
ISSN 1520-295X

Open Space Damping System Theory 
and Experimental Validation 

by

Erkan Polat and Michael C. Constantinou

Technical Report MCEER-16-0007

December 13, 2016

This research was conducted at the University at Buff alo, State University of New York, and was supported primarily by  
MCEER Thrust Area 3: Innovative Technologies.



NOTICE
This report was prepared by the University at Buff alo, State University of New 
York, as a result of research sponsored by MCEER. Neither MCEER, associates 
of MCEER, its sponsors, University at Buff alo, State University of New York, 
nor any person acting on their behalf:

a. makes any warranty, express or implied, with respect to the use of any 
information, apparatus, method, or process disclosed in this report or that 
such use may not infringe upon privately owned rights; or

b. assumes any liabilities of whatsoever kind with respect to the use of, or the 
damage resulting from the use of, any information, apparatus, method, or 
process disclosed in this report.

Any opinions, fi ndings, and conclusions or recommendations expressed in this 
publication are those of the author(s) and do not necessarily refl ect the views 
of MCEER, the National Science Foundation or other sponsors.



                                                                                                                                    

                                                                  

Open Space Damping System Theory and 
Experimental Validation

by

Erkan Polat1 and Michael C. Constantinou2

 Publication Date:  December 13, 2016
 Submittal Date:  May 9, 2016

Technical Report MCEER-16-0007

MCEER Thrust Area 3: Innovative Technologies

1 PhD Candidate, Department of Civil, Structural and Environmental Engineering, University 
at Buff alo, State University of New York

2 Samuel P. Capen Professor and SUNY Distinguished Professor, Department of Civil, Struc-
tural and Environmental Engineering, University at Buff alo, State University of New York

MCEER
University at Buff alo, State University of New York
212 Ketter Hall, Buff alo, NY 14260
E-mail: mceer@buff alo.edu;  Website: http://mceer.buff alo.edu



 

  



Preface

MCEER is a national center of excellence dedicated to the discovery and development of new 
knowledge, tools and technologies that equip communities to become more disaster resilient in 
the face of earthquakes and other extreme events. MCEER accomplishes this through a system of 
multidisciplinary, multi-hazard research, in tandem with complimentary education and outreach 
initiatives. 

Headquartered at the University at Buff alo, The State University of New York, MCEER was originally 
established by the National Science Foundation in 1986, as the fi rst National Center for Earth-
quake Engineering Research (NCEER). In 1998, it became known as the Multidisciplinary Center 
for Earthquake Engineering Research (MCEER), from which the current name, MCEER, evolved.

Comprising a consortium of researchers and industry partners from numerous disciplines and 
institutions throughout the United States, MCEER’s mission has expanded from its original focus 
on earthquake engineering to one which addresses the technical and socio-economic impacts of a 
variety of hazards, both natural and man-made, on critical infrastructure, facilities, and society.

The Center derives support from several Federal agencies, including the National Science Founda-
tion, Federal Highway Administration, Department of Energy, Nuclear Regulatory Commission, 
and the State of New York, foreign governments and private industry.  
 
This report describes the open space damping system that has been developed to preserve open 
space within the frame of its installation.  The report describes the function of the system, presents 
a theory to predict its behavior and presents computational models to verify the theory.  Moreover, 
the report presents an experimental study of a large scale model with the open space damping 
system that is used to acquire data for validating the developed analytical and computational 
models.   Comparisons of experimental results in terms of structural drift, fl oor accelerations and 
force-displacement loops to results obtained by computational tools demonstrate the validity of 
the computational models. 
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ABSTRACT 

Seismic energy dissipation systems are typically installed in buildings within diagonal or 

chevron bracing to improve the seismic performance by reducing drift, and under certain 

conditions by reducing acceleration. Alternative installation methods have been developed in 

which novel mechanisms are utilized to magnify the displacements within the damping system 

and thus improve performance when drift is small and by doing so may also reduce the cost of 

damping.  Examples are the lever-arm, the toggle-brace, the coupled-truss and the scissor-jack 

damper systems which have found a limited number of applications. All damping system 

installation methods visually and physically obstruct an otherwise accessible area within the bay 

of the frame to which they are installed.  This drawback has resulted in the occasional rejection 

of use of damping systems by architects. This report introduces a novel configuration for 

damping devices with the main advantage of preserving open space within the frame of 

installation — hence the name “open space damping system”. The report introduces the concept, 

presents the theory and then presents computational models to verify the theory and to 

investigate the effects of frame configuration, frame deformations and large deformations on the 

effectiveness of the system. An experimental study of a large scale model with the open space 

damping system was conducted and used to acquire data for validating the developed analytical 

and computational models.   Testing consisted of (a) a single portal frame tested under imposed 

lateral motion, and (b) a single story 32kip model tested on the shake table under seismic 

excitation.  Two different configurations of the open space system (plus a third variant of one of 

the two) in three different structural system configurations were tested.   The tests demonstrate 

the increase in damping provided by the damping system.  Comparisons of experimental results 

in terms of structural drift, floor accelerations and force-displacement loops to results obtained 

by computational tools demonstrate the validity of the computational models. 

 

  



 

vi 

 

“This Page Intentionally Left Blank”  



 

vii 

 

ACKNOWLEDGEMENTS 

 

The authors acknowledge the financial support by the Turkish Government in terms of a 

scholarship (stipend and tuition) for graduate studies to the first author. This support is greatly 

appreciated.  Moreover, the authors are grateful to Mr. Douglas P. Taylor and Mr. John Metzger 

of Taylor Devices, Inc., North Tonawanda, NY for their support of the work in the development 

of the open space damping system and for many inspiring discussions, and to engineers Sean 

Frye and Kyle Schmidt of Taylor Devices, Inc. for their work in construction of the steel frame. 

The cost of the steel model used in the testing was paid by Taylor Devices, Inc.  

The authors wish to thank Mr. Mark Pitman, Mr. Scot Weinreber, Mr. Robert 

Staniszewski, Mr. Lou Moretta and Mr. Jeffrey Cizdziel of the Structural Engineering and 

Earthquake Simulation Laboratory for their support during the experimental part of the work.  



 

viii 

 

“This Page Intentionally Left Blank”  



 

ix 

 

TABLE OF CONTENTS  

SECTION 1 INTRODUCTION AND THEORY OF OPEN SPACE DAMPING SYSTEM ... 1 

1.1 General ......................................................................................................................... 1 

1.2 Open Space Damping System ...................................................................................... 6 

1.3 Magnification Factor of the Open Space Damping System......................................... 6 

1.4 Forces in Members of Open Space Damping System ................................................. 9 

1.5 Effect of Beam Deformation ...................................................................................... 12 

SECTION 2 VERIFICATION OF THE THEORY ................................................................... 17 

2.1 Introduction ................................................................................................................ 17 

2.2 Computational Model and Theory Verification ......................................................... 17 

2.3 Large Rotation and Inelastic Behavior Effects .......................................................... 21 

SECTION 3 TESTING OF INDIVIDUAL FRAMES WITH OPEN SPACE DAMPING 

SYSTEM ..................................................................................................................... 27 

3.1 Description of Tested Structure ................................................................................. 27 

3.2 Instrumentation of Tested Frame ............................................................................... 31 

3.3 Results of Testing of Frame ....................................................................................... 33 

3.4 Analytical Prediction of Response ............................................................................. 40 

SECTION 4 EARTHQUAKE SIMULATOR TESTING OF MODEL STRUCTURE 

WITH OPEN SPACE DAMPING SYSTEM ......................................................... 51 

4.1 Introduction ................................................................................................................ 51 

4.2 Instrumentation of Model Structure for Earthquake Simulator Testing .................... 56 

4.3 Identification of Dynamic Properties of Model Structure ......................................... 60 

4.4 Earthquake Simulator Test Results ............................................................................ 64 

SECTION 5 ANALYTICAL PREDICTION OF RESPONSE ................................................. 69 

5.1 Analytical Model ....................................................................................................... 69 

5.2 Response History Analysis Results ........................................................................... 69 



 

x 

 

SECTION 6 SUMMARY AND CONCLUSIONS ...................................................................... 79 

SECTION 7 REFERENCES ......................................................................................................... 81 

APPENDIX A DERIVATION OF MAGNIFICATION FACTOR .......................................... 83 

APPENDIX B RESULTS OF TESTING OF INDIVIDUAL FRAMES .................................... 87 

APPENDIX C EARTHQUAKE SIMULATOR TEST RESULTS ........................................... 105 

APPENDIX D EARTHQUAKE SIMULATOR TEST DRAWINGS ....................................... 131 

 

  



 

xi 

 

LIST OF FIGURES 

 

Figure 1-1 Installation Methods of Damping Systems with Obstruction of Space (Images 

Courtesy of Taylor Devices, Inc.): (a) Chevron; (b) Reverse Toggle-Brace; (c) 

Diagonal ..................................................................................................................... 2 

Figure 1-2 Installation of Scissor-Jack-Damper System with Open Space and Large Angle of 

Inclination (image by Michael C. Constantinou) .......................................................... 3 

Figure 1-3 Coupled Truss and Damping Mechanism in Torre Mayor building in Mexico ............ 3 

Figure 1-4 Magnification Factors of Various Damper Configurations .......................................... 5 

Figure 1-5 Configurations of the open space damping system ....................................................... 7 

Figure 1-6 Analysis of Motion Open Space Damping System ..................................................... 10 

Figure 1-7 Dependency of Magnification Factor on Angles θ2 and θ3: (a) θ1=0°; (b) θ1=-20°; (c) 

θ1=20° ......................................................................................................................... 11 

Figure 1-8 Analysis of Forces in Open Space Damping System .................................................. 12 

Figure 1-9 Analysis of Motion of Open-Space Damping System Considering Horizontal and 

Vertical Displacements .............................................................................................. 15 

Figure 1-10 Dependency of Magnification Factor on Geometry of Open Space Damping System 

with and without Effect of Vertical Deformation .................................................... 16 

Figure 2-1 Illustration of Computational Model ........................................................................... 18 

Figure 2-2 Damper force-displacement loops and frame lateral force-displacement loops of 

Model 1 with C=0.36 and 0.72 kip-sec/in ................................................................. 22 

Figure 2-3 Damper force-displacement loops and frame lateral force-displacement loops of 

Model 2 with C=0.36 and 0.72 kip-sec/in ................................................................. 23 

Figure 2-4 Magnification Factor as Function of Drift Ratio without and with Due Consideration 

of Large Deformation/Rotation Effects ...................................................................... 26 

Figure 3-1 Geometry and Open Space Damping System Configurations of Tested Frames: (a) 

Models 1 and 2 with Rigid-Simple Beam-to-Column Connections; (b) Model 3 with 

Rigid-Simple Beam-to-Column Connections ........................................................... 28 

Figure 3-2 Views of Tested Single Frame .................................................................................... 29 

Figure 3-3: Close-up Views of Tested Frame ............................................................................... 30 

Figure 3-4 Instrumentation Diagram of Tested Frame ................................................................. 32 



 

xii 

 

LIST OF FIGURES CONT'D 

 

Figure 3-5 Recorded Response of Model 1 R-S Frame Subjected to Lateral Motion at the Joint 36 

Figure 3-6 Recorded Response of Model 1 S-R Frame Subjected to Lateral Motion at the Joint 37 

Figure 3-7 Recorded Response of Model 2 R-S Frame Subjected to Lateral Motion at the Joint 38 

Figure 3-8 Recorded Response of Model 2 S-R Frame Subjected to Lateral Motion at the Joint 39 

Figure 3-9 Analytical Model for Tested Model 2 R-S .................................................................. 41 

Figure 3-10 Measured and Predicted Single Frame Response of Model 1 R-S in Test of 1 inch 

Amplitude at 1Hz Frequency ................................................................................... 42 

Figure 3-11 Measured and Predicted Single Frame Response of Model 1 R-S in Test of 1 inch 

Amplitude at 2Hz Frequency .................................................................................... 43 

Figure 3-12 Measured and Predicted Single Frame Response of Model 1 S-R in test of 1 inch 

Amplitude at 1Hz Frequency ................................................................................... 44 

Figure 3-13 Measured and Predicted Single Frame Response of Model 1 S-R in Test of 1 inch 

Amplitude at 2Hz Frequency ................................................................................... 45 

Figure 3-14 Measured and Predicted Single Frame Response of Model 2 R-S in Test of 1 inch 

Amplitude at 1Hz Frequency ................................................................................... 46 

Figure 3-15 Measured and Predicted Single Frame Response of Model 2 R-S in Test of 1 inch 

Amplitude at 2Hz Frequency ................................................................................... 47 

Figure 3-16 Measured and Predicted Single Frame Response of Model 2 S-R in Test of 1 inch 

Amplitude at 1Hz Frequency ................................................................................... 48 

Figure 3-17 Measured and Predicted Single Frame Response of Model 2 S-R in Test of 1 inch 

Amplitude at 2Hz Frequency ................................................................................... 49 

Figure 4-1 Model Structure on Earthquake Simulator (shown configuration is Model 2,     R-R)

..................................................................................................................................... 52 

Figure 4-2 Response spectra in model scale of actual (target) ground motions and motions 

produced by earthquake simulator ............................................................................ 54 

Figure 4-3 Accelerometer and Load Cell Instrumentation Diagram of Tested Structure............. 58 

Figure 4-4 Displacement Transducer and LED Instrumentation Diagram of Tested Structure ... 59 

Figure 4-5 Amplitude of Transfer Functions of Model Structure with and without Damping 

System ....................................................................................................................... 62 



