 0.22 
2.08 H2 0.22 

V 0.11 

Tohoku-B 2011 
Tohoku 47256 9.13 108.59 

H1 0.14 
3.07 H2 0.18 

V 0.10 

Nukabira 2003 
Tokachi-oki Nukabira 8.2 100.53 

H1 0.13 
3.94 H2 0.11 

V 0.10 

Tokachi-
Oki 

2003 
Tokachi-Oki 42111 8.2 117.72 

H1 0.34 
1.97 H2 0.29 

V 0.14 
 



246 
 

  

Figure 6-2 5%-damped Horizontal Resultant Spectra (RotD50) of 11 Scaled Motions and Average 

and Target Spectra 

 

  

Figure 6-3 5%-damped Vertical Spectra of 11 Scaled Motions and Average Spectrum 

 

6.3 Description of Transformer and its Isolation System 

Figure 6-4 shows sections of the transformer that reveal its overall dimensions.  The transformer 

weighs 380kip with its center of mass located 81inch above its base at the centerline in the 
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transverse direction and off by 4inch from the centerline in the longitudinal direction.  This is the 

transformer shown in Figure 2-1 and with important dimensions shown in the sections of Figure 

2-6.  The weight distribution and the as-installed frequencies of the three bushings are not known.  

However based on their dimensions and comparison to the properties of known bushings in Table 

2-1, the center of mass of each bushing was assumed to be located at distance of 44inch above the 

bushing turret and its weight to be 0.8kip lumped at the center of mass and another 0.7kip lumped 

at the connection to the turret.  The as-installed frequencies were assumed to be 8Hz in the 

transverse direction and 10Hz in the longitudinal direction.  These values are within the range of 

the properties of the bushings in Table 2-1.  Also the 8Hz frequency is the largest frequency in the 

peak spectral acceleration range of the horizontal response spectrum for the site and the 10Hz 

frequency is centered in the peak spectral acceleration range of the vertical spectrum for the site 

(Figures 6-2 and 6-3).  That is, the selected frequencies for the bushing should produce 

conservative results for the bushing accelerations.  Per IEEE (2005), damping in the bushings was 

assumed to be 0.02 of critical. 

 

 

Figure 6-4 Longitudinal and Transverse Sections of Example Transformer 

 

The isolation system for the transformer is based on the tested configuration that allows for free 

rocking.  Figure 6-5 shows sections of the isolated transformer, Figure 6-6 shows a three-
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dimensional schematic of the foundation and Figure 6-7 shows sections of the foundation, all in 

the case of the isolation system with allowance for free rocking.  The foundation is envisioned to 

be embedded in the ground so that only the FP isolators project above the top of the ground.  Access 

to the isolation system is provided at locations along one dimension (longest although for the 

presented design the foundation is square) and on both sides.  The isolators are shown installed on 

pedestals.  There is sufficient height in the isolation pit for people to enter for inspecting the 

isolators and for maintenance if needed.  Note that the presented schematics represent one possible 

configuration out of many for the foundation. 

 

 
Figure 6-5   Longitudinal and Transverse Direction Sections of Seismically Isolated Transformer 

with Free Rocking 
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Figure 6-6 Three-dimensional Schematic of Foundation  

 

The transformer is supported by a concrete base, which in turn is supported by the isolators.  The 

base is shown to have plan dimensions larger than the foundation by 6inch on each side so that 

water flowing down the base does not collect in the foundation pit.  The concrete base has 

dimensions of 20feet by 20feet by 10inch so that it is larger than the plan dimensions of the 

transformer (18.9feet by 9.2feet).  It weighs 50kip so that the total weight on the FP isolators 

sliding interface is 430kip (380kip plus 50kip base) and the total weight supported by the vertical 

spring-damper system is about 434kip (430kip plus weight of FP isolator bottom part plus weight 

of top part of spring-damper units).  The transformer is placed on top of the base so that its center 
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of mass is symmetrically placed with respect to the four supports.  This ensures that the four 

reactions are about equal to 107.5kip for the FP isolators and 108.5kip for the spring-damper units. 

 

 

Figure 6-7 Foundation and Isolation System Sections of System with Free Rocking 

 

Note in the shown configuration, the isolators are equally spaced in the two principal directions 

and at distance of 12feet apart.  The smallest distance that the isolators could be placed is the 

footprint dimension of 110inch which is small and, if used, would have resulted in a low rocking 

frequency. 

 

Figure 6-8 shows sections of the isolation system when a second base is added to restrain rocking. 

Note that the second base placed between the FP isolators and the vertical spring-damper units is 

massive having a composite section consisting of two W12X336 sections and welded top and 

bottom plates.  This was needed to restrain rocking as it will be further discussed later in this 

section. This base consists of built-up sections to develop a moment of inertia of 17800in4, which 
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is very large in order to effectively limit rocking.  The effectiveness of the base also depends on 

the connection details as discussed in Section 4.  It is not a desirable configuration, but is presented 

in order to demonstrate what is possible to achieve in this example provided that there is adequate 

rigidity in the connections. 

 

The isolation system consists of triple Friction Pendulum isolators identical in basic geometry to 

the isolators used in the Vancouver, WA transformer which is shown in Figure 2-1.  Figure 6-9 

presents a section of the bearing. 

 

 
Figure 6-8 Foundation and Isolation System Sections of System with Restrained Rocking 
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Figure 6-9 Section of Triple Friction Pendulum Isolator 

 

The properties of the triple FP isolators are listed in Table 6-3.  The frictional properties are 

identical to those listed in Appendix B for a set of four tested bearings at load of 104.5kip (which 

is essentially the same as the 107.5kip calculated for the bearings of this example).  Figure 6-10 

presents force-displacement loops of the isolator in the lower and upper bound friction conditions 

and for a displacement equal to their displacement capacity of 14.8inch.  Note that the FP isolator 

has a displacement capacity of 13.0inch at initiation of stiffening in the lower bound friction 

condition.  It will be shown in the dynamic analysis that the average displacement in the considered 

2475-year return period earthquake is about half of the displacement capacity at initiation of 

stiffening.   

 

Table 6-3 Properties of Triple FP Isolator Assumed in Analysis 

Property Value 

μ1=μ4  (lower/upper bound) 0.11/0.15 

μ2=μ3  (lower/upper bound) 0.08/0.09 

R1eff=R4eff  (inch) 35.5 

R2eff=R3eff  (inch) 3.5 

d1*=d4*  (inch) 6.4 

d2*=d3*  (inch) 1.0 

Displacement capacity (inch) 14.8 
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Figure 6-10 Force-displacement Relations of Triple FP isolators 

 

The spring-damper units were designed (courtesy of Taylor Devices, North Tonawanda, NY) to 

provide a vertical frequency of 2.5Hz and a corresponding damping ratio of 0.90 when carrying a 

load of 108.5kip for the system that is free to rock (the frequency and damping ratio reduce when 

the second heavy base to limit rocking is added).  The higher frequency and damping ratio were 

selected to limit rocking based on results of parametric studies.  Figure 6-11 shows a schematic of 

the spring-damper unit.  Table 6-4 presents the design parameters for the spring-damper units 

based on the results of dynamic analysis using the scaled motions in Table 6-2.  Motions of 100% 

and 150% seismic intensity were considered per Section 6.1 for the two three-dimensional 

isolation systems.  The design parameters for the spring-damper units apply for the system that is 

free to rock for both cases of seismic intensity. 
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Figure 6-11 Schematic of Vertical Spring-Damper Unit 
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Table 6-4 Response and Design Parameters for Spring-Damper Units (two values apply for 

earthquake motions scaled by factors of 100% and 150%) 

System Free 
To Rock 

Restrained 
Rocking 

Design 
(Free to Rock) 

Static load (kip) 108.5 123.5 108.5 

Static deflection (inch) 1.5 1.8 1.5 

Vertical frequency (Hz) 2.5 2.34 2.5 

Vertical damping ratio 0.90 0.85 0.90 

Stiffness per unit (kip/in) 70.3 70.3 70.3 

Damping constant per unit 
(linear viscous damping)  (kip-sec/in) 8.1 8.1 8.1 

Dynamic deflection (inch) ±0.8/1.0 ±0.3/0.5 ±1.0 

Design total deflection (inch) 2.3/2.5 2.1/2.3 3.0 

Peak axial force per unit (kip) 192/217 161/181 220 

Peak damping force per unit (kip) 54/60 39/59 60 

Peak lateral force per unit 
(to be resisted by unit) (kip) 65 65 65 

Peak overturning moment  per unit 
(to be resisted by unit) (kip-inch) 1600 1400 1600 

 

6.4 Model for Dynamic Analysis 

Figure 6-12 shows a three-dimensional view of the model used in response history analysis of the 

system that is free to rock.  The model was developed in SAP2000 (Computers and Structures, 

2016).  Dynamic analysis of the isolated transformer was conducted using the 11 scaled triplets of 

scaled ground motions.  In the analysis, components H1 were applied in the transverse direction 

and components H2 were applied in the longitudinal direction.  No additional analyses were 

conducted with the motions rotated as the transformer isolation system was symmetric in plan and 

the model of the transformer was essentially the same in the two orthogonal directions. (The small 

eccentricity in one direction was ignored in the analysis model.  The bushing inclinations slightly 

differed in the two directions but it was deemed insignificant).  The average peak values of 

response quantities in the 11 analyses were used in design.   
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To describe the dynamic characteristics of the seismically isolated transformer, Table 6-5 presents 

the frequencies obtained in eigenvalue analysis in program SAP2000.  In the eigenvalue analysis 

the FP isolators were represented by their actual stiffness in the absence of friction and when 

sliding occurs on the two main surface (stiffness equal to W/2Reff1).  Table 6-4 also presents results 

on frequencies, mode shapes and damping ratio obtained by a simpler analytical model as 

described below. 

