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Preface

MCEER is a national center of excellence dedicated to the discovery and development of new 
knowledge, tools and technologies that equip communities to become more disaster resilient in 
the face of earthquakes and other extreme events. MCEER accomplishes this through a system of 
multidisciplinary, multi-hazard research, in tandem with complimentary education and outreach 
initiatives. 

Headquartered at the University at Buff alo, The State University of New York, MCEER was originally 
established by the National Science Foundation in 1986, as the fi rst National Center for Earth-
quake Engineering Research (NCEER). In 1998, it became known as the Multidisciplinary Center 
for Earthquake Engineering Research (MCEER), from which the current name, MCEER, evolved.

Comprising a consortium of researchers and industry partners from numerous disciplines and 
institutions throughout the United States, MCEER’s mission has expanded from its original focus 
on earthquake engineering to one which addresses the technical and socio-economic impacts of a 
variety of hazards, both natural and man-made, on critical infrastructure, facilities, and society.

The Center derives support from several Federal agencies, including the National Science Founda-
tion, Federal Highway Administration, Department of Energy, Nuclear Regulatory Commission, 
and the State of New York, foreign governments and private industry.  
 
This report presents an analytical study of the response of seismically isolated electrical  
transformers with particular emphasis on comparing the performance of equipment that are 
non-isolated to equipment that are isolated only in the horizontal direction or are isolated by a 
three-dimensional isolation system. The failure characteristics of transformers were determined 
by calibrating a failure model using fragility data of non-isolated transformers that were based 
on fi eld data and are used in the seismic performance of electrical equipment by utilities in the 
Western U.S. 

The performance was assessed by calculating the probability of failure as a function of the seismic 
intensity with due consideration of (a) horizontal and vertical ground seismic motion eff ects, (b) 
displacement capacity of the seismic isolation system, including uplift capacity, (c) acceleration 
limits for failure of electrical bushings, (d) details of construction of the isolation system that 
allow or restrain rocking of the isolated structure, (e) weight of the isolated transformer in the 
range of 320 to 520 kip, (f) bushings with as-installed frequencies of 2.6 to 11.3 Hz, (g) inclined 
and vertical placed bushings and (h) various details of the isolators, including upper and lower 
bound properties and details of construction of the isolators.
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ABSTRACT 

 

This report presents an analytical study of the response of seismically isolated electrical transformers with 

particular emphasis on comparing the performance of equipment that are non-isolated to equipment that 

are isolated only in the horizontal direction or are isolated by a three-dimensional isolation system. The 

failure characteristics of transformers were determined by calibrating a failure model using fragility data 

of non-isolated transformers that were based on field data and are used in the seismic performance of 

electrical equipment by utilities in the western US. The performance was assessed by calculating the 

probability of failure as a function of the seismic intensity with due consideration of (a) horizontal and 

vertical ground seismic motions, (b) displacement capacity of the seismic isolation system, (c) 

acceleration limits for failure of electrical bushings, (d) details of construction of the isolation system that 

allow or restrain rocking of the isolated structure, (e) weight of isolated transformer in the range of 320 to 

520kip, (f) inclined and vertical electrical bushings, (g) as-installed frequency of bushings and (h) various 

details of the isolators, including upper and lower bound properties and details of construction of the 

isolators. Moreover, calculations of the probability of failure within the lifetime of isolated and non-

isolated transformers at various locations in the western US were performed. 

 

The results of this study demonstrates primarily that a) seismic isolation systems, and particularly systems 

which isolate in both the horizontal and vertical ground directions, can improve the seismic performance 

in terms of reducing the probability of failure, and b) combined horizontal-vertical seismic isolation 

systems consistently improve the probability of failure of transformers for a wide range of parameters. 

 

The methodologies and results presented in this report (a) may be used to decide on the benefits offered 

by the seismic protective system depending on the limits of the protected equipment, location of the 

equipment (value of PGA) and configuration and properties of the seismic protective system, and (b) may 

be used to calculate the mean annual frequency of functional failure and the corresponding probability of 

failure over the lifetime of the equipment.  The information produced by these methodologies may be 

used to assess the seismic performance of electric transmission networks under scenarios of component 

failures.  
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SECTION 1 

INTRODUCTION 

 

This report presents an analytical study of the response of seismically isolated electrical 

transformers with particular emphasis on comparing the performance of equipment that are 

non-isolated to equipment that are isolated only in the horizontal direction or are isolated by a 

three-dimensional isolation system. The performance is assessed by constructing failure fragility 

curves. The isolation systems considered are triple Friction Pendulum (FP) isolators for the 

horizontal isolation system and an independent vertical-only spring-damper system that supports 

the triple FP isolators to form the three-dimensional isolation system. Figure 1-1 illustrates the 

two isolation systems and the motion of the isolated transformer with respect to the ground. 

 

 

Figure 1-1 Horizontal-Only and Horizontal-Vertical Isolation Systems 

 

As shown in Figure 1-1, the combined horizontal-vertical isolation system is allowed to undergo 

horizontal and vertical motions. In reality, two versions of the system will be discussed and 

analyzed in the report: (a) one that allows for clearly separated horizontal and vertical motions 

without (or with limited) rocking and (b) another in which rocking of the supported equipment is 

freely allowed.   

 

Past studies of the seismic performance of electrical equipment demonstrated that horizontal 

isolation systems can improve the seismic performance in terms of reduction of absolute 

acceleration and relative displacement of bushings and the transformer body (e.g., Murota et al., 

2005; Ersoy et al., 2008; Oikonomou et al., 2016). This reduction of response only applied to the 



2 
 

horizontal direction, whereas there was no reduction of response in the vertical direction. 

However, these studies did not relate the selective reduction of response to prevention of failure 

of components of the equipment or failure of the equipment itself. Moreover, experimental 

studies of Kong (2010) and Fahad (2013) investigated the failure modes of electrical bushings 

but their studies did not relate the findings of component failure to the seismic response of 

transformers. Information on the field performance of electrical equipment in past earthquakes 

exists (e.g, Anagnos, 1999; Kempner et al, 2006) and has been used to develop empirical 

fragility curves for conventionally supported electrical equipment which are then used in seismic 

vulnerability assessments by electric utility companies. One notable example is the earthquake 

assessment program SERA (Kempner et al, 2006) that is used by many west coast utility 

companies (BPA, PG&E, SDG&E, BC Hydro, Pacific Corp, etc.). Information utilized in 

program SERA for non-isolated electrical transformers is used in this study to calibrate the 

failure model, which is then used for constructing fragility curves for seismically isolated 

transformers. 

 

This study utilizes advanced models for the isolators that can simulate the ultimate 

characteristics of the isolation system components in order to perform an assessment of 

performance based on a probabilistic method using incremental dynamic analysis (Vamvatsikos 

and Cornell, 2002), the statistical assessment methodologies in FEMA P695 (FEMA, 2009) and 

FEMA P58 (FEMA, 2012) and studies for the safety assessment of building structures (e.g., 

Krawinkler et al., 2006). An important feature of the study is that the vertical ground motion is 

included in the analysis. The study utilizes advanced models for the ultimate behavior of the 

isolators to assess the seismic performance of transformers equipped by horizontal-only and with 

horizontal and vertical isolation systems. The seismic intensities that cause functional failure of 

the transformers with fixed base and the two types of isolation systems are compared. A number 

of parameters are considered: (a) transformer weight (plus additional weight to implement the 

isolation system) in the range of 320 to 520kip, (b) bushing failure limits in terms of the peak 

acceleration at the center of mass of the upper part of 1g and 2g in the direction perpendicular to 

the longitudinal axis and 5g in the longitudinal direction (the selection of these limits is based on 

available field empirical data which will be discussed later in this report), (c) as-installed bushing 

frequency 2.6, 4.3, 7.7 and 11.3Hz, (d) vertical and inclined bushings (at 20 degree angle) and 

(e) horizontal isolation system (triple FP isolators) with ultimate displacement capacity of 17.7, 

27.7 and 31.3 inch by selecting standard concave plates of increasing diameter, while 

maintaining the properties of the vertical isolation system unchanged.  
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The results of the study are fragility curves; that is, graphs of the probability of failure versus the 

intensity of the seismic shaking. The intensity of the seismic motion is measured by the peak 

ground acceleration (PGA) in order to relate to the seismic spectra used in IEEE (2005) for the 

design and qualification of electrical equipment. Failure is defined as either exceeding the 

acceleration limit set for the bushings or exceeding the displacement capacity of the triple FP 

isolators or failure of the vertical isolation system in tension, whichever occurs first. The fragility 

curves may be used to: 

 

(a) Decide on the benefits offered by the seismic protective system depending on the limits 

of the protected equipment, location of the equipment (value of PGA) and configuration 

and properties of the seismic protective system. 

 

(b) Calculate the mean annual frequency of functional failure and the corresponding 

probability of failure over the lifetime of the equipment. This calculation requires 

knowledge of the seismic hazard curves that are available for any location in the US from 

the United States Geological Survey. Sample calculations for selected locations are 

presented in this document. 

 

(c) The information can be used to assess the seismic performance of electric transmission 

networks under scenarios of component failures (e.g., Kempner, 2006; Shinozuka et al, 

2007). 
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SECTION 2 

METHODOLOGY FOR FAILURE PERFORMANCE EVALUATION OF 

SEISMICALLY ISOLATED ELECTRICAL TRANSFORMERS 

 

The failure performance evaluation is based on the procedures of FEMA P695 (2009) for 

collapse performance evaluation. These procedures require to perform Incremental Dynamic 

Analysis (IDA; Vamvatsikos and Cornell, 2002) and to detect collapse of the analyzed structure 

and failure of its critical components either by direct or indirect (non-simulated failure) 

simulation (Haselton, 2006; Haselton and Deierlein, 2007; Haselton et al., 2008 and 2009; Liel et 

al., 2011; Lignos and Kranwinkler, 2013). 

 

The procedure followed is to conduct IDA to obtain information on the number of failures for 

each level of seismic intensity considered. For the work in this report, failure is considered either 

when the maximum value of acceleration at the center of gravity of the upper part of the bushing 

in the transverse or the longitudinal directions reaches a specified limit, or when the isolation 

system fails by exceeding the horizontal or the vertical (uplift) displacement capacity, whichever 

occurs first. The intensity of the ground motion is measured in terms of the peak ground 

acceleration PGA, or per the terminology used in IEEE (2005), the zero-period acceleration 

ZPA. 

 

The 5%-damped high required and moderate required IEEE response spectra (IEEE, 2005) are 

shown in Figure 2-1. The corresponding spectra in the vertical direction are identical in shape to 

the horizontal spectra but scaled in amplitude by a factor of 0.8. 

 
 

Figure 2-1 Moderate and High Required Response Spectra per IEEE 693 (5% Damped) 
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IDA is conducted for a set of ground motions, each one of which consists of a horizontal and a 

vertical component as originally recorded and progressively increased in intensity while 

maintaining the original ratio of peak vertical to peak horizontal acceleration. The intensity is 

defined as the peak value of the horizontal ground acceleration, the PGA. Failure is defined 

when either the acceleration reaches a limit based on calibration of the model using field 

empirical data (1g or 2g in the transverse direction and 5g in the longitudinal bushing direction) 

or the lateral displacement of the isolators exceeds the stability limit of the isolators or the 

vertical isolation system fails in tension (uplift), whichever occurs first. The empirical fragility 

curves (cumulative distribution functions) are then generated from information obtained from the 

IDA and analytical descriptions of the fragility curves are obtained by fitting the empirical data 

with lognormal representations. The fragility curves present the probability of failure (actually 

the probability of exceeding a threshold of either acceleration or isolator displacement) versus 

the PGA, where the probability of failure is determined at each PGA level as the number of 

analyses that resulted in failure divided by the total number of analyses. 

 

Note that the presentation of the fragility curves (probability of failure versus the intensity of 

ground motion) is based on the use of the PGA for the measure of ground motion intensity. This 

differs from the approach in FEMA P695 (2009) where the intensity is measured by the spectral 

acceleration at the fundamental period of the studied system. The reasons for selecting PGA as 

the intensity measure are: 

 

1) PGA (or ZPA) is the ground motion intensity measure typically used in fragility analysis 

of electrical equipment (e.g., Kempner et al, 2006; Shinozuka et al, 2007). 

 

2) It facilitates use of the IEEE 693 (2005) spectra, which are described by PGA (or ZPA) 

and unlike the ASCE 7 (2010) spectra used for building design which are described by 

the spectral acceleration values at 0.2sec and 1.0sec. 

 

3) It allows presentation of fragility analysis results when the analyzed system has two 

distinct modes of vibration at two very different frequencies (horizontal and vertical). 

 

4) Fragility analysis results are valid for any location and are only dependent on the PGA. 

 

An example of a fragility curve is shown in Figure 2-2. 
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Figure 2-2 Example of Fragility Curve 

 

In the fragility analysis, the following parameters are calculated: 

 

1) PGAF is the measure of intensity (PGA) for which at least 50% of the analyses resulted in 

failure (is the value of PGA for which the probability of failure is 0.5). 

2) The dispersion factor β is calculated as the standard deviation of the natural logarithm 

of the values of PGA causing failure of the transformer (failure of bushings or collapse 

of isolator). Note that a number of analyses are conducted with motions of increasing 

intensity (IDA analysis). In the analyses of this report the number of motions is 40. 

 

The analytical fragility curve (cumulative distribution function or CDF) representing the 

empirical data is calculated as: 

   2

20

ln ln1
exp

22

x Fs PGA
CDF x ds

s  

 
  

  
               (2-1) 

The fragility curves present information on the probability of failure for specific levels of 

earthquake intensity, as measured by the PGA. This information is very useful and obtained in 

computationally intensive analysis. However, engineers, utility officials, government officials, 

owners and insurers are interested in assessing risk, defined in this case as the mean annual 

frequency of failure, λF. The mean annual frequency is related to another important parameter, 

the probability of failure for a given number of years, n, PF (n years). Assuming that the 

earthquake occurrence follows a Poisson distribution, the following equation relates the mean 

annual frequency to the probability of failure: 
F

F ( years) 1 nP n e                      (2-2) 

The calculation of the mean annual frequency requires consideration of the hazard from all 

possible seismic events. The hazard data are obtained from the USGS website 
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(http://geohazards.usgs.gov/hazardtool/application.php) in the form of the annual frequency of 

exceedance λSa as function of the spectral acceleration Sa for specific values of the period (zero, 

0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0 and 5.0 second). The zero period spectral value is the 

PGA (and the corresponding Sa is hereafter written as PGA). 

 

The calculation of the mean annual frequency of failure, λF, requires integration of the failure 

fragility of the structure over the seismic hazard curve (Medina and Krawinkler, 2002; Ibarra and 

Krawinkler, 2005; Krawinkler et al., 2006; Champion and Liel, 2012; Eads et al., 2013; Elkady 

and Lignos, 2014): 

F F

0

( | ) ( )
( )

PGAd
P PGA d PGA

d PGA




                     (2-3) 

In Equation (2-3), |dλPGA(PGA)/d(PGA)| is the absolute value of the slope of the seismic hazard 

curve for the specific case of zero period. 

 

For example, the zero-period seismic hazard curves were obtained from the USGS website 

(United States Geological Survey website, accessed November 11, 2015, July 16, 2016 and 

August 14, 2016) for several locations in the western US as described in Table 2-1.   

 

Table 2-1 Location and Coordinates (not shown in the publicly available report) of Ten Sites in 

Western US 

Case No. Location Latitude Longitude Soil Type 

1 Vancouver, WA 45.6582oN 122.6578oW D 

2 Saranap, CA 37.8814oN 122.0800oW D 

3 Loma Linda, CA 34.0489oN 117.2633oW D 

4 Aberdeen, WA 46.9803oN 123.8518oW D 

5 Chehalis, WA 46.5991oN 122.9470oW D 

6 Hillsboro, OR 45.5502oN 122.8976oW D 

7 Eugene, OR 44.0507oN 123.2323oW D 

8 Wilsonville, OR 45.3293oN 122.7769oW D 

9 Curry County, OR 42.4838oN 124.4070oW D 

10 Troutdale, OR 45.5589oN 122.4042oW D 

The obtained hazard curves are shown in Figure 2-3. Note that λPGA is the number of times that 

exceeds a specific PGA in one year (differs per location: Cases 1 to 10).   
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Figure 2-3 Seismic Hazard Curves for Zero Period for Locations of Table 2-1 

 

The IEEE 693 standard (2005) defines the life of equipment as over 30 years. Accordingly, 

sample calculations of probabilities of failure over the lifetime of the equipment are performed 

for 50 years of lifetime (i.e., n=50 in Equation (2-2)) for the locations listed in Table 2-1 above. 

The information is provided to demonstrate one use of the fragility curves presented in this 

report. 
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SECTION 3 

MODELING OF ELECTRICAL TRANSFORMERS FOR FAILURE ASSESSMENT 

 

3.1 Modeling of Bushings 

 

This section describes the model of bushings used in the analysis of electrical transformers for 

failure assessment. Bushings are critical components of electrical transformers. Damage or 

failure of bushings is considered to be failure for the transformer (Shumuta, 2007). The model 

utilizes the test results of Kong (2010) and Fahad (2013) who examined the characteristics of 

bushings installed in a variety of conditions. Particular emphasis is placed at properly 

representing the rotational and vertical frequencies of bushings in their installed condition and 

accounting for the effects of the flexibility of the supporting plate. 

 

Figure 3-1 illustrates a bushing and defines its parts and some of its important dimensions (not in 

scale). The bushing is divided into upper and lower parts that are separated by the plate to which 

the bushing is connected to. This plate is shown in Figure 3-1 to have a thickness 2HF. Other 

geometric parameters are: HUB is the length of the bushing’s upper part, HLB is the length of the 

bushing’s lower part, HCM_UB is the distance of the flange to the center of gravity of the 

bushing’s upper part, HCM_LB is the distance of the flange to the center of gravity of the bushing’s 

lower part, mUB is the mass of the bushing’s upper part, mLB is the mass of the bushing’s lower 

part and mCH is the mass of the connection housing. 

 

Data in Kong (2010) and Fahad (2013) for several bushings include geometric properties, masses 

and frequencies of free vibration when installed fixed (fFix) and when installed connected to a 

flexible plate (called as-installed frequency, fAI). Table 3-1 presents information on the properties 

of nine tested bushings. Some of the parameters of these bushing were not available and were 

estimated by the authors. 
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Table 3-1 Characteristics of Tested Bushings (Based on Kong, 2010 and Fahad, 2013) 

 
Property Unit Bushing 1 Bushing 2 Bushing 3 Bushing 4a Bushing 4b Bushing 5 Bushing 6 Bushing 7 Bushing 8 

Manufacturer  G.E. G.E. G.E. HSP HSP Trench ABB ABB ABB 

Material of insulator  Porcelain Porcelain Porcelain Composite Composite Composite Porcelain Porcelain Porcelain 

Voltage capacity (kV)  500 550 550 230 230 500 196/230 550 550 

Designation  
GE-500 - 

TypeU 

GE-500 - 

TypeU 

GE-500 - 

TypeU 
HSP-230-1200 HsSP-230-1200 500D004C_3 196w0800bz T550W2000UD T550Z3000SE 

Total height (in) in 290.0 244.8 244.8 150.7 150.7 257.2 151.4 295.0 255.2 

Length over mounting flange: HUB in 204.0 194.8 194.8 91.2 91.2 192.2 91.4 208.3 190.2 

Length below mounting flange: HLB in 86.0 50.0 50.0 59.5 59.5 65.0 60.0 86.7 65.0 

Max dia. Over mounting flange in 20.0 25.0 25.0 11.6 11.6 19.8 11.8 23.0 18.7 

Max. dia. Below mounting flange in 20.0 18.8 18.8 8.3 8.3 12.4 10.0 23.0 16.8 

Diameter of mounting flange in 35.0 33.0 33.0 24.0 24.0 28.5 24.0 34.2 27.0 

Total weight lbs 4000 2800 2810 510 385 1850 840 4330 2180 

Location of CG. (above flange) in 57.5 57.5 57.5 17.0 17.0 65.5 14.0 47.0 54.8 

Upper bushing weight: mUB*g lbs 2744 2148 2156 248 172 1307 447 3012 1570 

Location of upper bushing CG: 

HCM_UB 
in 96.0* 87.6* 87.6* 45.0 45.0 96.0 34.0 90.0 85.2 

Lower bushing weight: mLB*g lbs 1156 552 554 162 113 443 293 1218 510 

Location of lower bushing CG: 

HCM_LB 
in 38.9* 59.2* 59.2* 27.0 27.0 24.5 28.0 59.0 39.0 

Connection housing weight: mCH*g lbs 100 100 100 100 100 100 100 100 100 

Weight per unit length lb/in 13.45 11.03 11.07 2.72 1.89 6.80 4.89 14.34 8.15 

Distance to the flange (half of 

center pocket): HF 
in 13.6* 11.5* 11.5* 8.25 8.25 11.5 13.4 13.6 11.5 

Fixed base frequency: fFix Hz 5.15* 9.36* 9.36* 8.32 8.04 5.15 21.00 9.37 9.35 

As-installed frequency: fAI Hz 3.30-3.90 4.20 4.25 7.75 6.79 3.25 11.25 2.57 7.70 

*Values estimated by authors 
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Figure 3-1 Definition of Dimensions of Bushing 

 

Figure 3-2 illustrates two models that can be used to represent a bushing in its fixed condition at 

the connecting plate or in its flexible condition at the connecting plate (the latter called 

“as-installed” condition). Inherent damping was specified by adding vertical and rotational linear 

viscous dampers at the connection between the bushing and the transformer body, and horizontal 

linear viscous dampers between the nodes representing masses mCH and mUB, as shown in Figure 

3-2, so that each mode of vibration is damped at 3% of critical damping. This value of damping 

ratio is consistent with observations in field studies (Villaverde et al., 2001). Note that 

specification of damping using the option of Rayleigh damping in program Opensees resulted in 

significant “leakage of damping” in the isolated modes that incorrectly affected the calculated 

isolator displacement (Sarlis and Constantinou, 2010). 

