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Preface

MCEER is a national center of excellence dedicated to the discovery and development of new 
knowledge, tools and technologies that equip communities to become more disaster resilient in 
the face of earthquakes and other extreme events. MCEER accomplishes this through a system of 
multidisciplinary, multi-hazard research, in tandem with complimentary education and outreach 
initiatives. 

Headquartered at the University at Buff alo, The State University of New York, MCEER was originally 
established by the National Science Foundation in 1986, as the fi rst National Center for Earth-
quake Engineering Research (NCEER). In 1998, it became known as the Multidisciplinary Center 
for Earthquake Engineering Research (MCEER), from which the current name, MCEER, evolved.

Comprising a consortium of researchers and industry partners from numerous disciplines and 
institutions throughout the United States, MCEER’s mission has expanded from its original focus 
on earthquake engineering to one which addresses the technical and socio-economic impacts of a 
variety of hazards, both natural and man-made, on critical infrastructure, facilities, and society.

The Center derives support from several Federal agencies, including the National Science Founda-
tion, Federal Highway Administration, Department of Energy, Nuclear Regulatory Commission, 
and the State of New York, foreign governments and private industry.  
 
This report presents results of experimental and numerical studies on the combined in-plane and 
out-of-plane behavior of steel-plate concrete (SC) composite shear walls. Three medium-scale 
rectangular SC wall specimens were tested at the Bowen Laboratory at Purdue University. The 
eff ects of out-of-plane loading and tie bar spacing on in-plane capacity of SC walls were the pri-
mary foci of the investigation. The results of the experiments indicate that the out-of-plane load 
has a signifi cant eff ect on the in-plane behavior of SC walls and the eff ects become very signifi cant 
as the out-of-plane load develops an average shear stress that is greater than the inclined crack-
ing load of the concrete. Finite element models of the test specimens were developed in LS-DYNA. 
The LS-DYNA model was used in a parametric study to formulate design guidance for SC walls 
subjected to combined in-plane and out-of-plane loading. 
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ABSTRACT 

This report investigates the seismic response of components of nuclear power plants constructed 

using steel-plate-concrete composite walls, subjected to combined in-plane and out-of-plane 

loadings. Steel-plate concrete (SC) composite shear walls are composed of steel faceplates, infill 

concrete, shear studs bonding the faceplate to the infill, and tie rods linking the faceplates. To 

date, a significant amount of studies have focused on the in-plane (IP) response of SC walls, but 

the effect of out-of-plane (OOP) loading on the IP response has not been addressed in great 

detail. Three medium-scale rectangular SC wall specimens were built and tested under force-

controlled monotonic OOP loading and displacement-controlled cyclic IP loading at the Bowen 

Laboratory at Purdue University. The magnitude of OOP load and its effects on the IP capacity 

of SC walls were the focus of this investigation; the effect of tie bar spacing was also 

investigated. Finite element models of the test specimens were developed in LS-DYNA to 

investigate the effect of OOP loading (magnitude and location) on the IP response of SC wall 

piers. The baseline DYNA model was validated for IP behavior using data from the tests of 

medium-scale rectangular SC wall piers and for OOP behavior using data from these tests. The 

results of the simulations showed that OOP loading has a significant effect on the IP capacity of 

SC wall piers; the effects become more significant as the shear span-to-depth ratio and 

magnitude of the OOP load are increased. The validated model was used in a parametric study to 

investigate the effect of OOP loading (magnitude and location) on IP response, to formulate 

design guidance for SC walls subjected to combined IP and OOP loading. The ductility of a wall 

pier under IP loading is small because damage accumulates over a short height near the bottom 

of the wall pier. Ductility under IP loading is effectively zero under high OOP loads. These 

outcomes should be taken into account for both seismic design and for seismic probabilistic risk 

assessment, which addresses loadings more intense than design basis. 
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SECTION 1  

INTRODUCTION 

1.1  Introduction 

Steel-plate concrete (SC) composite walls consisting of steel faceplates, infill concrete, and 

connectors used to anchor the steel faceplates together to the infill concrete may be a viable 

construction alternative to reinforced concrete (RC) and steel plate shear walls. Double skin SC 

wall shells can be fabricated offsite, assembled and filled on-site with concrete to create a 

monolithic wall. The use of steel faceplates by-and-large eliminates the need for formwork, and 

the plates serve as primary reinforcement. The challenges associated with SC wall construction 

include joining the shells in the field, splicing SC walls to reinforced concrete walls and 

foundations, and field inspection of the concrete behind the faceplates.  

Challenges remain with the analysis of SC walls for design basis and beyond design basis 

loadings, including characterization of the effects of interaction of co-existing in-plane (IP) and 

out-of-plane (OOP) loadings moments and shears. This report addresses such interactions of 

moments and shears under IP and OOP loadings. 

1.2 Literature Review 

Varma and his co-workers (Varma et al., 2011; Kurt et al., 2013; Seo et al., 2016), Epackachi et 

al. (2014a; 2014b; 2015), and others have studied the IP behavior of SC walls, numerically and 

experimentally. Epackachi et al. present a detailed review of the literature on IP behavior and so 

those materials are not reported on here. 

The OOP behavior of slices of SC walls has been studied, albeit to a lesser degree than IP 

behavior. Sener et al. (2014; 2015) conducted one-way bending tests on SC beams, 

representative of vertical strips in SC walls, to investigate OOP behaviors in shear and flexure. 

They compiled a database of test results and used it to evaluate the utility of design codes. They 

concluded that the ACI 349-06 (ACI, 2006) equations for RC beams and slabs could be used to 

predict OOP shear strength of SC walls (for shear span-to-depth ratios larger than 3) and the 

OOP flexural capacity of SC walls (for any shear span-to-depth ratios). Bhardwaj et al. (2015) 

investigated the effects of OOP forces on the IP capacity of SC walls using numerical tools 

developed in LS-DYNA by Kurt et al. (2013) for IP behavior. The results of a limited number of 
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numerical simulations indicated that the shear span-to-depth ratio and the magnitude of the OOP 

load significantly affect the IP capacity of SC wall piers. Yang et al. (2016) executed three full-

scale experiments investigating the OOP cyclic behavior of SC walls. The parameters considered 

in that study included shear span-to-depth ratio and thickness of the steel faceplates.  

Analysis of nuclear structures predicts large OOP moments and shears in walls at locations of 

load and stiffness discontinuities, where the walls are also subjected to large IP forces. To the 

knowledge of the authors, there existed no data on the response of SC walls to combinations of 

IP and OOP loadings. The lack of data and design guidance on response of SC walls to combined 

IP and OOP loading prompted the Canadian Nuclear Safety Commission (CNSC) to fund a 

study, which is the subject of this report. The scope of the CNSC project is presented in the next 

section. 

1.3 Project Scope 

This report summarizes work on the CNSC project, entitled “Testing and Development of 

Regulatory Requirements for Steel Plate Concrete (SC) Structures.” The CNSC project was 

awarded to the University at Buffalo (UB); Purdue University was a subcontractor to UB. 

The project described in Chapters 2, 3, 4, and 5 of this report included physical and numerical 

simulations of the response of SC wall piers subjected to simultaneous in-plane and out-of-plane 

loadings. The physical simulations were performed in the Bowen Laboratory at Purdue 

University under the direction of Professor Amit Varma, with assistance from graduate student 

Mr. Saahas Bhardwaj. The authors assisted with the testing program, and performed all of the 

data reduction and numerical simulations reported in the following chapters. 

1.4 Organization of this Report 

This report is organized into four chapters. Chapter 2 describes the physical testing of SC wall 

piers subjected to IP and OOP loadings, including the test fixture, instrumentation, loading 

protocol, and results of the experiments. 

Numerical modeling of SC wall piers subjected to combined IP and OOP loadings is described in 

Chapter 3. The physical tests of the SC wall piers are simulated using LS-DYNA (LSTC, 2012). 

Chapter 4 presents parametric studies conducted to investigate the effects of OOP loading on the 
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IP behavior of SC walls. The results of these studies are used to provide draft technical guidance 

for the performance assessment of SC wall piers subjected to combined loadings. 

Chapter 5 summarizes the studies presented in Chapters 2 through 4, and provides the key 

conclusions and findings. 

A list of references is presented in Chapter 6. 
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SECTION 2  

PHYSICAL TESTING OF SC WALL PIERS 

2.1 Introduction 

This chapter presents details and results of the physical tests on the SC wall piers conducted at 

Purdue University. The test matrix and test fixture are discussed in Section 2.2. Instrumentation 

of the test specimens is presented in Section 2.3. Results and discussion of the tests of CNSC1, 

CNSC2, and CNSC3 are presented in Sections 2.4, 2.5, 2.6, respectively. 

2.2 Test Matrix and Test Fixture 

The matrix of tests is presented in Table 2-1, wherein cf  is concrete compressive strength and 

cA is the plan area of the infill concrete. This matrix was reviewed and accepted by CNSC in 

2014. The specimens are labeled CNSC1, -2 and -3. Each specimen was 12 in. thick, which 

includes the two 3/16-inch steel faceplates. The resultant faceplate reinforcement ratio (total area 

of faceplates divided by total area of wall) is 0.031, which is significant by comparison with 

reinforced concrete shear walls. The faceplates were constructed with ASTM Grade A36 steel, 

with a minimum specified yield strength of 36 ksi and a minimum specified tensile strength of 58 

ksi. Based on tension coupon tests, the yield strength and tensile strength of the steel faceplate 

material were 47 ksi and 80 ksi, respectively. 

Table 2-1: CNSC test matrix 

Specimen 
Height 

(in.) 

Length 

(in.) 

Tie spacing 

(in.) 

Stud 

spacing (in.) 

Target out-of-

plane force 

CNSC0 36 60 12 4 N.A. 

CNSC1 36 60 12 3 2 c cf A

CNSC2 36 60 6 3 Cracking

CNSC3 36 60 12 3 Cracking 

Each specimen had an aspect (height-to-length) ratio of 0.6. An additional (control) specimen 

was constructed and tested in advance of CNSC1: tagged as CNSC0 in Table 2-1. The concrete 

compressive strength of the infill concrete and faceplate yield strength of CNSC0 were 5800 psi 

and 57 ksi, respectively. The aspect ratio and reinforcement ratio of CNSC0 were 0.6 and 0.031 
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(a 12 in. thick wall with two 3/16-inch steel faceplates), respectively. Additional information on 

CNSC0 is presented in Kurt et al. (2015). 

The shear studs and tie bars were fabricated from carbon steel with nominal yield and ultimate 

stress of 50 and 75 ksi, respectively. The 3/8 inch diameter tie bars were spaced at a distance 

equal to the wall thickness (=12 in.) in CNSC0, CNSC1, and CNSC3 and one-half the wall 

thickness (= 6 in.) in CNSC2. The spacing of the shear studs (connectors) is presented in Table 

2-1. The faceplate slenderness ratio (= /s ps t , where ss is the spacing of the connectors [shear 

studs and cross ties], and pt is the faceplate thickness) was 16 for CNSC1, CNSC2 and CNSC3, 

and 21 for CNSC0, noting that the limiting value specified in Supplement No. 1 to AISC N690s1 

(AISC, 2015) for steel with yield strength of 36 ksi is 28.  

Figure 2-1 is a cross-section through the connection of a faceplate to the baseplate. This detail, 

which was developed by Purdue University to enable re-use of a foundation for testing SC walls, 

effectively strengthens the faceplate at its connection to the baseplate and forces buckling, 

fracture and tearing of the faceplate away from the baseplate. 

Figure 2-1: Faceplate-to-baseplate connection (courtesy of Purdue University) 
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Each wall was founded on a large re-usable foundation designed and constructed by Purdue 

University. The connection of the foundation to the wall was designed to develop the capacity of 

the faceplates, with the goal of forcing inelastic action into the walls above the foundation. 

The last column in Table 2-1 identifies the target out-of-plane (OOP) force to be imposed prior 

to in-plane loading. An out-of-plane load was not applied to the control specimen, CNSC0. The 

amplitude of the out-of-plane (OOP) loadings for CNSC1, CNSC2 and CNSC3 were tied to 

equations derived in the early 1960s for shear resistance of plain concrete beams reinforced for 

flexure only. The concrete contribution to shear strength of 2 c cf A  is traditionally used for 

reinforced concrete design in the United States, although it has limited technical basis. (Wight 

(2015) shows that this empirical equation is unconservative for low longitudinal reinforcement 

ratios and conservative for high reinforcement ratios: for shallow specimens subjected to 

monotonic loading to failure in the absence of co-existing in-plane loadings. The effect of 

section depth (= wall thickness in this case), for which an increase in depth results in a decrease 

in shear strength of plain concrete, could not be investigated given the specimen dimensions 

studied here. Cracking denotes imposing an OOP loading sufficient to introduce a diagonal crack 

in the concrete, which was estimated for preliminary calculations using equation 22.5.5.1 in ACI 

318-14 (2014). The OOP loading was imposed statically and not cycled during the IP loading to

failure. 