Two-dimensional representations of the isolated transformer in the longitudinal-vertical and 

transverse-vertical planes are presented in Figure 6-13.  The assumed mass distribution is shown 

in Figure 6-14.  Based on this distribution of mass, the location of the center of mass of the isolated 

transformer (see Figure 6-12) was determined at a height  dCM=85.8inch above the level of the FP 

isolator pivot points.  The mass moments of inertia about the center of mass were calculated to be 

2541kip-s-in2 about the transverse axis and 5826kip-s-in2 about the longitudinal axis.  The weight 

used in calculating ICM was the one supported by the FP isolators (430kip).  The properties of the 

isolators are those of Table 6-4 except that the individual isolator values were doubled for the two-

dimensional representation.  For the FP isolators, the effective stiffness value is 

Keff=W/2Reff1=107.5/(2x35.5)=1.51kip/in and the effective damping constant was assigned a value 

zero (friction neglected). 
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Figure 6-12 Model of Isolated Transformer (Free to Rock) Used in Response History Analysis 

 

Table 6-5 presents values of the frequencies and damping ratio calculated based on complex 

eigenvalue analysis and mode shapes based on the undamped equations of motion using Equation 

A-1 of Appendix A.  The mode shapes are described by displacements u and v of the center of 

mass in the horizontal and vertical directions, respectively, and the angle of rotation of the center 

of mass multiplied by distance h, θh, where h is the distance between the FP isolator pivot point 

and the center of mass of the transformer (h=96.0in).  The results reveal that the fundamental mode 

consists of primarily horizontal motion with a very small rocking motion component.  The third 

mode is one of near pure rocking motion (with a minute horizontal motion component) with a 

relatively large frequency (over 3.5Hz) and is highly damped.  This is desirable as it will result in 

suppression of rocking motion.  The rocking mode about the axis perpendicular to the transverse 

direction is overdamped.  Also, the frequencies obtained by the computational model in SAP2000 

and by the simplified analytical model are essentially the same (but for the case of the overdamped 

mode in which the frequency does not have physical meaning as there no oscillatory motion).  
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Figure 6-13 Two-dimensional Representations of Isolated Transformer (Free to Rock) 

 in (a) Longitudinal/vertical Plane and (b) Transverse/vertical Plane  
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Figure 6-14 Distribution of Mass in Simplified Model of Isolated Transformer (Free to Rock) 

 

Table 6-5 Frequencies, Damping Ratio and Mode Shapes of the Example Transformer with 

Isolation System that is Free to Rock 
 

Model 
Plane Longitudinal-Vertical Transverse-Vertical 

Mode 1 2 3 1 2 3 
Computational in 

SAP2000 Frequency (Hz) 0.37 2.50 2.48 0.37 2.50 3.66 

 
 
 

Simplified 
Analytical 

Model 

Frequency (Hz) 0.37 2.50 2.54 0.37 2.50 3.851 

Damping Ratio 0 0.90 0.88 0 0.90 1.23 

Undamped 
Mode 
Shape 

u 1 0 1 1 0 1 

v 0 1 0 0 1 0 

θh 0.04 0 -51.44 0.04 0 -119.34 
1: Frequency does not have physical significance as there is no oscillatory motion 
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6.5 Results of Dynamic Analysis 

Tables 6-6 to 6-11 and Figures 6-15 to 6-18 present results of the dynamic analysis which consist 

of (a) maximum FP isolator resultant horizontal displacement, (b) maximum horizontal resultant 

and vertical accelerations at the CM of the transformer,  (c) maximum horizontal resultant and 

vertical accelerations at the CM of the bushing, (d) spring-damper system peak vertical 

displacement, velocity and force, (e) maximum horizontal resultant and vertical displacements of 

the top of the bushing, and (f) 5%-damped response spectra of acceleration at the CM of the 

transformer in the transverse, longitudinal and vertical directions.  Each response quantity reported 

for the bushing is the maximum among the three bushings. 

Results for individual motions and the average are presented for the isolator horizontal and vertical 

displacements, velocities and forces, and the transformer CM and the bushing CM peak values of 

acceleration.  Only the average spectra of the accelerations at the CM of the transformer are 

presented.  

Results are presented for (a) the two-dimensional isolation system consisting of just the FP 

isolators (2D), (b) the three-dimensional isolation system (3D) allowed to rock and (c) the 3D 

isolation system with restrained rocking.  Two levels of intensity of the seismic excitation are 

considered (100% and 150%). 

The results in Tables 6-6 to 6-11 and Figures 6-15 to 6-18 demonstrate the following: 

1) All three systems (2D, 3D free to rock and 3D with restrained rocking) have about the same 

FP isolator displacement demands, of which the average in the 11 motions is within the 

displacement capacity of the isolators prior to initiation of stiffening. 

 

2) There is a benefit, although moderate, in reducing the vertical acceleration at the CM of 

the transformer offered by the two 3D systems.  For example, in the 150% intensity motion 

for the upper bound friction conditions the peak vertical accelerations are 0.49g for the 2D, 

and 0.41 or 0.40g for the two 3D systems (Table 6-8).  More benefits are seen in the 

response spectra of the acceleration histories at the CM of the transformer in Figures 6-15 

to 6-18 where spectral values for a range of frequencies of interest (5 to 25Hz) are about 

half in the 3D systems than in the 2D system. 
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3) All three systems provide effective isolation in the horizontal direction.  All systems result 

in substantial reduction of accelerations at the CM of the transformer by comparison to a 

non-isolated transformer (as seen in comparisons of the ground spectra to the isolated 

transformer spectra of Figures 6-15 to 6-18).  The reduction in acceleration is essentially 

the same for the three systems with some small additional reduction offered by the two 3D 

systems.   

 
4) The benefits offered by the three systems are more interesting to observe in the peak values 

of acceleration at the CM of the bushing in Table 6-8.  Concentrating on the case of 150% 

intensity motion and lower bound friction, the 2D system has a peak vertical acceleration 

of 2.01g against the 1.14g and 0.93g values in the 3D free to rock and the 3D with restrained 

rocking systems, respectively.  The reduction in vertical acceleration to about half is 

important.  For the 3D system that is free to rock, this reduction comes at the expense of 

some rocking motion that is amplified both in the vertical (by some 20% by comparison to 

the 2D system and the 3D system with restrained rocking) and in the horizontal direction 

due to the large distance of the CM to the pivot point (by about 25%). 

 
5) Given the complexity of the 3D system with restrained rocking, it appears that the 3D 

system that is free to rock is a viable option for use in a location of a higher seismic intensity 

than that of the site at Eugene, OR (herein the higher seismic intensity location is 

represented by motions magnified by factor of 150%).  It provides effective vertical and 

horizontal isolation although the horizontal accelerations at the CM of the bushing are 

magnified by a moderate amount.  It is the penalty to pay for a significant reduction in the 

vertical acceleration.   

 
6) The same conclusion as that of item 5 above may be arrived at for a transformer at the 

Eugene, OR location.  However, in this case the vertical accelerations at the CM of the 

bushing in the 2D system may be acceptable so that use of the two-dimensional isolation 

system appears to be the appropriate choice for this site.  This is consistent with the results 

of the transformer fragility analysis in Kitayama et al (2016) for this site where it was 

concluded that a 3D seismic isolation system does not offer any significant advantage in 
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terms of the probability of failure in its lifetime over that of a comparable 2D seismic 

isolation system. 

