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Preface

MCEER is a national center of excellence dedicated to the discovery and development of new 
knowledge, tools and technologies that equip communities to become more disaster resilient in 
the face of earthquakes and other extreme events. MCEER accomplishes this through a system of 
multidisciplinary, multi-hazard research, in tandem with complimentary education and outreach 
initiatives. 

Headquartered at the University at Buff alo, The State University of New York, MCEER was originally 
established by the National Science Foundation in 1986, as the fi rst National Center for Earth-
quake Engineering Research (NCEER). In 1998, it became known as the Multidisciplinary Center 
for Earthquake Engineering Research (MCEER), from which the current name, MCEER, evolved.

Comprising a consortium of researchers and industry partners from numerous disciplines and 
institutions throughout the United States, MCEER’s mission has expanded from its original focus 
on earthquake engineering to one which addresses the technical and socio-economic impacts of a 
variety of hazards, both natural and man-made, on critical infrastructure, facilities, and society.

The Center derives support from several Federal agencies, including the National Science Founda-
tion, Federal Highway Administration, Department of Energy, Nuclear Regulatory Commission, 
and the State of New York, foreign governments and private industry.  
 
The research presented herein was developed to service multiple projects executed at the Univer-
sity at Buff alo’s Structural Engineering and Earthquake Simulation Laboratory (SEESL), which 
required advanced testing capabilities beyond those that currently exist. Based on stringent 
requirements of qualifi cation testing, the research developed tools suitable for investigative and 
qualifi cation purposes. The initiatives from the Suspended Nonstructural Component Systems 
Consortium, the NEES Nonstructural Components Research Project and most recently the 
Bonneville Power Administration projects on the protection and isolation of transformers and 
bushings, triggered the need to improve the controls of the shake tables. These controls have much 
broader applications in the control of structures and critical equipment through active isolation.
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ABSTRACT  

 
Shake table testing is an important tool to challenge integrity and service behavior of structural and 

nonstructural specimens by imposing strong excitations at their base. High fidelity of bare shake tables 

can be achieved through feedback control of actuators’ inner loop with fixed gains, based on table tuning 

procedures. When shake tables are loaded with specimens, the interaction between tables and specimens 

influence the system dynamics that might result in undesired performance. In order to compensate the 

effects of the interaction, open loop feedforward compensation methods have been satisfactorily used in 

the current practice of table controls, assuming that the specimens remain linear and unchanged. On the 

contrary, unsatisfactory signal performances during shake table testing were observed when flexible and 

heavy specimens experience nonlinear behavior. While lack of high fidelity might be acceptable for the 

purpose of research, i.e. to explore responses of specimens subject to random excitations, a high fidelity 

of signal reproduction is necessary for the shake table applications for qualification testing where specific 

target motions are required to challenge the specimens.  

In this study, tracking control schemes are proposed for shake tables in order to simulate target 

motions at specific locations of structural test specimens. The motion applied at the shake table level 

would probably be different than the target motion within the test structure; however, proper design of the 

shake table motion would ensure the desired performance of the controlled structure. The design of such 

controller is dependent on the dynamics of the shake table, dynamics of the test structure and their 

interaction. Additionally, when the specimens change properties due to nonlinearities and yielding caused 

by extreme excitations, the controller must be adaptive in order to account for the changes and 

uncertainties in system models and to ensure the desired tracking.  

Metaphorically, the procedure suggested herein would seem to help the performance of an acrobat, 

who tries to balance a flexible stick on his palm, ensuring that the payload at the upper end of his stick 

will not fall or have undesired movement.  But even for the acrobat, the success will be limited by the 

strength of his palm and the space where he will have to maneuver. Similarly the methodology sought in 

this report attempts to determine the procedures and limitations for real life applications of base 

movements with targeted control in test structures. 
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SECTION 1 

INTRODUCTION 

 

1.1 Seismic Testing of Nonlinear Structures 

Shake table tests allow realistic earthquake motions to be reproduced in order to challenge complex 

specimens and provide valuable knowledge of seismic performance of structures and nonstructural 

systems.  However, the reproduction of dynamic signals is usually imperfect due to the dynamics of the 

shake table and mostly due to the complexity of test specimens. When shake tables are loaded with the 

test specimens, the interaction between tables and such specimens affect the system dynamics and might 

result in undesired performance. In order to compensate for these interaction effects, open loop 

feedforward methods with offline and online error correction methods have been developed and widely 

used in practice. Even though these control methods were proved to be valuable and practical tools to 

challenge linear structures using shake tables, most developments assume that specimens remain linear or 

their nonlinear behavior is negligible. 

However, when flexible and heavy specimens (compared to shake table weight) experience nonlinear 

behavior, the signal reproduction of the shake table can be unsatisfactory; for instance, large differences 

between the target motion and achieved shake table motions with a heavy nonlinear specimen were 

observed by Schachter and Reinhorn (2007). These phenomena might be acceptable for exploratory 

research of structures subjected to random excitations, where no specific forcing motions are required. 

Unlike such exploratory research projects, “qualification testing” designed to verify certain performance 

of test specimens, must have high fidelity of signal reproduction that can challenge the structures by 

specifically required target motions. For example, qualification tests of nonstructural ceiling systems 

demand the reproduction of the required motions at specific locations within specimens mounted on shake 

tables. This can be a challenge for currently existing control methods if specimens experience nonlinear 

behavior that continuously changes their behavior. 

The objective of this study is to develop a controller for shake tables combined with a parameter 

estimator such that an output response y at a specific location in a nonlinear hysteretic test structure (e.g. 

the roof/floor of a specimen) will track a pre-defined desired target response motion ym. The control target 

motions considered in this study include: i) any total floor acceleration history that could be expected in 

the specimen and ii) total floor acceleration defined by a required response spectrum, such as AC156, the 

standard for shake-table testing of nonstructural components (ICC, 2010).  It is noted that in order to 

generate realistic “target floor” motions within structures for (i) above, such motion should be obtained 

from a numerical linear structural model subjected to simple pulse type excitations or real earthquake 
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records.  This kind of model is used herein and is referred to as the “reference model”. However, any 

theoretical target motion, such as recorded floor motions, without the reference model, can also be used. 

This control concept is schematically shown in Figure 1-1 where a test specimen is represented by a 

single degree-of-freedom nonlinear structure whose parameters are not fully known (the table 

displacement with respect to the ground is defined as xt and the relative displacement at the top of the 

structure with respect to the shake table is xs, and other terms are defined in the following sections). The 

motion applied at the shake table level would probably be different than the target motion, ym within the 

structure, but proper design of the table motion will insure the desired performance is achieved. The 

design of such a controller is dependent on the dynamics of the shake table, dynamics of the structure and 

their interactions. Additionally, when the structures change properties due to nonlinearities and yielding, 

the controller would have to be adaptive in order to insure the desired tracking.   

If successful, development of such a controller could be further expanded and used to achieve a 

desired performance at control locations in real structures using a hybrid passive-active isolation system, 

for example. Simple buildings, utility structures such as those used in transportation systems and power 

distribution, or sensitive manufacturing plants can benefit from such solutions.  

Metaphorically, the procedure would seem to help the work of an acrobat that tries to balance a 

flexible stick on his palm insuring that the payload at the upper end of his stick will not fall or have 

undesired movement.  But even the acrobat’ success will be limited by the strength of his palm and the 

space where he will have to maneuver.   The methodology sought in this study will try to determine 

procedures and their limitations for real life applications. 

 

 

Figure 1-1 Schematic of tracking control to simulate the target motion at a test structure 

 

More specifically, the problem can be understood from previous studies and developments.   In order 

to simulate a target motion in a linear structure (specimen), an open-loop (feed forward) compensation 

method using a table-structure system transfer function was developed (Maddaloni, Ryu, and Reinhorn, 
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2010) and implemented at the University at Buffalo (UB – SEESL) by the authors of this report. 

However, when specimens experience nonlinear behavior due to high intensity excitations, the pre-

computed compensation functions are not valid anymore, and the signal reproduction at the specified 

locations can be highly inaccurate. This can cause unreliable responses of a structure and secondary 

systems installed on the system. Therefore, more advanced control algorithms are needed to extend the 

use of shake tables to continuously changing and nonlinear specimens.  

 
Figure 1-2 Schematic of closed-loop compensation procedure 

Linear 
Structure 

Nonlinear 
Structure 

(a) Feed-forward tracking control scheme 
using pre-computed excitation (left) and the responses (right) 

(b) Feedback tracking control scheme 
using real-time computed excitation (left) and the response (right) 
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This concept is schematically described in Figure 1-2. For the tracking control problem using a shake 

table, the control excitation input u(t) might be pre-computed using the feed-forward compensation 

control method (described in Section 2.5). The tracking will be satisfactory if the controlled structure is 

linear (i.e. in this study, referring to linear system or linear time invariant system). However, if the 

structure experiences nonlinear behavior, the pre-computed excitation input cannot account for it and 

results in the tracking errors between the target motion [ym(t)] and the achieved response [y(t)] of the 

controlled structure as shown in Figure 1-2 (a). If feedback tracking control methods are introduced as 

shown in Figure 1-2 (b), the control excitation input u(t) can be computed in real time using a feedback 

controller combined with a parameter estimator such that the achieved response could follow a target 

motion. The system properties and more results of this example shown in Figure 1-2 can be found in 

Appendix A.1. 

A feedback tracking control procedure proposed in this study to simulate target motions at nonlinear 

structures using shake table control is presented in Figure 1-3 with the assumption that it is possible to 

provide a real time control excitation input, computed through an outer loop (ex. using a  real time hybrid 

simulation controller (UB-RTHSC) such as one at the University at Buffalo), to the servovalve-actuator 

of the shake table system (which has inner closed-loop feedback control). The control excitation input u(t) 

can be the desired shake table displacement xd(t) (such as used in a typical shake table control), primarily 

driven by stability considerations. When a target motion ym(t) at a structure with its initial condition is 

specified, the control excitation input u(t) is to be determined in real time, which will reduce the tracking 

error between the target motion ym(t) and the output y(t) of the structure, such that y(t) will follow the 

target ym(t). To determine the control excitation input u(t), the system parameters are to be known. In 

order to deal with parameter uncertainties due to hysteretic behavior in nonlinear structures, a real time 

estimator is introduced and combined with the controller.   

 

  

Figure 1-3 Schematic of the feedback tracking control scheme 
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The research problem is stated in Section 1. The current practice for shake table control is reviewed in 

Section 2. Tracking control methods for linear systems are introduced in Section 3, assuming that all 

parameters are known. In Section 4, feedback tracking control methods are extended to nonlinear 

hysteretic systems. Real time parameter estimation methods are introduced in Section 5 for systems with 

unknown parameters. The above control schemes are combined with the real time parameter estimators in 

Section 6 and Section 7 for linear and nonlinear systems, respectively. The developed methods are 

numerically applied to a realistic shake table – structure setup, using their real characteristic values, and 

the results are presented in Section 8. The remarks and conclusions are addressed at the end of this report. 