A photograph of the test fixture and a 3D rendering of the fixture are shown in Figure 2-2a and 

Figure 2-2b, respectively. The OOP setup consisted of one 660-kip dual action actuator and 

beams to apply the OOP load to the specimen. The OOP load was applied 18 inches above the 

foundation, and the resulting ratio of shear span-to-depth was 1.5. In-plane loading was imposed 

on the specimen via loading beams and two 660-kip dual action actuators. The actuator clevises 

were detailed to accommodate the rotations associated with the IP and OOP loadings. 

2.3 Instrumentation of the Test Specimens 

Traditional transducers were used to monitor the response of each test specimen: strain gages, 

strain rosettes, string potentiometers, and linear variable differential transducers (LVDTs).  

The locations of strain gages on the inner face, outer East face, and outer West face, near the 

base of the wall for CNSC1 and CNSC3 are identified in Figure 2-3a, Figure 2-3b, and Figure 
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2-3c, respectively. Strain rosettes on the exterior faces of the plates were used to estimate shear

strain.  Figure 2-3 shows the locations of the tie bars and shear studs near the base of the wall; a 

legend is presented in Figure 2-3a. Companion information for CNSC2 is presented in Figure 

2-4. The scale in these figures can be determined by the distance between the shear studs: 3

(a) photograph of the test fixture

(b) 3D rendering of the test fixture

Figure 2-2: CNSC test setup (courtesy of Purdue University) 

inches. The solid black shaded zone identifies the baseplate; the hatched zone identifies the depth 

of the welded connection joining the faceplate to the baseplate. 

The locations of the string potentiometers used to measure the in-plane and out-of-plane 

movement of a specimen are presented in Figure 2-5a and Figure 2-5b, respectively. Three 
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inclinometers were mounted on a specimen to measure rotation; two for in-plane movement 

(CM2, CM3) and one for out-of-plane movement (CM1). The locations of the inclinometers are 

identified in Figure 2-5. Eight LVDTs were attached to a specimen: four to measure in-plane 

movement of the foundation block with respect to the strong floor, and four to measure vertical 

movement of the base plate with respect to the foundation block. 

(a) Typical faceplate, inner face

(b) East faceplate, outer face

(c) West faceplate, outer face

Figure 2-3: Layout of strain gages, tie bars, and shear studs, CNSC1, CNSC3 (adapted from 

Purdue University drawings) 
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(a) Typical faceplate, inner face 

 

(b) East faceplate, outer face 

 

(c) West faceplate, outer face 

Figure 2-4: Layout of strain gages, tie bars, and shear studs, CNSC2 (adapted from Purdue 

University drawings) 
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(a) in-plane

(b) out-of-plane

Figure 2-5: Locations of string potentiometers (courtesy of Purdue University) 
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2.4 CNSC1 Test Protocol, Results, and Discussion 

2.4.1 CNSC1 Test Protocol 

Specimen CNSC1 was tested between 06/01/15 and 06/04/15. The concrete compressive strength 

on the first day of testing was 7700 psi, as determined by cylinder breaks. The specimen was 

initially subjected to four cycles of OOP loading, at magnitudes of 30, 60, 90, and 120 kips, 

respectively, to verify the test setup was functioning as intended. The OOP load was then 

maintained at a constant value of 120 kips (=1.96 c cf A )1 and incremental cyclic IP loading

imposed. The loading protocol for CNSC1 is presented in Table 2-2, where yP   and y are the

yield load (=650 kips) and yield displacement of the specimen, respectively, calculated by pre-

test analysis. The cycles are fully reversed loading, namely, one cycle is a push half cycle 

followed by a pull half cycle. 

Table 2-2: Loading protocol for CNSC1 

Cycle IP loading Control OOP loading 

1-2 0.25 yP Force 

120 kips 

3-4 0.50 yP Force 

5-6 0.75 yP Force 

7-8 1.0 yP Displacement 

9-10 1.5 y Displacement 

11-12 2.1 y Displacement 

13 3.0 y Displacement 

2.4.2 CNSC1 Test Results 

The OOP cyclic force-displacement relationship for CNSC1 is presented in Figure 2-6, where the 

OOP displacement was measured at the top of the wall, at the level where IP loading was applied 

later, as an average of the SP displacements at the ends of the wall. Data from OOP cycles at 

loads of 30 and 90 kips were lost and are not reported here. The IP cyclic force-displacement  

1 The concrete area is the product of the length of the pier (60 in.) and the thickness of the concrete (11.625 in.). 
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Figure 2-6: Out-of-plane force-displacement relationship, CNSC1 

relationship for CNSC1 is presented in Figure 2-7. The post-yield displacement cycles (9 to 13) 

are presented in Figure 2-8. The loss of IP capacity with increasing cycles can be identified using 

the data presented in Table 2-3. Significant reductions in IP resistance were observed at large 

displacements. The IP displacement is the relative horizontal displacement between the level of 

the IP loading and the bottom of the wall (or top of footing). 

The IP load-displacement relationship and backbone curve are presented in Figure 2-9. Points A, 

B, C, and D in the figure represent the onset of concrete cracking, yielding of steel faceplates, 

buckling of steel faceplates, and concrete crushing, respectively. The test was terminated at the 

displacement   shown on the plot. The sequence of damage to CNSC1 is presented in Table 

2-4. Concrete cracking at the open ends of the wall, steel faceplate yielding, steel face plate

buckling, and concrete crushing in the SC wall occurred at drift ratios of 0.23%, 0.38%, 0.70%, 

and 1.0%, respectively, and these points were identified by visual inspection (i.e., cracking and 

crushing of concrete, faceplate buckling) and review of strain gage data (faceplate yielding). 
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Figure 2-7: In-plane force-displacement relationship, CNSC1 

Figure 2-8: In-plane force-displacement relationship for post-yield cycles, CNSC1 
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Table 2-3: Loss of IP shear capacity, CNSC1 

Cycle 

IP resistance at IP displacement (kips) 

y 1.5 y 2.1 y 3 y

Push Pull Push Pull Push Pull Push Pull 

7 630 625 - - - - - - 

8 575 645 - - - - - - 

9 570 632 687 726 - - - - 

10 515 532 630 675 - - - - 

11 500 518 630 610 730 735 - - 

12 400 432 496 552 606 661 - - 

13 375 376 456 445 544 515 630 600 

Figure 2-9: In-plane force-displacement relationship and backbone curve, CNSC1 

Key results are presented in Table 2-5. The initial stiffness of the SC wall, calculated at a drift 

ratio less than 0.02%, is presented in the first column for the push and pull directions. The values 

of load and drift ratio at the onset of steel plate yielding are presented in columns two and three. 

The fourth and fifth column present the load and drift ratio at the onset of steel faceplate 



16 

 

buckling. The peak loads and their corresponding drift ratios for the push and pull directions are 

presented in columns six and seven. The maximum drift ratios for the experiment and their 

corresponding loads in the push and pull directions are presented in columns eight and nine. Note 

that the maximum drift ratio does not correspond to failure of the CNSC1. 

Table 2-4: Sequence of damage, CNSC1 

Cycle 
Drift ratio (%) 

Push/Pull 
Damage/Observations 

3 0.23/0.13 Cracks on the North and South faces of the wall; specimen twisting  

5 0.38/0.28 
Yielding of steel faceplates, diagonal cracking at the base of the 
South wall; new cracks on the North face of the wall 

6 0.38/0.28 New cracks; residual OOP drift 

7 0.51/0.45 
Large residual strains develop in the steel faceplates, initial 

separation of the faceplates from the infill concrete; new cracks 
formed 

9 0.70/0.70 
Buckling of the steel faceplate in the northwest and southwest 
corners of the wall; diagonal cracking on the South face; new 

diagonal cracks on the South face of the wall 

10 0.70/0.70 
Severe buckling of the steel faceplate in the northwest corner of the 
wall; buckling of the steel faceplate in the southeast corner of the 

wall; new diagonal cracks on the South face 

11 1.00/1.01 
Propagation of faceplate buckling from the southeast corner towards 
the mid-length of the wall; extensive cracking on the South face 

12 1.00/1.01 
Concrete crushing and spalling at the toes of the wall (North and 
South faces) 

13 1.43/1.52 
Propagation of faceplate buckling from the Northeast corner towards 
the mid-length of the wall 

 

Table 2-5: Summary results for CNSC1 

Initial 
stiffness 

(kip/in.) 

Onset of steel 
plate yielding 

Onset of steel 
plate buckling 

Peak load Maximum drift 

Push/Pull 
Load 
(kips) 

Drift 
(%) 

Load 
(kips) 

Drift 
(%) 

Load 
(kips) 

Push/Pull 

Drift (%) 
Push/Pull 

Load 
(kips) 

Push/Pull 

Drift (%) 
Push/Pull 

5139/4966 493 0.38 689 0.70 735/735 0.99/1.01 634/597 1.44/1.51 

The accumulated damage to the wall pier on its South and North faces from cycles 1 through 12 

is shown in Figure 2-10 and Figure 2-11, respectively. The text on the red fill in the figures 

identifies the forces at which the related cracks formed. Damage to the South and North faces of 
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CNSC1 after cycle 13 are presented in Figure 2-12 and Figure 2-13, respectively. Local buckling 

of the steel faceplates and concrete cracking and spalling are clearly visible. The wall twisted in 

the latter stages of the test and there was considerable OOP residual drift. 

Figure 2-10: Accumulated damage on South face, cycles 1-12, CNSC1 (UB and Purdue) 

Figure 2-11: Accumulated damage on the North face, cycles 1-12, CNSC1 (UB and Purdue) 
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Figure 2-12: Damage on South face of CNSC1 after cycle 13 (UB and Purdue) 

Figure 2-13: Damage on North face of CNSC1 after cycle 13 (UB and Purdue) 
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The cumulative energy dissipation in CNSC1 is presented in Figure 2-14. The energy dissipated 

in each cycle ( EDC ) is presented in Table 2-6.  

 

Figure 2-14: Cumulative energy dissipation, CNSC1  
 

Table 2-6: Energy dissipated per cycle, CNSC1 

Cycle 5 6 7 8 9 10 11 12 13 

EDC  (kip-in) 34.4 28.5 74.5 64.4 159 154 315 292 476 

Equivalent viscous damping ( EVD ) data are presented in Figure 2-15 and Table 2-7, where 

EVD  is computed using equation (2-1) (Chopra, 2011). 

1

4 So

EDC
EVD

E
  (2-1) 

where EDC  is the energy dissipated per cycle (area under the force-displacement relationship) 

and SoE is the strain energy (defined as 2 / 2oku , where k  is the secant stiffness to maximum 

displacement ou ). 
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Figure 2-15: Equivalent viscous damping ratio, CNSC1 

Table 2-7: Equivalent viscous damping, CNSC1 

Drift ratio (%) 0.38 0.51 0.70 1.00 1.43 

EVD (%) 8.2 10.6 16.0 21.4 24.4 

2.4.3  Behaviors of CNSC1 and CNSC0 

Figure 2-16 presents the in-plane force-displacement responses of the control specimen (CNSC0) 

and CNSC1. The uniaxial compressive strengths of the concrete for CNSC0 and CNSC1 were 

5800 psi and 7700 psi, respectively. The yield strengths of the steel faceplates (slenderness 

ratios) in CNSC0 and CNSC1 were 57 ksi (21) and 47 ksi (16), respectively. These differences in 

material strengths and slenderness ratios make a direct comparison of the responses of the 

CNSC0 and CNSC1 impossible because both the steel faceplates and infill concrete contribute to 

the in-plane strength of SC wall piers. Both specimens were pushed to a drift ratio (lateral 

displacement divided by the distance between the point of in-plane loading) of approximately 

1.5%. The control specimen failed due to cyclic yielding of the steel faceplates, leading to 

fracture of the base metal close to the weld (Kurt et al., 2015). The test of CNSC1 was 

terminated after cyclic yielding of the steel faceplates, leading to compression failure and 

spalling of infill concrete. 
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Figure 2-16: In-plane force-displacement responses of CNSC0 and CNSC1 

2.5 CNSC2 Test Protocol, Results, and Discussion 

2.5.1 CNSC2 Test Protocol 

Specimen CNSC2 was tested on 11/11/15 and 11/12/15. The concrete compressive strength on 

the first day of testing was 5300 psi. The specimen was initially subjected to five cycles of OOP 

loading, at magnitudes of 30, 60, 90, 120 and 240 kips, respectively, to verify the test setup was 

functioning as intended, and to crack the wall due to OOP shear. Cracking of the specimen due 

to OOP load was first observed at 220 kips. The OOP load was then maintained at 240 kips 

(= 4.73 1.2*(2 / )c c c c s yf A f A A f d s   , where cf  is concrete compressive strength, cA is plan 

area of infill concrete, sA , yf , and s are the area, tensile yield strength, and spacing of the shear

reinforcement, respectively, and d  is the effective depth of the cross section) and then 

incremental cyclic IP loading imposed. The loading protocol for CNSC2 is presented in Table 

2-8, where yP  and y are the yield load (=504 kips) and yield displacement (=0.19 in.) of the

specimen, respectively, calculated by pre-test analysis considering in-plane and out-of-plane 

loading. The cycles were fully reversed: a push half cycle followed by a pull half cycle. 
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Table 2-8: Loading protocol for CNSC2 

Cycle IP loading Control OOP loading 

1-2 0.25 yP Force 

240 kips 

3-4 0.50 yP Force 

5-6 0.75 yP Force 

7-8 1.00 yP Displacement 

9-10 1.50 y Displacement 

11-12 2.00 y Displacement 

13 3.00 y Displacement 

2.5.2 CNSC2 Test Results 

The OOP cyclic force-displacement relationship for CNSC2 is presented in Figure 2-17, where 

the OOP displacement was measured at the top of the wall, at the level where the IP loading was 

later applied. Cracking was first observed at an OOP load of approximately 220 kips. The cyclic 

loading of the wall in the OOP direction resulted in diagonal cracks on its exposed North and 

South faces as presented in Figure 2-18. The long diagonal crack on the North face was produced 

by OOP loading before the application of IP loads. The short diagonal cracks on the South face 

near the base of the wall resulted from OOP loading; the longer diagonal crack propagating from 

the point of application of the OOP load formed after the first IP cycle of loading. 

