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Preface

MCEER is a national center of excellence dedicated to the discovery and development of new 
knowledge, tools and technologies that equip communities to become more disaster resilient in 
the face of earthquakes and other extreme events. MCEER accomplishes this through a system of 
multidisciplinary, multi-hazard research, in tandem with complimentary education and outreach 
initiatives. 

Headquartered at the University at Buff alo, The State University of New York, MCEER was originally 
established by the National Science Foundation in 1986, as the fi rst National Center for Earth-
quake Engineering Research (NCEER). In 1998, it became known as the Multidisciplinary Center 
for Earthquake Engineering Research (MCEER), from which the current name, MCEER, evolved.

Comprising a consortium of researchers and industry partners from numerous disciplines and 
institutions throughout the United States, MCEER’s mission has expanded from its original focus 
on earthquake engineering to one which addresses the technical and socio-economic impacts of a 
variety of hazards, both natural and man-made, on critical infrastructure, facilities, and society.

The Center derives support from several Federal agencies, including the National Science Founda-
tion, Federal Highway Administration, Department of Energy, Nuclear Regulatory Commission, 
and the State of New York, foreign governments and private industry.  
 
The use of cables may be seen in diff erent engineering applications such as suspension and cable-
stayed bridges, tensegrity systems, power transmission lines and moorings in ocean engineering. 
During extreme excitations, cables can undergo large displacements and be subjected to complex 
three-dimensional motion. Besides tension, cables can be subjected to shear, bending and torsion. 
In electrical substations, cable confi gurations can be seen that cannot be explained by simple 
tension. In the fi rst part of this report, a 3-D fi nite deformation beam formulation is presented 
and applied to the analysis of the complex nonlinear dynamic behavior of fl exible bus conductors 
used in electrical substations. Comparison of the fi nite element analyses with experiments clearly 
shows that stiff ness and damping in these conductors are dependent on the amplitude of motion. 
The second part of the work is focused on tensegrity structures, a particular type of prestressed 
cable structure. An approach is presented for the dynamic analysis of these structures based on 
casting the computation in each time increment as a complementarity problem.



 

 

 

 



ABSTRACT 

v 

 

The objective of the present work is to re-examine and appropriately modify the geometrically 

exact beam theory, originally developed by Simo, and develop a nonlinear finite-element 

formulation to describe the static and dynamic behavior of flexible electrical equipment cables. 

The work is motivated by the need to better understand and predict the highly nonlinear response 

of flexible electrical conductors to earthquake excitations. Dynamic interaction between flexible 

cables and interconnected substation equipment is in fact believed to explain some of the severe 

damage sustained by such equipment in recent earthquakes. 

In the first part of this report, the nonlinear equations of motion of a beam undergoing large 

displacements and rotations are derived from the 3D theory of continuum mechanics by use of the 

virtual power equation. A linear viscoelastic constitutive equation and an additional mass 

proportional damping mechanism are used to account for energy dissipation. The weak form of 

the equations of motion is linearized and discretized, in time and space, leading to the definition 

of a tangent operator and a system of equations solvable by means of an iterative scheme of the 

Newton type. Particular attention is focused on issues related to how large rotations are handled 

and how the configuration update process is performed. Numerical examples are presented, and 

energy balance calculations demonstrate the accuracy of the computed solutions. The beam model 

developed is then applied to describe the static and dynamic behavior of an electrical conductor 

tested at the Structural Engineering and Earthquake Simulation Laboratory (SEESL) at the 

University at Buffalo. Preliminary results of the simulation of free and forced vibration tests are 

presented.  

In the second part of the report, an approach is presented for the dynamic analysis of tensegrity 

structures, a subclass of pin-jointed structures in which the cables can be considered as tension-

only members. Such analyses are characterized by cables in the structure switching between taut 

and slack states. The approach is based on casting the computation in each time increment as a 

complementarity problem. Numerical examples are presented to illustrate the approach. Despite 

the non-smooth nature of cables switching between taut and slack states, the computed solutions 

exhibit remarkable long-term energy balance. Furthermore, by exploiting some features of the 

tensegrity model, significant computational efficiency can be gained in the solution of the 

complementarity problem in each time increment. 
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SECTION 1  

INTRODUCTION 

 
The use of cables may be seen in different engineering applications such as suspension and cable-

stayed bridges, wide-span roof structures, power transmission lines and moorings in ocean 

engineering. Cables are particularly appealing for long-span structures because they have high 

strength-to-weight ratio, they are easily engineered and they possess very high axial stiffness. 

However, during extreme excitations cables can undergo large displacements and rotations, and 

be subjected to complex three-dimensional motion. Furthermore, besides tension, cables can be 

subjected to shear, bending and torsion. It is common in electrical substations to observe cable 

configurations that cannot be explained by a state of stress of simple tension. Well-developed 

theories exist for the static response of cables, as well as for the linear free-vibration response of 

taut cables. However, no analytical results may be obtained, accounting for the geometric 

nonlinearity due to finite displacements and rotations. For these reasons, researchers involved in 

the dynamic analysis of cables have recently turned to finite element implementations of 

geometrically exact beam theories.  

The present report is composed of two parts. The first part is motivated by the need to better 

understand and predict the highly nonlinear response of flexible electrical conductors to 

earthquake excitations. In fact, dynamic interaction between flexible cables and interconnected 

substation equipment is believed to explain some of the severe damage observed in recent 

earthquakes. Due to the complexity of this interaction, there are deficiencies in how this effect is 

accounted for in current seismic design and qualification standards. The seismic qualification 

procedures in the IEEE 693-2005 Standard are limited to individual equipment, with recognition 

that additional forces due to conductor dynamics have to be accounted for separately. Guidelines 

for magnitudes of such forces at cable terminations are included in the IEEE 1527-2006 Standard. 

However, these are based on experimental measures on specific conductor configurations that do 

not exhaust all the possible configurations in the field. Although inspired by and applied to the 

study of electrical conductors (Oliveto and Sivaselvan, 2014; 2015), the models developed in this 

study can be naturally extended to the analysis of a broader class of cable applications such as 

suspension bridges and ocean mooring systems (Petrone et al., 2015). Furthermore, similar models 

have recently been considered for applications in the fields of robotics and biomedical engineering.  
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In some applications, cables can be considered as being in one of two limiting states - taut or 

slack. An example where such a modeling approach can be used is tensegrity structures - a subclass 

of pin-jointed structures composed of cables or strings, which can only resist tension forces, and 

bars or struts that are mainly meant to work in compression (Oliveto and Sivaselvan, 2011). In the 

second part of the report, an approach is presented for the dynamic analysis of tensegrity structures. 

These are generally used for wide-span roofs, domes, stadiums, and most recently for robots. The 

dynamic vibrations of this kind of structure are characterized by cables in the structure switching 

between taut and slack states. The novelty of the proposed approach is based on casting the 

computation in each time increment as a complementarity problem.   

The report is organized as follows. In Section 2, the 3D finite deformation beam model 

developed by Simo is re-examined and appropriately modified to derive a finite element 

formulation for the static and dynamic analysis of flexible cables. Numerical examples are carried 

out and energy balance calculations are performed to assess the accuracy of the computed 

solutions. In Section 3, the beam model described in Section 2 is applied to describe the static and 

dynamic behavior of an electrical conductor tested at the Structural Engineering and Earthquake 

Simulation Laboratory at the University at Buffalo. Preliminary results of the simulation of free 

and forced vibration tests are presented. Section 4 deals with the dynamic analysis of tensegrity 

structures using a complementarity framework. Numerical applications are presented to illustrate 

the approach and to assess the long-term energy balance of the computed solutions. Concluding 

remarks are made in Section 5. The major contributions of the report are clearly stated and the 

topics of ongoing work discussed. 
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SECTION 2  

3D FINITE DEFORMATION BEAM MODEL 

 
2.1 Introduction 

In the past two or three decades, extensive research has been done on the formulation and 

implementation of geometrically nonlinear beam models. Pioneering work in the field is due to 

Simo (1985), who generalized to the fully three-dimensional (3D) dynamic case, a finite 

deformation beam formulation originally developed by Reissner (1972) for the plane static 

problem. In his model, Simo presented a simple and clear representation of the beam’s deformation 

in terms of position of the cross-sectional centroid and rotation of the cross section. The 

formulation was regarded by Simo as a convenient parameterization of an extension to the classical 

Kirchhoff-Love model (Love, 1944), subsequently developed by Antman (1974) to include 

extension and shearing. Simo (1986), and Simo and Vu-Quoc (1988), then developed a finite-

element formulation of the model for statics and dynamics, which was later extended to incorporate 

shear and torsional warping deformation (Simo, 1991).  

Following Simo’s work, numerous studies have been conducted concerning the development 

of efficient finite-element models based on different ways of representing and interpolating 

rotations. Significant work along these lines was done by Ibrahimbegovic et al. (1995), and 

Ibrahimbegovic and Mikdad (1988), who presented finite-element implementations and time-

stepping schemes for different parameterizations of finite rotations. Furthermore, Crisfield and 

Jelenic (1999), and Jelenic and Crisfield (1999), proposed a new interpolation scheme for rotations 

that prevents non-objectivity of the strain measures. 

Though generally linear elastic constitutive relations are used, in a work by Mata et al. (2007), 

the geometrically nonlinear beam model was extended to account for nonlinear constitutive 

behavior. A clear explanation of how finite-deformation kinematics may be combined with a 

small-strain constitutive behavior is not trivial. Auricchio et al. (2008) provided an elegant 

demonstration based on neglecting the quadratic pure strain term of the Green-Lagrange strain 

tensor and introducing a linear elastic and isotropic relation between the second Piola-Kirchhoff 

stress tensor and the small-strain Green-Lagrange tensor.   

To be attractive for realistic dynamic applications, a numerical model should be able to account 

for some form of energy dissipation. Recently, Lang et al. (2011) and Linn et al. (2013), following 
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the work of Antman (1996; 2003) on nonlinearly viscoelastic rods, introduced viscous material 

damping into a quaternionic reformulation of Simo’s beam model.  

In this section, the 3D finite-deformation beam model developed by Simo is modified 

appropriately and extended to describe the static and dynamic behavior of flexible beams. Most 

importantly, building on the work of Lang et al. (2011), linear viscoelastic constitutive equations 

are introduced in the beam model to account for energy dissipation. Furthermore, a solution to 

issues concerning the interpolation of total rotation vectors of magnitude greater than π is 

proposed. Finally, an alternative approach for the update of curvatures is suggested, based on total 

rotation vectors and taking advantage of special features of Lie groups and of the notion of right-

trivialized derivative (Ortolan, 2011).   

This section is organized as follows. In Subsections 2.2 to 2.5, using the deformation map and 

kinematics introduced by Simo (1985), the equations of motion, as well as the boundary 

conditions, of the finite deformation beam model are derived from the virtual power equation for 

the 3D continuum. In Subsection 2.6, the constitutive equations are described. A new aspect here 

is the introduction of an extension of the Kelvin-Voigt damping model to the 3D geometrically 

nonlinear beam, in a physically consistent way, through the constitutive equations. Viscous 

contributions are added to the elastic stress resultants and moments, proportionally to the strain 

rates. The weak form of the equations of motion is derived in Subsection 2.7, and in Subsection 

2.8 the time integration algorithm is presented. The weak form is linearized in Subsection 2.9 and 

then discretized in space in Subsection 2.10, leading to the definition of a tangent operator and a 

system of equations solvable by means of an iterative scheme of the Newton type. Subsection 2.11 

deals with details of the numerical implementation and with issues related to how large rotations 

are handled and how the configuration update process is performed. Plane and three-dimensional 

examples are presented in Subsection 2.12 to illustrate the performance of the numerical 

implementations.  

 
2.2 Virtual power equation 
 
2.2.1 Equilibrium equation 

In material coordinates the equilibrium equation for the 3D continuum is given by: 

 0 0div    P B x 0  (2-1) 
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where P is the first Piola-Kirchhoff stress tensor, 0 B  is the body force field and 0 x  are the 

inertia forces. The first Piola-Kirchhoff stress tensor relates forces in the current configuration with 

areas in the reference configuration and is defined as: 

 
-Tdet P FT F  (2-2) 

where T is the Cauchy stress tensor and F is the deformation gradient tensor defined as: 

 i
i j i

j i

x

X X

 
   
 

x
F E E E  (2-3) 

 
2.2.2 Preliminary result 

The time derivative of the deformation gradient tensor F is given by: 

 i
i i j

i j

x

X X


    
 

x
F E E E Λ

  (2-4) 

By noting that the first Piola-Kirchhoff stress tensor is energy conjugate to the deformation 

gradient tensor F we can write: 

 

     

   

T T

T

:
T

j ijT T T
ij ji ij ij j j

i i i

jiT
ij j j

i i

x P
tr tr P P P x x

X X X

P
P x x div div

X X


 

        
  


    

 

P F P F P Λ

P x P x

   

   
 (2-5) 

We have therefore obtained the following important result:  

    T Tdiv div tr    P x P x P F   (2-6) 

 
2.2.3 Virtual power equation 

Multiplication of each term of (2-1) by an arbitrary velocity field x and integration over the 

volume of the body in the reference configuration R0 gives: 

  
0

0 0 0
R

div dV     P B x x   (2-7) 

Eq. (2-7) can be rearranged as: 

 
0 0 0

0 0R R R
div dV dV dV       P x B x x x     (2-8) 

Using (2-6), the first integral may be written as follows: 
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0 0 0

T T

R R R
div dV div dV tr dV      P x P x P F   (2-9) 

By applying the divergence theorem to the first term on the right hand side of (2-9) we get: 

        
0 0 0 0

T T T

R R R R
div dV dA dA dA

  
            P x P x P x P x   N N N  (2-10) 

where N  is the unit vector of the  normal to the boundary 0R . We  then can finally write: 

    
0 0 0 0

T
0 0R R R R

dA dV dV tr dV 


          P x B x x x P F   N  (2-11) 

The left hand side of (2-11) represents the power developed by external forces while the right hand 

side represents the internal power. 

 
2.3 Beam model kinematics 
 
2.3.1 Reference and current configurations 

The body kinematics for the beam model are described by a reference and a current configuration, 

both defined with respect to a fixed global reference system  1 2 3, ,e e e  and a set of material 

coordinates  1 2, ,X X S . The beam in the reference configuration is assumed to have a straight 

axis and uniform cross-sections. Moreover, we introduce a right-handed orthogonal reference 

frame  1 2 3O, , ,E E E , with O on the axis of the beam, E1 and E2 parallel to a generic cross-section, 

and E3 parallel to the axis. For simplicity, we take the reference frame to be coincident with the 

global frame so that the reference configuration of the beam is then described by the position vector 

field X: 

  0 ,S t X  X X E  (2-12) 

where α is ranging from 1 to 2. As shown in Figure 2-1, 0 3( , )S t SX E  represents the position of 

a point along the axis of the beam, while X E  represents the position of a point within a cross-

section of the beam. To describe the beam in the current configuration, we introduce a right handed 

orthogonal moving or current frame  1 2 3o, , ,t t t . The moving frame can be seen as a rotated 

reference frame since it can be obtained through a rigid rotation of the reference frame defined by 

a proper orthogonal tensor R(S,t) as: 

    , ,i iS t S t t R E  (2-13) 
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where i is ranging from 1 to 3. Based on (2-13), a convenient expression for the rotation tensor R 

is: 

    , ,i iS t S t R t E  (2-14) 

The current configuration of the beam is then described by the current position vector field x: 

    0 , ,S t X S t  x x t  (2-15) 

where  0 ,S tx  represents the position of a point along the axis of the beam in the current 

configuration, whereas X t  represents the position of a point within a generic cross-section of 

the beam in the current configuration. Using (2-13), the deformation map may be finally written 

as: 

    0 , ,S t X S t   x x R E  (2-16) 

Eq. (2-16) clearly shows how the current configuration is uniquely defined in terms of  0 ,S tx  

and R(S,t). 

 

 

Figure 2-1 Fixed and moving coordinate systems, reference and current configurations 
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2.3.2 Derivatives of the rotation tensor 

Finite rotations belong to the special orthogonal (Lie) group SO(3). Rotation tensors belonging to 

this group are characterized by T R R I  and detR=1. Based on the first property it is easy to 

show that the derivatives of the rotation tensor R with respect to S and t are given by: 

          ˆˆ, , , , ,S t S t S t S t S t
S


   


R ω R R Ω  (2-17) 

          ˆˆ, , , , ,S t S t S t S t S t
t


   


R w R R W  (2-18) 

where ω̂ , ŵ , Ω̂  and Ŵ are skew-symmetric tensors. The first two are defined in the current 

configuration, while the second two are defined in the reference configuration. 

Given that R represents the rotation of the cross-section, ω̂  and Ω̂  represent the rate of 

change of the cross-section rotation with respect to S and therefore can be considered measures of 

bending and torsional strain. We define ω̂  as the current curvature tensor and Ω̂  as the reference 

curvature tensor. Moreover ŵ  and Ŵ represent the rate of change of the cross-section rotation 

with respect to t and therefore may be interpreted as angular velocities. We define ŵ  as the 

current angular velocity tensor and Ŵ as the reference angular velocity tensor. 

The skew symmetric tensors just defined are related by the following expressions: 

 ˆ ˆˆ ˆ     T Tω R Ω R Ω R ω R  (2-19) 

 ˆ ˆˆ ˆ     T Tw R W R W R w R  (2-20) 

Moreover, it is easy to show that the components of ω̂  and ŵ  in the current frame  1 2 3o, , ,t t t  

are the same as those of Ω̂  and Ŵ in the reference frame  1 2 3O, , ,E E E .  

 
2.3.3 Derivatives of the moving frame 

 By means of (2-17) and (2-18) we can now evaluate the derivatives of i i t R E  as: 

            ˆ ˆ, , , , , ,i i i iS t S t S t S t S t S t
S S

 
      

 
t R E ω R E ω t  (2-21) 

            ˆ ˆ, , , , , ,i i i iS t S t S t S t S t S t
t t

 
      

 
t R E w R E w t  (2-22) 
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By introducing vectors ω and w, associated respectively to the skew-symmetric tensors ω̂ , and 

ŵ , (2-21) and (2-22) may also be written as: 

          ˆ, , , , ,i i iS t S t S t S t S t
S


   


t ω t ω t  (2-23) 

          ˆ, , , , ,i i iS t S t S t S t S t
t


   


t w t w t  (2-24) 

We define ω as the current curvature vector and w the current angular velocity vector. We then 

introduce Ω  and W  as the reference curvature vector and the reference angular velocity 

associated respectively to Ω̂  and Ŵ. These are related to the previously defined current vectors 

by: 

    Tω R Ω Ω R ω (2-25) 

    Tw R W W R w (2-26) 

Again, it is easy to show that the components of ω and w in the current frame  1 2 3o, , ,t t t  are the 

same as those of Ω  and W in the reference frame  1 2 3O, , ,E E E . 

 
2.3.4 Deformation gradient tensor 

Substituting (2-15) into (2-3) the deformation gradient tensor F may be written as: 

 0
3X

S S


  
         

x t
F t E E  (2-27) 

Using (2-23) to evaluate the derivative with respect to S of t , (2-27) can then be written in the 

following equivalent form: 

 0
3X

S   
        

x
F t E ω t E  (2-28) 

 
2.4 Beam virtual power equation 

Using the kinematics described above, in this section we particularize the continuum virtual power 

equation to the case of prismatic beams. The complete derivation for each term of (2-11) is 

presented in APPENDIX A. As follows we present the final results only. 
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2.4.1 External power 

Boundary terms.  The first term on the left-hand side of (2-11) becomes: 

                
             

           
0

0 0

0 00 0

0, 0, 0, 0, , ,

, ,

R

L L

dA t t t t L t L t

L t L t d dS d dS
 

 


         

        



   

P x n x m w n x

m w P x x x P w

  

 

N

N N
 (2-29) 

In (2-29) n(0,t) and m(0,t) are the resultant force and moment acting on the cross section at S=0: 

  
0

30,
A

t dA n P  (2-30) 

    
0

0 30,
A

t dA  m x x P   (2-31) 

Furthermore n(L,t) and m(L,t) are the resultant force and moment acting on the cross section at 

S=L: 

   3,
LA

L t dA n P  (2-32) 

    0 3,
LA

L t dA  m x x P  (2-33) 

Finally  is the boundary of the cross section in the reference configuration.  