 

1.2 Tracking Control in Shake Table Testing (Literature Review) 

Shake table systems play a pivotal role in experimental earthquake engineering. The systems provide 

effective ways to subject structural components, substructures, or entire structural systems to dynamic 

excitations, which are similar to those induced by real earthquakes. In general, shake table systems consist 

of mechanical (e.g. platform), hydraulic or electromagnetic actuators (with servovalve), and electronic 

(controller and sensors) components (Ozcelik et al., 2008). The shake table (platform), which supports a 

specimen (structure), is constructed to provide high stiffness with minimum weight and is usually 

controlled by servo-hydraulic actuators. The controller provides the servovalve command to achieve a 

specific position of the actuator such that the platform will follow a pre-defined target motion. However, 

reproduction of a dynamic signal has many challenges involving servovalve actuator dynamics, shake 

table-structure interaction, nonlinear behavior such as compressibility of oil column in the actuator 

chamber and oil leakage through actuator seals, etc. (Ozcelik et al., 2008 and Maddaloni, Ryu and 

Reinhorn, 2010).  

In order to provide a better understanding of the shake table system and to improve its performance, 

mathematical models were developed by researchers (Blondet and Esparza, 1988, Rinawi and Clough, 

1991, Conte and Trombetti, 2000, Trombetti and Conte, 2002, and EFAST, 2009). The models developed 

for shake table systems were represented by transfer functions (in frequency domain) and validated by 

experimental results.  

In general, as addressed above, the objective of a shake table control is to simulate the pre-defined 

target motion such as an earthquake history at a shake table platform; this goal might be achieved by 

“tuning” (i.e. by tuning the inner loop feedback control parameters of servo-actuators) for a bare shake 

table system (Thoen and Laplace, 2004, Luco et al., 2010, and EFAST, 2009) such that the transfer 

function (i.e. the frequency domain ratio) between the target motion and the output of the shake tale has a 

unity gain in the frequency range of interest.  
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However, when a structure (specimen) is mounted on a shake table, the transfer function is distorted 

due to the shake table-structure interaction; i.e. this interaction between shake tables and linear structures 

was addressed by Blondet and Esparza (1988), Rinawi and Clough (1991), and Conte and Trombetti 

(2000). It is noted that the linear system model in the time domain, developed by Rinawi and Clough 

(1991), can be extended to nonlinear system models. In order to compensate for the distortion, a 

feedforward compensation method using the inverse transfer function, assuming the shake table-structure 

system is linear, has been widely used in industry (MTS, 2004) to reduce the tracking error between the 

target motion and the shake table response due to simulator dynamics and servovalve nonlinearities by 

this method, an offline iterative approach can be adopted; a detailed review of this method can be found 

in Spencer and Yang (1998). Recently, the feedforward compensation methods combined with real-time 

feedback loops to reduce the tracking errors were introduced by Nakata (2010) and Phillips and Spencer 

(2012) where outer feedback loops (i.e. “outer” is used to distinguish the feedback loop from the inner 

feedback loop of actuators) are used to reduce the tracking errors instead of the offline iteration approach. 

The methods were verified by experiments showing good agreements between the target and the output.  

More studies in the actuator-structure interaction in structural control applications can be found in 

Dyke et al. (1995) where the results with and without the interaction in control methods were presented 

and quantitatively showed that by considering interaction, better and more stable control methods could 

be established.  

Unlike general shake table testing where it is required to simulate a desired target motion at the shake 

table level, in other applications including the experimental evaluation of architectural or nonstructural 

components such as suspended ceiling systems (Reinhorn et al., 2010) or the qualification testing of 

complex equipment (IEEE, 2006) it is often required to simulate a floor/roof motion at a specific location 

(such as roof corners or mid spans) of a structure mounted on a shake table. In order to simulate a target 

motion at the structure level (instead of the shake table platform), a feedforward compensation procedure 

using a shake table-structure system transfer function with possible offline iteration correction was 

developed (Maddaloni, Ryu, and Reinhorn, 2010); the control method was implemented and 

experimentally verified. 

The key element, for the development of tracking control methods for shake tables discussed above, is 

a feedforward compensation method using the inverse transfer function. It is also noted that for a tracking 

control of a linear shake table-structure system, one may also use an optimal tracking control method 

(Kwakernaak and Sivan, 1972 and Kirk, 2004), which combines a feedforward loop with a feedback loop; 

the feedback loop may be more effective to reduce possible unknown errors and noise (like the methods 

developed by Nakata, 2010 and Phillips and Spencer, 2012). However, if a testing structure has more 

complex, nonlinear behavior (e.g. base-isolated systems) or a linear structure experiences yielding due to 
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high intensity excitation, the transfer function (i.e. which can be defined for a linear time invariant system 

(Chen, 1999)) is not valid anymore; therefore, the feedforward compensation loop, which is conducted 

offline, cannot be used and real time feedback control schemes are needed (Maddaloni, Ryu and 

Reinhorn, 2010).  

In order to reduce the effects of structure (specimen) nonlinearities, various advanced methods have 

been developed: For example, an adaptive control method involving the minimal control synthesis 

algorithm was introduced to reduce the signal distortion due to a linear model assumption (Stoten and 

Gomez, 2001); a disturbance observer-based control approach was developed also to compensate the 

unknown disturbances, caused by structure nonlinearities, in a shake table (Iwasaki et al., 2005); and 

hierarchical control strategy and nonlinear control techniques, utilizing the sliding mode control 

technique, were proposed to compensate structure nonlinearity and uncertainties in experiments (Yang et 

al., 2015).  

While these methods aim to reproduce a target motion at a shake table platform by reducing the effects 

of nonlinear structures, the objective (as discussed in Section 1.1) of this study is to simulate a target 

motion at a specific location in a nonlinear structure mounted on a shake table. To solve this tracking 

control problem for a nonlinear structure using a shake table, the real time feedback control schemes 

including the predictive control method (Lu, 1994 and Lu, 1995) and the feedback linearization method 

(Ioannou and Fidan, 2006) are adopted: For the predictive tracking control scheme, first, the response 

(output) of a nonlinear system is predicted and a control law is developed by minimizing the predicted 

tracing errors between the predicted output and the target motion at every instant; for the feedback 

linearization method, the control law is developed in order to cancel the nonlinear terms in a system such 

that the system behaves as a linear or partially linear system and the output follows the target motion. 

These tracking methods for nonlinear systems can be extended to shake table and nonlinear structure 

applications by reformulating the system governing equations and by analyzing error dynamics and state 

responses.    

Another challenge to control a nonlinear structure is that the system parameters might not be known a 

priori; for example, the change of structure stiffness in hysteretic behavior and/or the yielding force may 

not be accurately known in advance. Therefore, the real time parameter estimation, combined with the 

feedback controller, might be required. In structural applications of the real time (online) parameter 

estimation for nonlinear systems, many advanced methods including the least squares method (Smith et 

al., 1999 and Yang and Lin, 2004), the extended Kalman filter (Yun and Shinozuka, 1980 and Wu and 

Smyth, 2007) and the unscented Kalman filter (Wu and Smyth, 2007, Omrani et al., 2013, Hashemi et al., 

2014, and Song and Dyke, 2014) have been successfully applied numerically and experimentally. For the 

least squares method, a system equation is formulated in a certain way such that the unknown parameters 
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are linearly related to the state of the system and the estimate is updated using the measurements in real 

time: one can show the stability of this method in that the estimate error will be bounded (Ioannou and 

Sun, 2012). However, it might be difficult to apply this method to complex nonlinear systems where the 

nonlinear terms cannot be separated by the parameters and the state (i.e. this issue will be discussed in 

Section 5.1.1.3). Both the extend Kalman filter (EKF) and the unscented Kalman filter (UKF) are 

extensions of the Kalman filter, which is a widely used observer to estimate the state of a linear system 

(Song, 2011); the EKF and UKF are able to estimate the state and system parameters of nonlinear 

systems. For the EKF, the unknown parameters are augmented to the state vector and at each instant the 

nonlinear system matrix is approximated by its Jacobian matrix using the 1st order Taylor series 

expansion; the estimator gain is computed to minimize the length of the estimate error vector (Crassidis 

and Junkins, 2012). Even though the method does not have certain stability properties (unlike the least 

squares method) because of the unknown effects of remaining terms of the Taylor series, this method 

might be applicable to more complex nonlinear systems. Unlike the EKF, the UKF does not require the 

Jacobian matrix and can be applied to non-differentiable functions. However, the UKF typically involves 

more computations than the EKF (Crassidis and Junkins, 2012), which might cause difficulties in real 

time control applications. In this study, the Jacobian matrix of the interested nonlinear hysteretic system 

will be determined; therefore, the EKF is applicable. The nonlinear tracking controllers will be 

reformulated to be combined with the real time estimator using the EKF. 

As addressed above, in this study, the real time feedback controllers using the predictive control 

method and the feedback linearization method are modified and combined with the extended Kalman 

filter as the real time state and parameter estimator in order to develop a methodology to determine the 

excitation of a shake table, such that the response of a nonlinear hysteretic structure will follow a pre-

defined target motion.  

Furthermore, if successful, the proposed methods could be expanded to control real structures using 

base motion controls (although this is not a scope of this study). Similar structural control concepts, 

known as active base isolation that consists of a passive isolation system combined with control actuators 

(Chang and Spencer, 2010), have been developed by many researchers, including Reinhorn et al. (1987), 

Kelly et al. (1987), Inaudi et al. (1992), Nagarajaiah et al. (1992), Yang et al. (1996), Luo et al. (2000), 

Pozo et al. (2006), Chang and Spencer (2010), and Suresh et al. (2012). These linear control methods, 

nonlinear control methods, and nonlinear adaptive control methods (Pozo et al., 2006, and Suresh et al., 

2012) have provided excellent active base isolation control design. Especially, the developed methods of 

Nagarajaiah et al. (1992), Yang et al. (1996), and Chang and Spencer (2010) were experimentally 

verified. While the most methods focus on stabilizing (making zeros of) the system responses, the 

proposed control method in this study could be also used to control system responses to track desired 
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target motions like the controllers by Pozo et al. (2006), providing another possible and flexible control 

scheme to the design engineers.  

 

1.3 Notation 

All symbols used are defined where they first appear in the report, and are also summarized here. The 

principal meanings of the commonly used notations for the tracking control methods are provided below.  

 

Symbols Description 
Index  

(Section) 

x  
True state of controlled (shake table-structure) system; 
State vector x contains the state variables such as the displacement  
and velocity responses, etc. 