 

Calibration of the as-installed model of the bushing is performed as follows. Given the geometry 

of a bushing and the values of the frequencies for the fixed and the as-installed conditions, fFix 
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and frespectivelyas for example in Table 3-1, properties useful in constructing the analytical 

models of Figure 3-2 are obtained in the following steps: 

 

a) Assume the value of young’s modulus for upper bushing EUB (e.g., EUB=29000ksi or any 

other value) and calculate the moment of inertia of the upper bushing IUB using the 

expression for the fixed condition frequency in Equation (3-1). 

UB UB
Fix 3

CM_UB UB

31

2

E I
f

H m
                           (3-1) 

b) Construct the as-installed model shown in Figure 3-2(b) using the values of EUB and IUB 

from step 1. The vertical stiffness KV is calculated from the following equation where fV 

is the vertical frequency of the as-installed bushing. 

   2

V V UB CH LB2K f m m m                          (3-2) 

If the vertical frequency of the as-installed bushing is not known, assume that is in the 

range of 10 to 20Hz. Justification for this value is provided in Figure 3-3, which is based 

on the test results of Kong (2010) and Fahad (2013) who examined the rotational and 

vertical frequencies of bushings in the as-installed condition. These data are shown in 

Figure 3-3 which presents the rotational and vertical frequencies in the testing of 33 

bushings. The figure of 15Hz may represent a reasonable estimate for the vertical 

frequency in the absence of any better information. 

 

c) Assume a value for the rotational stiffness K, calculate the fundamental frequency and 

compare it to the known value of the as-installed frequency f. Adjust the value of K and 

repeat until the calculated value of frequency is sufficiently close to the known value. 
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Figure 3-2 Bushing Models: (a) Fixed Condition; (b) As-Installed Condition 

 

 

 

Figure 3-3 Test Results on Vertical and Rocking Frequency of As-Installed Bushings 

(From Kong, 2010 and Fahad, 2013) 
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where V is the damping ratio in a purely vertical mode (0.03 is used), fV is the vertical 

frequency (15 Hz is used for this study) and mV is the effective mass in the vertical 

direction given by Equation (3-4): 

V UB CH LBm m m m                         (3-4) 

Masses mUB, mCH and mLB are identified in Figures 3-1 and 3-2. 

 

e) The circular frequency at the joint of bushing and transformer body is calculated as 
follows.  Note that this frequency is the as-installed frequency ( θ AI2 f  ). 

θ
θ

K
I                              (3-5) 

where I is the moment of inertia of the bushing. 

The rotational linear viscous damper constant C is given by: 

θ θ θ2C I                                (3-6) 

where  is the damping ratio in a purely rotational mode (0.03 is used). Use of Equation 

(3-5) results in: 

θ θ
θ

AI

K
C

f








                      (3-7) 

f) The horizontal linear damper constant CH is similarly given by: 

H H UB Fix4C m f                            (3-8) 

where H is the damping ratio in a purely horizontal mode (0.03 is used). 

  

3.2 Failure of Transformers 

 

Transformers may fail in an earthquake in a variety of ways. Herein we assume that failure of the 

bushings represents the main contributor to failure of the transformer. The major failure modes 

of bushing are shown in Figure 3-4 based on the observations in past earthquakes (Schiff, 1977; 

Kong, 2010). 
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Figure 3-4 Main Failure Modes of Porcelain Bushings 

 

The modes of failure shown in Figure 3-4 are the result of the development of large overturning 

moment and/or shear force at the base of the bushings. The moment and shear force are the 

resultants of the distributed inertia forces in the transverse direction along the height of the 

bushing. Herein we assume that bushings are acceleration-sensitive components so that their 

failure is caused by the acceleration exceeding some critical value. In this work, the peak 

acceleration at the center of mass of the upper portion of the bushing is used as the single critical 

parameter for assessing failure. This represents a correct choice when the distribution of lateral 

acceleration over the height of the bushing is constant so that the peak value at the center of mass 

represents a good measure for both the shear force and the overturning moment. When the 

bushing experiences significant rocking acceleration in addition to translational acceleration, the 

use of this single parameter will tend to underestimate the overturning moment effects when 

rocking and translation are in phase and will otherwise likely overestimate the overturning 

moment effects, while correctly estimating the shear force effects.  

 

Consider a vertical bushing as shown in Figure 3-2 and let the acceleration at the center of mass 

of the upper bushing in the transverse direction be A. If the bushing experiences a constant 

acceleration over its height, the overturning moment at the interface of the upper bushing to the 

supporting plate is OM=mUBHCM_UBA where mUB is the mass of the upper bushing and HCM_UB is 

the distance of the center of mass of the upper bushing to the plate as shown in Figure 3-1.  

Accordingly, another parameter that could describe the failure of a transformer is the normalized 

overturning moment OM/mUBHCM_UB which has dimensions of acceleration. A comparison then 

of the transverse upper bushing acceleration at the center of mass A and the normalized 

overturning moment at the bushing base OM/mUBHCM_UB can reveal the differences between the 

two measures of bushing failure. Such comparisons are presented in Figures 3-5 and 3-6 for the 

case of an isolated transformer of 420kip total weight equipped with a three-dimensional 
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isolation system allowed to rock and then restrained against rocking (see description in Section 4 

that follows) and a vertical bushing having an as-installed frequency of either 2.6Hz or 7.7Hz. 

The horizontal isolator is smallest considered in this study (shown in Figure 4-2) with its lower 

bound properties. One of the 40 pairs of horizontal-vertical used in the fragility analysis in this 

report was used and applied incrementally as described in Section 7 later in this report until the 

peak acceleration of the upper bushing at the center of mass reached about 3g. The motion was 

Beverly Hills - Mulhol of the 1994 Northridge Earthquake (see Table 7-1). The calculated value 

of acceleration at each increment is plotted in Figures 3-5 and 3-6 versus the calculated 

normalized overturning moment OM/mUBHCM_UB. Another set of results is presented in Figures 

3-7 and 3-8 for another of the motions used in the fragility analysis: the Arcelik station motion in 

the 1999 Kocaeli earthquake. The two motions used in the analysis include a vertical component 

of excitation as recorded and the two components were scaled incrementally as described in 

Section 7. Figure 3-9 compares the 5%-damped acceleration response spectra of the components 

of the two motions used in the analysis in order to demonstrate the differences in their 

characteristics. 

 

In the results of Figures 3-5 to 3-8, when the two compared quantities of acceleration and 

normalized moment are exactly equal, the distribution of acceleration over the bushing height is 

constant. The deviation from the equal value line in these graphs indicates whether the measure  

 

 

Figure 3-5 Relation between Acceleration at Center of Mass and Normalized Moment of Upper 

Bushing in Combined Horizontal-Vertical Seismic Isolation System with Unrestrained Rocking 

in the Isolation System for Case of Motion Beverly Hills - Mulhol 
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Figure 3-6 Relation between Acceleration at Center of Mass and Normalized Moment of Upper 

Bushing in Combined Horizontal-Vertical Seismic Isolation System with Restrained Rocking in 

the Isolation System for Case of Motion Beverly Hills – Mulhol 

 

 

 

Figure 3-7 Relation between Acceleration at Center of Mass and Normalized Moment of Upper 

Bushing in Combined Horizontal-Vertical Seismic Isolation System with Unrestrained Rocking 

in the Isolation System for Case of Motion Arcelik 
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Figure 3-8 Relation between Acceleration at Center of Mass and Normalized Moment of Upper 

Bushing in Combined Horizontal-Vertical Seismic Isolation System with Restrained Rocking in 

the Isolation System for Case of Motion Arcelik 

 

of acceleration at the center of mass is conservative (points above line of equal values) or 

un-conservative (points below line of equal values). The results in Figures 3-5 to 3-8 clearly 

indicate a close correlation between the acceleration at the center of mass of the upper bushing 

and the normalized bending moment at the upper bushing base so that the acceleration at the 

center of mass of the upper bushing may be used to describe failure of the transformer.   

 

Having accepted that the bushing acceleration at the center of mass of the upper bushing is a 

good indicator for failure of the transformer, a variety of options for the limits of acceleration in 

the longitudinal and transverse bushing directions of the bushing were considered and fragility 

curves were constructed for the non-isolated transformer model (see Fig. 3-11 (a)). These curves 

were then compared to empirical fragility curves based on field observations in earthquakes and 

used in program SERA (Kempner et al, 2006) so that the bushing acceleration limits are 

established. Specifically, the study considered that the bushings fail when the acceleration at the 

center of mass of the upper part per Figure 3-1 reaches the limit of 1g or 2g or 3g in the lateral 

(or transverse) direction (perpendicular to the longitudinal bushing axis) and when it reaches the 

limit of 5g in the bushing longitudinal direction. The reason for the distinction between the limits 

in the lateral and longitudinal directions is based on observations of bushing failures in which 

failures like those depicted in Figure 3-4 are caused by bending, and shear force which are the 
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result of inertia forces in the lateral direction. The calculation of the accelerations in the 

longitudinal and lateral bushing directions from values in the vertical and horizontal directions, 

and the acceleration limits, are illustrated in Figure 3-10. 

  
 

  
 

Figure 3-9 5%-Damped Acceleration Spectra of Motions Recorded at Station Beverly Hills–

Mulhol in the 1994 Northridge Earthquake and Recorded at Station Arcelik in the 1999 Kocaeli 

Earthquake (as recorded) 
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Figure 3-10 Calculation of Longitudinal and Lateral Bushing Accelerations and Their Limit 

 

Table 3-2 presents values of the median PGAF and the dispersion coefficient β of the analytically 

constructed fragility curves of several non-isolated transformer models (details of the model and 

analysis are provided in the remaining of Section 3 and in Section 7 of this report). 

 

Program SERA (Kempner et al, 2006) utilizes empirical fragility curves that are based on 

observations of damage to electrical equipment in earthquakes over the past several years.  

These were made available (Kempner, 2016) from which Table 3-3 was prepared. Only data for 

failures of bushings of 230 and 500kV voltage are included in the table. The data are based on 

seven types of transformers as shown in photographs in the table. (Note that all bushings in the 

photographs of transformers in Table 3-3 are center-clamped porcelain bushings.) The data in the 

table include the median value of PGAF and the dispersion factor. The lower limit of the median 

PGAF in Table 3-3 corresponds to failure attributed to gasket leakage, whereas the upper limit of 

the median PGAF corresponds to failures attributed to breakage of the bushing. Higher values of 

up to 1g of the median PGAF exist in the SERA database and all correspond to failures attributed 

to radiator breakage. 
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Table 3-2 Parameters of Analytically Constructed Fragility Curves for Several Non-Isolated 

Transformers 

Transformer 

Weight 

(kip) 

Bushing 

Inclination 

(degrees) 

Bushing 

As-Installed 

Frequency 

(Hz) 

Bushing 

Transverse 

Acceleration 

Limit (g) 

Median 

PGAF 

(g) 

Dispersion 

Factor 

β 

320 20 7.7 

3.0 1.20 0.45 

2.0 0.80 0.45 

1.0 0.40 0.45 

420 20 2.6 

3.0 1.69 0.32 

2.0 1.13 0.32 

1.0 0.56 0.32 

420 20 4.3 

3.0 1.47 0.34 

2.0 0.98 0.34 

1.0 0.49 0.34 

420 20 7.7 

3.0 1.20 0.45 

2.0 0.80 0.45 

1.0 0.40 0.45 

420 0 7.7 

3.0 1.08 0.40 

2.0 0.72 0.41 

1.0 0.36 0.41 

420 20 11.3 

3.0 2.16 0.32 

2.0 1.44 0.35 

1.0 0.72 0.35 

520 20 7.7 

3.0 1.20 0.45 

2.0 0.80 0.45 

1.0 0.40 0.45 
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Table 3-3 Parameters of Empirical Fragility Curves based on Field Earthquake Performance Data 

for Bushings of Seven Types of Non-Isolated Transformers (program SERA, Kempner, 2016) 

Type of Transformer 
Bushing Voltage 

(kV) 
Median PGAF (g) Dispersion Factor β 

 

230 0.50-0.85 0.30 

500 0.45-0.75 0.30 

 

230 0.50-0.85 0.30 

500 0.45-0.75 0.30 

 

230 0.50-0.85 0.30 

500 0.30-0.60 0.30 

 

230 0.50-0.85 0.30 

500 0.40-0.70 0.30 

 

230 0.50-0.85 0.30 

500 0.50-0.85 0.30 

 

230 0.50-0.85 0.30 

500 0.40-0.65 0.30 
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230 0.50-0.95 0.30 

500 0.50-0.85 0.30 

 

A comparison of the data in Tables 3-2 and 3-3 reveals that the analytically constructed fragility 

curves are in close agreement with the empirical field data when the limit of bushing transverse 

acceleration is between 1.0g and 2.0g. The 2.0g limit appears to be high for most cases of 

bushing failure but it is representative of other types of failures not attributed to bushing 

breakage. The analytically predicted dispersion factors were in the range of 0.35 to 0.45, which 

compares to the empirical value of 0.30.  This indicates that the transformer model is 

reasonably valid, that the selection and scaling of earthquake motions for the analysis are 

appropriate and that the analysis procedure is appropriate.   

 

We consider that the transformer failure model based on the peak bushing acceleration values at 

to the center of mass of the upper part to have been validated. Analyses are thus conducted with 

bushing acceleration limits to be 1.0g and 2.0g in the transverse direction and 5.0g in the 

longitudinal direction, with the understanding that the 1.0g limit results are representative of 

most transformer failures attributed to porcelain bushing breakage and that the 2.0g limit results 

are representative of a few transformers and in cases where failure is attributed to breakage of 

components other than bushings. 

 

3.3 Modeling the Transformer 

 

The model of the transformer is based on Oikonomou et al (2016). The representation of the 

transformer is two-dimensional with horizontal and vertical degrees of freedom. Figure 3-11 

illustrates the three transformer models considered: (a) fixed-base or non-isolated, (b) isolated 

only in the horizontal direction and (c) isolated in the horizontal and vertical directions. The 

elastic beam elements representing the transformer frame are designated rigid. Only flexible 

elements are those representing the bushing (see Figure 3-2). 
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Figure 3-11 Two-Dimensional Transformer Models 
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The models depicted in Figure 3-11 are skeletal with lumped masses. Each model represents half 

of a transformer. It consists of one bushing modelled using the representation of Figure 3-2(b) 

with an angle of inclination θ equal to zero (vertical bushing) or 20 degrees (inclined bushing). 

The height and length (or width) of the transformer are denoted as HT and LT, respectively. The 

mass of the body of the transformer (excluding the bushings) is 2mT and is considered lumped at 

two locations as shown in Figure 3-11. For the isolated transformer there is additional mass 

representing the concrete slab supporting the transformer on top of the isolators. This mass is 

2mC and is lumped at two locations on top of the supports. Small masses to represent the triple 

FP isolators and the spring-damper units are added at the isolator locations. The weight of each 

triple FP bearing is 700lb and the weight of each spring-damper unit is 500lb (these values 

include the weight of added beams to simulate the isolation system bases). Accordingly, the 

masses for the isolators, which represent one unit each, are given by mTFP=0.7kip/g and 

mSD=0.5kip/g, where g is the gravity acceleration (=386 inch/sec2). 

 

The isolated model shown in Figure 3-11(c) with the combined horizontal-vertical isolation 

system distinguishes between the cases of allowing for or preventing rocking. As depicted in 

Figure 3-11(c), there is a rigid base placed below the triple FP isolators and connecting the top of 

the spring-damper units. This arrangement prevents rocking of the isolated structure but allows 

for vertical motion that is equal at each support. When the rigid base is removed, the structure is 

free to undergo rocking. In reality, the beam has to be of finite stiffness which will allow for 

some limited rocking to occur. In this work only results for the two bounding cases of zero and 

infinite base stiffness are presented, which correspond to the cases of allowing for free rocking 

and for completely restraining rocking, respectively. Some more details of how this is achieved 

in practice are presented in Section 4. 

 

Specific values of properties used in the study are based on the isolated transformer described in 

Oikonomou et al (2016). This transformer is denoted as the 420kip transformer. The weight of 

the transformer is WT=380kip and the weight of the concrete slab is WC=40kip, so that masses mT 

each represent weight of 95kip and masses mC each represent weight of 10 kip. Geometric 

parameters for the transformer described in Oikonomou et al (2016) are: HT=81in, LT=110in, 

HC=6.0in, HTFP=4.75in, HSD=3.0in. Note that the LT is the width in north-south direction of the 

transformer used in Oikonomou et al (2016). Also note that HT is the height to the center of mass 

of the transformer body. Similarly, HC, HTFP and HSD are the heights to the center of mass of 

each component, which are taken as half of the actual height. 
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Other weights of transformer model are also analyzed using the same basic dimensions as the 

420kip transformer model but with the total weight adjusted to 320kip and to 520kip to represent 

a range of transformers likely to be seismically isolated. Also, the properties of bushings are 

varied by considering four different bushings, No. 3, 6, 7 and 8 per the data in Table 3-1. The 

dimensional, weight and frequency data for these bushings are as follows: (a) No.3: HUB=194.8 

in, HLB=50.0in, HCM_UB=87.6in, HCM_LB=59.2in, HF=11.5in, mUB=2156lb/g, mCH=100lb/g, 

mLB=554lb/g, fFix=9.36Hz, fAI=4.25Hz; No. 6: HUB=91.4 in, HLB=60.0in, HCM_UB=34.0in, 

HCM_LB=28.0in, HF=13.4in, mUB=447lb/g, mCH=100lb/g, mLB=293lb/g, fFix=21.0Hz, fAI=11.25Hz; 

No. 7: HUB=208.3 in, HLB=86.7in, HCM_UB=90.0in, HCM_LB=59.0in, HF=13.6in, mUB=3012lb/g, 

mCH=100lb/g, mLB=1218lb/g, fFix=9.37Hz, fAI=2.57Hz; No. 8: HUB=190.2 in, HLB=65.0in, 

HCM_UB=85.2in, HCM_LB=39.0in, HF=11.5in, mUB=1570lb/g, mCH=100lb/g, mLB=510lb/g, 

fFix=9.35Hz, fAI=7.70Hz. (In the presented analysis results, the four bushings will be identified as 

the 4.3Hz, 17.3, 2.6Hz and 7.7Hz bushings, respectively). The vertical frequency is assumed to 

be 15Hz for all cases of bushings. Note that bushings with an as-installed frequency of 2.57Hz, 

as considered in this study, are atypical. Realistically, frequencies of about 4Hz represent the 

lowest bound for most installations (Kempner, 2016). 