 

Body forces.  The term of (2-11) related to the body forces becomes:   

     
0

0 0 0 0 0

0 0

L L

R A A
dV dA dS dA dS            B x B x x x B w    (2-34) 

 

Inertia forces.   The term on the left hand side of (2-11) related to the inertia forces becomes: 

  
0

0 0 0 ρ ρ

0 0

L L

R
dV A dS dS             x x x x I w w I w w      (2-35) 

where 0A
A dA    is the mass per unit length of the beam, and ρI is the current inertia tensor 

defined as:  

        
0

ρ 0 0 0 0 0A
dA      I x - x x - x I x - x x - x   (2-36) 

 
2.4.2 Internal power 

The right-hand side of (2-11) becomes    
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0

2
0 0

0

L

R
tr dV dS

S t S

   
              

 T x x
P F n w m ω w ω   (2-37) 

where   

 3A
dA n P  (2-38) 

  0 3A
dA  m x x P    (2-39) 

 
2.4.3 Virtual power equation 

By collecting the results from the previous sections and substituting them into (2-11), the virtual 

power equation for the beam model may be written as:    

 

               

       

    
 

 

0

0 0

0 0

0 0

0 0 0 0

0 0

0 0 ρ ρ

0 0

2
0 0

0, 0, 0, 0, , , , ,
L L

L L

A A

L L

t t t t L t L t L t L t

d dS d dS

dA dS dA dS

A dS dS

S t S

 



 

 

        

       

     

          

   
          

   

   

 

n x m w n x m w

P x x x P w

B x x x B w

x x I w w I w w

x x
n w m ω w ω

 





  



 N N

0

L

dS


 




 (2-40) 

We can write (2-40) more concisely as: 

 

       

   

 

 

0 0 0 0

0 0 0

0 0 0

ρ ρ

0

0 0

0

0, 0, , ,

, ,

L L

L L L

L

L

t t L t L t

S t dS S t dS A dS

dS

dS
S t S



       

     

        

               

  





n x m w n x m w

n x m w x x

I w w I w w

x x
n w m ω w ω

 

   





 (2-41) 

where n0, nL, m0, and mL are concentrated forces and moments applied at the ends of the beam, n  

and m  are the externally applied forces and moments per unit length. These are defined as: 

    0 00, 0,t t   n n m m  (2-42) 
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    , ,L LL t L t n n m m  (2-43) 

   0,
A

S t dA d


    n B P  N  (2-44) 

      
0

0 0 0,
A

S t dA d


       m x x B x - x P  N  (2-45) 

 
2.5 Equations of motion 

The equations of motion are obtained by integrating by parts the internal power term: 

    
0

2
0 0

0

L

R
tr dV dS

S t S

   
              

 T x x
P F n w m ω w ω   (2-46) 

It is proved in APPENDIX B that   ω w ω w . Eq. (2-46) may then be written as: 

  
0

2
0 0

0

L

R
tr dV dS

S t S

                
 T x x

P F n w m w  (2-47) 

Integration by parts with respect to S then leads to: 

 

 0 0
0 00

0 0

0
0

0 0

L L
L L

L L

dS dS
S S S

dS dS
S S S

                    

            

 

 

x x w
n w m n x m w

xn m
x n w w

 


 (2-48) 

Using the permutation rule of the mixed product of three vectors, (2-48) may be written as:  

 

 0 0
0 00

0 0

0
0

0 0

L L
L L

L L

dS dS
S S S

dS dS
S S S

                    

            

 

 

x x w
n w m n x m w

xn m
x n w w

 


 (2-49) 

We may now write the virtual power equation (2-41) as follows:  

            

 

           
           

0
0 0 ρ ρ

0

0 0 0

0

0, 0, 0, 0,

, , , , 0

L

L L

A dS
S S S

t t t t t t

t L t L t t L t L t


                          

           
           


xn m

n x x n m I w w I w w

n n x m m w

n n x m m w

   





 (2-50) 

Since (2-50) holds for any velocity field  0 ,x w , the following equilibrium equations and 

boundary conditions are obtained: 
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 0A
S 


 

n

n x   (2-51) 

  0
ρ ρS S


       

 
xm

n m I w w I w   (2-52) 

    0 0,t t n n 0  (2-53) 

    0 0,t t m m 0  (2-54) 

    ,L t L t n n 0  (2-55) 

    ,L t L t m m 0  (2-56) 

2.5.1 Strain and strain rate measures 

We may rewrite the internal power (2-37) as:  

  
0

0

L

R
tr dV dS

       
  TP F n γ m ω  (2-57) 

where 

γ  and 


ω  represent the following objective rates:    

 
2

0 0 0 0
3 3S t S t S S

                             

x x x x
γ w t w t γ w γ  (2-58) 

 


  ω ω w ω  (2-59) 

and γ  is the current shear-axial strain vector given by: 

      0
3, , ,S t S t S t

S


 

x

γ t  (2-60) 

The internal power may be recast in terms of the reference configuration fields  TN R n  and 

 TM R m  as: 

 

 
0

0 0

0 0

L L

R

L L

tr dV dS dS

dS dS

   

 

                 
   

               

  

 

T

T T

P F n γ m ω R N γ R M ω

N R γ M R ω N Γ M Ω




 (2-61) 

where 


 TΓ R γ  and 


 TΩ R ω  are the reference strain rate measures of Γ  and Ω , which are 

defined as: 
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 0
3S


    


T T x

Γ R γ R E  (2-62) 

  TΩ R ω  (2-63) 

The above expressions for Γ  and Ω  can be obtained from (2-62) and (2-63) as follows. Taking 

the time derivative of Γ  yields: 

  
2

0 0

S S t

 
   

  
T Tx x

Γ R R   (2-64) 

Substituting Eq. (2-18) into Eq. (2-64) gives: 

 

 
2 2

0 0 0 0

2 2
0 0 0 0

ˆ ˆ

ˆ

S S t S S t

S S t S t S



   
          

     
    

                 

T T T T T

T T T T

x x x x
Γ w R R R w R

x x x x
R w R R w R γ



 (2-65) 

Taking the time derivative of Ω  yields: 

 
   

 

ˆ ˆ

ˆ


              

          

T TT T T T T

T T T T

Ω R ω R ω w R ω R ω R w ω R ω

R w ω R ω R ω w ω R ω

    

 
 (2-66) 

 
2.6 Constitutive equations 

As generally done in the literature, we assume large deformations but locally small strains so that 

the elastic forces and moments in the reference configuration, namely Ne and Me, are linearly 

proportional to the corresponding strains Γ , and curvatures Ω , through a constant and diagonal 

elasticity tensor C defined as: 

 N Mdiag ,   C C C  (2-67) 

where     

    N M
1 2 1 2diag , , , , tGA GA EA EI EI GJ C C  (2-68) 

In (2-68), E is the Young’s modulus, G is the shear modulus, A is the area of the rigid cross-

section, A1 and A2 are effective cross-section areas for shearing, I1 and I2 are the second moments 

of area of the cross-section, and Jt is the torsion constant. It may be worth noticing that (2-67) and 

(2-68) assume that the reference frame and the moving frame are principal axes of the cross-

section. Furthermore, slightly more general expressions could be used to account for axial and 

torsional coupling.   
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Building on the work of Antman (1996; 2003) on nonlinearly viscoelastic rods, Lang et al. 

(2011) recently introduced viscous material damping into a quaternionic reformulation of Simo’s 

beam model. Here we use the same Kelvin-Voigt damping model to account for energy dissipation, 

but introduce it directly into the formulation developed by Simo. The internal dissipative forces 

and moments in the reference configuration, namely Nd and Md, are taken as linearly proportional 

to the corresponding strain rate Γ  and curvature rate Ω  through a constant tensor Cd defined as: 

 N M
d d ddiag ,   C C C  (2-69) 

where   

    N M
d 1 2 d 1 2diag , , , , tGA GA EA EI EI GJ      C C  (2-70) 

where   and   are retardation time constants transforming the elastic moduli E and G into 

viscous constants, akin to stiffness proportional damping coefficients.    

Thus, the constitutive equations, relating the total internal forces to their corresponding strains 

and strain rates, and the total internal moments to their corresponding curvatures and curvature 

rates, are given by: 

 e d N N
d     N N N C Γ C Γ  (2-71) 

 e d M M
d     M M M C Ω C Ω  (2-72) 

Subsequently, the constitutive equations (2-71) and (2-72) are introduced in the weak form of the 

equations of motion to set the stage for the derivation of a tangent damping operator. 

 
2.7 Weak form of the equations of motion 

Following Simo (1986) and Simo and Vu-Quoc (1988), the weak form of the equations of motion 

is obtained by multiplying the equilibrium equations (2-51) and (2-52) by an admissible variation 

 ,u η η η : 

 

 

  

0

0

0 ρ ρ

0

,

0

L

u

L

u

G dS
S S S

A dS



 

                       

          





xn m
φ η n η n m η

x η I w w I w η

 

 
 (2-73) 
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If      0, , , ,S t S t S t   φ x R  represents an arbitrary configuration, uη can be interpreted as a 

superposed infinitesimal displacement on the line of centroids 0x , and η  as a superposed 

infinitesimal rotation onto the moving frame defined by R. 

Integration by parts of the first integral of (2-73) leads to the following weak form of the 

equilibrium equations: 

 
   

  

0

0 0

ρ ρ0
0

,

0

L L
u

u

L

u

G dS dS
S S S

A dS


 

 

  
  

  

 
 

           
  

       

 



x ηη
φ η n η m n η m η

x η I w w I w η

 

 

 (2-74) 

Introducing quantities defined in the reference frame, (2-74)  may be recast as:  

 
   

  

0

0 0

0 ρ ρ

0

,

0

L L
u

u

L

u

G dS dS
S S S

A dS


 

 

                       

          

 



η x η
φ η η R N R M n η m η

x η R J W W J W η

 


 (2-75) 

where ρ ρ  TJ R I R  is the time-independent reference inertia tensor and  TW R w  is the 

reference angular velocity vector. 

Linearization and discretization are needed to solve the weak form, Eq. (2-75), by Newton’s 

method. We point out that, because of the nonlinear nature of finite rotations, linearization and 

spatial discretization generally do not commute. However, following Simo and Vu-Quoc 

(1986;1988), we choose to first linearize and then discretize. Before doing so, in the next 

subsections we describe the time integration and configuration update schemes used in the 

numerical implementation and needed in the linearization process.  

 
2.8 Time integration algorithm 

Given the configuration  0, ,n n nφ x R  at time 
nt , the problem of finding the configuration 

 1 0, 1 1,n n n  φ x R  at time 
1n nt t h    is dealt with by an extension to large rotations of 

Newmark’s time integration algorithm. This is summarized in Table 2-1 (Simo and Vu-Quoc 

1988), where the notation 
0 0v x , 

0 0 0 a v x  , and A W  is used. 
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Table 2-1 Time integration algorithm  

Translation	 Rotation	

x0,n+1=x0,n+un	 Rn+1=Rn∙exp( ˆ
nΘ )=exp( ˆ

nθ )∙Rn	

un=hv0,n+h2[(0.5‐β)a0,n+	βa0,n+1]	 nΘ =hWn+h2[(0.5‐	β)An+	βAn+1]	

v0,n+1=v0,n+h[(1‐γ)a0,n+γa0,n+1]	 Wn+1=Wn+h[(1‐γ)An+γAn+1]	

 

In Table 2-1, ˆ
nΘ  is a reference skew symmetric tensor related to the current skew symmetric 

tensor ˆ
nθ  by: 

 ˆ ˆ ˆ ˆ
n n n n     T Tθ R Θ R Θ R θ R  (2-76) 

Moreover, the associated axial vectors nΘ  and nθ  are related by: 

 n n n n   Tθ R Θ Θ R θ  (2-77) 

 

2.8.1 Configuration update 

Owing to the nonlinear nature of the implicit time integration scheme, the weak form of the 

equations of motion  1, 0nG  φ η  is a nonlinear variational equation, and its solution is achieved 

by an iterative procedure of the Newton type. The Newton iteration counter is denoted by the 

superscript i and it is assumed that  ( ) ( ) ( )
1 0, 1 1,i i i

n n n  φ x R  is known. By solving the linearized weak 

form about ( )
1

i
nφ , one obtains the incremental displacement and rotation fields  ( ) ( ) ( )

1 1 1,i i i
n n nu  Δφ δ δθ

. Given ( )
1

i
nΔφ , our goal is to update ( )

1
i

nφ  to ( 1)
1

i
n

φ  in a way that is consistent with the time 

integration algorithm given in Table 2.1. The update procedure is summarized in Table 2-2 (see 

Simo and Vu-Quoc (1988)), and a geometric interpretation is presented in Figure 2-2. The update 

of the linear displacements, velocities and accelerations is performed in standard fashion. The 

update of the incremental rotation is however more involved.  
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To obtain the expressions presented in Table 2-2 we first write: 

        1 1
1 1

ˆ ˆexp expi i i i
n n n n n n

 
 

         R θ R R θ R  (2-78) 

 
Table 2-2 Update procedure  

Translation	 Rotation	

( 1) ( ) ( )
0, 1 0, 1 1
i i i
n n n

   x x δu 	  ( 1) ( ) ( )

1 1 1expi i i
n n n

   R δθ R 	

( 1) ( ) ( )
0, 1 0, 1 1
i i i
n n nh





   v v δu 	 ( 1) ( ) ( )

1
ˆ ˆ ˆexp exp expi i i

n n n


           θ δθ θ 	

( 1) ( ) ( )
0, 1 0, 1 12

1i i i
n n n

h

   a a δu 	 ( 1) ( ) ( 1) ( )

1 1
i i i i

n n n nh




 
      W W Θ Θ 	

	
( 1) ( ) ( 1) ( )

1 1 2

1i i i i
n n n n

h
 
      A A Θ Θ 	

 
Next, we write: 

      1
1 1 1

ˆexpi i i
n n n

  

   R δθ R  (2-79) 

Equating the right-hand side of the second of (2-78) to the right-hand side of (2-79) gives: 

      1
1 1

ˆ ˆexp expi i i
n n n n


 
        θ R δθ R  (2-80) 

Now substituting the first of (2-78) into the right-hand side of (2-80) leads to: 

      1
1

ˆ ˆ ˆexp exp expi i i
n n n n n



             θ R δθ θ R  (2-81) 

From (2-81) we finally obtain: 

      1
1

ˆ ˆ ˆexp exp expi i i
n n n



           θ δθ θ  (2-82) 

Equations (2-79) and (2-82) are the expressions included in Table 2-2. Following Simo and Vu-

Quoc (1988), we picked Rn+1 as unknown and, as shown in Table 2-2, this choice requires the 

extraction of the rotation vector, θn, from the exponential map. Notably, this would not be needed 

if the rotational velocity, Wn+1, rather than Rn+1, were selected as unknown. Whereas with the 

former choice Newton’s method is applied to the Lie group SO(3), the latter choice leads to the 

Lie algebra method (Owren and Welfert, 2000). 
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2.8.2 Velocities and accelerations updates 

The update of velocities and accelerations in the Newton iteration process is obtained by exploiting 

the time integration formulas contained in Table 2-1. For time step 
1nt  , at iterations i and i+1, we 

have: 

    1 12
1

1

2
i i

n n n nh h   


         
Θ W A A  (2-83) 

    2
1

1

2
i i

n n n nh h   
         

Θ W A A  (2-84) 

Subtracting (2-84) from (2-83) gives: 

        1 1
1 1 1 12

1i i i i
n n n nh
 
   

    A A Θ Θ  (2-85) 

Similarly, for the angular velocity at time step 
n + 1t , and iterations i and i+1, we have: 

      1 1
1 11i i

n n n nh   
 

     W W A A  (2-86) 

      
1 11i i

n n n nh   
     W W A A  (2-87) 

Subtracting (2-87) from (2-86), and using (2-85), we get: 

        1 1
1 1 1 1

i i i i
n n n nh




 
   

    W W Θ Θ  (2-88) 

Equations (2-88) and (2-85) are the expressions included in Table 2-2. The update formulae for 

linear velocities and accelerations are obtained in the same fashion. 

 
2.8.3 Remarks on configuration update 

The update procedure in Table 2-2 is applied for 1i . For 0i  , we set  0
0, 1n n x x , and  0

1n n R R

, as the initial guess in the Newton process. We then compute  0
0, 1nv ,  0

0 , 1na ,  0
1nW  and  0

1nA  from 

the time integration scheme formulae given in Table 2-1 as follows: 

                  0 0
0, 1 0. 0, 11 1 1 1

2 2n n n n n nh h
   
    

       
              
       

v v a W W A  (2-89) 

                       0 0
0, 1 0. 0, 1

1 1 1 1 1 1

2 2n n n n n nh h
 

    
             
   

a v a A W A  (2-90) 
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Other starting procedures, such as       0 0
0, 1 0, 1 0, 0,, ,n n n n  v a v a and       0 0

1 1 0, 0,, ,n n n n  W A W A , 

often result in spurious behavior. 

 

 

 

 

Figure 2-2 Geometric interpretation of the incremental iterative update procedure 

 
2.9 Linearization of the weak form 

Writing the weak form of the equations of motion, given by (2-75), at configuration  ( )
1 ,i

nφ η , 

and using the notation 0 0a x  and A W , we get: 
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( )
0, 1( ) ( ) ( ) ( ) ( )

1 1 1 1 1

0

( ) ( ) ( ) ( ) ( )
0, 1 1 ρ 1 1 ρ 1

0 0

,

0

iL
ni i i i iu

n n n n n

L L
i i i i i

u n u n n n n

G dS
S S S

dS A dS




  


    

    

   
                

               



 

xη η
φ η η R N R M

n η m η a η R J A W J W η 

 (2-91) 

The linear part of (2-91) is then given by: 

      ( ) ( ) ( )
1 1 1, , ,i i i

n n nL G G G  
    φ η φ η φ η  (2-92) 

where  ( )
1,i

nG φ η  represents the unbalanced force at configuration  ( )
1,i

nφ η , while the term 

 ( )
1,i

nG φ η , linear in the incremental displacement field  ( ) ( ) ( )
1 1 1,i i i

n n n  Δφ δu δθ , leads to the 

definition of a tangent operator as follows: 

          ( ) ( ) ( ) ( ) ( )
1 1 1 1 1, , , , ,i i i i i

n M n G n D n I nG G G G G           φ η φ η φ η φ η φ η  (2-93) 

Each term on the right hand side of (2-93) represents a different part of the tangent operator, 

namely the material and geometric stiffness parts, the damping part and the inertia part. In the 

following, we will evaluate each term separately. To alleviate the notation, we drop the subscript 

n+1 denoting that a quantity is evaluated at time 
1nt  , and the superscript i denoting the Newton 

iteration counter. 

 
2.9.1 Tangent material stiffness operator 

We recall that the internal forces N and M have been decomposed into their elastic and dissipative 

components as: 

 e d N N N   (2-94) 

 e d M M M  (2-95) 

Therefore, substitution of (2-94) and (2-95) into (2-91) gives:  

 
     

    

e d e d0

0

0 ρ ρ

0 0

,

0

L
u

L L

u u

G dS
S S S

dS A dS




  

                     

               



 

η x η
φ η η R N N R M M

n η m η a η R J A W J W η 
 (2-96) 

Differentiation of the internal elastic forces Ne and Me leads to: 

   e e0

0

,
L

u
MG dS

S S S


                    


η x η
φ η η R N R M  (2-97) 
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We now make use of the constitutive equations to write: 

 e N  N C Γ  (2-98) 

 e M  M C Ω  (2-99) 

Substituting (2-98) and (2-99) into (2-97), then yields: 

   N M0

0

,
L

u
MG dS

S S S


                      


η x η
φ η η R C Γ R C Ω  (2-100) 

The reference shear-axial strain vector Γ  is given by: 

 T 0
3S


  


x

Γ R E  (2-101) 

By differentiating (2-101), we get: 

  T 0 0

S S
   

   
 
x x

Γ R R  (2-102) 

As shown by Simo and Vu-Quoc (1988), we have:    

 ˆ  R δθ R  (2-103) 

and  

 0
0S S S

   
 

  
x

x δu  (2-104) 

Substituting (2-103) and (2-104) into (2-102), then gives:  

 

T T T0 0

T T0 0

ˆ ˆ
S S S S

S S S S

                  
                    

x x
Γ R δθ δu R R δu δθ

x x
R δu δθ R δu δθ

 (2-105) 

The derivative of the curvature vector, Ω, is carried out in a different way than by Simo and Vu-

quoc (1986). The curvature tensor Ω̂  is given by:   

 Tˆ  Ω R R  (2-106) 

By differentiating (2-106), we get:  

    T Tˆ      Ω R R R R  (2-107) 

Substituting (2-103) into (2-107) then leads to: 

  T T T

T T T

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

       

                T

Ω R δθ R R δθ R

R δθ R R δθ R R δθ R R δθ R δΘ
 (2-108) 
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Thus, the derivative of the curvature vector, Ω, can be written as: 

 T    Ω δΘ R δθ  (2-109) 

With (2-105) and (2-109) in hand, we can now write (2-100) as: 

 

  N T0 0

0

M T

0

,
L

u
M

L

G dS
S S S S

dS
S S





                       

 
   

 





η x x
φ η η R C R δu δθ

η
R C R δθ

 (2-110) 

We then introduce the current elasticity tensors, N N T  c R C R  and M M T  c R C R , so that 

(2-110) becomes: 

 

  N0 0

0

M

0

,
L

u
M

L

G dS
S S S S

dS
S S





                     

 
 

 





η x x
φ η η c δu δθ

η
c δθ

 (2-111) 

Moreover, by use of a tensor differential operator Ξ , defined as 

 

0

T

ˆ

S S

S

 
    

 
  

x
I

Ξ

0 I
 (2-112) 

it is easy to prove that (2-111) may be finally written as: 

   T

0

,
L

MG dS     φ η η Ξ c Ξ Δφ  (2-113) 

where N Mdiag ,   c c c . 