 

xiii 

 

LIST OF FIGURES CONT'D 

 

Figure 4-6 Transfer Functions of Model 2 Rigid-Simple Configuration in Several Tests ........... 65 

Figure 5-1 Illustration of Analysis Model in SAP2000 for Case of Model 1 or Model 2  in Rigid-

Simple Configuration of Tested Structure .................................................................. 71 

Figure 5-2 Lumped Weights in SAP2000 Model of Tested Structure .......................................... 72 

Figure 5-3 Comparison of Experimental and Analytical Results for Model 2 R-S in Two Tests 75 

Figure 5-4 Comparison of Experimental and Analytical Results for Model 1 S-R in Two Tests 76 

Figure 5-5 Comparison of Experimental and Analytical Results for Model 2 S-R in Two Tests 77 

Figure 5-6 Earthquake Simulator Test Results for Model 2 R-R and Model 3 R-sR in Pacoima 

Motion ......................................................................................................................... 78 

 

 



 

xiv 

 

“This Page Intentionally Left Blank”  



 

xv 

 

 

LIST OF TABLES 

 

Table 2-1 Values of magnification factor obtained by theory and by computational analysis ..... 20 

Table 2-2 Magnification Factor, Peak Damper Force and Peak Damper Displacements of Model 

1 and Model 2 for C=0.36 and 0.72kip-sec/in in 2Hz, 1inch Motion of Frame Top ... 20 

Table 3-1 List of Channels Used in Frame Testing ...................................................................... 32 

Table 3-2 Values of Magnification Factor .................................................................................... 34 

Table 4-1 Earthquake Motions Used in Earthquake-Simulator Testing and Characteristics in 

Prototype Scale (All Components are Horizontal) ..................................................... 53 

Table 4-2 List of Instruments Used in Earthquake Simulator Testing ......................................... 56 

Table 4-3 Identified Characteristics of Model Structure with and without Damping System ...... 61 

Table 4-4 Peak Response of Model Structure in Earthquake-Simulator Testing ......................... 67 

Table 5-1 Joint Coordinates and Lumped Joint Weights in SAP2000 Model .............................. 73 

Table 5-2 Element Properties in SAP2000 Model ........................................................................ 74 

 

  



 

xvi 

 

“This Page Intentionally Left Blank”  



1 

 

SECTION 1  

INTRODUCTION AND THEORY OF OPEN SPACE DAMPING SYSTEM 

 

1.1 General 

 

Typical installation methods for damping systems in buildings result in the occupation of 

an entire bay of the frame to which they are installed (Soong and Dargush, 1997; Constantinou et 

al, 1998; Symans et al, 2008; McNamara et al, 2000; Christopoulos and Filiatrault, 2006). 

Examples are provided in Figure 1-1 where the most used configurations of diagonal, chevron 

and toggle-brace (Constantinou et al, 1997, 2001) are shown as installed in the Smith Memorial 

Center Building at Portland State University, Portland, Oregon, the San Francisco Civic Center 

and the Yerba Buena Tower in San Francisco.  The obstruction of space is evident.  The scissor-

jack-damper configuration (Sigaher and Constantinou, 2003) allows for open space but it 

requires installation of the system at a large angle of inclination that, in turn, results in large 

forces in the toggles and higher cost of damping.  Figure 1-2 shows an installation of the scissor-

jack-damper system at the Olympic Committee Building in Cyprus where open space is provided 

at the expense of a large angle of inclination.  

The installation of damping systems with obstruction of space is often undesirable by 

owners, architects and engineers. A noted example is the 24-story San Diego Courthouse 

(Sarkisian et al, 2015) where a damping system was installed only in the transverse direction 

whereas installation in the longitudinal direction would have compromised the interior layout 

and was unacceptable to the architect.  Also, use of a scissor-jack damping system in the 

longitudinal direction would have been acceptable but the cost was unacceptable.  The situation 

of the San Diego Courthouse provided the motivation for the work described in this report. 

The development of simple and effective configurations of damping systems that preserve open 

space is thus useful and may extend the application of damping systems in buildings.  This report 

describes a configuration for the installation of damping devices in buildings that preserves open 

space.  The damper is installed parallel to the beams and damping is provided through a 

mechanism that allows for limited but sufficient magnification of motion.  A theory is presented 

to relate the damper force and displacement to the frame lateral force and drift.  This theory is 

verified by comparison to results obtained by computational models in commercial software.  



 

2 

 

The effects of the frame connection details and flexibility on the effectiveness of the damping 

mechanism are investigated.  Also, large deformation effects are investigated and found to be 

insignificant for typical installation configurations.  It is concluded that the open space damping 

system can provide displacement magnification that falls in-between the standard configurations 

of diagonal and chevron installation but without obstruction of space. 

 

 

  

(a) (b) 

 

(c) 

 

Figure 1-1 Installation Methods of Damping Systems with Obstruction of Space (Images 

Courtesy of Taylor Devices, Inc.): (a) Chevron; (b) Reverse Toggle-Brace; (c) 

Diagonal  
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Figure 1-2 Installation of Scissor-Jack-Damper System with Open Space and Large Angle 

of Inclination (image by Michael C. Constantinou) 

 

In addition to the aforementioned diagonal, chevron, toggle-brace and scissor-jack 

systems, other systems with magnifying effects have been developed and are briefly mentioned 

below. They include the lever-arm system of Taisei Corporation or DREAMY (Hibino, et al., 

1990), the Seesaw energy dissipation system (Kang and Tagawa, 2013), the Eccentric Lever-arm 

System (Baquero Mosquera, et al, 2016) and the Coupled Truss and Damping Mechanism used 

in the 57-story Torre Mayor building (Figure 1-3)  in Mexico City (Rahimian, 2002). 

 

 

Figure 1-3 Coupled Truss and Damping Mechanism in Torre Mayor building in Mexico 
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Consider a simple portal frame with some form of damping system installed.  The period 

under elastic conditions is T and the effective seismic weight is W.  The story drift, u, and the 

damper deformation uD are related through the magnification factor f (Constantinou et al, 2001): 

 

 𝑢𝐷 = 𝑓 ∙ 𝑢 (1-1) 

 

For installation of dampers on top of chevron bracing, the damper deformation is identical to 

story drift (when excluding the supporting frame deformations) so that f=1.0.   For the dampers 

installed in the diagonal configuration, f=cosθ where θ is the angle of inclination of the damper 

with respect to horizontal axis. The force FD along the damper axis is similarly related to the 

lateral force acting on the frame F by: 

 𝐹 = 𝑓 ∙ 𝐹𝐷 (1-2) 

 

The damping ratio of a single-story frame with a linear fluid viscous damper assembly in which 

the damper force is linearly related to the damper velocity (𝐹𝐷 = 𝐶�̇�, where �̇� is the damper 

velocity) is given by the following equation (Constantinou et al, 2001) where g is the 

acceleration of gravity: 

 
𝛽 =

𝐶 ∙ 𝑓2 ∙ 𝑔 ∙ 𝑇

4 ∙ 𝜋 ∙ 𝑊
 

(1-3) 

 

Equations (1-1) to (1-3) are valid for all types of damper installation configurations, including 

the open space damping system described in this report. Figure 1-4 illustrates frames with 

several damper installation configurations and presents expressions for the magnification factor.  

Note that the expressions for the magnification factor only account for the effects of the lateral 

frame deformations and do not include vertical motion, frame and bracing deformations and 

large rotation effects, with the exception of the Coupled Truss and Damping Mechanism for 

which the vertical motion is important in the effectiveness of the system.  Particularly for the 

seesaw configuration, the magnification factor is markedly affected by the change of length of 

the cables forming the mechanism.  The magnification factor shown in Figure 1-4 for the seesaw 

configuration applies when the cable deformation is zero and when the cables are tension-only 

members. 
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Diagonal Chevron Lower Toggle Upper Toggle 

 

 

 

 

 

 

 

 

𝑓 = 𝑐𝑜𝑠𝜃 𝑓 = 1.00 𝑓 =
𝑠𝑖𝑛𝜃2

cos(𝜃1 + 𝜃2)
 𝑓 =

𝑠𝑖𝑛𝜃2

cos(𝜃1 + 𝜃2)
+ 𝑠𝑖𝑛𝜃2 

Reverse Toggle Scissor-Jack Lever-Arm Seesaw 

 

 

 

 

 

 

 

 

𝑓 =
𝛼𝑠𝑖𝑛𝜃1

cos(𝜃1 + 𝜃2)
− 𝑐𝑜𝑠𝜃2 𝑓 =

𝑐𝑜𝑠𝜓

𝑡𝑎𝑛𝜃3
 𝑓 =

𝐿

ℎ
 𝑓 =

𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽

sin(𝛼 + 𝛽)
 

Eccentric Lever-arm System Coupled Truss and Damping Mechanism 

 

𝑓 =
𝑎 + 𝑏

𝑎

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝛽

cos(𝛽 + 𝜃)
− 1 

 

 

 

𝑢𝐷 = 𝑢𝑐𝑜𝑠𝑎 + 𝑣𝑠𝑖𝑛𝑎 

𝑓 =
𝑢𝐷

u
 

 

Figure 1-4 Magnification Factors of Various Damper Configurations  



 

6 

 

The majority of applications of damping systems utilize the diagonal configuration, 

followed by the chevron brace and with a few applications of the toggle and scissor-jack 

configurations.  The magnification factor for the diagonal configuration is typically in the range 

of 0.7 to 0.9.  It may be also noted that all of the damper configurations illustrated in Figure 1-4 

occupy entire frame bays. 

 

1.2 Open Space Damping System 

 

Consider now the open space damping system configurations illustrated in Figure 1-5 for 

a single story frame. In these configurations, a damper is attached to the beam and the damper 

piston rod is driven by a brace and an inclined lever mechanism (rocker plate).  The brace is 

inclined and may be connected to the column (Figure 1-5(a)) or to the beam below  (Figure 

1-5(b))- the difference between the two being the sign of the angle θ2 (negative in the case of 

Figure 1-5(a) and positive in the case of Figure 1-5(b).   Note that angles are positive in the 

counterclockwise direction so that angle θ1 is positive for all cases of Figure 1-5, angle θ2 is 

negative in Figure 1-5(a) and Figure 1-5(c) but is positive in Figure 1-5(b) and angle θ3 is 

negative in Figure 1-5(a) and Figure 1-5(b) but is positive in Figure 1-5(c).  Note that Figure 

1-5(c) shows a modification of the mechanism where the rocker plate is reversed so that a larger 

angle θ1 can be achieved. The magnification factor is shown in the figure (the derivation will be 

presented next). As an example, using parameters h/L=2, θ1=0, θ2=-25°, θ3=-20° for the open-

space configuration of Figure 1-5(a), which allows for the most open space, the magnification 

factor is f=0.8.  For the configuration of Figure 1-5(b) with θ1=0, θ2=25° and θ3=-20°, the 

magnification factor is 1.12.  Thus for some geometries of the open-space damper 

configurations, a magnification factor similar to the diagonal and chevron brace configurations is 

achieved.  Greater magnification factors may also be achieved as will be described in the sequel. 

 

1.3 Magnification Factor of the Open Space Damping System 

 

Figure 1-6 illustrates the open space damping system configuration of Figure 1-5(a) 

within a bay of one story frame in the un-deformed (Figure 1-6(a)) and deformed (Figure 1-6(b)) 

states, where the kinematics are considered without any due consideration for the frame  
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Figure 1-5 Configurations of the open space damping system 
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deformation, an assumption that will be relaxed in later analysis. The analysis presented next 

also applies for the configurations of Figure 1-5(b) and Figure 1-5(c), which are distinguished 

from those of Figure 1-5(a) only by the sign of the three angles as previously discussed.  The 

relationship between the damper displacement (uD) and story drift (u) is represented by factor f 

defined as follows: 

 

 
𝑓 =

𝑢𝐷

𝑢
=

|𝐵′𝐷′̅̅ ̅̅ ̅̅ − 𝐵𝐷̅̅ ̅̅ |

𝑢
 

(1-4) 

 

where 𝐵𝐷̅̅ ̅̅  and 𝐵′𝐷′̅̅ ̅̅ ̅̅  are the lengths of segments BD and B’D’, respectively. The displacement of 

the damper assuming large rotations is given by Equation (1-5). The ± sign in Equation (1-5) is 

used to distinguish two cases related to the orientation of the rocker plate: when point B is 

positioned above point A (as in Figure 1-5(a) and Figure 1-5(b)), the sign is positive (+) and 

when point B is below point A (as in Figure 1-5(c)) the sign is negative (-). The rotation θ 

(positive θ is in counter-clockwise direction) of the rocker plate at point A is determined by 

solving Equation (1-6). Details of the derivation of Equations (1-5) and (1-6) are presented in 

Appendix A.  Equations (1-5) and (1-6) reveal a complex nonlinear relation between the damper 

displacement (uD) and the drift (u). An explicit closed-formed solution of these equations to 

relate uD to u is not possible so a solution can only be obtained by numerical means. 