The IP cyclic force-displacement relationship for CNSC2 is presented in Figure 2-19. The post-

yield displacement cycles (9 to 13) are presented in Figure 2-20. The loss of IP capacity with 

increasing cycles can be identified using the data presented in Table 2-9. Data from cycle 10 was 

lost. Significant reductions in IP resistance were observed at large displacements. 
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Figure 2-17: Out-of-plane force-displacement relationship, CNSC2 

(a) North face (b) South face

Figure 2-18: Diagonal cracking caused by OOP loading, CNSC2 (UB and Purdue) 
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Figure 2-19: In-plane force-displacement relationship, CNSC2 

Figure 2-20: In-plane force-displacement relationship for post yield cycles, CNSC2 
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Table 2-9: Loss of IP capacity, CNSC2 

Cycle 

IP resistance at IP displacement (kips) 

y  1.5 y  2.0 y  3 y  

Push Pull Push Pull Push Pull Push Pull 

7 558 458 - - - - - - 

8 530 457 - - - - - - 

9 536 493 630 580 - - - - 

10 - - - - - - - - 

11 471 496 568 565 623 616 - - 

12 430 455 493 510 539 551 - - 

13 387 - 435 - 466 - 463 - 

The IP load-displacement relationship and backbone curve are presented in Figure 2-21; the 

hysteresis loops are offset approximately 0.03 inch from the origin due to twisting of the SC wall 

pier caused by the applied OOP load. Points A, B, C, and D in the figure represent the onset of 

concrete cracking under IP loading, yielding of steel faceplates, buckling of steel faceplates, and 

concrete crushing, respectively. The test was terminated at the displacement   shown on the 

plot. The sequence of damage to CNSC2 is presented in Table 2-10. Concrete cracking under IP 

loading, steel faceplate yielding, steel face plate buckling, and concrete crushing in the SC wall 

occurred at drift ratios of 0.15%, 0.37%, 0.76%2, and 1.14%, respectively. The tie bar on the 

North end of the wall ruptured in cycle 13; the approximate point of its rupture on the IP force-

displacement relationship is identified in Figure 2-21 by point E. 

Key results are presented in Table 2-11. The initial stiffness of the SC wall, calculated at a drift 

ratio less than 0.02%, is presented in the first column for the push and pull directions. The values 

of load and drift ratio at the onset of steel plate yielding are presented in columns two and three. 

The fourth and fifth column present the load and drift ratio at the onset of steel faceplate 

buckling. The peak loads and their corresponding drift ratios for the push and pull directions are 

presented in columns six and seven. The maximum drift ratios for the experiment and their 

corresponding loads in the push and pull directions are presented in columns eight and nine. The 

maximum drift ratio does not correspond to failure (loss of gravity load resistance) of CNSC2. 

 

                                                        
2 Steel faceplate buckling occurred in cycle 10; the drift in cycle 9 is presented here and used in Figure 2-21. 
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Figure 2-21: In-plane force-displacement relationship and backbone curve, CNSC2 

The accumulated damage to the wall pier on the South and North faces from cycles 1 through 12 

is shown in Figure 2-22. The accumulated damage to the South and North faces of CNSC2 after 

cycle 13 is presented in Figure 2-23. Local buckling of the steel faceplates and concrete cracking 

and spalling are clearly visible. The wall twisted in the latter stages of the test and there was 

considerable OOP residual drift. A tie bar ruptured on the North end of the wall in cycle 13, as 

described previously and shown in Figure 2-24. 

The cumulative energy dissipation in CNSC2 is presented in Figure 2-25. The energy dissipated 

in each cycle ( EDC ) is presented in Table 2-12. Equivalent viscous damping ( EVD ) data are 

presented in Figure 2-26 and Table 2-13, where EVD  is calculated per equation (2-1). 
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Table 2-10: Sequence of damage, CNSC2 

Cycle 
Drift ratio (%) 

Push/Pull 
Damage/Observations 

OOP 240 

kips 
- 

Diagonal crack on the North face propagating from the point of 
application of OOP load; short diagonal cracks near the base of the 

wall on the South face 

1 0.15/0.15 
Diagonal crack on the South face propagating from the point of 
application of OOP load 

2 0.17/0.15 
Propagation of cracks on the South face; new diagonal cracks on the 
North face at the top and bottom of the wall 

3 0.23/0.24 
New diagonal cracks on North and South face at the point of OOP 
loading  

4 0.23/0.24 Specimen twisting 

5 0.37/0.39 
Yielding of the steel faceplate on the West (tension) side of the wall; 

new cracking observed on the North and South faces of the wall 

6 0.35/0.38 
New cracks form on the South face of the wall at the point of OOP 
loading  

7 0.54/0.55 
Yielding of the steel faceplate on the East (compression) side of the 

wall; additional cracking on the South face at top and bottom of wall 
and IP loading location 

8 0.56/0.55 
Additional cracking observed on South wall at IP loading location; 
OOP residual displacement approximately 0.4 inch 

9 0.76/0.81 
Drifting of wall in OOP direction; difficult to maintain OOP load; 
cracks propagate on South and North faces 

10 - / -1 
Buckling of steel faceplate in the northwest, southeast and southwest 
corners of the wall; OOP residual displacement approximately 0.8 
inch 

11 1.14/1.11 
Buckling of steel faceplate in the Northeast corner of the wall; 
cracks propagating; concrete crushing and spalling at the toes of the 

wall; OOP and IP residual drifts are 1.6 and 0.17 inch, respectively 

12 1.06/1.082 

Extensive cracking on the South and North faces of the wall; 
additional spalling of concrete; shear studs visible on the South face 

of the wall; severe buckling of face plates in the North and South 

East corners of the wall; propagation of faceplate buckling towards 
the mid-point of the wall 

13 1.7/ - Tie bar rupture on the North side of the wall 

    1. The data from cycle 10 was not recovered from the test; description based on visual observation. 

    2. The drift ratios of cycle 12 are slightly smaller than cycle 11 due to uncertainty in the stability of the wall 

during this cycle. 
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Table 2-11: Summary results for CNSC2 

Initial 

stiffness 

(kip/in.) 

Onset of 

steel plate 

yielding 

Onset of steel 

plate buckling 
Peak load Maximum drift 

Push/Pull 
Load 

(kips) 

Drift 

(%) 

Load 

(kips) 

Drift 

(%) 

Load 

(kips) 

Push/Pull 

Drift (%) 

Push/Pull 

Load 

(kips) 

Push/Pull 

Drift (%) 

Push/Pull 

2658/3051 380 0.37 629 0.76 629/616 0.76/1.111 464/616 1.70/1.112 
1. Peak load in the push (pull) direction occurred in cycle 9 (11)

2. Maximum drift occurred in cycle 13 (11) for the push (pull) direction; drifts in cycle 12 are slightly smaller due

to concerns regarding the stability of the wall; pull cycle 13 not conducted

(a) South face (b) North face

Figure 2-22: Accumulated damage, cycles 1-12, CNSC2 (UB and Purdue) 

(a) South face (b) North face

Figure 2-23: Accumulated damage to CNSC2 after cycle 13 (UB and Purdue) 
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Figure 2-24: Tie bar rupture at North end of wall, CNSC2 (UB and Purdue) 

 

 

Figure 2-25: Cumulative energy dissipation, CNSC2 

  
Table 2-12: Energy dissipated per cycle, CNSC2 

Cycle 5 6 7 8 9 10 11 12 13 

EDC  (kip-in) 25.5 21.0 66.7 57.0 151 - 330 309 480 
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Figure 2-26: Equivalent viscous damping ratio, CNSC2 

Table 2-13: Equivalent viscous damping, CNSC2 

Drift ratio (%) 0.37 0.55 0.79 1.10 1.70 

EVD (%) 6.9 7.5 12.2 21.4 27.2 

2.5.3 Behaviors of CNSC2 and CNSC0 

Figure 2-27 presents the in-plane force-displacement responses of CNSC0 and CNSC2. The 

uniaxial compressive strengths of the concrete (slenderness ratio) for CNSC0 and CNSC2 were 

5800 psi (21) and 5300 psi (16), respectively. The faceplate yield strengths of CNSC0 and 

CNSC2 were 57 ksi and 47 ksi, respectively. These differences in faceplate slenderness and 

material strengths make it difficult to quantify the effects of the OOP load on the IP response by 

comparing specimen responses. The control specimen and CNSC2 were pushed to a drift ratio of 

1.5% and 1.7%, respectively. CNSC0 failed due to cyclic yielding of the steel faceplates, leading 

to fracture of the base metal close to the weld (Kurt et al., 2015). The test of CNSC2 was 

terminated after cyclic yielding of the steel faceplates leading to spalling of the infill concrete 

and tie bar rupture. 
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Figure 2-27: In-plane force-displacement responses of CNSC0 and CNSC2 

 

2.6 CNSC3 Test Protocol, Results, and Discussion 

2.6.1 CNSC3 Test Protocol  

Specimen CNSC3 was tested on 02/09/16 and 02/10/16. The concrete compressive strength on 

the first day of testing was 5300 psi. Cracks formed on the exposed North and South faces of the 

wall (see Figure 2-28) due to the post-tensioning of the beams to the specimen (see Figure 2-2) 

for the application of OOP loads. The specimen was subjected to five cycles of OOP loading, at 

magnitudes of 50, 100, 150, 200 and 250 kips, respectively, to verify the test setup was 

functioning as intended, and to crack the infill concrete due to OOP shear. The OOP load was 

then maintained at 250 kips (= 4.92 c cf A ) and incremental cyclic IP loading imposed. The 

loading protocol for CNSC3 is presented in Table 2-14, where yP  and y  are the in-plane yield 

load (=505 kips) and yield displacement (=0.175 in.) of the specimen, respectively, calculated by 

pre-test analysis.  
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(a) North face (b) South face

Figure 2-28: Initial cracking of specimen before OOP load application, CNSC3 (UB and Purdue) 

Table 2-14: Loading protocol for CNSC3 

Cycle IP loading1 Control OOP loading 

1-2 0.25 yP Force 

250 kips 
3-4 0.50 yP Force 

5-6 0.75 yP Force 

7-8 1.00 yP Displacement 

 1. yP is the estimated in-plane yield strength 

2.6.2 CNSC3 Test Results 

The OOP cyclic force-displacement relationship for CNSC3 is presented in Figure 2-29, where 

the OOP displacement was measured at the top of the wall, at the level where the IP loading was 

later applied. The OOP cyclic loading resulted in diagonal cracks in both the push and pull 

directions, on the exposed North and South faces of the wall, as presented in Figure 2-30. The 

cracks propagated diagonally downwards from the level of application of the OOP load. 

The IP cyclic force-displacement relationship for CNSC3 is presented in Figure 2-31. Significant 

reductions in IP resistance were observed in cycle 8. The significant drop in the in-plane load in 

cycle 8, at a displacement of 0.18 inch, resulted from the operator trying to avoid overshooting 

the target displacement. 
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Figure 2-29: Out-of-plane force-displacement relationship, CNSC3 

 

  

(a) North face (b) South face 

Figure 2-30: Additional diagonal cracking caused by OOP loading, CNSC3 (UB and Purdue) 
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Figure 2-31: In-plane force-displacement relationship, CNSC3 

The IP load-displacement relationship and backbone curve are presented together in Figure 2-32; 

the hysteresis loops are offset from the origin by approximately 0.035 inch due to twisting of the 

SC wall pier caused by the applied OOP load. Points A, B, C, and D in the figure represent the 

onset of concrete cracking under IP loading, yielding of steel faceplates, buckling of steel 

faceplates, and concrete crushing, respectively. The test was terminated at the displacement   

shown on the plot (displayed at point D). The sequence of damage to CNSC3 is presented in 

Table 2-15. Concrete cracking under IP loading, steel faceplate yielding, steel face plate 

buckling, and concrete crushing in the SC wall occurred at drift ratios of 0.09%, 0.19%, 0.50%, 

and 0.56%, respectively. 

Key results are presented in Table 2-16. The initial stiffness of the SC wall, calculated at a drift 

ratio less than 0.02%, is presented in the first column for the push and pull directions. The values 

of load and drift ratio at the onset of steel plate yielding are presented in columns two and three. 