 
2.9.2 Tangent damping operator 

The formulation of Simo (1986), and Simo and Vu-Quoc (1988), does not account for energy 

dissipation, and the derivations in this subsection are significantly different. Differentiation of the 

internal dissipative forces Nd and Md in (2-96) leads to:   

   d d0

0

,
L

u
DG dS

S S S


                    


η x η
φ η η R N R M  (2-114) 

Again, we make use of the constitutive equations to write: 
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 d N
d  N C Γ  (2-115) 

 d M
d  M C Ω  (2-116) 

Substituting (2-115) and (2-116) into (2-114), then yields: 

   N M0
d d

0

,
L

u
DG dS

S S S


                      


η x η
φ η η R C Γ R C Ω  (2-117) 

The rate of the reference shear-axial strain vector, Γ, is given by: 

 

 

2
T T0 0 0 0

T 0 0

S t S S S

S S

                         
        

T x x v x
Γ R γ R w R w

v x
R R W



 (2-118) 

By differentiating (2-118), we get: 

 

 

   

T 0 0

T 0 0 0

S S

S S S

 

  

         
             

v x
Γ R w

v x x
R R W R W



 (2-119) 

Substituting (2-103) and (2-104) into (2-119), and recalling that 

 0 0

S S h S

 


  
 

  
v v

δu  (2-120) 

we may write (2-119) as: 

 

     

T T 0 0

T 0 0

ˆ
S S

h S S S S



  


          
    
              

v x
Γ R δθ w

x x
R δu R W R W R W δu



 (2-121) 

We then recall (Simo and Vu-Quoc, 1988) that 

 T
nh




  W R T δθ  (2-122) 

where 

    
ˆ/ 2

1
2tan / 2

n n

n

     
θ θ

T e e e e
θ

 (2-123) 

with /n ne θ θ . 
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Substituting (2-103) and (2-122) into (2-121) now leads to: 

 

 

T 0 0

T T0 0

ˆ

ˆ
n

S S

h S S S h S



 
 

           
     
                  

v x
Γ R δθ w

x x
R δu δθ R W R R T δθ w δu



 (2-124) 

The first term on the right hand side of (2-124) may be written as: 

 

T T0 0 0 0

T T0 0 0 0

ˆ
S S S S

S S S S



                              

                           

v x v x
R δθ w R δθ w

v x v x
R w δθ R w δθ

 (2-125) 

Moreover, the second term within square brackets may be reduced to: 

 
       

 

0 0 0 0

0 0 0 0

ˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ

S S S S

S S S S



   
             

   

                               

x x x x
δθ R W δθ w w δθ w δθ

x x x x
w δθ w δθ w δθ w δθ

 (2-126) 

Using (2-125) and (2-126) into (2-124), we get: 

 

T 0 0

T T0 0ˆ
ˆn

S S

h S S S h S



 
 





          
                           

v x
Γ R w δθ

x x
R δu w δθ R R T δθ w δu



 (2-127) 

Following some rearrangements, (2-127) may be finally written as: 

 
T T T0 0ˆ ˆ

ˆ nh S h S S

 
 

      
                     

x v
Γ R I w I δu R R R T δθ  (2-128) 

The rate of the reference curvature vector, Ω, is given by: 

  T T T


       Ω R ω R ω w ω R w   (2-129) 

By differentiating (2-129), we get: 

        T TT T                 Ω R w R w R w R R W R W  (2-130) 

Substituting (2-103) and (2-122) into (2-130), we get: 
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 T T Tˆ ˆ
nh




            
 

TΩ R δθ w R δθ R W R R T δθ  (2-131) 

The first term on the right hand side of (2-131) may be written as: 

    T T T T Tˆ ˆ               R δθ w R δθ w R δθ w R w δθ  (2-132) 

Moreover, the second term may be reduced to: 

    T T T T Tˆ ˆ
n nh h

 
 

                  
 

R δθ R W R R T δθ R δθ w R R R T δθ  (2-133) 

The first term of (2-133) may be decomposed as: 

        T T T Tˆ                   R δθ w R δθ w R w δθ R w δθ w δθ  (2-134) 

Furthermore, the second term can be written as: 

 

 

 

T T

T T T T T

n

n n n n

h

h






    

                  

R R R T δθ

R R R T δθ R R T δθ R R T δθ R R T δθ
 (2-135) 

Recalling that 

 ˆ  R R Ω  (2-136) 

we may write (2-135) as: 

        

 

 

T T

T
T T T T

T T T T T

ˆ ˆ

ˆ ˆ

n

n n n n n

n n n n n

h

h

h








    

                      

                    

R R R T δθ

R R Ω R T δθ R R Ω T δθ R R T δθ R R T δθ

R R Ω R T δθ R Ω R T δθ R R T δθ R R T δθ

 (2-137) 

Using (2-132), (2-134) and (2-137) into (2-131), we get: 

 

T T T

T T

ˆ ˆˆ n n n

n n

h h

h h

 
 

 
 

            

     

Ω R w δθ Ω R T δθ Ω R T δθ

R T δθ R T δθ



 (2-138) 

Following some rearrangements, (2-138) may be finally written as: 
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   T T T Tˆ ˆ ˆn n n nh h h S

  
  
                   

Ω Ω Ω R T R T R T R w I δθ  (2-139) 

With (2-128) and (2-139) in hand, we can now write (2-117) as: 

 

 

N T0
d

0

T M T T0 0
d

0

T T T

ˆ,

ˆ ˆ ˆ ˆ

ˆ

L
u

D

L

n n n

n n

G
S S h S

dS
h S S S h

dS
h h S








 
 

 
 

                        
    

                    
            





η x
φ η η R C R I w I δu

x v η
R R T δθ R C R R Ω Ω R T

R T R T R w I δθ

 (2-140) 

We then introduce the current dissipation tensors, N N T
d d  c R C R  and M M T

d d  c R C R , so that 

(2-140) becomes: 

 

 

 

N0
d

0

T M T0 0
d

0

T T T

ˆ,

ˆ ˆ ˆ ˆ

ˆ

L
u

D

L

n n n

n n

G
S S h S

dS
h S S S h

dS
h h S








 
 

 
 

                      
    

                  
            





η x
φ η η c I w I δu

x v η
R R T δθ c R Ω Ω R T

R T R T R w I δθ

 (2-141) 

Moreover, by use of the tensor 
dΞ , defined as 

     

 

T0 0

T
d

T T T T

ˆ ˆ
ˆ

ˆ ˆ ˆ

n

n n n n

h S h S S

h h h S

 
 

  
  

      
                                    

x v
I w I R R T

Ξ

0 R Ω Ω R T R T R T R w I

 (2-142) 

it is easy to prove that (2-141) may be finally written as: 

   T
d d

0

,
L

DG dS     φ η η Ξ c Ξ Δφ  (2-143) 

where N M
d d ddiag ,   c c c .  

In order to evaluate T
dΞ , we need to carry out the derivative of T. This is given by:  

 
       2 2 1 ˆ1

2tan 2 tan 2
n n

n
n n

D
   

              
      

θ θ
T e e e e I e e θ

θ θ
 (2-144) 
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where  

 
     2

2 21 1

2tan 2 tan 2 sin 2
n nn n

nn n n

D
  

  
  

θ θθ θ

θθ θ θ
 (2-145) 

 
2.9.3 Tangent geometric stiffness operator 

Differentiation, in (2-96), of the terms that multiply the internal forces N and M leads to: 

   0

0

,
L

u
GG dS

S S S


  
                           


η x η
φ η η R N R M  (2-146) 

By differentiating the first term, we get:  

 

0 0 0

0 0

u u u

u

S S S S S S

S S S

  

 

  

 

                                       
                   

η x η x η x
η R η R η R

x η x
η R η R

 (2-147) 

Substituting (2-103) and (2-104) into (2-147), we obtain: 

 

0 0

0

ˆu u

u

S S S S S

S S S

  

 


                                  

                     

η x η x
η R η δu R η δθ R

η x
η δu η δθ R

 (2-148) 

By differentiating the second term in (2-146), we get: 

 ˆ
S S S S
                           

η η η η
R R δθ R δθ R  (2-149) 

With (2-147) and (2-149) in hand, we can now write (2-146) as: 

   0

0

,
L

u
GG dS

S S S S


 
                                     


η x η
φ η η δu η δθ n δθ m  (2-150) 

It is convenient to rearrange each term in (2-150) as follows. We write the first term as: 

 ˆ
S S S S S    
    

               
    

η δu n n η δu η n δu η n δu η n δu  (2-151) 

In the same fashion, the second term may be written as: 

 ˆu u u u u

S S S S S

    
                

    
η η η η η

δθ n n δθ n δθ n δθ n δθ  (2-152) 

Moreover, the third term can be expressed as: 



 

29 

 

 

 

 

 

0 0 0

0 0 0 0

0 0 0 0

S S S

S S S S

S S S S

  

   

   

                                
                                    
                             

x x x
η δθ n δθ η δθ η n

x x x x
η δθ η δθ n n η η δθ

x x x x
n η η δθ n η n η

  0 0 0 0

S S S S  


 


                                 

δθ

x x x x
η n n η δθ η n n I δθ

 (2-153) 

Finally, we write the fourth term as: 

 ˆ
S S S S S
        
                

    
η η η η η

δθ m m δθ m δθ m δθ m δθ  (2-154) 

With these results in hand, (2-150) becomes: 

 
  0 0

0

,
L

G uG
S S S S

dS
S

 




                           

     


x x

φ η η n δu η n δθ η n n I δθ

η
m δθ

 (2-155) 

It can be easily verified that (2-155) may be written as: 

   T

0

,
L

GG dS     φ η η Ψ B Ψ Δφ  (2-156) 

where 

 

0 0

ˆ

ˆ

ˆ

S

S
S S

 
          

                 

0 0 nI 0 0
Ψ B 0 0 m

0 I I x x
n 0 n n I

 (2-157) 

 
2.9.4 Tangent inertia operator 

We finally differentiate the last integral of (2-96), that is  

     0 ρ ρ

0

,
L

I uG A dS             φ η a η R J A W J W η  (2-158) 

We can decompose (2-158) as follows: 
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0 ρ ρ

0 0

ρ ρ

0

,
L L

I u

L

G A dS dS

dS

 



  



           

       

 



φ η a η R J A W J W η

R J A W J W η

 (2-159) 

Recalling that 

 0 2

1

h



a δu  (2-160) 

the first integral in (2-159) becomes: 

 0 2 2
0 0 0

1 1L L L

u u uA dS A dS A dS
h h  

 
      a η δu η η δu  (2-161) 

By using (2-103), the second integral in (2-159) may be written as: 

 

   

 

 

 

ρ ρ ρ ρ

0 0

ρ ρ

0

ρ ρ

0

ρ ρ

0

ˆ

ˆ

L L

L

L

L

dS dS

dS

dS

dS

 













                    

          

          

         

 







R J A W J W η δθ R J A W J W η

R J A W J W δθ η

R J A W J W δθ η

η R J A W J W δθ

 (2-162) 

The third integral in (2-159) can be decomposed as: 

 
   

 

ρ ρ ρ ρ

0 0

ρ

L L

dS

dS





  



                

  

 R J A W J W η R J A W J W

W J W η

 (2-163) 

Using (2-122), and recalling (Simo and Vu-Quoc, 1988) that 

 T
2

1
nh




  A R T δθ  (2-164) 

we can write (2-163) as: 

 

 

 

T
ρ ρ ρ 2

0 0

T T
ρ ρ

1L L

n

n n

dS
h

dS
h h








 
 

              
   

            
   

 R J A W J W η R J R T δθ

R T δθ J W W J R T δθ η

 (2-165) 
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Following some manipulations, (2-165) may be written as: 

 
   ρ ρ ρ ρ2

0 0

T
ρ

1

ˆ

L L

n

dS
h h

dS
h

 


 




              


   



 R J A W J W η η R J J W

W J R T δθ

 (2-166) 

Substituting (2-161), (2-162) and (2-166) into (2-159), we finally get: 

 

   
 

ρ ρ2
0 0

T
ρ ρ ρ2

1
,

1 ˆ

L L

I u

n

G A dS
h

dS
h h h

 


 
  





            

 
        
  

 φ η η δu η R J A W J W

R J J W W J R T δθ

 (2-167) 

 
2.10 Space discretization of the linearized weak form 

Regarding the finite-element discretization in space of the linearized weak form, as in Simo and 

Vu-Quoc (1986), the incremental displacement and rotation fields are interpolated on an element 

basis as: 

        
1 1

N N

i i i i
i i

S N S S N S
 

  δu δu δθ δθ  (2-168) 

where N is the number of nodes of the element, Ni(S) is the element shape function associated with 

node i, and δui and δθi are the incremental displacement and rotation fields at node i.      

As in the standard Galerkin method, the admissible variation η is approximated using the same 

interpolation functions as in (2-168). Moreover, the following interpolation scheme is used for the 

rotation tensor R: 

        
1

ˆexp
N

i i
i

S S S N S


    R χ χ χ  (2-169) 

where χ̂  is the skew-symmetric tensor associated with the total rotation vector χ.    

Substituting these interpolations into the linearized weak form leads to the following discrete 

approximation of the linearized weak form: 

    
, 1

ˆ+ , , 0
N

i i ij n n j i
i j

      η P φ K R Ω φ Δφ η  (2-170) 

where the discrete tangent operator Kij is given by the sum of the material stiffness operator Sij, 

the damping operator Dij, the geometric stiffness operator Gij, and the inertia operator ijM , that is 
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 = + + +ij ij ij ij ijK S D G M  (2-171) 

Pi is the residual or out-of-balance force, and Δφj the incremental displacement and rotation vector. 

From (2-113) and (2-112), the discrete material stiffness operator may be written as: 

 T

e
ij i jI

dS  S Ξ c Ξ  (2-172) 

where  

 
i

0i
i i

N

N N
S

 
         

I 0

Ξ x
I

 (2-173) 

From (2-143) and (2-142), we write the discrete damping operator as:  

 T
d d

e
ij i jI

dS  D Ξ c Ξ  (2-174) 

where 

    

 

T0 0
j

T
d

T T T T
j

ˆ ˆ
ˆ

ˆ ˆ ˆ

n j

j

j n n j n n

N N
h h S S

N N N
h h h

 
 

  
  

                                             

x v
I w I R R T

Ξ

0 R Ω Ω R T R T R T R w I

 (2-175) 

From (2-156) and (2-157), we get the following expression for the geometric stiffness operator: 

 T

e
ij i jI

dS  G Ψ B Ψ  (2-176) 

where 

 
i

i
i i

N

N N

 
   

I 0 0
Ψ

0 I I
 (2-177) 

From (2-167), the expression for the discrete tangent inertia operator is: 

 
11

22
e

ij
ij I

ij

dS
 

  
  


m 0

M
0 m

 (2-178) 

where 

 11
2

1
e

ij i jI
A N N dS

h 
 m I  (2-179) 

 
 

 

22
ρ ρ

T
ρ ρ ρ2

1 ˆ

e
ij I

n i jN N dS
h h h

 
  





         

 
        
  

m R J A W J W

R J J W W J R T

 (2-180) 
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Finally, from (2-74), the discrete residual force vector takes the form: 

  
0

ρ ρ
e

i i i iI

A
N N dS

                               


an n
P Ξ I I

R J A W J Wm m




 (2-181) 

 
2.11 Remarks on numerical implementation 

In this section, some details are presented on the numerical implementation of the formulation 

presented above. First, we are concerned with the evaluation of the exponential of a skew-

symmetric matrix needed in the update of rotations given in Table 2-2. A simple expression for 

the exponential of a skew-symmetric tensor χ̂  is given by Rodrigues’ formula: 

   2

sin 1 cos
ˆ ˆ ˆexp


   2χ χ

χ I χ χ
χ χ

 (2-182) 

However, as proposed by Simo and Vu-Quoc (1986), we choose to use a quaternion representation 

of rotations that relies on the singularity-free quaternion extraction procedure due to Spurrier 

(1978).  

Details on the quaternion parametrization of rotations are presented in Section 2.11.1. In 

Section 2.11.2, we discuss and propose a solution to some issues that arise in the interpolation of 

total rotation vectors. Finally, in Section 2.11.3, we propose an approach for the update of the 

curvature vectors that has not been presented in the literature. 

 
2.11.1 Quaternion representation of rotations 

Quaternions are a generalization of complex numbers, and are a convenient way to represent 

rotations. A quaternion q  consists of a scalar component q0 and a vector component q, and is 

written 0q q q .   

One of the advantages of representing rotations by quaternions is that when numerical errors 

cause a rotation matrix to deviate from being orthogonal, it is difficult to restore orthogonality. On 

the other hand, a quaternion simply needs to be normalized to unit length to ensure that it is a 

rotation. The unit quaternion corresponding to a rotation χ is given by: 

 0 cos sin
2 2

q   
χ χχ

q q
χ

  (2-183) 
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Computation of a rotation matrix R from a given rotation vector χ .  After computing the 4 

quaternion parameters  0 1 2 3, , ,q q q q  using (2-183), the associated rotation matrix is given by: 

 

2 2
0 1 1 2 3 0 1 3 2 0

2 2
2 1 3 0 0 2 2 3 1 0

2 2
3 1 2 0 3 2 1 0 0 3

1 / 2

2 1/ 2

1/ 2

q q q q q q q q q q

R q q q q q q q q q q

q q q q q q q q q q

    
      
     

 (2-184) 

Extraction of  a rotation vector χ  from a rotation matrix R.  Several algorithms exist for the 

extraction of a unit quaternion from an orthogonal matrix. After extracting the 4 quaternion 

parameters  0 1 2 3, , ,q q q q  using Spurrier’s algorithm (Spurrier, 1978), the associated rotation 

vector is obtained as: 

 12sinχ q  (2-185) 

 
q

χ χ
q

 (2-186) 

 
2.11.2 Interpolation of rotation vectors 

The discrete tangent operator, Kij, and the out-of-balance force, Pi, described previously are 

evaluated using Gauss integration. This involves the evaluation of the rotation tensor, R, and the 

curvature vector, ω, at the Gauss points, requiring careful interpolation of the nodal rotation 

vectors, χi. These are extracted from exp(χi) using Spurrier’s algorithm (Spurrier, 1978), which is 

reported to be the most efficient for the extraction of a quaternion from an orthogonal tensor. 

Spurrier’s algorithm computes a positive quaternion some times and its negative other times. The 

two, however, are completely interchangeable, as they correspond to the same rotation tensor. One 

represents a rotation of π or less and the other represents a rotation of opposite sense, about the 

same axis, of 2π minus the same angle. We choose to uniquely extract rotation vectors, χi, of 

magnitude between -π and π,	by selecting the sign of the associated quaternion 0q q q  that 

makes its scalar component, q0, positive.  

Issues can occur, however, when the nodal rotation vectors, χi, are interpolated by means of 

(2-169) to evaluate the rotation vectors at the Gauss points. These are not evaluated correctly when 

the magnitude of the real rotations is larger than π. In this work’s implementations we tackle the 

problem as follows. For a 2-noded element, let χi  and χj be the extracted rotation vectors at nodes 
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i and j. In interpolating, one takes χi as it is, whereas three rotation vectors are considered at node 

j. These are χj, χj+2πn and χj-2πn, with /n q q  being the unit vector along the rotation axis. Of 

the three, the one that has the minimum Euclidean distance from χi is taken. 

 
2.11.3 Update of curvature vectors 

In this subsection we derive an expression for the update of the curvature vectors that depends 

only on the total rotation vectors at the current iteration. This is in contrast with what generally has 

been done in the literature, where the curvature vectors are updated using incremental rotation 

vectors and the curvature vectors at the previous iteration or time step (Simo and Vu-Quoc, 1988; 

Ibrahimbegovic and Mikdad, 1998; Jelenic and Crisfield, 1998). This was done to avoid path 

dependence in the constitutive equation, because the exponentiation and interpolation do not 

commute.  

As introduced previously, the curvature tensor in the current configuration is given by: 

 Tˆ
S


 


ω R R  (2-187) 

To carry out the calculation, one needs to evaluate the derivative with respect to S of the rotation 

tensor  ˆexpR χ . A simple expression for the exponential of a skew-symmetric tensor is given 

by Rodrigues’ formula (2-182). A similar expression was used by Simo and Vu-Quoc (1986) to 

derive a closed-form solution for the derivative of the exponential of a skew-symmetric tensor. 

However, we follow a different approach that takes advantage of the notion of right-trivialized 

derivative of the exponential map defined as: 

 
2 3

sin 1 cos sin
ˆd exp 

 
   

χ χ χ χ
I χ χ χ

χ χ χ
 (2-188) 

It can be shown (Ortolan, 2011) that 

       Tˆ ˆd exp D exp exp  


   χ χ χ χ  (2-189) 

Using (2-189), the current curvature tensor given by (2-187) may be evaluated as:  

      Tˆ ˆ ˆD exp exp d exp 


       ω χ χ χ χ  (2-190) 

While  ˆDexp χ  is a third-order tensor, which is hard to evaluate, dexp  is a second-order tensor 

for which the simple closed form is given by (2-188). Based on (2-190), the curvature vector in 

the current configuration is simply 
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 dexp  ω χ  (2-191) 

 
2.12 Numerical examples   

In this section we consider a series of numerical simulations that illustrate the performance of the 

formulation described above. Each example consists of both a static and a dynamic phase. The 

first example is a plane problem involving rotations of magnitude greater than π, while the 

following examples concern the 3D static and dynamic analysis of a conductor commonly used in 

electrical substations. Convergence rates and energy balance calculations are presented for each 

example to show the performance of the computations. Finally, the results are compared to those 

obtained with the commercial software ABAQUS. 