 

The seismically isolated transformers in the combined horizontal-vertical isolation system that is 

freely allowed to undergo rocking has a rocking frequency (actually the mode of vibration is 

dominated by rocking with some lateral deformation in the FP isolators) in the range of about 2.4 

to 2.8Hz, depending on the supported weight (range of 520kip to 320kip). The calculation of the 

frequency is based on the assumption of rigid body for the entire transformer, the triple FP 

isolators represented as horizontal springs having a stiffness equal to the carried weight divided 

by the effective radius, the vertical springs being at a distance of LT=110inch (see Figure 3-11) 

and with a bushing inclined at 20 degrees and having the weight and dimensional characteristics 

of bushing No. 7 in Table 3-1. 

 

The rocking frequency is very close to the as-installed frequency of one of the considered 

bushings (No. 7, frequency of 2.57Hz) so that the response is expected to be affected. Indeed, the 

results to be presented for the case of the transformer with the bushing having an as-installed 

frequency of 2.57Hz and the isolation system that is allowed to rock has the highest probabilities 

of failure. The case is regarded as a very special case that is atypical of transformers but it is used 

to demonstrate when an isolation system with restrained rocking is needed. 
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SECTION 4 

DESCRIPTION OF SEISMIC ISOLATION SYSTEM 

 

4.1 Triple Friction Pendulum Bearings 

 

The seismic isolation system consists of triple Friction Pendulum (FP) bearings for providing 

isolation in the horizontal direction. When a three-dimensional isolation system is used, the triple 

FP isolators are supported by spring-damper devices to provide for some degree of vertical 

isolation. The spring-damper devices are designed to move only vertically and to resist rotation 

and lateral deformation due to the shear force and overturning moment transferred by the bearing 

above. Also they are designed to resist torsion and prevent instability due to the “negative 

stiffness” generated by the compressed springs in case they are accidentally twisted either by 

rotational ground motion or random torque transferred from the FP isolators above. 

 

Figure 4-1 shows the section and plan of the smallest size triple FP isolator considered in this 

study for transformers of weight in the range of 320 to 520 kip. The isolator has capacity to 

accommodate larger loads but friction will be less than what is considered in this study. It has 

been used in a transformer described in Oikonomou et al (2016). The isolator is shown to have 

an inner restrainer ring, which does not offer any advantage and could be removed. 

 

Figure 4-1 Section and Plan of Smallest Size Triple FP Bearing with Inner Restrainer 
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Figure 4-2 shows the internal construction of a modification of the isolator of Figure 4-1 to be 

without an inner restrainer ring. Both the isolators of Figures 4-1 and 4-2 have been tested and 

their frictional properties are identical and known. The latter type of isolator without the inner 

restrainer ring is considered in this study with only sample results provided for the one with the 

restrainer ring.  

 

 
 

Figure 4-2 Section and Plan of Smallest Size Triple FP Bearing without Inner Restrainer 

 

Two more isolator sizes are considered for this study. The isolators have the same internal 

construction as the bearing of Figure 4-2 but with increasingly larger concave plate diameter in 

standard size plates that are readily available (22inch, 33inch and 36inch). The 36inch diameter 

concave plate requires a larger radius of curvature for economy so that its radius of curvature is 
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61inch. Figure 4-3 shows sections of the two larger size bearings. The three isolators shown in 

Figures 4-2 and 4-3 have ultimate displacement capacities of 17.7in, 27.7in and 31.3in. 

 

 

Figure 4-3 Sections of Larger Size Triple FP Bearings without Internal Restrainer 

 

 

4.2 Behavior of Triple Friction Pendulum Bearings 

 

The behavior of the triple FP bearings has been described in Fenz and Constantinou (2008) and 

in a more advanced form, including their ultimate characteristics in Sarlis and Constantinou 

(2013). Section 5 in this report presents a model for this bearing valid to collapse that has been 

implemented in program OpenSees (McKenna, 1997). The model is a modification of the series 

model of Fenz and Constantinou (2008) and includes the effect of the inner restrainer (when is 

used) based on the theory of Sarlis and Constantinou (2013) and the effect of fluctuating 

instantaneous axial load. 

 

The lower bound frictional properties of the bearings of Figures 4-1 to 4-3 are as follows for high 

speed conditions. The upper bound properties, excluding effects of low temperature as those are 
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dependent on location, have been calculated based on the procedures described in McVitty and 

Constantinou (2015) using the following system property modification factors: λtest, max=1.10, λae, 

max=1.12, λspec, max=1.00, λmax=1.23. Upper bound values should be obtained from the lower 

bound values of Table 4-1 by multiplying by factor of 1.23.  Note that the system property 

modification factors used for uncertainties in properties when only prototype test data are 

available (λspec) are set equal to unity because test data on all isolators are presumed available. 

 

Table 4-1 Lower Bound Frictional Properties of Triple Friction Pendulum Bearings 

Load (kip) 1=4 2=3 Comments 

80 0.130 0.095 

For 320kip transformer. 

Adjusted from test data 

at 110kip load 

110 0.120 0.080 
For 420kip transformer. 

Based on test data 

130 0.110 0.065 

For 520kip transformer. 

Adjusted from test data 

at 110kip load 

Test data are reported in Oikonomou et al (2016) 

For upper bound properties (excluding low temperature effects), multiply values by 1.23 

 

4.3 Description of Spring-Damper Device 

 

The spring-damper device is designed for electrical transformers with total weight, including the 

triple FP isolators and any slab supporting the transformer on top of the isolators, in the range of 

320kip to 520kip. Maximum static load per isolator is assumed to be 130kip. The basic function 

of the vertical isolator unit is to support the weight and provide a frequency in the vertical 

direction of 2.0Hz with a corresponding damping ratio of 0.50 of critical when the total 

supported load is 420kip. For the range of weights of 320 to 520kip, the frequency and damping 

ratio will be 2.3Hz and 0.56 when the weight is 320kip, and will be 1.8Hz and 0.44, respectively, 

when the weight is 520kip. The springs have linear elastic behavior and the damper has linear 

viscous behavior. Table 4-2 presents the parameters of one of these devices. The device has 

substantial margin of safety (factor of over 2) for the listed limits of force and moment.  
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Figure 4-4 shows a schematic of the device.  Scaled versions of the device were used in testing 

of a 70kip model of isolated transformer at the University at Buffalo.  Section 6 of this report 

describes a model of ultimate behavior of this device. The ultimate behavior of the device is 

summarized as follows. 

 

Table 4-2 Parameters of Spring-Damper Device 

Static load (per unit) 130kip 

Static deflection 3.0inch 

Stiffness per unit 44kip/inch 

Damping constant per unit (linear viscous damping) 3.4kip-sec/inch 

Dynamic deflection  ±1.75inch 

Total deflection 4.75inch 

Stroke capacity 5.0inch 

Displacement capacity (from position of -3inch static 

deflection; + is tension; - compression).  Displacement 

limits change when static load changes.  

+3.0inch 

-2.0inch 

Peak rotation allowed for top plate with respect to bottom 0.1 degrees 

Torsional rotation allowed Zero 

 

In compression, the displacement capacity is consumed when it reaches the limit of 5.0inch 

stroke and then the device exhibits very high stiffness with practically unlimited force capacity. 

The 5.0inch limit is controlled by the design of the damper, whereas the springs have additional 

displacement capacity which cannot be utilized. 

 

In tension, the device reaches the limit of 5.0inch stroke which is the displacement capacity of 

the damper (the springs have additional displacement capacity which cannot be utilized). 

Thereafter, the device exhibits high stiffness until the ultimate force capacity of the damper in 

tension is reached. This limit of force depends on the design of the damper and typically exceeds 

twice the peak damping force. For this device the tensile limit is about 200kip. However, the 

triple FP isolators on top of the spring-viscous damper units do not have any tensile capacity so 

that the spring-damper units cannot fail in tension. 

 

Note that the device features a telescopic sleeve system to act as a shear pin and to also prevent 

(limit) rotation (rocking of the top plate with respect to the bottom). Realistically, some small 

angle of rotation is possible, specified to be 0.1 degrees. Also, the coil springs of the device have 
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internal pins that limit the spring length available for shear deformation so that the shear and 

torsional stiffness are increased. This is needed as torsional ground motion and random transfer 

of torque from the FP isolator above will cause twisting of the springs and magnification of the 

angle of twist due to the large compressive forces in the springs (the system without torsional 

restraint at individual supports has negative torsional stiffness and is unstable). 

 

 
 

Figure 4-4 Schematic of Spring-Viscous Damper Device 

 

Figures 4-5 and 4-6 illustrate the behavior of the two possible installation methods that either 

allow free rocking (Fig. 4-5) or restrain rocking (Fig. 4-6) of the isolated structure. In Figure 4-5 

the isolated structure is supported by four triple FP isolators, which in turn are supported by four 

vertical spring-damper devices. The bottom concave plate of the triple FP isolators is allowed to 

rotate by an angle of rotation β that is limited by the telescopic sleeve system of the 

spring-damper unit. In general, angle β is small and limited to 0.1 degrees. The top plate of the 

triple FP isolators is free to rotate as the FP isolators have no resistance to rocking.  This is 

possible because the spring-damper system allows for relative vertical motion at each support. 

The rocking angle α is limited by the ability of the spring-damper system to move vertically. 

Based on the limitations listed in Table 4-2, the vertical displacement capacity is 3inch 

downwards and 2inch upwards (for static load of 130kip). Most of the displacement capacity will 

be consumed by the average vertical motion of the four supports. Realistically, the relative 

vertical displacement between any two supports will be less than 2inch. For the shortest distance 

between supports of LT=110inch (see Fig. 3-6), the angle of rocking α is about equal to or less 

than 1 degree. The total angle of rotation α+β is thus less than about 1.1 degrees. This will result 

in additional displacements and acceleration at parts of the transformer furthest away from the 

isolation system. 

Coil 

Spring 
Viscous damper 

within telescopic 

sleeve system 
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Figure 4-5 Installation Method that Freely Allows Rocking 

 

When a stiff system is installed to span between supports (say a stiffened plate placed between 

the bottom FP concave plate and the top plate of the vertical spring-damper system) as shown in 

Figure 4-6, rocking of the superstructure is restrained so that angle α is essentially nil. The 

vertical isolators move in unison with essentially the same displacement. The total rotation α+β 

is now small and dependent on the stiffness of the connecting system. Effectively, it can be 

reduced to about 0.1 degrees but that requires an exceptionally stiff base. 

 

Figure 4-6 Installation Method that Restrains Rocking 

 

Figures 4-7 and 4-8 show views of the two installation methods described above during testing 

on the seismic simulator at the University at Buffalo. 

 

 



36 
 

 

 

Figure 4-7 View of Isolation System with Installation Method that Allows Free Rocking 

 

 

 

 

Figure 4-8 View of Isolation System with Installation Method that Restrains Rocking 
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SECTION 5 

MODEL FOR SIMULATING THE ULTIMATE BEHAVIOR 

OF TRIPLE FRICTION PENDULUM BEARINGS 

 

5.1 Introduction 

 

This section describes a modified series model for simulating the ultimate behavior of triple 

Friction Pendulum (TFP) bearings that has been implemented in program OpenSees (McKenna, 

1997). The model is capable of accounting for the stiffening behavior of the isolator, for the 

effect of the fluctuating axial force on the instantaneous stiffness and friction force, for uplift, for 

the effect of fracture of the inner restrainer ring and for motion until collapse of the slider 

assembly. Currently, the only available model of TFP capable of simulating its ultimate behavior 

is the one described in Sarlis and Constantinou (2013) and implemented in program 3pleANI. 

However, this model is complex, is difficult to implement in program OpenSees and is 

computationally intensive to be useful in the large number of analyses required for fragility 

analysis. Other models implemented in program OpenSees include the Becker and Mahin (2011) 

and Dao et al. (2013) models could not be used as they did not simulate behavior to collapse and 

they would have required modification. Also, the Becker and Mahin OpenSees model was 

dysfunctional when tested (last attempt was on 06/14/2016 using OpenSees Versions 2.3.0, 2.3.1, 

2.4.2, 2.4.3, 2.4.4, 2.4.5, 2.4.6 and 2.5.0) and would have required complete reprogramming 

based on the original formulation in Becker and Mahin (2011). The model by Dao et al. (2013) 

could be modified but it was developed for bi-directional motion so again it would have required 

reprogramming to reduce to the one-directional motion and enhanced to include failure 

characteristics to be useful for the fragility analysis. 

 

The approach followed herein is to modify the series model in Fenz and Constantinou (2008) in 

order to simulate the ultimate behavior of the TFP as predicted by the theory of Sarlis and 

Constantinou (2013). Advantages of the modified series model are its simplicity and the ease of 

implementation in programs like OpenSees and SAP2000 (Computers and Structures, 2015). 

 

5.2 Description of Element 

 

The modified series model has three units as shown in Figure 5-1. Each unit (FP1 to FP3) 

contains the following OpenSees elements: (a) a single FP bearing element (element FPBearing 

developed by Kumar et al., 2014), (b) a MinMax material (similar to the hook element in 

program SAP2000) and (c) an elastic-perfectly plastic gap material with two node link element. 
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The single FP bearing element can account for the effect of the varying axial load on the 

instantaneous stiffness and friction force (termed axial-shear force interaction in this document). 

A simplified version of the model that neglects this interaction replaces the single FP element 

with axial, rotational and horizontal springs in parallel as shown in Figure 5-2. Note this 

simplified model is computationally more stable. Examples will be provided to demonstrate the 

differences in the two models. 

 
 

Figure 5-1 Organization of Elements of Modified Series Model in OpenSees 

 
 

Figure 5-2 Three Springs in Parallel Element to Replace Single FP Element when Axial-Shear 

Force Interaction is Neglected 

 

The axial spring shown in Figure 5-2 in the vertical direction for the model that ignores the 

axial-shear force interaction has bi-linear elastic behavior as shown in Figure 5-3 in order to 

simulate rigidity when in compression and allow for uplift when in tension. The compressive 

stiffness Kv,Compressed,i is approximated by 3AE/h, where A is the area of the rigid slider of the 

Triple FP bearing, E is a representative modulus (typically assumed about half of that of steel to 

account for flexibilities in the bearing assembly, herein 14500ksi) and h is the height of bearing, 

per Sarlis and Constantinou (2010). Note that the factor of 3 on the compressive stiffness 

accounts for the series arrangement of the three elements so that the collective stiffness is the 

correct AE/h. 
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When in uplift, the vertical stiffness of the isolator Kv,Uplift,i is zero unless the contribution of the 

rubber seal is considered, which can be calculated from geometry of the rubber seal as described 

in Sarlis and Constantinou (2013). In this study, some arbitrary small stiffness (0.1 kip/inch) is 

used in each of the three elements (total is 0.1/3 kip/in) which allows for essentially unrestricted 

uplift and avoids numerical instabilities. Moreover, a linear viscous damper having a constant 

C=4x10-3 kip-sec/in is used spanning the three elements and connected to the two end nodes. 

When considering the transformer weight of 420kip, these values of tension stiffness (0.1/3 

kip/in per supported weight of 105kip) and damping (C=4x10-3 kip-sec/in per supported weight 

of 105kip) correspond to a period of 18sec and damping ratio of 0.02. These values have 

insignificant impact on restraining uplift but may assist in providing stability in the numerical 

solution. 

 
Figure 5-3 Bi-Linear Elastic Spring for Simulating Vertical Behavior 

 

The rotational spring parameters in the model that neglects the axial-shear force interaction are 

selected on the basis of the recommendations of Sarlis and Constantinou (2010): (a) for element 

FP1, the rotational stiffness is zero (actually 10-9 kip-in/rad), and (b) for elements FP2 and FP3 

the rotational stiffness is infinite (actually 109 kip-in/rad). 

 

The single FP element in OpenSees (FPBearingPTV in OpenSees Version 2.5.0 – rev. 6248) is 

structured similarly to the description of the element depicted in Figure 5-3 but (a) an arbitrarily 

small value of tensile force is used by the program when the isolator is in uplift, and (b) the user 

is allowed to specify the vertical compressive stiffness. In general, a very small value of tensile 

stiffness produces acceptable results but there are occasional numerical instability problems. This 

problem may be mitigated by introducing viscous damping as described above for the case of the 

element where the axial-shear force interaction is neglected. 

 

 

The parameters of the various components in Figure 5-1 are given by the following equations 

(note that index i takes values of 1 for element FP1, 2 for element FP2 and 3 for element FP3) 
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with reference to the parameter definition for the triple FP bearing in Figure 5-4. Also W is the 

weight on each isolator and P is the instantaneous axial load on each isolator (at time zero, 

P=W). When the axial-shear force interaction is neglected, P=W. 

 

Figure 5-4 Definition of Parameters of Triple FP Bearing 

 

eff1 eff2 eff3R R R  , eff2 eff1 eff2R R R  , eff3 eff4 eff3R R R               (5-1) 

eff i i iR R h                                 (5-2) 

Ini, 2
n

i

W
K

Y


                                (5-3) 

1 2 3    , 2 1  , 3 4                          (5-4) 

Index n takes values of 2 for element FP1, 1 for element FP2 and 4 for element FP3. Quantity Y 

is a yield displacement in the visco-plastic representation of friction which is typically assigned 

small values (of the order of 0.01 to 0.1inch). 

GP,1 Capacity GP,2 GP,3d D d d   , 
*eff1 eff2

GP,2 1
eff1

R R
d d

R


  , 

*eff4 eff3
GP,3 4

eff4

R R
d d

R


       (5-5) 

Quantity DCapacity is the displacement capacity when the outer and inner restrainers are reached, 

given by: 

* * * *
Capacity 1 2 3 4D d d d d                              (5-6) 

* eff i
i i

i

R
d d

R
                               (5-7) 



41 
 

Also, the gap element displacements (Elastic-Perfectly Plastic Gap Material in Figure 5-1) 

capacities GP,3d and GN,3d are assigned arbitrarily large values when there is no restrainer for 

surfaces 2 and 3. 

 

The stiffness of each restrainer is given by the following expressions. Note that the stiffness is 

defined as the strength of the restrainer (per Sarlis and Constantinou, 2013) divided by a yield 

displacement Yr. Quantity Fry is the shear yield stress of the material. Also, the stiffness of gap 

element GP1 is half that of each restrainer on surfaces 2 and 3 due to the fact that two identical 

restrainers are simultaneously engaged (one on surface 2 and one on surface 3) and that the two 

act as if they are connected in series. 

 2 2
1 2 ry

GP1 GN1
r

1 1

2 4 6

b s F
K K

Y

      
  

                 (5-8) 

 r1 r1 1 ry
GP2 GN2

r6

t t s F
K K

Y

 
                      (5-9) 

 r4 r4 4 ry
GP3 GN3

r6

t t s F
K K

Y

 
                     (5-10) 

In these equations si is the diameter of the sliding surface i and HP,id is ith hook element 

displacement capacity given by the following equations, where i=1, 2 or 3: 

2i i is b d                              (5-11) 

 HP,1 HN,1 GP,1 r 2 r3d d d t t                        (5-12) 

HP,2 HN,2 GP,2 r1d d d t                          (5-13) 

HP,3 HN,3 GP,3 r3d d d t                          (5-14) 

Note that Equations (5-8) to (5-10) are based on a simple model for predicting estimates of the 

restrainer stiffness and strength. The user may control the values of strength and stiffness by 

selecting values of the shear yield stress Fry and the yield displacement Yr. 

 

The model described above is assumed valid until the displacement reaches a critical value 

which results in collapse or overturning of the bearing. This is considered to be at a displacement 

DUltimate equal to the displacement capacity given by Equation (5-6) plus about half of the 

diameter of the rigid slider b2: 

2
Ultimate Capacity 2

b
D D                            (5-15) 

Note that the model does not explicitly simulate collapse. Simply when this limit of displacement 

is exceeded, the isolator is considered failed and execution of the program should be terminated. 
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This is often called “non-simulated collapse”. Given that collapse is not directly simulated, the 

user may opt to use a different limit for the ultimate displacement as for example one calculated 

by the more advanced model in Sarlis and Constantinou (2013). 