 

 𝑢𝐷 = ±(ℎ sin(𝜃1 − 𝜃3) +   ℎ sin(𝜃 − 𝜃1 + 𝜃3)) (1-5) 

 

 

𝑢2

𝐿𝐸𝐶
+

2𝑢𝐿

𝐿𝐸𝐶

(cos(𝜃3) − cos(𝜃3 − 𝜃)) + 2𝑢 sin(𝜃2) + 2𝐿𝑠𝑖𝑛(𝜃 − 𝜃2 + 𝜃3)

+ 2𝐿𝑠𝑖𝑛(𝜃2 − 𝜃3) = 0 

(1-6) 

 

Significant simplification is achieved by assuming that θ is small so that sinθ~θ and cosθ~1 and 

that the drift u is small so that u2 and uθ are higher order terms and are ignored.  Under these 

conditions, the displacement of the damper is given by Equation (1-7) and angle θ is given by 

Equation (1-8). The magnification factor is given by Equation (1-9). 
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 𝑢𝐷 = ±(ℎ𝜃𝑐𝑜𝑠(𝜃1 − 𝜃3)) (1-7) 

 

 𝜃 = −
𝑢𝑠𝑖𝑛𝜃2

𝐿𝑐𝑜𝑠(𝜃2 − 𝜃3)
 (1-8) 

 

 𝑓 = |
ℎ𝑐𝑜𝑠(𝜃1 − 𝜃3)𝑠𝑖𝑛𝜃2

𝐿𝑐𝑜𝑠(𝜃2 − 𝜃3)
| (1-9) 

 

Equation (1-9) shows that the magnification factor attains very large values as the 

difference between angles θ2 and θ3 approaches 90° (but the 90 degree configuration is useless as 

it acts as a bracing system).  Figure 1-7 present graphs of the magnification factor for a range of 

values of angles θ1, θ2 and θ3. The graphs demonstrate that magnification factor is slightly 

dependent on angle θ1, so that the configuration with θ1=0 is preferred as it results in the most 

open space.   

 

1.4 Forces in Members of Open Space Damping System 

 

Forces in the open space damping system are needed for the assessment of the adequacy 

of the braces and for establishing the relation between the force in the damper and the horizontal 

component of the damping force that acts on the structure.  

The forces that act on the open space damping system and to the frame to which the 

system is attached are shown in Figure 1-8. Force F that acts on the frame represents the 

component of the inertia force that is balanced by forces supplied by the damping system. 

Considering equilibrium in the un-deformed configuration (an assumption consistent with small 

displacement theory), the force T in the brace is given by: 

 

 𝑇 =
ℎ

𝐿
𝐹𝐷

cos (𝜃3 − 𝜃1)

cos (𝜃3 − 𝜃2)
 (1-10) 
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Figure 1-6 Analysis of Motion Open Space Damping System  
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Figure 1-7 Dependency of Magnification Factor on Angles θ2 and θ3: (a) θ1=0°; (b) θ1=-20°; 

(c) θ1=20°  
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The horizontal component of force T is equal to force F, so that: 

 

 𝐹 = 𝑇𝑠𝑖𝑛𝜃2 (1-11) 

 

The ratio of force F to force FD is then obtained by use of Equations (1-10) and (1-11) to arrive 

at Equation (1-12) after use of Equation (1-9) for the magnification factor.   

 

 
𝐹

𝐹𝐷
= 𝑓 =

𝑢𝐷

𝑢
 (1-12) 

 

 

 

Figure 1-8 Analysis of Forces in Open Space Damping System 

 

1.5 Effect of Beam Deformation 

 

The analysis of the open space damping system movement is revisited taking into 

consideration the effect of the vertical deflection and rotation of the beam to which the damper is 

attached.  These vertical deformations and rotations are caused by the internal forces in the frame 

and may include the damper force effects. 

Figure 1-9 presents the deformed configuration of a single-story frame, inclusive of 

vertical and rotational deformations of the beam (note that angle θ1 in Figure 1-9 is shown 

negative only for clarity in the illustration). Let v1 and v2 denote the vertical deformations and ψ1 
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and ψ2 denote the rotations of points F and G where the damper assembly is connected to the 

beam. The distance between points F and A is denoted as h1 and that between points G and D as 

h2. Positive vertical displacements are downwards and positive rotations are counterclockwise. 

Returning to Equations (1-7) and (1-8) for the case of small rotations, the damper 

displacement uD and the rotation of rocker plate θ are given by: 

 

 𝑢𝐷 = ±𝜃ℎ𝑐𝑜𝑠(𝜃1 − 𝜃3) + (ℎ2𝜓2 − ℎ1𝜓1)𝑐𝑜𝑠𝜃1 + (𝑣1 − 𝑣2)𝑠𝑖𝑛𝜃1 (1-13) 

 

 

 𝜃 = −
1

𝐿𝑐𝑜𝑠(𝜃2 − 𝜃3)
[(𝑢 + ℎ1𝜓1)𝑠𝑖𝑛𝜃2 + 𝑣1𝑐𝑜𝑠𝜃2] (1-14) 

 

Again, the positive (+) sign in Equation (1-13) is used when point B is located above point A and 

the negative (-) sign is used when point B is located below point A. Substituting Equation (1-14) 

into Equation (1-13) forms: 

 

 
𝑢𝐷 = ± (−

ℎ𝑐𝑜𝑠(𝜃1 − 𝜃3)

𝐿𝑐𝑜𝑠(𝜃2 − 𝜃3)
[(𝑢 + ℎ1𝜓1)𝑠𝑖𝑛𝜃2 + 𝑣1𝑐𝑜𝑠𝜃2])

+ (ℎ2𝜓2 − ℎ1𝜓1)𝑐𝑜𝑠𝜃1 + (𝑣1 − 𝑣2)𝑠𝑖𝑛𝜃1 

(1-15) 

 

The vertical displacements v1 and v2 and the rotations ψ1 and ψ2 may be further written as 

functions of the lateral displacement u in the form: 

 

 𝑣1 = 𝑎1𝑢, 𝑣2 = 𝑎2𝑢, 𝜓1 = 𝛽1𝑢, 𝜓2 = 𝛽2𝑢 (1-16) 

 

Coefficients α1, α2, β1 and β2 are constants independent of the lateral frame deformation and 

velocity provided that the frame is elastic and the effect of the damper force on the frame 

deformations is disregarded. 

The magnification factor can then be written as: 
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𝑓 = |± (−
ℎ𝑐𝑜𝑠(𝜃1 − 𝜃3)

𝐿𝑐𝑜𝑠(𝜃2 − 𝜃3)
[(1 + 𝛽1ℎ1)𝑠𝑖𝑛𝜃2 + 𝛼1𝑐𝑜𝑠𝜃2])

+ (ℎ2𝛽2 − ℎ1𝛽1)𝑐𝑜𝑠𝜃1 + (𝛼1 − 𝛼2)𝑠𝑖𝑛𝜃1| 

(1-17) 

 

Consider a single story portal frame with pinned supports and with W8x15 steel sections 

for the columns and a W8x13 section for the beam.  Height and bay length are 75.13inch 

(1908mm) and 100inch (2540mm), respectively. Let points F and G be located at 0.23 and 0.68 

of the beam length starting from the left column centerline (this is an actual frame built for 

testing of the open space damper configuration-see Figure 2-1 in next section). Static analysis of 

the frame for a rigid beam-to-column connection on the left and a simple beam to-column 

connection on the right resulted in α1 = 0.164, β1 = -0.0046, α2 = 0.12, β2 = 0.0047.  The analysis 

was performed with lateral force acting at the beam-to-column connection.  Note that the 

amplitude of the applied force does not affect the values of these parameters. Figure 1-10 

compares the magnification factor as determined using the deformed beam configuration (red 

lines) to that when the frame deformations are neglected (case α1=β1=α2=β2=0, black lines). The 

results demonstrate the frame deformation may result in either an increase or a decrease in the 

magnification factor, depending on the configuration of the system. For example the use of a 

positive angle θ2 (configuration of Figure 1-5(b)), results in an increase in the magnification 

factor whereas a negative angle θ2 (configuration of Figure 1-5(a)) results in a decrease in the 

magnification factor.  Also, when the portal frame is changed to one with a simple beam-to-

column connection on the left and a rigid beam-to-column connection on the right the situation 

reverses so that a negative value of angle θ2 (configuration of Figure 1-5(a)) results in an 

increase in the magnification factor. 
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Figure 1-9 Analysis of Motion of Open-Space Damping System Considering Horizontal and 

Vertical Displacements 
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Figure 1-10 Dependency of Magnification Factor on Geometry of Open Space Damping 

System with and without Effect of Vertical Deformation  
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SECTION 2  

VERIFICATION OF THE THEORY 

 

2.1 Introduction 

 

A verification of the theory is presented based on analysis of sample frames using the 

computer program SAP2000, v17 (Computer and Structures, 2015) based on the assumption of 

small deformations (therefore, also small angles of rotation) and elastic behavior (both these 

assumptions will be relaxed later in this report).  The frame has been designed and built as a half-

length scale model for testing the open space damping system in individual frames and in a one-

story building model on the earthquake simulator (see Section 3 and Figure 3-1).   

 

2.2 Computational Model and Theory Verification  

 

 The frame features simple connections to the ground and beam-to-column connections 

that are simple but can be converted to rigid.  For example, Figure 2-1 illustrates a case where 

the beam-to-column connection on the left is rigid and the beam-to-column connection on the 

right is simple.  The beam is a W8X13 section and the columns are W8X15 sections. The frame 

features two open space damping system configurations-those of Figure 1-5(a) and 1-5(b), 

named Model 1 and Model 2, respectively. A third configuration (see Figure 3-1), Model 3, is a 

modification of Models 1 and 2 in which the damper is connected directly at the column near the 

beam-to-column connection so that there is reduced effect of the frame deformations on the 

magnification factor. The braces are solid rods of 2 inch (51mm) diameter. Based on the 

information presented in Figure 2-1, Model 1 is characterized by parameters θ1=0, θ2=-17° and 

θ3=-20°, Model 2 is characterized by parameters θ1=0, θ2=17° and θ3=-20° and Model 3 (see 

Figure 3-1),  has the brace configured as that of Model 2 and is characterized by parameters θ1=-

2° (damper is installed slightly inclined to accommodate the connection details), θ2=17° and 

θ3=-20° .  All three configurations have         h= 10 inch (254mm) and L=5 inch (127mm).  

The SAP2000 model, illustrated in Figure 2-1, was skeletal with proper offsets for all 

details of the frame and the damping system but without a damper so that the damper force 

effects were excluded.  The beam-to-column joint on the right was subjected to a prescribed 
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displacement (1inch or 25.4mm) and the change of length of the points of attachment of the 

damper was calculated.  The ratio of this displacement to the imposed joint displacement (1 inch) 

is the magnification factor.  When analysis was conducted with simple beam-to-column 

connections (frame is a mechanism), there was only rigid body motion so that the result is 

comparable to the result obtained by Equation (1-9).  For the cases where one or two beam-to-

column connections are rigid, there are frame deformations and the results are comparable to the 

results obtained by Equation (1-17). To utilize Equation (1-17), parameters α1, β1, α2 and β2 were 

calculated by applying a lateral force on the frame and calculating the displacements of the 

points of attachments of the damper as previously described.   Note that the calculation of 

parameters α1, β1, α2 and β2 is performed herein only for verifying Equation (1-17).  In practice, 

if a static analysis of a structure is performed, the magnification factor can be directly obtained 

without the need of Equation (1-17). Table 2-1 presents values of the magnification factor as 

determined by the presented theory for small rotations,  excluding frame deformation effects 

(Equation (1-9)) and then including frame deformation effects (Equation (1-17)) for four 

different frame connection details. The results in Table 2-1 demonstrate the accuracy of 

Equations (1-9) and (1-17).  There is insignificant difference between the theoretical and 

computational results on the magnification factor.  

 

Figure 2-1 Illustration of Computational Model 
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A further computational analysis was performed in which the model was enhanced with a 

linear viscous damper having constant 0.36 kip-sec/in (C=63N-sec/mm). The right beam-to-

column connection was driven in harmonic cyclic motion of 1Hz frequency and 1 inch (25.4mm) 

amplitude.  The peak damper force acting on the frame is nearly equal to 0.25 of the frame base 

shear force-that is, is sufficiently large. The magnification factor, calculated as the ratio of the 

peak damper displacement to the amplitude of the imposed motion, is included in Table 2-1.  The 

value of the magnification factor includes the effects of the damping force on the frame 

deformations.  It may be seen that there is insignificant effect of the damping force on the 

magnification factor when is calculated with due consideration of the frame deformation effects.  

That is, consideration of the frame deformation effects is important but the damping force effects 

are insignificant.   

The results of Table 2-1 demonstrate the significance of the frame deformation on the 

magnification factor.  Depending on the frame configuration and the open space damping system 

configuration, there may be increase or decrease of the magnification factor.  Of interest is to 

note the case of configuration S-S without a damper for which the analyzed structure is a 

mechanism and one would expect that Equation (1-9) would predict an exact result as there is no 

deformations of the frame.  The results in Table 2-1show some differences, particularly for 

Model 3, as a result of rigid-body rotations so that the points of connection of the damping 

system to the beam and columns experience additional motion. 

To investigate the effect of increased damping forces on the system behavior another 

study was conducted by increasing the damper coefficient from C=0.36kip-sec/in to C=0.72kip-

sec/in and repeating the analysis for prescribed displacement of 1inch amplitude at 1Hz 

frequency. Table 2-2 compares the results in the two cases of damping constant. There is 

insignificant effect on the magnification factor despite the increase in the damper forces.  Figures 

2-2 and 2-3 present the calculated damper force-damper displacement and frame lateral force and 

lateral displacement loops in the two models of Table 2-2.  Note that the nomenclature used in 

the figures relates to the cases in the table: e.g. Rigid-Simple implies a rigid beam-to-column 

connection at the left joint and a simple beam-to-column connection at the right joint of the 

frame. The maximum values of damper displacement and force, and of the force exerted by the 

damping system on the frame (zero displacement force intercept) are marked on the loops of 

Figures 2-2 and 2-3. The effect of the damping system is seen in these figures by the increase in 
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the zero displacement force intercept and the increase in energy dissipated per cycle (area of 

hysteresis loop) in the frame lateral force-displacement loops.  