 
2.12.1 Free vibration of rolled over cantilever 

The first application consists of statically deforming a cantilever beam into a circle and then 

releasing it. The properties of the beam, taken from Linn et al. (2012), are as follows: length L=0.3 

m, cross-section area A=0.01x0.01 m2, Young’s modulus E=106 Pa, Poisson’s ratio ν=0.3, and 

mass density ρ=103 kg/m3. The finite element mesh consists of 10 2-noded (linear) elements. The 

internal force vector, the dissipative force vector, the material and geometric stiffness matrices, 

and the damping matrix are computed using reduced Gaussian integration (1-point), while 2-point 

Gaussian integration is used for the inertial force vector and the inertia matrix. The parameters 

used in the time integration scheme are β=0.25 and γ=0.5. 

 
2.12.1.1 Static analysis 

The beam is rolled over by applying a concentrated moment M at its free end. Since the exact 

deformed shape is a circle of radius r=EI/M, a moment M=2πEI/L will force the beam to deform 

into a full circle. The moment M is applied in 10 load steps. The final static configuration of the 

beam is shown in Figure 2-3, along with the exact solution and the deformed shapes at each load 

increment. The rate of convergence of Newton’s method is given for each load step in Table 2-3. 

The residual decrease in the last few iterations suggests a quadratic rate of convergence. 
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Figure 2-3 Incremental deformation of cantilever beam into a full circle  

 
Table 2-3 Statically rolled over cantilever – convergence rate of Newton’s method 

iteration         Load increment        

  1 2 3 4 5 6 7 8 9 10 

1 1.74E-03 1.74E-03 1.74E-03 1.74E-03 1.74E-03 1.74E-03 1.74E-03 1.74E-03 1.74E-03 1.74E-03 

2 1.76E+01 1.77E+01 1.80E+01 1.83E+01 1.88E+01 1.94E+01 2.00E+01 2.07E+01 2.15E+01 2.23E+01 

3 6.43E-01 6.46E-01 6.51E-01 6.57E-01 6.67E-01 6.74E-01 6.84E-01 6.95E-01 7.08E-01 7.21E-01 

4 4.74E-02 4.91E-02 5.22E-02 5.63E-02 6.11E-02 6.66E-02 7.25E-02 7.88E-02 8.53E-02 9.20E-02 

5 3.88E-02 3.91E-02 3.97E-02 4.05E-02 4.14E-02 4.24E-02 4.36E-02 4.49E-02 4.64E-02 4.80E-02 

6 2.43E-02 2.48E-02 2.55E-02 2.66E-02 2.79E-02 2.94E-02 3.10E-02 3.28E-02 3.47E-02 3.67E-02 

7 6.55E-03 6.63E-03 6.77E-03 6.95E-03 7.18E-03 7.46E-03 7.76E-03 8.09E-03 8.46E-03 8.84E-03 

8 2.89E-03 2.94E-03 3.01E-03 3.11E-03 3.23E-03 3.37E-03 3.53E-03 3.69E-03 3.88E-03 4.07E-03 

9 8.39E-05 8.51E-05 8.70E-05 8.97E-05 9.30E-05 9.69E-05 1.01E-04 1.06E-04 1.11E-04 1.16E-04 

10 6.29E-07 6.39E-07 6.54E-07 6.74E-07 7.03E-07 7.29E-07 7.62E-07 7.99E-07 8.37E-07 8.71E-07 

11 3.89E-12 3.86E-12 3.95E-12 4.17E-12 1.37E-10 4.43E-12 4.63E-12 4.86E-12 5.09E-12 9.78E-11 

 
2.12.1.2 Dynamic analyses 

The free vibration analyses are performed with three different values of the retardation constants 

μ=η, namely 0.02, 0.04 and 0.08 s. The time step used is h=0.001 s. The vertical and horizontal 

positions of the free end of the beam are plotted in Fig. 2-4 for each value of the retardation 

constants considered. Fig. 2-5 shows snapshots of the beam at times identified by circles and 
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numbers in Fig. 2-4. The rate of convergence of Newton’s method is shown for those same times 

in Table 2-4. 

 

 

Figure 2-4 Displacement of free end of cantilever beam in free vibration: (a) vertical 

position; (b) horizontal position 

 

Figure 2-5 Dynamic unwinding of rolled over cantilever beam 
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Table 2-4 Dynamic unwinding of cantilever – convergence of Newton’s method 

iteration     Time increment  
  1 (t=3.427 s) 2 (t=4.300 s) 3 (t=8.695 s) 4 (t=9.577 s) 5 (t=13.989 s) 6 (t=14.872 s) 

1 2.03E-01 8.75E-02 6.02E-03 4.40E-03 4.16E-03 2.39E-03 

2 2.75E-04 4.10E-05 1.53E-07 6.21E-08 1.78E-08 6.19E-09 

3 3.27E-09 3.09E-10 3.30E-13      

 
The reliability of computations is assessed by performing energy calculations and making sure 

that the energy balance is achieved. In free vibration the sum of strain energy, kinetic energy and 

dissipated energy should be constant and equal to the initial strain energy prior to release. Figure 

2-6(a) shows the energy balance for the case μ=η=0.02 s. Similar plots are obtained for the other 

values of the retardation constants. The decay of the total energy, sum of strain and kinetic energy, 

is shown in Figure 2-6(b) for each value of the retardation constants considered. 

 

 

Figure 2-6 Cantilever beam in free vibration: (a) energy balance; (b) energy decay 

 
In the following, the results of the proposed formulation are verified with those obtained using 

ABAQUS. The cantilever beam was modeled in ABAQUS using 30 CPS4I elements (4-node 

continuum incompatible modes linear elements), and stiffness proportional damping is introduced 

through the Rayleigh damping factor βR. ABAQUS uses the Hilber-Hughes-Taylor implicit time 

integration method. In order to obtain the Newmark’s scheme used in our formulation (β=0.25, 

γ=0.5), we set the parameter α to zero. The time step used is the same as that used for our 

formulation, namely h=0.001 s. The results for the case μ=η=0.04 s are shown in Figure 2-7 where 

they are compared to those obtained with our formulation. 
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Figure 2-7 (a) Rolled over cantilever in ABAQUS; (b) free vibration response – ABAQUS 

versus proposed formulation 

 
2.12.2 Forced and free vibration of cable with clamped ends 

In the following examples, an electrical conductor cable in a vertical drop configuration commonly 

seen in electrical substations is subjected to resonant harmonic excitation of its supports. This kind 

of excitation is contemplated in the IEEE 1527 Standard (Recommended Practice for the Design 

of Flexible Buswork Located in Seismically Active Areas), and recent testing of conductor cables 

with vertical drops has been reported by Chandran (2012). 

The material and geometric properties of the cable are: Young’s modulus E=69000 MPa (107 psi), 

Poisson’s ratio υ=0.3, length L=3683 mm (145 in), cross section area A=1335 mm2 (2.07 in2), 

cross-section second moments of area I1=I2=2830 mm4 (0.0068 in4) and cross-section torsion 

constant Jt=I1+I2. The weight per unit length of the cable is 0.033 N/mm (0.188 lbs/in). The finite 

element mesh consists of 80 2-noded (linear) elements. As in the previous example, reduced 

Gaussian integration (1-point) is used to compute the internal force vector, the dissipative force 

vector, the material and geometric stiffness matrices, and the damping matrix, while 2-point 

Gaussian integration is used for the inertial force vector and the inertia matrix. 

 
2.12.2.1 Cable form finding 

The initial configuration of the cable is obtained by imposing end displacements and rotations to 

an initially straight and unstrained cable. The problem of deforming the cable into its initial 

configuration is not a trivial one. A particular load path has to be followed in order to obtain the 
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expected final configuration. The cable is first subjected to its own weight and then, in arc-length 

control, statically displaced in the steps described in Table 2-5. An additional step in displacement 

control is carried out after step 4 to obtain the exact boundary conditions. The deformed shapes of 

the cable after each step are plotted in Fig. 2-8. The rate of convergence of Newton’s method for 

some selected arc-length increments is given in Table 2-6. 

 
Table 2-5 Cable form finding – loading sequence 

step Boundary condition Increments 

1 0.2 /2 rotation at left end     7 

2 -856 mm (34.5 in) horizontal displacement at right end 40 

3 0.8 /2 rotation at left end     9 

4 1323 mm (52.1 in) vertical displacement at right end 14 

 

 
Figure 2-8 (a) Static deformed shapes of cable with clamped ends; (b) magnification of 

cable under its own weight and subjected to step 1 

 
Table 2-6 Cable form finding – convergence of Newton’s method 

iteration                  Step   
  1 (=0.63) 2 (=0.54) 3 (=0.22) 4 (=0.71) 

1 1.37E+04 3.06E+03 6.55E+04 1.09E+04 

2 3.34E+03 1.70E+00 1.27E+04 1.26E+02 

3 2.29E+02 1.42E-01 1.68E+04 5.85E+01 

4 1.09E-01 9.08E-07 4.29E+02 1.11E+00 

5 9.17E-07   1.39E+01 7.20E-03 

6     2.92E-04 5.54E-07 

7     7.32E-07  
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2.12.2.2 Harmonic ground motion inputs 

Starting from the configuration obtained in the previous section, the cable is then subjected to in-

plane and out-of-plane horizontal harmonic excitations at its supports of the form: 

    
2

exp cos sin cos
1

n D D nu t U t t t t
   


        
    

 (2-192) 

Eq. (2-192) represents the response of a damped single degree of freedom system (SDOF) of 

frequency ωn and damping ratio ζ to a sinusoidal force of frequency ω=ωn (Chopra 2007). In Eq. 

(2-192), U is the steady state amplitude of the response, and ωD=ωn
21   is the damped natural 

frequency of the SDOF. At a specified time t , the motion at the supports is gradually stopped, in 

a time τs, according to the following polynomial rule:   

    
5 4 3

5 4 31 1 1
s s s

u t C C C
  
  

     
           

     
 (2-193) 

The three constants C5, C4 and C3 are obtained by imposing the continuity conditions of 

displacement, velocity and acceleration at time τ=0. 

In the present applications, displacement amplitudes of 50.8 mm (2 in) are considered, and the 

exciting frequencies are taken equal to the linearized fundamental natural frequencies of the cable 

in the initial deformed configuration. These were estimated by linear eigenvalue analysis using the 

tangent stiffness matrix at the given initial configuration and an appropriate consistent mass 

matrix. The computed frequencies are 1.5 Hz for the out-of-plane motion and 4.1 Hz for the in-

plane motion. 

Out-of-plane excitation: The time step used for the out-of-plane simulation is h=0.001 s. 

Substituting the frequency of the out-of-plane motion into Eq. (2-192), and using ζ=0.1, we get the 

support excitation shown in Figure 2-9(a). At time t =10 s, according to Eq. (2-193), the support 

excitation is gradually stopped in a time τs=200h, and thereafter the cable undergoes a phase of 

free vibration. The retardation constants used in the analyses are μ=η=0.01 s.  

The components of the response of a reference point along the cable (S=1793 mm), to the out-

of-plane excitation, are shown in Figure 2-10, along with the deformed shape of the cable at the 

onset of free vibration, and the deformed shape at the end of the analysis.  The reference point is 

marked in Figure 2-10(d). Again, the reliability of computations is assessed in terms of energy 
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balance. In forced vibration the input energy has to be equal at all times to the sum of strain, kinetic 

and dissipated energy. Each energy component is plotted in Figure 2-11(a), and the energy balance 

is shown in Figure 2-11(b). The rate of convergence of Newton’s method, for the time increments 

identified by circles in Figure 2-10(a), is given in Table 2-7. 

 

 

Figure 2-9 (a) Imposed out-of-plane support motion; (b) imposed in-plane support motion 

 
As shown in Figure 2-10, the results of the simulation are verified against those obtained with 

ABAQUS. The cable was modeled in ABAQUS using 80 B31 elements (2-node linear beam 

element in space), and stiffness proportional damping was included through the Rayleigh damping 

factor βR=0.01 s. Results from the proposed formulation compare favorably with ABAQUS results 

obtained by setting α to zero and using time step h=0.001 s.    

In-plane horizontal excitation: The time step used is in this case is again h=0.001 s.  Substituting 

the frequency of the in-plane motion into Eq. (2-192), and using ζ=0.2, we get the support 

excitation shown in Figure 2-9(b). At time t =3 s, the support excitation is gradually stopped, in a 

time τs=200h, and thereafter the cable undergoes a phase of free vibration. Again, we use μ=η=0.01 

s as retardation constants. 

The components of the response of a reference point along the cable (S=1793 mm), to the in-

plane horizontal excitation, are shown in Figure 2-12, along with the deformed shape of the cable 

at the onset of free vibration, and the deformed shape at the end of the analysis. The reference 

point is marked in Fig. 2-12(d). Each energy component is plotted in Figure 13(a), and the energy 
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balance is shown in Figure 13(b). The rate of convergence of Newton’s method, for the time 

increments identified by circles in Figure 2-12(b), is given in Table 2-8.  

As shown in Fig. 2-12, the results of the simulation are verified favorably with those obtained with 

ABAQUS. 

 

 

 

Figure 2-10 Numerical response of reference point to out-of-plane resonant excitation: (a) 

out-of-plane displacement; (b) in-plane horizontal displacement; (c) vertical displacement; 

(d) deformed shapes of cable at onset of free vibration and end of analysis 
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always guaranteed. To illustrate this concept, Figures 2-14 and 2-15 show the energy error 

0 5 10 15
−500

−400

−300

−200

−100

0

100

200

300

400

500

Time [s]

D
is

pl
ac

em
en

t [
m

m
]

 

 
ABAQUS
proposed formulation

1

2

3

(a)

0 5 10 15
−500

−400

−300

−200

−100

0

100

200

300

400

500

Time [s]

D
is

pl
ac

em
en

t [
m

m
]

 

 
ABAQUS
proposed formulation

(b)

0 5 10 15
−500

−400

−300

−200

−100

0

100

200

300

400

500

Time [s]

D
is

pl
ac

em
en

t [
m

m
]

 

 
ABAQUS
proposed formulation

(c)
0

2000

4000

−500
−250

0
250

500
0

1000

2000

3000

4000

[mm][mm]

[m
m

]

onset of free vibration

end of analysis

(d)



 

45 

 

obtained by running the cable example with different time steps. We note that significantly larger 

errors can be obtained in the simulation of the in-plane excitation of the cable, requiring that 

smaller time steps be used in such case. An explanation is given by the fact that, when excited in-

plane, the axial stiffness of the cable can dominate its response and generate high frequency effects 

that can lead to errors and instability problems (Hong et al. 2001). 

 
Table 2-7 Out-of-plane excitation: convergence of Newton’s method 

iteration   Time increment  

  1 (t=1.793 s) 2 (t=7.776 s) 3 (t=11.079 s) 

1 2.23E+06 2.50E+06 4.65E+01 

2 5.14E+02 1.23E+03 6.99E+01 

3 3.77E+01 1.90E+02 9.97E-03 

4 4.82E-03 6.05E-02 8.34E-06 

5 9.01E-07 1.82E-05 1.21E-07 

6   5.97E-07  

 
 

 

Figure 2-11 Cable in out-of-plane forced vibration: (a) energy components; (b) energy 

balance 
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Kinetic energy:           0 0 ρ

1
, , , ,

2K

L

E t A S t S t S t S t dS       v v W J W  

Dissipated energy:           N M
d d

0

, , , ,
t

D

L

E t S S S S dS d             Γ C Γ Ω C Ω    

Input energy:                  1

0 0

, ,
t t

s s
I i i

L

E t d w S v S dSd        R v  

where s
iR  and s

iv  are the reactions and the velocity at the supports, w  is the weight per unit length 

and v1 is the vertical component of velocity. 

 

 

 

Figure 2-12 Numerical response of reference point to in-plane horizontal resonant 

excitation: (a) out-of-plane displacement; (b) in-plane horizontal displacement; (c) vertical 

displacement; (d) deformed shapes of cable at onset of free vibration and end of analysis 
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Table 2-8 In-plane excitation: convergence rate of Newton’s method  

iteration   Time increment  
  1 (t=0.120 s) 2 (t=1.844 s) 3 (t=3.353 s) 

1 7.93E+04 4.87E+06 6.48E+00 

2 5.17E+01 4.82E+03 2.60E-01 

3 1.74E-02 3.65E+02 6.82E-06 

4 4.39E-06 2.45E+00 7.18E-07 

5 6.62E-07 2.13E-03  

6   1.08E-06  
7   6.33E-07  

 

 

Figure 2-13 Cable in in-plane forced vibration: (a) energy components; (b) energy balance 

 
2.12.5 Concluding remarks 

By appropriately modifying and extending the 3D finite deformation beam model proposed by 

Simo, a finite element formulation has been developed for the static and dynamic analysis of 

flexible beams. An extension of the Kelvin-Voigt damping model has been introduced through the 

constitutive equations to model energy dissipation in a way that is physically consistent with the 

large displacements and large rotations beam model. A solution to issues concerning interpolation 

of total rotation vectors of magnitude greater than π has been proposed and illustrated through an 

example. Furthermore, an alternative approach for the update of curvatures has been described, 

based on total rotation vectors, and taking advantage of special features of Lie groups and of the 

notion of right trivialized derivative. Both 2D and 3D numerical examples have been considered 

and energy balance plots, as well as convergence rates of Newton’s method, demonstrate the 
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accuracy of the computed solutions. The introduction of additional damping models, within the 

current framework, is subject of current computational work. 

 

 

Figure 2-14 Cable in out-of-plane forced vibration: (a) energy error for different values of 

the time step h; (b) detail of energy error for h=0.005 s and h=0.001 s 

 

 

Figure 2-15 Cable in in-plane forced vibration: (a) energy error for different values of the 

time step h; (b) detail of energy error for h=0.001 s and h=0.0001 s 

  

0 5 10 15
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Time [s]

er
ro

r

 

 
h=0.01 s
h=0.005 s
h=0.001 s

(a)

0 5 10 15
0

0.001

0.002

0.003

0.004

0.005

Time [s]
er

ro
r

 

 
h=0.005 s
h=0.001 s

(b)

0 1 2 3 4 5
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time [s]

er
ro

r

 

 
h=0.005 s
h=0.001 s
h=0.0001 s

(a)

0 1 2 3 4 5
0

0.0002

0.0004

0.0006

0.0008

0.001

Time [s]

er
ro

r

 

 
h=0.001 s
h=0.0001 s

(b)



 

49 

 

SECTION 3   

NON-LINEAR DYNAMICS OF ELECTRICAL EQUIPMENT CABLES 

 
3.1 Introduction 

Cables are widely used in the power industry as essential components of the electrical transmission 

network. They are usually designed to mainly meet electrical standards rather than structural 

performance requirements, but during earthquakes and other severe environmental hazards, they 

are often subjected to large deformations and internal forces that can result in failure of the 

equipment to which they are connected (Okada et al., 1986; EPRI, 1998; Pierre, 1991; Richter, 

1998).  

Although it is common practice to provide the cables with sufficient slack to accommodate the 

expected relative displacement between interconnected equipment during earthquakes, this is not 

always enough to avoid transfer of destructive forces at the connections. Dynamic interaction 

between flexible cables and interconnected substation equipment is believed to explain some of 

the damage observed in previous earthquakes (Okada et al., 1986; EPRI, 1998; Pierre, 1991; 

Richter, 1998).  

Qualification procedures (IEEE, 2005) have been proposed by utilities, manufacturers, and 

researchers with the objective of minimizing dynamic interaction effects. However, these are only 

qualitative, because of the variety and complex behavior of the equipment used in substations. 

Therefore, it is standard practice to seismically qualify equipment in a ‘stand-alone’ condition (i.e., 

no interaction with connected equipment). Recently, Dastous and Der Kiureghian (2010) authored 

a report, where guidelines were presented for design of flexible and rigid bus connections between 

substation equipment subjected to earthquakes. 

A few research projects have been carried out to study the behavior of flexible conductors 

(Okada et al., 1986; Dastous and Pierre, 1996; Filiatrault and Stearns, 2004; Filiatrault and Stearns, 

2005; Ghalibafian et al., 2005; Chandran, 2012; Hong et al., 2001; Hong et al., 2005; Dastous, 

2005). However, because of their construction, the dynamic properties and energy dissipation 

capacity of stranded electrical cables are not easy to determine and model. Further experiments 

and numerical models are needed to better understand and predict their highly nonlinear response 

to earthquake excitations. 
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3.1.1 Literature review 

Below is a synthesis of experimental and numerical studies over the past few decades to understand 

and analyze dynamic behavior of substation equipment interconnected using flexible conductors. 