The fourth and fifth column present the load and drift ratio at the onset of steel faceplate 

buckling. The peak loads and their corresponding drift ratios for the push and pull directions are 

presented in columns six and seven. The maximum drift ratios for the experiment and their 
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corresponding loads in the push and pull directions are presented in columns eight and nine. The 

maximum drift ratio does not correspond to gravity load failure of CNSC3. 

 

Table 2-15: Sequence of damage, CNSC3 

Cycle 
Drift ratio (%) 

Push/Pull 
Damage/Observations 

Pre-test -/- 

Diagonal cracks on the North and South faces propagating from the point 
of application of OOP load on the East face to the base plate on the West 

face; diagonal cracks on the North face propagating from the West face:  

cracks above the point of OOP load application; small diagonal cracks on 

the South face located mid-depth of the cross section and above point of 

OOP load application 

OOP 100 

kips 
- 

Short diagonal cracks on the North face propagating from the East face 

towards the base plate on the West face below the point of OOP load 

application; short diagonal cracks on the South face at the mid-depth of the 
cross section, propagating from East to West 

OOP 150 
kips 

- 
Diagonal cracks on the North face propagating from the point of OOP load 
application on the East face towards the base plate on the West face 

OOP 200 
kips 

- 
Diagonal cracks on the South face from the point of OOP load application 
to the mid-depth of the cross section from the East face towards the West 

face 

OOP 250 
kips 

- 

Diagonal cracks on the North face propagating from the point of OOP load 
application on the West face to the East face towards the base plate; short 

diagonal cracks on the South face propagating from the West face to the 

East face 

1 0.09/0.08 
Propagation of diagonal cracks on the North and South faces; new diagonal 

cracks on the South face 

2 0.08/0.09 New diagonal cracks on the South face 

3 0.19/0.21 
Yielding of the steel faceplate on the West (tension) side of the wall; new 

diagonal cracks on the North face at the point of OOP loading 

4 0.20/0.21 
Propagation of diagonal cracks on the South face; new diagonal cracks on 

the North face near the base of the wall 

5 0.35/0.36 
New horizontal cracks located at the mid-depth of the cross section on the 

South face 

6 0.39/0.41 
Significant growth of cracks on the North and South faces; yielding of the 
steel faceplate on the East (compression) side of the wall 

7 0.50/0.49 
Buckling of the steel faceplate in the northeast corner of the wall; 
significant opening of cracks on the North and South faces 

8 0.56/0.56 

Concrete crushing and spalling at the toes of the wall; significant 
movement of wall in the OOP direction; difficult to maintain OOP load; 

buckling of the East faceplate along the length of the wall, 2 inches above 

the baseplate; deformation of the steel faceplate at the point of OOP load 

application on the West face; OOP and IP residual drifts are 1.0 and 0.07 

inch, respectively 
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Figure 2-32: In-plane force-displacement relationship and backbone curve, CNSC3 

Table 2-16: Summary results for CNSC3 

Initial 

stiffness 

(kip/in.) 

Onset of 

steel plate 

yielding 

Onset of steel 

plate buckling 
Peak load Maximum drift 

Push/Pull 
Load 

(kips) 

Drift 

(%) 

Load 

(kips) 

Drift 

(%) 

Load 

(kips) 

Push/Pull 

Drift (%) 

Push/Pull 

Load 

(kips) 

Push/Pull 

Drift (%) 

Push/Pull 

3500/3576 309 0.19 504 0.50 504/481 0.50/0.49 303/328 0.56/0.56 

The accumulated damage to the wall pier on the exposed South and North faces of the wall after 

cycle 8 is shown in Figure 2-33. Local buckling of the steel faceplates and concrete cracking and 

spalling are clearly visible. Figure 2-34 presents additional photographs of damage including 

faceplate buckling and OOP residual drift. 

The cumulative energy dissipation in CNSC3 is presented in Figure 2-35. The energy dissipated 

in each cycle ( EDC ) is presented in Table 2-17. Equivalent viscous damping ( EVD ) data are 

presented in Figure 2-36 and Table 2-18, where EVD  is computed using equation (2-1). 
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(a) South face (b) North face 

Figure 2-33: Accumulated damage after cycle 8, CNSC3 (UB and Purdue) 

 

 
 

(a) Faceplate buckling (b) OOP residual drift 

Figure 2-34: Additional photographs of damage after cycle 8, CNSC3 (UB and Purdue) 
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Figure 2-35: Cumulative energy dissipation, CNSC3 

Table 2-17: Energy dissipated per cycle, CNSC3 

Cycle 6 7 8 

EDC (kip-in) 50.3 87.7 109 

Figure 2-36: Equivalent viscous damping ratio, CNSC3 
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Table 2-18: Equivalent viscous damping, CNSC3 

Drift ratio (%) 0.39 0.50 0.56 

EVD (%) 11.8 15.4 21.6 

2.6.3 Behaviors of CNSC3 and CNSC0 

Figure 2-37 presents the in-plane force-displacement responses of CNSC0 and CNSC3. The 

uniaxial compressive strengths of the concrete (slenderness ratio) for CNSC0 and CNSC3 were 

5800 psi (21) and 5300 psi (16), respectively. The faceplate yield strengths of CNSC0 and 

CNSC3 were 57 ksi and 47 ksi, respectively. These differences between CNSC0 and CNSC3 

make it impossible to directly compare the experimental results. CNSC0 and CNSC3 were 

pushed to a drift ratio of 1.50% and 0.56%, respectively. CNSC0 failed due to cyclic yielding of 

the steel faceplates, leading to fracture of the base metal close to the weld. The test of CNSC3 

was terminated after significant buckling of the steel faceplate on the Northeast corner of the 

wall and spalling of the infill concrete. 

Figure 2-37: In-plane force-displacement responses of control specimen and CNSC3 
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SECTION 3  

NUMERICAL SIMULATION OF THE SEISMIC RESPONSE OF SC 

WALL PIERS 

3.1 Introduction 

This chapter describes numerical simulations performed to support the physical tests of Chapter 

2, namely, the simultaneous in-plane (IP) and out-of-plane (OOP) loading of SC wall piers. The 

simulations described here utilized, as a starting point, validated numerical models developed in 

LS-DYNA (LSTC, 2012) by Epackachi et al. (2014b, 2015) for calculating the IP response of SC 

wall piers. The validated model developed by Epackachi et al. for the IP response of SC walls 

used: 

 The smeared crack Winfrith model for infill concrete, MAT085, using concrete material

properties including the nominal compressive and tensile strengths, elastic modulus,

Poisson’s ratio of 0.18, specific fracture energy, and aggregate size. In the absence of

experimental data, the specific fracture energy can be estimated for a given aggregate size

using CEB (1993).

 The plastic-damage model for the steel faceplates, MAT081, using steel material

properties including the nominal yield and ultimate strengths, elastic modulus, Poisson’s

ratio, and plastic strain thresholds corresponding to the beginning of the softening and

rupture as established using coupon test results.

 Beam, shell, and solid elements to model connectors, steel faceplates, and infill concrete,

respectively, and a mesh size of 1 in for the solids and shells

 Tie constraint to attach the studs and tie rods to the steel faceplates (and the baseplate if

provided) and LAGRANGE-IN-SOLID constraint available in LS-DYNA to attach the

connectors to the infill concrete elements.

The IP response of SC wall piers is dominated by the behavior of the steel faceplates. Given that 

the OOP response of an SC wall will be strongly influenced by the behavior of the concrete, it 

was prudent to first exercise the IP model described above using data from tests of singly 

reinforced concrete (RC) specimens that were not reinforced for shear. The RC beam simulations 



42 

are presented in Section 3.2. Section 3.3 presents numerical simulations of the physical tests 

described in Chapter 2.  

3.2 RC Beam Simulations 

Data from tests of RC beams performed by Bresler et al. (1963) and Mphonde et al. (1984) were 

used to validate the Winfrith (MAT085) concrete model. The corresponding LS-DYNA 

simulations are summarized in Table 3-1, where w  is the width of the beam, h  is the height of 

the beam, l  is the length of the beam, cf  is the unconfined uniaxial compressive strength of 

concrete, tf   is the tensile strength of the concrete (taken as 0.1 cf   unless specified in the 

experiment),   is the longitudinal reinforcement ratio, E is Young’s modulus for concrete,

calculated as 57000 cE f  per ACI 318-14 (ACI, 2014), G  is fracture energy calculated using

Equation 2.1-7 or Table 2.1.4 of CEB-FIP Model Code (CEB, 1993), and cw is crack width,

calculated as 2 /c tw G f  per Figure 3 of Wittmann et al. (1988). Test 1 was performed by

Bresler et al. and Tests 2 through 6 were performed by Mphonde et al. (1984). In these 

experiments, the shear span-to-depth ratio, /a d , was varied from 1.5 to 4 and the concrete 

compressive strength varied between 3200 and 10634 psi. The longitudinal reinforcement ratios 

in these beams are high, and especially so for specimens 2 through 6. Additional simulations 

were then performed for / 1.5a d  : the ratio chosen for the testing of the SC wall panels, as 

described in Chapter 2. 

Table 3-1: Summary of LS-DYNA simulations of plain RC specimens 

Test 
Beam dimensions 

w h l   (in) 
/a d cf 

(psi) 

tf 

(psi) 



(%) 
E (psi) 

G

(lb-in/in2) cw (in) 

1 12.2   21.9   144 4 3,270 575 1.8 3.26E6 0.371 0.0013 

2 6   13.25   96 3.6 3,273 327 3.4 3.26E6 0.371 0.0023 

3 6   13.25   96 2.5 3,246 325 3.4 3.25E6 0.371 0.0023 

4 6   13.25   96 1.5 3,637 364 3.4 3.44E6 0.399 0.0022 

5 6   13.25   96 1.5 6,593 659 3.4 4.63E6 0.548 0.0017 

6 6   13.25   96 1.5 10,364 1036 3.4 5.88E6 0.714 0.0014 

Figure 3-1 describes the Bresler et al. experiment. The corresponding LS-DYNA model is 

presented in Figure 3-2. One-inch long beam elements were used to model the longitudinal 

reinforcement (4 #9 bars with a 1-inch cover, corresponding to a reinforcement ratio of 1.8%). 

Eight-node solid elements were used to model the concrete. The concrete was modeled with 1   

1   1 in. elements. The rebar was embedded into the concrete using node sharing. The constant 
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stress formulation (ELFORM=1 in LS-DYNA) and cross section integrated beam element 

(Hughes-Liu beam in LS-DYNA) were used for the solid and beam elements, respectively. The 

Winfrith concrete model was used to model the concrete in the beam. The d3crack database was 

activated to visualize the crack pattern during loading. The 

PIECEWISE_LINEAR_PLASTICITY (MAT024) material model was used to model the Grade 

60 reinforcement. The pin and roller boundary conditions were applied by constraining the 

displacements of three rows of nodes in the (Y and Z) and (Z) directions, respectively. A 

displacement was imposed at the center of the beam (1495 nodes) using a 

PRESCRIBED_MOTION_SET. Figure 3-3 shows the boundary conditions and the applied load. 

 

 

                    
Figure 3-1: Experimental setup (Bresler et al., 1963) 

 

 
 

(a) Isometric view (b) Cross section view (XZ plane) 

Figure 3-2: LS-DYNA model of the Bresler et al. (1963) experiment 

 

 



44 

 

 

Figure 3-3: LS-DYNA loading and boundary conditions 

Figure 3-4a and Figure 3-4b present the final crack pattern of the beam from the LS-DYNA 

simulation and the experiment, respectively. The crack pattern from the simulation is in 

reasonably good agreement with the experiments. Cracking at the support caused by slippage of 

the longitudinal reinforcement was not observed in the simulation because perfect bond was 

assumed. Figure 3-4c presents the force-displacement relationship at the center of the beam for 

the experiment and the simulation. The peak force observed in the simulation and experiment are 

70 and 75 kips, respectively. The simulation is in good agreement with the experiment. 

An illustration of the beam used in the Mphonde et al. (1984) experiments is presented in Figure 

3-5. The input for the simulations is presented in Table 3-1 as Tests 2 through 6. The LS-DYNA 

model to simulate the Mphonde experiments is presented in Figure 3-6. One-inch beam elements 

were used to model the longitudinal reinforcement (3 #8 bars with a 1-inch cover corresponding 

to a reinforcement ratio of 3.36%). Eight-node solid elements were used to model the concrete. 

The concrete was modeled with 1   1   1 in. elements. The rebar was embedded into the 

concrete using node sharing. The constant stress formulation (ELFORM=1 in LS-DYNA) and 

cross section integrated beam element (Hughes-Liu beam in LS-DYNA) were used for the solid 

and beam elements, respectively. The Winfrith concrete model was used to model the concrete in 

the beam. Material constants are presented in Table 3-1. The d3crack database was activated to 

visualize the crack pattern during loading. The PIECEWISE_LINEAR_PLASTICITY 

(MAT024) material model was used to model the Grade 60 reinforcement. The pin and roller 

boundary conditions were applied by constraining the displacements of one row of nodes in the 

(Y and Z) and (Z) directions, respectively. The location of the constraints was moved to simulate 

the different span lengths (i.e., 35.25, 58.75, and 84 in). A displacement was imposed at the 

center of the beam (505 nodes) using a PRESCRIBED_MOTION_SET. 