 

 

5.3 Example of Application and Investigation of Axial-Shear Force Interaction 

 

Analysis was performed for a transformer model without and with a horizontal only seismic 

isolation system and a combined horizontal-vertical seismic isolation system. The horizontal 

isolation system consisted of the triple FP isolators shown in Figure 4-2 and having the 

parameters of Table 5-1 with reference to Figure 5-4 for definitions. The friction values in the 

table are those obtained in testing of the bearings, so they should be considered as the lower 

bound values of friction. Note that Table 5-1 also include the parameters for the triple FP isolator 

of Figure 4-1 (which has an inner restrainer ring) as analyses will also be performed for this case 

later in this report. 

 

Tables 5-2 and 5-3 present values of the parameters used for input in program OpenSees for the 

two cases of the model where the axial-shear force interaction is considered and then neglected, 

respectively. Appendix A presents details of the calculations. 

 

Table 5-1 Properties of Triple FP Bearings 

(Values in Parenthesis are for Bearing without Inner Restrainer Ring) 

Parameter Value Unit Parameter Value Unit 

R1= R4 39 

inch 

d1 7 

inch 

R2= R3 8 (6) d2 1 (2) 

Reff1= Reff4 36 (35.5) d3 1 (2) 

Reff2= Reff3 6 (3.5) d4 7 

h1 3 (3.5) d1
* 6.46 (6.37) 

h2 2 (2.5) d2
* 0.75 (1.17) 

h3 2 (2.5) d3
* 0.75 (1.17) 

h4 3 (3.5) d4
* 6.46 (6.37) 

b1 8 tr1 0.5 

b2 5 tr2 0.5 (0) 

b3 5 tr3 0.5 (0) 

b4 8 tr4 0.5 



43 
 

Yr 0.5 Fry 25 Ksi 

Y 0.05 W 105 kip 

1 0.12 - 3 0.08 - 

2 0.08 - 4 0.12 - 

 

Table 5-2 Material/Element Parameter Values in Program OpenSees for Model 

Considering Axial-Shear Force Interaction  

(Values in Parenthesis are for Bearing without Inner Restrainer Ring) 

Parameter FP1 (i=1) FP2 (i=2) FP3 (i=3) 

Single FP 

Element 

Ini,iK  85.0 kip/in 126.0 kip/in 126.0 kip/in 

i  0.08 0.12 0.12 

eff,iR  12.0 in (7.0 in) 30.0 in (32.0 in) 30.0 in (32.0 in) 

Kv,Compressed,i 92839.2 kip/in 92839.2 kip/in 92839.2 kip/in 

Rotational 

stiffness 
1.0×10-9 kip-in/rad 1.0×109 kip-in/rad 1.0×109 kip-in/rad 

Elastic-Perfectly 

Plastic Gap 

Material 

GP,id  3.66 in (100 in) 5.38 in (5.74 in) 5.38 in (5.74 in) 

GP,iK  
49.1 kip/in (0.0 

kip/in) 
294.5 kip/in 294.5 kip/in 

GN,id  -3.66 in (-100 in) -5.38 in (-5.74 in) -5.38 in (-5.74 in) 

GN,iK  
49.1 kip/in (0.0 

kip/in) 
294.5 kip/in 294.5 kip/in 

MinMax 

Material 
HP,id  4.66 in (101 in) 5.88 in (6.24 in) 5.88 in (6.24 in) 

HN,id  -4.66 in (-101 in) -5.88 in (-6.24 in) -5.88 in (-6.24 in) 

Global vertical 

linear viscous 

damping element 

(per isolator 

location) 

C 4x10-3 kip-sec/in 

 

Analyses were conducted for a 420kip transformer configured as shown in Figure 3-6 and with 

the 7.7Hz bushing at inclination of 20 degrees. The cases analyzed are: (a) horizontally isolated 

only, (b) combined horizontal and vertical isolation system without rocking (double rigid base 

per Figure 3-6(c)), and (c) combined horizontal and vertical isolation system with free rocking 

(lower rigid base in Figure 3-6(c) removed). The vertical isolation system had the characteristics 

in Table 4-2 and was modelled using the procedures described in Section 6. One motion from the 

assembly of motions used in the fragility analysis was selected and utilized. It was the strongest 

horizontal component of the motion recorded at station Beverly Hills - Mulhol in the 1994 
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Northridge earthquake, scaled to a horizontal PGA of 0.6g and with the vertical component also 

scaled so that the vertical to horizontal peak acceleration ratio remained the same as in the 

originally recorded motions (see Table 7-1 for more details). Analyses were conducted using the 

two models that respectively consider and neglect axial-shear force interaction, and with and 

without the vertical earthquake component. 

 

Table 5-3 Input Material/Element Parameter Values in Program OpenSees for Model 

Neglecting Axial-Shear Force Interaction 

(Values in Parenthesis are for Bearing without Inner Restrainer Ring) 

Parameter FP1 (i=1) FP2 (i=2) FP3 (i=3) 

Elastic Uniaxial 

Material 

(axial) 

Kv,Compressed,i 92839.2 kip/in 92839.2 kip/in 92839.2 kip/in 

Kv,Uplift,i 0.01 kip/in 0.01 kip/in 0.01 kip/in 

Elastic Uniaxial Material 

(rotational) 
1.0×10-9 kip-in/rad 1.0×109 kip-in/rad 1.0×109 kip-in/rad 

Steel01 Material 

(shear) 

Ini,iK  85.0 kip/in 126.0 kip/in 126.0 kip/in 

i  0.08 0.12 0.12 

W 105 kip 105 kip 105 kip 

eff,iR  12.0 in (7.0 in) 30.0 in (32.0 in) 30.0 in (32.0 in) 

Elastic-Perfectly 

Plastic Gap 

Material 

GP,id  3.66 in (100 in) 5.38 in (5.74 in) 5.38 in (5.74 in) 

GP,iK  
49.1 kip/in (0.0 

kip/in) 
294.5 kip/in 294.5 kip/in 

GN,id  -3.66 in (-100 in) -5.38 in (-5.74 in) -5.38 in (-5.74 in) 

GN,iK  
49.1 kip/in (0.0 

kip/in) 
294.5 kip/in 294.5 kip/in 

MinMax 

Material 
HP,id  4.66 in (101 in) 5.88 in (6.24 in) 5.88 in (6.24 in) 

HN,id  -4.66 in (-101 in) -5.88 in (-6.24 in) -5.88 in (-6.24 in) 

Global vertical 

linear viscous 

damping element 

(per isolator 

location) 

C 4x10-3 kip-sec/in 

 

Results are presented in Figures 5-5 to 5-10 for the three cases with horizontal only seismic 

excitation. The results demonstrate that the two models that respectively consider and neglect the 

axial-shear force interaction produce essentially the same results so that the simpler and 

computationally more stable model that neglects the interaction is preferred. 
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Figure 5-5 Force-Displacement Loops of Individual Isolators and Total Base Shear-Displacement 

Loop of Transformer with Horizontal Isolation System in Horizontal Only Ground Motion 
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Figure 5-6 Acceleration Histories at Bushing Center of Mass of Transformer with Horizontal 

Isolation System in Horizontal Only Ground Motion 
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Figure 5-7 Force-Displacement Loops of Individual Isolators and Total Base Shear-Displacement 

Loop of Transformer with Horizontal-Vertical Isolation System with Rocking in Horizontal only 

Ground Motion 
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Figure 5-8 Acceleration Histories at Bushing Center of Mass of Transformer with 

Horizontal-Vertical Isolation System with Rocking in Horizontal Only Ground Motion 
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Figure 5-9 Force-Displacement Loops of Individual Isolators and Total Base Shear-Displacement 

Loop of Transformer with Horizontal-Vertical Isolation System without Rocking in Horizontal 

Only Ground Motion 
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Figure 5-10 Acceleration Histories at Bushing Center of Mass of Transformer with 

Horizontal-Vertical Isolation System without Rocking in Horizontal Only Ground Motion 
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Figures 5-11 to 5-16 present results for the three isolated cases where combined horizontal and 

vertical seismic excitation was used. The results demonstrate that the model which considers the 

axial-shear force interaction results in about the same displacement demands but produces higher 

acceleration values than the model that neglects interaction, which is consistent with test 

observations (e.g., Sarlis et al, 2013, Oikonomou et al, 2016). 

 

The results shown in these figures portray a behavior in which the FP isolators have large 

displacements but barely enter their stiffening regime. Also, there is no uplift in the isolators, a 

phenomenon that is difficult to numerically simulate given that it leads to global rocking and 

bouncing of the transformer on its two supports. Both models are capable of simulating global 

rocking and bouncing behavior but the model which neglects the axial-shear force interaction 

always results in numerically stable solutions whereas the model that accounts for the interaction 

does not. 

 

Figures 5-17 and 5-18 compare results obtained by the two models in a set of analyses where a 

different excitation was used so that there is isolator uplift. The motion used was the strongest 

horizontal component of the motion recorded at station Canyon Country - WCL in the 1994 

Northridge earthquake, scaled to a horizontal PGA of 1.0g and with the vertical component also 

scaled so that the vertical to horizontal peak acceleration ratio remained the same as in the 

originally recorded motions (see Table 7-1 for more details). The results in these figures are for 

the case of the combined horizontal-vertical isolation system. The analysis resulted in clearly 

erroneous results for the case of the model with axial-shear force interaction (predicted 

accelerations reached 30g). Even the results in Figures 5-17 and 5-18 were obtained in the case 

of the model with axial-shear force interaction at enormous computational cost and after several 

trials using progressively smaller time step of integration and by increasing the convergence 

tolerance. Yet both models resulted in essentially the same peak accelerations and isolator 

displacement (and actually both models predicted failure of the isolators). 
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Figure 5-11 Force-Displacement Loops of Individual Isolators and Total Base 

Shear-Displacement Loop of Transformer with Horizontal Isolation System in 

Horizontal-Vertical Ground Motion 
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Figure 5-12 Acceleration Histories at Bushing Center of Mass of Transformer with Horizontal 

Isolation System in Horizontal-Vertical Ground Motion 
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Figure 5-13 Force-Displacement Loops of Individual Isolators and Total Base 

Shear-Displacement Loop of Transformer with Horizontal-Vertical Isolation System with 

Rocking in Horizontal-Vertical Ground Motion 
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Figure 5-14 Acceleration Histories at Bushing Center of Mass of Transformer with 

Horizontal-Vertical Isolation System with Rocking in Horizontal-Vertical Ground Motion 

 

 



56 
 

 

Figure 5-15 Force-Displacement Loops of Individual Isolators and Total Base 

Shear-Displacement Loop of Transformer with Horizontal-Vertical Isolation System without 

Rocking in Horizontal-Vertical Ground Motion 
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Figure 5-16 Acceleration Histories at Bushing Center of Mass of Transformer with 

Horizontal-Vertical Isolation System without Rocking in Horizontal-Vertical Ground Motion 
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Figure 5-17 Force-Displacement Loops of Individual Isolators and Total Base 

Shear-Displacement Loop of Transformer with Horizontal-Vertical Isolation System without 

Rocking in Another Horizontal-Vertical Ground Motion Scaled to PGA=1.0g so that there is 

Uplift 
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Figure 5-18 Acceleration Histories at Bushing Center of Mass of Transformer with 

Horizontal-Vertical Isolation System without Rocking in Another Horizontal-Vertical Ground 

Motion Scaled to PGA=1.0g so that there is Uplift 
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On the basis of the presented results it was concluded that the model that accounts for the 

axial-shear force interaction produces essentially the same results as the simpler model that 

neglects the interaction under extreme conditions that involve stiffening of the isolators, uplift 

and bouncing. Yet the model that accounts for axial-shear force interaction was computationally 

very costly, required adjustment of time step and convergence tolerance and often failed 

numerically. It was clear that the model could not be used in fragility analysis where a very large 

number of analyses are required. 

 

When uplift did not occur, the model that accounts for axial-shear force interaction produced 

results that were consistent with test observations that included about the same isolator 

displacement demands but higher accelerations than those produced by the simpler model that 

neglected the interaction. 

 

Accordingly, it was deemed to be appropriate to use the model that neglects axial-shear force 

interaction in the fragility analysis. The model will result in realistic probabilities of failures in 

cases where isolator stiffening, uplift and bouncing occur. However, the model will likely 

underestimate the probabilities of failure when these phenomena do not occur.   

 

 

5.4 Calculation of Uplift Displacement 

 

In the fragility analysis presented in this report, the isolators are considered failed when the uplift 

displacement exceeds 2inch. This 2inch limit was determined based on the geometry of the triple 

FP bearings shown in Figures 4-1 to 4-3 so that the lifted upper concave plate returns on the 

inner slider after an uplift episode without instability (also see Section 8). The uplift 

displacement is calculated by monitoring the axial deformation of element FP1 in the modified 

series model. In the model, uplift of 2inch occurs when the axial deformation of each of the three 

elements (FP1, FP2 and FP3) in series in the model exceeds one third of the limit or 0.667inch as 

depicted in Figure 5-19. Note that this is true as the three elements are assigned equal axial 

stiffness. Figure 5-20 presents an example of uplift displacement history of a FP isolator in 

analysis of a horizontal-only isolated transformer model with the 7.7Hz (No. 8) bushing inclined 

at 20 degrees in the 1994 Northridge earthquake (Beverly Hills - Mulhol; site class D) with PGA 

scaled to 0.9 g. 
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Figure 5-19 Measurement of Uplift Displacement 

 

 

 

 

Figure 5-20 Example Uplift Displacement History of Triple FP Bearing 
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SECTION 6 

MODEL FOR SIMULATING THE ULTIMATE BEHAVIOR OF SPRING-DAMPER 

UNIT IN THREE-DIMENSIONAL SEISMIC ISOLATION SYSTEM 

 

The model of the spring-damper unit in program OpenSees (McKenna, 1997) consists of two 

elements in parallel, one representing the springs and one representing the viscous damper. The 

element only represents the behavior of the unit in the vertical direction. It is presumed that the 

unit has unlimited capacity to resist shear force and overturning moment without any 

deformation. 

 

Three uniaxial elements are used to represent the spring in program OpenSees: i) Elastic 

Uniaxial Material, ii) Elastic-Perfectly Plastic Material and iii) Elastic-Perfectly Plastic Gap 

Material. These are illustrated in Figure 6-1 and a force-displacement relation is for the entire 

element shown in Figure 6-2. Note that the springs are assumed to have a very low tensile 

stiffness when the displacement limit of 5.0inch is exceeded (times the actual stiffness where 

=0.001). The model depicted in Figure 6-2 presents the behavior of the springs alone. Within 

the spring-damper assembly the springs can only deform in compression up to a maximum of 

5.0inch from the unloaded position (as shown in Figure 6-2). In tension and without considering 

the damper, the springs can deform as shown in Figure 6-2. In reality however, the springs will 

be restrained by the damper which has a stroke capacity of 5.0inch. Therefore, the springs cannot 

be stretched in tension as the force will then be transferred to the damper which has reached its 

displacement capacity and resists deformation with very high stiffness. Nevertheless, the springs 

are represented by the model of Figures 6-1 and 6-2 and the tension stroke limit is utilized in the 

damper model as it is physically valid. 

 

 

Figure 6-1 Elements Connected in Parallel to Represent the Ultimate Behavior of Springs 



64 
 

 
 

Figure 6-2 Force-Displacement Relation Produced by Spring Element 

 

The viscous damper is represented in program OpenSees with a newly developed uniaxial 

material element called ULTdamper. The hysteretic rule for this element is presented in Figure 

6-3. The viscous force is not shown for clarity. This force is simply linearly related to the 

velocity through the damping constant C (=3.4kip-sec/inch). Other parameters for this model are 

shown in Figure 6-3 and values of parameters are presented in Table 6-1. The tensile post-failure 

behavior of the device was defined in a manner that: (a) is physically meaningful and (b) is such 

that numerical instability in the analysis program is avoided. The failure behavior of the device 

was modeled so that when the device force reaches the ultimate value (“Ultimate FTension” in 

Figure 6-3) the force is not abruptly removed but rather is gradually reduced at each time step by 

an amount equal to 10% of the value at the previous step. Note that when the damper element 

fails in tension and is removed from the spring-damper combined element, the element is still 

functional but with only the spring being effective. 
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Figure 6-3 Ultimate Behavior of Viscous Damper Element (Viscous Force not Depicted) 

 

Table 6-1 Parameters for Viscous Damper 

DCapacityP 0.0 inch 

DCapacityN -5.0inch 

Ultimate FCompression unlimited 

Ultimate FTension 200kip 

 

Representative force-displacement relations produced by the damper element are presented in 

Figure 6-4. Three different force-displacement hysteresis loops are shown in Figure 6-4. All 

loops were produced by imposing motion from a specified static position (starting point) and 

amplitude of 2.3inch at frequency of 2Hz. The latter two loops result either in failure in tension 

or reaching the bottom of the damper and thus generating very high compressive force.  It 

should be noted that when a triple FP isolator is placed on top of the spring-damper unit, failure 

in tension is not possible as uplift will occur at the isolator prior to initiating tension in the 

damper. 
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Figure 6-4 Force-Displacement Loops Produced by Damper Element 

 

Figure 6-5 presents force-displacement loops produced by the combined spring-damper element 

for the three cases of loading of Figure 6-4. Note that in these figure the spring-damper units are 

assumed capable of transferring force in tension. When a triple FP isolator is placed on top of the 
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spring-damper unit, there is no transfer of tensile force so that the force-displacement loops are 

as shown in Figure 6-6. 

 

 

 

 

 

Figure 6-5 Force-Displacement Loops Produced by Combined Spring-Damper Element 
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Figure 6-6 Force-Displacement Loops Produced by Combined Spring-Damper Element 

Supporting a Triple FP Isolator 
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SECTION 7 

SELECTION AND SCALING OF GROUND MOTIONS 

 

Failure resistance assessment requires performing Incremental Dynamic Analysis (Vamvatsikos 

and Cornell, 2002), which is used to assess the probability of failure for a particular set of 

motions per procedures of FEMA P695 (2009). While the procedures in FEMA P695 only 

include the horizontal components of ground motions, the analysis employed in this work 

requires that vertical components are also included. This is essential in assessing the performance 

of the combined horizontal-vertical isolation systems.  

 

Far-field horizontal ground motions were selected from the suite of motions used in FEMA P695 

(2009) and the corresponding vertical components were obtained from the PEER website (PEER, 

accessed 9th. Nov. 2015). The vertical components of two ground motion sets (Superstition Hills 

in Poe Road Station; and Cape Mendocino in Rio Dell Overpass Station) were not available. 

Accordingly, these two motions were removed from the suite and a total of 20 ground motion 

sets were used. These resulted in a total of 40 pairs of combined horizontal and vertical ground 

motion histories for use in the analysis (20 fault normal plus 20 fault parallel components, paired 

with the same 20 vertical components). 