 

Table 2-1 Values of magnification factor obtained by theory and by computational analysis 
Beam-to-Column 

 Connection 
Assumptions Model Theory 

Computational 

Analysis 

S-S 
No frame deformation. No damper 

(Theory using Eq. 1-9) 

1 0.55 0.59 

2 0.69 0.69 

3 0.70 0.82 

R-S 
With frame deformations. No damper 

(Theory using Eq. 1-17) 

1 0.33 0.35 

2 0.89 0.91 

3 1.03 1.07 

S-R 
With frame deformations.  No damper 

(Theory using Eq. 1-17) 

1 0.62 0.67 

2 0.70 0.68 

3 0.78 0.75 

R-R 
With frame deformations. No damper 

(Theory using Eq. 1-17) 

1 0.42 0.46 

2 0.83 0.83 

3 0.91 0.91 

R-S With frame deformations. With damper 

1 

NA 

0.35 

2 0.91 

3 1.07 

S-R With frame deformations. With damper 

1 

NA 

0.67 

2 0.68 

3 0.75 

R-R With frame deformations. With damper 

1 

NA 

0.46 

2 0.82 

3 0.91 

S: Simple, R: Rigid, R-S: Rigid on left and simple on right, etc. 

 

 

Table 2-2 Magnification Factor, Peak Damper Force and Peak Damper Displacements of 

Model 1 and Model 2 for C=0.36 and 0.72kip-sec/in in 2Hz, 1inch Motion of 

Frame Top 

M
O

D
E

L
 1

 

Beam-to-Column Connection 

(Left-Right) 

C 

(kip-sec/in) 
Damper Force (kip) 

Damper  

Disp. (in) 

Magnification 

Factor 

Rigid-Simple 
0.36 1.59 0.35 0.35 

0.72 3.15 0.35 0.35 

Simple-Rigid 
0.36 3.04 0.67 0.67 

0.72 6.02 0.66 0.66 

M
O

D
E

L
 2

 

Rigid-Simple 
0.36 4.14 0.91 0.91 

0.72 8.17 0.90 0.90 

Simple-Rigid 
0.36 3.07 0.68 0.68 

0.72 6.02 0.67 0.67 
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2.3 Large Rotation and Inelastic Behavior Effects  

The described damping system employs a displacement magnification mechanism that 

operates by rotating parts.  When the angles of rotation change, the magnification mechanism 

may be affected as indicated in the results of Figure 1-7 for the cases of large values of the 

magnification factor where it is seen that small changes in geometry result in large changes in the 

magnification factor.  The effect of large rotation is investigated by activating in program 

SAP2000 the capability for geometric nonlinearities, P-delta and large-displacement/rotation 

effects.  The frame shown in Figure 2-1 in the configurations of Model 1 and Model 2 with rigid 

connections on the left and simple connections on the right, and Model 3 (see Figure 3-1) with 

both rigid connections, and without a damper has been analyzed with due consideration of the 

geometric nonlinearity effects and under elastic frame conditions. Note the analyzed frame has 

realistic damping system geometry that can produce useful magnification factors.   

The calculation of the magnification factor followed the procedure previously described 

in which the joint on the right was subjected to a prescribed displacement.  This process was 

repeated for several values of the displacement.  Figure 2-4 presents the magnification factor 

calculated as the damper displacement (change of length of points of attachment of the damper) 

divided by the imposed frame lateral displacement as function of the frame drift ratio (drift 

divided by height of 75.13 inch (1908mm)) without and with due consideration of geometric 

nonlinearity effects.  Drift ratio values of up to 0.04 are considered.  It is evident that geometric 

nonlinearity effects have insignificant effect for values of the drift ratio up to 0.04.  It should be 

noted that the values of the magnification factor in the three models are 0.91, 0.35 and 0.91, 

respectively, as calculated by small deformation theory (see Table 2-1).  Per Figure 1-7, these 

values of the magnification factor are rather insensitive to variations in the geometry, which 

explains the result of the analysis with large deformations/rotation effects.  It is evident based on 

inspection of the results in Figure 1-7 that configurations with large magnification factors (larger 

than unity) will have more sensitivity to geometric effects.  However, these configurations will 

also be intrusive and will defeat the desire for open space.  For the analyzed configurations 

which are practical, large rotation effects are insignificant. 
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Figure 2-2 Damper force-displacement loops and frame lateral force-displacement loops of 

Model 1 with C=0.36 and 0.72 kip-sec/in 
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Figure 2-3 Damper force-displacement loops and frame lateral force-displacement loops of 

Model 2 with C=0.36 and 0.72 kip-sec/in 
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Damping systems (DS) may be installed in frames that are designed to remain elastic and 

typically will features simple connections, whereas the seismic force resisting system (SFRS) 

will be provided by separate frames that typically will undergo inelastic deformations.  Also, the 

DS and SFRS may be integrated into a single configuration in which the two systems have 

common elements.  The commentary to the recent FEMA P-1050 (FEMA, 2015) best illustrates 

these concepts.   In the former system configuration, the DS and SFRS do not share any elements 

and frame deformation and inelastic effects do not affect the magnification factor.  In the latter 

configuration, the DS and SFRS have common elements and the frame deformation and inelastic 

action may have effects on the magnification factor.  This is investigated by recalculating the 

magnification factor in the examples of Figure 2-4 by allowing inelastic action and also 

considering small and large deformation/rotation effects. For the inelastic analysis, plastic hinges 

were assumed to form at the location of the rigid beam-to-column connections.  Analysis was 

performed using the FEMA 356 plastic hinge feature of program SAP2000 with material yield 

strength of 345MPa or 50ksi.  The results are included in Figure 2-4 where it is seen that the 

effect of inelastic action on the magnification factor is small and beneficial.  The result may be 

explained by considering that when plastic hinges develop there is less column rotation and 

deformation effects on the beam to which the rocker plate is attached.   

The analysis of the example frames also produced results on member forces that are of 

interest to discuss as the addition of the damping system changes the load paths and affects, 

among other things (e.g., see Constantinou et al, 1998), the member axial forces.  Concentrating 

on the case of Model 3 with R-R configuration as having the largest magnification factor (0.91 

per Table 2-1), the inclined brace force, the column axial forces and the beam axial force were 

calculated in the analysis under elastic, small rotations conditions.  The analysis included the 

damper force and the frame was driven in prescribed motion of 1Hz frequency and 1 inch (25.4 

mm) amplitude as previously described in connection with the results of Table 2-1.  Peak values 

of damper force, column and beam additional axial force and brace axial force (compression or 

tension) were as follows: (a) Damper, 2.09kip (9.3kN), (b) Brace, 4.95kip (22.0kN), (c) Column 

13.76 kip (61.2kN) and (d) Beam, 14.1kip (62.7kN).  Note that the axial beam and column forces 

are caused by the (portal) frame action during application of the lateral force that has a peak 

value of 17.2kip (76.4kN).  Analysis of the same frame without the damper resulted in peak 

column axial force of 12.8 kip (56.9kN) and peak beam axial force of 8.4kip (37.4kN).  The 
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addition of the damping system results in insignificant additional axial force in the column due to 

the fact that the peak damping force does not occur at the same time as the peak lateral force 

(actually the peak damper force occurs at the instant of peak velocity for which the drift is zero 

in the analyzed harmonic motion) but has an important effect on the axial force in the beam. 

It should be noted that the forces calculated above could also be predicted by static 

analysis and use of theory as follows.  The damper force FD is given by ωfCu where ω is the 

frequency of harmonic motion (2π rad/sec for 1Hz), C=0.36kip-sec/in (63N-sec/mm) (the 

damper constant), f=0.91 (the magnification factor) and u=1 inch (25.4mm) (amplitude of frame 

motion).  The result is 2.07kip (9.2kN) (computational analysis gave 2.09kip (9.3kN)).  Use of 

Equation (14) yields the force in the brace T=4.92kip (21.9kN) (computational analysis gave 

4.95kip (22.0kN)) and Equation (15) gives the lateral component of the damping force acting on 

the frame as F=1.44kip (6.4kN).    
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Figure 2-4 Magnification Factor as Function of Drift Ratio without and with Due 

Consideration of Large Deformation/Rotation Effects 
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SECTION 3  

TESTING OF INDIVIDUAL FRAMES WITH OPEN SPACE DAMPING 

SYSTEM  

 

3.1 Description of Tested Structure 

 

A half-length length scale steel frame was constructed for the purpose of testing the open 

space damping system. The model structure consisted of two identical frames of the geometry 

shown in Figure 3-1. Testing was first conducted with one frame attached to the strong floor and 

cyclically driven by an actuator. The two configurations of Figures 1-5(a) and 1-5(b) were tested 

in this way.  This testing is described in this section. Section 4 describes earthquake simulator 

testing in which two frames were used in three different configurations: the two of Figures 1-5(a) 

and 1-5(b) and a variant of the configuration of Figure 1-5(b). 

Figure 3-1 shows the geometry and open space damping system configurations of the 

tested frames.   Three different models are shown (Model 1, Model 2 and Model 3) of which 

only the first two were used in the individual frame testing, whereas all three models were used 

in the earthquake simulator testing.  Views of the tested frame and details of connections are 

presented in Figures 3-2 and 3-3.  Column base plates were simply connected to a beam, which 

in turn was connected to the strong floor.  All connections of the damping system feature true 

pins.  

Testing was conducted with a hydraulic actuator attached to the column joint on the left 

side of the frame as seen in Figures 3-2 and 3-3, and harmonic displacement history was imposed 

with a frequency at 0.05Hz (quasi-static), 1 Hz and 2Hz (dynamic). The amplitude of the motion 

was either 0.5inch or 1inch.  Histories of the frame lateral displacement at the beam-column 

joint, damper displacement (change of length), damper force and lateral frame force (force 

measured by the load cell on the actuator) were recorded. Note that the lateral frame force 

includes the inertia force of the moving parts of the actuator, the beam and part of the columns.  

The peak value of the inertia force was estimated to be less than 65lbs and was deemed 

negligible by comparison to the base shear force.  Accordingly, no corrections for the inertia 

effects were made. 
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Figure 3-1 Geometry and Open Space Damping System Configurations of Tested Frames: 

(a) Models 1 and 2 with Rigid-Simple Beam-to-Column Connections; (b) Model 3 with 

Rigid-Simple Beam-to-Column Connections 
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Figure 3-2 Views of Tested Single Frame  
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Figure 3-3: Close-up Views of Tested Frame  
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The tested structure features the following: 

1. The beam-to-column connections could be easily converted between simple and rigid by 

using stiffened angles bolted to the top and bottom flanges of the beam and to the column 

flange as shown in Figure 3-2 and 3-3. This enabled testing with one rigid and one simple 

connection per frame (referred to as rigid-simple or simple-rigid configurations), and two 

rigid connections per frame (rigid-rigid configuration).  However, all so-called simple 

connections exhibited some rotational stiffness and hysteresis, so that in effect all 

“simple” connections were semi-rigid connections with the degree of fixity dependent on 

the amount of torque applied to the bolts and relaxation with repeated testing.  This 

complicated the analytical prediction of response for the purposes of comparison to the 

experimental results. 

2. All connections of the open space damping system were built as true pins.  Examples are 

shown in Figure 3-3 for the rocker plate connecting the horizontal damper to the 

vertically inclined brace and the brace connection to the column. 

3. Lateral stability of the single frame was provided by two auxiliary frames as seen in     

Figure 3-2.   

4. Two linear viscous dampers were used in the experiments, each with a damping 

coefficient Co=0.36 kip-sec/in. These devices are the same as those used in Sarlis et al. 

(2013), where results on the testing of the dampers were reported.  The dampers were not 

individually tested prior to conducting the tests reported herein. 

 

3.2 Instrumentation of Tested Frame 

 

Instrumentation of the tested frame consisted of displacement transducers in the form of 

string potentiometers, load cells and Krypton light-emitting diodes (LED). The Krypton 

measurement system operates by reading infrared signals from LED and measures absolute 

displacement, velocity and acceleration.  The system was used to acquire motion readings 

(displacement, velocity and acceleration) of various points on the open space damping system 

and for backup of the string potentiometers. Figure 3-4 illustrates the instrumentation diagram of 

the tested frame on the strong-floor and Table 3-1 presents the list of the channels used. The 
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damper load cell was manufactured in-house and was calibrated prior to testing- the error of the 

reading of the load cell was less than 2-percent. The actuator load cell was calibrated by the 

manufacturer and had a valid calibration certificate. 