Pin boundary 

condition 
Roller boundary 

condition 

Loading 

nodes 
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(a) Simulation

(b) Experiment

(c) Force-displacement relationships

Figure 3-4: Experimental (Bresler) and LS-DYNA results 

Figure 3-5: Experimental setup (Mphonde et al., (1984)) 
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Figure 3-6: LS-DYNA model of the Mphonde et al. (1984) experiment 

Table 3-2 summarizes the simulations of the Mphonde experiments using average shear stress at 

maximum resistance, calculated here as peak load divided by the product of the section width 

and total depth. The simulations reasonably recover the maximum shear stress calculated from 

the experimental results for different values of /a d . Not shown here, because the experimental 

data are not available, is the post-peak shear force response, which will affect the IP behavior of 

SC walls. The Winfrith concrete model reasonably captures the OOP peak shear strength of plain 

reinforced concrete beams (i.e., no shear reinforcement) under monotonic loading, and is used 

hereafter to simulate the cyclic OOP and combined IP and OOP response of SC walls. Note that 

the normalized maximum shear stresses for Tests 2 through 6 are much greater than the value of 

2.0 routinely used for the shear design of reinforced concrete beams and slabs in the United 

States for two reasons: 1) the longitudinal reinforcement ratios are high for all specimens (which 

increases monotonic shear capacity of plain reinforced concrete), and 2) the ratio of a to d is 1.5 

for Tests 4, 5 and 6, which alters the shear-force-resisting mechanism from that of a slender 

beam to a deep beam (i.e., strut joining the point of load application to the point of reaction). 

Table 3-2: Summary of RC beam simulation results 

Test /a d  

Maximum shear stress 

(psi) 

Maximum shear stress  

normalized by cf    
Difference 

(%) 
Experiment LS-DYNA Experiment LS-DYNA 

2 3.6 183 198 3.19 3.46 8 

3 2.5 220 302 3.86 5.30 37 

4 1.5 328 379 5.44 6.28 16 

5 1.5 881 974 10.85 12.0 11 

6 1.5 1223 1371 11.86 13.3 12 
 



47 

3.3 Simulation of CNSC Experiments 

A model of the CNSC experiments was prepared in LS-DYNA using the approach described in 

Section 3.1. The model, shown in Figure 3-7, is composed of infill concrete, baseplate, steel 

faceplates, tie bars, and shear studs. The foundation was not included in the model: the bottom 

nodes of the baseplate were fixed. The element types, sizes, and formulations, and material 

models used for each part of the model are summarized in Table 3-3.  

In experiments CNSC1 and CNSC3, the tie bars were spaced at 12 inches on center along the 

height and length of the wall, with the first tie bar located 12 inches above the baseplate and 6 

inches from the edge of the wall (see Figure 3-8); the tie bar is shown in yellow. In CNSC2, the 

tie bars were spaced at 6 inches on center along the height and length of the wall, with the first 

tie bar located 6 inches above the baseplate and 3 inches from the edge of the wall (see Figure 

3-9). The shear studs on the faceplates were spaced at 3 inches on center along the height and

length of the wall. The total wall thickness was 12 inches. The yield strength and tensile 

strengths of the steel faceplate material were 47 ksi and 80 ksi, respectively. The OOP loading 

was simulated by applying nodal forces to the steel and concrete elements at a height of 18 

inches above the base of the wall. Once the wall was cycled OOP and the desired OOP load was 

reached, the OOP load was held constant, and the wall was then subjected to displacement-

controlled cyclic IP loading at its top. The follow subsections present results of the LS-DYNA 

simulations. Comparisons are made between the results of the experiments and the LS-DYNA 

simulations. 

Table 3-3: Summary of the LS-DYNA models of the CNSC specimens 

Component 
Element 

Material model 
Type Size Formulation 

Infill 

concrete 
Solid 1   1   1 in Constant stress solid Winfrith (MAT085) 

Faceplate Shell 1   1 in Belytschko-Tsay 
Plasticity_with_Damage 

(MAT081) 

Shear studs Beam 1 in 
Hughes-Liu with cross 

section integration 

Piecewise_Linear_Plasticity 

(MAT024) 

Tie bars Beam 1 in 
Hughes-Liu with cross 

section integration 

Piecewise_Linear_Plasticity 

(MAT024) 

Baseplate Solid 1   1   1 in Constant stress solid Elastic (MAT003) 

Welds Solid 1   1   1 in Constant stress solid Elastic (MAT003) 
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Figure 3-7: LS-DYNA model of the CNSC experiments 

Infill 

concrete 
Baseplate 

Tie bars 

connecting two 

faceplates 

(yellow) 

Studs attached to baseplate 

Studs attached to 

faceplates 

Faceplates 
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Figure 3-8: CNSC1 and CNSC3 tie bar details 

Figure 3-9: CNSC2 tie bar details 

Tie bar 

Tie bar 
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3.3.1 CNSC1 Simulations 

The uniaxial compressive strength of the infill concrete in CNSC1 on the first day of physical 

testing was 7700 psi. CNSC1 was initially subjected to four cycles of OOP loading at 

magnitudes of 30, 60, 90 and 120 kips. The OOP load was maintained at a constant value of 120 

kips and incremental cyclic IP loading was then imposed. The IP loading protocol in the 

simulation and experiment consisted of seven load steps with two cycles per load step and a 

maximum drift of 1.6%: see Table 2-2. 

The OOP force-displacement relationship of the SC panel for the experiment and the simulation 

are shown in Figure 3-10. The stiffness of the SC panel in the numerical model is slightly greater 

than that observed in the experiment because the foundation (and its flexibility) was not 

modeled. A plan view of the wall pier and directions of applied IP and OOP load are presented in 

Figure 3-11. The configuration presented in Figure 3-11 shows the direction of applied OOP load 

during IP loading and is denoted as the push direction; the West and East faceplate is in tension 

and compression due to the OOP load, respectively. The distribution of vertical stress on the 

tension faceplate (West) at the instant before the IP cyclic loading was imposed for the 

experiment and the numerical model are presented in Figure 3-12; the stresses are plotted as a 

function of the distance along the length of the wall from point O (see Figure 3-11). Points P1, 

P2, P3, P4, and P5 (labeled in Figure 3-11 and Figure 3-12) correspond to distances of 3, 15, 30, 

45, and 57 inches from point O at the bottom of the base plate. Points P1, P2, P3, P4, and P5 also 

correspond to locations of strain gages on the West face (shown in Figure 2-3c). The vertical 

stresses calculated from the numerical analysis are in reasonably good agreement with the values 

measured in the experiment. No yielding of the faceplates was observed during OOP loading in 

either the experiment or the simulation. 

The axial stresses in the tie bars at the instant before application of the IP loading is shown in 

Figure 3-13; the stresses are shown in units of psi. The greatest stresses are observed in the tie 

bars located below point of application of the OOP load, which is an expected outcome. The 

maximum axial stress due to the applied OOP load is 6.2 ksi: much less than the yield stress (=50 

ksi). 

The IP force-displacement relationship of the SC panel for the simulation and the experiment are 

shown in Figure 3-14. The predictions of peak shear resistance, post-peak strength reductions,  
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Figure 3-10: OOP force-displacement relationship, LS-DYNA and experiment, CNSC1 

Figure 3-11: Plan view of wall pier and loading 

and rate of reloading/unloading stiffness for peak and post-peak IP strength cycles compared 

favorably with the test results; the initial IP stiffness of the numerical model is significantly 

larger than that of the experiment because the flexibility of the foundation was not considered in 

the numerical model. 
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Figure 3-12: Distribution of vertical stresses on tension plate at instant before IP cyclic loading, 

CNSC1 

 

 

Figure 3-13: Distributions of axial stress in tie bars at instant before IP cyclic loading, CNSC1 

(units of psi) 
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Figure 3-14: IP force-displacement relationship, LS-DYNA and experiment, CNSC1 

The IP equivalent viscous damping, EVD , calculated using equation (2-1) at different levels of 

story drift are presented in Figure 3-15 for both the numerical simulation and the experiment. 

The calculated damping ratios from the numerical simulation are slightly greater than from the 

experiment. The IP force-displacement relationships for cycles 8 and 9, which correspond to drift 

ratios of 0.5 and 0.7%, respectively, are shown in Figure 3-16a and Figure 3-16b, respectively. 

The numerical model slightly overshoots the peak force and its hysteresis loops are wider, 

leading to an overprediction of the dissipated energy. Because the secant stiffness to maximum 

displacement is similar for the numerical solution and the experiment, the  overprediction of 

dissipated energy leads directly to an overprediction of EVD : see Figure 3-15. Figure 3-17 

presents the observed and simulated local damage to CNSC1; cracking of the concrete and local 

buckling of the steel faceplates at the toes of the wall were observed in both the experiment and 

the numerical simulation. The numerical model cannot predict the crushing (spalling) of infill 

concrete observed in the experiment. 
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Figure 3-15: Equivalent viscous damping ratio, LS-DYNA and experiment, CNSC1 

(a) Cycle 8, drift ratio = 0.5% (b) Cycle 9, drift ratio = 0.7%

Figure 3-16: Selected IP force-displacement relationships, LS-DYNA and experiment, CNSC1 
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Figure 3-17: Observed and predicted damage to CNSC1 

The LS-DYNA-predicted cyclic force-displacement relationships of the infill concrete and steel 

faceplates are presented in Figure 3-18a and Figure 3-18b, respectively. The IP shear forces in 

the infill concrete and steel faceplates were calculated at the baseplate using the SPLANE feature 

in LS-DYNA; the feature allows the user to perform cuts using section planes to aggregate 

forces. The total IP force-displacement relationship is also presented in Figure 3-18a and Figure 

3-18b (in grey), to show the contribution of the infill concrete and steel faceplates to the overall

resistance of the wall pier. The steel faceplates dominate the behavior of the SC wall pier in the 

IP direction, which is an expected result. The pinched hysteresis loops for the infill concrete is 

associated with damage to the infill concrete (i.e., cracking), as observed in Figure 3-17. 

The LS-DYNA-predicted OOP force history of the infill concrete and the steel faceplates is 

presented in Figure 3-19. The SC wall pier was subjected to four cycles of OOP load at 

magnitudes of 30, 60, 90, and 120 kips before being held constant (at time=1.7 seconds in Figure 

3-19) for the application of the IP loading. The infill concrete dominates the behavior of the SC

wall pier in the OOP direction. 

Figure 3-20 presents the IP force-displacement relationship for the experiment, and the LS-

DYNA simulations with and without the applied OOP load. The initial stiffness, pinching, and 

rate of reloading/unloading of the numerical model are similar for the numerical model with and 

without the applied OOP load. The backbone curves for the force-displacement relationships 

presented in Figure 3-20 are presented in Figure 3-21. The differences in initial stiffness for the 

experiment and the numerical model are observed clearly using the backbone curves. The OOP 

load reduces the IP capacity of the LS-DYNA model by approximately 6%. 

Cracking of 

infill concrete 

Steel faceplate 

buckling 

Crushing of 

infill concrete 



56 

 

  
(a) Infill concrete (b) Steel faceplates 

Figure 3-18: LS-DYNA-predicted IP cyclic force-displacement relationships, CNSC1 

 

 
Figure 3-19: LS-DYNA-predicted components of the OOP cyclic force history, CNSC1 
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Figure 3-20: IP force-displacement relationships, CNSC1 

Figure 3-21: Backbone curves, CNSC1 
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3.3.2  CNSC2 Simulations 

The uniaxial concrete compressive strength on the first day of testing was 5300 psi. The SC 

specimen was initially subjected to five cycles of OOP loading, at magnitudes of 30, 60, 90, 120, 

and 240 kips, respectively. In both the simulation and the experiment, the OOP load was then 

maintained at 240 kips and incremental cyclic IP loading was imposed. The loading protocol in 

the experiment and the simulation consisted of seven load steps with two cycles per load step and 

a maximum drift of 1.7%: see Table 2-8. 

Figure 3-22 presents the OOP force-displacement relationship for the experiment and the 

simulation. The stiffness of the numerical model is in relatively good agreement with that of the 

experiment. The distributions of vertical stress on the tension faceplate (West side) in the push 

configuration at OOP loads of 60, 90, 120, and 240 kips are presented in Figure 3-23a, Figure 

3-23b, Figure 3-23c , and Figure 3-23d, respectively; the stresses are plotted as a function of the 

distance along the length of the wall from point O (see Figure 3-11). The distances of 3, 15, 30, 

45, and 57 inches from Point O correspond to points P1, P2, P3, P4, and P5, respectively. The 

predicted stresses are in relatively good agreement with the stresses measured in the experiment. 

The faceplates did not yield during cyclic OOP loading in either the experiment or the numerical 

simulation. 