Following the presented discussion of the results of the dynamic analysis it is appropriate to 

comment on the effect of the stiffness of the additional base used in the 3D isolation system with 

restrained rocking.  Figure 6-19 presents the peak values of acceleration at the CM of the 

transformer as function of the moment of inertia of the cross section of the second base (the area 

was also varied accordingly) in motion Valparaiso (see Table 6-2) with intensity of 100%.  A 

moment of inertia of about 17000in4 is needed to effectively restrain rocking, although a value of 

about 8500in4 would suffice.  This illustrates the difficulty in restraining rocking in slender systems. 
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Table 6-6 FP Isolator Peak Resultant Horizontal Displacement (in inch)  

Isolator 
Friction Lower Bound 

Seismic 
Intensity 100% 150% 

Isolation 
System/ 

Earthquake 
2D 3D 

Free to Rock 

3D 
Restrained 
Rocking 

2D 3D 
Free to Rock 

3D 
Restrained 
Rocking 

Valparaiso 7.94 7.69 8.13 11.54 11.51 11.94 
Talca 4.74 4.65 4.79 9.54 9.27 9.59 

Hualane 3.29 3.46 3.30 6.65 6.54 6.59 
Chile 7.96 7.80 8.16 12.74 12.61 13.09 

Hokkaido 3.72 3.43 3.82 8.19 8.09 8.50 
Hanasaki 2.00 2.06 2.02 4.94 4.83 4.91 

Peru 5.77 5.77 5.73 10.17 9.92 10.09 
Tohoku-A 6.82 6.62 6.81 15.58 14.98 15.59 
Tohoku-B 7.07 6.82 7.07 17.52 17.62 17.57 
Nukabira 4.22 4.17 4.21 9.90 9.81 9.98 

Tokachi-Oki 6.58 6.40 6.58 13.24 13.02 13.23 
Average 5.46 5.35 5.51 10.91 10.75 11.01 
Isolator 
Friction Upper Bound 

Seismic 
Intensity 100% 150%  

Isolation 
System/ 

Earthquake 
2D 3D 

Free to Rock 

3D 
Restrained 
Rocking 

2D 3D 
Free to Rock 

3D 
Restrained 
Rocking 

Valparaiso 8.06 7.73 8.31 11.71 11.51 12.19 
Talca 3.65 3.71 3.71 8.05 7.80 8.13 

Hualane 3.40 3.48 3.47 5.33 5.44 5.43 
Chile 7.45 7.36 7.69 12.03 11.90 12.42 

Hokkaido 3.11 2.68 2.99 6.20 6.01 6.54 
Hanasaki 1.91 1.75 1.85 3.56 3.49 3.55 

Peru 5.26 5.14 5.16 9.38 9.00 9.25 
Tohoku-A 4.55 4.42 4.51 12.15 11.71 12.12 
Tohoku-B 4.62 4.26 4.50 12.41 12.11 12.43 
Nukabira 3.35 3.77 3.39 7.45 7.67 7.48 

Tokachi-Oki 5.15 4.89 5.15 10.91 10.65 10.89 
Average 4.59 4.47 4.61 9.02 8.85 9.13 
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Table 6-7 Transformer Peak Accelerations at CM of Transformer (in g)  

Isolator 
Friction 

Lower Bound 

Seismic 
Intensity 100%  150%  

Isolation 
System 2D 3D 

Free to Rock 

3D 
Restrained 
Rocking 

2D 3D 
Free to Rock 

3D 
Restrained 
Rocking 

Direction/ 
Earthquake 

Res. 
Hor. Vert. Res. 

Hor. Vert. Res. 
Hor. Vert. Res. 

Hor. Vert. Res. 
Hor. Vert. Res. 

Hor. Vert. 

Valparaiso 0.29 0.43 0.22 0.37 0.23 0.35 0.30 0.58 0.28 0.55 0.29 0.53 
Talca 0.20 0.31 0.18 0.25 0.18 0.25 0.26 0.42 0.24 0.37 0.25 0.37 

Hualane 0.23 0.47 0.15 0.29 0.16 0.28 0.23 0.63 0.22 0.43 0.22 0.42 
Chile 0.26 0.32 0.26 0.28 0.27 0.28 0.37 0.48 0.38 0.42 0.39 0.42 

Hokkaido 0.19 0.31 0.18 0.28 0.19 0.27 0.28 0.49 0.28 0.41 0.28 0.41 
Hanasaki 0.17 0.41 0.15 0.28 0.15 0.26 0.26 0.61 0.20 0.42 0.20 0.39 

Peru 0.19 0.35 0.18 0.27 0.18 0.27 0.27 0.53 0.23 0.41 0.24 0.40 
Tohoku-A 0.22 0.21 0.21 0.18 0.21 0.18 0.36 0.32 0.35 0.27 0.35 0.27 
Tohoku-B 0.20 0.30 0.20 0.29 0.20 0.28 0.37 0.46 0.37 0.44 0.36 0.42 
Nukabira 0.18 0.37 0.18 0.31 0.17 0.31 0.26 0.56 0.25 0.47 0.26 0.46 

Tokachi-Oki 0.19 0.28 0.19 0.24 0.19 0.23 0.29 0.42 0.27 0.36 0.28 0.34 
Average 0.21 0.34 0.19 0.27 0.19 0.26 0.29 0.49 0.27 0.41 0.28 0.40 
Isolator 
Friction 

Upper Bound 

Seismic 
Intensity 100%  150% 

Isolation 
System 2D 3D 

Free to Rock 

3D 
Restrained 
Rocking 

2D 3D 
Free to Rock 

3D 
Restrained 
Rocking 

Direction/ 
Earthquake 

Res. 
Hor. Vert. Res. 

Hor. Vert. Res. 
Hor. Vert. Res. 

Hor. Vert. Res. 
Hor. Vert. Res. 

Hor. Vert. 

Valparaiso 0.30 0.43 0.26 0.37 0.27 0.35 0.34 0.58 0.33 0.55 0.33 0.53 
Talca 0.24 0.31 0.20 0.25 0.20 0.25 0.29 0.42 0.27 0.37 0.27 0.37 

Hualane 0.23 0.48 0.19 0.29 0.19 0.28 0.25 0.63 0.24 0.43 0.24 0.42 
Chile 0.30 0.32 0.30 0.28 0.31 0.28 0.41 0.48 0.42 0.42 0.43 0.42 

Hokkaido 0.23 0.31 0.19 0.28 0.21 0.27 0.31 0.49 0.29 0.41 0.30 0.41 
Hanasaki 0.20 0.41 0.20 0.28 0.20 0.26 0.27 0.61 0.23 0.42 0.23 0.39 

Peru 0.24 0.35 0.22 0.27 0.23 0.27 0.30 0.53 0.26 0.41 0.27 0.40 
Tohoku-A 0.20 0.21 0.20 0.18 0.19 0.18 0.35 0.32 0.34 0.27 0.34 0.27 
Tohoku-B 0.23 0.30 0.22 0.29 0.23 0.28 0.33 0.46 0.32 0.44 0.32 0.43 
Nukabira 0.20 0.37 0.20 0.31 0.20 0.31 0.28 0.56 0.27 0.47 0.28 0.46 

Tokachi-Oki 0.22 0.28 0.20 0.24 0.20 0.23 0.30 0.42 0.28 0.35 0.29 0.34 
Average 0.23 0.34 0.21 0.27 0.22 0.26 0.31 0.49 0.29 0.41 0.29 0.40 
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Table 6-8 Bushing Peak Accelerations at CM of Bushing (in g)  

Isolator 
Friction 

Lower Bound 

Seismic 
Intensity 100%  150%  

Isolation 
System 2D 3D 

Free to Rock 

3D 
Restrained 
Rocking 

2D 3D 
Free to Rock 

3D 
Restrained 
Rocking 

Direction/ 
Earthquake 

Res. 
Hor. Vert. Res. 

Hor. Vert. Res. 
Hor. Vert. Res. 

Hor. Vert. Res. 
Hor. Vert. Res. 

Hor. Vert. 

Valparaiso 0.50 2.14 0.69 1.15 0.56 0.88 0.91 3.18 0.93 1.57 0.71 1.31 
Talca 0.53 1.19 1.05 0.84 0.77 0.54 0.76 1.66 1.27 1.01 0.90 0.73 

Hualane 0.55 1.29 0.88 0.86 0.68 0.61 0.79 2.06 1.05 1.22 0.74 0.94 
Chile 0.46 1.00 0.69 0.76 0.48 0.58 0.81 1.79 0.77 1.15 0.64 0.88 

Hokkaido 0.56 1.75 0.97 0.84 0.86 0.71 0.84 2.34 1.03 1.25 0.82 1.00 
Hanasaki 0.59 1.49 0.95 0.84 0.86 0.67 0.87 2.07 1.13 1.07 1.08 0.93 

Peru 0.45 1.41 0.76 0.95 0.59 0.67 0.74 1.95 1.01 1.27 0.65 0.96 
Tohoku-A 0.44 0.71 0.95 0.55 0.67 0.39 0.72 1.09 1.11 0.76 0.82 0.62 
Tohoku-B 0.50 1.44 0.99 0.89 0.74 0.66 1.23 2.14 0.95 1.31 0.99 1.04 
Nukabira 0.45 1.41 1.00 0.76 0.64 0.63 0.79 1.89 1.02 0.98 0.73 0.87 

Tokachi-Oki 0.53 1.28 0.71 0.74 0.57 0.64 0.66 1.97 0.78 1.02 0.69 0.97 
Average 0.50 1.37 0.87 0.83 0.67 0.63 0.82 2.01 1.00 1.14 0.79 0.93 
Isolator 
Friction 

Upper Bound 

Seismic 
Intensity 100%  150% 

Isolation 
System 2D 3D 

Free to Rock 

3D 
Restrained 
Rocking 

2D 3D 
Free to Rock 

3D 
Restrained 
Rocking 

Direction/ 
Earthquake 

Res. 
Hor. Vert. Res. 

Hor. Vert. Res. 
Hor. Vert. Res. 

Hor. Vert. Res. 
Hor. Vert. Res. 

Hor. Vert. 