 

Figure 3-4 Instrumentation Diagram of Tested Frame 

Table 3-1 List of Channels Used in Frame Testing 

CHANNEL INSTRUMENT QUANTITY MEASURED UNIT 

1 / Time sec 

2 Disp. Transducer Column Joint Horiz. Displ in 

3 Disp. Transducer Damper Relative Displ. in 

4 Disp. Transducer Rocker Plate Horiz. Displ in 

5 Disp. Transducer Rocker Plate Vert. Displ in 

6 Disp. Transducer Rocker Plate Horiz. Displ in 

7 Disp. Transducer Rocker Plate Vert. Displ in 

8 Load Cell Damper Force kip 

9 LED Rod Base Pin Dipl. in 

10 LED Rocker Plate Pivot Displ. in 

11 LED Rocker Plate Displ. in 

12 LED Damper Displ. in 

13 LED Damper Displ. in 

14 LED Column Joint Horiz. Displ in 

15 Load Cell Actuator Force kip 
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3.3 Results of Testing of Frame 

 

Selected representative results are presented in this section.  Appendix B presents a larger 

collection of results acquired in the testing of individual frames.  The results include the 

following information: 

1. Model number, beam-to-column connection type, information on the amplitude and 

frequency of imposed motion.  The model number is 1 or 2 per Figure 3-1(a).  The beam-

to-column connection is classified as type R-S when the beam-to-column connection on 

the left is rigid and the one on the right is simple.  The beam-to-column connection is 

classified as type S-R when the beam-to-column connection on the left is simple and the 

one on the right is rigid.   

2. Loop of frame lateral force (force applied by actuator at beam-to-column connection) 

versus drift (displacement of beam-to-column connection with respect to column base.  

This force is essentially the base shear force (but for a small inertia force of moving parts, 

estimated to be less than 65lbs). 

3. Loop of damper force versus damper displacement. 

4. Graph of damper displacement versus drift (lateral displacement of the frame).    

The sign convention adopted for the presentation of the test results is: (a) positive frame 

displacement and frame lateral force when the drift is to the right per Figure 3-1, (b) positive 

damper displacement and damper force when the damper is in extension (piston rod moves out), 

(c) the base shear force is negative when the drift of the frame is positive (note that base shear is 

in opposite sign with lateral force which is assumed as actuator force in the strong-floor testing). 

Results for the four tested cases are presented in Figures 3-5 to 3-8 in motion of 

amplitude of 1in and frequencies of 0.05Hz (quasi-static) and 2.0Hz (dynamic).  At the 

frequency of 0.05Hz there is practically no damping force so that the behavior of the un-damped 

frame is revealed.  Each of these figures includes information on the magnification factor: (a) as 

calculated by Equation (1-9) without due consideration for frame deformation effects, fTHEORY, 

(b) as calculated by a computational model of the tested frame in program SAP2000 (Computer 

and Structures, 2006), fCOMP (from Table 2-1), and (c) based on the measurements of 

displacements during testing under quasi-static and dynamic conditions, fEXP.  This factor was 
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determined as the ratio of the damper peak displacement (uD) to the frame peak drift (u). There 

are two values shown in the figures for the experimental value because the damper displacements 

differ depending on the direction of motion as explained below.  Note that values of fCOMP 

reported in Table 2-1 in which the frame model analyzed had the simple connections modelled as 

true pins and with due consideration of the frame deformations caused by the lateral frame 

deformation and the damper forces.  Table 3-2 compares the values of the magnification 

obtained by analysis and experiment. 

 

Table 3-2 Values of Magnification Factor 

Model 

Theory  

(Eq. (1-9)) 

fTHEORY 

Computational1 

fCOMP 

Experimental2 

(quasi-static) 

fEXP 

Experimental2 

(dynamic) 

fEXP 

Model 1, R-S 0.55 0.35 0.41/0.35 0.35/0.37 

Model 2, R-S 0.69 0.91 0.94/0.80 0.79/0.75 

Model 1, S-R 0.55 0.67 0.53/0.55 0.49/0.53 

Model 2, S-R 0.69 0.68 0.80/0.77 0.67/0.68 
1
: Model includes effects of frame deformation; simple connections modelled as pins 

2
: Two values as peak damper displacement is different in two directions 

 

 

The results in Figures 3-5 to Figure 3-8 and Table 3-2 reveal the following: 

1. The lateral force-frame displacement loops (base shear vs drift relations) reveal the 

stiffness and damping characteristics of the tested frames.  It is evident in the loops that 

there is little increase in energy dissipated per cycle in the case on Model-1, R-S (Figure 

3-5) and also Model-1, S-R (Figure 3-6). This was expected as the actual magnification 

factor is small due to the effects of frame deformations.  This is also evident in the small 

damper force measured in both cases and in the small damper displacement measured in 

Model-1, R-S (one with least magnification factor).  By contrast, the loops in Figures 3-7 

and 3-8 show a noticeable increase in energy dissipated at the higher frequency test when 

the damper is activated.  Also, note in Figures 3-7 and 3-8 the larger damper force and 

displacement by comparison to those of the models in Figures 3-5 and 3-6. 

2. The lateral frame force-displacement loops (base shear vs drift relations) of the frame 

with the damping system show a higher stiffness than the loops of the frame without the 

damping system (the latter presumed to be those of the frame driven under quasi-static 
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conditions so that the damping force is essentially zero).  This is due to the introduction 

of stiffness by the damping system due to the effect of the deformation of the system to 

which the damper is attached (including the frame itself).  This is a well understood 

phenomenon (e.g., Constantinou et al. 2001).  It can be mitigated by connecting the 

damping system components directly to or as close as possible to beam-column joints. 

3. The damper displacement-frame displacement curves show “hysteresis” that is due to 

sliding in some of the simple joints and supports of the tested model.  This is evident in 

the fact that the damper displacement remains constant at large values and there is 

asymmetry with more displacement in one direction than the other.  Slippage was 

inevitable as the diameter of holes was larger than the bolt diameter.  For the tested 

model all holes where oversize (3/16th inch larger than bolt diameter) to allow for ease in 

assembly and adjustments during testing (particularly when some yielding and distortion 

occurred).  About 3/16th inch (5mm) of sliding motion could occur at each joint.  This led 

to asymmetry in behavior with the experimental magnification factor value being 

different depending on the direction of motion.  Also, the magnification factor values 

were further affected (reduced) under dynamic conditions due to increase in slippage.  

Efforts to mitigate this problem included periodic tightening of bolts which was partially 

effective for short times but also affected the stiffness of the frame as the simple 

connections actually behaved as semi-rigid of variable stiffness depending on the degree 

of bolt tightening.  This will be better observed in results of identification tests of the 

frame on the shake table.  Generally, this created a complexity in predicting the response 

of the tested model as the properties of the frame kept changing. 

4. The experimental value of the magnification factor is generally consistent with the value 

obtained by the computational model.   
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Figure 3-5 Recorded Response of Model 1 R-S Frame Subjected to Lateral Motion at the 

Joint 
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Figure 3-6 Recorded Response of Model 1 S-R Frame Subjected to Lateral Motion at the 

Joint 
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Figure 3-7 Recorded Response of Model 2 R-S Frame Subjected to Lateral Motion at the 

Joint 
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Figure 3-8 Recorded Response of Model 2 S-R Frame Subjected to Lateral Motion at the 

Joint 
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3.4 Analytical Prediction of Response 

 

The tested frame was modelled and analyzed in computer program SAP2000. Figure 3-9 

illustrates the computational model of the tested frame for the rigid-simple beam-to-column 

configuration (to avoid repetition, element list and their properties are presented in Section 5 in 

Table 5-2). The model featured true pins for the damping system elements.  Moreover, all 

elements of the damping system were properly represented by beam elements to correctly 

account for their flexibilities.  Supports 1 and 4 were modelled as pinned with an added elastic 

rotational spring to simulate the behavior of the supports.  The simple beam-to-column 3 on the 

right was modelled as a pin with an added nonlinear rotational spring.  The rotational stiffness of 

the added rotational springs at joints 1, 3 and 4 was assigned values to better approximate the 

measured stiffness of the tested frame.  The hysteretic properties of joint 3 were assigned so that 

a representative hysteretic behavior was obtained as seen in the recorder base shear-frame 

displacements loops.   However, the tested frame exhibited asymmetric behavior with more 

stiffness in one direction (see Figures 3-5 to 3-8) which could not be simulated in the described 

analytical model. The source of the asymmetry was slippage in the joints, a phenomenon which 

difficult to simulate as it depended on amount of torque put in the bolts (which was unknown), 

friction in the joints and allowance for motion in the oversize holes (which varied from test to 

test).   Note that the asymmetry is much less in the frame tested under quasi-static conditions 

(essentially zero damping force) as a result of reduced slippage in the joints. 

Figures 3-10 to 3-17 compare the experimental response of the tested frames to 

analytically predicted response in the tests at frequency of 1Hz and 2Hz, and amplitude of 1inch.  

These were the cases in which slippage in the joints of the model resulted in asymmetric 

hysteretic behavior.  The computational prediction of the response of the tested frames is seen to 

be good despite the inability to model the asymmetry in stiffness and slippage in the joints.  Note 

that this is a characteristic of the tested model while in actual applications the connections will be 

welded or with standard size holes, for which slippage in the joints will be smaller (1/16th inch 

rather than 3/16th inch).  The importance of joint slippage is better appreciated when one 

considers that the tested frame was at length scale of 2, so that the drift and damper displacement 

were half of those of actual buildings, whereas the slippage was as much as three times larger.  
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Figure 3-9 Analytical Model for Tested Model 2 R-S  
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Figure 3-10 Measured and Predicted Single Frame Response of Model 1 R-S in Test of 1 

inch Amplitude at 1Hz Frequency 
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Figure 3-11 Measured and Predicted Single Frame Response of Model 1 R-S in Test of 1 

inch Amplitude at 2Hz Frequency 



 

44 

 

 

 

 

Figure 3-12 Measured and Predicted Single Frame Response of Model 1 S-R in test of 1 

inch Amplitude at 1Hz Frequency 
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Figure 3-13 Measured and Predicted Single Frame Response of Model 1 S-R in Test of 1 

inch Amplitude at 2Hz Frequency 
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Figure 3-14 Measured and Predicted Single Frame Response of Model 2 R-S in Test of 1 

inch Amplitude at 1Hz Frequency 
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Figure 3-15 Measured and Predicted Single Frame Response of Model 2 R-S in Test of 1 

inch Amplitude at 2Hz Frequency 
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Figure 3-16 Measured and Predicted Single Frame Response of Model 2 S-R in Test of 1 

inch Amplitude at 1Hz Frequency 
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Figure 3-17 Measured and Predicted Single Frame Response of Model 2 S-R in Test of 1 

inch Amplitude at 2Hz Frequency 
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SECTION 4  

EARTHQUAKE SIMULATOR TESTING OF MODEL STRUCTURE WITH 

OPEN SPACE DAMPING SYSTEM 

 

4.1 Introduction 

 

A model structure consisting of two identical frames and with a concrete block on top 

was tested on the earthquake simulator.  Figure 4-1 shows the model on the earthquake simulator 

(the frame geometry is that shown in Figure 3-1). Testing of the model was conducted to observe 

the behavior of a structure with the open space damping system in historic earthquake motions 

and to acquire dynamic response data that can be used on the analytical model validation. In 

addition to the single frame features described in Section 3, the model structure had the 

following features: 

1. The beam-to-column connection enabled testing with one rigid and one simple 

connection per frame (referred to as rigid-simple or R-S and simple-rigid or S-R 

configurations), and two rigid connections per frame (rigid-rigid or R-R configuration).  

In Model 3 (see Figure 3-1b) one connection could not be converted to rigid due to space 

limitations and the resulting connection is classified in this report as semi-rigid, with the 

resulting configurations referred to as rigid-semi-rigid or R-sR.  Also, the column bases 

and the top of the columns to the concrete mass on top were built as simple connections.   

2. Lateral stability of the test structure was provided by cross-bracing that could be 

tightened by turnbuckles as seen in Figure 4-1.  It was observed that during testing the 

cross bracing tension gradually relaxed, requiring thus periodic adjustment.  This 

phenomenon, together with differences between the two frames (due to the condition of 

the connections of the beam to the columns) in the principal (damped) direction led to 

some asymmetry and to torsional response.  The extent of the problem varied as 

relaxation of the various bolted connections occurred during testing that was followed by 

periodic tightening of the bolts and turnbuckles.   
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3. The concrete mass used for earthquake simulator testing comprised of two blocks 

weighting a total of 32 kips (142.3kN), and was secured with rods atop of the four 

columns using rounded plates in order to achieve simple connections.   

Testing conducted only in the horizontal direction; vertical component of the ground 

motion was not considered. A list of ground motions used in the earthquake-simulator testing 

and their characteristics are presented in Table 4-1. The table provides information on the peak 

values of acceleration, velocity, and displacement of the originally recorded motion, and the 

maximum scale factor used to scale the original records in acceleration amplitude. In the testing 

the motions were compressed in time by a factor of √2 due to similitude requirement of the 

model’s length scale factor of 2.  

 

 

Figure 4-1 Model Structure on Earthquake Simulator (shown configuration is Model 2,     

R-R)  
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The fidelity of the earthquake-simulator was investigated by comparison of 5-percent 

damped acceleration response spectra of the actual (target) ground motions and the spectra of the 

recorded acceleration motion of the extension table to which the model was attached (seen in 

Figure 4-1). Figure 4-2 compares the actual (target) and simulated response spectra of the ground 

motion records. The earthquake simulator reproduced the target motion comparatively well. 

Some discrepancies in the simulation is observed in the vicinity of the natural period of the 

model structure (~0.35 – 0.45sec) when the resonance frequency occurs, and structure-simulator 

interaction becomes predominant.  

 

Table 4-1 Earthquake Motions Used in Earthquake-Simulator Testing and Characteristics 

in Prototype Scale (All Components are Horizontal) 

NOTATION RECORD 
PEAK 

ACCEL. 

(g) 

PEAK 

VEL. 

(in/sec) 

PEAK 

DISPL. 

(in) 

MAX. 