 

Table 7-1 presents information of ground motions used in this study. The magnitude of the 

motions is in the range of 6.5 to 7.6 with an average magnitude of 7.0. The table also shows the 

site class and the shear velocity for the site of each earthquake recording. The majority of the 

sites are class D. Figures 7-1 and 7-2 present the 5%-damped acceleration response spectra for 

the horizontal and vertical ground motions, respectively. The horizontal spectra consist of the 40 

spectra of fault normal and fault parallel components, and the vertical spectra consist of the 20 

spectra of the vertical components. The mean spectra are also shown for each direction.   
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Table 7-1 Ground Motions Used in Dynamic Analysis 

PEER-NGA Record 

Number 

Earthquake 
Recording Station Name 

Site Data 

M Year Name Site Class Vs_30 (m/sec) 

953 6.7 1994 Northridge Beverly Hills - Mulhol D 356 

960 6.7 1994 Northridge Canyon Country-WLC D 309 

1602 7.1 1999 Duzce, Turkey Bolu D 326 

1787 7.1 1999 Hector Mine Hector C 685 

169 6.5 1979 Imperial Valley Delta D 275 

174 6.5 1979 Imperial Valley El Centro Array #11 D 196 

1111 6.9 1995 Kobe, Japan Nishi-Akashi C 609 

1116 6.9 1995 Kobe, Japan Shin-Osaka D 256 

1158 7.5 1999 Kocaeli, Turkey Duzce D 276 

1148 7.5 1999 Kocaeli, Turkey Arcelik C 523 

900 7.3 1992 Landers Yermo Fire Station D 354 

848 7.3 1992 Landers Coolwater D 271 

752 6.9 1989 Loma Prieta Capitola D 289 

767 6.9 1989 Loma Prieta Gilroy Array #3 D 350 

1633 7.4 1990 Manjil, Iran Abbar C 724 

721 6.5 1987 Superstition Hills El Centro Imp. Co. D 192 

1244 7.6 1999 Chi-Chi, Taiwan CHY101 D 259 

1485 7.6 1999 Chi-Chi, Taiwan TCU045 C 705 

68 6.6 1971 San Fernando LA - Hollywood Stor D 316 

125 6.5 1976 Friuli, Italy Tolmezzo C 425 
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Table 7-1 (Continued) 

Earthquake 

Name 
Recording Station Name 

Values shown are in two horizontal directions, then vertical; units g, in/sec, inch 

PGA PGV PGD 

Northridge Beverly Hills - Mulhol 0.42, 0.52, 0.32 23.2, 24.7, 8.0 5.2, 4.4, 1.1 

Northridge Canyon Country-WLC 0.41, 0.48, 0.30 16.9, 17.7, 7.3 4.6, 4.9, 2.1 

Duzce, Turkey Bolu 0.73, 0.82, 0.20 22.2, 24.4, 9.2 9.1, 5.3, 5.5 

Hector Mine Hector 0.27, 0.34, 0.15 11.2, 16.4, 4.7 8.9, 5.5, 3.0 

Imperial Valley Delta 0.24, 0.35, 0.14 10.2, 13.0, 6.0 4.7, 7.5, 3.6 

Imperial Valley El Centro Array #11 0.36, 0.38, 0.38 13.6, 16.6, 17.6 6.3, 7.3, 8.4 

Kobe, Japan Nishi-Akashi 0.51, 0.50, 0.39 14.7, 14.4, 9.7 3.8, 4.4, 2.0 

Kobe, Japan Shin-Osaka 0.24, 0.21, 0.06 14.9, 11.0, 2.4 3.4, 3.0, 0.7 

Kocaeli, Turkey Duzce 0.31, 0.36, 0.21 23.2, 18.3, 8.3 17.4, 6.9, 5.5 

Kocaeli, Turkey Arcelik 0.22, 0.15, 0.08 7.0, 15.6, 3.1 5.4, 14.0, 2.9 

Landers Yermo Fire Station 0.24, 0.15, 0.14 20.2, 11.7, 5.1 17.3, 9.7, 1.9 

Landers Coolwater 0.28, 0.42, 0.18 15.8, 26.0, 3.9 13.1, 13.2, 1.5 

Loma Prieta Capitola 0.53, 0.44, 0.56 13.8, 11.5, 7.4 3.6, 2.2, 1.0 

Loma Prieta Gilroy Array #3 0.56, 0.34, 0.34 14.0, 17.6, 17.9 3.3, 7.6, 9.5 

Manjil, Iran Abbar 0.51, 0.50, 0.54 16.7, 20.5, 16.7 5.9, 8.2, 10.3 

Superstition Hills El Centro Imp. Co. 0.36, 0.26, 0.13 18.3, 16.1, 3.2 6.9, 7.9, 1.9 

Chi-Chi, Taiwan CHY101 0.35, 0.44, 0.17 27.8, 45.3, 10.7 17.8, 27.1, 8.4 

Chi-Chi, Taiwan TCU045 0.47, 0.51, 0.36 14.4, 15.4, 8.1 20.0, 5.6, 8.3 

San Fernando LA - Hollywood Stor 0.21, 0.17, 0.16 7.4, 5.8, 2.0 4.9, 2.5, 1.6 

Friuli, Italy Tolmezzo 0.35, 0.31, 0.28 8.7, 12.1, 4.1 1.6, 2.0, 1.2 
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Figure 7-1 Horizontal Acceleration Response Spectra of Selected 20 Ground Motions (Total of 

40 Components) 
 

  
 
Figure 7-2 Vertical Acceleration Response Spectra of Selected 20 Ground Motions (Total of 20 

Components) 
 
Figure 7-3 presents the average ratio of the vertical to horizontal (geometric mean of two 
horizontal components) spectral acceleration of the selected 40 motions and compares it to one 
of the curves recommended in Bozorgnia and Campbell, 2004. Note that this ratio is dependent 
on the distance to the fault, the shear wave velocity of the soil and the source mechanism 
(Bozorgnia and Campbell, 2004; Bozorgnia and Campbell, 2016; Gulerce and Abrahamson, 
2011). The graph is provided to demonstrate that the V/H ratio of the selected motions is 
appropriate.  
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Figure 7-3 Average Vertical to Horizontal (V/H) Ratio of Spectral Accelerations of 40 Sets of 
Motions 

 
Figure 7-4 compares the average spectra of the selected motions when scaled to a PGA of 0.5g in 
the horizontal direction and a PGA of 0.4g in the vertical direction to the IEEE high required 
response spectra (Figure 2-1). It may be seen that the horizontal average spectrum falls below the 
IEEE spectrum but has a wide frequency range consistent with the IEEE spectrum, whereas the 
vertical average spectrum deviates from the IEEE vertical spectrum. The average vertical 
spectrum correctly displays a narrower range and higher values of frequencies than the 
horizontal spectrum, which is not properly reflected in the IEEE spectrum. Figure 7-4 also 
includes the average spectra of the scaled motions so that the PGA is 0.6g rather than 0.5g 
(horizontal PGA is 0.6g, vertical GPA is 0.48g). The horizontal scaled motions now better 
represent the IEEE spectrum for frequencies larger than about 2Hz Thus, use of the results of the 
fragility studies in this report for a PGA of 0.6g may be an appropriate descriptor of behavior for 
the IEEE PGA 0.5g seismic motions. 
 
 
 
 
 
 
 
 
 
 
 
 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 1 10

5% damped 

: Average V/H Ratio of 40 motions 

: Bozorgnia and Campbell (2004) 

V/H Ratio 

Frequency (Hz) 

V
/H

 R
at

io
 



74 

 

 
 

 
 

 
Figure 7-4 Comparison of Horizontal and Vertical Average Spectra to IEEE High Required 

Response Spectra 
 
To conduct incremental dynamic analysis (IDA), the selected ground motions need to be 
progressively increased in intensity. The approach followed is to increase the acceleration of the 
horizontal component of each pair of horizontal-vertical motions while keeping the vertical to 
horizontal peak acceleration ratio the same as in the original, as-recorded, motion. The scaling 
approach for the horizontal component is similar to the Sa-Component Scaling approach in 
FEMA P695 (2009).  
 
The scaled motions are used to repeatedly analyze the transformer model by increasing the 
intensity so that the peak acceleration of the horizontal component of each pair increases by 
increments of 0.05g until there is failure of either the bushings or the isolators. The vertical 
component of each pair of ground motions is increased by an amount different than 0.05g so that 
the final scaled pair maintains the peak vertical to peak horizontal acceleration ratio as in the 
originally recorded ground motion.  
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SECTION 8 

FRAGILITY ANALYSIS RESULTS 

 

Fragility analysis has been conducted and results are presented in terms of curves of probability 

of failure versus PGA for the cases in Table 8-1. 

 

Table 8-1 Analyzed Cases of Non-Isolated and Isolated Transformers 

 

Case Parameters 
Transformer 

(by weight in kip) 
320; 420; 520 

Bushing 
(by No. and frequency per 

Table 3-1) 

7 (f=2.57Hz); 6 (f=11.3Hz); 8 (f=7.7Hz); 
 3 (f=4.3Hz) 

Bushing Inclination 
(degrees) 

0; 20 

Bushing acceleration limit 
(g) 

1 or 2g for transverse direction 
5g for longitudinal direction 

Isolation system type 

Non-isolated; isolated in horizontal 
direction; isolated in horizontal-vertical 

direction without rocking; isolated in 
horizontal-vertical direction with rocking 

Horizontal isolation system 
ultimate displacement 

capacity (inch) 

17.7; 27.7; 31.3 
(without inner restrainer) 

17.0 
(with inner restrainer) 

Horizontal isolation system 
friction properties 

(per Table 4-1) 
Lower bound; Upper bound 

Vertical isolation system 
(vertical stiffness and 
damping constant per 

isolator, stroke) 

K=44kip/in 
C=3.4kip-s/in 

Stroke 5in 

 

Failure is defined when any of the following criteria is met, whichever occurs first: 

1) The acceleration at the center of mass of the bushing in the longitudinal bushing direction 

exceeds 5g, or 

 

2) The acceleration at the center of mass of the bushing in the direction perpendicular to the 

longitudinal bushing direction exceeds 1g or 2g (two different cases), or 
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3) The triple FP isolator horizontal displacement exceeds the ultimate capacity limit of 17.7, 

27.7 and 31.3inch (three different cases), or 

 

4) The net uplift FP isolator displacement exceeds 2inch, or 

 

5) The analysis terminates due to numerical instability problems. (However, all analyses 

reported herein did not have any numerical instability problems). 

 

The limit of 2-inch net uplift displacement is based on the geometry of the bearings shown in 

Figures 4-1 to 4-3. Any of these bearings can have a net uplift of up to 2inch without the 

possibility of collapse of its internal parts regardless of the position of the top concave plate. It is 

possible to have stable behavior for larger uplift but that is dependent on details of the motion 

that are difficult to analyze (Sarlis and Constantinou, 2013) and are highly dependent on the 

isolator and structural system properties and the details of the seismic excitation. 

 

Note that there are no indirect failure criteria for the spring-damper units. Rather, when the 

displacement capacity of the spring-damper units is consumed in compression there is impact 

which is simulated and which in turn affects the bushing accelerations. Also, while the damper 

limited tension capacity is included in the model, and the damper may be removed from the 

model when considered failed, the option is never realized as the Triple FP isolator is incapable 

of developing tension and thus no tensile force is transferred to the damper. 

 

Analysis was conducted with the model that neglects the axial-shear force interaction. 

 

Figure 8-1 presents fragility curves for the 420kip transformer with the 7.7Hz (No. 8) bushing 

inclined at 20 degrees and with the triple FP isolators having 17.7inch displacement capacity in 

the lower bound friction case and without an inner restrainer. To better understand the results in 

the fragility curves of Figure 8-1, Tables 8-2 and 8-3 have been prepared to present information 

on what mechanism causes failure in selected cases. 

 

Specifically, Tables 8-2 and 8-3 present the number of failures attributed to bushing failure 

(transverse or longitudinal acceleration exceeding the specified limits), to the isolator horizontal 

displacement exceeding the ultimate limit or the vertical isolator failing in tension (also the 

number of cases where the vertical isolator reaches bottom and results in impact but no failure of 

the isolator) for four cases of PGA: the one in which the empirical probability of failure is 100% 

(40 failures), the one in which the empirical probability of failure is 50% (20 failures), the one in 
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which the empirical probability of failure is 25% (10 failures) and the one in which the empirical 

probability of failure is 10% (4 failures). 

 

Inclined bushing, bushing lateral acceleration limit=2g, Isolator ultimate displacement=17.7inch, No inner 

restrainer, Lower bound friction 

 

 

Inclined bushing, bushing lateral acceleration limit=1g, Isolator ultimate displacement=17.7inch, No inner 

restrainer, Lower bound friction 

 

 

Figure 8-1 Fragility Curves for 420kip Transformer with 7.7Hz Bushing (No. 8) Inclined at 20 

Degrees, Triple FP Bearings without Inner Restrainer, Lower Bound Friction Properties and 

Isolator Ultimate Displacement Capacity of 17.7inch  

 

The results in Tables 8-2 and 8-3 and in Figure 8-1 demonstrate the following: 

 

1) For all cases of analyzed transformers and for all levels of seismic intensity, failure due to 

exceeding the transverse bushing acceleration limit dominates when this limit is 1.0g.  

As the transverse bushing acceleration limit is increased to 2.0g, failures due to 

exceeding the bushing longitudinal acceleration limit (5.0g) begin to occur in the 

horizontally-only isolated transformers. This may appear as odd given that the 

horizontally-only isolated transformer behaves as non-isolated in the vertical direction.  

There is, however, a difference as the isolated transformer may experience uplift which 
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results in impact and increased acceleration in the longitudinal (nearly vertical) bushing 

direction. 

   

2) For the combined horizontal-vertical isolation systems there are no failures due to 

exceeding the bushing longitudinal acceleration limit for all seismic intensities. Rather, 

failures are due to exceeding the bushing transverse acceleration limit for all cases when 

the bushing transverse acceleration limit is 1g. When the bushing transverse acceleration 

limit is 2g, most failures are due to exceeding the bushing transverse acceleration limit 

with a few failures due to exceeding the isolator horizontal displacement capacity when 

rocking is restrained and due to excessive isolator uplift displacement when rocking is 

allowed. 
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Table 8-2 Number of Failures for Case of 1g Transverse and 5g Longitudinal Bushing 

Acceleration Limits for 420kip Transformer with 7.7Hz Inclined Bushing (No. 8), Triple FP 

Bearings without Inner Restrainer, Lower Bound Friction Properties and Isolator Ultimate 

Displacement Capacity of 17.7inch 

 

Number of Ground Motions Causing Failure 

Non-isolated 
Horizontal 
Isolation 

Horizontal- 
Vertical Isolation 
(without rocking) 

Horizontal- 
Vertical Isolation 

(with rocking) 
PGA (g) corresponding to 100% 

probability of failure 
1.14 2.20 2.65 2.29 

Bushing 
lateral 

acceleration 
exceeding 1g 

Bushing – lateral 
direction 

acceleration-1g 
40 40 40 40 

Bushing – 
Longitudinal 

direction 
acceleration-5g 

0 0 0 0 

Horizontal isolator displacement 
exceeding 17.7inch 

- 0 0 0 

Horizontal isolator net uplift 
displacement exceeding 2.0nch 

(exceeding 0 inch) 
- 

0 
(18) 

0 
(27) 

0 
(14) 

Vertical 
isolation 
system 

Compression 
 impact 

- - 0 0 

 

 

Number of Ground Motions Causing Failure 

Non-isolated 
Horizontal 
Isolation 

Horizontal- 
Vertical Isolation 
(without rocking) 

Horizontal- 
Vertical Isolation 

(with rocking) 
PGA (g) corresponding to 50% 

probability of failure 
0.40 0.82 1.03 1.07 

Bushing 
lateral 

acceleration 
exceeding 1g 

Bushing – lateral 
direction 

acceleration-1g 
20 20 20 20 

Bushing – 
Longitudinal 

direction 
acceleration-5g 

0 0 0 0 

Horizontal isolator displacement 
exceeding 17.7inch 

- 0 0 0 

Horizontal isolator net uplift 
displacement exceeding 2.0nch 

(exceeding 0 inch) 
- 

0 
(7) 

0 
(13) 

0 
(6) 

Vertical 
isolation 
system 

Compression 
 impact 

- - 0 0 

 



80 

 

Table 8-2 Continued 

 

Number of Ground Motions Causing Failure 

Non-isolated 
Horizontal 
Isolation 

Horizontal- 
Vertical Isolation 
(without rocking) 

Horizontal- 
Vertical Isolation 

(with rocking) 
PGA (g) corresponding to 25% 

probability of failure 
0.28 0.61 0.81 0.84 

Bushing 
lateral 

acceleration 
exceeding 1g 

Bushing – lateral 
direction 

acceleration-1g 
10 10 10 10 

Bushing – 
Longitudinal 

direction 
acceleration-5g 

0 0 0 0 

Horizontal isolator displacement 
exceeding 17.7inch 

- 0 0 0 

Horizontal isolator net uplift 
displacement exceeding 2.0nch 

(exceeding 0 inch) 
- 

0 
(3) 

0 
(8) 

0 
(5) 

Vertical 
isolation 
system 

Compression  
impact 

- - 0 0 

 

 

Number of Ground Motions Causing Failure 

Non-isolated 
Horizontal 
Isolation 

Horizontal- 
Vertical Isolation 
(without rocking) 

Horizontal- 
Vertical Isolation 

(with rocking) 
PGA (g) corresponding to 10% 

probability of failure 
0.22 0.36 0.63 0.71 

Bushing 
lateral 

acceleration 
exceeding 1g 

Bushing – lateral 
direction 

acceleration-1g 
4 4 4 4 

Bushing – 
Longitudinal 

direction 
acceleration-5g 

0 0 0 0 

Horizontal isolator displacement 
exceeding 17.7inch 

- 0 0 0 

Horizontal isolator net uplift 
displacement exceeding 2.0nch 

(exceeding 0 inch) 
- 

0 
(1) 

0 
(4) 

0 
(1) 

Vertical 
isolation 
system 

Compression  
impact 

- - 0 0 
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Table 8-3 Number of Failures for Case of 2g Transverse and 5g Longitudinal Bushing 

Acceleration Limits for 420kip Transformer with 7.7Hz Inclined Bushing (No. 8), Triple FP 

Bearings without Inner Restrainer, Lower Bound Friction Properties and Isolator Ultimate 

Displacement Capacity of 17.7inch 

 

Number of Ground Motions Causing Failure 

Non-isolated 
Horizontal 
Isolation 

Horizontal- 
Vertical Isolation 
(without rocking) 

Horizontal- 
Vertical Isolation 

(with rocking) 
PGA (g) corresponding to 100% 

probability of failure 
2.28 2.42 2.86 3.29 

Bushing 
lateral 

acceleration 
exceeding 2g 

Bushing – lateral 
direction 

acceleration-2g 
40 27 37 33 

Bushing – 
Longitudinal 

direction 
acceleration-5g 

0 13 0 0 

Horizontal isolator displacement 
exceeding 17.7inch 

- 0 3 0 

Horizontal isolator net uplift 
displacement exceeding 2.0nch 

(exceeding 0 inch) 
- 

0 
(33) 

0 
(40) 

7 
(35) 

Vertical 
isolation 
system 

Compression 
 impact 

- - 0 14 

 

 

Number of Ground Motions Causing Failure 

Non-isolated 
Horizontal 
Isolation 

Horizontal- 
Vertical Isolation 
(without rocking) 

Horizontal- 
Vertical Isolation 

(with rocking) 
PGA (g) corresponding to 50% 

probability of failure 
0.80 1.01 1.22 1.36 

Bushing 
lateral 

acceleration 
exceeding 2g 

Bushing – lateral 
direction 

acceleration-2g 
20 14 18 16 

Bushing – 
Longitudinal 

direction 
acceleration-5g 

0 6 0 0 

Horizontal isolator displacement 
exceeding 17.7inch 

- 0 2 0 

Horizontal isolator net uplift 
displacement exceeding 2.0nch 

(exceeding 0 inch) 
- 

0 
(16) 

0 
(20) 

4 
(17) 

Vertical 
isolation 
system 

Compression  
impact 

- - 0 7 
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Table 8-3 Continued 

 

Number of Ground Motions Causing Failure 

Non-isolated 
Horizontal 
Isolation 

Horizontal- 
Vertical Isolation 
(without rocking) 

Horizontal- 
Vertical Isolation 

(with rocking) 
PGA (g) corresponding to 25% 

probability of failure 
0.56 0.71 0.95 0.94 

Bushing 
lateral 

acceleration 
exceeding 2g 

Bushing – lateral 
direction 

acceleration-2g 
10 8 9 7 

Bushing – 
Longitudinal 

direction 
acceleration-5g 

0 2 0 0 

Horizontal isolator displacement 
exceeding 17.7inch 

- 0 1 0 

Horizontal isolator net uplift 
displacement exceeding 2.0nch 

(exceeding 0 inch) 
- 

0 
(7) 

0 
(10) 

3 
(8) 

Vertical 
isolation 
system 

Compression 
 impact 

- - 0 2 

 

 

Number of Ground Motions Causing Failure 

Non-isolated 
Horizontal 
Isolation 

Horizontal- 
Vertical Isolation 
(without rocking) 

Horizontal- 
Vertical Isolation 

(with rocking) 
PGA (g) corresponding to 10% 

probability of failure 
0.43 0.61 0.66 0.79 

Bushing 
lateral 

acceleration 
exceeding 2g 

Bushing – lateral 
direction 

acceleration-2g 
4 3 4 2 

Bushing – 
Longitudinal 

direction 
acceleration-5g 

0 1 0 0 

Horizontal isolator displacement 
exceeding 17.7inch 

- 0 0 0 

Horizontal isolator net uplift 
displacement exceeding 2.0nch 

(exceeding 0 inch) 
- 

0 
(4) 

0 
(4) 

2 
(3) 

Vertical 
isolation 
system 

Compression  
impact 

- - 0 1 
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The effect of increasing the displacement capacity of the FP isolators is seen in the fragility 

curves of Figures 8-2 and 8-3. It is evident that increasing the isolator displacement capacity has 

some improvement in the probability of failure for the case of the horizontal-only isolated 

transformer when the bushing transverse acceleration limit is 2g but not in the case of the limit of 

1g. The reason is that failures for the low acceleration limit occur in the bushing prior to 

consuming the displacement capacity of the isolators. The effect of the increased FP isolator 

displacement capacity in reducing the probability of failure for the combined horizontal-vertical 

isolation system of either the restrained or the free to rock type is much more pronounced. The 

reason is that some failures for the combined horizontal-vertical isolation systems are due to 

excessive isolator displacement or uplift. Note that uplift typically occurred when the 

displacement capacity was consumed and the outer isolator ring was impacted. 