2.2, 3 

x̂  Predicted (estimated) values of the true state x 5.2 

x  Estimated error of the true state; i.e. ݔ෤(t) = ݔො(t) - ݔ(t) 5.2 

mx  State of a reference model 3 

u  Control excitation input 2.2, 3 

r  Excitation input of a reference model 3 

y  
Response output of a controlled system, which is the selected response to track 
the target motion, and is the combination of the state variables; 
i.e. ݕ(t) = Cx(t) where C is defined in the context 

2.2, 3 

ŷ Predicted (estimated) response output of the true system y 3.3 

y  Measured output (state variables) of controlled system; 
i.e. ݕ(t) = Hx(t) + v(t) where H and v(t) are defined in the context 

5.2 

my  
Target motion, which can be the output of a reference model subjected to the    
reference input r(t) 

3 

e  Tracking error of target ; i.e. e(t) = y(t) - ym(t) 3.3 

  
Error vector of estimated  parameters; i.e. ߠ෨(t) = ߠ෠(t) - ߠ∗;                                  
 ෠(t) is the predicted (estimated) parameter vectorsߠ is the true parameter and ∗ߠ 

5.2 
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SECTION 2 

CURRENT PRACTICE FOR SHAKE TABLE CONTROL 

  

A shake table-structure system consists of a platform supported by bearings driven by servo controlled 

actuators with a structure (specimen) mounted rigidly on its surface. The simplified schematic of the 

assembly of a shake table–structure system is shown in Figure 2-1 where actuators’ forces and internal 

stress resultants acting on the system are also presented (i.e. fs,I, fD, fS are the structure inertia, damping, 

and resisting forces; ft,I is the table inertia force; fa is the actuator force). 

 

 

Figure 2-1 Schematic of a shake table-structure system 

 

In order to move the structure sitting on the platform to match a target response, a controlled excitation 

should be applied at its base. The objective of the control system of the shake table–structure is to 

determine the desired excitation input xd(t) such that the response output y(t) of the shake table, or the 

mounted structure will follow the pre-defined target motion ym(t). In order to achieve this goal, a 

mathematical model of the system is used; in this section, the mathematical model for a linear system is 

introduced based on the developments by Rinawi and Clough (1991) and Conte et al. (2000), which will 

be used in the following sections for the development of the tracking control method, for both linear and 

nonlinear systems. 

 

2.1 Servovalve – Actuator Shake Table System 

Figure 2-2 shows a schematic of a typical shake table-actuator system. It consists of a rigid platform 

(table) driven by horizontal actuators that are controlled by servovalves.  
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computed using the error signal between the target (= the desired shake table displacement xd) and the 

actual (measured) shake table displacement xt. Using these subsystems, the system transfer function HT 

between the desired shake table displacement xd and the actual displacement xt is determined.  

 

 

Figure 2-4 Simplified functional diagram of a servovalve-actuator shake table system 

 

Servovalve’s transfer function  

The servovalve controller involves an inner loop feedback and a PID controller (see Figure 2-5). The 

relationship between the input signal Δxc3 (measured in volts), applied to the servovalve and the output 

servovalve’ spool displacement x3s  can be expressed as 

1 2
3 3

3 1 2

( )
( ) ( )

1 ( )

i i
p d

s ci i
s p d

k k k k s
x s x s

k k k k k s


 

 
 (2-1) 

where “s” is a complex variable of the Laplace transform and 

  k1 and k2 are the first and second stage gains 

  ݇௣௜  and ݇ௗ
௜  are the proportional and derivative gains 

  k3s is the gain of the servovalve main stage spool displacement 

In this study, this relationship is assumed to be linear (following the suggestions of  Nachtigal, 1990, 

Rinawi and Clough, 1991, and Conte et al., 2000), so that Eq. (2-1) becomes: 

3 3( ) ( )s sv cx t k x t   (2-2) 

where ksv is the global gain of the servovalve. The servovalve’ spool displacement x3s (in) produces a high 

pressure oil flow rate qs (in
3/s) to the actuator chamber (Blonet and Esparza, 1987), which is also assumed 

to be linearly related: 

3( ) ( )s xq sq t k x t  (2-3) 
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where kxq is the global flow-gain. From Eq. (2-2) and Eq. (2-3) one has the servovalve transfer function 

HV(s) between the input signal Δxc3 (volts) and the output servovalve flow rate qs (in
3/s) 

3

( )
( )

( )
s

V xq sv
c

q s
H s k k

x s
 


 (2-4) 

Figure 2-5 also schematically represents this relationship in a block diagram form (i.e. the outer box 

represents the servovalve transfer function HV(s), shown in Figure 2-4), which is the dynamic response of 

the servovalve system, as described by Eq. (2-1) through Eq. (2-4).  

 

 

Figure 2-5 Block diagram of servovalve system 

 

Actuator’s transfer function  

The total oil flow rate qt (in3/s) applied to the actuator’s chamber is a nonlinear function of the 

servovalve’ spool displacement x3s (in) and the actuator force fa (lbs) (Blonet and Esparza, 1987, Ogata, 

2010, and Rinawi and Clough, 1991); thus qt = f(x3s, fa). This relationship can be linearized about the 

origin (x3s = 0, fa = 0):  

3( ) ( ) ( ) ( ) ( )t s L xq s L aq t q t q t k x t k f t     (2-5) 

The first term on the right hand side qs (in
3/s) represents the flow rate induced by the servovalve spool 

displacement, and the second term qL (in3/s) represents the flow rate due to leakage. The terms kxq and kL 

are the flow-gain and the flow-force (loss) coefficient. With the oil flow input, the governing equation of 

the actuator piston can be expressed as 

 ( ) ( ) ( ) ( ) / 4 ( )t m c t aq t q t q t Ax t V A f t      (2-6) 

where  

  qm (in3/s) is the useful flow rate to the chamber causing piston to move  

  qc (in
3/s) is the equivalent compressibility flow rate  

  A (in2) is the actuator piston area 

  V (in3) is the volume of oil in the actuator 

k1

Δxc3 x2s 

x3s 

1st & 2nd stages ≈ ksv 

PID 
(inner) 

+
െ	

LVDT 

x3s qs 
k2 kxq 

k3s 
HV
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  β (psi) is the bulk modulus of fluid 

  xt (in) is the shake table displacement  

  fa (lbs) is the actuator force applied to the shake table 

From Eq. (2-5) and Eq. (2-6) it is obtained 

               / 4s m L c t a L aq t q t q t q t Ax t V A f t k f t       (2-7) 

Simply the total flow (qs) is a sum of the flow moving the piston (qm), the flow going to losses (qL), and 

the flow that go to the compression of the fluid (qc). Through this equation one can obtain the actuator 

transfer function HA(s) between the servovalve flow rate qs (in3/s) and the table displacement xt (in) 

considering losses and fluid compression: 

 
( ) 1

( )
( ) / 4 ( ) / ( ) ( ) / ( )

t
A

s a t L a t

x s
H s

q s As V A sf s x s k f s x s
 

 
 (2-8) 

Figure 2-6 also schematically represents this relationship in a block diagram form (i.e. the outer box 

represents the actuator transfer function HA(s), shown in Figure 2-4), which is the dynamic response of the 

actuator system, as described by Eq. (2-7) and Eq. (2-8). The potential interaction due to a mounted 

structure is indicated in the figure by a dot line – this issue is addressed further in Section 2.2. 

 

 

Figure 2-6 Block diagram of actuator system 

 

From Eq. (2-4) and Eq. (2-8), the transfer function HVA(s) between the input signal Δxc3 (volts) and the 

output table displacement xt
1 (in) for the servovalve-actuator system is  

 3

( ) 1
( ) ( ) ( )

( ) / 4 ( ) / ( ) ( ) / ( )
t

VA V A xq sv
c a t L a t

x s
H s H s H s k k

x s As V A sf s x s k f s x s
  

  
 (2-9) 

  

                                                      
1 In this section, for simplicity, for the xd and xt the conversion factors from their physical dimensions (in) to the 

corresponding electrical signals (volts) are assumed to be lumped to the gain constants.  

kL 
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Servovalve to Shake Table System Transfer Function 

The servovalve input signal Δxc3 (volts) can be computed as described in Conte et al. (2000): 

3 2( ) ( ) ( ) ( )c c ff dpx t x t x t x t     (2-10) 

 or in more detail:  

   2 ( ) 1/ ( ) ( ) ( ) ( )
o
PID

o o o o
c p i d c PID d t

H

x s k s k k s x s H s x s x s        
 (2-11) 

where Δxc (volts) is the table error signal (Δxc = xd - xt) between the shake table displacement  xt (volts) 

and the target (desired) command signal xd (volts). ܪ௉ூ஽
௢  is therefore described as the transfer function of 

the actuator controller (PID - proportional-integral-derivative) in which ݇௣௢, ݇௜
௢, ݇ௗ

௢ are the proportional, 

the integral, the derivative control gains, respectively.  The second term xff (volts) in Eq. (2-10) is the feed 

forward component:  

( ) ( )ff ff dx s k sx s  (2-12) 

in which kff is the feed forward control gain. The last term xdp (volts) in Eq. (2-10) is the differential 

pressure component 

 ( ) ( ) ( ) /dp dp dp ax s k P s k f s A    (2-13) 

where kdp is the delta pressure control gain, and ΔP (psi), the differential pressure across the actuator 

piston, is expressed as ΔP = fa/A.  Substituting Eq. (2-11) though Eq. (2-13) into Eq. (2-10),  the  

servovalve input signal is therefore:  

   3( ) ( ) ( ) ( ) ( ) ( ) /o
c PID d t ff d dp ax t H s x s x s k sx s k f s A      (2-14) 

The transfer function between the target displacement xd (in) and the shake table displacement xt (in) is 

obtained from Eq. (2-9) and Eq. (2-14): 

 
  

3 3

3

( ) ( ) ( )
( ) ( ) or

( ) ( ) ( )

( ) ( )
( )

1 ( ) ( ) / ( ) / ( )

c t c
T VA

d c d

o
VA PID ff

T o
VA PID dp a t

x s x s x s
H s H s

x s x s x s

H s H s k s
H s

H s H s k A f s x s

 
  






   

 (2-15) 

Figure 2-7 also schematically represents this relationship in a block diagram form; i.e. the outer box 

represents the system transfer function HT(s), which is the dynamic response of the servovalve-actuator 

shake table system (or “shake table system” for brevity). 



 

17 

 

 

Figure 2-7 Schematic diagram of a servovalve-actuator shake table system 

 

The transfer function in Eq. (2-15) is presented in the Laplace (complex frequency) domain. For the 

real time control development, the time domain solution is needed, and first the same relationship (shown 

in Eq.(2-15)) between the input target displacement xd and the output shake table displacement xt is 

expressed as: 

 

           
4

o o
xq sv d xq sv p

do
xq sv i

xq sv dpa a to o ot
L t xq sv d t xq sv p t xq sv i

t t

k k k s k k k
x s

k k k s

k k kf s f s x sVm
k m A k k k x s k k k x s k k k

A m A m s

 
  

 

 
      
 




 (2-16) 

It is noted that due to the actuator PID controller ܪ௉ூ஽
௢  and the feed forward component xff, filtering to xt 

and xd are applied. These filtering effects might be important in real system applications and need to be 

monitored from actual experimental setups; however, in this study, it is assumed that the gains are chosen 

as ܪ௉ூ஽
௢  = ݇௉

௢ and kff = 0 (xff = 0); therefore, Eq. (2-16) can be expressed in the time domain:  

         

         2

4
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xq sv dpa ao ot
xq sv p d L t t xq sv p t

t t

a aa
a d t a t

a t a t

k k kf t f tVm
k k k x t k m Ax t k k k x t or

A m A m

f t f t
k x t x t k x t

m m




 

 
     

 

   







 (2-17) 

where  

ωa
2 = 4βA2/Vmt ;  ωa (s

-1) is the natural frequency of the shake table system (i.e. fn,a (Hz) = ωa / 2π), 

which is also known as oil column frequency (Conte et al., 2000).  