Valparaiso 0.70 2.11 0.82 1.15 0.57 0.92 1.02 3.18 0.97 1.73 0.68 1.29 
Talca 0.72 1.11 1.28 0.90 0.84 0.56 0.78 1.65 1.51 1.13 0.91 0.78 

Hualane 0.70 1.37 0.87 0.91 0.71 0.65 0.92 2.06 1.03 1.22 0.84 0.93 
Chile 0.60 1.18 0.77 0.72 0.56 0.60 0.78 1.75 0.96 0.98 0.68 0.82 

Hokkaido 0.65 1.54 1.04 0.85 0.93 0.73 0.95 2.35 1.17 1.25 1.06 1.07 
Hanasaki 0.81 1.39 1.18 0.98 0.97 0.76 1.03 2.09 1.32 1.11 1.11 0.96 

Peru 0.70 1.30 1.01 1.08 0.84 0.70 0.77 1.96 0.98 1.32 0.74 0.96 
Tohoku-A 0.58 0.73 0.76 0.61 0.74 0.41 0.70 1.09 1.16 0.81 0.89 0.59 
Tohoku-B 0.83 1.41 1.26 0.96 0.97 0.67 1.24 2.17 1.07 1.38 1.05 1.07 
Nukabira 0.77 1.26 1.50 0.83 0.98 0.61 0.66 1.90 1.20 1.14 0.79 0.91 

Tokachi-Oki 0.67 1.31 0.88 0.77 0.68 0.64 0.74 1.96 0.93 1.13 0.74 0.97 
Average 0.70 1.33 1.03 0.88 0.79 0.65 0.87 2.01 1.11 1.19 0.86 0.94 
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Table 6-9 Spring-damper System Peak Vertical Displacement, Velocity and Force for Lower Bound 

Friction 

Isolator 
Friction/ 
Intensity 

Lower Bound/100% 

Isolation 
System 

3D 
Free to Rock 

3D 
Restrained Rocking 

Parameter/ 
Earthquake 

Dynamic 
Displ. 
(in) 

Velocit
y 
 

(in/s) 

Spring 
Force 
(kip) 

Damper 
Force 
(kip) 

Total 
Force 
(kip) 

Dynamic 
Displ. 
(in) 

Velocity 
 

(in/s) 

Spring 
Force 
(kip) 

Damper 
Force 
(kip) 

Total 
Force 
(kip) 

Valparaiso 0.54 5.29 146.9 42.9 160.7 0.30 4.84 143.0 39.2 161.1 
Talca 0.51 5.19 145.2 42.1 156.8 0.28 3.00 141.6 24.3 154.5 

Hualane 0.45 5.26 140.7 42.6 161.0 0.27 3.26 141.1 26.4 156.7 
Chile 0.73 5.82 160.7 47.2 184.6 0.25 3.73 139.3 30.2 155.5 

Hokkaido 0.52 5.72 144.8 46.3 164.4 0.20 3.73 136.0 30.2 154.1 
Hanasaki 0.34 4.75 132.5 38.5 158.2 0.18 4.00 134.4 32.4 150.2 

Peru 0.52 4.75 145.4 38.5 160.8 0.28 3.67 141.4 29.7 155.8 
Tohoku-A 0.51 3.78 145.2 30.6 152.7 0.21 2.30 136.7 18.6 143.6 
Tohoku-B 0.44 5.18 139.5 42.0 157.8 0.22 3.79 137.7 30.7 154.5 
Nukabira 0.52 5.12 145.9 41.5 156.0 0.30 3.44 143.3 27.9 151.9 

Tokachi-Oki 0.42 5.23 138.0 42.4 155.7 0.14 3.30 132.0 26.7 141.7 
Average 0.50 5.10 144.0 41.3 160.7 0.23 3.54 138.7 28.7 152.6 

Isolator 
Friction/ 
Intensity 

Lower Bound/150% 

Isolation 
System 

3D 
Free to Rock 

3D 
Restrained Rocking 

Parameter/ 
Earthquake 

Dynamic 
Displ. 
(in) 

Velocit
y 
 

(in/s) 

Spring 
Force 
(kip) 

Damper 
Force 
(kip) 

Total 
Force 
(kip) 

Dynamic 
Displ. 
(in) 

Velocity 
 

(in/s) 

Spring 
Force 
(kip) 

Damper 
Force 
(kip) 

Total 
Force 
(kip) 

Valparaiso 0.68 6.85 156.7 55.4 179.5 0.44 7.26 153.2 58.8 180.7 
Talca 0.62 6.64 152.5 53.8 173.5 0.41 4.56 151.2 36.9 168.2 

Hualane 0.58 6.70 149.9 54.3 179.8 0.40 4.85 150.5 39.3 174.0 
Chile 1.02 7.40 181.1 59.9 217.7 0.37 5.54 147.9 44.9 172.3 

Hokkaido 0.76 7.29 161.7 59.0 189.5 0.30 5.49 142.9 44.5 169.0 
Hanasaki 0.53 6.57 146.3 53.2 178.2 0.26 6.00 140.3 48.6 163.7 

Peru 0.65 6.29 154.6 50.9 179.7 0.41 5.51 150.9 44.6 172.6 
Tohoku-A 0.83 4.96 167.7 40.2 179.3 0.31 3.44 143.8 27.9 155.1 
Tohoku-B 0.79 7.16 164.1 58.0 177.7 0.33 5.56 145.2 45.1 171.1 
Nukabira 0.77 6.48 163.6 52.4 180.2 0.45 5.20 153.9 42.1 166.9 

Tokachi-Oki 0.66 6.78 154.6 54.9 172.5 0.21 4.96 136.8 40.1 151.6 
Average 0.71 6.64 159.3 53.8 182.5 0.35 5.30 146.9 42.9 167.7 
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Table 6-10 Spring-damper System Peak Vertical Displacement, Velocity and Force for Upper 

Bound Friction 

Isolator 
Friction/ 
Intensity 

Upper Bound/100% 

Isolation 
System 

3D 
Free to Rock 

3D 
Restrained Rocking 

Parameter/ 
Earthquake 

Dynamic 
Displ. 
(in) 

Velocity 
 

(in/s) 

Spring 
Force 
(kip) 

Damper 
Force 
(kip) 

Total 
Force 
(kip) 

Dynamic 
Displ. 
(in) 

Velocity 
 

(in/s) 

Spring 
Force 
(kip) 

Damper 
Force 
(kip) 

Total 
Force 
(kip) 

Valparaiso 0.68 6.17 156.6 50.0 171.9 0.30 4.85 143.1 39.3 160.7 
Talca 0.59 5.78 150.9 46.8 162.5 0.28 3.00 141.6 24.3 156.0 

Hualane 0.49 5.67 143.2 46.0 163.7 0.27 3.22 141.2 26.1 156.9 
Chile 0.82 6.71 166.5 54.4 192.0 0.25 3.93 139.4 31.8 155.6 

Hokkaido 0.53 5.70 145.4 46.2 165.8 0.20 3.70 136.1 30.0 153.9 
Hanasaki 0.38 4.88 135.6 39.5 163.7 0.18 4.02 134.4 32.6 151.3 

Peru 0.57 5.41 149.5 43.9 165.8 0.28 3.67 141.5 29.7 155.8 
Tohoku-A 0.54 4.27 146.2 34.6 158.2 0.21 2.30 136.8 18.6 143.7 
Tohoku-B 0.51 5.15 144.6 41.7 160.3 0.22 3.83 137.6 31.0 154.4 
Nukabira 0.59 5.50 150.3 44.6 161.6 0.30 3.58 143.3 29.0 152.2 

Tokachi-Oki 0.43 5.59 138.9 45.3 158.8 0.14 3.32 132.2 26.9 142.2 
Average 0.55 5.53 147.9 44.8 165.8 0.23 3.58 138.8 29.0 152.9 

Isolator 
Friction/ 
Intensity 

Upper Bound/150% 

Isolation 
System 

3D 
Free to Rock 

3D 
Restrained Rocking 

Parameter/ 
Earthquake 

Dynamic 
Displ. 
(in) 

Velocity 
 

(in/s) 

Spring 
Force 
(kip) 

Damper 
Force 
(kip) 

Total 
Force 
(kip) 

Dynamic 
Displ. 
(in) 

Velocity 
 

(in/s) 

Spring 
Force 
(kip) 

Damper 
Force 
(kip) 

Total 
Force 
(kip) 

Valparaiso 0.75 7.20 161.7 58.3 184.0 0.45 7.28 153.4 58.9 180.0 
Talca 0.74 7.47 161.1 60.5 179.5 0.42 4.46 151.3 36.1 170.5 

Hualane 0.66 7.56 155.7 61.2 186.1 0.41 4.88 150.6 39.5 174.5 
Chile 1.11 8.42 187.3 68.2 225.7 0.37 5.58 148.0 45.2 172.4 

Hokkaido 0.79 7.95 163.8 64.4 193.4 0.30 5.55 142.8 45.0 169.7 
Hanasaki 0.52 7.24 145.0 58.6 184.3 0.26 5.99 140.5 48.5 163.5 

Peru 0.76 6.71 162.6 54.4 185.1 0.41 5.51 151.0 44.6 172.6 
Tohoku-A 0.81 5.39 166.4 43.6 178.1 0.31 3.45 143.9 27.9 154.5 
Tohoku-B 0.69 7.43 156.7 60.2 179.4 0.33 5.64 145.4 45.7 171.7 
Nukabira 0.79 7.15 164.5 57.9 185.5 0.45 5.27 153.9 42.7 167.0 

Tokachi-Oki 0.64 7.54 153.3 61.1 177.2 0.21 4.94 136.9 40.0 151.6 
Average 0.75 7.27 161.6 58.9 187.1 0.35 5.32 147.0 43.1 168.0 
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Table 6-11 Bushing Top Peak Displacements (in inch)  

Isolator 
Friction 

Lower Bound 

Seismic 
Intensity 100%  150%  

Isolation 
System 2D 

3D 
Free to 
Rock 

3D 
Restrained 
Rocking 

2D 3D 
Free to Rock 

3D 
Restrained 
Rocking 

Direction/ 
Earthquake 

Res. 
Hor. Vert. Res. 