SCALE 

FACTOR 

El Centro 

S00E 

Imperial Valley, May 18, 1940, 

Component S00E 
0.348 13.0 4.28 1.00 

Taft 

21 

Kern County, July 21, 1952 

Component 21 
0.159 6.0 2.64 3.00 

Pacoima 

164 

San Fernando, February 9, 1971, 

Component 164 
1.22 45.0 4.26 0.75 

Newhall 

90 

Northridge, January 17, 1994, 

LA County Fire Station, component 90 
0.58 29.5 6.93 0.75 
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Figure 4-2 Response spectra in model scale of actual (target) ground motions and motions 

produced by earthquake simulator 
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Figure 4-2 Cont’d. Response spectra in model scale of actual (target) ground motions and 

motions produced by earthquake simulator 
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4.2 Instrumentation of Model Structure for Earthquake Simulator Testing 

 

The instrumentation consisted of accelerometers, displacement transducers, load cells and 

Krypton light emitting diodes or LED (used for a limited number of tests). The instrumentation 

scheme was similar to that of the previously tested scissor-jack damper system (Sigaher-Boyle et 

al., 2005). A list of monitored channels and their description are presented in Table 4-2. Figures 

4-3 and 4-4 show the location of these instruments and the direction of recording.  All measured 

signals were filtered using a low-pass filter with a cutoff frequency of 25 Hz.  

 

Table 4-2 List of Instruments Used in Earthquake Simulator Testing 

CHANNEL INSTRUMENT NOTATION RESPONSE MEASURED UNITS 

1 / TIME Time sec 

2 Accelerometer ABSH Base Horizontal Accel. –S g 

3 Accelerometer ABNH Base Horizontal Accel.-N g 

4 Accelerometer ABWSV Base Vertical Accel.-WS g 

5 Accelerometer ABWNV Base Vertical Accel.-WN g 

6 Accelerometer ABESV Base Vertical Accel.-ES g 

7 Accelerometer ACTS Column Top Horiz. Accel.-S g 

8 Accelerometer ACJS Column Joint Horiz. Accel.-S g 

9 Accelerometer ACTN Column Top Horiz. Accel.-N g 

10 Accelerometer ACJN Column Joint Horiz. Accel.-N g 

11 Accelerometer ACTTE Column Top Tarnsv. Accel.-E g 

12 Accelerometer ACTTW Column Top Tarnsv. Accel.-W g 

13 Accelerometer ACTVS Column Top Vert. Accel.-S g 

14 Accelerometer ACTVN Column Top Vert. Accel.-N g 

15 Accelerometer ATBH Top Block Horiz. Accel. g 

161 Load Cell Dp_Frc_S Damper Force-S kip 

171 Load Cell Dp_Frc_N Damper Force-N kip 

18 Disp. Transducer DBS Base Horiz. Displ.-S in 

19 Disp. Transducer DBN Base Horiz. Displ.-N in 

20 Disp. Transducer DTS Column Top Horiz. Displ.-S in 

21 Disp. Transducer DJS Column Joint Horiz. Displ.-S in 

22 Disp. Transducer DTN Column Top Horiz. Displ.-N in 

23 Disp. Transducer DJN Column Joint Horiz. Displ.-N in 
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Table 4-2 Cont’d. List of Instruments Used in Earthquake Simulator Testing 

CHANNEL INSTRUMENT NOTATION RESPONSE MEASURED UNITS 

24 Disp. Transducer DTBH Top Block Horiz. Displ. in 

25 Disp. Transducer Dp_Dsp_S Damper Displ.-S in 

26 Disp. Transducer Dp_Dsp_N Damper Displ.-N in 

27 LED DRPPS Rocker Plate Pivot Pin.-S in 

28 LED DRPLS Rocker Plate Left Pin.-S in 

29 LED DRPTS Rocker Plate Top Pin .-S in 

30 LED DRPPN Rocker Plate Pivot Pin.-N in 

31 LED DRPLN Rocker Plate Left Pin.-N in 

32 LED DRPTN Rocker Plate Top Pin .-N in 

332 LED DRS Rod bottom joint-S in 

342 LED DRN Rod bottom joint-N in 

353 Disp. Transducer DLAT Table Horiz. Displ. in 

363 Disp. Transducer SPEXTXS Extens. Table Horiz. Displ.-S in 

373 Disp. Transducer SPEXTXN Extens. Table Horiz. Displ.-N in 

383 Disp. Transducer SPEXTY Extens. Table Transv. Displ. in 

393 Disp. Transducer SPEXTZ Extens. Table Vert. Displ. in 

403 Accelerometer ATBLX Shake Table Horiz.Accel. g 

413 Accelerometer ATBLY Shake Table Transv.Accel. g 

423 Accelerometer ATBLZ Shake Table Vert.Accel. g 

433 Accelerometer AEXTX Extens. Table Horiz.Accel. g 

443 Accelerometer AEXTY Extens. Table Transv.Accel. g 

453 Accelerometer AEXTZ Extens. Table Vert.Accel. g 

E = East, W = West, N = North, S = South, SE = South East, SW = South West, 

NE = North East 

1 Load cells were used for measuring the damper force only in Model 1 and Model 2  

2 Needed for Model-1 

3 Instruments used to control earthquake simulator 
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Figure 4-3 Accelerometer and Load Cell Instrumentation Diagram of Tested Structure 
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Figure 4-4 Displacement Transducer and LED Instrumentation Diagram of Tested Structure 
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4.3 Identification of Dynamic Properties of Model Structure 

 

The model as shown in Figure 4-1 consisting of two frames and a 32kips (142.3kN) 

concrete mass on top of the columns was placed on the shake table in its dynamic characteristics 

identified.  The base of the model was driven in banded white noise excitation within a 

frequency range of 0-25Hz and acceleration amplitude of 0.05 to 0.3g in several tests. Transfer 

functions were then constructed as the ratio of the Fourier transforms of the acceleration 

recorded at the column top (where the concrete mass is connected to the frame) to the 

acceleration recoded at the column base.  The average acceleration histories recorded at the two 

frames (average of ACTS-ACTN, and average of ABHS-ABHN, see Figure 4-3 and Table 4-2) 

were used as some torsion occurred.  The amplitude of the transfer function was used to obtain 

the frame characteristics in terms of the fundamental frequency and damping ratio by treating the 

tested system as a single-degree-of-freedom system (SDOF).  This is reasonably acceptable 

assumption for the tested structure except for the problem of torsional response which was 

somehow alleviated by averaging the recorded acceleration histories of the two frames. 

Assuming that damping is relatively small, the peak of the transfer functions reveals the 

location of the fundamental frequency of the SDOF system.  The damping ratio  is related to the 

peak value of the transfer function Tpeak and given by Equation (4-1).  

 

 𝜉 = √
1

4(𝑇𝑝𝑒𝑎𝑘
2 − 1)

 (4-1) 

Figure 4-5 presents representative amplitude of transfer function vs frequency plots for the five 

tested systems with the damping system at white noise acceleration amplitude of 0.3g.  The five 

systems are identified by model (1, 2 or 3 per Figure 3-1), beam-to-column connections and 

placement of the connection (left or right frame joint).  The graphs also include the transfer 

function plots for the structure without the damping system at white noise acceleration amplitude 

of 0.1 to 0.3g.  All transfer functions were obtained in tests that followed several seismic tests.  

The fundamental frequency and damping ratio of the model were obtained from the location and 

value of the single dominant peak in the transfer function amplitude per Equation (4-1). The 

values are presented in Table 4-3. The transfer function amplitude function shown for the un-
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damped rigid-semi-rigid frame has two dominant peaks, indicating strong torsional response.  

The damping ratio could not be estimated from this graph on the basis of Equation (4-1) as the 

equation does not apply to a multi-degree-of-freedom system.  The frequency was estimated on 

the basis of the second peak location. 

 

Table 4-3 Identified Characteristics of Model Structure with and without Damping System 

Model 
Beam-to-Column 

Connections (left and right) 

Fundamental 

Frequency (Hz) 

Damping 

 Ratio 

Without 

Damping System 

Simple-Rigid 2.301 0.0111 

Rigid-Simple 2.20 0.017 

Rigid-Rigid 2.98 0.029 

Rigid-Semi-rigid 2.40 NA 

1 Simple-Rigid 2.21 0.087 

2 

Rigid-Simple 2.60 0.102 

Simple-Rigid 2.30 0.068 

Rigid-Rigid 3.00 0.075 

3 Rigid-Semi-rigid 2.56 0.117 
1: In another test frequency was 2.20Hz and damping was 0.023 

 

The un-damped frame has low damping of the order of 0.01 to 0.03 depending on the 

conditions of testing.  The effect of the damping system is evident in the increase in damping and 

to a small extent in the increase in frequency (however, it should be noted that frequency was 

also affected by degree of bolt tightening).  The increase in frequency is the result of viscoelastic 

behavior caused by the frame and damping system assembly deformation under the action of the 

inertia and damping forces. The damping ratio could be predicted by: 

 

 𝛽 =
𝑇𝐶𝑜𝑓2𝑔𝜙1

2

4𝜋𝑊𝜙2
2  (4-2) 

 

Equation (4-2) is a modification of Equation (1-3) to account for the fact that mass of the single 

degree of freedom system undergoes a different displacement than the beam to which the 

damping system is connected to.  In Equation (4-2), 𝜙1 is the modal displacement of the beam-

to-column joint and 𝜙2 is the modal displacement of the center of mass of the concrete block,  
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Figure 4-5 Amplitude of Transfer Functions of Model Structure with and without Damping 

System 
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Figure 4-5 Cont’d.  Amplitude of Transfer Functions of Model Structure with and without 

Damping System 
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which presumably is the same as that of the column top when assuming simple connection 

between the concrete mass and the column top. Approximately, 𝜙1/𝜙2 is equal to 𝐻1/𝐻2, where 

𝐻2 is the height of the column ( =90.63inch-see Figure 3-1) and 𝐻1 is the height of the beam-to-

column joint (=75.13inch-see Figure 3-1). Use of Equation (4-2) for Model 2 in the Rigid-

Simple configuration and utilizing the identified frequency of 2.60Hz, so that T=0.385sec, 

W=32.8kips(145.9kN), H1/H2=0.83, Co=2x0.36=0.72kip-sec/in (2x0.063=0.126kN-sec/mm) and 

the measured value of the magnification factor under dynamic conditions in Table 3-2 f=0.75 

(least of values in two directions under dynamic conditions), the added damping ratio is 

calculated as β=0.100.  Adding about 0.015 for the inherent damping, the damping ratio is 0.115, 

which compares well with the experimental value of 0.102 in the identification tests. However, 

use of the computed value of the magnification factor f=0.91 per Table 3-2 would have resulted 

in a total damping ratio of about 0.16 rather than 0.115.  As explained earlier, the value of the 

magnification factor has been affected by slippage in the joints as demonstrated in the test data of 

Figure 3-5 to 3-8. 

The problem of slippage in the joints together with loosening and periodic tightening of 

the bolted connections resulted in continuous changes in the properties of the tested frame during 

the history of the experiments.  As an example, Figure 4-6 presents transfer functions of one of 

the tested damped configurations over a period of several days starting with a test prior to any 

seismic tests and ending with a test after completing all seismic tests.  The peak value, the test 

number (numbered consecutively) and the test data date are used to identify each curve.  Note 

that several tests were conducted in-between the identification tests shown in Figure 4-6. The 

changing properties of the frame are evident in Figure 4-6.   

 

4.4 Earthquake Simulator Test Results  

 

A summary of selected results in the earthquake simulator testing is presented in Table 4-4. 

The table contains the following: 

1. The system tested and test number. The models tested are identified as M2R-S for Model 

2 with Rigid-Simple connections on the left and right, respectively, M2S-R for Model 2 

with Simple-Rigid connections, M3R-sR for Model 3 with Rigid-Semi-Rigid 

connections,  
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Figure 4-6 Transfer Functions of Model 2 Rigid-Simple Configuration in Several Tests 

 

etc. Note that systems M1S-R, M2S-R, M2R-S, M2R-R and M3R-sR were tested, 

whereas system M1R-S was not tested as it was known to have a low magnification 

factor.  Description of seismic excitation, which includes the excitation name, 

component, and acceleration amplitude scale. For example, EL CENTRO S00E 50% 

implies that the record was component S00E of the El Centro earthquake, scaled in 

amplitude of acceleration to 50-percent of the actual record. 

3. Peak values of the earthquake simulator displacement, velocity and acceleration. The 

peak simulator displacement was obtained from instrument DBE (see Table 4-2), the 

peak velocity was derived from numerical differentiation of the displacement record, and 

the peak acceleration was obtained from instrument AEXTX (see Table 4-2). 



 

66 

 

4. Peak frame response (average of the south and north frame) in terms of drift 

(displacement of the beam-to-column joint with respect to column base), beam-to-column 

acceleration, damper displacement and damper force.  

5. Values of the magnification factor determined separately for motion towards the left and 

for motion towards the right, then using the maximum value between the two and then 

averaging the values at south and north frames so that any torsion effects are removed.  

More details of values of the magnification factor are presented in Appendix C. 

The peak frame response values are the average of the two quantities measured at the two 

frames of the model. The two values differed due to asymmetry in the model caused by slight 

variations in stiffness of the two frames, slippage in the joints (which was not the same in the 

two frames), degree of tightening of the bolts of joints of the two frames and amount of tension 

in the transverse cross-bracing of the structure. The reported magnification factor is simply the 

ratio of the peak damper displacement to the peak frame drift. As discussed earlier in this report 

when the frame testing was described, the magnification factor is dependent on the frame 

deformations and on slippage in the joints.  The latter is affected by the direction and the 

amplitude of motion.  That is, the magnification factor changes during motion and the reported 

value should be viewed as a representative single value. Other selected results are presented in 

Appendix C. The results in the appendix include histories of the joint acceleration, frame drift 

and damper deformation, and loops of damper force versus damper deformation.  Also, 

Appendix D presents drawings of the model as assembled on the earthquake simulator. 