 

Inclined bushing, bushing lateral acceleration limit=2g, Isolator ultimate displacement=27.7inch, No inner 

restrainer, Lower bound friction 

  

Inclined bushing, bushing lateral acceleration limit=1g, Isolator ultimate displacement=27.7inch, No inner 

restrainer, Lower bound friction 

  

Figure 8-2 Fragility Curves for 420kip Transformer with 7.7Hz Bushing (No. 8) Inclined at 20 

Degrees, Triple FP Bearings without Inner Restrainer, Lower Bound Friction Properties and 

Isolator Ultimate Displacement Capacity of 27.7inch 
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Inclined bushing, bushing lateral acceleration limit=2g, Isolator ultimate displacement=31.3inch, No inner 

restrainer, Lower bound friction 

  

Inclined bushing, bushing lateral acceleration limit=1g, Isolator ultimate displacement=31.3inch, No inner 

restrainer, Lower bound friction 

  

Figure 8-3 Fragility Curves for 420kip Transformer with 7.7Hz Bushing (No. 8) Inclined at 20 

Degrees, Triple FP Bearings without Inner Restrainer, Lower Bound Friction Properties and 

Isolator Ultimate Displacement Capacity of 31.3inch 

 

Figures 8-4 to 8-6 present fragility curves for the same systems as those for which fragility 

curves are shown in Figures 8-1 to 8-3 but for the bushings that are vertically placed instead of 

inclined at 20 degrees. Evidently, there are small differences between the two cases, apparently 

due to the small angle of inclination, with the exception of the horizontal-only isolated 

transformer when the transverse acceleration limit is 1g. Then there is a noted reduction in the 

probability of failure when the bushing is vertical particularly for the two cases of large 

displacement capacity isolators (27.7 and 31.3inch). This is likely due to a small contribution of 

the vertical component of the earthquake in magnifying the transverse acceleration of inclined 

bushings. This is more pronounced in the horizontal –only isolated transformer due to the lack of 

vertical isolation that mitigates the vertical earthquake effect. 
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Vertical bushing, bushing lateral acceleration limit=2g, Isolator ultimate displacement=17.7inch, No inner 

restrainer, Lower bound friction 

  

 Vertical bushing, bushing lateral acceleration limit=1g, Isolator ultimate displacement=17.7inch, No inner 

restrainer, Lower bound friction 

 

Figure 8-4 Fragility Curves for 420kip Transformer with Vertically Placed 7.7Hz Bushing (No. 

8), Triple FP Bearings without Inner Restrainer, Lower Bound Friction Properties and Isolator 

Ultimate Displacement Capacity of 17.7inch 
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Vertical bushing, bushing lateral acceleration limit=2g, Isolator ultimate displacement=27.7inch, No inner 

restrainer, Lower bound friction 

  

 Vertical bushing, bushing lateral acceleration limit=1g, Isolator ultimate displacement=27.7inch, No inner 

restrainer, Lower bound friction 

  

Figure 8-5 Fragility Curves for 420kip Transformer with Vertically Placed 7.7Hz Bushing (No. 

8), Triple FP Bearings without Inner Restrainer, Lower Bound Friction Properties and Isolator 

Ultimate Displacement Capacity of 27.7inch 
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Vertical bushing, bushing lateral acceleration limit=2g, Isolator ultimate displacement=31.3inch, No inner 

restrainer, Lower bound friction 

  

 Vertical bushing, bushing lateral acceleration limit=1g, Isolator ultimate displacement=31.3inch, No inner 

restrainer, Lower bound friction 

  

Figure 8-6 Fragility Curves for 420kip Transformer with Vertically Placed 7.7Hz Bushing (No. 

8), Triple FP Bearings without Inner Restrainer, Lower Bound Friction Properties and Isolator 

Ultimate Displacement Capacity of 31.3inch 

 

The effect of the transformer weight is investigated in Figure 8-7 which presents fragility curves 

for the transformers of 320, 420 and 520kip weight in the case of the inclined bushing of 7.7Hz 

frequency and bushing lateral acceleration limit of 1g. For the isolated cases, the triple FP 

isolators have the lower bound friction properties and the least displacement capacity of 

17.7inch. Evidently, there is insignificant effect of the transformer weight within the range of 

320 to 520kip on the probability of failure for all levels of seismic intensity. 
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Inclined bushing, bushing lateral acceleration limit=1g, Non-isolated 

  
 

Inclined bushing, bushing lateral acceleration limit=1g, Horizontal Isolation, Isolator ultimate 
displacement=17.7inch, No inner restrainer, Lower bound friction 

  
 

Inclined bushing, bushing lateral acceleration limit=1g, Horizontal-Vertical Isolation without rocking, 
Isolator ultimate displacement=17.7inch, No inner restrainer, Lower bound friction 

  
 

Inclined bushing, bushing lateral acceleration limit=1g, Horizontal-Vertical Isolation with rocking, Isolator 
ultimate displacement=17.7inch, No inner restrainer, Lower bound friction 

  
 

Figure 8-7 Fragility Curves for 320, 420, 520kip Transformer with 7.7Hz Bushing (No. 8) 

Inclined at 20 Degrees, Triple FP Bearings without Inner Restrainer, Lower Bound Friction 

Properties and Isolator Ultimate Displacement Capacity of 17.7inch, Bushing Lateral 

Acceleration limit=1g 
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The effect of the bushing as-installed frequency is demonstrated in the results of Figures 8-8 and 

8-9 where fragility curves for four cases of bushings are presented. The four bushings are 

inclined at 20 degrees and have frequencies of 2.6, 4.3, 7.7 and 11.3Hz (No. 7, 3, 8 and 6, 

respectively, in Table 3-1). The bushing lateral acceleration limit is either 1g or 2g. When the 

transformer is isolated, the isolators have the lower bound frictional properties and their 

displacement capacity is 17.7inch. The effect of the bushing frequency is significant for the 

non-isolated transformer. For the isolated transformer, the bushing frequency has minor effects 

except for the case of the lower frequency bushings (2.6 and 4.3Hz) for the horizontal-vertical 

isolation system with rocking and when the bushing transverse acceleration limit is 1g. This is 

due to magnification of the bushing response as a result of the proximity of the bushing 

as-installed frequency to the frequency of rocking of the transformer (range of 2.4 to 2.8Hz). As 

discussed in Section 3, the case of the 2.6Hz bushing is atypical. Nevertheless, the case may be 

considered as an upper case of what is possible, although highly unlikely to have such a case of 

bushing implemented in a new transformer. 

 

Figure 8-10 presents fragility curves of the 420kip transformer when upper and lower bound 

properties of the isolators are considered. The bushing is inclined, has 7.7Hz frequency and its 

lateral acceleration limit is 1g. The isolation system displacement capacity is 17.7inch. 

Consideration the two bounds of frictional properties has an insignificant effect on the 

probability of failure. 

 

The effect of the displacement capacity of the FP isolators is presented in the fragility curves of 

Figures 8-11 and 8-12 constructed for the 420kip transformer with an inclined bushing of 7.7Hz 

frequency and transverse acceleration limit of either 2g or 1g. The displacement capacity of the 

isolators is in the range of 17.7inch to 31.3inch. All isolators lack an inner restrainer ring and 

friction has the lower bound values. Note that the results are the same as those in Figures 8-1 to 

8-3 but presented in a different way to directly compare the isolator displacement capacity effect. 

As discussed earlier, increasing the isolator displacement capacity has some improvement in the 

probability of failure for the case of the horizontal-only isolated transformer when the bushing 

transverse acceleration limit is 2g but not in the case of the limit of 1g. Also, increasing the 

isolator displacement capacity has a much more pronounced effect in reducing the probability of 

failure for the combined horizontal-vertical isolation system of either the restrained or the free to 

rock type. 
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Inclined bushing, bushing lateral acceleration limit=1g, Non-isolated 

  
 

Inclined bushing, bushing lateral acceleration limit=1g, Horizontal Isolation, Isolator ultimate 
displacement=17.7inch, No inner restrainer, Lower bound friction 

  
 

Inclined bushing, bushing lateral acceleration limit=1g, Horizontal-Vertical Isolation without rocking, Isolator ultimate 
displacement=17.7inch, No inner restrainer, Lower bound friction 

  
 

Inclined bushing, bushing lateral acceleration limit=1g, Horizontal-Vertical Isolation with rocking, Isolator ultimate 
displacement=17.7inch, No inner restrainer, Lower bound friction 

 
 

Figure 8-8 Fragility Curves for 420kip Transformer with 2.6Hz, 4.3Hz, 7.7Hz and 11.3Hz 

Bushings (No. 7, 3, 8 and 6) Inclined at 20 Degrees, Triple FP Bearings without Inner Restrainer, 

Lower Bound Friction Properties and Isolator Ultimate Displacement Capacity of 17.7inch, 

Bushing Lateral Acceleration Limit=1g 
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Inclined bushing, bushing lateral acceleration limit=2g, Non-isolated 

  
 

Inclined bushing, bushing lateral acceleration limit=2g, Horizontal Isolation, Isolator ultimate 
displacement=17.7inch, No inner restrainer, Lower bound friction 

  
 

Inclined bushing, bushing lateral acceleration limit=2g, Horizontal-Vertical Isolation without rocking, Isolator ultimate 
displacement=17.7inch, No inner restrainer, Lower bound friction 

  
 

Inclined bushing, bushing lateral acceleration limit=2g, Horizontal-Vertical Isolation with rocking, Isolator ultimate 
displacement=17.7inch, No inner restrainer, Lower bound friction 

  
 

Figure 8-9 Fragility Curves for 420kip Transformer with 2.6Hz, 4.3Hz, 7.7Hz and 11.3Hz 

Bushings (No. 7, 3, 8 and 6) Inclined at 20 Degrees, Triple FP Bearings without Inner Restrainer, 

Lower Bound Friction Properties and Isolator Ultimate Displacement Capacity of 17.7inch, 

Bushing Lateral Acceleration Limit=2g 
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Inclined bushing, bushing lateral acceleration limit=1g, Horizontal Isolation, Isolator ultimate 
displacement=17.7inch, No inner restrainer, Lower and Upper bound friction 

 

 
Inclined bushing, bushing lateral acceleration limit=1g, Horizontal-Vertical Isolation without rocking, 

Isolator ultimate displacement=17.7inch, No inner restrainer, Lower and Upper bound friction 

  

 

Inclined bushing, bushing lateral acceleration limit=1g, Horizontal-Vertical Isolation with rocking, Isolator 

ultimate displacement=17.7inch, No inner restrainer, Lower and Upper bound friction 

  

 

Figure 8-10 Fragility Curves for 420kip Transformer with 7.7Hz Bushing (No. 8) Inclined at 20 

Degrees, Triple FP Bearings without Inner Restrainer, Lower and Upper Bound Friction 

Properties and Isolator Ultimate Displacement Capacity of 17.7inch, Bushing Lateral 

Acceleration Limit=1g 
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Inclined bushing, bushing lateral acceleration limit=2g, Horizontal Isolation, Isolator ultimate displacement 
of 17.7, 27.7 or 31.3inch, No inner restrainer, Lower bound friction 

 

 
Inclined bushing, bushing lateral acceleration limit=2g, Horizontal-Vertical Isolation without rocking, 

Isolator ultimate displacement of 17.7, 27.7 or 31.3inch, No inner restrainer, Lower bound friction 

  

 

Inclined bushing, bushing lateral acceleration limit=2g, Horizontal-Vertical Isolation with rocking, Isolator 

ultimate displacement of 17.7, 27.7 or 31.3inch, No inner restrainer, Lower bound friction 

  

 

Figure 8-11 Fragility Curves for 420kip Transformer with 7.7Hz Bushing (No. 8) Inclined at 20 

Degrees, Triple FP Bearings without Inner Restrainer, Lower Bound Friction Properties and 

Isolator Ultimate Displacement Capacity of 17.7, 27.7 or 31.3inch, Bushing Lateral Acceleration 

Limit=2g 
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Inclined bushing, bushing lateral acceleration limit=1g, Horizontal Isolation, Isolator ultimate displacement 
17.7, 27.7 or 31.3inch, No inner restrainer, Lower bound friction 

 

 
Inclined bushing, bushing lateral acceleration limit=1g, Horizontal-Vertical Isolation without rocking, 

Isolator ultimate displacement of 17.7, 27.7 or 31.3inch, No inner restrainer, Lower bound friction 

  

 
Inclined bushing, bushing lateral acceleration limit=1g, Horizontal-Vertical Isolation with rocking, Isolator 

ultimate displacement 17.7, 27.7 or 31.3inch, No inner restrainer, Lower bound friction 

  

 

Figure 8-12 Fragility Curves for 420kip Transformer with 7.7Hz Bushing (No. 8) Inclined at 20 

Degrees, Triple FP Bearings without Inner Restrainer, Lower Bound Friction Properties and 

Isolator Ultimate Displacement Capacity of 17.7, 27.7 or 31.3inch, Bushing Lateral Acceleration 

Limit=1g 
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Finally, Figure 8-13 compares fragility curves of the 420kip transformer with the 7.7Hz inclined 

bushing having 1g lateral acceleration limit when the FP isolators are with or without an inner 

restrainer ring. The isolators have lower bound properties and a displacement capacity of 

17.7inch. Evidently, the inner restrainer has an insignificant effect on the probability of failure. 

 

It should be noted that the discussion on the effects of various parameters on the probability of 

failure is only based on inspection of the fragility curves. Therefore, the observations apply on 

the probability of failure given the occurrence of a particular intensity earthquake as measured by 

the PGA of the horizontal component. Truly what is important is the probability of failure given 

the lifetime of the equipment at a particular site, which will be investigated in the next section. 

The calculation of the probability of failure given the lifetime of the equipment considers the 

complete shape of the fragility curve and the shape of the seismic hazard curve. 
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Inclined bushing, bushing lateral acceleration limit=1g, Horizontal Isolation, Isolator ultimate 
displacement=17.7inch, with and without inner restrainer, Lower bound friction 

  

 
Inclined bushing, bushing lateral acceleration limit=1g, Horizontal-Vertical Isolation without rocking, 

Isolator ultimate displacement=17.7inch, with and without inner restrainer, Lower bound friction 

  

 
Inclined bushing, bushing lateral acceleration limit=1g, Horizontal-Vertical Isolation with rocking, Isolator 

ultimate displacement=17.7inch, with and without inner restrainer, Lower bound friction 

  

 

Figure 8-13 Fragility Curves for 420kip Transformer with 7.7Hz Bushing (No. 8) Inclined at 20 

Degrees, Triple FP Bearings with and without Inner Restrainer, Lower Bound Friction Properties 

and Isolator Ultimate Displacement Capacity of 17.7inch, Bushing Lateral Acceleration 

Limit=1g 
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SECTION 9 

SUMMARY OF RESULTS AND SAMPLE PROBABILITY OF FAILURE LIFETIME 

RISK CALCULATIONS 

 

Tables 9-1 to 9-4 present a summary of the fragility analysis results. The tables include the 

transformer conditions in each analyzed case and the resulting values of PGAF (PGA value of 

horizontal seismic motion for which the probability of failure is 50%) and dispersion factor β. 

The best fit fragility curves for the empirical data of each analyzed case can then be constructed 

using Equation (2-1). 

 

Table 9-1 Fragility Data for Analyzed Transformers in Case of Lower Bound Friction, Bushing 

Inclined at 20 Degrees and FP Isolators without Inner Restrainer 

Transformer 

Weight 

(kip) 

Bushing 

Freq. 

(Hz) 

Isolator 

Displ. 

Capacity 

(inch) 

Bushing 

Accel. 

Limit 

(g) 

Non 

Isolated 

Horizontal 

Isolation Only 

Horizontal-Vertical 

Isolation 

Rocking Restrained 

Horizontal-Vertical 

Isolation 

Rocking Allowed 

 
PGAF 

(g) 
β 

PGAF 

(g) 
β 

PGAF 

(g) 
β 

PGAF 

(g) 
β 

320 7.7 17.7 
2.0 0.80 0.45 1.06 0.39 1.17 0.42 1.38 0.43 

1.0 0.40 0.45 0.81 0.47 1.01 0.42 1.08 0.38 

420 

2.6 17.7 
2.0 1.13 0.32 1.02 0.37 1.27 0.45 1.36 0.46 

1.0 0.56 0.32 0.99 0.38 1.13 0.44 0.49 0.60 

4.3 17.7 
2.0 0.98 0.34 1.06 0.38 1.26 0.46 1.29 0.45 

1.0 0.49 0.34 0.97 0.37 1.13 0.43 0.94 0.45 

7.7 

17.7 
2.0 0.80 0.45 1.01 0.38 1.22 0.44 1.36 0.45 

1.0 0.40 0.45 0.82 0.45 1.03 0.43 1.07 0.39 

27.7 
2.0 0.80 0.45 1.19 0.40 1.56 0.42 1.75 0.44 

1.0 0.40 0.45 0.84 0.46 1.40 0.42 1.54 0.41 

31.3 
2.0 0.80 0.45 1.32 0.45 1.70 0.45 2.06 0.47 

1.0 0.40 0.45 0.88 0.49 1.49 0.46 1.66 0.45 

11.3 

17.7 
2.0 1.44 0.35 0.97 0.39 1.14 0.44 1.45 0.46 

1.0 0.72 0.35 0.81 0.40 1.11 0.44 1.35 0.44 

27.7 
2.0 1.44 0.35 1.10 0.42 1.55 0.41 1.83 0.45 

1.0 0.72 0.35 0.86 0.43 1.48 0.40 1.66 0.43 

520 7.7 17.7 
2.0 0.80 0.45 0.99 0.40 1.21 0.46 1.15 0.43 

1.0 0.40 0.45 0.82 0.45 1.05 0.44 1.06 0.40 
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Table 9-2 Fragility Data for Analyzed Transformers in Case of Lower Bound Friction, Vertical 

Bushing and FP Isolators without Inner Restrainer 

Transformer 

Weight (kip) 

Bushing 

Freq. 

(Hz) 

Isolator 

Displ. 

Capacity 

(inch) 

Bushing 

Accel. 

Limit 

(g) 

Non 

Isolated 

Horizontal 

Isolation Only 

Horizontal-Vertical 

Isolation 

Rocking Restrained 

Horizontal-Vertical 

Isolation 

Rocking Allowed 

 
PGAF 

(g) 
β 

PGAF 

(g) 
β 

PGAF 

(g) 
β 

PGAF 

(g) 
β 

420 7.7 

17.7 
2.0 0.72 0.41 1.01 0.38 1.23 0.45 1.45 0.45 

1.0 0.36 0.41 1.00 0.39 1.11 0.45 1.18 0.44 

27.7 
2.0 0.72 0.41 1.22 0.39 1.57 0.42 1.70 0.44 

1.0 0.36 0.41 1.21 0.40 1.53 0.42 1.56 0.42 

31.3 
2.0 0.72 0.41 1.32 0.43 1.71 0.46 1.99 0.47 

1.0 0.36 0.41 1.26 0.43 1.68 0.46 1.67 0.45 

 

Table 9-3 Fragility Data for Analyzed Transformers in Case of Upper Bound Friction, Bushing 

Inclined at 20 Degrees and FP Isolators without Inner Restrainer 

Transformer 

Weight 

(kip) 

Bushing 

Freq. 

(Hz) 

Isolator 

Displ. 

Capacity 

(inch) 

Bushing 

Accel. 