 
3.1.1.1 Experimental studies 

Several experimental studies have been carried out to investigate dynamic interaction between 

flexible conductors and interconnected equipment under earthquake excitation. Dastous and Pierre 

(1996) performed a series of sine-sweep tests at realistic amplitudes and selected frequencies, as a 

way of studying the behavior of interconnecting flexible conductors and determining frequencies 

that are likely to be excited by an earthquake. It was observed that due to nonlinear behavior of 

cables, these frequencies are dependent on the configuration of the cable and on the amplitude of 

the excitation. Furthermore, it was suggested that cables be designed so that natural frequencies at 

which they are likely to be excited be different than those of the equipment to which they are 

connected.  

Filiatrault and Stearns (2004) conducted shake table tests on five different pairs of substation 

equipment interconnected by three different flexible conductors with different levels of slack. They 

observed two different types of dynamic response to the seismic tests. While a first type of behavior 

involves low dynamic interaction between the interconnected equipment due to low intensities of 

ground motion and large slack of the conductors, on the other hand, the second type of response 

involves high dynamic interaction due to high intensity ground motions and small slacks. 

Furthermore, the presence of the conductor was seen to increase the damping ratio of the 

interconnected equipment.  

Filiatrault and Stearns (2005) also conducted quasi-static bending tests on two flexible 

conductors used to interconnect electrical substation equipment. The results of the tests indicated 

that for most combinations of axial tension and lateral displacement, the flexural stiffness of the 

conductors is very small and tends toward the minimum possible value corresponding to the 

situation where the wires slide freely against each other and are unable to transfer shear forces.  

Ghalibafian et al. (2005) carried out quasi-static cyclic tests and a series of shake table tests on 

largescale equivalent models of substation equipment connected by a class of high-voltage flexible 

conductors. These tests showed that the presence of the flexible cable can decrease or amplify the 
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response of the interconnected equipment and confirmed how these can experience higher 

demands than they would in the stand-alone state.  

Extensive experimental tests on flexible conductors provided by the Bonneville Power 

Authority have recently been conducted at the Structural Engineering and Earthquake Simulation 

laboratory at the University at Buffalo, in the form of pullback tests, harmonic tests, and earthquake 

excitations (Chandran, 2012). The results of these tests point out the need for the development of 

numerical models to better understand the nonlinear dynamics and energy dissipation capacity of 

electrical cables. Numerical simulation of some of the tests performed is considered in subsection 

3.4. 

 
3.1.1.2 Numerical studies 

During extreme excitations, cables can undergo large displacements and rotations, and be 

subjected to 3D states of stress. Besides tension, cables can be subjected to shear, bending, and 

torsion. Moreover, it is common in electrical substations to observe cable configurations that 

cannot be explained by a state of simple tension.  

Well-developed theories exist for the static response of cables, as well as for the linear free 

vibration response of taut cables (Irvine, 1981). However, no analytical results may be obtained, 

accounting for the geometric nonlinearity because of finite displacements and rotations of the 

cable. For these reasons, researchers involved in the dynamic analysis of electrical cables have 

recently turned to finite element implementations of geometrically nonlinear beam theories. 

Building on the original formulation proposed by Simo and Vu-Quoc (1986;1988), several of these 

implementations have been developed, based on different ways of parameterizing and 

interpolating rotations. A formulation proposed by Ibrahimbegovic and Mikdad (1998), and 

implemented in the finite-element program FEAP (Taylor, 2001), was used by Hong et al. (2001) 

in the study of the seismic interaction of cable-connected equipment items. In this study, a constant 

bending stiffness was used to model the cables. However, electrical conductors are typically made 

of layers of helically wrapped aluminum wires, and because of this construction, their bending 

stiffness varies with tension, curvature, and deformation history. A model that accounts for 

interlayer friction and slipping of wires during bending was developed by Papailiou (1995;1997) 

and implemented in a static finite-element program based on the secant stiffness method.  
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Later, based on the physical assumptions of the work by Papailiou, Hong et al. (2005) and 

Dastous (2005) independently extended the geometrically nonlinear beam model implemented in 

FEAP to account for the material nonlinearity arising from the variable bending stiffness of 

stranded cables. In (Dastous, 2005), the numerical model of the cable is calibrated using 

experiments on cables subjected to sinusoidal excitation of their ends. External sources of 

equivalent viscous damping, associated with the rotational DOFs of the discretized cable, were 

introduced in the model and calibrated to fit the experimental results.  

Recently, Benassi and Reinhorn (2009) investigated the current capabilities of two finite-

element programs, ABAQUS (Dassault Systemes Simulia Corp., 2013) and FEAP, in modeling 

the dynamic behavior of electrical equipment conductors. An important result they found was that 

correct evaluation of the initial configuration and state of stress of the cable is essential to reliably 

predict its dynamic behavior.  

Another aspect concerning stranded cables and the way they are constructed is the interaction 

between axial force and torsion. A treatment of the subject and additional references can be found 

in the text by Costello (1997), where various theories of wire rope are described. To our 

knowledge, the coupling effects between axial force and torsion have not yet been considered in a 

finite element implementation of the geometrically nonlinear beam theory and may be subject of 

future work. 

 
3.1.2 Objective and organization of the present work 

The objective of the present work is to develop and implement a finite-element formulation of the 

geometrically nonlinear beam theory to model the behavior of flexible electrical equipment cables. 

Although the work is inspired by and applied to the study of electrical conductors commonly used 

in the power industry, the models developed herein can be naturally extended to the analysis of a 

broader class of cable applications, such as suspension bridges and ocean mooring systems. 

Furthermore, similar models have recently been considered for applications in the fields of robotics 

(Boyer et al., 2011) and biomedical engineering (Vernerey and Moran, 2010).  

The cable model presented herein does not account for the material nonlinearity associated 

with the dependence of bending stiffness on curvature and tension. However, its novelty lies in 

how energy dissipation is accounted for. To our knowledge, the only way energy dissipation has 

been modeled in the literature is by adding external sources of viscous damping to the DOFs of 
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the discretized cable (Dastous, 2005). In the present model, energy dissipation is accounted for in 

a physically consistent way by introducing linear viscoelastic constitutive equations and an 

additional mass proportional damping mechanism. Although fundamentally the ideas are simple, 

as shown in Section 2, their implementation in the 3D finite deformation beam model is involved. 

The chapter is organized as follows. In subsection 3.2, the governing equations of the 3D finite 

deformation beam model are briefly described. In subsection 3.2.4, an extension of the Kelvin-

Voigt damping model to the 3D geometrically non-linear beam is introduced in a physically 

consistent way through the constitutive equations, while in subsection 3.3, the equilibrium 

equations are modified to account for mass proportional damping. In the following subsection 3.4, 

the model is applied to describe the static and dynamic behavior of an electrical conductor tested 

at the Structural Engineering and Earthquake Simulation laboratory at the University at Buffalo. 

Preliminary results of the simulation of free and forced vibration tests are presented. 

 
3.2 Summary of governing equations 

In this subsection, a summary of the governing equations of the geometrically nonlinear beam 

model is presented, including kinematics, equilibrium and constitutive equations. We recall that 

the model considered is basically the one originally developed by Simo and Vu-Quoc (1986;1988), 

with the addition of a consistent way of modeling energy dissipation. For complete details of the 

implementation, we refer the reader to Section 2. 

 
3.2.1 Kinematics 

Following Simo (1985), the motion of the cable through time is uniquely defined by the position 

of the line of centroids x0(S,t) and a rotation tensor R(S,t), specifying the orientation of a moving 

(current) frame ti(S,t) attached to the cross section, relative to its initial (reference) position Ei. The 

reference and current configurations of the cable, and their corresponding coordinate systems, both 

defined with respect to a fixed global reference system ei, are shown in Figure 3-1. We note that, 

because of shearing, cross sections remain plane but not necessarily perpendicular to the line of 

centroids in the current configuration. 

R(S,t) represents a rigid rotation of the cross-section such that 

    , ,i iS t S t t R E   (3-1) 
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The derivatives of R(S,t) with respect to S and t represent the rates of change of ti(S,t) along the 

line of centroids and in time and are defined by 

 
       , ˆˆ , , ,
S t

S t S t S t
S


   


R

ω R R Ω   (3-2) 

 
       , ˆˆ , , ,
S t

S t S t S t
t


   


R

w R R W   (3-3) 

where ω̂  and ŵ are skew-symmetric tensors defining the current curvature and rotational velocity, 

while Ω̂ and Ŵ  are the corresponding tensors taking value in the reference configuration. The 

hat notation is used herein to identify skew-symmetric tensors. The axial vectors associated with 

these tensors will be identified by the same symbol but without the hat. 

 
3.2.2 Equilibrium equations 

The equations of motion are given by 

 0A
S 


 

n

n x    (3-4) 

  0
ρ ρS S


       

 
xm

n m I w w I w    (3-5) 

In (3-4) and (3-5), n and m are force and moment resultants in the current configuration, while

n and m are distributed applied forces and moments per unit undeformed length of the cable. 

Moreover, Aρ and Iρ are the mass and current mass moment of inertia per unit undeformed length 

of the cable, and w is the current rotational velocity vector. 

 
Figure 3-1 Fixed and moving coordinate systems, reference and current configuration 
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3.2.3 Strain and strain rate measures 

Expressions of the current and reference strain measures are summarized in Table 3-1. Although 

the equations of motion (4) and (5) are expressed in terms of internal forces in the current 

configuration, it is convenient to write the constitutive equations in terms of strains in the reference 

configuration. The strain rate measures, conjugate to the internal force and moment resultants, are 

derived naturally from the internal power equation: 

  
0

0 0

L L

R
tr dV dS dS

                  TP F n γ m ω N Γ M Ω    (3-6) 

where P is the first Piola–Kirchhoff stress tensor, F is the deformation gradient tensor, N=RT∙n 

and M=RT∙m are the reference force and moment resultants. The strain rate measures are 

summarized in Table 3-2 

 
Table 3-1 Strain measures 

Strain	 Current	 Reference	

Axial	and	shear	 γ(S,t)=	 0

S



x
(S,t)‐t3(S,t)	 Γ=RT∙γ	

Bending	and	torsion	 ω(S,t)	 Ω=RT∙ω	

 

Table 3-2 Strain rate measures 

Strain	rate	 Current	 Reference	

Axial	and	shear	

γ = γ ‐w×γ	 Γ =RT∙ γ 	

Bending	and	torsion	 
ω =ω ‐w×ω	 Ω =RT∙


ω 	

 

We note that in the current configuration, the strain rate measures 


γ  and 


ω , conjugate to the 

internal forces n and m, are not simply the time derivatives γ  and ω of the corresponding strain 

measures γ and ω. As explained by Simo (1985), 


γ and 


ω  denote corotated rates; that is, the rates 
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measured by an observer attached to the moving (current) frame. We note the similarity to the 

Coriolis term when considering the acceleration of a particle in a rotating frame. 

 
3.2.4 Constitutive equations 

Large deformations, but locally small strains are assumed, so that the elastic forces and moments 

in the reference configuration, namely Ne and Me, are linearly proportional to the corresponding 

strains, Γ, and curvatures, Ω, through a constant and diagonal elasticity tensor, C, defined as: 

 N Mdiag ,   C C C  (3-7) 

where  

    N M
1 2 1 2diag , , , , tGA GA EA EI EI GJ C C  (3-8) 

In (3-8) E is the Young’s modulus, G is the shear modulus, A is the area of the rigid cross-section, 

A1 and A2 are effective cross-section areas for shearing, I1 and I2 are the area moments of inertia 

of the cross-section, and Jt is the torsion constant. In writing (3-7) and (3-8), we assume that the 

reference frame and the moving frame are principal axes of the cross-section. 

As explained in Section 2, energy dissipation is modeled by a Kelvin-Voigt damping model. 

The internal dissipative forces and moments in the reference configuration, namely Nd and Md, are 

assumed to be linearly proportional to the corresponding strain rate, Γ , and curvature rate, Ω , 

through a constant tensor, Cd, defined as: 

 N M
d d ddiag ,   C C C  (3-9) 

where 

    N M
1 2 1 2diag , , , , tGA GA EA EI EI GJ      C C  (3-10) 

In (3-10), η and μ are retardation time constants transforming the elastic moduli E and G into 

viscous constants, akin to stiffness proportional damping coefficients. 

The constitutive equations, relating the total internal forces to their corresponding strains and 

strain rates, and the total internal moments to their corresponding curvatures and curvature rates, 

are therefore given by 

 e d N N
d     N N N C Γ C Γ   (3-11) 

 e d M M
d     M M M C Ω C Ω   (3-12) 
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3.3 Mass proportional damping 

The constitutive equations described above allow for the introduction of a Kelvin-Voigt type of 

damping in the model. To potentially model mass proportional damping, we define the following 

dissipation potential: 

 0 0 ρ

1

2D t rP A       x x w I w   (3-13) 

Taking the derivative of PD,  with respect to 0x and w, we get dissipation forces that we add to the 

right hand side of each of the equations of motion, (3-4) and (3-5), as follows: 

 0 0tA A
S  
  


n

n x x    (3-14) 

  0
ρ ρ ρrS S


         

 
xm

n m I w w I w I w   (3-15) 

Proceeding in the same fashion as in Section 2, we derive the following weak form of the equations 

of motion: 
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η x η
φ η η R N R M n η m η

x x η R J W J W W J W η

 

 
 (3-16) 

Due to the presence of the newly added terms, linearization of the new weak form (3-16) leads to 

the definition of an additional mass proportional damping operator: 

      0 ρ

0 0

,
L L

MPD u t rG A dS dS           φ η η v η R J W  (3-17) 

where we have used the notation 0 0v x . Recalling from Section 2 that  

 0 h




v δu  (3-18) 

the first integral of (3-17) becomes: 

  0

0 0

L L

u r u tA dS A dS
h 
  


   η v η δu  (3-19) 

The second integral in (3-17) may be decomposed as: 
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      ρ ρ ρ

0 0 0

L L L

r r rdS dS dS                   η R J W η R J W η R J W  (3-20) 

We now recall that  

 ˆ  R δθ R  (3-21) 

The first integral in (3-20) can then be written as: 
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  (3-22) 

Moreover, recalling that  

 T
nh




  W R T δθ  (3-23) 

the second integral in (3-20) becomes: 
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With (3-19), (3-22) and (3-24) in hand, we can finally write (3-17) as: 

    T
5 ρ ρ
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,
L L
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h h 
    
 

 
           

 
 φ η η δu η R J R T R J W δθ  (3-25) 

Introducing the space discretization scheme described in Section 2, we get the following 

discretized version of the tangent mass proportional damping operator: 
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Furthermore, the following vector is to be added to the discrete residual force vector: 
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3.4 Numerical simulation of dynamic cable tests 

In this subsection, the 3D geometrically nonlinear beam model is applied to describe the behavior 

of an electrical conductor tested by Filiatrault, Reinhorn and Chandran (Chandran, 2012) at the 

University at Buffalo. The conductor tested was a Jefferson/TW AAC conductor made of 46 

helically wrapped aluminum wires in four layers. As shown in Figure 3-2, the cable was connected 

to a shake table at one end and to a reaction frame at the other. The cable was instrumented with 

accelerometers and Krypton LEDs (Krypton Electronic Engineering, 2003), and subjected to a 

series of dynamic excitations in the form of pull-release tests, sine tests, and earthquake 

simulations. Details on the instrumentation and the dynamic tests can be found in (Chandran, 

2012). In the following, we present some preliminary results from the simulation of the out-of-

plane pull-release and sine tests. To our knowledge, 3D numerical simulations of electrical cables 

have not been presented in the literature. 

 

 

Figure 3-2 Configuration of cable tested (Chandran, 2012) 

 
3.4.1 Modeling cable properties 

The material properties of the aluminum cable used in the analyses are Young’s modulus 

E=10×106psi and Poisson’s ratio ν=0.33. These were not directly measured but are based on 

typical values for aluminum (Costello, 1997). As shown in Figure 3-3, the total length of the cable 

is L=164in. The two swage fittings are modeled with stiffer elements than the rest of the conductor, 

accounting for not perfectly fixed end conditions. The weight per unit length is 0.212lbs/in. Bounds 

for the cross-sectional properties of the cable are estimated as described in (Filiatrault and Stearns, 
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2004; Hong et al., 2001). By neglecting the lay angle that the wires make with the axis of the cable, 

the cross-sectional area of the conductor is evaluated as 

 
4

1 4

n
i

i

d
A




   (3-30) 

where n is the number of wires and di is the diameter of the ith wire. As shown in Figure 3-3, the 

wires of the Jefferson/TW AAC conductor are trapezoidal, therefore circular wires of equivalent 

area have been considered to evaluate the diameter di. The value of the cross-sectional area of the 

cable, estimated using (3-30), is A=2.01in2. 

The area moment of inertia of the cross section can assume considerably different values 

depending on whether the wires remain connected, or can more or less slide with respect to one 

another during bending. The minimum value is obtained assuming that there is no friction 

whatsoever between wires and that these can slide freely against each other. On the other hand, 

the maximum value is obtained assuming that the wires do not slip but remain attached because of 

significant friction. These two extreme values are given by 
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    (3-31) 

where yi is the distance of the ith wire from the neutral axis and dc is the diameter of the conductor. 

Moreover, the IEEE (1999) guidelines recommend the approximation I=(1+N) Imin, where N 

denotes the number of layers of strand. When applied to trapezoidal wires, Eq. (17) yields different 

values of Imin for different values of the fill factor α, defined as the ratio of the total area of 

trapezoidal wires to the full area of the conductor. The fill factor α is needed to compute the 

diameter di of the equivalent circular wire to be used in (3-31). With fill factors 0.9 1  , Imin 

for the tested Jefferson/TW AAC conductor takes values between 0.0057 and 0.0070 in4. Using 

α=1, (3-31) yields Imax=0.3217 in4. Slightly lower values for Imin and Imax are obtained if (3-31)is 

multiplied by cosβ [19, 20], where β is the lay angle of the wires. 

In the dynamic simulations that follow, two different values of I are used to fit the experimental 

results, namely I=0.0077 in4 for the pull-release tests, and I=0.0067 in4 for the sine tests. It should 

be noted that these values approach Imin, a trend that was observed by Filiatrault and Stearns (2005). 

For the free vibration tests, we will also show results of numerical simulations using the lower 

bound for Imin and the I recommended by the IEEE guidelines. The latter, obtained using the upper 
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bound for Imin, is I=0.0350 in4. The swage fittings are modeled using I=0.015 in4. Such value was 

selected based on measurements of the displacements at the cross sections where the conductor 

enters the swage fittings. The values of the area moment of inertia used in the numerical analyses 

are presented in Table 3-3, along with the estimated maximum and minimum values, and the value 

recommended by the IEEE guidelines. 

 

 
Figure 3-3 Schematics of Jefferson conductor 

 
Table 3-3 Values of I considered 

Second moment of area Value [in4] 

Imin   (expected range) 0.0057 to	0.0070 

Imax                             0.3217 

I=(1+N)Imin    (upper bound Imin)                             0.0350 

I used for free vibration tests                             0.0077 

I used for forced vibration tests                             0.0067 

 
3.4.2 Cable form finding 

The first numerical application is concerned with determining the static configuration of the 

cable, which is the starting configuration for the dynamic tests. This is obtained by imposing end 

displacements and rotations to an initially straight and unstrained cable to match the ends of the 

experimental configuration. The right end of the cable is subjected to a horizontal displacement of 

47.4 in and a vertical displacement of 59.2 in, whereas a rotation of 1.80 rad is applied to the left 

end of the cable. The finite-element mesh consists of eighty 2-noded (linear) elements for the 

conductor and five 2-noded (linear) elements for each swage fitting. This number of elements was 

chosen to ensure convergence of frequencies for the linearized cable model. The deformed shape 
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of the cable, obtained with the numerical model, is plotted in Figure 3-4 against the initial 

configuration measured by the Krypton LEDs prior to the dynamic experiments. We note that 

varying the area moment of inertia within the range of its physically acceptable values influences 

the reactions at the ends but does not significantly affect the static configuration of the cable. 

However, correct evaluation of the state of stress of the cable is important for the reliable prediction 

of the dynamic behavior and fatigue of the cable. 

 
3.4.3 Modes and frequencies 

Once the static shape of the cable has been found, the natural frequencies of the linearized cable 

model can be estimated by eigenvalue analysis, using the tangent stiffness matrix at the given 

configuration and an appropriate consistent mass matrix. The latter is obtained by rotating the 

consistent mass matrix of the beam from the straight and unstrained configuration to the current 

deformed one. The first four linearized mode shapes, using I=0.0077 in4, are shown in Figure 3-5. 

The corresponding frequencies and periods of vibration are listed in Table 3-4. 

 

 

Figure 3-4 Static deformed shape of cable with clamped ends 
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3.4.4 Free vibration tests 

The pull-release tests performed consist of manually applying, and then instantaneously releasing, 

an external displacement at the center of the cable. Because we do not have displacement 

measurements, we numerically apply the displacement that allows a reasonable comparison of the 

acceleration responses. As a result of applying an out-of-plane displacement of 8 in at its center 

(point 2), the computed configuration of the cable prior to release is shown in Figure 3-6(a). The 

displacement response of point 2, during the free vibration phase, is shown in Figure 3-6(b). 

Kelvin– Voigt damping is considered in the analysis with retardation constants η=μ=0.016 s. 

Moreover, a time step Δt=0.001 s is used. The acceleration histories of the three control points, 

shown in Figure 3-6(a), are plotted in Figure 3-7 against the responses measured during the 

experiments.  