Figure 3-24 presents the distributions of axial stress in the tie bars at the instant before 

application of the IP load; the magnitude of the OOP load was 240 kips. The maximum axial 

stress was observed in the tie bars near the base of the wall: an expected result. The predicted 

maximum axial stress was 37 ksi, and less than the yield value (=50 ksi). 

The IP force-displacement relationship for the simulation and the experiment are presented in 

Figure 3-25. The numerical model predicted the peak shear resistance and rates of 

reloading/unloading with reasonable accuracy. The OOP load in cycles 12 and 13 of the 

experiment was not maintained at 240 kips: it gradually decreased as the IP capacity of the wall 

diminished. To account for this in the numerical simulation, the OOP load in the numerical 

model decayed linearly from 240 kips at the start of cycle 12 to a value of 0 kips at the end of 

cycle 13. 
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Figure 3-22: OOP force-displacement relationship, LS-DYNA and experiment, CNSC2 
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(a) OOP load = 60 kips (b) OOP load = 90 kips

(c) OOP load = 120 kips (d) OOP load = 240 kips

Figure 3-23: Distributions of vertical stress in the tension plate, CNSC2 
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Figure 3-24: Distributions of axial stress in tie bars at instant before IP cyclic loading, CNSC2 

(units of psi) 

Figure 3-25: IP force-displacement relationship, LS-DYNA and experiment, CNSC2 
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The calculated equivalent viscous damping ratio, EVD , for the experiment and the numerical 

simulation are presented in Figure 3-26. The damping ratios predicted using the numerical model 

are significantly greater than those measured in the experiment. Figure 3-27a and Figure 3-27b 

present the IP force-displacement relationships for cycles 7 and 9, respectively; cycles 7 and 9 

correspond to drift ratios of 0.55% and 0.79%, respectively. The numerical model overpredicts 

the peak force measured in the experiment in Cycle 7 but the values of the numerically predicted 

energy dissipation in these cycles are significantly greater than those calculated from the 

experiment, leading to greater values of EVD . 

The measured and predicted damage to CNSC2 are shown in Figure 3-28. Local buckling of the 

steel faceplates and cracking of the concrete are seen in both the experiment and the simulation. 

Large concrete strains are predicted and crushing of concrete was observed at the toes of the 

wall. 

Figure 3-26: Equivalent viscous damping ratio, LS-DYNA and experiment, CNSC2 
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(a) Cycle 7, drift ratio = 0.55% (b) Cycle 9, drift ratio = 0.79%

Figure 3-27: Selected IP force-displacement relationships, LS-DYNA and experiment, CNSC2 

Figure 3-28: Observed and predicted damage to CNSC2 

Figure 3-29a and Figure 3-29b show the LS-DYNA-predicted IP cyclic force-displacement 

relationships for the infill concrete and steel faceplates, respectively. The predicted IP force-

displacement relationship of the pier is shown in grey to highlight the contribution of the infill 

concrete and steel faceplates to the total IP shear resistance. The steel faceplates dominate the 

behavior of the wall piers in the IP direction. The predicted hysteresis loops for the infill 

concrete and the steel faceplates are pinched, due to concrete cracking and faceplate buckling, 

respectively. The components of resistance in LS-DYNA-predicted OOP cyclic force history are 

presented in Figure 3-30; the total applied load is also displayed to highlight the contribution of 

each component to the OOP shear resistance. The infill concrete dominates the behavior in the  

Cracking of 

infill concrete 

Steel faceplate 

buckling 

Crushing of 

infill concrete 



64 

 

  

(a) Infill concrete (b) Steel faceplates 

Figure 3-29: LS-DYNA-predicted IP cyclic force-displacement relationships, CNSC2 

 

 
Figure 3-30: LS-DYNA-predicted components of the OOP cyclic force history, CNSC2 

OOP direction: an expected result. The linear decay in the numerically applied OOP load in 

cycles 12 and 13, related to the relaxation of the OOP loading in the experiment, is shown in 

Figure 3-30. 
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The IP force-displacement relationship for the experiment and the LS-DYNA simulations with 

and without applied OOP load are presented in Figure 3-31. The application of the OOP load 

significantly reduces the IP capacity of the wall piers, although the initial stiffness and rates of 

reloading/unloading are not significantly affected. The backbone curves for the cyclic loadings 

of Figure 3-31 are shown in Figure 3-32. The application of the OOP load to the LS-DYNA 

model reduced the IP capacity by 22%. 

Figure 3-31: IP force-displacement relationships, CNSC2 

3.3.3 CNSC3 Simulations 

The uniaxial concrete compressive strength on the day of testing of CNSC3 was 5300 psi. The 

specimen was initially subjected to five cycles of OOP loading, at magnitudes of 50, 100, 150, 

200, and 250 kips, respectively, before IP cyclic loading was imposed. The loading protocol used 

for the experiment and the simulation consisted of seven load steps with two fully reversed 

cycles per load step and a maximum drift of 0.56%: see Table 2-14. 

The OOP force-displacement relationship for the experiment and numerical model are presented 

in Figure 3-33. Similar to the simulations of CNSC1 and CNSC2, the numerical model is slightly 

stiffer for OOP loading than that measured in the experiment. The distributions of  
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Figure 3-32: Backbone curves, CNSC2 

Figure 3-33: OOP force-displacement relationship, LS-DYNA and experiment, CNSC3 
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vertical stress on the West faceplate (see Figure 3-11) at OOP loads of 50, 150, 200, and 250 

kips are presented in Figure 3-34a, Figure 3-34b, Figure 3-34c, and Figure 3-34d, respectively; 

the data from the cycle with an applied OOP load of 100 kips was lost. The location of points P1 

through P5 on the tension faceplate are those described in Sections 1.1.1 and 3.3.2, for CNSC1 

and CNSC2, respectively; the strain gage data at point P5 was not reliable and not plotted. The 

predicted and measured vertical stresses on the tension faceplate are in good agreement.  

The distributions of axial stress in the tie bars at the instant before application of IP loading is 

shown in Figure 3-35; the stresses are shown in units of psi. The magnitude of applied load is 

250 kips. The maximum axial stress is approximately 32 ksi, occurring in the bottom row of tie 

bars near the connection to the faceplate: smaller than the yield stress (=50 ksi). 

The simulated and measured IP force-displacement relationships for CNSC3 are presented in 

Figure 3-36; the numerical model over predicted the peak IP capacity by 12% and did not predict 

the loss of IP capacity observed in the experiment. In the experiment, failure of CNSC3 was 

triggered by significant buckling of the steel faceplate at the Northeast corner of the wall and 

spalling of the infill concrete. The damage to the infill concrete was not predicted using the 

Winfrith concrete model, which assumes elastic-perfectly plastic behavior in compression. The 

numerical model predicted buckling of the East steel faceplate and concrete cracking on the 

North and South faces (seen in Figure 3-37). The Winfrith model enabled the development of 

large compressive strains in the infill concrete, but not damage in the form of spalling, for which 

erosion strains (a numerical workaround) would have to be specified. A new material model 

would be needed to capture this loss of strength at large compressive strains. 
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(a) OOP load = 50 kips (b) OOP load = 150 kips

(c) OOP load = 200 kips (d) OOP load = 250 kips

Figure 3-34: Distributions of vertical stress in the tension plate, CNSC3 
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Figure 3-35: Distributions of axial stress in tie bars at instant before IP cyclic loading, CNSC3 

(units of psi) 
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Figure 3-36: IP force-displacement relationship, LS-DYNA and experiment, CNSC3 

Figure 3-37: Observed and predicted damage to CNSC3 

The equivalent viscous damping ratios, EVD , for the experiment and the numerical simulation 

are presented in Figure 3-38; the predicted values of damping are greater than those back-

calculated from the experimental data because the energy dissipated per loop are greater. The IP 

force-displacement relationships for cycles 6 and 7, which correspond to drift ratios of 0.39% 

and 0.51%, are presented in Figure 3-39a and Figure 3-39b, respectively.  

The predicted and measured equivalent viscous damping ratios are in relatively good agreement 

at a drift ratio of 0.56% (seen in Figure 3-38). The measured and predicted IP force-displacement 

relationships for cycle 8, corresponding to a drift ratio of 0.56%, are presented in Figure 3-40. 
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The damping ratios are similar because the energy dissipated per cycle and strain energy are both 

proportionally greater in the experiment. 

Figure 3-38: Equivalent viscous damping ratio, LS-DYNA and experiment, CNSC3 

(a) Cycle 6, drift ratio = 0.39% (b) Cycle 7, drift ratio = 0.51%

Figure 3-39: Selected IP force-displacement relationships, LS-DYNA and experiment, CNSC3 
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Figure 3-40: IP force-displacement relationship, cycle 8, drift ratio = 0.56%, LS-DYNA and 

experiment, CNSC3 

Figure 3-41a and Figure 3-41b show the LS-DYNA-predicted IP cyclic force-displacement 

relationship of the infill concrete and steel faceplates, respectively. The predicted IP force-

displacement relationship of the pier is shown in grey to highlight the contribution of the infill 

concrete and steel faceplates to the total IP shear resistance. Pinching of the hysteresis loops for 

the concrete and the steel faceplates in the simulations is minimal. The LS-DYNA-predicted 

OOP cyclic force history is presented in Figure 3-42; the infill concrete dominated the OOP 

behavior of the SC walls, as expected. 

Figure 3-43 shows the IP force-displacement relationship for the experiment, and the LS-DYNA 

simulations with and without the applied OOP load. The corresponding backbone curves are 

presented in Figure 3-44. The application of OOP load reduces the IP capacity of the numerical 

model by 22%. 
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(a) Infill concrete (b) Steel faceplates

Figure 3-41: LS-DYNA-predicted IP cyclic force-displacement relationships, CNSC3 

Figure 3-42: LS-DYNA-predicted components of the OOP cyclic force history, CNSC3 
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Figure 3-43: IP force displacement relationships, CNSC3 

Figure 3-44: Backbone curves, CNSC3 
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3.3.4  Summary and Conclusions 

The physical tests of CNSC1, CNSC2, and CNSC3, as described in Chapter 2, were simulated 

using the general-purpose finite element program LS-DYNA. Numerical models developed by 

Epackachi et al. (2014b; 2015) that were validated for the prediction of the IP response of SC 

wall piers were utilized as a starting point for this study. Predictions of the numerical models 

were compared with the measurements from experiments at both global and local levels, 

including cyclic force-displacement relationships (in-plane and out-of-plane), equivalent viscous 

damping ratios, vertical stresses in the steel faceplates induced by OOP load, and observed 

damage (e.g., cracking of the infill concrete and buckling of steel faceplates). 

The numerical predictions for CNSC1 and CNSC2 agreed reasonably well with measurements 

from the experiments. The predicted IP stiffness of CNSC1 and CNSC2 were both significantly 

greater than those observed in the experiment because the foundation (and its flexibility) was not 

considered in the numerical models; the predicted values of OOP stiffness agreed reasonably 

well with those measured in the experiments. The predicted distributions of vertical stress on the 

tension faceplate (under OOP loading) at different levels of OOP load were similar to those 

measured in the experiments. The predictions of peak IP shear resistance, post-peak strength 

reduction, and rate of reloading/unloading stiffness for peak and post-peak IP strength cycles 

agreed reasonably well with the experimental results, with the best results for CNSC1, for which 

the OOP loading (and average shear stress) were the smallest of the three tests. The predicted 

values of EVD  for IP response were greater than those calculated from the experimental data 

because the numerically predicted hysteresis loops were wider (more energy dissipated per 

cycle). The damage predicted using the numerical models (i.e., cracking of infill concrete and 

buckling of steel faceplates) was in good agreement with that observed in the experiments. 

Crushing and spalling of concrete, indicated by large compressive strains in the numerical 

models, could not be captured explicitly because the Winfrith model assumes elastic-perfectly-

plastic behavior in compression. Erosion, as a numerical workaround was not implemented. 

Load distribution between the steel faceplates and the infill concrete in the IP and OOP 

directions was also investigated using the numerical model; the steel faceplates and the infill 

concrete dominate the behavior of the SC wall in the IP and OOP directions, respectively. 
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The predicted response of CNSC3 overestimated the measured peak strength by approximately 

12%. The numerical model did not recover the loss of post-peak strength and stiffness calculated 

from the experimental data, which was likely due to the inability of the Winfrith model, in the 

absence of a calibrated erosion strain, to simulate loss of material. Under IP loading, the steel 

faceplates dictate seismic performance. Under OOP loading, the infill concrete dictates seismic 

response. Because the Winfrith model is unable to directly address loss of material, physical 

damage to the concrete under OOP loading (e.g., spalling), which should affect the IP behavior, 

including loss of strength and stiffness, cannot be captured directly. 

This limitation of the numerical model will be accommodated in the parametric study presented 

in Chapter 4 by investigating the IP behavior of SC wall piers subjected to OOP shear stresses 

less than a threshold limit taken equal to the shear strength of concrete per ACI 318-14 (ACI, 

2014). If the applied OOP shear stress exceeds the shear strength of the concrete and a sufficient 

number of tie bars are not available to mitigate crack growth, the IP response predicted using LS-

DYNA will not be reliable. Concrete erosion could be used as a numerical workaround, but the 

chosen value of erosion strain requires calibration for which the authors have no data bar that for 

CNSC3. An updated numerical model may be able to address this issue but the development of 

such a model is far beyond the scope of this project. 