ξa = 
ఠೌ௠೟

ଶ
ቀ
஺௞ಽା௞ೣ೜௞ೞೡ௞೏೛

஺మ
ቁ;  ξa (dimensionless) is the equivalent damping ratio of the shake system 

  ka = kxqksv݇௉
௢/A;   ka (s

-1) is the control gain of the shake table system 

In the state space form, this equation can be written (Blondet et al.,1988 and Rinawi and Clough, 1991) 

kff · s xff 
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     
 
 

 

 
 

 
  0

2 2 2

0 1 0 0

0 0 1 0 , (0)

2

t t

t t d

a t a a a a a a t a a

x t Ax t Bu t or

x t x t
d

x t x t x t x x
dt

f t m k f t m k    

 

      
              
              



 
 (2-18) 

The equation can be solved using the 4th order Runge-Kutta method for actual implementations. 

 

2.2 Shake Table – Structure System (2DOF System Model) 

When the structure is mounted on the shake table which is mounted on a reaction mass, the dynamics 

of the system is changed and the transfer functions have to be adjusted.  Figure 2-8 shows a schematic of 

a structure mounted on a shake table including the base reaction mass (see also Conte et al., 2000); the 

shaded area represents the effects of movement of the reaction mass (mb), which are assumed to be minor 

in this study as discussed below.  

 

 

Figure 2-8 Schematic of a shake table-structure system with the reaction mass 

 

The governing equations of motion of the system can be expressed as: 

                
                   
             
         

,

,

, , ,

2

0

( )
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b b b b b b a b I b D b S a

a a ta
a t a d

a t a t

m x t c x t k x t m x t x t or f t f t f t

m x t c x t k x t f t m x t or f t f t f t f t

m x t c x t k x t f t or f t f t f t f t

f t f t dx t
k x t k x t

m m dt


 

       

      

       

   

   

  

 



 (2-19) 

Where xs, ẋs, ẍs are the relative displacement, velocity and acceleration of the structure with respect to the 

shake table; ms, cs, ks are the mass, damping coefficient, stiffness of the structure, respectively; xb, ẋb, ẍb 

are the displacement, velocity and acceleration of the reaction mass with respect to the laboratory floor; 

mb, cb, kb are the mass, damping coefficient, the effective stiffness of the reaction mass, respectively. All 
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other terms are explained in the previous section. It is clearly shown from the equations that the actuator 

force fa(t) is coupled with the structure and the reaction mass responses. This shake table – structure & 

reaction mass interaction can be also shown by the Laplace domain equation of the actuator force fa(s) 

(see also Conte et al., 2000): 

         2 1 1a t t B s t Sf s m s x s H s m m H s           (2-20) 

where 

   
 

      
    

2

2 2

/ 1 /

1 / 2

t s t s s t Sb
B

t s s t S b b b

s m m m m m m H sx s
H s

x s s m m m H s s   

           
      

 (2-21) 

       
   

2

2 2

2

2
s t b s s s

S
t b s s s

x s x s x s s
H s

x s x s s s

  
  

  
 

  
 (2-22) 

where ωb = ඥ݇௕/݉௕; ξb = cb / 2ωbmb and ωs = ඥ݇௦/݉௦ (the natural frequency of the structure); ξs = cs / 

2ωsms (the damping ratio of the structure). Substituting the actuator force fa in Eq. (2-20) to Eq. (2-15), 

the system transfer function between the target displacement xd and the shake table displacement xt can be 

computed considering the effects of the structure and the reaction mass.  It is assumed for simplicity in 

this study that the reaction mass movement is not significant (as considered also by Rinawi and Clough, 

1991); therefore, xb = 0 and HB = 0, and the actuator force fa becomes: 

       2 1a t t s t Sf s m s x s m m H s      (2-23) 

Without the reaction mass movement, the governing equations of the shake table-structure system in Eq. 

(2-19) can be rewritten in the state space form as 

     

   

0

1 1 1 1

1 1

2 2

, (0)

0 1 0 0 0( ) ( )

0 0 1( ) ( )

( ) ( )0 0 0 1 0
( ) ( )0 0 1

( ) ( )0 0 2

s s

s t s s t ss s

t t

t tt s t s

a t a ta a a a a

x t Ax t Bu t x x or

x t x t

m m k m m cx t x t
d

x t x t
dt

x t x tm k m c
f t m f t mk    

   

 

  

    
            
    
    
   
         



 

 
2

0

0

0 ( )

0
d

a a

x t

k 

 
 
 
 
 

  
   

 (2-24) 

The output y(t), defined here as the total structure acceleration response ẍs
t(t), can be expressed by the 

“output equation”: 

1 1

( ) ( ),

( ) 0 0 0 ( )s s s s

y t Cx t or

y t m k m c x t 



    
 (2-25) 

The equations can be solved using the 4th order Runge-Kutta method.   
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The shake table with a simple structure, mounted on it as expressed by Eq. (2-24), can be considered 

as a 2DOF shake table-structure system model; i.e. the degree-of-freedoms (DOF) include the lateral 

displacement xs(t) of the structure (defined here also as the test specimen) with respect to the shake table 

and the lateral displacement xt(t) of the shake table with respect to the laboratory ground, as shown in 

Figure 2-1. The control excitation of the shake table is defined as u(t).  If the position of the shake table is 

controlled, then the control excitation u(t) is specified as the desired shake table displacement xd(t), which 

should be computed in real time for the displacement control if the controlled system experiences 

nonlinear behavior (as discussed in SECTION 4). 

In order to facilitate the development of a tracking control method, first, it is considered that only an 

SDOF structure system (denoted as an SDOF system model) is controlled in the next section, assuming 

that the dynamics of the shake table can be ignored. With this simplified model, a new control excitation 

input u(t) is considered as the excitation force -msẍt(t) due to the shake table acceleration ẍt(t) (instead of 

the actual control excitation input xd(t)) as shown in Figure 2-9. In such case, the governing equation of a 

structure shown in the first equation of Eq. (2-19) can be rewritten as: 

         s s s s s s s tm x t c x t k x t m x t or u t        (2-26) 

 

 
Figure 2-9 Schematic of a simplified SDOF system model with a new control excitation  

 

Then, the developed tracking control method using the simplified SDOF system model will be 

extended to the 2DOF system model (shown in Figure 2-1), where the shake table dynamics and the table-

structure interaction are included. Using the 2DOF system model, the actual control excitation input u(t), 

which is the desired shake table displacement xd(t), will be determined in real time, such that the output of 

a controlled structure will follow a specified target motion.   

 

2.3 Shake Table - Structure Interaction  

As shown in the previous section, the relationship (i.e. the transfer function) between the target motion 

xd and the shake table displacement xt changes due to the shake table-structure interaction (Rinawi and 

Clough, 1991, Dyke et al., 1995, and Conte et al., 2000). Two major reasons of the interaction can be 

expressed as following; 

or 
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(1) The actuator force fa applied to the shake table is coupled with the structure response as clearly 

shown in Eq. (2-23) and Eq. (2-24).  

(2) The servovalve systems have nonlinear behavior (Maddaloni, Ryu and Reinhorn, 2010). The 

shake table parameters; ωa, ξa and ka, (which are assumed to be constant) might vary depending on 

structure characteristics (Rinawi and Clough, 1991 and Trombetti et al., 2002). For example, in 

general shake table system parameters, obtained from a bare table, are different with the ones 

estimated after a structure is mounted. 

The table-structure interaction caused by the first reason (1) above is mainly considered in this study, and 

it is assumed that the estimated shake table parameters in preliminary experiments will remain the same in 

the operating range of interest. This might be acceptable since shake table system parameters, as shown 

from experiments by Trombetti et al. (2002), were similar in a wide range of the natural frequencies for 

different structures.  

 The table-structure interaction can be compensated using the transfer function and its inverse transfer 

function, if the structure is linear; this method is presented in Section 2.6. When the structure experiences 

nonlinear behavior due to possibly high intensity excitation, the inverse transfer function compensation is 

not satisfactory and real time control is necessary; this method is presented in SECTION 4.  

 

2.4 Shake Table Actuator Inner Loop Feedback (PID) Control 

The mathematical model of a servovalve-shake table actuator system (a bare table without a mounted 

structure) was described in Section 2.1. The relation between the excitation input u(t) = xd(t) (the desired 

shake table displacement) and the output y(t) = xt(t) (the achieved shake table displacement) can be 

expressed as the transfer function HT in the frequency domain as shown in Eq. (2-15). By choosing the 

target motion ym(t) = xd(t), the control objective of the table-actuator system is to adjust the transfer 

function through the inner-loop feedback control, such that the output y(t) will follow the target motion 

ym(t), which becomes the excitation input u(t) in this case; thus, the desired transfer function is to have 

unity magnitude and a linear phase (i.e. a simple time delay). The block diagram of the shake table-

actuator system is presented in Figure 2-10 (for simplicity the effect of xdp, the differential pressure 

component, is not included; but see Figure 2-4 for the schematic of the system in detail); note that the 

terminology was introduced in Section 2.1.  
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However, when a structure is mounted on a shake table, the transfer function is affected by the shake 

table-structure interaction, as discussed in Section 2.3. The effects vary depending on the properties of the 

table and the structure. In order to demonstrate the effect of this interaction, the transfer function response 

of a shake table (the same as presented in Figure 2-11) with a structure is presented in Figure 2-12: the 

selected properties for this example are: ms = 1 kips·sec2/in., ks = 987 kips/in., and cs = 1.89 kips·sec/in., 

(fn = 5.0 Hz, ξn = 0.03), μ = ms / mt = 1.5, fn,a = 30.0 Hz, ξa = 0.707, and ka = 70 in Eq. (2-24). The results 

clearly show the effects of the shake table-structure interaction, with both variable amplification and 

phase shift around the resonant frequency of the structure.  
 

 

Figure 2-12 Transfer function response of a shake table – structure system 

 

This example indicates that a more advanced control procedure is needed in order to simulate the 

desired motion at the shake table, or structure, by overcoming the table-structure interaction. Feed-

forward compensation procedure is a well-known shake table control method, which is widely used by the 

most shake table manufacturers (Maddaloni, Ryu and Reinhorn, 2010). 