 

 
 

 
Figure 3-5 Mode shapes of linearized cable model 
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Table 3-4 Frequencies and periods of cable 

Mode Frequency [Hz] Period [s] 

1 1.34 0.75 

2 3.39 0.29 

3 4.19 0.24 

4 7.76 0.13 

 

 

Figure 3-6 Pull-release tests: (a) Deformed shape of cable prior to release (green), final 

shape of cable (red); (b) free vibration response of point 2 
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 input energy (strain energy kineticenergy dissipated energy)
energyerror

input energy

  
   (3-32) 

is shown in Figure 3-8(c). 

The results shown in Figure 3-7 were obtained using I=0.0077 in4. In Figure 3-9(a), the results 

of the simulation using the lower bound for Imin are shown, while Figure 3-9(b) shows the results 

of the simulation using the value I=(1+N)Imin recommended by the IEEE (1999) guidelines, with 

the upper bound of Imin. In the latter, a smaller out-of-plane displacement is imposed to the cable, 

namely 2.5 in compared to the previous 8 in, in order to compare the amplitude of the experimental 

acceleration. Moreover, retardation constants η=μ=0.005 s are used. The results presented show 

how proper estimation of the area moment of inertia I is crucial to obtain a reliable evaluation of 

the frequency of the cable. 

 

 

Figure 3-7 Free vibration acceleration response of control points shown in Figure 6(a) 
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Figure 3-8 Cable in free vibration: (a) energu components; (b) energy balance; (c) energy 

error as defined in Eq. (3-32) 
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entire input signals were generated numerically and adjusted to match the available experimental 

displacement and acceleration signals. 

 

 
Figure 3-9 Free vibration acceleration of control point 2 shown in Figure 3-6(a): (a) using I 

equal to the lower bound of Imin; (b) using I=(1+N)Imin and the upper boundof Imin  
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  (3-33) 

Equation (3-33) represents the response of a damped SDOF of frequency ωn, and damping ratio ζ, 

to a sinusoidal force of frequency ω=ωn  (Chopra, 2007). In (3-33), U is the steady state amplitude 

of the response, and ωD=ωn(1-ζ2)1/2 is the damped natural frequency of the SDOF. In the present 
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experimental results show clearly that damping increases with decreasing displacement amplitude, 

as may be expected of damping associated with Coulomb friction (Chopra, 2007). 

 

 

Figure 3-10 Imposed support displacement and acceleration 

 
The out-of-plane acceleration histories of the control points shown in Figure 3-6(a) are shown 

in Figure 3-12, where again they are compared to those measured during the experiments.                    

The plots on the left-hand side of Figure 3-12 were obtained using constant Kelvin–Voigt damping 

with retardation constants η=μ=0.012 s, while those on the right-hand side are obtained by 

increasing the retardation constants for the free vibration phase to η=μ=0.016 s. In this case, the 

numerical response appears to underestimate the recorded accelerations. Furthermore, the zoom-

in shown in Figure 3-13 reveals the nonharmonic nature of the acceleration response, both 

measured and computed, possibly due to the influence of higher modes and nonlinearity effects. 

Thus, the influence of damping variation likely plays an even bigger role in the acceleration 

response. 

Again, the reliability of computations is assessed in terms of energy balance. In forced 

vibration the input energy has to be equal at all times to the sum of strain, kinetic and dissipated 

energy. Each energy component is plotted in Figure 3-14(a), and the energy balance is shown in 

Figure 3-14(b). The energy error is plotted in Figure 3-14(c). While energy balance alone does not 

guarantee accuracy of the solutions, together with other checks such as rate of convergence of 

Newton’s method, it provides confidence in the accuracy of the computations.   
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Figure 3-11 Displacement history of control points shown in Figure 3-6(a). Constant 

η=μ=0.012 s (left hand side plots);  η=μ=0.012 s for stationary response and η=μ=0.016 s for 

free vibration response (right hand side plots). 
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Figure 3-12 Acceleration history of control points shown in Figure 3-6(a). Constant 

η=μ=0.012 s (left hand side plots); η=μ=0.012 s for stationary response and η=μ=0.016 s for 

free vibration response (right hand side plots). 
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Figure 3-13 Zoom-in of acceleration response - non-harmonic nature possibly due to higher 

modes or non-linearity. 

 
3.5 Concluding remarks 

The 3D finite deformation beam model originally developed by Simo has been appropriately 

modified to derive a finite-element formulation for the static and dynamic analysis of flexible 

electrical cables. A linear viscoelastic constitutive equation and an additional mass proportional 

damping mechanism have been introduced to account for energy dissipation in a different and 

physically consistent way. Details of the numerical implementation of such damping model, in the 

context of large deformation beam theory, are discussed in Section 2.  

Preliminary results of the simulation of free and forced vibration tests on an actual electrical 

conductor have been presented and energy balance calculations demonstrate the reliability of the 

numerical computations. However, the experiments reveal an amplitude dependence of both 

stiffness and damping, clearly pointing out the presence of material nonlinearity in the cable. 

Whereas some bounds are available for stiffness, no guidelines are available for damping. The 

damping constants used in this study were calibrated to match the experiments and not derived 

from the geometry or material properties of the cable. Even the stiffness bounds are rather wide to 

be used readily in practical applications.  
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The development of numerical models, within the current framework, that can properly 

account for the amplitude dependence of bending stiffness and energy dissipation capacity is 

subject of current computational and experimental work. 

 

  

 

Figure 3-14 Cable in forced vibration: (a) energy components; (b) energy balance; (c) 

energy error as defined in Eq. (3-32) 
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SECTION 4  

DYNAMIC ANALYSIS OF TENSEGRITY STRUCTURES USING A 

COMPLEMENTARITY FRAMEWORK 

 
4.1 Introduction 

The previous sections where concerned with modeling cables as beams, and therefore as elements 

subjected to bending, shear and torsion in addition to tension. In this chapter, we switch our 

attention to tensegrity structures, a particular type of cable structure for which the cables are 

tension only members and their slack behavior is not generally modeled in analysis, i.e. their 

buckling and post-buckling force capacity is neglected.  Tensegrity structures are a subclass of 

pin-jointed structures composed of cables or strings, which can only resist tension forces, and bars 

or struts that are mainly meant to work in compression. To minimize weight, it is desirable in 

engineering applications to limit the number of stocky bars as compared to the number of the 

relatively light cables. Stability under external loading is then achieved by pretension of those 

cables that would otherwise become slack. One of the main requirements for a structure to be 

categorized as a tensegrity structure is that its initial pre-stressed configuration must be in stable 

equilibrium in absence of external forces. The evaluation of such configurations, known as form-

finding, has been and is currently object of extensive research (Tibert and Pellegrino, 2003). A 

large body of literature is devoted to the topic, including recent applications using dynamic 

relaxation methods (Zhang et al., 2006) and evolutionary strategies (Rieffel et al., 2009). Besides 

the original interest in the field of civil engineering applications, which started developing with 

work by Calladine (1978), and Pellegrino and Calladine (1986), recent years have seen a 

multidisciplinary interest in tensegrity structures research (Sultan, 2009), with these emerging as 

the structural systems of the future. Control, folding and deploying capabilities have inspired 

aerospace engineering applications concerning for instance space telescopes, flight simulators and 

antennas (Sultan et al., 1999; Sultan et al., 2000; Tibert and Pellegrino, 2002). Several applications 

are appearing in the field of biomedical engineering (Ingber, 1998; Yaozhi et al., 2008; Stamenovic 

et al., 2006), where cell, tissue and organ architecture seem to adhere to models similar to those 

describing the behavior of tensegrity structures. Some applications have appeared also in the field 

of robotics where the characteristics of tensegrity structures make them appealing candidates for 

the design of movable robots as well as for manipulators (Aldrich et al., 2003; Shibata et al., 2009; 
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Juan et al., 2009). One interesting and promising aspect of tensegrity structures, which to our 

knowledge has not yet been developed much in the literature, is their potential ability to control 

the response to seismic excitations. A detailed discussion of tensegrity structures including 

historical background, analysis, design and control can be found in (Skelton and de Oliveira, 

2009). We also refer the reader to the survey articles (Juan and Tur, 2008; Tur and Juan, 2009) on 

static and dynamic analysis of tensegrity structures. 

The objective of this paper is to present an approach for the dynamic analysis of tensegrity 

structures in the small displacement regime. The novelty of the approach lies in casting the 

computations that occur in each time increment of the dynamic analysis as a “complementarity” 

problem. This formulation is made possible by the following fact. For any cable, the force in the 

cable and the slack are both non-negative, and when the force is positive, the slack is zero, and 

viceversa. The remarkable feature of the resulting approach is that despite the nonsmooth nature 

of cables switching between taut and slack states, the computed solutions show excellent long-

term energy balance. Nineb et al. (2007) have used a complementarity framework in the context 

of a domain decomposition approach for non-smooth problems, specifically tensegrity structures. 

We discuss the relation of the formulation presented here to that of Nineb et al. (2007) at the end 

of Subsection 4.4.1. The approach presented here builds on previous work on the application of 

complementarity formulations to elasto-plastic problems (for example: Sivaselvan, 2010; Maier, 

1970). 

The organization of the section is as follows. In Subsection 4.2, the modeling of tensegrity 

structures adopted here is discussed, resulting in a differential-algebraic system with 

complementarity conditions. This system is discretized in time in Subsection 4.3, leading to a 

complementarity problem in Subsection 4.4. Numerical examples are then presented in Subsection 

4.5, highlighting the long-term energy balance in the solutions, and the computational efficiency 

gained by using some features of the model in solving the complementarity problem. 

 
4.2 Modeling for dynamic analysis 

We think of a tensegrity structure as a truss with two types of members: “bars” that are capable of 

acting in both tension and compression (although they are predominantly in compression), and 

“cables” that act in tension only (they develop slack otherwise). Each cable can be represented 
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conceptually as shown in Figure 4-1. Compatibility of deformations in this model of a cable 

implies 

 ( ) ( ) ( ) = 0aF t t t    (4-1) 

where as shown in Figure 4-1, a is the elastic compliance of the cable in tension, F(t) is the force 

in the cable at time t, ∆(t) is the deformation, and π(t) is the slack in the cable. The force in the 

cable and the slack are nonnegative. Furthermore, when the force in the cable is positive the slack 

is zero, and vice-versa. This is expressed concisely by the “complementarity” conditions 

 ( ) 0, ( ) 0, ( ) ( ) = 0F t t F t t     (4-2) 

 

 

 Figure 4-1 Conceptual model of a cable in a tensegrity structure 

 
In the following, we consider only linearized kinematics (small displacements). Then the equation 

of motion of the structure, together with collecting equations (4-1) and (4-2) for all the cables in 

the structure, results in 

 

global
0

0

( ) ( ) ( ) ( ) = ( )

( ) ( ) ( ) = 0

( ) 0, ( ) 0, ( ) ( ) = 0

T c T b
b c b

c c
c c

c c T

t t t t t

t t t

t t t t

   
  

 

Mu Cu K u B f p B f

A f π B u

f π f π

   (4-3) 

where M is a lumped mass matrix of the structure,  C is a matrix representing inherent damping in 

the structure, global
bK  is the part of the structure stiffness matrix arising from the bars, u is the vector 

of displacements at the free degrees of freedom (DOF) of the structure, p is the vector of external 

nodal forces, Ac is the diagonal matrix of elastic compliances in tension of all cables in the 

structure, Bc and Bb are the matrices that relate the node displacements to cable deformations and 
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bar deformations respectively, fc and π are the vectors of forces and slacks respectively in the 

cables, 0
bf  is the vector of pre-stress forces in the bars, and 0

c  is the vector of pre-stress 

deformations in the cables. 

Equations (4-3) represent a linear differential-algebraic system with complementarity 

conditions. Due to the presence of the complementarity conditions, it represents non-smooth 

dynamics. In this work, we do not consider theoretical questions such as the existence and 

uniqueness of solutions to this system. The reader is referred to (Acary and Bogliato, 2008) for an 

exposition of such issues. Here, we take a heuristic approach. We formally discretize equations 

(4-3) in time, and consider the convergence of the resulting solutions with decreasing time 

increment. 

Before discretizing the system (4-3), we cast it into a more general format as follows: 

 

 

global
0

UNI 0

UNI UNI UNI UNI

( ) ( ) ( ) ( ) = ( )

( ) ( ) ( ) = 0

( ) , ( ) 0, ( ) ( ) = 0

T c T b
b c b

c T c
c c

Tc c

t t t t t

t t t

t t t t

   
  

  

Mu Cu K u B f p B f

A f π B u

f b π b f π

 

 

  (4-4) 

where the subscript UNI stands for “unilateral constraints”. The purpose of this generalization is 

twofold: (a) to allow for slightly more general behavior than tension-only (for example 

compression-only, interaction between force components etc.), (b) to align the notation with 

reference (Sivaselvan, 2010), where similar formulations result when modeling the dynamics of 

systems with softening plasticity. Equations (4-3) are recovered from equations (4-4) by setting 

UNI = Identity  and UNI = 0b . Before considering the time-discretization of this system in 

subsection 4.3, we point out some consequences of the small-displacement assumption. 

 
4.2.1 Implications of linearized kinematics 

The use of linearized kinematics (small displacements) has some particular implications for 

tensegrity structures.  

1. Internal mechanisms: If the equilibrium matrix [Bb Bc]T is not full rank, then the tensegrity 

structure has internal mechanisms. This is a common occurrence in tensegrity structures. The 

concept of internal mechanisms is explained in references (Pellegrino and Calladine, 1986; 

Pellegrino, 1990) using the four fundamental subspaces of the equilibrium matrix, a basic idea in 

linear algebra. Such internal mechanisms cannot be stabilized within the context of linearized 
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kinematics. Calladine and Pellegrino (1991,1992) present conditions under which these 

mechanisms can be stabilized by first order changes in the equilibrium matrix, which in turn are 

second order changes in the node displacement-member elongation relationship. 

2. Geometric stiffness: Tensegrity structures are by definition prestressed frameworks, and carry 

non-zero internal forces in the reference configuration. Therefore, the effect of geometric stiffness 

could be significant even in the reference configuration. Geometric stiffness represents a first order 

change in the equilibrium matrix (see for example (Guest, 2006)), i.e., a second order change in 

the node displacement-member elongation kinematics. 

It is clear that with linearized kinematics, tensegrity structures with internal mechanisms or 

significant geometric stiffness effects cannot be analyzed. Therefore, the formulation presented 

here cannot be applied to such situations as is. However, a formulation very similar to that 

presented here can be used to describe more general nonlinear kinematics, and therefore apply to 

the large displacement regime and to situations with internal mechanisms and significant 

geometric stiffness. In that case, due to the nonlinear relationship between member elongations 

and node displacements, and to the dependence of the equilibrium matrix on the configuration, a 

Newton-type algorithm would have to be used in each time increment. The exact strategy described 

in subsection 4.4 of the manuscript (Eqs. (4-9)–(4-11)) would then apply to each iteration of such 

a Newton-type algorithm. The approach presented in this paper is therefore relevant in the large 

displacement regime as well. The large-displacement formulation is a topic of current work. 

The numerical examples in this section have been chosen such that the equilibrium matrices 

are full rank (so that there are no internal mechanisms), and the geometric stiffness is small 

compared to the material stiffness. It also turns out that internal mechanisms are not formed due 

to cables slackening during the analysis.  

 
4.3 Time discretization 

We discretize the system (4-4) formally as follows (see also references (Sivaselvan and Reinhorn, 

2006; Sivaselvan et al., 2009; Sivaselvan, 2010)): 
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where h is the time increment, v is the vector of velocities at the free DOF, and the subscripts n 

and n+1 denote discrete times. When no cables are slack, this discretization reduces to the constant 

average acceleration version of Newmark’s method (see for example (Chopra, 2007)). The second 

of equations (4-5) can be written in the following predictor-corrector form: 
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  (4-6) 

where 1=c c
K A  is the diagonal matrix of elastic stiffnesses in tension of all cables in the 

structure. Substituting the corrector equation into the first of equations (4-5), and into the 

inequality UNI 1 UNI
c

n f b  gives 
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where 
2

global=
2 4

h h
 M M C K  with global global= T

b c c cK K B K B  the elastic global stiffness matrix 

including the contributions of the bars and cables, and 
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  (4-8) 

In the next subsection, the system of equations (4-7) and (4-8) is cast in the form of a 

complementarity problem. 
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4.4 Mixed Complementarity problem (MCP) 

The computation of the velocities and slacks at time n+1 described by (a) the equation and 

inequality in (4-7), and (b) the complementarity conditions in (4-5), can be cast into a 

complementarity problem. First we define the matrix 
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   (4-9) 

and the vectors 

  1 2= , , =
TT T b b b q b   (4-10) 

Then the problem of computing the velocities and slacks can be stated as 
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  (4-11) 

The system (4-11) is a special case of a “Mixed Complementarity Problem” (MCP) (Dirkse 

and Ferris, 1995; Sivaselvan, 2010). The MCP may be solved using a general purpose solver such 

as the PATH solver (Dirkse and Ferris, 1995; Munson, 2000). However, computational 

efficiencies can be gained by customizing some linear algebra calculations to take advantage of 

the special form of the matrix that arises in structural mechanics problems. In particular, a 

Complementary Pivot Algorithm (CPA) is presented in (Sivaselvan, 2010) that uses such linear 

algebra customizations. In one of the numerical examples that follow, the computational efficiency 

gained from the linear algebra customization is highlighted. By transforming the MCP of equation 

(4-11) to a standard LCP (see Cottle et al., 1992)), it can be shown that it has a unique solution. 

Thus the problem in each time increment has a unique solution. Thus the problem in each time 

increment has a unique solution. The computations in each time increment are summarized in 

Procedure 1. 

 
4.4.1 Relationship to existing literature 

The conditions in (4-7) are obtained by solving the second of equations (4-5), namely the 

deformation compatibility equation, for the cable forces 1
c
nf , and substituting it into the first of 
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equations (4-5), namely the momentum conservation equation, and into the complementarity 

condition (using the predictor-corrector format (4-6)). This results in a Mixed Complementarity 

Problem, mixed since the velocity does not have a 0  constraint (Dirkse and Ferris, 1995); in 

fact, it does not have any bound constraints. If instead the reverse is done, i.e., the momentum 

conservation equation is solved for the velocities vn+1, and this is substituted into the deformation 

compatibility equation, a Linear Complementarity Problem (LCP) in standard form is obtained, 

where all the variables, namely the cable slacks, are constrained to be 0 . This latter standard 

LCP is similar to the formulation presented in (Nineb et al., 2007). The matrix that arises in this 

standard LCP when UNI = Identity  is 

 1 T
c c c c c

K K B M B K   (4-12) 

the Schur complement of  in (4-9) with respect to M . When the mass and damping matrix are 

ignored (statics), this is identical to the matrix in (Nineb et al., 2007). Unlike the matrix M  which 

has the same sparse structure as the stiffness matrix, the matrix 1 T
c c

B M B  that appears in the 

standard LCP does not have a sparse structure. The sparse structure can be utilized to devise 

efficient computations to solve the MCP (4-11) (Sivaselvan, 2010). Nineb et al. (2007) develop a 

domain decomposition approach for large-scale non-smooth problems. The algorithm used to 

solve the MCP (4-11) can be used in the “local stage” of such a domain decomposition approach. 

The MCP (4-11) constitutes the Karush-Kuhn-Tucker (KKT) conditions of a Quadratic Program 

(QP) in v and π. This fact can be used for example to compute the necessary derivatives (tangent 

operator) in the context of a domain decomposition approach. The standard form LCP described 

above constitutes the KKT conditions of a QP in π alone. 

 

 

 

 



 

81 

 

4.5 Numerical examples 

In this subsection, some numerical examples are presented to illustrate the proposed approach. In 

particular, two tensegrity structures are considered, both made of the same kind of elementary 

modules, but different in size, boundary conditions, method of assembly, pre-stresses, and loading 

conditions. For the first structure, a series of static analyses are performed, and the results are 

compared to those presented in the literature (Nineb et al., 2007). Furthermore, the computational 

efficiency gained by the linear algebra customizations of the Complementary Pivot Algorithm 

(CPA) of reference (Sivaselvan, 2010) is pointed out. The second structure considered is subjected 

to a set of dynamic analyses in free vibration and under harmonic loading. Energy balance plots 

are presented as a means of evaluating the performance of the algorithm and the accuracy of the 

results. 

 
4.5.1 Example 1 

As a first step in evaluating the performance and reliability of the approach described in the 

previous sections, the tensegrity grid considered by Nineb et. al. (2007) is analyzed. This example 

has been chosen so that numerical results can be verified against those presented in (Nineb et al., 

2007). The example is not intended to represent a typical design. This grid was obtained by 

duplication of single 8-node self stressed modules (Quirant et al., 2003), shown in Figure 4-2. Each 

module consists of 12 cables and 4 bars. The properties of the elements composing the tensegrity 

structure are the same as in (Nineb et al., 2007), and are summarized in Table 4-1. 