Hor. Vert. Res. 
Hor. Vert. Res. 

Hor. Vert. Res. 
Hor. Vert. Res. 

Hor. Vert. 

Valparaiso 8.08 0.36 9.36 2.30 8.35 2.19 11.68 0.46 13.56 2.44 12.13 2.36 
Talca 4.92 0.26 6.09 2.21 5.00 2.18 9.69 0.29 11.15 2.53 9.77 2.34 

Hualane 3.44 0.27 4.40 2.22 3.51 2.18 6.70 0.34 8.30 2.37 6.75 2.35 
Chile 8.17 0.22 9.74 2.44 8.41 2.13 13.07 0.30 15.19 2.82 13.41 2.26 

Hokkaido 3.94 0.31 4.93 2.36 4.05 2.13 8.33 0.35 10.14 2.73 8.70 2.21 
Hanasaki 2.14 0.27 3.17 2.16 2.27 2.08 5.22 0.36 6.17 2.40 5.27 2.19 

Peru 5.86 0.28 7.15 2.29 5.87 2.16 10.32 0.32 11.69 2.46 10.26 2.32 
Tohoku-A 6.98 0.20 8.36 2.21 7.00 2.10 15.79 0.24 17.74 2.50 15.83 2.21 
Tohoku-B 7.20 0.28 8.46 2.28 7.49 2.15 17.73 0.33 20.57 2.59 18.02 2.30 
Nukabira 4.35 0.27 5.43 2.36 4.34 2.21 10.11 0.32 11.62 2.65 10.22 2.39 

Tokachi-Oki 6.71 0.28 7.92 2.25 6.84 2.06 13.39 0.32 15.21 2.63 13.39 2.14 
Average 5.61 0.27 6.81 2.27 5.73 2.14 11.09 0.32 12.84 2.55 11.25 2.27 
Isolator 
Friction 

Upper Bound 

Seismic 
Intensity 100%  150%  

Isolation 
System 2D 

3D 
Free to 
Rock 

3D 
Restrained 
Rocking 

2D 3D 
Free to Rock 

3D 
Restrained 
Rocking 

Direction/ 
Earthquake 

Res. 
Hor. Vert. Res. 

Hor. Vert. Res. 
Hor. Vert. Res. 

Hor. Vert. Res. 
Hor. Vert. Res. 

Hor. Vert. 

Valparaiso 8.24 0.34 9.77 2.49 8.56 2.19 11.89 0.46 13.88 2.54 12.42 2.36 
Talca 3.79 0.23 5.05 2.33 3.88 2.19 8.19 0.28 9.91 2.46 8.37 2.34 

Hualane 3.56 0.27 4.62 2.30 3.60 2.17 5.48 0.35 6.72 2.48 5.60 2.34 
Chile 7.69 0.24 9.59 2.52 7.94 2.14 12.34 0.29 14.80 2.85 12.74 2.27 

Hokkaido 3.21 0.27 4.07 2.36 3.13 2.14 6.39 0.35 8.23 2.76 6.79 2.26 
Hanasaki 2.04 0.27 3.06 2.30 2.12 2.09 3.73 0.36 4.93 2.36 3.76 2.19 

Peru 5.45 0.26 6.78 2.37 5.34 2.18 9.58 0.32 10.95 2.56 9.44 2.31 
Tohoku-A 4.65 0.20 5.89 2.31 4.66 2.11 12.36 0.24 14.38 2.48 12.37 2.22 
Tohoku-B 5.05 0.27 5.92 2.40 4.99 2.17 12.84 0.34 14.68 2.61 12.97 2.31 
Nukabira 3.54 0.25 5.40 2.47 3.61 2.24 7.58 0.32 9.59 2.72 7.65 2.39 

Tokachi-Oki 5.39 0.27 6.28 2.22 5.49 2.04 11.01 0.32 12.90 2.57 11.12 2.15 
Average 4.78 0.26 6.03 2.36 4.84 2.15 9.21 0.33 10.99 2.58 9.38 2.28 
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Figure 6-15 5%-Damped Response Spectra of Acceleration at CM of Transformer for Lower 

Bound Friction in 100% Intensity Motion 

3D- 
Free Rocking 

2D 

3D- 
Restrained Rocking 
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Figure 6-16 5%-Damped Response Spectra of Acceleration at CM of Transformer for Lower 

Bound Friction in 150% Intensity Motion 

3D- 
Free Rocking 

2D 

3D- 
Restrained Rocking 
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Figure 6-17 5%-Damped Response Spectra of Acceleration at CM of Transformer for Upper 

Bound Friction in 100% Intensity Motion 

3D- 
Free Rocking 

2D 

3D- 
Restrained Rocking 
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Figure 6-18 5%-Damped Response Spectra of Acceleration at CM of Transformer for Upper 

Bound Friction in 150% Intensity Motion 

3D- 
Free Rocking 

2D 

3D- 
Restrained Rocking 
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Figure 6-19 Peak Acceleration at CM of Bushing in 3D Isolation System with Restrained Rocking in 

Motion Valparaiso (100%) as Function of Base Moment of Inertia 
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SECTION 7 

SUMMARY AND CONCLUSIONS 

This report described a research effort for the development and testing of a three-dimensional 

(3D) seismic isolation system suitable for electrical transformers, the development and validation 

of analytical models for the prediction of the dynamic response of transformers equipped with 

the system and the presentation of examples of analysis and design of the isolation system of a 

sample transformer.   

 

The report started with a comprehensive review of past efforts to develop 3D seismic isolation 

systems.  These included (a) elastomeric bearings with low vertical stiffness, (b) systems 

consisting of helical springs and dampers and (c) complex 3D isolation systems of Japanese 

origin utilizing air springs, accumulators, piping, valves, leveling systems and active components.  

It was concluded that (a) purely elastomeric isolation systems cannot provide effective vertical 

isolation due to their high vertical stiffness and problems with creep and low capacity to carry 

vertical load under large lateral deformation, (b) helical spring and damper systems generally 

have all frequencies larger than about 1.5Hz to be able to provide effective isolation in all 

directions, (c) the 3D isolation systems developed in Japan, while effective, are exceptionally 

complex, require continued maintenance, are likely unreliable and are costly.  They are 

unacceptable for use in the seismic isolation of electrical transformers where reliability, 

minimum maintenance, compactness and reasonable costs are required. 

 

The report then proceeded to analytically investigate the performance of two alternate 3D 

seismic isolation systems: (a) one consisting of helical springs and viscous dampers that allow 

for motions in all directions, and (b) one consisting of triple FP isolators for providing horizontal 

isolation, which are supported by a vertically driven spring-damper system for providing vertical 

isolation.  The study determined that a system consisting of helical springs and viscous dampers 

is limited in performance by the fact that its fundamental frequency is high and typically larger 

than about 1.5Hz.  This results in large acceleration responses in the horizontal directions which 

may be further magnified due to rocking of the isolated structure.  The system consisting of 

Triple FP isolators and their vertically-driven spring-damper supports provide for a very 
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effective horizontal isolation with a limited vertical isolation effect.  The latter is due to the fact 

that the isolation system is vertically stiff in order to meet the serviceability criteria (limited 

static deflection).  In essence, the system functions in the vertical direction like a highly damped 

system rather than as an isolation system.  The study then determined the design parameters for 

the vertical spring-damper system for use in the shake table testing.  The selected system had a 

vertical frequency of 2.0Hz and a corresponding damping ratio of 0.50.  The conducted studies 

also determined that a higher damping ratio could provide additional benefits which include 

limiting rotation of the isolation system and increasing the insensitivity of the system to the 

details of the vertical ground motion. 

 

A model of an electrical transformer, including a flexibly-installed bushing, was built for shake 

table testing.  The model weighed at 68.1kip when configured with allowance for free rocking 

and weighed at 72.4kip when a second basemat was added to limit rocking.  Three different 

types of triple FP isolators were used in the testing.  They were characterized by their nominal 

friction (force at zero displacement divided by the vertical load) which was 0.07, 0.12 and 0.20.  