The parametric study presented in Chapter 4 is used to develop a relationship between the level 

of applied OOP shear stress and the IP capacity of SC wall piers. The results of the parametric 

study, combined with the results of the CNSC experiments, are used to provide technical 

guidance on the analysis and design of SC wall piers subjected to combined IP and OOP loading. 
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SECTION 4  

DEVELOPING DESIGN GUIDANCE FOR SC WALLS THROUGH 

PARAMETRIC STUDIES 

4.1  Introduction 

A parametric study was conducted using the numerical model of Chapter 3 to investigate the 

effect of OOP loading (magnitude and location) on the IP response of SC wall piers with 

different concrete compressive strength and tie bar spacing. Section 4.2 presents the parametric 

study and key results. Technical guidance for design of SC walls subjected to combined IP and 

OOP loading is presented in Section 4.3, and is based on the experiments of Chapter 2, the 

numerical simulations of Chapter 3, and the parametric study of Section 4.2. 

4.2  Parametric Study 

The simulations conducted in this parametric study are summarized in Table 4-1, where cf  is

the compressive strength, s  is the tie bar spacing, d  is the depth of the cross section (=12 

inches), and /a d  is the ratio of shear span to depth. Two values of compressive strength were 

considered in this study: 3500 and 5000 psi. Three values of /a d  were considered for each 

value of compressive strength: 0.5, 1.5, and 3. The ratio /a d  equal to 1.5 and 3 correspond to 

loading at the middle and top of the wall, respectively. For each value of /a d , three amplitudes 

of OOP shear stress were considered: 1 cf  , 2 cf  , and 3 cf  . All of these simulations were 

performed for two values of tie bar spacing: d  and / 2d . 

Given the limitations of the Winfrith model described in Section 3.3.4, the SC wall piers in this 

parametric study were subjected to OOP shear stresses less than the expected shear strength of 

plain concrete, which is strongly dependent on the ratio of shear span-to-depth of the loaded 

member. Per Figure 6-13 in Wight (2015), the shear stress (strength) of concrete with a 

longitudinal reinforcement ratio of 1.5% (assuming one steel faceplate acts as longitudinal 

reinforcement when the wall is subjected to an OOP bending moment), in the absence of shear 

reinforcement, is between 2 cf  and 3 cf  . (The data in this figure are from tests of shallow 

beams with /a d  generally greater than or equal to 2.0. This range on maximum shear stress is 

for shallow (relatively thin) specimens, namely, 12 inches and smaller, and the design guidance 

presented later addresses the issue of wall thickness. Importantly, /a d  for the specimens tested 

as part of this research project was 1.5, for which a greater shear stress at failure is expected.) 
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The lower end on this range of OOP shear stress, 2 cf  , is associated with good predictions of 

IP response using LS-DYNA: the CNSC1 simulations in Section 1.1.1 for which the maximum 

OOP shear stress was 1.96 cf  . For CNSC2 (CNSC3), inclined cracking was observed at an

OOP load corresponding to a shear stress of 4.33 cf  ( 4.92 cf  ). The predictions of the cyclic

IP response of CNSC2 and CNSC3 using LS-DYNA were reasonable but much poorer than for 

CNSC1. Accordingly, on the basis of these observations, the maximum shear stress associated 

with OOP loading was limited to '3 cf for the parametric studies in order to have confidence in 

the numerical predictions. 

Figure 4-1a, Figure 4-2a and Figure 4-3a present the cyclic IP force-displacement relationships 

of SC walls subjected to OOP loads associated with shear stresses of 1 cf  , 2 cf  , and 3 cf 

with a tie bar spacing of d , for /a d  equal to 0.5, 1.5, and 3, respectively. The corresponding 

backbone curves for these simulations are presented in Figure 4-1b, Figure 4-2b and Figure 4-3b, 

respectively. The walls have a concrete compressive strength of 3500 psi and a tie bar spacing of 

12 inches. The peak IP lateral loads of these nine SC walls are presented in Table 4-1: 

simulations 2 to 10. The peak lateral capacity of SC walls subjected to an OOP shear stress of 

1 cf  , 2 cf  , and 3 cf  for /a d equal to 0.5 (1.5) [3] reduced by 1 (2) [4]%, 5 (8) [16]%, and 

11 (17) [29]%, respectively, from the IP strength with no applied OOP shear stress (=729 kips). 

The results of the simulations show that the magnitude and location of the OOP load have a 

significant effect on the IP capacity of the SC walls. The reductions in IP strength become more 

evident as the magnitude of the OOP load and the height of its application above the foundation 

are increased, which leads to larger bending moments and higher longitudinal stresses in the 

faceplates. Since the IP behavior of the SC walls is governed by the steel faceplates, additional 

stresses induced by the OOP load, of the amplitude considered here, reduce the IP capacity of the 

wall pier. The OOP load, of the amplitude considered here, does not have a significant effect on 

the initial stiffness, pinching, and rate of reloading/unloading of SC walls, as observed in Figure 

4-1a, Figure 4-2a and Figure 4-3a.
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Table 4-1: Summary of LS-DYNA simulations 

Simulation cf 

(psi) 

Tie bar spacing, 

s  (in.) 
/a d

OOP 

Load 

OOP load 

(kips) 

IP capacity 

(kips) 

% reduction in 

IP capacity 

1 3500 d - 0 - 729 - 

2 3500 d 0.5 1 cf  43 720 1 

3 3500 d 0.5 2 cf  85 690 5 

4 3500 d 0.5 3 cf  128 651 11 

5 3500 d 1.5 1 cf  43 712 2 

6 3500 d 1.5 2 cf  85 671 8 

7 3500 d 1.5 3 cf  128 607 17 

8 3500 d 3 1 cf  43 698 4 

9 3500 d 3 2 cf  85 613 16 

10 3500 d 3 3 cf  128 520 29 

11 3500 / 2d - 0 - 759 - 

12 3500 / 2d 0.5 1 cf  43 751 1 

13 3500 / 2d 0.5 2 cf  85 741 3 

14 3500 / 2d 0.5 3 cf  128 721 5 

15 3500 / 2d 1.5 1 cf  43 745 2 

16 3500 / 2d 1.5 2 cf  85 695 8 

17 3500 / 2d 1.5 3 cf  128 645 15 

18 3500 / 2d 3 1 cf  43 724 5 

19 3500 / 2d 3 2 cf  85 646 15 

20 3500 / 2d 3 3 cf  128 583 23 

21 5000 d - 0 - 765 - 

22 5000 d 0.5 1 cf  51 753 2 

23 5000 d 0.5 2 cf  102 723 6 

24 5000 d 0.5 3 cf  153 709 7 

25 5000 d 1.5 1 cf  51 742 3 

26 5000 d 1.5 2 cf  102 704 8 

27 5000 d 1.5 3 cf  153 637 17 

28 5000 d 3 1 cf  51 729 5 

29 5000 d 3 2 cf  102 649 15 

30 5000 d 3 3 cf  153 577 25 

31 5000 / 2d - 0 - 793 - 

32 5000 / 2d 0.5 1 cf  51 789 0.5 
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Table 4-1: Summary of LS-DYNA simulations (contd.) 

33 5000 / 2d 0.5 2 cf  102 770 3 

34 5000 / 2d 0.5 3 cf  153 763 4 

35 5000 / 2d 1.5 1 cf  51 785 1 

36 5000 / 2d 1.5 2 cf  102 744 6 

37 5000 / 2d 1.5 3 cf  153 697 12 

38 5000 / 2d 3 1 cf  51 763 4 

39 5000 / 2d 3 2 cf  102 700 12 

40 5000 / 2d 3 3 cf  153 637 20 

To investigate the effect of OOP loading on the IP lateral capacity of SC walls with tie bar 

spacing smaller than d , the LS-DYNA models used in simulations 2 to 10 were revised with a 

tie bar spacing of / 2d  (=6 inches). The IP force-displacement relationships for OOP shear 

stresses of 1 cf  , 2 cf  , and 3 cf  for /a d equal to 0.5, 1.5, and 3 are presented in Figure 

4-4a, Figure 4-5a, and Figure 4-6a, respectively: the peak IP strengths are presented in Table 4-1

through simulations 12 to 20. The corresponding backbone curves for these simulations are 

shown in Figure 4-4b, Figure 4-5b, and Figure 4-6b, respectively. The IP capacity is reduced by 

23% for an OOP shear stress of 3 cf  and /a d of 3 with respect to the IP strength with no OOP

load (=759 kips); the reduction in IP capacity is slightly less than that observed for a tie bar 

spacing of d  and an OOP shear stress of 3 cf  and /a d of 3 (=29 %) (simulation 10). 

(a) IP force-displacement relationship (b) Backbone curves

Figure 4-1: IP behavior of SC walls, / 0.5a d  , 3500 psicf   , s d  
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(a) IP force-displacement relationship (b) Backbone curves 

Figure 4-2: IP behavior of SC walls, / 1.5a d  , 3500 psicf   , s d  

 

  
(a) IP force-displacement relationship (b) Backbone curves 

Figure 4-3: IP behavior of SC walls, / 3a d  , 3500 psicf   , s d  
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(a) IP force-displacement relationship (b) Backbone curves

Figure 4-4: IP behavior of SC walls, / 0.5a d  , 3500 psicf   , / 2s d

(a) IP force-displacement relationship (b) Backbone curves

Figure 4-5: IP behavior of SC walls, / 1.5a d  , 3500 psicf   , / 2s d  
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(a) IP force-displacement relationship (b) Backbone curves 

Figure 4-6: IP behavior of SC walls, / 3a d  , 3500 psicf   , / 2s d  

The LS-DYNA models used in simulations 2 to 10 were repeated with a higher concrete uniaxial 

compressive strength: 5000 psi. The increase from 3500 psi to 5000 psi increased the IP 

capacity, in the absence of OOP load, by 5%. The percentage increase in IP strength was 

expected to be small because the IP behavior is dominated by the steel faceplates.  

Figure 4-7a, Figure 4-8a, and Figure 4-9a present the cyclic IP force-displacement relationships 

of SC walls subjected to OOP shear stresses of 1 cf  , 2 cf  , and 3 cf   for /a d  equal to 0.5, 

1.5, and 3, respectively. Figure 4-7b, Figure 4-8b, and Figure 4-9b present the corresponding 

backbone curves for these simulations, respectively, for /a d  of 0.5, 1.5, and 3. The peak IP 

lateral loads of these nine SC walls are presented in Table 4-1 through simulations 22 to 30. The 

peak lateral capacity of SC walls subjected to an OOP shear stress of 1 cf  , 2 cf  , and 3 cf   

for /a d  equal to 0.5 (1.5) [3] reduced by 2 (3) [5]%, 6 (8) [15]%, and 7 (17) [25]%, 

respectively, from the IP strength with no OOP load (=765 kips). The percentage reductions in IP 

capacity are similar to those obtained for 3500 psi concrete (simulations 2 to 10). 

Simulations 22 to 30 were repeated with a tie bar spacing of / 2d . The IP force-displacement 

relationships for OOP shear stresses of 1 cf  , 2 cf  , and 3 cf   for /a d  equal to 0.5, 1.5, and 3 

are presented in Figure 4-10a, Figure 4-11a, Figure 4-12a, respectively. Results are summarized 

in Table 4-1: simulations 31 to 40. The corresponding backbone curves for /a d  values of 0.5, 

1.5, and 3 are presented in Figure 4-10b, Figure 4-11b, Figure 4-12b, respectively. The IP 
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capacity was reduced by 20% for an OOP shear stress of 3 cf  and /a d of 3 (simulation 40) 

with respect to the IP strength with no OOP load (=793 kips); the reduction in IP capacity is 

slightly less than that observed for a tie bar spacing of d  and an OOP load of 3 cf  and /a d of 

3 (simulation 30). As the magnitude and height of application of the OOP load are increased, the 

reductions in IP capacity are slightly less for a tie bar spacing of / 2d  compared to that of a tie 

bar spacing of d ; the same trends are observed for concrete compressive strengths of 3500 and 

5000 psi. 

(a) IP force-displacement relationship (b) Backbone curves

Figure 4-7: IP behavior of SC walls, / 0.5a d  , 5000 psicf   , s d  

(a) IP force-displacement relationship (b) Backbone curves

Figure 4-8: IP behavior of SC walls, / 1.5a d  , 5000 psicf   , s d  
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(a) IP force-displacement relationship (b) Backbone curves 

Figure 4-9: IP behavior of SC walls, / 3a d  , 5000 psicf   , s d  

 

  

(a) IP force-displacement relationship (b) Backbone curves 

Figure 4-10: IP behavior of SC walls, / 0.5a d  , 5000 psicf   , / 2s d  
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(a) IP force-displacement relationship (b) Backbone curves

Figure 4-11: IP behavior of SC walls, / 1.5a d  , 5000 psicf   , / 2s d  

(a) IP force-displacement relationship (b) Backbone curves

Figure 4-12: IP behavior of SC walls, / 3a d  , 5000 psicf   , / 2s d  
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4.3  Technical Guidance 

Technical guidance for design of SC walls subjected to combined IP and OOP loading is 

provided in this section, and is based on the experiments of Chapter 2, the numerical simulations 

of Chapter 3, and the parametric study of Section 4.2. The results of the experiments were used 

to validate the numerical models and provide technical guidance on the displacement ductility 

capacity of SC wall piers. The parametric studies were used to provide technical guidance on the 

effects of OOP loading (height and location) on IP capacity. 