 

   

Figure 4-2 Example 1: Single module in the tensegrity structure (a) Isometric view (b) Plan 

view (cables are shown as thin (red) lines and bars as thick (blue) lines) 
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The elementary modules are placed one next to the other to form a self-stressed tensegrity grid 

consisting of 833 nodes, 3072 cables and 1024 bars. The assembled structure in its undeformed 

configuration is shown in Figure 4-3. All the lower nodes on two opposite edges of the grid are 

clamped, and every node is subjected to a vertical static load αp, where p is taken equal to 40 N, 

and different values of the load factor α are considered in the range from 0 to 1. When α=1, the 

structure assumes the deformed configuration shown in Figure 4-4. Figure 4-5(a) shows the tension 

force in each of the 3072 cables, sorted in increasing order, for different values of the load factor 

α. Figure 4-5(b) shows how the number of slack cables in the structure increases as α is increased 

from 0 to 1. When α=0, the structure is in its self-stressed configuration, and the forces in the 

cables are simply equal to the initial pre-stresses. As α increases from 0 to 1, the number of slack 

cables increases, and for α=1, 13.28% of all cables are slack. The graphs in Figures 4-5(a) and 4-

5(b), obtained using the PATH solver and the Complementary Pivot Algorithm (CPA), are 

identical to each other, and appear to be exactly the same as those presented in (Nineb et al., 2007). 

 
Table 4-1 Example 1- Summary of module parameters 

 

 
We next explore the computational efficiency gained by the linear algebra customizations 

specific to structural mechanics problems utilized in the CPA of (Sivasevan, 2010). This is done 

by setting the options for the PATH solver as shown in Table 4-2 to emulate the CPA. The PATH 

Parameter Value

2

 21 4 H L

 25 4 H L

Module height H 0.5 m

Module length L 1 m

Cross section of cables Ac 0.5 x 10-4 m2

Young’s modulus of cables Ec 1011 N/m2

Cross section of bars Ab 2.8 x 10-4 m2

Young’s modulus of cables Eb 2 x 1011 N/m2

Prestress in lower cables 2000 N

Prestress in upper cable 2000      N

Prestress in bracing cables 2000                      N = 2828.4271 N

Prestress in bars -2000                       N = -4898.9795 N
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solver, however, does not utilize the linear algebra customizations. In Figure 4-6, the 

computational times of the CPA are plotted against the number of factorization updates. The 

computational time required by PATH is 6.16 s as indicated by the dashed line in Figure 4-6. The 

least computational time of 1.44 s is seen to be obtained when the CPA uses 20 factorization 

updates. The linear algebra customizations thus result in a speedup of about 4.28 for this problem. 

 

 

(a) 

 

(b) 

Figure 4-3.  Example 1: Undeformed configuration (a) Isometric view (b) Plan view (cables 

are shown in thin red and bars in thick blue. 
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(a) 

 

 

(b) 

Figure 4-4 Example 1: Deformed configuration for α = 1 with slack cables shown in thick 

(red) lines (a) Isometric view (b) Plan view 
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(a) 

 

 

(b) 

Figure 4-5 Example 1: (a) Cable tensions, and (b) Fractions of slack cables, for different 

values of the load factor α (these computational results are identical to the respective 

results in(Nineb et al., 2007))) 
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Table 4-2 Example 1: Options for the PATH solver to imitate Lemke's method 

 

 

 

Figure 4-6 Example 1- Computational time (In this example, there are 2397 free DOF and 

3072 cables, so that the size of the MCP in equation (4-11) is 5469) 

 
4.5.2 Example 2 

The second example is a 6x6 tensegrity grid designed by Quirant et al. (2003). The elementary 

modules comprising the grid are of the same kind as the ones in the previous example, but different 

in size, properties and pre-stresses. Moreover, the modules are assembled in such a way that they 

share the cables connecting them to the adjacent modules. The grid consists of 133 nodes, 372 

cables and 144 bars. As boundary conditions, the four lower corner nodes are clamped while all 

the other nodes along the four edges are restrained vertically but free to move in the other 

directions. The properties of the elements composing the tensegrity structure are as presented by 

Quirant et al. (2003), and are summarized in Table 4-3. The assembled structure in its undeformed 

Option Value

crash_method none

major_iteration_limit 1 

lemke_start always

Output_minor_iteration_frequency 1
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configuration is shown in Figure 4-7. The structure is modeled as having no inherent viscous 

damping. 

 

 

(a) 

 

 

(b) 

Figure 4-7 Example 2: Undeformed configuration (a) Isometric view (b) Plan view (cables 

are shown in thin red and bars in thick blue) 
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First the frequencies and modes of the linearized model are computed. Isometric and front 

views of the structure in its first mode shape, and in its undeformed configuration are shown in 

Figure 4-8. The first 6 natural frequencies of the linearized model of the tensegrity grid are 

1 = 12.7185f  Hz, 2 3= = 15.2907f f  Hz, 4 = 21.2673f  Hz, and 5 6= = 28.2729f f  Hz. 

 
Table 4-3 Example 2: Summary of module parameters 

 
 

4.5.2.1 Free vibration analysis 

Free vibration analyses of the tensegrity structure are performed starting from different initial 

configurations as summarized in Table 4-4. 

Case 1: First the structure is displaced into the shape of the first mode of the linearized model 

without slack cables, and then released. The resulting response, as would be expected, is simple 

harmonic as seen from the displacement of the center node in Figure 4-9. 

Case 2: Next, the structure is displaced into the configuration shown in Figure 4-10 with 24 slack 

cables, and then released. The analysis is performed with time increment 0.001s (~1/80 of the first 

mode period of the linearized model). The computed response is shown in Figure 4-11.  Figures 

4-11(a) and 4-11(b) show the displacement of the center node. In order to evaluate the accuracy of 

the proposed approach, the total energy is computed. The system is modeled as undamped, and the 

Parameter Value

Module height H 1.15 m

Module length L 1.5 m

Cross section of cables Ac 0.654 x 10-4 m2

Young’s modulus of cables Ec 1.25 x 1011 N/m2

Cross section of bars Ab 4.14 x 10-4 m2

Young’s modulus of cables Eb 2 x 1011 N/m2

Prestress in bars -20000 N

Prestress in peripheral lower cables 7376.5536 N

Prestress in internal lower cables 14753.1072 N

Prestress in upper cables 10432.0221 N

Prestress in bracing cables 13503.5487 N
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slackening and tightening of the cables are not associated with energy dissipation. So the total 

energy of the system, the sum of the strain and kinetic energies must remain constant, and equal 

to the strain energy in the deformed configuration from which it is released. This energy balance 

is shown in Figure 4-11(c).  

 

 
(a)                                                                    (b)    

 

 
                                       (c)                                                                    (d) 

Figure 4-8 Example 2: (a) Isometric view of undeformed shape (b) Front view of 

undeformed shape (c) Isometric view of first mode (frequency, f1 = 12.7185 Hz) (d) Front 

view of first mode 

 
Table 4-4 Example 2: Free vibration analysis cases 

 
 
The energy error defined as 

 total energy initial strain energy
energy error =

initial strain energy

   (4-13) 

Case Initial configuration                                             Increment (s)                Result plot 

1 First mode shape with no slack cables 0.001 Figure 4.9
(Figure 4.8)

2 Displaced configuration with 24 slack cables 0.001 Figure 4.11 
(Figure 4.10) 

3 Displaced configuration with 24 slack cables 0.01 Figure 4.12
(Figure 4.10)

4               Displaced configuration with 12 slack cables 0.01, 0.005, Figure 4.13
0.001, 0.0005
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is shown in Figure 4-11(d). It is remarkable that despite the nonsmooth nature of slackening and 

tightening of the cables, the relatively large time increment used, and the long duration of the 

analysis, the largest energy error is only of the order of 0.003. It will be seen later that similarly 

good long-term energy behavior is obtained in forced vibration analysis as well. This energy 

balance feature may be attributable to the loose relationship of the time discretization in subsection 

4.3 to the notion of Variational Integrators (Fetecau et al., 2003). Further exploration of this 

relationship is a topic of current work. 

 

 

(a)                                                                         (b) 

Figure 4-9 Example 2: Free vibration response starting from a deformed configuration  

corresponding to the first mode with no slack cables. The dynamic response is computed 

using time step 0.001s. (a) Displacement of the center node over 10s of oscillation; the initial 

displacement for the dynamic phase is imposed quasi-statically over the first 1s (b) Zoom-

in of the first 1s of oscillation of the center node 

 
Case 3: Although excellent behavior in terms of energy conservation is observed for fairly large 

time increments, the time increment cannot be arbitrarily large. In this analysis case, the same 

initial configuration is considered as in Case 2. However, a time increment of 0.01s is used for 

dynamic analysis. The resulting computation is not stable as seen in Figure 4-12.  

Case 4: In this analysis case, the goal is to explore convergence of the computed solutions with 

decreasing time increment. For this, the model is released from an initial configuration with 12 

slack cables, and dynamic analysis is performed with four time increments. Figure 4.13 indicates 

convergence of the center node displacement. 
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(a) 

 

 
(b) 

Figure 4-10 Example 2: Deformed configuration with 24 slack cables shown as thick (red) 

lines (a) Isometric view (b) Plan view 
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(a)                                                                  (b) 

 
                                            (c)                                                                   (d)  

Figure 4-11 Example 2: Free vibration response starting from a deformed configuration 

with 24 slack cables computed using time step 0.001 s. (a) Displacement of the center 

node over 10 s of oscillation; the initial displacement for the dynamic phase is applied 

quasi-statically over the first 1 s. (b) Zoom-in of the first 1 s of oscillation of the center 

node. (c) Energy balance. (d) Energy error as defined in Eq. (4-13) 

 
4.5.2.2 Forced vibration analysis with harmonic input 

Another set of analyses is performed with harmonic vertical base motion input. The base input 

acceleration is of the form 

 0 1( ) = sin(2 )g gu t u f t    (4-14) 

where 0gu  is the amplitude of the base acceleration, and f1=12.7185 Hz is the frequency of the 

first mode of the linearized model. Three analysis cases are considered with increasing amplitudes 
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of the input base acceleration. In each case, the dynamic analysis is performed with time increment 

0.001s. 

 

      

                                         (a)                                                                         (b) 

Figure 4-12 Example 2: Free vibration response starting from a deformed configuration 

with 24 slack cables computed using time step 0.01s (a) Displacement of the center node (b) 

Energy balance 

 

 

Figure 4-13 Example 2: Convergence of displacement of the center node with decreasing 

time step size for free vibration starting from a deformed configuration with 12 slack 

cables 
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Case 1 ( 0gu = 0.01g): The computed response is shown in Figure 4-14. No cables slacken in the 

first 10s, and the displacement of the center node seen in Figure 4-14(a) shows the characteristic 

linear growth of resonance. We again explore the long-term energy balance. Unlike in the free 

vibration case, the input energy needs to be taken into account when considering energy balance. 

The input energy is computed as 

 
0

input energy( ) = ( ) ( )d
t

s st R v     (4-15) 

where Rs and vs are the reactions and velocities of the supports at the base.  

 

     
                                         (a)                                                                          (b) 

 

          (c) 

Figure 4-14 Example 2: Forced vibration with input acceleration amplitude 0.01g, 

computed using time step 0.001s (a) Displacement of center node (b) Energy balance (c) 

Energy error as defined in equation (4-16) 
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The energy error in the forced vibration case is defined as 

 total energy input energy
energy error =

input energy

   (4-16) 

The total and input energies are shown in Figure 4-14(b), and the energy error in Figure 4-14(c). 

 

         

                                         (a)                                                                          (c) 

           

                                         (b)                                                                          (d) 

Figure 4-15 Example 2: Forced vibration with input acceleration amplitude 0.05 g, 

computed using time step 0.001 s. (a) Displacement of the center node with the phase where 

some cables could be slack is shown in red. (b) Number of slack cables. (c) Energy balance. 

(d) Energy error as defined in Eq. (4-16) 

  
Case 2 ( 0 = 0.05gu g): The displacement of the center node of the grid is shown in Figure 4-15(a). 

Just before 5 seconds, when the amplitude of the response is about 0.02 m, some cables become 
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slack. The phase of motion where a number of cables in the structure go from being in tension to 

being slack and vice-versa is indicated in red in Figure 4-15(a). The number of slack cables at each 

instant of time is plotted in Figure 4-15(b). The energy balance and the error are shown in Figures 

4-15(c) and 4-15(d) respectively. The largest error is seen to be smaller than 0.012. 

 

       

                                      (a)                                                                            (c) 

         

                                      (b)                                                                            (d) 

Figure 4-16 Example 2: Forced vibration with input acceleration amplitude 0.1 g, 

computed using time step 0.001 s. (a) Displacement of the center node with the phase where 

some cables could be slack is shown in red. (b) Number of slack cables. (c) Energy balance. 

(d) Energy error as defined in Eq. (4-16) 

 
Case 3 ( 0 = 0.1gu g): The displacement of the center node of the grid in shown in Figure 4-16(a). 

As in Case 2, cables start to become slack when the amplitude of this displacement is about 0.02 
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m, but this occurs at earlier time than in Case 2. The number of slack cables against time is shown 

in Figure 4.16b. The energy balance and energy are plotted in Figures 4.16c and 4.16d. The largest 

error in this case is smaller than 0.014. Thus excellent long-term energy balance is observed in 

forced vibration analysis as well. 

 
4.6 Concluding remarks 

 An approach has been presented for the dynamic analysis of tensegrity structures. It is based on 

casting the computation in each time increment as a complementarity problem. Numerical 

examples illustrate the excellent long-term energy balance of the computed solutions. In addition, 

significant computational efficiency can be gained by linear algebra customizations in solving the 

complementarity problem. As discussed in subsection 4.2.1, due to the use of linear kinematics the 

above method is not applicable to tensegrity structures with internal mechanisms or where 

geometric stiffness is significant compared to material stiffness. A large displacement formulation 

based on complementarity is a topic of current work. 
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SECTION 5  

CONCLUSION 

 
5.1 Summary 

In the first part of the report, the 3D finite deformation beam model developed by Simo has been 

re-examined and appropriately modified to derive a finite element formulation for the static and 

dynamic analysis of flexible cables. A linear viscoelastic constitutive equation and an additional 

mass proportional damping mechanism are introduced to account for energy dissipation. 

Numerical examples are presented, and energy balance calculations demonstrate the accuracy of 

the computed solutions. The beam model developed has been then used to describe the behavior 

of an electrical conductor tested at the Structural Engineering and Earthquake Simulation 

Laboratory (SEESL) at the University at Buffalo. Some preliminary results of the simulation of 

free and forced vibration tests have been presented. These reveal an amplitude dependence of both 

stiffness and damping, clearly pointing out the presence of material nonlinearity in the cable. This 

material nonlinearity, generally attributed to the fact that the bending stiffness of stranded cables 

varies with curvature, tension and deformation history, is not considered in the present beam model.  

In the second part of the report, a novel approach has been presented for the dynamic analysis 

of tensegrity structures. The approach is based on casting the computations at each time increment 

as a complementarity problem. Numerical examples are presented to illustrate the approach. 

Despite the non-smooth nature of cables switching between taut and slack states, the computed 

solutions exhibit remarkable long-term energy balance. Furthermore, by exploiting some features 

of the tensegrity model, significant computational efficiency can be gained in the solution of the 

complementarity problem in each time increment. 

 
5.2 Contributions 

 The nonlinear equations of motion, and boundary conditions, of the 3D finite deformation 

beam model have been derived from the 3D theory of continuum mechanics, using the virtual 

power equation. 

 Energy dissipation is included in the beam formulation in a physically consistent way. An 

extension of the Kelvin-Voigt damping model is introduced through the constitutive equations, 
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and additional mass proportional damping is modeled by appropriate modification of the 

equilibrium equations. 

 A solution to issues concerning interpolation of total rotation vectors of magnitude greater than 

π is proposed.  

 Linearization of curvature is performed in a simpler fashion as compared to Simo (). An 

alternative approach for the update of curvatures is also proposed based on total rotation 

vectors, and taking advantage of special features of Lie groups and of the notion of right 

trivialized derivative. 

 Energy plots are presented for all the numerical applications to illustrate the energy balance of 

the computed solutions. 

 The developed 3D finite deformation beam model is used to simulate 3-dimensional dynamic 

tests on a real electrical conductor.  

 An original approach is presented for the dynamic analysis of tensegrity structures based on 

casting the computations at each time increment as a Mixed Complementarity Problem (MCP). 

 A Complementary Pivot Algorithm (CPA) is proposed, as an alternative to the general purpose 

solver PATH, for solving the MCP. Taking advantage of special properties of the tensegrity 

structure, it is shown that computational efficiency can be gained by using the CPA. 

 
5.3 Future work 

The 3D finite deformation beam model developed in the present work has proved to be totally 

satisfactory in accounting for the geometric nonlinearity of flexible cables. However, numerical 

simulations of dynamic tests performed at the University at Buffalo show that stranded cables can 

exhibit some kind of material nonlinearity related to their internal structure. Recent work in the 

literature reveals that material nonlineartity of stranded cables is not easy to handle. The objective 

of future work is to develop a physical model that can account for the amplitude dependence of 

bending stiffness and energy dissipation capacity, as well as for torsion-axial force interaction. 

Further analyses and experiments will be carried out to better understand what aspects of cable 

dynamics contribute to interaction between interconnected equipment. 

With reference to the tensegrity structures, future work consists of extending the current MCP 

approach to the large displacement regime. 

 



 

101 

 

SECTION 6 

REFERENCES 

 
ABAQUS 6.13 [Computer software], (2013), Dassault Systèmes, Waltham, MA. 
 
Acary, V., Brogliato, B., (2008), Numerical methods for nonsmooth dynamical systems: 
applications in mechanics and electronics, Springer, Berlin. 
 
Aldrich, J. B., Skelton, R. E., Kreutz-Delgado, K., (2003), Control synthesis for a class of light 
and agile robotic tensegrity structures, Proceedings of the 2003 American Control Conference, 
IEEE, Piscataway, NJ, USA, 5245-5251. 
 
Antman, S. S., (1974), Kirchhoff’s problem for nonlinearly elastic rods, Quarterly Journal of 
Applied Mathematics, 32, 221-240. 
 
Antman, S. S., (1996), Dynamical Problems for Geometrically Exact Theories of Nonlinearly 
Viscoelastic Rods, Journal of Nonlinear Science, 6,1-18. 
 
Antman, S. S., (2003), Invariant Dissipative Mechanisms for the Spatial Motion of Rods Suggested 
by Artificial Viscosity, Journal of Elasticity, 70, 55-64. 
 
Auricchio, F., Carotenuto, P., Reali, A., (2008), On the geometrically exact beam model: A 
consistent, effective and simple derivation from three-dimensional finite-elasticity, International 
Journal of Solids and Structures, 45, 4766-4781. 
 
Boyer, F., De Nayer, G., Leroyer, A., Visonneau M., (2011), Geometrically Exact Kirchhoff Beam 
Theory: Application to Cable Dynamics, Journal of Computational and Nonlinear Dynamics, 6, 
041004 (14 pages). 
 
Calladine, C. R., (1978), Buckminster Fuller's `Tensegrity' structures and Clerk Maxwell's rules 
for the construction of stiff frames, International Journal of Solids and Structures, 14 (2), 161-
172. 
 
Chandran P., (2012), Experimental and numerical studies on the seismic response of flexible 
conductors with vertical drops, Master of Science Project Report: University at Buffalo, NY. 
 
Chopra, A. K., (2007), Dynamics of structures: theory and applications to earthquake engineering, 
Prentice Hall, Upper Saddle River, N.J. 
 
Costello, G. A., (1997), Theory of Wire Rope, Springer, New York. 
 
Cottle, R., Pang, J. S., Stone, R. E., (1992), The linear complementarity problem, Academic Press, 
Boston. 
 



 

102 

 

Crisfield, M. A., Jelenic, G., (1999), Objectivity of strain measures in the geometrically exact 
three-dimensional beam theory and its finite-element implementation. Proceedings of the Royal 
Society of London A, 455, 1125-1147. 
 
Dastous, J. B., Pierre, J. R., (1996), Experimental investigation on the dynamic behavior of flexible 
conductors, IEEE Transactions on Power Delivery, 11, 801-807. 
 
Dastous, J. B., (2005), Nonlinear finite-element analysis of stranded conductors with variable 
bending stiffness using the tangent stiffness method, IEEE Transactions on Power Delivery, 20, 
328-337. 
 
Dastous, J. B., Der Kiureghian, A., (2010), PEER 2010/04 - Application Guide for the Design of 
Flexible and Rigid Bus Connections between Substation Equipment Subjected to Earthquakes. 
 
Dirkse, S. P., Ferris, M. C., (1995), The PATH solver: A non-monotone stabilization scheme for 
mixed complementarity problems, Optimization Methods and Software, 5, 123-156. 
 
EPRI, (1998), The 1986 North Palm Springs Earthquake: Effects on Power Facilities. EPRI report 
NP-5607. 
 
Fetecau, R. C., Marsden, J. E., Ortiz, M., West, M., (2003), Nonsmooth lagrangian mechanics and 
variational collision integrators, SIAM Journal on Applied Dynamical Systems, 2, 381-416. 
 
Filiatrault, A., Stearns, C., (2004), Seismic Response of Electrical Substation Equipment 
Interconnected by Flexible Conductors, Journal of Structural Engineering, 130, 769-778. 
 