The measured values of magnification factor lie in the range of 0.65 to 0.77 for Model 2 

R-S, 0.48 to 0.56 for Model 2 S-R, 0.49 to 0.56 for Model 1 S-R, 0.54 to 0.63 for Model 2 R-R 

and 0.82 to 0.84 for Model 3 R-sR.  The values of the magnification factor for the tested systems 

are consistent with those reported in Table 3-2 as obtained in the cyclic testing of individual 

frames under dynamic conditions (0.75 for M2R-S, 0.67 for M2S-R, 0.49 for M1S-R). The 

values measured in the shake table testing of system M2S-R are lower than those from the 

individual frame testing with the likely reason being differences in the condition of the simple 

connections.   Moreover, for system Model 3 R-sR, which has not been cyclically tested, the 

magnification factor is higher than the other systems due to the fact that it is unaffected by the 

beam deformations.  Measured values of magnification factor for the Model 3 R-sR 
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configuration are in the range of 0.82 and 0.84 compared to the value of 0.91 predicted by a 

computational model of the frame including the effects of frame deformations due to the inertia 

and damping forces.  The difference between the experimental and computational values is due 

again to slippage in the bolted joints that could not be analytically accounted for, and due to 

differences in the stiffness of the frame between the physical model and the computational 

model.  

 

Table 4-4 Peak Response of Model Structure in Earthquake-Simulator Testing 

System 

 

 

Test 

# 
Excitation 

Peak Earthquake 

Simulator Motion Drift 

(inch) 

Accel 

(g) 

Damper 

Displ. 

(inch) 

Damper 

Force 

(kip) 

Magnif. 

Factor 

 
Displ. 

(inch) 

Veloc. 

(inch/sec) 

Accel. 

(g) 

 11 TAFT N21E 200% 1.97 7.42 0.29 0.51 0.37 0.35 2.38 0.69 

 13 EL CENTRO S00E 50% 0.87 4.30 0.18 0.46 0.32 0.30 1.82 0.65 

 14 EL CENTRO S00E 100% 1.96 8.58 0.33 0.86 0.55 0.61 3.22 0.71 

M2R-S 19 PACOIMA S74W 50% 3.12 13.44 0.45 0.44 0.34 0.33 1.92 0.75 

 23 PACOIMA S74W 75% 4.70 20.16 0.72 0.68 0.50 0.51 2.95 0.75 

 70 PACOIMA S74W 100% 6.32 27.17 1.01 1.05 0.65 0.79 3.70 0.75 

 71 NEWHALL 90 75% 2.43 12.32 0.60 0.87 0.54 0.67 4.22 0.77 

 38 TAFT N21E 200% 1.94 7.36 0.29 0.90 0.52 0.44 2.53 0.51 

 35 EL CENTRO S00E 50% 0.99 4.41 0.18 0.55 0.32 0.26 1.43 0.48 

M2S-R 63 EL CENTRO S00E 100% 1.95 8.71 0.30 1.03 0.56 0.58 2.90 0.56 

 36 PACOIMA S74W 50% 3.12 13.60 0.45 0.48 0.31 0.21 1.48 0.49 

 64 PACOIMA S74W 75% 4.72 20.18 0.71 0.78 0.49 0.42 2.12 0.55 

 42 EL CENTRO S00E 50% 0.99 4.35 0.17 0.52 0.29 0.26 1.34 0.50 

 44 PACOIMA S74W 50% 3.12 13.40 0.44 0.47 0.31 0.25 1.49 0.54 

 45 PACOIMA S74W 75% 4.69 20.16 0.70 0.75 0.48 0.40 2.05 0.53 

M1S-R 48 NEWHALL 90 50% 1.59 8.12 0.36 0.66 0.40 0.32 2.27 0.49 

 54 TAFT N21E 200% 1.94 7.32 0.29 0.91 0.50 0.49 2.17 0.55 

 55 PACOIMA S74W 75% 4.73 20.42 0.71 0.79 0.48 0.44 1.90 0.56 

 26 EL CENTRO S00E 50% 0.85 4.65 0.19 0.33 0.32 0.18 1.46 0.54 

M2R-R 66 TAFT N21E 200% 1.98 7.39 0.28 0.55 0.50 0.31 2.35 0.58 

 67 PACOIMA S74W 75% 4.76 20.16 0.75 0.77 0.68 0.48 3.45 0.63 

M3R-sR 83 EL CENTRO S00E 100% 1.95 8.70 0.34 0.77 0.61 0.64 NA 0.82 

 84 PACOIMA S74W 75% 4.74 20.20 0.71 0.74 0.54 0.62 NA 0.84 
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SECTION 5  

ANALYTICAL PREDICTION OF RESPONSE  

 

5.1 Analytical Model 

 

Dynamic analysis of the tested structure was performed in computer program SAP2000. 

Figure 5-1 depicts the analytical model used in the cases of Model 1 and Model 2, Rigid-Simple 

configuration.  Note that each simple connection (beam-to-column and the two column bases) 

was modeled as a pin with a rotational spring (partial fixity in SAP2000) of which the stiffness 

was determined so that the fundamental frequency was close to the one measured in the 

identification tests of the structure without the damping system (see Table 4-3).  All connections 

of the damping system were modelled as true pins.  Also, the connection of each column top to 

the concrete mass was modelled as a true pin (in reality it is not).  Inherent damping of 2% of 

critical in each mode of vibration was assigned to the model. Only one of the two frames was 

modeled. Masses, calculated from the added concrete blocks and the tributary weights of the 

elements, were lumped at the joints, as shown in Figure 5-2. Joint coordinates including lumped 

masses are listed in Table 5-1. Element properties in the SAP2000 model are listed in Table 5-2. 

The viscous damper was modeled as nonlinear link element (Damper-Exponential in SAP2000) 

with a damping coefficient of 0.36 kip-sec/in and damping exponent of unity. Nonlinear modal 

time history analysis (known as fast nonlinear analysis) was used for the solution, which is 

limited to small deformation theory. 

 

5.2 Response History Analysis Results 

 

Figure 5-3 to 5-6 present comparisons of analytical and experimental results in eight 

selected tests of the five tested systems. The compared results are acceleration and drift histories, 

damper force-displacement loops and base shear normalized by weight W vs drift loops (W is the 

tributary weight of one frame=16.4kip or 72.95kN) versus drift. The predicted acceleration and 

drift histories and the base shear-drift loops are in good agreement with the experimental 

response.  The damper force-displacement loops were not predicted well by the analytical model 

due to primary overestimation of the damper displacement (and thus also damper velocity).  This 
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is the results of overestimation of the magnification factor due to inability to account for joint 

slippage and for hysteretic behavior in the “simple” frame joints (which were dependent on the 

degree of bolt tension, and kept changing during testing) in the analytical model. It may be noted 

in Figure 5-3 to 5-6 that the analytical model predicts a damper displacement of as much as 

0.2inches (5mm) more than the observed value, which is consistent with what was possible 

slippage in the oversize-hole connections (3/16th inch or 5mm).   

Slippage in the joints together with oversized holes was a characteristic of the tested model 

while in actual applications the connections will be welded or with standard size holes, for which 

slippage in the joints will be of the order of 1/16th inch (1.5mm) rather than 3/16th inch (5mm).  

The importance of joint slippage is better appreciated when one considers that the tested model 

was at length scale of 2, so that the drift and damper displacement were half of those of actual 

buildings, whereas the slippage was as much as three times larger. 
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Figure 5-1 Illustration of Analysis Model in SAP2000 for Case of Model 1 or Model 2  in 

Rigid-Simple Configuration of Tested Structure 
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Figure 5-2 Lumped Weights in SAP2000 Model of Tested Structure  
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Table 5-1 Joint Coordinates and Lumped Joint Weights in SAP2000 Model 

Joint  X 

 (in) 

Z 

 (in) 

Weight  

(lb) 

1 0 0 0 

2 0 75.125 137 

3 100 75.125 137 

4 100 0 0 

5 *0/NA *19.832/ NA *9.5/NA 

6 *0/37.478 *19.832/3.05 *15/0 

7 24.57 57.995 22 

8 19.881 59.73 15 

9 28.046 67.357 10 

10 67.627 67.375 10 

11 22.827 71.125 19 

12 22.827 75.125 9.5 

13 67.627 75.125 9.5 

14 0 90.625 516 

15 100 90.625 516 

16 0 116.425 3750 

17 50 116.425 7500 

18 100 116.425 3750 

*First value is for Model 1, second value is for Model 2 
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Table 5-2 Element Properties in SAP2000 Model 

Element 

 

Start 

Joint  

End 

Joint  
Section Area 

(in2) 

Izz 

(in4) 

Shear Area 

(in2) 

1 1 2 W8X15 4.44 48 1.99 

2 2 3 W8X13 3.84 39.6 1.84 

3 3 4 W8X15 4.44 48 1.99 

4 5 6 RIGID 100 100 100 

5 7 8 RIGID 100 100 100 

6 7 9 RIGID 100 100 100 

7 7 11 PLATE 2 3.6 100 

8 6 8 BEAM 3.14 10 10 

9 10 13 RIGID 100 100 100 

10 11 12 RIGID 100 100 100 

11 2 14 W8X15 4.44 48 1.99 

12 3 15 W8X15 4.44 48 1.99 

13 14 16 RIGID 1000 10000 1000 

14 15 18 RIGID 1000 10000 1000 

15 16 17 RIGID 1000 10000 1000 

16 17 18 RIGID 1000 10000 1000 

NLINK 6 10 C = 0.36 kip-sec/in 

SPRING 3 - Krot = 20000 kip-in/radian 

SPRING 1 - Krot = 6000 kip-in/radian 

SPRING 4 - Krot = 6000 kip-in/radian 
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Figure 5-3 Comparison of Experimental and Analytical Results for Model 2 R-S in Two 

Tests 
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Figure 5-4 Comparison of Experimental and Analytical Results for Model 1 S-R in Two 

Tests 
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Figure 5-5 Comparison of Experimental and Analytical Results for Model 2 S-R in Two 

Tests 
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Figure 5-6 Earthquake Simulator Test Results for Model 2 R-R and Model 3 R-sR in 

Pacoima Motion 
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SECTION 6  

SUMMARY AND CONCLUSIONS 

A damping system has been described which allows for open space configuration that is 

most desirable by architects, owners and engineers.  The configuration features a damper that 

may be installed parallel to the beam and which is connected to a column or the beam below 

through an inclined lever mechanism and a vertically inclined brace.  The magnification factor 

accomplished by this configuration is close to that of the commonly used diagonal configuration, 

although larger values may be achieved at the expense of reduction in the open space 

characteristics. 

A theory has been presented to predict the magnification factor of the system, defined as 

the ratio of the damper displacement to the frame drift, which is needed in predicting the 

damping ratio of the structure.  It has been shown that the magnification factor is significantly 

affected by the beam deformations at the locations where the system is attached.  However, the 

magnification factor is practically unaffected by the level of the damper forces (as large as 25% 

of the base shear force) and by large deformation effects up to a story drift of 4% of the story 

height.   

Verification of the theory has been presented by comparison of theoretical predictions of 

the magnification factor to results of computational analysis of a sample frame in program 

SAP2000.  This frame is a half-length scale model of a portal frame built for testing of the open 

space damping system. 

An experimental study of the open space damping system has been presented.  The 

experiments were conducted in order to demonstrate the increase in damping afforded by the 

damping system and to acquire data on dynamic response for validating the developed 

computational models for analysis.  On the basis of the presented results, it may be concluded 

that the behavior of structures with the open space damping system can be predicted with 

sufficient accuracy for practical applications using readily available computational tools. In 

general, the prediction of drift and acceleration histories of response was in good agreement with 

the recorded response.  However, damper displacements were generally over-predicted by as 

much as 0.2in (5mm), a value which is consistent with what was possible slippage in the 

oversize-hole connections of the tested frame (3/16th inch or 5mm). 
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The difficulties encountered with slippage in the joints were a characteristic of the tested 

model rather than of actual structures of which connections are typically welded or, when simple, 

they employ standard holes (rather than the slotted holes used in the model) and thus slippage is 

much less.  Nevertheless, any uncertainty in properties needs to be accounted for by bounding 

analysis in which more than one models of analysis are used and the maximum response is 

utilized in design. 
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APPENDIX A  

DERIVATION OF MAGNIFICATION FACTOR 

 

Consider Figure 1-6.  The movement of brace EC and rocker plate CAB is further 

illustrated in Figure A-1 for the case without frame deformation effects.  Note that the original 

configuration (prior to frame lateral motion) is shown in dashed lines, and the final configuration 

(after the frame experiences lateral motion) is shown in solid lines.  Members are considered 

inextensible so that the lengths of brace EC (LEC) and of members CA (L) and AB (h) are 

constant.  Note that the horizontal displacements of points A and D are the same as the drift u.  

Expressions for the displacements of points A, B, C and D, obtained entirely on the basis of 

kinematics, are shown in the Figure 12. Note also that counter-clockwise rotations are positive. 