The value desired for actual applications is 0.12.  The Triple FP isolators and the spring-damper 

units were tested and their properties were determined for use in the dynamic analysis of the 

tested model.   

 

The model was tested on the shake table using three-component seismic excitation as recorded in 

historic earthquakes without any scaling in time.  That is, the time scale factor was unity.  

Results were acquired in terms of isolator displacement demands, accelerations below and above 

the isolators, displacements of the bushing and rotations of the entire model.  The recorded 

acceleration histories were used to construct response spectra at various locations below and 

above the isolators.  These spectra demonstrated a marked isolation effect in the two horizontal 

directions and a limited isolation effect in the vertical direction.  The latter was expected as the 

vertical system acted as a damping rather than as an isolation system. 

 

The testing was conducted with two configurations of the model: one that freely allowed for 

rocking of the model and one that restricted the freedom to rock.  The latter configuration proved 

complex in its construction and did not achieve the desired effect as the connection of the added 
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basemat to the isolators proved to have undesired flexibility.  The test results revealed that 

increases in friction of the FP isolators result in the expected reduction in FP isolator 

displacements and an increase in horizontal accelerations at the frame top, bushing base and 

bushing top.  Performance was best when the nominal friction was 0.12 when the isolator 

horizontal and vertical displacement demands were manageable and within the capacities of the 

system and accelerations were within acceptable bounds. 

 

Analytical models of the tested electrical transformer model were developed in program 

SAP2000.  Comparisons of the results of the dynamic analysis to the test data demonstrated that 

it is possible to predict the response of the tested model in tri-axial seismic excitation with 

sufficient accuracy.   Specifically, the acceleration histories on the main body of the model and 

their response spectra and the isolator’s horizontal and vertical displacements could be predicted 

with sufficient accuracy.  However, the acceleration histories of the top of the flexibly-installed 

bushing of the model were significantly under-estimated.  It was determined that rocking motion 

of the shake table contributed to the motion of the bushing top in the horizontal direction and its 

inclusion in the analysis improved the accuracy of the prediction.  However, the main contributor 

to the underestimation of the acceleration at the top of the bushing was that the actual damping in 

the bushing was less than the value used in the analytical model.   

A design example was developed for a location in Eugene, Oregon, for which the equipment 

qualification level per IEEE (2005) is moderate.  A seismic hazard analysis for the site was 

conducted by the University of California, Berkeley that resulted in site-specific response spectra 

for a return period of 2475 years and in triplets of 11 compatible ground motion acceleration 

histories for use in the analysis and design.  Analysis was also conducted for the same system for 

a hypothetical location for which the equipment qualification level per IEEE (2005) is high by 

using the same spectra and motions after multiplication by a factor of 1.5.   

The presented isolation system design was configured for a high equipment qualification level.  

Details were presented that offer an option for designers to consider in an actual implementation.  

The isolation hardware dimensions are appropriate for the considered equipment locations and 

details of the installation include provisions for access to the equipment for inspection and 

replacement, protection from the elements and embedment for limiting the height above ground.  
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The detailed isolation system was of the configuration that allows for free rocking as it is the 

easiest to implement.  An alternate configuration with a second massive basemat to effectively 

restrict rocking was also presented.   

Results were presented for (a) the two-dimensional isolation system consisting of just the FP 

isolators (2D), (b) the three-dimensional isolation system (3D) allowed to rock, (c) the 3D 

isolation system with restrained rocking and (d) the non-isolated transformer.  Two levels of 

intensity of the seismic excitation were considered (100% and 150%). 

The results of the analysis and design examples demonstrated the following: 

1) All three systems (2D, 3D free to rock and 3D with restrained rocking) have about the 

same FP isolator displacement demands which were within the displacement capacity of 

the isolators prior to initiation of stiffening. 

 
2) All three systems provided effective isolation in the horizontal direction.  All systems 

resulted in substantial reduction of accelerations at the CM of the transformer by 

comparison to a non-isolated transformer.    

 
3) The benefits offered by the three isolation systems are best described by the calculated 

vertical accelerations at the center of mass of the bushings.  Concentrating on the case of 

150% intensity motion and lower bound friction, the following obtained results are 

informative: the 2D system has a peak vertical acceleration of 2.01g whereas values of 

1.14g and 0.93g were obtained in the 3D free to rock and the 3D with restrained rocking 

systems, respectively.  The reduction in vertical acceleration to about half is important.  

For the 3D system that is free to rock, this reduction comes at the expense of some 

rocking motion that is amplified both in the vertical (by some 20% by comparison to the 

2D system and the 3D system with restrained rocking) and in the horizontal direction due 

to the large distance of the CM to the pivot point (by about 25%). 

 
4) Given the complexity of the 3D system with restrained rocking, it appears that the 3D 

system that is free to rock is a viable option for use in a location of a higher seismic 

intensity than that of the site at Eugene, OR (herein the higher seismic intensity location 
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is represented by motions magnified by a factor of 150%).  It provides effective vertical 

and horizontal isolation although the horizontal accelerations at the CM of the bushing 

are magnified by a moderate amount.  It is the penalty to pay for a significant reduction in 

the vertical acceleration.   

 
5) For the location in Eugene, Oregon, the vertical accelerations at the CM of the bushing in 

the 2D system appeared acceptable so that use of the two-dimensional isolation system 

appears to be the appropriate choice for this site.  This is consistent with the results of the 

transformer fragility analysis in Kitayama et al (2016) for this site where it was 

concluded that a 3D seismic isolation system does not offer any significant advantage in 

terms of the probability of failure in its lifetime over that of a comparable 2D seismic 

isolation system. 

 
While the developed system, testing, analysis and the presented examples concentrated on 

applications of electrical transformers, the developed system and results are readily applicable to 

building applications. 
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APPENDIX A 

EIGENVALUE ANALYSIS OF TRANSFORMER WITH 3D SPRING-

DAMPER ISOLATION SYSTEM 

A-1 Complex Eigenvalue Analysis of Two-Dimensional Representation of 

Isolated Transformer 

 

Figure A-1 presents two-dimensional representations of the transformer with the 3D spring-

damper isolation system (see Figure 2-7 for complete model representation) in the longitudinal 

(1-2) and transverse (3-4) directions.   The mass of the transformer (m1=380kip/g) was 

represented by two lumped masses at a height of 81inch above the concrete basemat.  A small 

eccentricity of 4inch between the center of mass and the geometric center in the longitudinal 

direction (see Figure 2-6) was neglected. The basemat has 10inch thickness and its mass 

(m2=38kip/g) is lumped in two parts as shown in Figure A-1.  Note that the mass distribution 

shown in Figure A-1 is that of case 1 in Table 2-2, which is the only case presented in the 

appendix. Given the two-dimensional representation of the isolated transformer, the stiffness and 

damping parameters at each corner are doubled to represent two supports.   

 

The center of mass of the isolated transformer is shown in Figure A-1 to be located 8 inches 

below the top masses.  The distances of the masses from the center of mass are denoted as d1 and 

d2, as shown in Figure A-1.  The mass moment of inertia of the system about the horizontal axis 

at the center of mass (ICM) is given by  

    𝐼𝐶𝑀,1−2 (𝑜𝑟 3−4) = 𝐼𝐶𝑀,𝑋(𝑜𝑟 𝑌) + 𝐼𝐶𝑀,𝑍 = 𝑚1𝑑1
2 +𝑚2𝑑2

2 + (𝑚1/2 + 𝑚2/2)(𝑥1
2 + 𝑥2

2) (A-1)  

Note that m1 and m2 are masses associated with weights W1 and W2, respectively, and x1 and x2 

are distances as shown in Figure A-1. 
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(a) Longitudinal (1-2)-Vertical 

 

(b) Transverse (3-4)-Vertical 

FIGURE A-1 Two-dimensional Representation of Spring-Damper Isolated Transformer in (a) 

Longitudinal (1-2)-Vertical Plane and (b) Transverse (3-4)-Vertical Plane 

The dampers are inclined at an angle φ (=54.7degrees) with respect to three orthogonal 

directions (x, y, and z) as shown in Figure A-2.  The damping constants in the horizontal 

directions (Cx and Cy) and the vertical direction (Cz) for each support are given by: 

h1=81”
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 Cx = Cy = C𝑧 = C cos2 φ (A-2) 

 

FIGURE A-2  Damper Installation Angles 

The equations of motion for free vibration and for degrees of freedom being the horizontal 

displacement u, the vertical displacement v, and the angle of rotation about the center of mass θ 

are: 

[
𝑚 0 0
0 𝑚 0
0 0 𝐼CM

] (
�̈�
�̈�
�̈�

) + [

4𝐶𝑥 0 −4𝐶𝑥𝑑2
0 4𝐶𝑧 2𝐶𝑧(𝑥1 − 𝑥2)

−4𝐶𝑥𝑑2 2𝐶𝑧(𝑥1 − 𝑥2) 4𝐶𝑥𝑑2
2 + 2𝐶𝑧(𝑥1

2 + 𝑥2
2)
](
�̇�
�̇�
�̇�

) + [

4𝐾𝑥 0 −4𝐾𝑥𝑑2
0 4𝐾𝑧 2𝐾𝑧(𝑥1 − 𝑥2)

−4𝐾𝑥𝑑2 2𝐾𝑧(𝑥1 − 𝑥2) 4𝐾𝑥𝑑2
2 + 2𝐾𝑧(𝑥1

2 + 𝑥2
2)

](
𝑢
𝑣
𝜃
) = (

0
0
0
) 

 (A-3) 

The eigenvalue problem of Equations (A-3) has been solved for parameters: C=7.0kip-s/in 

Cx=Cy=Cz=2.33kip-s/in, Kx=Ky=80kip/in, and Kz=50kip/in.  Solution of the complex eigenvalue 

problem resulted in the values of frequencies and damping ratios in Table A-1.  Solution of the 

eigenvalue problem of the undamped equations of motion resulted in the mode shapes presented 

in Table A-1. Table A-1 also includes values of the frequencies calculated in program SAP2000 

(in parenthesis) for a three-dimensional representation of the transformer with mass uniformly 

distributed at the basemat level and at the height of 86inch above the basemat centerline (81inch 
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above the basemat top).  Details of the SAP2000 model and results are presented in Section A-2.  