Limit 

(g) 

Non 

Isolated 

Horizontal 

Isolation Only 

Horizontal-Vertical 

Isolation 

Rocking Restrained 

Horizontal-Vertical 

Isolation 

Rocking Allowed 

 
PGAF 

(g) 
β 

PGAF 

(g) 
β 

PGAF 

(g) 
β 

PGAF 

(g) 
β 

420 7.7 17.7 
2.0 0.80 0.45 1.04 0.37 1.23 0.43 1.46 0.43 

1.0 0.40 0.45 0.82 0.43 1.06 0.42 1.07 0.37 

 

Table 9-4 Fragility Data for Analyzed Transformers in Case of Lower Bound Friction, Bushing 

Inclined at 20 Degrees and FP Isolators with Inner Restrainer 

Transformer 

Weight 

(kip) 

Bushing 

Freq. 

(Hz) 

Isolator 

Displ. 

Capacity 

(inch) 

Bushing 

Accel. 

Limit 

(g) 

Non 

Isolated 

Horizontal 

Isolation Only 

Horizontal-Vertical 

Isolation 

Rocking Restrained 

Horizontal-Vertical 

Isolation 

Rocking Allowed 

 
PGAF 

(g) 
β 

PGAF 

(g) 
β 

PGAF 

(g) 
β 

PGAF 

(g) 
β 

420 7.7 17.7 
2.0 0.80 0.45 0.96 0.39 1.23 0.47 1.24 0.44 

1.0 0.40 0.45 0.83 0.43 1.00 0.45 1.02 0.43 

 

Based on the results in Tables 9-1 to 9-4, calculations for the probability of failure given the PGA 

value of 0.6g were performed by use of Equation (2-1) for x=0.6g and the values of PGAF and β 

calculated in the fragility analysis. Note that based on the discussion in Section 7 on the selection 

and scaling of motions for the analysis and the results shown in Figure 7-3, a PGA=0.6g is 

representative of the IEEE High Required Response Spectra (rather than a PGA=0.5g).  The 

results are presented in Table 9-5. 
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Table 9-5 Values of Probability of Failure of Transformer with Bushing Inclined at 20 Degrees, 

FP Isolators without Inner Restrainer in Lower Bound Conditions for Seismic Intensity with 

PGA=0.6g, PF/PGA=0.6g 

Weight 

(kip) 

Bushing 

Freq. 

(Hz) 

Isolator 

Displ. 

Capacity 

(inch) 

Bushing 

Accel. 

Limit 

(g) 

Non 

Isolated 

Horizontal 

Isolation 

Only 

Horizontal-Vertical 

Isolation 

Rocking Restrained 

Horizontal-Vertical 

Isolation 

Rocking Allowed 

 
PF/PGA=0.6g 

(%) 

PF/PGA=0.6g 

(%) 

PF/PGA=0.6g 

(%) 

PF/PGA=0.6g 

(%) 

420 

2.6 17.7 
2.0 2.58 7.91 4.82 3.75 

1.0 57.52 9.61 7.58 63.11 

4.3 17.7 
2.0 54.33 9.22 5.29 3.47 

1.0 96.11 39.43 12.09 45.9 

7.7 

17.7 
2.0 26.24 8.74 5.46 3.29 

1.0 82.16 24.55 10.60 6.67 

27.7 
2.0 26.24 4.33 1.07 0.79 

1.0 82.16 23.10 2.14 1.11 

31.3 
2.0 26.24 3.88 1.04 0.43 

1.0 82.16 21.62 2.45 1.12 

11.3 17.7 
2.0 0.63 10.65 6.94 2.75 

1.0 30.17 22.93 7.99 3.27 

 

A number of interesting observations can be made on the basis of the results in Table 9-5: 

 

1) The non-isolated transformer with the least (2.6Hz) and the highest (11.3Hz) bushing 

frequencies considered have low probabilities of failures when the transverse bushing 

acceleration limit is 2g. For the case of the stiff 11.3Hz bushing this is explained by the 

fact that the fundamental frequency is high enough so that there is little magnification of 

acceleration as seen in the average spectra of Figure 7-3. However, the low probability of 

failure for the case of the 2.6Hz bushing cannot be explained by the shape of the response 

spectrum. It likely is the result of the particular motions selected for the incremental 

dynamic analysis. 

2) The probability of failure given the occurrence of the earthquake representative of the 

IEEE High Required Response Spectrum (PGA=0.6g) for the non-isolated transformers 

is high (with the exception of the cases discussed in item 1 above). For comparison, 

building standards define the acceptable probability of collapse given the maximum 

considered earthquake as 10% for regular structures and as 3% for important structures 

(ASCE, 2010). The horizontally-vertically isolated transformer has acceptable probability 
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of failure (with the exception of the two cases of low as-installed frequency in the 

bushing limit of 1g and for the system allowed to freely rock) whereas the 

horizontally-only isolated transformers have acceptable probability of failure provided 

the transverse bushing acceleration limit is 2g. 

3) Excluding the case of the atypical 2.6Hz frequency bushing, where resonance phenomena 

affected the response of the combined horizontal-vertical seismic isolation system that 

was free to rock (but also for the more realistic lower bound bushing frequency of 

4.3Hz), the probabilities of failure for the combined horizontal-vertical seismic isolation 

system are sufficiently low for either of the two systems (allowing or restraining rocking) 

so that the simpler system that allows for rocking may be preferable. For atypical cases 

like the 2.6Hz frequency bushing, where the proximity of this frequency to the rocking 

frequency of the transformer leads to amplification of response, the system with a stiff 

base is preferred as it can be designed to prevent or reduce rocking and avoid or reduce 

resonance. 

The results in Table 9-5 and the preceding discussion apply for one earthquake intensity and they 

will differ as that intensity measure is changed.  Consideration of the seismic hazard for a 

particular location over the lifetime of the equipment provides much more useful information. 

 

Calculations for the mean annual frequency of failure, λF, as obtained by use of Equation (2-3) 

for the ten locations in Table 2-1, for which the seismic hazard curves are shown in Figure 2-3, 

were performed for several cases of the 420kip transformer with the inclined bushing when 

non-isolated and when isolated by the horizontal only isolation system and by the 

horizontal-vertical isolation system with and without restraint for rocking. When isolated, the 

triple FP isolators were without an inner restrainer. Based on these values of the mean annual 

frequency, calculations for the probability of failure in a lifetime of 50 years were preformed 

using Equation (2-2). Results for the probability of failure are presented in Tables 9-6 to 9-13 for 

the three cases of bushing as-installed frequency and two values of bushing lateral acceleration 

limit. Note that the mean annual frequency may be back-calculated from the data in Tables 9-6 to 

9-13 by use of Equation (2-3).   
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Table 9-6 Probability of Failure (in %) in 50 Years PF of 420 kip Transformer with 2.6Hz 

Bushing for Locations in Western US with 1g Transverse Acceleration Limit 

Location (per 

Table 2-1) 

Isolator Displ. 

Capacity (in) 

Non- 

Isolated 

Horizontal 

Isolation 

Only 

Horizontal-Vertical 

Isolation 

Rocking Restrained 

Horizontal-Vertical 

Isolation 

Rocking Allowed 

1 17.7 3.10 0.72 0.59 6.88 

2 17.7 14.66 3.13 2.53 30.91 

3 17.7 19.17 5.15 4.17 34.01 

4 17.7 7.20 2.56 2.13 12.14 

5 17.7 5.15 1.30 1.05 10.72 

6 17.7 3.87 0.98 0.79 7.82 

7 17.7 1.24 0.39 0.33 3.17 

8 17.7 3.40 0.81 0.65 7.20 

9 17.7 7.48 3.03 2.52 10.38 

10 17.7 2.62 0.59 0.47 6.07 

 

 

Table 9-7 Probability of Failure (in %) in 50 Years PF of 420kip Transformer with 2.6Hz Bushing 

for Ten Locations in Western US with 2g Transverse Acceleration Limit  

Location (per 

Table 2-1) 

Isolator Displ. 

Capacity (in) 

Non-  

Isolated 

Horizontal 

Isolation 

Only 

Horizontal-Vertical 

Isolation 

Rocking Restrained 

Horizontal-Vertical 

Isolation 

Rocking Allowed 

1 17.7 0.38 0.64 0.42 0.34 

2 17.7 1.45 2.72 1.75 1.42 

3 17.7 2.86 4.62 3.03 2.52 

4 17.7 1.76 2.38 1.68 1.46 

5 17.7 0.72 1.16 0.77 0.64 

6 17.7 0.55 0.88 0.58 0.48 

7 17.7 0.27 0.36 0.26 0.23 

8 17.7 0.43 0.72 0.47 0.39 

9 17.7 2.17 2.84 2.02 1.77 

10 17.7 0.30 0.52 0.34 0.28 
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Table 9-8 Probability of Failure (in %) in 50 Years PF of 420kip Transformer with 4.3 Hz 

Bushing for Ten Locations in Western US with 1g Transverse Acceleration Limit 

Location (per 

Table 2-1) 

Isolator Displ. 

Capacity (in) 

Non 

Isolated 

Horizontal 

Isolation 

Only 

Horizontal-Vertical 

Isolation 

Rocking Restrained 

Horizontal-Vertical 

Isolation 

Rocking Allowed 

1 

17.7 

4.48 0.71 0.57 1.06 

2 21.09 3.06 2.47 4.84 

3 26.07 5.11 4.11 7.21 

4 9.49 2.57 2.11 3.18 

5 7.39 1.28 1.03 1.84 

6 5.53 0.97 0.78 1.38 

7 1.92 0.38 0.33 0.51 

8 4.95 0.80 0.64 1.17 

9 9.17 3.05 2.50 3.60 

10 3.82 0.58 0.46 0.87 

 

Table 9-9 Probability of Failure (in %) in 50 Years PF of 420kip Transformer with 4.3 Hz 

Bushing for Ten Locations in Western US with 2g Transverse Acceleration Limit 

Location (per 

Table 2-1) 

Isolator Displ. 

Capacity (in) 

Non 

Isolated 

Horizontal 

Isolation 

Only 

Horizontal-Vertical 

Isolation 

Rocking Restrained 

Horizontal-Vertical 

Isolation 

Rocking Allowed 

1 

17.7 

0.65 0.57 0.45 0.39 

2 2.72 2.41 1.90 1.64 

3 4.70 4.16 3.24 2.87 

4 2.45 2.20 1.75 1.62 

5 1.18 1.04 0.82 0.73 

6 0.89 0.79 0.62 0.55 

7 0.37 0.33 0.27 0.25 

8 0.73 0.64 0.50 0.44 

9 2.94 2.64 2.09 1.95 

10 0.52 0.46 0.36 0.32 
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Table 9-10 Probability of Failure (in %) in 50 Years PF of 420kip Transformer with 7.7 Hz 

Bushing for Ten Locations in Western US with 1g Transverse Acceleration Limit 

Location (per 

Table 2-1) 

Isolator Displ. 

Capacity (in) 

Non 

Isolated 

Horizontal 

Isolation 

Only 

Horizontal-Vertical 

Isolation 

Rocking Restrained 

Horizontal-Vertical 

Isolation 

Rocking Allowed 

1 

17.7 8.09 1.54 0.76 0.57 

27.7 8.09 1.47 0.26 0.18 

31.3 8.09 1.42 0.26 0.16 

2 

17.7 35.93 7.24 3.34 2.37 

27.7 35.93 6.89 1.00 0.65 

31.3 35.93 6.66 1.02 0.59 

3 

17.7 39.80 10.18 5.30 4.09 

27.7 39.80 9.72 1.94 1.36 

31.3 39.80 9.33 1.90 1.22 

4 

17.7 14.46 4.17 2.54 2.16 

27.7 14.46 4.01 1.26 1.00 

31.3 14.46 3.84 1.19 0.89 

5 

17.7 12.77 2.64 1.34 1.03 

27.7 12.77 2.52 0.49 0.35 

31.3 12.77 2.42 0.48 0.31 

6 

17.7 9.43 1.98 1.01 0.78 

27.7 9.43 1.89 0.37 0.26 

31.3 9.43 1.81 0.36 0.24 

7 

17.7 3.84 0.69 0.39 0.33 

27.7 3.84 0.67 0.20 0.16 

31.3 3.84 0.65 0.19 0.14 

8 

17.7 8.68 1.70 0.84 0.63 

27.7 8.68 1.62 0.29 0.21 

31.3 8.68 1.56 0.29 0.18 

9 

17.7 12.30 4.55 2.96 2.59 

27.7 12.30 4.38 1.56 1.26 

31.3 12.30 4.18 1.47 1.12 

10 

17.7 7.08 1.29 0.62 0.45 

27.7 7.08 1.23 0.20 0.14 

31.3 7.08 1.18 0.20 0.12 
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Table 9-11 Probability of Failure (in %) in 50 Years PF of 420 kip Transformer with 7.7 Hz 

Bushing for Ten Locations in Western US with 2g Transverse Acceleration Limit  

Location (per 

Table 2-1) 

Isolator Displ. 

Capacity (in) 

Non  

Isolated 

Horizontal 

Isolation 

Only 

Horizontal-Vertical 

Isolation 

Rocking Restrained 

Horizontal-Vertical 

Isolation 

Rocking Allowed 

1 

17.7 1.64 0.68 0.46 0.32 

27.7 1.64 0.42 0.17 0.13 

31.3 1.64 0.36 0.15 0.08 

2 

17.7 7.72 2.91 1.94 1.31 

27.7 7.72 1.70 0.62 0.47 

31.3 7.72 1.48 0.55 0.28 

3 

17.7 10.76 4.85 3.32 2.38 

27.7 10.76 3.07 1.31 1.00 

31.3 10.76 2.64 1.15 0.63 

4 

17.7 4.36 2.45 1.80 1.42 

27.7 4.36 1.75 0.97 0.78 

31.3 4.36 1.53 0.85 0.55 

5 

17.7 2.80 1.22 0.84 0.60 

27.7 2.80 0.77 0.34 0.26 

31.3 2.80 0.67 0.30 0.17 

6 

17.7 2.10 0.92 0.63 0.45 

27.7 2.10 0.58 0.25 0.19 

31.3 2.10 0.50 0.22 0.12 

7 

17.7 0.73 0.37 0.28 0.22 

27.7 0.73 0.27 0.16 0.13 

31.3 0.73 0.24 0.14 0.09 

8 

17.7 1.81 0.76 0.52 0.36 

27.7 1.81 0.47 0.20 0.15 

31.3 1.81 0.41 0.17 0.09 

9 

17.7 4.73 2.91 2.16 1.73 

27.7 4.73 2.13 1.22 0.99 

31.3 4.73 1.85 1.07 0.71 

10 

17.7 1.37 0.55 0.37 0.26 

27.7 1.37 0.33 0.13 0.10 

31.3 1.37 0.29 0.12 0.06 
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Table 9-12 Probability of Failure (in %) in 50 Years PF of 420 kip Transformer with 11.3 Hz 

Bushing for Ten Locations in Western US with 1g Transverse Acceleration Limit 

Location (per 

Table 2-1) 

Isolator Displ. 

Capacity (in) 

Non 

Isolated 

Horizontal 

Isolation 

Only 

Horizontal-Vertical 

Isolation 

Rocking Restrained 

Horizontal-Vertical 

Isolation 

Rocking Allowed 

1 

17.7 

1.71 1.40 0.61 0.32 

2 7.89 6.43 2.64 1.31 

3 11.31 9.38 4.33 2.39 

4 4.66 3.97 2.19 1.43 

5 2.90 2.40 1.09 0.61 

6 2.19 1.81 0.82 0.46 

7 0.72 0.62 0.34 0.22 

8 1.87 1.54 0.68 0.37 

9 5.18 4.45 2.59 1.74 

10 1.42 1.16 0.49 0.26 

 

Table 9-13 Probability of Failure (in %) in 50 Years PF of 420 kip Transformer with 11.3 Hz 

Bushing for Ten Locations in Western US with 2g Transverse Acceleration Limit  

Location (per 

Table 2-1) 

Isolator Displ. 

Capacity (in) 

Non 

Isolated 

Horizontal 

Isolation 

Only 

Horizontal-Vertical 

Isolation 

Rocking Restrained 

Horizontal-Vertical 

Isolation 

Rocking Allowed 

1 

17.7 

0.17 0.78 0.55 0.28 

2 0.58 3.38 2.36 1.12 

3 1.32 5.49 3.94 2.06 

4 1.04 2.67 2.05 1.26 

5 0.34 1.38 0.99 0.52 

6 0.26 1.04 0.75 0.39 

7 0.17 0.40 0.32 0.20 

8 0.20 0.86 0.62 0.32 

9 1.32 3.15 2.43 1.55 

10 0.13 0.63 0.44 0.22 

 

Based on the results in these tables, the following are observed: 
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1) For the ten sites of Table 2-1 the calculated probabilities of failure in a 50-year lifespan 

are substantially less for the case of any of the isolated than for the non-isolated 

transformers. Only exceptions are  

a. The case of the 2.6Hz frequency bushing when the transverse acceleration limit is 

1g (Table 9-6) where the horizontally-vertically isolated transformer with 

allowance to rock has some high probabilities of failure due to the aforementioned 

amplification of response caused by the proximity of the bushing frequency to the 

rocking frequency of the transformer. 

b. Some cases of the 2.6Hz frequency bushing when the transverse acceleration limit 

is 2g (Table 9-7) where the non-isolated transformer has smaller probability of 

failure than the isolated transformers. As discussed earlier this is an atypical case 

of bushing at the upper bound of bushing acceleration limit and with results that 

may have been affected by the selected motions for analysis.   

c. Some cases of the 11.3Hz frequency bushing when the transverse acceleration 

limit is 2g (Table 9-13) where the non-isolated transformer has smaller 

probability of failure than the isolated transformers. This behavior was 

investigated and found that the probability of failure of the isolated transformers 

improved when the displacement capacity of the FP isolators was increased.  

Figures 9-1 and 9-2 present fragility curves for 420kip transformer with inclined 

bushing of 11.3Hz frequency and 2g transverse acceleration limit for two FP 

isolator displacement limits: 17.7 and 27.7inch.   

2) Transformers with the combined horizontal-vertical isolation systems of either type have 

lower probabilities of failure in a 50-year lifespan than the horizontally-only isolated 

transformers except when the bushing frequency is low and the transverse bushing 

acceleration limit is 1g.  Then the horizontal-vertical isolation system that allows for 

rocking has higher probabilities of failure due to excessive rocking. Excluding these 

cases, the system that allows for free rocking has the lowest probabilities of failure.  

3) For the case of transformers with a 7.7Hz bushing and bushing acceleration limit of 1g, 

which a representative case for many transformers, the probability of failure is as follows: 
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(a) for the non-isolated transformers is as high as 39.8% (at location 3), for the 

horizontally isolated transformer is less than 10.2% (again location 3) and can be 

marginally improved by increasing the displacement capacity of the isolators, (c) for the 

combined horizontal-vertical isolation system that restrains rocking is less than 5.3% 

(location 3) and can be reduced at the same location to 1.9% by increasing the 

displacement capacity of the isolators, and (d) for the combined horizontal-vertical 

isolation system that allows for rocking is less than 4.1% (location 3) and can be reduced 

at the same location to 1.2% by increasing the displacement capacity of the isolators.  

4) For locations other than locations 2 and 3 which are two of the most seismically 

hazardous sites in California, the probability of failure for the isolated transformer, 

whether only by horizontal or combined horizontal-vertical isolation system, is low. 

Important is that these low probabilities of failure are accomplished for the least 

displacement capacity of the isolators without the need to implement larger displacement 

capacity isolators.  For example consider the case of the 7.7Hz bushing transformer with 

a transverse acceleration limit of 1g at location 1 in Vancouver, WA. The probability of 

failure in 50 years of lifetime for the horizontal-only isolation system is 1.54% when the 

least displacement isolator of 17.7inch is used and is 1.47% when the 27.7inch isolator is 

used. However, when for the same location the combined horizontal-vertical isolation 

system that is free to rock is used, the probability of failure in 50 years is 0.57% when the 

isolator displacement capacity is 17.7inch and is 0.18% when the 27.7inch capacity 

isolator is used.   