 

2.5 Feed-Forward Compensation using Inverse Transfer Functions 

The inverse transfer function method (ITF), which is the feed-forward method, can be used for a 

tracking control for a target motion at a shake table (Clark et al, 1970, and Reinhorn, 1985 (class notes), 
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Spencer et al, 1998). The same scheme can be extended to simulate a target motion in a linear structure 

mounted on a shake table; this method was developed at the University at Buffalo including the authors of 

this report (see Ryu, 2009, and Maddaloni, Ryu, and Reinhorn, 2010). The method has been implemented 

by the authors for real applications at the UB-SEESL. The procedure (Ryu, 2009) is explained again in 

this report for the sake of completion, since the method provides an important base for understanding 

further developments of a tracking control for nonlinear systems.  

 

2.5.1 Shake Table System 

As indicated above, the primary use of a shake table is to simulate the base motion. However, the 

reproduction of a dynamic signal, due to several factors (e.g. servovalve’s dynamic response, 

compressibility of the actuator fluid, oil leakage through the actuator seals, influence of the test specimen) 

can be imperfect (Conte et al., 2000). High fidelity responses can be obtained using compensated motions 

as described in (MTS, 2004) and summarized here for practical implementations.  

Assuming that the shake table system is linear, the analytical model represents mathematically the 

input-output relationship between the excitation u(t) and the output y(t). For shake table testing in 

displacement control mode, a typical target motion ym(t) for the shake table is derived from an earthquake 

acceleration while the excitation input u(t) is the desired table displacement xd(t). This can be obtained 

from double integral of the target motion ym(t) (Spencer and Yang, 1998); i.e. it is noted that in order to 

avoid a large drift of a shake table, the target motion is to be high-pass filtered (Phillips and Spencer, 

2012) to remove a very low frequency depending on the target and the displacement capacity of the shake 

table). The output y(t) is the measured (achieved) shake table acceleration response ẍt(t). While the 

analytical model is presented for a uni-axial system, the same procedure can be used for multi-axial 

systems, where matrices of uni-axial models and cross-coupling components would replace the single 

mathematical model (see Eq. (2-33)) 

For a shake table system, the transfer function Ht(ω) between the excitation input u(t) = xd(t) and the 

output y(t) = ẍt(t) can be expressed in the frequency domain as: 

   
 

 
 

t
t

d

y x
H

u x

 


 
 


 (2-27) 

where y(ω) and u(ω) are the Fourier transforms2 of y(t) and u(t), respectively. It is also noted that if a 

built-in shake table controller, such as STEX at the University Buffalo, will generate the excitation input 

                                                      
2 Fourier Transform is an operation that converts one function of a real variable into a complex function. The new 
function, often called the frequency domain representation of the original function, describes which frequencies are 

included in the original function;  = 2πf is the circular frequency (in rad/s) and f is the cyclic frequency (in Hz);  

i = √െ1 
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u(t) by doubly integrating the target (table acceleration) motion ym(t) (i.e. u(t) = ym(t) / (iω)2), the transfer 

function Ht
*(ω) from the relation between the target motion ym(t) (i.e. which is the user excitation input to 

STEX) and output y(t) = ẍt(t) can also be expressed in the frequency domain as: 

   
 

*
t

m

y
H

y





  (2-28) 

and it is noted that the same transfer function can be obtained from Eq. (2-15) by replacing s by iω.  

The transfer function Ht(ω) (or Ht
*(ω)) represents the steady state response, which would represent the 

total response with the zero initial conditions (Rinawi and Clough, 1991), and can be interpreted as the 

degree of “distortion” in signal reproduction of the target motion ym(t) due to the mechanical and servo-

hydraulic system. In order to obtain the best fidelity of the achieved output y(t), a compensated excitation 

uc(t) can be applied.  

Figure 2-13 presents the schematic diagram of this concept. The target motion ym represents the start 

point of the compensation while the achieved output y is the end point. The compensated excitation input 

applied to the table for the shaking is indicated as uc. 

 

 

Figure 2-13 Schematic diagram of shake table simulation of an earthquake record  

(dashed line indicates possible off-line iterations) 

 

According to this scheme and Eq. (2-27), a compensated excitation input uc(t) should be applied in 

order to achieve the output y(t), which will track then the target motion ym(t) as shown in the following 

equation: 

     
           

1

1

;c t m

t c t t m m

if u H y then

y H u H H y y

  

     







  
 (2-29) 

where Ht(ω) and Ht(ω)-1 are the transfer and the inverse transfer functions of the shake table system 

respectively. Therefore, the excitation input uc(ω) is calculated multiplying the target motion ym(ω) by the 

inverse transfer function of the shake table. In practical applications using the compensated excitation 

input uc(t) for the shake table, the achieved motion y(t) could not match perfectly the target motion ym(t) 
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due to non-linearities of the servo-hydraulic system. As shown in Figure 2-13, an error e(t) = y(t) - ym(t) is 

calculated and an offline iteration procedure (dashed line) can be used to improve the compensation. The 

block diagram shows that the iterations are stopped when the error is smaller than a predefined tolerance  

( e  ): it means that this is an acceptable reproduction of the desired motion. In order to reduce the 

tracking error e(t) of the shake table control, Nakata (2010) and Phillips and Spencer (2012) also 

introduced outer feedback compensation loops instead of the offline iteration. 

The method presented above is a well-known feed-forward compensation procedure used by most 

shake table manufacturers (Spencer and Yang, 1998 and Maddaloni, Ryu and Reinhorn, 2010). However, 

when the target is to simulate a desired/target motion at the top of a testing structure mounted on a shake 

table, the procedure should be modified, as described below.  

 

2.5.2 Shake Table-Structure System Control 

In the experimental evaluation of architectural or non-structural components (Reinhorn et al., 2010) or 

in the qualification testing of complex equipment (IEEE, 2006), it is often necessary to produce the target 

motion at a specified position of a structure such as a floor/roof of a structure. The previous compensation 

approach can be generalized for a multi-degree of freedom (MDOF) system (Conte et al., 2000 and 

Maddaloni, Ryu and Reinhorn, 2010), which represents the specimen in a shake table test. For simplicity, 

the MDOF structure is represented in this development as a simple plane frame as shown in Figure 2-14. 

 

 

Figure 2-14 Schematic representation of the transfer functions for the shake table (Ht) and structure (Hs) 

 

The acceleration transfer function defined by the ratio of the output structural total acceleration 

response y(t) = ẍs
t(t) to a shake table motion in the frequency domain can be obtained from the procedure 

described in Maddaloni, Ryu and Reinhorn, (2010); for an SDOF structure, the structure transfer function 

Hs(ω) is expressed as: 

   
 

2

2 2

2

2

t
s s s s
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x i
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    


 

  




 (2-30) 
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which is the same equation to Eq. (2-22) after substituting s = iω, and indicates the degree of 

amplification of the base motion due to the dynamic characteristics of the structure. 

The input-output relationship between the shake table excitation input u(t) and achieved (measured) 

motion y(t) at the specified location of a structure in the uniaxial direction, assuming that the system is 

linear and remains linear during excitation, can be represented using the system transfer function, which 

can be computed by multiplying two transfer functions Ht(ω) and Hs(ω) shown in Eq. (2-27) and Eq. 

(2-30): 

 
 

 
 

( ) ( ) ( )
t
s

s t
d

y x
H H H

u x

 
  

 
   


 (2-31) 

In a similar fashion described previously, the concept of signal compensation can be applied in order to 

match the output of a structure to a target motion. Figure 2-15 presents the schematic diagram of this 

concept. The target motion ym represents the start point of the compensation while the achieved output y is 

the end point. The compensated excitation input applied to the table for the shaking is indicated as uc. 

 

 

Figure 2-15 Schematic diagram of ‘open-loop’ compensation procedure (dashed line indicates possible 

off-line iterations) 

 

According to this scheme and Eq.(2-31), a compensated excitation input uc(t) should be applied in 

order to achieve the output y(t) at a structure, which equals to the target motion ym(t) as shown in the 

following equation: 

     
           
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1
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  

     







  
 (2-32) 

where H(ω) and H(ω)-1 are the transfer and the inverse transfer function of the shake table-structure 

system, respectively.  

In practical applications, the system transfer function is determined from identification with associated 

uncertainties due to non-linearity in the structure and the shake table and imperfections in identification 
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process. Therefore, the achieved output y(t) cannot perfectly match the target motion ym(t). In this case, as 

shown in Figure 2-15, an off-line iteration (dashed line) can be performed to improve the compensation. 

 
2.5.3 Experimental Verification 

The compensation procedure developed above was implemented experimentally for a 20ft. × 20ft. test 

frame, constructed for suspended ceiling system dynamic testing, mounted on a shake table at the 

University at Buffalo-Structural Engineering and Earthquake Laboratory (UB-SEESL) as shown in Figure 

2-16. The objective was to simulate tri-axial target motions in the longitudinal x, transverse y, and vertical 

z directions at the top corners of the test frame. The target motions were generated to match the AC156-

RRS of SS = 1.0g in each direction. It is noted that the target motions for the three rotational axes (roll r, 

pitch p, and yaw w) are all zeros.  

For a 6 DOF shake table system like the UB-SEESL shake table system, the system transfer function 

can be expressed as a 6 × 6 matrix and each element of the transfer function matrix at each frequency is 

determined as: 

     /ij ij jH = y u    (2-33) 

which is the ratio between the i axis output and the j axis excitation input. Each column of H(ω) can be 

established from each uni-axial test in the longitudinal x, transverse y, vertical z, roll r, pitch p, and yaw w 

axes, respectively. If the system is not coupled, the matrix becomes diagonal and each transfer function is 

explained as a single mathematical model (i.e. which is the same as the transfer function of a uni-axial 

system). If the responses in all different directions are coupled, cross-coupling components have to be 

added and the transfer function matrix H(ω) becomes a full matrix. 

For this application, an uncoupled system in each excitation axis (x, y, and z) was assumed; therefore, 

the 6 × 6 transfer function matrix in Eq. (2-33) was reduced to a 3 × 3 diagonal matrix and each diagonal 

element was determined from the input (the target motion) and output (the uncompensated achieved 

output at the structure, which were computed as the average of the response histories obtained from the 

accelerometers installed at the 4 top corners of the structure as shown in Figure 2-16) in the x, y, and z 

axes respectively.  
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The degrees of distortion between the RRS and the response spectrum (RS) of the achieved structure 

output in signal reproduction can be evaluated by the index: 

2

1

( ) ( )1

( )

N
i i

i i

RRS f RS f

N RRS f




 
  

 
  (2-34) 

The degrees of distortion of the achieved structure outputs in the range of 1 to 30 Hz (with 20 frequencies 

per octave) are shown in Table 2-1. For purpose of comparison, the degrees of distortion in the target 

motions (due to their initial generation) are also presented. The distortions are small (<0.15) in the 

horizontal directions, however, although showing improvement, are large (>0.80) in the vertical.  
 