The coordinates of points  𝐶 𝑎𝑛𝑑 𝐶′ are, respectively, given by (𝑋𝐶 , 𝑌𝐶) =

(𝐿𝐸𝐶 sin 𝜃2 , 𝐿𝐸𝐶cos𝜃2) and (𝑋𝐶′, 𝑌𝐶′) = (𝐿𝐸𝐶 sin 𝜃2
′ , 𝐿𝐸𝐶cos𝜃2

′ ).  It follows from the figure 

above that 𝑌𝐶
′ = 𝐿𝐸𝐶cos𝜃2

′ = 𝑌𝐶 + 𝐿 sin(𝜃 + 𝜃3) − 𝐿sin𝜃 .  Also, 𝑋𝐶
′ = 𝐿𝐸𝐶sin𝜃2

′ = 𝑋𝐶 + 𝑢 +

𝐿𝑐𝑜𝑠𝜃3 − 𝐿 cos(𝜃 + 𝜃3).  The cosine and sine of angle 𝜃2
′  are given by the following equations 

after using 𝑋𝐶 = 𝐿𝐸𝐶 sin 𝜃2 and 𝑌𝐶 = 𝐿𝐸𝐶 cos 𝜃2 : 

 cos(𝜃2
′ ) =

𝑌𝐶′

𝐿𝐸𝐶
= cos 𝜃2 +

𝐿

𝐿𝐸𝐶
sin(𝜃 + 𝜃3) −

𝐿

𝐿𝐸𝐶
sin𝜃  (A-1) 

 sin 𝜃2
′ =

𝑋𝐶′

𝐿𝐸𝐶
= sin 𝜃2 +

𝑢

𝐿𝐸𝐶
+

𝐿𝑐𝑜𝑠𝜃3

𝐿𝐸𝐶
−

𝐿

𝐿𝐸𝐶
cos(𝜃 + 𝜃3) (A-2) 

 

Angle 𝜃2
′  is eliminated from Equations (A-1) and (A-2) by use of 𝑐𝑜𝑠2(𝜃2

′ ) + 𝑠𝑖𝑛2(𝜃2
′ ) = 1 and 

after some algebra, the following is derived: 

 

𝑢2

𝐿𝐸𝐶
+

2𝑢𝐿

𝐿𝐸𝐶

(cos𝜃3 − cos(𝜃3 − 𝜃)) + 2𝑢𝑠𝑖𝑛𝜃2 + 2𝐿𝑠𝑖𝑛(𝜃 − 𝜃2 + 𝜃3)

+ 2𝐿𝑠𝑖𝑛(𝜃2 − 𝜃3) = 0 

(A-3) 
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Figure A-1: Illustration of an Initial and Deformed Geometry of an Open Space System 

without Frame Deformation: (a) Rotation of Point A; (b) Damper Motion  
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Assuming small rotations so that sin(𝜃)~ 𝜃 and cos(𝜃) ~1, Equation (A-3) reduces to 

 

 
𝑢2

𝐿𝐸𝐶
+ 2𝑢𝜃

L

𝐿𝐸𝐶
𝑠𝑖𝑛𝜃3 + 2𝐿𝜃 cos(𝜃2 − 𝜃3) + 2𝑢 sin 𝜃2 = 0 

(A-4) 

 

Terms involving u2 and uθ are higher order terms so that for small displacements and rotations, 

Equation (A-4) reduces to 

 𝑢sin𝜃2 + L𝜃cos(𝜃2 − 𝜃3) = 0 (A-5) 

 

Solving for θ yields 

 𝜃 = −
𝑢𝑠𝑖𝑛𝜃2

𝐿𝑐𝑜𝑠(𝜃2 − 𝜃3)
 (A-6) 

 

The magnification factor is 𝑓 = (𝐿𝐵′𝐷′ − 𝐿𝐵𝐷)/𝑢, where (𝐿𝐵′𝐷′ − 𝐿𝐵𝐷) is the damper 

deformation 𝑢𝐷 and u is the drift, which is related to angle θ through Equation (A-6). Consider 

now the coordinates of points D and D’.  Per Figure A-1(b), they are (𝑋𝐷, 𝑌𝐷) = (𝑋𝐴 − ℎ𝑠𝑖𝑛𝜃3 +

𝐿𝐵𝐷𝑐𝑜𝑠𝜃1,  𝑌𝐴 + ℎcos𝜃3 + 𝐿𝐵𝐷𝑠𝑖𝑛𝜃1) and (𝑋𝐷
′ , 𝑌𝐷

′ ) = (𝑋𝐴
′ − ℎsin(𝜃3 + 𝜃) + 𝐿𝐵′𝐷′cos𝜃1

′ , 𝑌𝐴
′ +

ℎcos(𝜃3 + 𝜃) + 𝐿𝐵′𝐷′𝑠𝑖𝑛𝜃1
′ ). Note that from the kinematics of the Figure A-2(b), 𝑋𝐷

′ − 𝑋𝐴
′ =

𝑋𝐷 − 𝑋𝐴, and 𝑌𝐷
′ − 𝑌𝐴

′ = 𝑌𝐷 − 𝑌𝐴.  Using these relations, the following equations are derived.  

 𝐿𝐵′𝐷′𝑐𝑜𝑠𝜃1
′ = 𝐿𝐵𝐷𝑐𝑜𝑠𝜃1 + ℎ𝑠𝑖𝑛(𝜃 + 𝜃3) − ℎ𝑠𝑖𝑛𝜃3 (A-7) 

 

 𝐿𝐵′𝐷′𝑠𝑖𝑛𝜃1
′ = 𝐿𝐵𝐷𝑠𝑖𝑛𝜃1 − ℎ𝑐𝑜𝑠(𝜃 + 𝜃3) + ℎ𝑐𝑜𝑠𝜃3 (A-8) 

 

Angle 𝜃1
′  is eliminated from Equations (A-7) and (A-8) by use of 𝑐𝑜𝑠2(𝜃1

′) + 𝑠𝑖𝑛2(𝜃1
′) = 1 and 

after some algebra, the following is derived: 
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𝐿𝐵′𝐷′

2 − 𝐿𝐵𝐷
2 = 2ℎ2 − 2ℎ2𝑐𝑜𝑠𝜃 + 2𝐿𝐵𝐷ℎ𝑠𝑖𝑛(𝜃1 − 𝜃3)

+ 2𝐿𝐵𝐷ℎ𝑠𝑖𝑛(𝜃 − 𝜃1 + 𝜃3) 

(A-9) 

 

Expanding the terms in Equation (A-9) and for small rotations so that sin(𝜃)~ 𝜃 and cos(𝜃) ~1, 

the following is derived 

 (𝐿𝐵′𝐷′ − 𝐿𝐵𝐷)(𝐿𝐵′𝐷′ + 𝐿𝐵𝐷) = 2𝐿𝐵𝐷ℎ𝜃 cos(𝜃1 − 𝜃3) (A-10) 

 

In (A-10) 𝐿𝐵′𝐷′ − 𝐿𝐵𝐷 is the damper deformation, 𝑢𝐷.  Further recognizing that for small 

rotations, 𝐿𝐵′𝐷′ + 𝐿𝐵𝐷~2𝐿𝐵𝐷, the damper deformation is given by 

 𝑢𝐷 = 𝐿𝐵′𝐷′ − 𝐿𝐵𝐷 = ℎ𝜃 cos(𝜃1 − 𝜃3) ((A-11) 

 

Finally, from Equations (A-10) and (A-11) the magnification factor is obtained as 

 𝑓 =
𝑢𝐷

𝑢
= |

ℎ𝑐𝑜𝑠(𝜃1 − 𝜃3)𝑠𝑖𝑛𝜃2

𝐿𝑐𝑜𝑠(𝜃2 − 𝜃3)
| (A-12) 
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APPENDIX B 

RESULTS OF TESTING OF INDIVIDUAL FRAMES 
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APPENDIX C 

EARTHQUAKE SIMULATOR TEST RESULTS 
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Avg(+) Avg(-) Avg(+) Avg(-) Avg(+) Avg(-) Avg(+) Avg(-) Avg(+) Avg(-)

10/30/2015 11 M2 R-S osts2s2 TAFT N21E 200% 1.97 7.42 0.29 0.51 -0.49 0.36 -0.37 0.33 -0.35 2.38 -1.95 0.69 0.67

10/30/2015 13 M2 R-S osts2s4 EL CENTRO S00E 50% 0.87 4.30 0.18 0.37 -0.46 0.32 -0.26 0.30 -0.23 1.57 -1.82 0.61 0.65

10/30/2015 14 M2 R-S osts2s5 EL CENTRO S00E 100% 1.96 8.57 0.33 0.61 -0.86 0.55 -0.43 0.61 -0.42 2.95 -3.22 0.70 0.71

10/30/2015 19 M2 R-S osts2s10 PACOIMA S74W 50% 3.12 13.43 0.45 0.44 -0.39 0.26 -0.34 0.24 -0.33 1.80 -1.92 0.75 0.62

11/2/2015 23 M2 R-S osts2s12 PACOIMA S74W 75% 4.70 20.15 0.72 0.68 -0.58 0.38 -0.50 0.40 -0.51 2.85 -2.95 0.75 0.68

11/10/2015 70 M2 R-S osts14s02 PACOIMA S74W 100% 6.32 27.15 1.01 1.05 -0.74 0.48 -0.65 0.55 -0.79 3.62 -3.70 0.75 0.75

11/10/2015 71 M2 R-S osts14s03 NEWHALL 90 75% 2.43 12.31 0.60 0.82 -0.87 0.54 -0.44 0.67 -0.56 3.12 -4.22 0.68 0.77

11/3/2015 38 M2 S-R osts6s04 TAFT N21E 200% 1.94 7.35 0.29 0.88 -0.90 0.52 -0.50 0.42 -0.44 2.53 -1.99 0.51 0.46

11/2/2015 35 M2 S-R osts6s01 EL CENTRO S00E 50% 0.99 4.41 0.18 0.47 -0.55 0.32 -0.29 0.26 -0.21 1.43 -1.38 0.43 0.48

11/10/2015 63 M2 S-R osts12s01 EL CENTRO S00E 100% 1.95 8.70 0.30 0.85 -1.03 0.56 -0.48 0.58 -0.44 2.90 -2.52 0.52 0.56

11/2/2015 36 M2 S-R osts6s02 PACOIMA S74W 50% 3.12 13.59 0.45 0.48 -0.44 0.28 -0.31 0.21 -0.20 1.48 -1.22 0.42 0.49

11/10/2015 64 M2 S-R osts12s02 PACOIMA S74W 75% 4.72 20.16 0.71 0.78 -0.66 0.40 -0.49 0.36 -0.42 2.12 -1.82 0.54 0.55

11/3/2015 42 M1 S-R osts7s01 EL CENTRO S00E 50% 0.99 4.35 0.17 0.47 -0.52 0.29 -0.26 0.23 -0.26 1.34 -1.32 0.48 0.50

11/4/2015 44 M1 S-R osts7s03 PACOIMA S74W 50% 3.12 13.39 0.44 0.47 -0.44 0.27 -0.31 0.25 -0.22 1.37 -1.49 0.54 0.50

11/4/2015 45 M1 S-R osts7s04 PACOIMA S74W 75% 4.69 20.14 0.70 0.75 -0.65 0.39 -0.48 0.40 -0.32 1.98 -2.05 0.53 0.49

11/4/2015 48 M1 S-R osts7s07 NEWHALL 90 50% 1.59 8.12 0.36 0.66 -0.65 0.40 -0.34 0.32 -0.29 2.27 -1.51 0.49 0.45

11/9/2015 54 M1 S-R osts9s01 TAFT N21E 200% 1.94 7.32 0.29 0.90 -0.91 0.50 -0.50 0.49 -0.30 2.17 -2.13 0.55 0.33

11/9/2015 55 M1 S-R osts9s02 PACOIMA S74W 75% 4.73 20.41 0.71 0.79 -0.69 0.37 -0.48 0.44 -0.32 1.90 -1.74 0.56 0.46

11/2/2015 26 M2 R-R osts3s01 EL CENTRO S00E 50% 0.85 4.64 0.19 0.33 -0.31 0.32 -0.32 0.14 -0.18 1.04 -1.46 0.54 0.45

11/10/2015 66 M2 R-R osts13s01 TAFT N21E 200% 1.98 7.38 0.28 0.53 -0.55 0.50 -0.47 0.31 -0.31 2.35 -1.83 0.58 0.55

11/10/2015 67 M2 R-R osts13s02 PACOIMA S74W 75% 4.75 20.15 0.75 0.77 -0.75 0.68 -0.66 0.44 -0.48 3.34 -3.45 0.63 0.59

11/11/2015 83 M3 R-sR osts18s02 EL CENTRO S00E 100% 1.95 8.69 0.34 0.61 -0.77 0.61 -0.42 0.64 -0.48 -0.03 -0.03 0.77 0.82

11/11/2015 84 M3 R-sR osts18s03 PACOIMA S74W 75% 4.74 20.19 0.71 0.74 -0.56 0.45 -0.54 0.40 -0.62 -0.03 -0.03 0.84 0.72

EQ. SIMULATOR PEAK VALUES

Avg=Average value between two frames, (+): positive is towards the right, (-): negative is towards the left

FORCE (kips)

FRAME PEAK VALUES DAMPER PEAK VALUES MAGNIFICATION 

FACTORDISPL.   

(in)

VELOC.   

(in/sec)

ACCEL.     

(g)

DRIFT (in) ACCELERATION (g) DISPLACEMENT (in)DATE
TEST 

#

FRAME 

MODEL
TEST NAME EXCITATION
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APPENDIX D 

EARTHQUAKE SIMULATOR TEST DRAWINGS 
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