The modal quantity θh is the horizontal displacement at some point at distance of 86inch (see 

Section 2) from the center of mass due to rotation.   

It should be noted that the simple two-dimensional representation of Equations A-3 predicts well 

the first two frequencies (as compared to the results of the presumably more accurate three-

dimensional model in program SAP2000) but not the third.  Actually, analysis using a two-

dimensional representation based on the mass distribution of case 2 in Table 2-2 resulted in the 

third mode frequency close to that of the analysis in SAP2000.  The reason is that the case 2 

distribution of mass in Table 2-2 better approximates the uniform mass distribution assumed in 

the SAP2000 model.  However, it should be noted that the exact mass distribution (that affects 

the mass moment of inertia and thus the third mode of vibration which has a dominant rocking 

component) is not known and is likely somewhere in-between cases 1 and 2 in Table 2-2. 

TABLE A-1 Results of Eigenvalue Analysis of Isolated Transformer with Spring-Damper System in 

Mass Distribution Case 1 (values in parenthesis are frequencies calculated in program SAP2000-see 

Section A-2) 

Representation Longitudinal (1-2) - Vertical Transverse (3-4) - Vertical 

Mass Moment of Inertia 
(kip-in-sec2) 14612 3938 

Mode 1 2 3 1 2 3 

Spring- 
Damper 
System 

Frequency (Hz) 1.76 
(1.85) 

2.74 
(2.74) 

3.29 
(5.07) 

1.31 
(1.38) 

2.74 
(2.74) 

4.13 
(5.71) 

Damping Ratio 0.21 0.25 0.39 0.14 0.25 0.54 

Mode 
Shape 

u 1 0 1 1 0 1 

v 0 1 0 0 1 0 

θh 0.38 0 -1.45 0.70 0 -2.91 
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A-2 Eigenvalue Analysis of Three-Dimensional Representation of Isolated 

Transformer in Program SAP2000 

The model used in the analysis is the one used for response history analysis and shown in Figure 

2-7, however with the three bushings removed and the mass uniformly distributed at the basemat 

level and at the height of 86inch.  Table A-2 presents the results of the eigenvalue analysis in 

terms of frequencies and images of mode shapes.  Another analysis with the model shown in 

Figure 2-7 (masses lumped at the corners) and with the three bushings removed resulted in 

frequencies identical to those obtained by the two-dimensional model of Figure A-1 and 

presented in Table A-1. 

TABLE A-2 Frequencies and Images of Mode Shapes Obtained in Program SAP2000 for 3D 

Uniform Mass Model of Transformer with Spring-Damper Isolation System 

Mode 1 Mode 2 

 

f = 1.38 Hz 
Translation (3-4 direction) + Some Rocking 

 

f = 1.85 Hz 
Translation (1-2 direction) + Some  Rocking 

Mode 3 Mode 4 

 

f = 2.74 Hz 
Vertical Translation 

 

f = 3.64 Hz 
Torsion 

Mode 5 Mode 6 

 

f = 5.07 Hz 
Rocking (1-2 direction) 

 

f = 5.71 Hz 
Translation (3-4 direction) 
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APPENDIX B 

PROPERTIES OF TRIPLE FRICTION PENDULUM ISOLATORS USED 

IN ANALYSIS OF SECTION 2 

Figure B-1 presents a section of the Triple FP isolator used in the analysis of Section 2.  The 

properties of this isolator are presented in Table B-1 and its force-displacement loops, calculated 

based on the theory of Fenz and Constantinou (2008), are presented in Figure B-2 for the upper 

and lower bound frictional properties.  The bounds of frictional properties were obtained on the 

basis of the following considerations (McVitty and Constantinou, 2015) and test data on the 

production bearings for the Vancouver, WA transformer: 

 

1)  Average friction coefficient of tested production bearings  

µ2 = µ3 = 0.08 (3rd cycle) and 0.08 (1st cycle)  

µ1 = µ4 = 0.11 (3rd cycle) and 0.13 (1st cycle) 

 

2) Lower bound friction coefficient values are the third cycle values without any adjustment for 

uncertainty (λspec) as the data are based on all production bearings.  That is, 

 

µ2 = µ3 = 0.08  

µ1 = µ4 = 0.11 

 

3) Upper bound friction coefficient values are the first cycle values without any adjustment for 

uncertainty (λspec) as the data are based on all production bearings and multiplied by the 

aging/contamination factor of 1.1 (without application of the property adjustment factor).  There 

were no adjustments for low temperature as those are dependent on the geographic location.  

That is,  

 

µ2 = µ3 = 0.08x1.1= 0.088 and rounded to 0.09 

µ1 = µ4 = 0.13x1.1=0.143 and rounded to 0.15 
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FIGURE B-1 Section of Triple FP Isolator 

 

TABLE B-1 Properties of Triple FP Isolator (for vertical load of 104.5kip, corresponding to 

transformer weight of 418kip including basemat) 

Property Value 

R1=R4 (inch) 39.0 

R2=R3 (inch) 8.0 

d1=d4 (inch) 7.0 

d2=d3 (inch) 1.0 

h1=h4 (inch) 3.0 

h2=h3 (inch) 2.0 

μ1=μ4  (lower/upper bound) 0.11 / 0.15 

μ2=μ3  (lower/upper bound) 0.08 / 0.09 

R1eff=R4eff  (=R1-h1) (inch) 36.0 

R2eff=R3eff  (=R2-h2) (inch) 6.0 

d1*=d4*=d1R1eff/R1 (inch) 6.46 

d2*=d3*=d2R2eff/R2 (inch) 0.75 
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FIGURE B-2 Force-Displacement Loops of Triple FP Isolator for Lower and Upper Friction 

Conditions 

For the analysis in program SAP2000, the triple FP isolators were modelled using the parallel 

model of Sarlis and Constantinou (2011).  Table B-2 presents the parameters of the model. 
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TABLE B-2 Parameters of Parallel Model of Triple FP Isolator in Program SAP2000 

Elements FP1 FP2 

Element Height (in) 9.5 9.5 

Element Weight (kip) 0.25 0.25 
Shear deformation location (in) 

(distance from top joint of FP element) 4.25 4.25 

Supported Weight (kip) 52.3 52.3 

Vertical stiffness1) (kip/in) 14,985 14,985 

(Elastic) Stiffness2) (kip/in) Upper Bound:   205.0 
Lower Bound:   161.9 7.3 

Yield displacement (inch) Upper Bound:   0.0220 
Lower Bound:   0.0245 - 

Radius (inch) 0 36 

Friction coefficient FAST Upper Bound:   0.18 
Lower Bound:   0.16 

Upper Bound:   0.12 
Lower Bound:   0.06 

Friction coefficient SLOW Upper Bound:   0.09 
Lower Bound:   0.08 

Upper Bound:   0.06 
Lower Bound:   0.03 

Effective stiffness3) (kip/in) 0 1.5 

Rate parameter (sec/in) 1.27 1.27 

Rotational moment of inertia  
(kip-in-sec2) 0.006 0.006 

Rotational / torsional stiffness  
(R1,R2,R3) 0 0 

For calculations of vertical stiffness (1), elastic stiffness (2) and effective stiffness (3) , see below 

The vertical stiffness, the elastic stiffness and the effective stiffness values in Table B-2 were 

calculated as follows: 

 

1) Vertical stiffness 
 
(𝜋2.52)(14500)/9.5 = 29969𝑘𝑖𝑝/𝑖𝑛 

The stiffness of each of the two elements comprising the isolator model was assigned a 

value equal to half of the value, that is, 14985kip/in.  