Table 2-1 Degrees of distortion in signal reproduction (at SW frame top corner) 

 Target 
Uncompensated  
achieved output 

Compensated  
achieved output 

(1) (2) (3) (4) 
Longitudinal 0.08 0.40 0.12 

Lateral 0.09 0.41 0.11 
Vertical 0.17 1.46 0.84 
Average 0.11 0.75 0.35 

 

The errors in the vertical direction are mainly caused by the coupling between the horizontal and 

rotational motions. The coupling between responses is evident from non-zero responses in the vertical 

direction at the top north-west (NW) and north-east (NE) corners, measured from a longitudinal uniaxial 

excitation input test (with the peak longitudinal acceleration of 0.55g measured at the shake table), as 

shown in Figure 2-18. Without coupling, the vertical responses of the corners are supposed to be zero. 

The coupling between the longitudinal-rotational motions at the top of the frame occurred due to the 

flexibility of the cantilevers of the shake table extension (shown in Figure 2-19). 
 

 

Figure 2-18 Undesired corner vertical motions at NW and NE frame top corners 
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Figure 2-19 Shake table and extension at UB-SEESL, Front elevation 

 

The vertical motions in the corners caused by the coupling of the horizontal-rotational motions might 

be compensated using the coupled transfer function matrix as described in the previous section; the 

compensation procedure was numerically implemented and the results were presented in Ryu et al (2013): 

A simplified analytical model showed that the coupling effects could be compensated using the developed 

transfer function matrix. The experimental study was also performed at the UB-SEESL and the results did 

not show much improvement due to the capacity limits of the rotational DOFs (roll r, pitch p, and yaw w) 

of the shake table: the results indicate that the compensation procedure may produce reasonable target 

motions only in the shake table operating frequency bandwidth. 

 

In this section, the current practices for shake table control are reviewed. The feedforward 

compensation method using the system transfer function in the frequency domain can be applied to linear 

systems in order to reproduce a required target motion at any specific location of a specimen; however, 

the method is limited to the linear system applications. The mathematical model of a shake table and the 

governing equation of a shake table and linear structure system are presented. This linear system model 

will be used in the development of the tracking control schemes in the following sections and will be 

revised to be applied to nonlinear system control applications.   
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SECTION 3 

TRACKING CONTROL FOR LINEAR SYSTEMS WITH KNOWN 

PARAMETERS 

 

When the shake table and the test specimens, which need to be challenged by a controlled motion, are 

behaving linearly (such as elastic systems) with known system properties, the control can be derived from 

a classical control theory.  As addressed in Section 1.1, the control problem considered in this study is a 

tracking control problem, whose objective is to minimize the errors e(t) = y(t) - ym(t) between the target 

(desired) motion ym(t) and the achieved output (response) y(t) of the controlled system. This can be 

expressed in the following equations: 

Behavior of the true system that has to be controlled 

       
   

0, 0x t Ax t Bu t x x

y t Cx t

  




 (3-1) 

Behavior of a reference model that provides a realistic target: 

       
   

,0, 0m m m m m m

m m m

x t A x t B r t x x

y t C x t

  




 (3-2) 

Our task (the control objective) is to compute the control excitation input u(t) to drive the table with a 

specific motion in order to simulate the target motion ym(t) at a specific location of a test structure 

mounted on the shake table. For the linear system, various methods can be used in the frequency domain 

or in the time domain. In this section, four well known tracking control methods, which are the 

foundation of this study, are introduced.  

 

3.1 Feed-forward Control (Inverse Transfer Function Methods) 

The inverse transfer function method (ITF), which is the feed-forward method, can be used for a 

tracking control as was discussed previously in Section 2.5. The concept is briefly reviewed and 

reformulated as follows.  

The relationship between the control input u(s) and the structure response y(s) for the true system in 

Eq. (3-1) can be represented in the Laplace domain (complex frequency domain) using the transfer 

functions H(s), and the relationship between the reference input r(s) and the reference model response 

ym(s) in Eq. (3-2) can be represented using the transfer functions Hm(s): 

   
 

 
 

t
t

t

y s Z s
H s k

u s R s
   (3-3) 
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where Zt(s) and Rt(s) are polynomials (e.g. sn + a1s
n-1 + ···+ an-1s + an) and kt is a constant, and  

   
 

 
 

m m
m m

m

y s Z s
H s k

r s R s
   (3-4) 

where Zm(s) and Rm(s) are polynomials and km is a constant. According to the inverse transfer function 

method introduced in Section 2.5, the control input u(s) is computed by pre-multiplying the target motion 

ym(s) with ିܪଵ(s): 

Control Law  

       
 

 
   1 1 t m

m m
t t m

R s Z s
u s H s y s k r s

k Z s R s
    

     
      

 (3-5) 

The control input u(t) in the time domain from that of Eq. (3-5) can simply be computed using the inverse 

Fourier transform. By substituting this control input into the system equation in Eq. (3-1) the achieved 

motion y(t) will be the target motion ym(t), or in the Laplace domain the expected achieved response can 

be expressed: 

Expected Achieved Response  

             
 

 
     1 1t t

m t m m
t t t

Z s R s
y s H s u s H s H s y s k y s y s

R s k Z s
    

       
      

 (3-6) 

The main advantages of this method are: (1) the information about the testing system parameters such as 

the mass, the stiffness, and the damping of a structure and the shake table is normally not required 

(Maddaloni, Ryu, and Reinhorn, 2010); i.e. the transfer function involving the system properties can 

easily be obtained by experiments although it can also be computed through the curve fitting method 

(Nakata, 2010), and (2) the feed-forward (open loop) control scheme can be used so that feedback 

(closed) loop is not required. However, as previously addressed, this frequency domain method using the 

system transfer function is limited to linear systems since the pre-computed transfer function is not valid 

anymore if the system parameters change. It is also known that the feed-forward (open loop) control 

suffers from the usual drawbacks of deterioration of performance due to small parameter changes and of 

inexact zero-pole cancellation (Ioannou et al., 2012), which might cause the controlled system to become 

unstable if the original system is unstable. 

 

3.2 Feed-back + Feed-forward Control (Optimal Tracking Control) 

The optimal tracking control (OTC) method, which is the feed-back and feed-forward control as 

explained below, can be also used to solve a tracking problem. As expected, this method like the feed-

forward method can only be applied to linear systems. However, the computed control input and the 
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tracking results give valuable information in this study in order to compare the optimal results with other 

alternative methods; therefore, it is introduced here. It is noted that the optimal tracking control problem 

is a special case of the linear quadratic regulation (LQR) problem (Kwakernaak and Sivan, 1972). The 

control law is obtained using the augmented state equations and the linear quadratic regulation (LQR) 

formulation (Soong, 1990). The thorough derivation in detail can be found in Kwakernaak and Sivan 

(1972).  

The performance index of an optimal tracking control problem can be expressed 

            1

2

f

o

t T T
m mt

J y t y t Q y t y t u t Ru t dt            (3-7) 

where Q is a positive semi-definite weighting matrix and R is a positive definite weighting matrix. This 

criterion expresses that the controlled achieved response y(t) is to track the target motion ym(t) while the 

control input amplitude is restricted. This augmented system of equations from Eq. (3-1) and Eq. (3-2) 

can be written as: 

   
               

 

         
   

, ,0

0 0 0
, 0

0 00a a a a m a a a
m m m m

a m m a a
m

A x t xB
x t u t r t A x t B u t B r t x x

A x t B x

x t
y t y t y t C C C x t

x t

       
              

       
 

     
 



 (3-8) 

The performance index subject to the constraint represented by Eq. (3-8) can be re-written 

                     ,

1 1

2 2

f

o

t T T T T
a a a a a a m a a a f a ft

J x t Q x t u t Ru t t A x t B u t B r t x t dt x t Sx t               

 (3-9) 

where  

 
T T T

m
a mT T T

m m m m

C C QC C QC
Q Q C C

C C QC C QC

   
         

 

The Hamiltonian can be written as: 

                 ,

1

2
T T T

a a a a a a m at x t Q x t u t Ru t t A x t B u t B r t         Η  (3-10) 

The necessary conditions for the control input u(t) to minimize the cost function J are: 

   
     T

a a a
a

t
t Q x t A t

x t
 


    


Η  (3-11) 

   
       ,a a a a m a

t
x t A x t B u t B r t

t


   

Η

  (3-12) 
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 
         10 T T

a a

t
Ru t B t u t R B t

u t
 

     

Η

 (3-13) 

For the boundary condition,  

           1
/ 0

2
f

T
a f a f a a a f a f

t

x t Sx t x t t Sx t t            
 (3-14) 

where tf is the terminal time. When the control input is generated by the augmented state vector, one has 

         
   

 
   11 12

21 22

,a f
m

P t P t x t
t P t x t P t S

P t P t x t


  
    

  
 (3-15) 

Using Eq. (3-11) to Eq.(3-12), one has the Riccati equation 

         1 T T
a a a a aP t Q P t B R B P t P t A A P t      (3-16) 

By the partitioning this Riccati equation according to the augmented state vector as shown in Eq. (3-15), 

it can be found that P11(t) and P12(t), which are needed to compute the control input in Eq. (3-13), are the 

solution of the matrix differential equations 

           1

11 11 11 11 11 11, 0T T T

fP t C QC P t BR B P t P t A A P t P t       (3-17) 

           1
12 11 12 12 12 12, 0T T T

m m fP t C QC P t BR B P t P t A A P t P t      (3-18) 

These partitioned matrix differential equations are solved backwards in time since they are specified at tf, 

and produces the optimal solution (Soong, 1990 and Kwakernnak and Sivan, 1972). Substituting these 

expressions, the control input in Eq. (3-13) can be expressed: 

Control Law  

       
   

 
       

 
11 121 1

21 220

T

T
a fb ff

m m

P t P t x t x tB
u t R B t R K t K t

P t P t x t x t
                      

       
 (3-19) 

where the feedback gain matrix Kfb(t) and the feedforward gain matrix Kff(t) are  

   
   

1
11

1
12

T
fb

T
ff

K t R B P t

K t R B P t





 

 
 (3-20) 

It is noted that in structural engineering applications P11(t) typically remains a constant positive semi-

definite solution (Soong, 1990) and the Riccati equation in Eq. (3-17) becomes the algebraic Riccati 

equation (known also as ARE): 

1

11 11 11 11 0T T TC QC P BR B P P A A P      (3-21) 

Thus, Eq. (3-20) provides a constant gain (Kfb = -R-1BTP11) feedback control, which can be implemented 

in real time (Crassidis and Junkins, 2012).  
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Figure 3-1 presents a schematic of an optimal tracking control. It clearly shows that the feedback link 

is independent of the properties of the reference model while, as expected, the feedforward link is affected 

by both the properties of the reference model and by the true system (controlled).  