Figure 4-13 presents the IP force-displacement backbone curves for experiments CNSC1, 

CNSC2, and CNSC3, normalized by their respective IP capacities, cIP . The backbone curves for 

CNSC2 and CNSC3 were shifted to the origin to allow for a direct comparison of their IP 

performance with that of CNSC1.  

 
Figure 4-13: Normalized backbone curves, CNSC experiments 

With the exception of tie bar spacing and concrete uniaxial compressive strength, the 

construction of the CNSC specimens was identical. Epackachi et al. (2014a) showed that 

connector (studs and tie rods) spacing had little effect on IP stiffness at levels of lateral load 

smaller than the peak value. The uniaxial compressive strengths of the concrete in CNSC1, 
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CNSC2 and CNSC3, on the first day of testing, were 7700 psi, 5300 psi, and 5300 psi, 

respectively. Based on these concrete strengths, the initial stiffness of CNSC1 should have been 

greater than that of both CNSC2 and CNSC3. Per Figure 4-13, the initial stiffness of CNSC1 is 

greater than that of CNSC2 in both the first and third quadrants: the expected result; but not 

greater than that of CNSC3: an unexpected result, especially given that CNSC3 was damaged 

under OOP loading prior to IP loading and CNSC1 was not. 

On the basis of the normalized backbone curves of Figure 4-13, it is evident that a) identical wall 

piers with low OOP shear stress (e.g., CNSC1) are more deformable (ductile) than those with 

high OOP shear stress (CNSC3), b) the installation of cross ties at spacing / 2d , where d  is the 

thickness of the wall, results in a more deformable (ductile) SC wall than if the ties are spaced at 

distance d , and c) high OOP shear stress (and coexisting moment) in an SC wall pier may lead 

to non-ductile response IP, namely, no IP deformation capacity beyond the displacement 

associated with peak strength.  

Displacement ductility has been a traditional seismic measure of component and system 

performance. For the three walls tested as part of this project, and assuming a maximum 

displacement equal to the displacement at which the resistance drops below 80% of the peak 

value, the maximum ductility of CNSC1 (CNSC2) [CNSC3] is approximately 3 (2) [1].  

The peak resistances of CNSC1, CNSC2 and CNSC3 were 735 kips, 629 kips, and 504 kips, 

respectively. The greater strength of CNSC1 can be attributed in part to a) higher compressive 

strength (7700 psi versus 5300 psi) for the infill concrete, and b) a relatively low OOP shear 

stress. A comparison of the peak resistance of CNSC2 and CNSC3 makes clear the importance to 

IP strength of limiting damage due to OOP shear forces, which can be accomplished in part by 

the provision of closely spaced cross ties. The only meaningful difference between CNSC2 and 

CNSC3 was tie bar spacing because the compressive strength of the infill concrete was the same 

in both specimens and the maximum OOP shear stress was very similar: 4.73 cf  for CNSC2 

and 4.92 cf  for CNSC3. In this instance, the provision of closely spaced tie bars (at / 2d ) 

enabled a much greater peak IP resistance (629 versus 504 kips). 

Results from the parametric studies were mined to develop draft guidance for when to consider 

co-existing OOP shearing forces for IP design of SC wall piers. The relationships between 

applied OOP shear stress (normalized by cf  ) and the peak IP capacity, IPOOP (normalized by 
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the IP capacity with no applied OOP load, IPNO OOP) for a uniaxial concrete compressive strength 

of 3500 psi and a tie bar spacing of 12 inches are presented in Figure 4-14. The curves are shown 

for /a d  equal to 0.5, 1.5, and 3. A similar plot is shown in Figure 4-15 for a tie bar spacing of 6 

inches. As the magnitude of OOP shear stress and the ratio of shear span-to-depth increase, 

larger longitudinal stresses develop in the steel faceplates, reducing IP capacity. The reduction in 

tie bar spacing from d  to / 2d , slightly improved the IP capacity performance of the SC walls 

for the larger magnitudes of OOP shear stress and ratios of shear span-to-depth considered in this 

parametric study; the benefits of reduced tie bar spacing are expected to increase as the 

magnitude of the OOP shear stress exceeds the inclined cracking load of the concrete. 

Figure 4-14: IP capacity vs. applied OOP shear stress, 3500 psicf   , s d  

Figure 4-15: IP capacity vs. applied OOP shear stress, 3500 psicf   , / 2s d  



90 

Figure 4-16 and Figure 4-17 present the information of Figure 4-14 and Figure 4-15, but for a 

uniaxial concrete compressive strength of 5000 psi. The trends are identical to those described in 

the previous paragraph. 

Figure 4-16: IP capacity vs. applied OOP shear stress, 5000 psicf   , s d  

Figure 4-17: IP capacity vs. applied OOP shear stress, 5000 psicf   , / 2s d  

The discussions above address the effect of OOP loading on IP capacity. Two issues that ought 

to be addressed in a future study, which will likely be specific to Canadian nuclear practice, are 

a) the strength reduction factors to be used for IP shear capacity calculations, b) strength

reduction factors for OOP shear capacity calculations, c) strength reduction factors for combined 

IP and OOP loading. ASCE 43-05 (ASCE, 2005) provides guidance on how these factors should 

be calculated, which depend on whether the actions are ductile or non-ductile. A goal with 

predictive equations for design strength (strength reduction factor multiplied by a nominal 



91 

strength) is to achieve an exceedance probability of 98%. 

The walls tested as part of this project had a thickness of 12 inches. It is well established that the 

shear strength of plain reinforced concrete elements is negatively affected by section depth, 

namely, an increase in depth (thickness for walls) will lead to a decrease in the average shear 

stress at failure. A ballot measure to address this issue has passed review by the ASCE Dynamic 

Analysis of Nuclear Structures Committee, which reduces nominal shear stress with depth, to a 

minimum value of approximately 1 cf  to achieve the component-level target probability goals

of ASCE 43. 

Based on the physical testing of SC wall piers CNSC1, CNSC2, and CNSC3 and the observed 

trends in the parametric studies, the following design guidance is proposed for the construction 

of SC wall piers subjected to combined IP and OOP loadings 

 OOP shear forces and bending moments can damage both infill concrete (shear force)

and the steel faceplates (bending moment). Damage to the infill concrete will depend on

a) the ratio of shear span to wall thickness, and b) the amplitude of the OOP loading.

Damage to the steel faceplates will also depend on these two parameters. 

 The effects of OOP loading should be addressed explicitly for design basis calculations.

Damage to the infill concrete under IP loading will degrade OOP shear capacity, which

is essentially a function of the capacity of the infill concrete only. The steel faceplates

should not yield significantly (sufficient to buckle inelastically) under combined IP and

OOP design basis loadings, with an appropriate margin (through a strength reduction

factor) to achieve a 98% exceedance probability.

 The OOP shear strength of the infill concrete should address the effect of wall thickness

on maximum average shear stress.

 A tie bar spacing of no greater than / 2d  is recommended for SC wall piers subjected to

OOP loads that exceed the design shear strength of plain concrete, accounting for depth

effects, and calculated using a strength reduction factor suitable to achieve an

exceedance probability of 98% per ASCE 43 (see above).

 Tie bars should be used instead of shear studs near the base of an SC wall in zones where

concrete crushing and spalling is possible, to preserve the integrity of the cross section

and provide point restraint to the faceplates to delay their inelastic buckling.
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 Figure 4-14, Figure 4-15, Figure 4-16, and Figure 4-17 could be used to help identify

magnitudes of OOP shear stress and ratios of shear span-to-depth (wall thickness)

beyond which OOP loadings ought be considered for design basis calculations of IP

strength. The threshold shown in the figures is a 10% reduction in peak strength.

Importantly, the negative impact of significant member thickness (as described above) is

not addressed here.

Although not part of the scope of this project, it is important to consider the effects of beyond 

design basis loadings on the seismic performance of SC walls and wall piers. In the United 

States, one path to demonstrating adequate performance in shaking more intense than design 

basis is to ensure that the resulting design will perform its intended function with 95% 

confidence of a probability of failure of 5% or less for shaking equal to 167% design basis. For 

many components this requires the risk analyst to utilize deformation capacity beyond yield (or 

ductility) to justify adequate performance. On the basis of the tests of CNSC3 (and to a lesser 

degree CNSC2), this risk-oriented performance target may require that design basis strength of 

SC walls under OOP loading be limited to shear stress of less than 1 cf  , or even less if the wall 

has a thickness greater than 12 inches. 
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SECTION 5  

SUMMARY AND GUIDANCE FOR SEISMIC DESIGN OF SC WALL 

PIERS 

5.1  Summary 

A study was undertaken to investigate the effects of OOP loading on the IP behavior of SC 

composite wall piers, with a focus on the magnitude of the OOP load and the effect of tie bar 

spacing. Numerical simulations and physical testing were performed to develop draft guidance 

for consideration by CNSC. 

Three medium-scale rectangular SC wall specimens were built and tested under force-controlled 

monotonic OOP loading and displacement-control cyclic IP loading at the Bowen Laboratory at 

Purdue University. The results of the experiments indicate that the OOP load has a significant 

effect on the IP behavior of SC composite shear walls, in particular, the deformation capacity 

and peak resistance; the effects become very significant as the applied OOP load develops an 

average shear stress that is greater than the inclined cracking load of the concrete.  

The three experiments were simulated using the general-purpose finite element program LS-

DYNA. The numerical model was based on a validated model for IP loading that was developed 

by Epackachi et al. (2014a, 2015) for a prior project. The model was evaluated for OOP loading 

using data from tests of plain reinforced concrete beams (i.e., no shear reinforcement) and 

reasonable comparisons were obtained. The predictions of the numerical models of the tested 

wall piers were compared with global and local measurements made in the experiments, 

including cyclic force-displacement relationships (IP and OOP), equivalent viscous damping 

ratios, vertical stresses in the steel faceplates induced by OOP loading, and observed damage 

(i.e., cracking of the infill concrete and buckling of the steel faceplates). The predictions of 

response for CNSC1 (low OOP shear stress) were very good, reasonable for CNSC2 (high OOP 

shear stress but tie bars at spacing / 2d ) and somewhat poor for CNSC3 (high OOP shear stress 

and tie bars at spacing d ). One reason for the poorer predictions for CNSC2 and CNSC3 can be 

traced to the use of the Winfrith model, which assumes elastic perfectly plastic behavior in 

compression.  

A parametric study was conducted using the numerical model described above to investigate the 
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effect of OOP loading (magnitude and location) on the IP response of SC wall piers. Different 

concrete compressive strengths and tie bar spacing were considered. Results of the parametric 

studies showed that OOP load (or shear stress) has a significant effect on the IP capacity of SC 

wall piers, and that the effects become very significant as the ratio of shear span-to-depth and the 

magnitude of the OOP load are increased.  

5.2 Guidance for the Analysis and Design of SC Walls 

An important objective of this project was to formulate design guidance for SC walls subjected 

to combined IP and OOP loading. The following guidance is offered for consideration of CNSC: 

1. The effects of OOP loading should be addressed explicitly for design basis calculations. 

The steel faceplates should not yield significantly (sufficient to buckle inelastically) under 

combined IP and OOP design basis loadings, with an appropriate margin (through a 

strength reduction factor) to achieve a 98% exceedance probability per ASCE 43-05. 

2. The OOP shear strength of the infill concrete should address the effect of wall thickness on 

maximum average shear stress. The balloted code change provision in ASCE 43-** could 

be used for this purpose. 

3. A maximum tie bar spacing of / 2d  is recommended for SC walls subjected to OOP loads 

that exceed the nominal design strength of plain concrete, reduced as appropriate for wall 

thickness, and calculated using a strength reduction factor suitable to achieve a 98% 

exceedance probability per ASCE 43-05. 

4. Tie bars should be used instead of shear studs near the base of an SC wall in zones where 

concrete crushing and spalling is possible, to preserve the integrity of the cross section and 

provide point restraint to the faceplates to delay their inelastic buckling.  

5. Limits on IP and OOP design basis strength of SC walls should recognize the need for 

capacity in the event of beyond design basis shaking.  

A numerical model has been developed in LS-DYNA, which is capable of predicting the IP 

cyclic response of SC wall piers, and the combined IP and OOP cyclic response of SC walls 

provided the OOP shear stresses are relatively low, of the order of 2 cf   for shallow (relatively 
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thin) walls. The model is described in detail in Chapters 3 and 4 of this report. 

Charts have been developed, and presented in Chapter 4, to identify what combinations of OOP 

shear stress and ratios of shear span to depth (wall thickness) may result in significant reductions 

in IP shear capacity. These charts could be used for preliminary design of SC wall piers. 
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