Filiatrault, A., Stearns, C., (2005), Flexural properties of flexural conductors interconnecting 
electrical substation equipment, Journal of Structural Engineering, 131, 151-159. 
 
Ghalibafian, H., Ventura, C. E., Bhuyan, G. S., (2005), Seismic Interaction between Flexible 
Conductors and Electrical Substation Equipment, Journal of Structural Engineering, 131, 231-
239. 
 
Hong, K. J., DerKiureghian, A., Sackman, J. L., (2001), Seismic interaction in cable connected 
equipment items, Journal of Engineering Mechanics, 127,1096-1105. 
 
Hong, K. J., DerKiureghian, A., Sackman, J. L., (2005), Bending behavior of helically wrapped 
cables, Journal of Engineering Mechanics (ASCE), 131, 500-511; Discussion and Closure, 132, 
790-792. 
 
Ibrahimbegovic, A., Frey, F., Kozar, I., (1995), Computationals aspects of vector-like 
parametrization of three-dimensional finite rotations, International Journal for Numerical 
Methods in Engineering, 38, 3653-3673. 
 



 

103 

 

Ibrahimbegovic, A., Mikdad, M. A., (1998), Finite rotations in dynamics of beams and implicit 
time-stepping schemes, International Journal for Numerical Methods in Engineering, 41, 781-
814. 
 
IEEE (2005), IEEE recommended practice for seismic design of substations, IEEE 693-2005. 
 
IEEE (2006), Recommended practice for the design of flexible buswork located in seismically 
active areas, IEEE 1527-2006, Piscataway, NJ. 
 
Ingber, D. E., (1998), The architecture of life, Scientific American, 278(1), 48-57. 
 
Irvine, H., M., (1981), Cable Structures, MIT Press: Cambridge, Massachusetts. 
 
Jelenic, G., Crisfield, M. A., (1998), Interpolation of rotation variables in nonlinear dynamics of 
3D beams, International Journal for Numerical Methods in Engineering, 43(7), 1193-1222. 
 
Jelenic, G., Crisfield, M. A., (1999), Geometrically exact 3D beam theory: implementation of a 
strain-invariant finite element for statics and dynamics. Computer Methods in Applied Mechanics 
and Engineering, 171, 141-171. 
 
Juan, S. H., Tur, J. M. M., (2008), Tensegrity frameworks: Static analysis review, Mechanism and 
Machine Theory, 43(7), 859-881. 
 
Juan, S. H., Skelton, R. E., Tur, J. M. M., (2009), Dynamically stable collision avoidance for 
tensegrity based robots, Proceedings of the 2009 ASME/IFToMM International Conference on 
Reconfigurable Mechanisms and Robots, ReMAR 2009, IEEE Computer Society, London, United 
Kingdom, 315-322. 
 
K-Assist 1.7., (2003), Krypton Electronic Engineering n.v. Leuven, Belgium. Available from: 
http:// seesl.buffalo.edu/training/krypton/K-Assist_manual_EN.PDF (accessed June 2, 2014) 
 
Lang, H., Linn,J., Arnold, M., (2011), Multi-body dynamics simulation of geometrically exact 
Cosserat rods, Multibody System Dynamics, 25(3), 285–312. 
 
Linn, J., Lang, H., Tuganov, A., (2013), Geometrically exact Cosserat rods with Kelvin-Voigt type 
viscous damping, Mechanical Sciences, 4, 79 –96. 
 
Love, A. E. H., (1944), A Treatise on the Mathematical Theory of Elasticity, Dover: New York. 
 
Maier, G., (1970), A matrix structural theory of piecewise linear elastoplasticity with interacting 
yield planes, Meccanica, 5(1), 54-66. 
 
Mata, P., Oller, S., Barbat, A. H., (2007), Static analysis of beam structures under nonlinear 
geometric and constitutive behavior, Computer Methods in Applied Mechanics and Engineering, 
196, 4458-4478. 
 



 

104 

 

Munson, T. S., (2000), Algorithms and environments for complementarity, Ph.D. thesis, 
University of Wisconsin-Madison. 
 
Nineb, S., Alart, P., Dureisseix, D., (2007), Domain decomposition approach for non-smooth 
discrete problems, example of a tensegrity structure, Computers & Structures, 85(9), 499-511. 
 
Okada, T., Misaki, T., Hashimoto, Y., Momotari, T., Saito, K., Ito, N., Takahashi, Y., (1986), 
Seismic design of connecting leads in open-air type substations, Report 23-04, CIGRE. 
 
Oliveto, N. D., Sivaselvan, M. V., (2011), Dynamic analysis of tensegrity structures using a 
complementarity framework, Computers and Structures, 89(23-24), 2471-2483. 
 
Oliveto, N. D., Sivaselvan, M. V., (2014), Nonlinear finite element analysis of three-dimensional 
free and harmonically forced vibrations of stranded conductor cables, Earthquake Engineering 
and Structural Dynamics, 43, 2199-2216. 
 
Oliveto, N. D., Sivaselvan, M. V., (2015), 3D finite-deformation beam model with viscous 
damping: computational aspects and applications, Journal of Engineering Mechanics (ASCE), 
141(1), 04014103. 
 
Ortolan, G., (2011), Topics on geometric integration, PhD thesis, Universita’ Degli Studi di 
Padova, Italy. 
 
Papailiou, K. O., (1995), Die seilbiegung mit einer durch die innereseibung, dir zugkraft und die 
seilkrümmung veränderlichen biegesteifigkeit, PhD Thesis No. 11057, Swiss Federal Institute of 
Technology (ETH), Zurich, Switzerland. 
 
Papailiou, K. O., (1997), On the bending stiffness of transmission line conductors. IEEE 
Transactions on Power Delivery, 12, 1576-1588. 
 
Pellegrino, S., Calladine, C. R., (1986), Matrix analysis of statically and kinematically 
indeterminate frameworks, International Journal of Solids and Structures, 22(4), 409-428. 
 
Petrone C., Oliveto, N. D., Sivaselvan, M. V., (2015), Dynamic analysis of mooring cables with 
application to floating offshore wind turbines, Journal of Engineering Mechanics (ASCE), 142(3), 
04015101. 
 
Pierre, J. R., (1991) First experience concerning the seismic behavior of an electric power system 
in Eastern North America. Proceedings of the 3rd U.S. conference on Lifeline Earthquake 
Engineering; pp. 266-274. 
 
Quirant, J., Kazi-Aoual, M. N., Motro, R., (2003), Designing tensegrity systems: the case of a 
double layer grid, Engineering Structures, 25(9), 1121-1130. 
 
Reissner, E., (1972), On one-dimensional finite strain beam theory: The plane problem, Journal 
of Applied Mathematics and Physics, 23, 795-804. 



 

105 

 

 
Richter, H. L., (1988), Postquake lessons for power utilities, IEEE Spectrum, 25, 46-48. 
 
Rieffel, J., Valero-Cuevas, F., Lipson, H., (2009), Automated discovery and optimization of large 
irregular tensegrity structures, Computers & Structures, 87(5-6), 368-379. 
 
Shibata, M., Saijyo, F., Hirai, S., (2009), Crawling by body deformation of tensegrity structure 
robots, 2009 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 
Piscataway, NJ, USA, 4375-4380. 
 
Simo, J. C., (1985), A finite strain beam formulation. The three-dimensional dynamic problem. 
Part I, Computer Methods in Applied Mechanics and Engineering, 49, 55-70. 
 
Simo, J. C., Vu-Quoc, L., (1986), A three-dimensional finite-strain rod model. Part II: 
computational aspects, Computer Methods in Applied Mechanics and Engineering, 58, 79-116. 
 
Simo, J. C., Vu-Quoc, L., (1988), On the dynamics in space of rods undergoing large motions-a 
geometrically exact approach, Computer Methods in Applied Mechanics and Engineering, 66, 
125-161. 
 
Simo, J., C., Vu-Quoc, L., (1991), A geometrically-exact rod model incorporating shear and 
torsion-warping deformation, International Journal of Solids and Structures, 27, 371-393. 
 
Sivaselvan, M. V., Reinhorn, A. M., (2006), Lagrangian approach to structural collapse simulation, 
Journal of Engineering Mechanics-ASCE, 132(8), 795-805. 
 
Sivaselvan, M. V., Lavan, O., Dargush, G. F., Kurino, H., Hyodo, Y., Fukuda, R., Sato, K., 
Apostolakis, G., Reinhorn, A. M., (2009), Numerical collapse simulation of large-scale structural 
systems using an optimization based algorithm, Earthquake Engineering & Structural Dynamics, 
38(5), 655-677. 
 
Sivaselvan, M. V., (2010), Complementarity framework for nonlinear dynamic analysis of skeletal 
structures with softening plastic hinges, International Journal for Numerical Methods in 
Engineering 86(2), 182-223. 
 
Skelton, R. E., de Oliveira, M. C., (2009), Tensegrity systems, Springer, Dordrecht, New York. 
 
Spurrier, R. A., (1978), Comment on ”Singularity-Free Extraction of a Quaternion from a 
Direction-Cosine Matrix”, Journal of Spacecraft and Rockets, 15, 255. 
 
Stamenovic, N., Wang, E., Ingber, D., Cellular tensegrity models and cell-substrate interactions, 
in: M. R. King (Ed.), Principles of Cellular Engineering, Academic Press, 81-104. 
 
Sultan, C., Corless, M., Skelton, R. E., (1999), Peak to peak control of an adaptive tensegrity space 
telescope, Proceedings of the SPIE - The International Society for Optical Engineering, 3667, 190-
201. 



 

106 

 

 
Sultan, C., Corless, M., Skelton, R. E., (2000), Tensegrity flight simulator, Journal of Guidance, 
Control, and Dynamics, 23(6), 1055-1064. 
 
Sultan, C., (2009), Tensegrity: 60 years of art, science, and engineering, in: H. Aref, E. v. d. 
Giessen (Eds.), Advances in Applied Mechanics, 43, 69-145. 
 
Taylor, R., L., (2001), FEAP Version 7.4 User Manual 2001. Berkeley, CA: Department of Civil 
and Environmental Engineering, University of California at Berkeley. 
 
Tibert, A. G., Pellegrino, S., (2002), Deployable tensegrity reflectors for small satellites, Journal 
of Spacecraft and Rockets, 39(5), 701-709. 
 
Tibert, A. G., Pellegrino, S., (2003), Review of form-finding methods for tensegrity structures, 
International Journal of Space Structures, 18(4), 209-223. 
 
Tur, J. M. M., Juan, S. H., (2009), Tensegrity frameworks: Dynamic analysis review and open 
problems, Mechanism and Machine Theory, 44(1), 1-18. 
 
Vernerey, F. J, Moran, B., (2010), Nonlinear, Large Deformation Finite-Element Beam/Column 
Formulation for the Study of the Human Spine: Investigation of the Role of Muscle on Spine 
Stability. Journal of Engineering Mechanics (ASCE), 136, 1319-1328. 
 
Yaozhi, L., Xian, X., Lele, T., Kumar, S., Ingber, D. E., (2008), A multi-modular tensegrity model 
of an acting stress fiber, Journal of Biomechanics, 41(11), 2379-2387. 
 
L. Zhang, B. Maurin, R. Motro, Form-finding of nonregular tensegrity systems, Journal of 
Structural Engineering, 132(9), 1435-1440. 
 
 
 
 
  



 

107 

 

APPENDIX A 

 
A.1 External Power  

Boundary terms.  The first term on the left hand side of (2-11) may be decomposed as: 
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where A0 and AL are the areas of the cross section of the beam at S=0 and S=L, while SL is the 

lateral surface of the beam. The first term on the right hand side of (A-1) may be written as follows: 

  
0 0 0

3 3 0 3 0
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dA dA dA       P x P x P x x     (A-2) 

Using (2-15) and (2-24), we can write: 
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Therefore, (A-2) may be written as: 
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Noting that 0x  and w  do not depend on X , and using the permutation rule of the mixed product 

of three vectors, (A-4) becomes:  
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where n(0,t) and m(0,t) are the resultant force and moment acting on the cross section at S=0: 
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In the same way, the second term on the right hand side of (A-1) may be written as:  

        3 0, , , ,
LA

dA L t L t L t L t     P x n x m w   (A-8) 

where n(L,t) and m(L,t) are the resultant force and moment acting on the cross section at S=L: 
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The last term on the right hand side of (A-1) may be written as: 

        0 0
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and the first term on the right hand side of (A-11) can be written as:  
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where Γ is the boundary of the cross section in the reference configuration. Using (A-3), and the 

permutation rule of the mixed product of three vectors, the second term on the right hand side of 

(A-11) becomes:  
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By means of these results, (A-1) may be finally written as: 
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Body forces.  We write the term of (2-11) related to the body forces as follows:  
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The first term on the right hand side of (A-15) may be expressed as: 
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Using (A-3), and the permutation rule of the mixed product of three vectors, the second term of 

(A-15) may be written as: 
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Finally, (A-15) becomes: 
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Inertia forces.   To evaluate the term on the left hand side of (2-11) related to the inertia forces, we 

first carry out the product x x  . This can be written as: 
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Using (A-3), we can write (A-19) as: 

        0 0 0 0 0 0 0 0              x x x x x w x x x x x x x w x x           (A-20) 

From (A-3), 0x x   is easily evaluated as: 

        0 0 0 0 0           x x w x - x w x - x w x - x w w x - x       (A-21) 

Substituting (A-21) into (A-20), we get: 
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We can now write the term related to the inertia forces as follows: 
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The first integral on the right hand side of (A-23) is evaluated as follows: 
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where 0A
A dA    is the mass per unit length of the beam. Next we show that under certain 

conditions, the second and third integrals are both equal to zero. In fact, if the moving frame is 

placed in the centroid of the cross section of the beam, the first moment of area  
0

0 0A
dA x x  

is equal to zero, and therefore: 
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The third integral on the right hand side of (A-23) may be decomposed into the following two 

integrals: 
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It is easy to see that both integrals in (A-26) are equal to zero: 

     
0 0

31 0 0 0 0 0 0
0

0
L

R A
I dV dA dS         

   w x - x x w x - x x     (A-27) 

     
0 0

32 0 0 0 0 0 0
0

0
L

R A
I dV dA dS                 w w x - x x w w x - x x   (A-28) 

and therefore we have: 
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The fourth integral on the right hand side of (A-23) can also be decomposed into two terms as 

follows:  

 

      

    

    

0

0

0

4 0 0 0 0

0 0 0

0 0 0 41 42

R

R

R

I dV

dV

dV I I







         

   

       






w x - x w w x - x w x - x

w x - x w x - x

w w x - x w x - x



  (A-30) 

We first evaluate the following term: 
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 (A-31) 

where ijke  is the permutation symbol and i i I e e is the identity tensor. Therefore, we can write: 
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where        
0

ρ 0 0 0 0 0A
dA      I x - x x - x I x - x x - x  is the inertia tensor. Because of the 

symmetry of ρI , (A-32) may be written as: 

  41 ρ
0

L
I dS   I w w  (A-33) 

Integral I42 may be written as: 
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w w x - x w x - x

w x - x w w x - x
 (A-34) 

Using the permutation rule of the mixed product of three vectors, (A-34) may be written as: 

     
0

42 0 0 0
R

I dV        x - x w w x - x w  (A-35) 

We first write the term     0 0    x - x w w x - x  as: 

          0 0 0 0             x - x w w x - x x - x w x - x w  (A-36) 

We then carry out the double cross product    0 0   x - x w x - x : 

 
           

       
0 0 0 0 0 0

0 0 0 0

                
     

x - x w x - x x - x x - x w w x - x x - x

w x - x x - x I x - x x - x
 (A-37) 

Then, Eq. (A-36) may be written as: 

 
         

        
0 0 0 0

0 0 0 0
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w x - x x - x I x - x x - x w
 (A-38) 

Substituting (A-38) into (A-35) gives:  
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 (A-39) 

By means of the above results, we get the following expression for the inertia term: 

  
0

0 0 0 ρ ρ

0 0

L L

R
dV A dS dS             x x x x I w w I w w      (A-40) 
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A.2 Internal power  

We now evaluate the right hand side of (2-11): 

  
0R
tr dV TP F  (A-41) 

We recall that the deformation gradient tensor F may be written as follows: 

  0 0
3 0 3X

S S     
                       

x x
F t E ω t E t E ω x x E  (A-42) 

Taking the time derivative of (A-42) gives:   

    
2

0
0 3 0 3S t 

 
             

x
F t E ω x x E ω x x E      (A-43) 

Using (2-24) and (A-3), for t  and 0x x  , (A-43) becomes: 

      
2

0
0 3 0 3S t 

 
                  

x
F w t E ω x x E ω w x x E   (A-44) 

Recalling that the first Piola-Kirchhoff stress tensor can be expressed as i i P P E , with (A-44) 

in hand we can write: 
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E P ω w x x E

 

  (A-45) 

We will now consider each term of (A-45) separately. The first term may be written as follows: 

 
       

   
i i i itr tr tr     

     

                      
       

E P w t E w t E E P w t P

w t P P w t w t P
 (A-46) 

The second term of (A-45) can be broken down as follows: 
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0 3

i i i i

i i
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x x
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 (A-47) 

The first term on the right hand side of (A-47) can be written as: 
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 (A-48) 

The second term on the right hand side of (A-47) may be expressed as: 

 
     

     
0 3 0 3

0 3 0 3 3 0

i i i itr tr

tr

                 
                    

E P ω x x E ω x x E E P
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 (A-49) 

With (A-48) and (A-49) in hand, (A-47) becomes: 

      0 0
0 3 3 0i itr

S S

                          

x x
E P ω x x E P ω x x

    (A-50) 

Finally, the third term on the right hand side of (A-45) may be written as: 

 
       

      
0 3 0 3

0 3 0 3 3 0

i i i itr tr

tr

                   

                       

E P ω w x x E ω w x x E E P

ω w x x P ω w x x P P ω w x x
 (A-51) 

Substituting (A-46), (A-50), and (A-51) into (A-45) we get: 

      0
3 0 3 0tr

S 
 

                  
T x

P F w t P P ω x x P ω w x x
   (A-52) 

A convenient expression for  t P  may be obtained by means of the following equation, 

expressing conservation of the angular momentum for 3D continuum: 

   T TF P P F  (A-53) 

The left hand side of (A-53) may be written as:  
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T x
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 (A-54) 

Moreover, the right hand side of (A-54) may be written as: 
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 (A-55) 

Then, equating (A-54) to (A-55) gives: 

 
 

   

0 0
3 3

0 3 3 0
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x x
t P P t P P

ω x x P P ω x x 0

 (A-56) 

It is easy to prove that, if (A-56) holds, then the following expression must also hold: 

  0
0 3S 

        

x
t P ω x x P  (A-57) 

Substituting (A-57) into the first term on the right hand side of (A-52) gives: 

    0 0
0 3 3 0S S 

                         

x x
w t P w ω x x P P w ω x x  (A-58) 

Therefore, Eq. (A-52) may be written as: 
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 (A-59) 

or equivalently as   
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 (A-60) 

Observing that: 

 
       

   
0 0 0

0

                   
  

ω w x x w ω x x w ω ω w x x

ω w x x
 (A-61) 

then, Eq. (A-60) becomes:   

      0 0
3 3 0tr

S S

                   
T x x

P F P w P ω ω w x x
   (A-62) 

Eq. (A-62) can be written in the following equivalent form: 
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      0 0
3 3 0tr

S S

                   
T x x

P F P w P ω w ω x x
   (A-63) 

Integrating (A-63) over the area of the cross section we obtain the internal power per unit length 

of the beam: 
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 (A-64) 

where n and m are the resultant force and moment acting on the generic cross section at S: 

 3
A

dA n P  (A-65) 

  0 3
A

dA  m x x P  (A-66) 

Finally, the internal power may be written as: 
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APPENDIX B 

 
We want to prove that the following equality holds:   

   ω w ω w  (B-1) 

To do so, we first write (B-1) in equivalent tensor form as follows: 

  ˆ ˆ   ω w ω w  (B-2) 

where 

 T Tˆ ˆ
S t

 
   
 
R R

ω R w R  (B-3) 

Differentiation of ω̂  with respect to time gives: 

 

2 T 2 T
T T T

T2 2
T T T T T

ˆ

ˆ ˆ

S t S t S t S t

S t S t S t

     
          
       

                          

R R R R R R
ω R R R R

R R R R
R R R R ω w



 (B-4) 

In the same fashion, differentiation of ŵ  with respect to S gives: 

 

2 T 2 T
T T T

T2 2
T T T T T

ˆ

ˆˆ

S t t S S t t S

S t t S S t

                
       

                          

R R R R R R
w R R R R

R R R R
R R R R w ω

 (B-5) 

We next make use of the following property involving skew-symmetric tensors and their 

associated axial vectors: 

   ˆ ˆˆ ˆ    w ω w ω ω w  (B-6) 

By substituting (B-4), (B-5) and (B-6) into (B-2), we then get: 

 T Tˆ ˆ ˆ ˆˆ ˆ ˆ ˆ      ω w w ω ω w w ω  (B-7) 

It is now trivial to show that (B-7) holds. In fact, the left hand side may be written as the right hand 

side as follows: 

 T T Tˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ             ω w w ω ω w ω w w ω ω w w ω  (B-8)
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