 

 

Figure 3-1 Schematic diagram of an optimal tracking control method 

 

By substituting the control excitation input u(t) into the system equation in Eq. (3-1), the expected 

achieved output y(t) of the controlled structure can be expressed: 

Expected Achieved Responses  

         
   

0, 0fb ff mx t A BK x t BK t x t x x

y t Cx t

     



 (3-22) 

where the feedback gain matrix Kfb(t) and the feedforward gain matrix Kff(t) are shown in Eq. (3-20) and 

repeated here: 

   
   

1
11

1
12

T
fb

T
ff

K t R B P t

K t R B P t





 

 
 (3-23) 

Because these gain matrices are derived from the index function J in Eq. (3-7) that is to minimize the 

difference between the achieved output y(t) and the target motion ym(t), it is expected that the output y(t) 

will follow ym(t) to fulfill the control objective. 

Stability of control  

The tracking controller must meet the design criteria such that all responses (output) in the closed-loop 

system are bounded and the controlled achieved output y(t) tracks the target motion ym(t) as close as 

possible (Ioannou et al., 2012).  

The bounded output stability of the linear systems can be checked using the Bounded-Input-Bounded-

Output (BIBO) stability (Crassidis et al., 2012). A system with a relaxed condition3; i.e. x0 = 0, is said to 

                                                      
3 Stability for the zero-input response; i.e. non zero-state response can be also examined using the eigenvalues of the 

closed loop system matrix (Chen, 1999). 

Model
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be BIBO stable if the output is bounded for any bounded input. An excitation input u(t) is said to be 

bounded if u(t) does not grow to positive or negative infinity (Chen, 1999) such that:  

  mu t u    (3-24) 

where um is a positive constant. Assuming the input is bounded, the responses x(t) (therefore, the output 

y(t)) of the linear time invariant (LTI) system in Eq. (3-1) is bounded if all eigenvalues of the system 

matrix have negative real parts (Chen, 1999).  

For the optimal tracking control (OTC), it is expected that the tracking error e(t) = y(t) - ym(t) will be 

minimized by the computed excitation input u(t), fulfilling one of the tracking objectives. The other 

objective, the bounded response, can be ensured if the eigenvalues of the closed loop system matrix ACL = 

[A+BKfb] in Eq. (3-22) have negative real parts and the feedforward input BKff(t)xm(t) is bounded, 

assuming the feedback gain matrix Kfb is a constant matrix (Soong, 1990),.  

First, assuming the feedforward input is bounded, it is desired to show that the eigenvalues of the 

closed loop system matrix ACL are stable (i.e. every eigenvalue has no positive real part), however, it is 

not straightforward to examine the eigenvalues of ACL due to the complex of the solution for P11 from the 

algebraic Riccati equation in Eq.(3-21).  

Instead, the Lyapunov’s direct method4 (Crassidis and Junkins, 2012) can be used to show the stability 

of the OTC system. The close loop dynamics of the OTC in Eq. (3-22), after substituting the feedback 

gain Kfb = -R-1BTP11, is  

     1
11 0, 0x t A BR BP x t x x      (3-25) 

which is the same equation as the linear quadratic regulator (LQR) and the stability of the LQR 

controller is shown using the Lyapunov’s direct method in Crassidis and Junkins (2012). For the 

introduction of the Lyapunov’s direct method, the procedure is presented below. The following candidate 

Lyapunov function is considered 

     11

T
V x t x t P x t     (3-26) 

The time derivative of Eq. (3-26) yields 

         11 11

T T
V x t x t P x t x t P x t        (3-27) 

Substituting Eq. (3-25) into Eq. (3-27) leads to  

                                                      
4 Lyapunov’s direct method (Crassidis and Junkins, 2012): Lyapunov stability is given if a chosen scalar function 

V(x), which is closely related to the energy of a system, satisfies the following conditions: i. V(xe) = 0 where xe = an 

equilibrium point (i.e. ẋ(t) = 0); ii. V(x) > 0 for x ≠ xe; iii. ሶܸ (x) ≤ 0; then, the equilibrium point xe is stable. 

Furthermore, if ሶܸ (x) < 0 for x ≠ xe; then, the equilibrium point xe is asymptotically stable.  
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     1
11 11 11 112

T T TV x t x t A P P A P BR B P x t        
  (3-28) 

By substituting [ATP11+P11A] = [-CTQC + P11BR-1BTP11] from Eq. (3-21), it is obtained 

     1
11 11

T T TV x t x t C QC P BR B P x t        
  (3-29) 

Clearly, if R and CTQC are positive definite matrices, then the Lyapunov condition; i.e. ሶܸ [x(t)] < 0, is 

satisfied and the close loop dynamics is asymptotically stable, which indicates that all eigenvalues of ACL 

have negative real parts. Also, if CTQC is only a positive semi-definite matrix, ሶܸ [x(t)] ≤ 0 and the close 

loop dynamics are marginally stable. 

Secondly, to show the stability of the OTC controller it is required to prove that the feedforward input 

BKff(t)xm(t) is also bounded. The target state xm(t) is known and chosen to be bounded; however, it is 

difficult to show if Kff(t) is bounded due to the complex of the solution for P11 and P12 from the Riccati 

equation in Eq.(3-16). Therefore, the performance of Kff(t) is examined using a simple scalar system 

example where the system equations in Eq. (3-1) and Eq. (3-2) with C and Cm = 1 can be expressed 

       
       

0

,0

, 0

, 0m m m m m m

x t ax t bu t x x

x t a x t b r t x x

  

   




 (3-30) 

where am > 0 for a stable system target response. The value for p11 = P11 in the algebraic Riccati equation, 

Eq. (3-21) can be found using the property p11 ≥ 0 (Crassidis and Junkins, 2012); 

 2 2 2
11p rb a a b q r    (3-31) 

where r = R and q = Q are positive constant. Substituting p11 into the differential equation for p12(t)  = 

P12(t) in Eq. (3-18) yields 

     2 2

12 12 12, 0m fp t a a b q r p t q p t     
 

  (3-32) 

which must be integrated backward in time. To express this equation more conveniently, set τ = tf – t (i.e. 

t = tf – τ). Since dτ = – dt, writing Eq. (3-32) in terms of τ gives 

     2 2
12 12 12 0, 0f m f

d
p t a a b q r p t q p

d
  


           (3-33) 

Clearly, it is shown that the equation is asymptotically stable since [െܽ௠ െ ඥܽଶ ൅ ܾଶ0 > [ݎ/ݍ; therefore, 

p12(t) is bounded as well as kff(t) = -r-1bp11 is bounded; the feedforward input bkff(t)xm(t) is also bounded. 

This simple scalar example demonstrates the stability of the OTC controller.  
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3.3 Feedback Control  

Two tracking control methods using the feedback control scheme are presented. These methods can be 

used for nonlinear systems by computing the control input in real time with available information at every 

instant. The similarity and/or the differences of the two methods are discussed in this section. 

 

3.3.1 Predictive Tracking Control (PTC) 

The discrete predictive control strategy for linear systems was developed and presented by Rodellar et 

al. (1987), where the control objective was mainly to reduce the response of structures under dynamic 

excitations. This method can be used for a target tracking control.  

A general performance index for the prediction horizon [kΔt, (k+n)Δt] is expressed 

          
      
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J y k j k y k j k Q j y k j k y k j k

u k j k R j u k j k







             

  




 (3-34) 

where ݕොሺ݇ ൅ ݆|݇ሻ is the predicted output of the controlled system and ݕ௠ሺ݇ ൅ ݆|݇ሻ is the target motion at 

instant kΔt for instant (k+j)Δt, and  ݑොሺ݇ ൅ ݆|݇ሻ is the corresponding control sequence. Q(j) is a positive 

semi-definite weighting matrix and R(j) is a positive definite weighting matrix. It is noted that if in Eq. 

(3-34) one makes k = 0 and n = N where N is the final instant of the control action, this equation is the 

discrete counterpart of the performance index of the continuous optimal tracking control shown in Eq. 

(3-9) where xa(tf) = 0 chosen. To make the problem simpler and to achieve fast tracking, n is chosen as 1 

(one) with Q(0) = 0 in this study; i.e. a smaller value of n results in a smaller tracking error while it 

demands lager control inputs, as discussed by Soong (1990). The chosen instantaneous performance index 

J (i.e. based on Rodellar et al., 1987) is  

1 , 1 1 , 1

1 1
ˆ ˆ

2 2

T T
k m k k m k k kJ y y Q y y u Ru              (3-35) 

where Q and R are the positive definite and positive semi-definite weighting matrices, respectively, and 

subscript k+1 indicates ‘computed at instant kΔt for instant (k+1)Δt’ like ‘(k+j)|k’ in Eq. (3-34) and 

ොሺ݇|݇ሻݑ ൌ  ො௞ାଵ and the target motion ym,k+1 canݕ ௞, the control input at instant kΔt. The predicted outputݑ

be computed using a discrete time state-space models, which are the counterpart of the continuous system 

equations in Eq. (3-1) and Eq. (3-2) 

 1 0

1 1

ˆ ˆ , 0

ˆ ˆ
k D k D k

k D k

x A x B u x x

y C x


 

  


 (3-36) 
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where ݔො௞ is the estimate of the true state vector xk at instant kΔt; i.e. ݔො௞ = xk for the systems with known 

parameters and no measurement noise considered; therefore, the predicted output is equal to the true one 

 ො௞ାଵ = y,k+1, andݕ

 , 1 , , , ,0

, 1 , , 1

, 0m k m D m k m D k m m

m k m D m k

x A x B r x x

y C x


 

  


 (3-37) 

For the linear time-invariant system, the solutions of discrete-time system matrices AD and BD (Am,D and 

Bm,D) can be computed, assuming the input uk (rk) is piecewise constant in a digital controller (Chen, 

1999), 
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        

 
          

 


  (3-38) 

and CD is the same as C (Cm,D = Cm). 

The control input uk, which minimizes the performance index J in Eq. (3-35), can be computed by 

imposing the condition ߲ݑ߲/ܬ௞ ൌ 0; 

Control Law  

1* * * * *

, 1 , 1
ˆ ˆT T

k D D D m k D k m k D ku B QB R B Q y A x y A x


                 (3-39) 

where AD
* = CDAD and BD

* = CDBD. and Γ ൌ ሾܤ஽
஽ܤ்ܳ∗

∗ ൅ ܴሿିଵܤ஽
∗்ܳ. The predicted response using this 

calculated control input uk can be obtained by substituting Eq. (3-39) into Eq. (3-36) 

Expected Achieved Responses  

    * *

1 1 , 1 , 1
ˆ ˆ ˆˆ ˆ

k D k D D k D m k D k D D D D k D m kC C A x B y A x C A B A x B yy x                (3-40) 

If BD
* = CDBD is an invertible matrix and R = 0 chosen (i.e. indicating no limit for the control input), then 

Eq. (3-40) becomes  

     * * * 1 1 * * *

1 1 , 1 , 1
ˆ ˆˆ ˆ T T

k D k D k D D D D m k D k m kC A x B B Q B B Q y A x yy x   
         (3-41) 

and the predicted tracking error ݁௞ାଵ ൌ ො௞ାଵݕ െ   .௠,௞ାଵ becomes 0 (zero) as desiredݕ

Stability 

As discussed, the tracking objectives are to minimize the tracking error and to have the state responses 

in the closed-loop system be bounded. It is shown that the predicted tracking error becomes zero; i.e. 

ek+1→ 0. In order to check if the responses of the state (e.g. the displacements x and velocities ẋ), of the 

controlled system are bounded, one can check the closed loop stability (as discussed in Section 3.2). The 
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closed loop equation can be expressed by substituting the control input uk into the system equation of Eq. 