295 

 

2) Elastic Stiffness 

�̅�1,𝑢𝑝𝑝𝑒𝑟 =
𝜇2,𝑢𝑝𝑝𝑒𝑟𝑊 

2�̅�1
−

𝑊

2𝑅𝑒𝑓𝑓2
=
0.09 × 104.5

2 × 0.0220
−
104.5

2 × 6
= 205.0𝑘𝑖𝑝/𝑖𝑛 

 

�̅�1,𝑙𝑜𝑤𝑒𝑟 =
𝜇2,𝑢𝑝𝑝𝑒𝑟𝑊 

2�̅�1
−

𝑊

2𝑅𝑒𝑓𝑓2
=
0.08 × 104.5

2 × 0.0245
−
104.5

2 × 6
= 161.9𝑘𝑖𝑝/𝑖𝑛 

 

Note that per recommendations in Sarlis and Constantinou (2011), �̅�1 was determined such 

that the elastic stiffness of parallel model is same as that of series model.  The relationship is 

�̅�1 = (1 +
2𝜇2

𝜇1
)𝑌  for the case of μ2 = μ3  and μ1 = μ4 .  In the analysis, the yield 

displacement, Y, was assumed as 0.01inch. 

�̅�2 =
𝑊

2𝑅𝑒𝑓𝑓2
=
104.5

2 × 6
= 8.7𝑘𝑖𝑝/𝑖𝑛 

The value used in program SAP2000 was 

�̅�2,𝑆𝐴𝑃 =
𝑊

2𝑅𝑒𝑓𝑓2
−

𝑊

2𝑅𝑒𝑓𝑓1
= 8.7 −

104.5

2 × 36
= 7.3𝑘𝑖𝑝/𝑖𝑛 

 
 

3) Effective stiffness 
 
�̅�1 = 0 
 

�̅�2 =
𝑊

2𝑅𝑒𝑓𝑓1
=

104.5

2 × 36
= 1.45𝑘𝑖𝑝/𝑖𝑛 
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APPENDIX C 

EIGENVALUE ANALYSIS FOR TRANSFORMER WITH TRIPLE FP-

SPRING-DAMPER SYSTEM 

Figure C-1 presents two-dimensional representations of the transformer with the 3D triple FP 

and spring-damper isolation system (see Figure 2-10 for complete model representation) in the 

longitudinal (1-2) and transverse (3-4) directions.   The mass of the transformer (m1=380kip/g) 

was represented by two lumped masses at a height of 81inch above the concrete basemat.  A 

small eccentricity of 4inch between the center of mass and the geometric center in the 

longitudinal direction (see Figure 2-6) was neglected. The basemat has a 10inch thickness and its 

mass (m2=38kip/g) is lumped into two components as shown in Figure C-1.  Note the mass 

distribution shown in Figure C-1 is that of case 1 in Table 2-2, which is the only case presented 

in this appendix. Given the two-dimensional representation of the isolated transformer, the 

stiffness and damping parameters at each corner are doubled to represent two supports.   

 

In the eigenvalue analysis, the triple FP isolators are represented in the horizontal directions by 

springs of stiffness Kx or Ky that is equal to the post-elastic stiffness of the isolators calculated in 

Appendix B (the stiffness in the absence of friction). 
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(a) 

 

(b) 

FIGURE C-1 Two-dimensional Representation of Triple FP and Spring-Damper Isolated 

Transformer in (a) Longitudinal (1-2) and (b) Transverse (3-4) Directions 

The equations of motion of the system are given by Equations (A-3) with Kx, Ky, Kz and Cz 

having the values shown in Figure C-1 and with Cx=Cy=0.  Table C-1 presents the results of the 

complex eigenvalue analysis on the frequencies and damping ratio.  The mode shapes presented 

was calculated using the undamped equations of motion. Again quantity h=86inch (see Appendix 

A).   
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TABLE C-1 Results of Eigenvalue Analysis of Isolated Transformer with Triple FP and Spring-

Damper System in Mass Distribution Case 1 

Representation Longitudinal (1-2) - Vertical Transverse (3-4) - Vertical 

Mass Moment of Inertia  
(kip-in-sec2) 14,612 3,938 

Mode 1st Mode 2nd Mode 3rd Mode 1st Mode 2nd Mode 3rd Mode 

FP- 
Spring- 
Damper 
System 

Frequency (Hz) 0.37 2.68 2.74 0.36 2.54 2.74 

Damping Ratio 0 0.24 0.25 0 0.22 0.25 

Mode 
Shape 

u 1 1 0 1 0 0 

v 0 0 1 0 1 1 

ϴh 0.009 -57.46 0 0.043 -51.37 0 

 

The results show that the leading mode is a nearly pure horizontal motion mode at the frequency 

of the pendulum motion of the isolator (√𝑔/2𝑅𝑒𝑓𝑓1/2𝜋=0.37Hz).  The corresponding damping 

ratio is shown as zero since a zero effective damping was assumed in the analysis.  The third 

mode is the vertical mode and the second mode is nearly a pure rocking mode.  The frequency of 

the rocking mode is significantly affected by the assumed distribution of mass.   
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APPENDIX D 

DRAWINGS OF TEST MODEL 
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APPENDIX E 

TEST DATA FOR SPRING-DAMPER UNITS AND TRIPLE FRICTION 

PENDULUM ISOLATORS 

 Each of Figures E-1 to E-3 presents the recorded histories of displacement and the force-

displacement loops of the four spring-damper units in tests at peak velocity of 0.03in/sec, 

3.14in/sec, and 6.28in/sec, respectively.  The test procedure was described in Section 3-4. 

 
 
Figures E-4 to E-9 present the normalized (lateral force divided by instantaneous vertical load) of 

the tested triple FP isolators.  Figures E-4 to E-7 presents the loops of the four isolators of type A 

and nominal friction of 0.20.  Each of the figures presents four graphs of loops, each at a 

different peak velocity: 0.2, 3.5, 6.9 and 10.4in/sec.   

 

Figures E-8 and E-9 present the recorded normalized force-displacement loops of isolator No. 2 

of type B and nominal friction of 0.12 and isolator No. 2 of type B of nominal friction of 0.07.  

Only one isolator of these two types was tested. 

 

The figures also include analytical force-displacement loops predicted by the model of Fenz and 

Constantinou (2008) using a constant friction model with the values shown in each graph.  More 

details on the modeling and additional results were presented in Section 3-5.  
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FIGURE E-1 (a) Displacement History and (b) Force-Displacement Loops of Spring-Damper Units 

in Test at Peak Velocity of 0.03in/sec (frequency of 0.005Hz) 
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FIGURE E-2 (a) Displacement History and (b) Force-Displacement Loops of Spring-Damper Units 

in Test at Peak Velocity of 3.14in/sec (frequency of 0.5Hz) 
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FIGURE E-3 (a) Displacement History and (b) Force-Displacement Loops of Spring-Damper Units 

in Test at Peak Velocity of 6.28in/sec (frequency of 1.0Hz) 
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FIGURE E-4 Experimental and Analytical Normalized Force-Displacement Loops of Triple FP 

Isolator No.1 of Type A without Lubrication (nominal friction 0.20) 
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FIGURE E-5 Experimental and Analytical Normalized Force-Displacement Loops of Triple FP 

Isolator No.2 of Type A without Lubrication (nominal friction 0.20) 

 

 

 

 

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-8 -4 0 4 8

LA
TE

R
A

L 
 F

O
R

C
E 

/ V
ER

TI
C

A
L 

LO
A

D

DISPLACEMENT (in)

Vpeak=0.2in/s

Experimental
Analytical

μ1= 0.15
μ2= 0.02
μ3= 0.02
μ4= 0.15

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-8 -4 0 4 8

LA
TE

R
A

L 
 F

O
R

C
E 

/ V
ER

TI
C

A
L 

LO
A

D

DISPLACEMENT (in)

Vpeak=3.5in/s

Experimental

Analytical

μ1= 0.21
μ2= 0.03
μ3= 0.03
μ4= 0.21

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-8 -4 0 4 8

LA
TE

R
A

L 
 F

O
R

C
E 

/ V
ER

TI
C

A
L 

LO
A

D

DISPLACEMENT (in)

Vpeak=6.9in/s

Experimental

Analytical

μ1= 0.22
μ2= 0.04
μ3= 0.04
μ4= 0.22

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-8 -4 0 4 8

LA
TE

R
A

L 
 F

O
R

C
E 

/ V
ER

TI
C

A
L 

LO
A

D

DISPLACEMENT (in)

Vpeak=10.4in/s

Experimental

Analytical

μ1= 0.23
μ2= 0.04
μ3= 0.04
μ4= 0.23

(Fenz and Constantinou, 2008) (Fenz and Constantinou, 2008)

(Fenz and Constantinou, 2008) (Fenz and Constantinou, 2008)



321 

 

 

 

FIGURE E-6 Experimental and Analytical Normalized Force-Displacement Loops of Triple FP 

Isolator No.3 of Type A without Lubrication (nominal friction 0.20) 
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FIGURE E-7 Experimental and Analytical Normalized Force-Displacement Loops of Triple FP 

Isolator No.4 of Type A without Lubrication (nominal friction 0.20) 
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Figure E-8 Experimental and Analytical Normalized Force-Displacement Loops of Triple FP 

Isolator No. 2 of Type B (nominal friction 0.12) 
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Figure E-9 Experimental and Analytical Normalized Force-Displacement Loops of Triple FP 

Isolator No. 2 of Type A with Lubrication (nominal friction 0.07) 
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