The information presented in terms of probability of failure given the maximum earthquake and 

the probability of failure for particular locations within the lifetime of the equipment is important 

in making decision on the use and the form of seismic isolation depending on the particular 

equipment and its location. However, given that transformers are considered critical structures, 

acceptably low probabilities of failure can be achieved only with the use of a combined 

horizontal-vertical isolation system with FP isolators having some increased displacement 

capacity. 
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Inclined bushing, Bushing lateral acceleration limit=2g, Horizontal isolation, Isolator ultimate displacement 

of 17.7 or 27.7 inch, No inner restrainer, Lower bound friction 

 

Figure 9-1 Fragility Curves for 420kip Transformer with 11.3Hz Bushing (No. 6) Inclined at 20 

Degrees, Triple FP Bearings without Inner Restrainer, Lower Bound Friction Properties and 

Isolator Ultimate Displacement Capacity of 17.7 or 27.7 inch, Horizontal Isolation, Bushing 

Lateral Acceleration Limit=2g 

 

Inclined bushing, Bushing lateral acceleration limit=2g, Horizontal-vertical isolation with rocking, Isolator 

ultimate displacement of 17.7 or 27.7 inch, No inner restrainer, Lower bound friction   

 

Figure 9-2 Fragility Curves for 420kip Transformer with 11.3Hz Bushing (No. 6) Inclined at 20 

Degrees, Triple FP Bearings without Inner Restrainer, Lower Bound Friction Properties and 

Isolator Ultimate Displacement Capacity of 17.7 or 27.7 inch, Horizontal-Vertical Isolation with 

Rocking, Bushing Lateral Acceleration Limit=2g 
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SECTION 10 

SUMMARY AND CONCLUSIONS 

 

This report presented an analytical study of the response of seismically isolated electrical 

transformers for the purpose of comparing the performance of equipment that is non-isolated to 

equipment that is isolated only in the horizontal direction or is isolated by a three-dimensional 

isolation system. The isolation system consisted of triple FP isolators in the horizontal direction 

and spring and viscous dampers in the vertical direction. The performance was assessed by 

calculating the probability of failure as a function of the seismic intensity with due consideration 

of (a) horizontal and vertical ground seismic motion effects, (b) displacement capacity of the 

seismic isolation system, including uplift capacity (c) acceleration limits for failure of electrical 

bushings, (d) details of construction of the isolation system that allow or restrain rocking of the 

isolated structure, (e) weight of the isolated transformer in the range of 320 to 520kip, (f) 

bushings with as-installed frequencies of 2.6 to 11.3Hz, (g) inclined and vertical placed bushings 

and (h) various details of the isolators, including upper and lower bound properties and details of 

construction of the isolators. The acceleration failure limits for the transformer bushing were 

determined on the basis of a comparison of calculated fragility data in this study to empirical 

fragility data based on observations in past earthquakes for non-isolated transformers. Moreover, 

sample calculations of the probability of failure within a 50-year lifetime of isolated and 

non-isolated transformers at ten locations in the Western US were performed. 

 

The results demonstrate the following:  

 

1) Seismic isolation, whether horizontal-only or combined horizontal-vertical, results in 

substantial reduction of the probability of failure by comparison to non-isolated 

transformers. There are exceptions in the case of an atypically low frequency bushing 

(2.6Hz) when the transverse acceleration limit was 2g, which is an upper bound case of 

acceleration limit 

 

2) Excluding the cases where the as-installed frequency of the bushings was close to the 

rocking frequency of the isolated transformer and the bushing acceleration limit was low 

(i.e., the atypical case of the 2.6Hz bushing transformer and bushing acceleration limit of 

1g), the combined horizontal-vertical isolation systems that allows for rocking of the 

isolated transformer typically result in the lowest probabilities of failure. For the case of 

the combined horizontal-vertical isolation system that allows for rocking and with the 

2.6Hz frequency bushing there was significant magnification of the rocking response of 
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the bushing so that the calculated probabilities of failure were for some cases 

unacceptable. This was particularly pronounced when the bushing transverse acceleration 

limit is low as rocking significantly magnified the response given the short distance 

between isolators (110inch, which is typically the shortest distance between isolators in 

transformers in the 320 to 520kip range). This phenomenon also occurred for the case of 

the 4.3Hz frequency bushing but to a lesser extent. 

 

3) Given the occurrence of an earthquake representative of the IEEE High Required 

Response Spectra, defined herein to have a PGA=0.6g, the non-isolated transformers 

have unacceptably high probability of failure, whereas the horizontal-only isolated 

transformers have lower but still high probability of failure, which cannot be improved by 

increasing the displacement capacity of the isolators. Transformers with combined 

horizontal-vertical isolation systems, either restraining or allowing for rocking (but for 

cases of very low bushing frequencies), have acceptable probability of failure. 

 

4) For the ten sites in the Western US considered in this study, the calculated probabilities 

of failure in a 50-year lifespan were notably lower for transformers with horizontal-only 

and horizontal-vertical isolation systems than non-isolated transformers for all analyzed 

cases barring a few cases that include the atypical case of the 2.6Hz frequency bushing 

with the 2g transverse acceleration limit and some others.  

 

The performance assessment procedures described in this report (a) may be used to decide on the 

benefits offered by the seismic protective system depending on the limits of the protected 

equipment, location of the equipment (value of PGA) and configuration and properties of the 

seismic protective system, (b) may be used to calculate the mean annual frequency of functional 

failure and the corresponding probability of failure over the lifetime of the equipment and (c) the 

information may be used to assess the seismic performance of electric transmission networks 

under scenarios of component failures. 
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APPENDIX A 

MODIFIED SERIES MODEL PARAMETERS 

 

This appendix presents details of the calculation for the model parameters of the triple FP 

bearings.  

 

A.1 Case of Bearing without Inner Restrainer Ring (Figure 4-2) 
 

A.1.1 Model with Axial-Shear Force Interaction 

 

- Vertical Stiffness 

 

The bearing vertical stiffness is approximately calculated as AE/h, where A is the area of the 

center slider (diameter b2=5inch), E is a representative modulus (typically assumed about half of 

steel to account for flexibilities in the bearing assembly, herein 14500ksi) and h is the height 

(herein 2tCO+h1+h4=9.2 inch). The vertical stiffness is thus equal to 

×2.52×14500/9.2=30946.4kip/in. 

 

Each of the three elements of the series model has vertical stiffness Kv,Compressive,i so that the 

combined stiffness equals 54751.3kip/in. That is, (1/Kv,Compressive,i+1/Kv,Compressive,i+1/ 

Kv,Compressive,i)-1=30946.4kip/in or Kv,Compressive,i=92839.2 kip/in. 

 

- Elastic Stiffness: iIni,K  

 

Element FP1:                 2
Ini,1

0.08 1
84 /

2 2 0.05

05W
K kip in

Y

 
  


  

 

Element FP2:                 1
Ini,2

105
126 /

2 2 0.05

0.12W
K kip in

Y

 
  


  

 

Element FP3:                 4
Ini,3

0.12 1
126 /

2 2 0.05

05W
K kip in

Y

 
  


  

 

- Friction Coefficient: i  

 

Element FP1:                 1 2 3 0.08       
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Element FP2:                 2 1 0.12     

 

Element FP3:                 3 4 0.12     

 

- Radius of Curvature: eff,iR  

 

Element FP1:                   eff1 eff2 eff3 3.5 3.5 7.0R R R in       

 

Element FP2:                   eff2 eff1 eff2 35.5 3.5 32.0R R R in       

 

Element FP3:                   eff3 eff4 eff3 35.5 3.5 32.0R R R in       

 

- Restrainer Gap Stiffness: G P, iK , G N, iK  

 

Element FP1: 

GP1 GN1 0.0 /K K kip in    (no inner restrainer ring) 

 

Element FP2: 

   1 1 1
GP2 GN2

0.5 0.5 22 25
294.5 /

6 6 0.5
r r ry

r

t t s F
K K kip in

Y

     
    


 

 

Element FP3: 

   4 4 4
GP3 GN3

0.5 0.5 22 25
294.5 /

6 6 0.5
r r ry

r

t t s F
K K kip in

Y

     
    


 

 

Diameter si, i=1, 2 (see Figure 5-1) 

2i i is b d   

1 4 1 12 8 2 7 22s s b d in        

2 3 2 22 5 2 2 9s s b d in        
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- Restrainer Gap Displacement Capacity: GP,id , GN,id  

 

Element FP1:     GP1 100d in  (no restrainer) 

 

Element FP2:     
   eff1 eff 2 *

GP2 1
eff1

35.5 3.5
6.37 5.74

35.5

R R
d d in

R

 
     

 

Element FP3:     
   eff 4 eff 3 *

GP3 4
eff 4

35.5 3.5
6.37 5.74

35.5

R R
d d in

R

 
     

Also,  

GN1 GP1d d  ,  GN2 GP2d d  ,  GN3 GP3d d   

 

DCapacity is the displacement capacity of the triple FP bearing: 

 
* * * *

Capacity 1 2 3 4 6.37 1.17 1.17 6.37 15.08D d d d d in          

 

- Displacement at the fracture of restrainer: HP,id , HN,id  

 

Element FP1:        HP1 HN1 GP1 r 2 r3 100 0.5 0.5 101.0d d d t t in          (no inner 

restrainer ring) 

 

Element FP2:     HP2 HN2 GP2 r1 5.74 0.5 6.24d d d t in        

 

Element FP3:     HP3 HN3 GP3 r3 5.74 0.5 6.24d d d t in        
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A.1.2 Model without Axial-Shear Force Interaction 

 

- Vertical Stiffness 

 

The bearing vertical stiffness is approximately calculated as AE/h, where A is the area of the 

center slider (diameter b2=5inch), E is a representative modulus (typically assumed about half of 

steel to account for flexibilities in the bearing assembly, herein 14500ksi) and h is the height 

(herein 2tCO+h1+h4=9.2 inch). The vertical stiffness is thus equal to 

×2.52×14500/9.2=30946.4kip/in. 

 

Each of the three elements of the series model has vertical stiffness Kv,Compressive,i so that the 

combined stiffness equals 54751.3kip/in. That is, (1/Kv,Compressive,i+1/Kv,Compressive,i+1/ 

Kv,Compressive,i)-1=30946.4kip/in or Kv,Compressive,i=92839.2 kip/in. 

 

For uplift (tension) Kv,Uplift,i=0.1 kip/in. 

 

- Elastic Stiffness: iIni,K  

 

Element FP1:                 2
Ini,1

0.08 1
84 /

2 2 0.05

05W
K kip in

Y

 
  


  

 

Element FP2:                 1
Ini,2

105
126 /

2 2 0.05

0.12W
K kip in

Y

 
  


  

 

Element FP3:                 4
Ini,3

0.12 1
126 /

2 2 0.05

05W
K kip in

Y

 
  


  

 

- Friction Coefficient: i  

 

Element FP1:                 1 2 3 0.08       

 

Element FP2:                 2 1 0.12     

 

Element FP3:                 3 4 0.12     
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- Radius of Curvature: eff,iR  

 

Element FP1:                   eff1 eff2 eff3 3.5 3.5 7.0R R R in       

 

Element FP2:                   eff2 eff1 eff2 35.5 3.5 32.0R R R in       

 

Element FP3:                   eff3 eff4 eff3 35.5 3.5 32.0R R R in       

 

- Restrainer Gap Stiffness: G P, iK , G N, iK  

 

Element FP1: 

GP1 GN1 0.0 /K K kip in    (no restrainer) 

 

Element FP2: 

   1 1 1
GP2 GN2

0.5 0.5 22 25
294.5 /

6 6 0.5
r r ry

r

t t s F
K K kip in

Y

     
    


 

 

Element FP3: 

   4 4 4
GP3 GN3

0.5 0.5 22 25
294.5 /

6 6 0.5
r r ry

r

t t s F
K K kip in

Y

     
    


 

 

Diameter si, i=1, 2 (see Figure 5-1) 

2i i is b d   

1 4 1 12 8 2 7 22s s b d in        

2 3 2 22 5 2 2 9s s b d in        

 

- Restrainer Gap Displacement Capacity: GP,id , GN,id  

 

Element FP1:     GP1 100d in  (no inner restrainer ring) 
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Element FP2:     
   eff1 eff 2 *

GP2 1
eff1

35.5 3.5
6.37 5.74

35.5

R R
d d in

R

 
     

 

Element FP3:     
   eff 4 eff 3 *

GP3 4
eff 4

35.5 3.5
6.37 5.74

35.5

R R
d d in

R

 
     

Also,  

GN1 GP1d d  ,  GN2 GP2d d  ,  GN3 GP3d d   

 

DCapacity is the displacement capacity of the Triple FP bearing: 

 
* * * *

Capacity 1 2 3 4 6.37 1.17 1.17 6.37 15.08D d d d d in          

 

- Displacement at the fracture of restrainer: HP,id , HN,id  

 

Element FP1:        HP1 HN1 GP1 r 2 r3 100 0.5 0.5 101.0d d d t t in          (no inner 

restrainer ring) 

 

Element FP2:     HP2 HN2 GP2 r1 5.74 0.5 6.24d d d t in        

 

Element FP3:     HP3 HN3 GP3 r3 5.74 0.5 6.24d d d t in        

 

 

A.2 Case of Bearing with Inner Restrainer Ring (Figure 4-1) 
 

A.2.1 Model with Axial-Shear Force Interaction 

 

- Vertical Stiffness 

 

The bearing vertical stiffness is approximately calculated as AE/h, where A is the area of the 

center slider (diameter b2=5inch), E is a representative modulus (typically assumed about half of 

steel to account for flexibilities in the bearing assembly, herein 14500ksi) and h is the height 
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(herein 2tCO+h1+h4=9.2 inch). The vertical stiffness is thus equal to 

×2.52×14500/9.2=30946.4kip/in. 

 

Each of the three elements of the series model has vertical stiffness Kv,Compressive,i so that the 

combined stiffness equals 54751.3kip/in. That is, (1/Kv,Compressive,i+1/Kv,Compressive,i+1/ 

Kv,Compressive,i)-1=30946.4kip/in or Kv,Compressive,i=92839.2 kip/in. 

 

- Elastic Stiffness: iIni,K  

 

Element FP1:                 2
Ini,1

0.08 1
84 /

2 2 0.05

05W
K kip in

Y

 
  


  

 

Element FP2:                 1
Ini,2

105
126 /

2 2 0.05

0.12W
K kip in

Y

 
  


  

 

Element FP3:                 4
Ini,3

0.12 1
126 /

2 2 0.05

05W
K kip in

Y

 
  


  

 

- Friction Coefficient: i  

 

Element FP1:                 1 2 3 0.08       

 

Element FP2:                 2 1 0.12     

 

Element FP3:                 3 4 0.12     

 

- Radius of Curvature: eff,iR  

 

Element FP1:                   eff1 eff2 eff3 6 6 12R R R in       

 

Element FP2:                   eff2 eff1 eff2 36 6 30R R R in       

 

Element FP3:                   eff3 eff4 eff3 36 6 30R R R in       
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- Restrainer Gap Stiffness: G P, iK , G N, iK  

 

Element FP1: 

   2 2 2 2
1 2

GP1 GN1

8 7 251 1 1 1
49.1 /

2 4 6 2 4 6 0.5

ry

r

b s F
K K kip in

Y

                          
 

 

Element FP2: 

   1 1 1
GP2 GN2

0.5 0.5 22 25
294.5 /

6 6 0.5
r r ry

r

t t s F
K K kip in

Y

     
    


 

 

Element FP3: 

   4 4 4
GP3 GN3

0.5 0.5 22 25
294.5 /

6 6 0.5
r r ry

r

t t s F
K K kip in

Y

     
    


 

 

Diameter si, i=1, 2 (see Figure 5-1) 

2i i is b d   

1 4 1 12 8 2 7 22s s b d in        

2 3 2 22 5 2 1 7s s b d in        

 

- Restrainer Gap Displacement Capacity: GP,id , GN,id  

 

Element FP1:     GP1 Capacity GP 2 GP 3 14.42 5.38 5.38 3.66d D d d in        

 

Element FP2:     
   eff1 eff 2 *

GP2 1
eff1

36.0 6.0
6.46 5.38

36.0

R R
d d in

R

 
     

 

Element FP3:     
   eff 4 eff 3 *

GP3 4
eff 4

36.0 6.0
6.46 5.38

36.0

R R
d d in

R

 
     

Also,  
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GN1 GP1d d  ,  GN2 GP2d d  ,  GN3 GP3d d   

 

DCapacity is the displacement capacity of the triple FP bearing: 

 
* * * *

Capacity 1 2 3 4 6.46 0.75 0.75 6.46 14.42D d d d d in          

 

- Displacement at the fracture of restrainer: HP,id , HN,id  

 

Element FP1:        HP1 HN1 GP1 r2 r3 3.66 0.5 0.5 4.66d d d t t in          

 

Element FP2:     HP2 HN2 GP2 r1 5.38 0.5 5.88d d d t in        

 

Element FP3:     HP3 HN3 GP3 r3 5.38 0.5 5.88d d d t in        

 

 

A.2.2 Model without Axial-Shear Force Interaction 

 

- Vertical Stiffness 

 

The bearing vertical stiffness is approximately calculated as AE/h, where A is the area of the 

center slider (diameter b2=5inch), E is a representative modulus (typically assumed about half of 

steel to account for flexibilities in the bearing assembly, herein 14500ksi) and h is the height 

(herein 2tCO+h1+h4=9.2 inch). The vertical stiffness is thus equal to 

×2.52×14500/9.2=30946.4kip/in. 

 

Each of the three elements of the series model has vertical stiffness Kv,Compressive,i so that the 

combined stiffness equals 54751.3kip/in. That is, (1/Kv,Compressive,i+1/Kv,Compressive,i+1/ 

Kv,Compressive,i)-1=30946.4kip/in or Kv,Compressive,i=92839.2 kip/in. 

 

 For uplift (tension) Kv,Uplift,i=0.1 kip/in. 
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- Elastic Stiffness: iIni,K  

 

Element FP1:                 2
Ini,1

0.08 1
84 /

2 2 0.05

05W
K kip in

Y

 
  


  

 

Element FP2:                 1
Ini,2

105
126 /

2 2 0.05

0.12W
K kip in

Y

 
  


  

 

Element FP3:                 4
Ini,3

0.12 1
126 /

2 2 0.05

05W
K kip in

Y

 
  


  

 

- Friction Coefficient: i  

 

Element FP1:                 1 2 3 0.08       

 

Element FP2:                 2 1 0.12     

 

Element FP3:                 3 4 0.12     

 

- Radius of Curvature: eff,iR  

 

Element FP1:                   eff1 eff2 eff3 6.0 6.0 12R R R in       

 

Element FP2:                   eff2 eff1 eff2 36 6 30R R R in       

 

Element FP3:                   eff3 eff4 eff3 36 6 30R R R in       

 

- Restrainer Gap Stiffness: GP,iK , GN,iK  

 

Element FP1: 

 2 2

GP1 GN1

8 71 1
49.1 /

2 4 6 0.5
K K kip in
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Element FP2: 

   1 1 1
GP2 GN2

0.5 0.5 22 25
294.5 /

6 6 0.5
r r ry

r

t t s F
K K kip in

Y

     
    


 

 

Element FP3: 

   4 4 4
GP3 GN3

0.5 0.5 22 25
294.5 /

6 6 0.5
r r ry

r

t t s F
K K kip in

Y

     
    


 

 

Diameter si, i=1, 2 (see Figure 5-1) 

2i i is b d   

1 4 1 12 8 2 7 22s s b d in        

2 3 2 22 5 2 5 7s s b d in        

 

- Restrainer Gap Displacement Capacity: GP,id , GN,id  

 

Element FP1:     GP1 Capacity GP 2 GP3 14.42 5.38 5.38 3.66d D d d in        

 

Element FP2:     
   eff1 eff 2 *

GP2 1
eff1

36.0 6.0
6.46 5.38

36.0

R R
d d in

R

 
     

 

Element FP3:     
   eff 4 eff 3 *

GP3 4
eff 4

36.0 6.0
6.46 5.38

36.0

R R
d d in

R

 
     

Also,  

GN1 GP1d d  ,  GN2 GP2d d  ,  GN3 GP3d d   

 

DCapacity is the displacement capacity of the triple FP bearing: 

 

* * * *
Capacity 1 2 3 4 6.46 0.75 0.75 6.46 14.42D d d d d in          
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- Displacement at the fracture of restrainer: HP,id , HN,id  

 

Element FP1:        HP1 HN1 GP1 r2 r3 3.66 0.5 0.5 4.66d d d t t in          (no restrainer) 

Element FP2:     HP2 HN2 GP2 r1 5.38 0.5 5.88d d d t in        

Element FP3:     HP3 HN3 GP3 r3 5.38 0.5 5.88d d d t in        
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