(3-36): 

,

*
1 , 1

*
, 1

ˆ ˆ ˆ

ˆ

CL D

k D k D m k D k

D D D k D m k

A

x A x B y A x

A B A x B y

 



     
      

 (3-42) 

The state responses will be bounded if every eigenvalues of ACL,D has a magnitude less than 1 (Chen, 

1999). This procedure is applied for an example in Ch 3.3.2 where the feedback linearization method is 

used.  

 

Limitation of 2DOF Shake Table-Structure Systems  

When the product C × B, of the output and input matrices in the system equations in Eq. (3-1) and Eq. 

(3-2), is singular, it is required to change the procedure in order to establish a valid control law; for 

example, C × B = 0 for the shake table-structure 2DOF model shown in Equations (2-24) and (2-25) with 

the output y(t) of the total acceleration response ẍs
t(t) at the structure.  

In order to force the control input uk to appear in the output equation, a higher order differentiation of 

the output ݕො௞ାଵ  in discrete time or ݕො(t+h) in continuous time is needed. Even though the equivalent 

control law can be developed in both time formats, the continuous time form ݕො(t+h) is preferred in that 

the predicted time interval h is not restricted to be the same as Δt, the sampling time step. Thus, h can be 

chosen by the design engineer as a controller parameter (as discussed in Lu, 1995). The procedure to 

formulate the predictive tracking control law for nonlinear continuous systems was presented by Lu 

(1994). One possible way to predict (estimate) the output is to use the Taylor series expansion (Sauer, 

2006): 

               2ˆ / 2 ... / ! ...nny t h y t hy t h y t h n y t        (3-43) 

For our shake table-structure 2DOF model, the output needs up to three terms; thus, the approximated 

predicted output ݕො*(t+h) and target motion ݕ௠∗ (t+h) are defined  

         
         

* 2

* 2

ˆ / 2

/ 2m m mm

y t h y t hy t h y t

y t h y t hy t h y t





  

  

 

 
 (3-44) 

where ݕሶ (t) and ݕሷ (t) in the first equation can be expressed using Equations (2-24) and (2-25) 

          
              2

ˆ ˆ ˆ

ˆ ˆ ˆˆ

y Cx C Ax t Bu t CAx

y C CAx CA Ax t Bu t CA x CABu

t t t

t x t t t t

   

     



   (3-45) 
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It is noted that the control input does not appear in the right side of first equation due to CB = 0 (i.e. scalar 

for this single input single output system) and does appear in the second equation because CAB ≠ 0.  

The control excitation input u(t) can be obtained by minimizing the performance index J in Eq. (3-35) 

by replacing the output ݕො(t+h) and the target ym(t+h) to their approximations ݕො*(t+h) and ݕ௠∗ (t+h) after 

substituting Eq. (3-45) in Eq. (3-44); 

Control Law  

     1* * * * * ˆT T

mu B QB R B Q y t h A x tt


           (3-46) 

where A* = [C + hCA + (h2/2)CA2] and B* = (h2/2)CAB. By substituting Eq. (3-46) into the second 

equation of Eq. (3-45), one can establish the error dynamics. For a system having B* is a non-zero scalar 

(i.e. an invertible matrix, size 1 × 1), and R = 0 chosen, ݕሷ 	(t) becomes 

Expected Achieved Responses  

       

             

2 * *
1*

2

ˆˆ

2 /

m

m mm

y CA CAB B y t h A x t

y h

t x t

t h y t y t y t y t


  



      
     



  
 (3-47) 

which can be rewritten by introducing the tracking error (e(t) = y(t) - ym,(t)) to show its dynamics  

         22 / 2 / 0e t h e t h e t     (3-48) 

This equation clearly shows the tracking error e(t) → 0 as t → ∞ since h > 0. As addressed above, h is a 

tracking error design parameter and can be selected by the design engineer. The equation indicates that 

the faster tracking can be achieved with smaller h, but it requires larger control efforts.   

To ensure the stability of the control scheme, one needs to check not only the output but also the state 

responses of the controlled system. This can be done by looking at the closed loop stability; this 

procedure is presented in Ch 3.3.2 where the feedback linearization method is presented.  

 

3.3.2 Feedback Linearization Tracking Control (FTC) 

Another possible tracking control scheme is Feedback Linearization Tracking Control (FTC) (Ioannou 

et al., 2006). FTC can be used also for the nonlinear system control (see Section 4.3); however, in this 

section, the method is applied to linear systems, which are the special cases of nonlinear systems. The 

target motion ym(t) can be chosen to be bounded and differentiable; i.e. a more realistic target motion at a 

structure can be generated by using the reference model, which has desired dynamic characteristics and is 

driven by a reference input (as discussed in Section 1.1). The controller can be designed such that, by 

replacing the true system parameters with the desired ones, the output y(t) of the controlled system will 

follow the target motion.  



 

44 

 

In a scalar case; i.e. x(t) = x(t), the equations of the true system and the reference model in Eq. (3-1) 

and Eq. (3-2) can be rewritten: 

True System Behavior 

       
   

0, 0x t ax t bu t x x

y t cx t

  




 (3-49) 

Reference Model Governing Equations 

       
   

0, 0m m m m m m

m m m

x t a x t b r t x x

y t c x t

  




 (3-50) 

where all coefficients are positive constants. The system output y(t) is to be differentiated until the control 

excitation input u(t) appears in the expression of the differentiated output 

       y t cx t cax t cbu t     (3-51) 

The main objective of the tracking control is by using the control excitation input u(t) to reduce the 

tracking error signal e(t) = y(t) - ym(t), which is defined as the difference between the system output y(t) 

and the target motion ym(t). The desired tracking error dynamics can be defined as  

   *
1 0e t k e t   (3-52) 

where ݇ଵ
∗ is a design error coefficient, chosen by the engineer, and a positive constant; thus, the tracking 

error e(t) goes to zero as time goes to infinity; e(t) → 0 as t → ∞. Eq. (3-52) can be rewritten using the 

expression e(t) = y(t) - ym(t) as   

       *
1 0m my t y t k y t y t             (3-53) 

Moving all terms in Eq. (3-53) to the right-hand side except ݕሶ (t) gives 

         *
1m my t y t k y t y t or v t        (3-54) 

where a new term v(t) = ݕሶm(t) – k1
*[y(t) –ym(t)] is introduced for brevity. Equating this equation to the 

right-hand side of Eq. (3-51) yields 

     cax t cbu t v t   (3-55) 

By solving this equation for the control excitation input u(t), the feedback tracking control law is obtained 

as following:  

Control Law  

              *
1

1 1
m mu t cax t v t or cax t y t k y t y t

cb cb
                (3-56) 
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where the first term in the right hand side -cax(t) will cancel the original system dynamics (the first term 

cax(t) in Eq. (3-51)), and the new input v(t), the second term in the right hand side, can be chosen such 

that the tracking objective will be accomplished (as described above).  

Expected Achieved Responses  

By using the determined control excitation input u(t) from Eq. (3-56), it is expected that the tracking 

error e(t) → 0 as t → ∞ as shown in Eq. (3-52). It is also expected that when the error coefficient ݇ଵ
∗ in the 

tracking error equation increases, the error will rapidly diminish, but it will require larger control efforts 

(thus, larger actuator forces).  

Stability 

To fulfill the tracking objectives, it is shown that the tracking error goes to zero, e(t) → 0. It is also 

required to check if all the responses of the controlled system are bounded. This can be checked from the 

closed loop system by substituting the control excitation input u(t) from Eq. (3-56) into the true system 

equation (3-49): 

            
     

     

1 *
1

1 * *
1 1

* 1 *
1 1

m m

m m

m m

x t ax t c cax t y t k y t y t

c k cx t y t k y t

k x t c y t k y t







       
     

     

 





 (3-57) 

Cleary, the responses x(t) and ẋ(t) will be bounded since െ݇ଵ
∗  < 0 and the input part ܿିଵሾݕሶ௠ሺݐሻ ൅

݇ଵ
-according to the Bounded-Input-Bounded (ሻ is boundedݐ௠ሺݕ i.e. the target motion) ሻሿ is boundedݐ௠ሺݕ∗

Output (BIBO) stability (Crassidis and Junkins, 2012), discussed in Section 3.2. It is noted that this 

stability analysis for a first order system is not applicable to higher order systems. However, the stability 

can be checked from the closed loop systems using the same analysis scheme. 

 

Application to SDOF Linear Structures 

The feedback linearization tracking control method is applied to a linear structure (an SDOF system 

model) previously shown in Eq. (2-26) with the output y(t) of the total acceleration response ẍs
t(t) at the 

structure. 

Using the same procedure described above, the control law can be obtained (see detailed Derivation 

3.1 in Appendix 3.1) 

Control Law  

       
12 *

s su t c m y t v t
        (3-58) 

where ݕሶ ∗(t) is defined as 

   * 2 1( ) ( )s s s s s s s s sy t m c c x t k x t m k x t          (3-59) 
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Substituting u(t) from Eq. (3-58) into the equation of the differentiated output ݕሶ (t) (Eq. (B-3) in Appendix 

3.1) leads to 

   y t v t  (3-60) 

This new input v(t) can be chosen as following, to reduce the tracking error signal e(t) = y(t) - ym(t),  

     *
1mv t y t k e t   (3-61) 

that leads to the following tracking error dynamics (as discussed in the previous derivation): 

Expected Achieved Responses  

   *
1 0e t k e t   (3-62) 

where the tracking error signal e(t) → 0 as t → ∞ by selecting ݇ଵ
∗ > 0.  

Stability 

It is shown that the tracking error goes to zero, e(t) → 0, indicating that ym(t) = ẍs
t(t) = (ẍs(t) – ms

-1u(t)) 

is bounded; however, checking is needed to find if the responses x(t) of the closed loop system are 

bounded. By substituting the control input u(t) of Eq. (3-58) into the true system equation (2-26): 

        
 
     

 

1 1 1 1 2

1

* 1 1 *
1 1

( ) ( )

m

s s s s s s s s s s s s s

s s

s s s s m m

u t

x t m c x t m k x t m c x t k x t c m v t

c m v t

k c m y t c m y t k y t

   



 

       
 

    

  




 (3-63) 

Introducing the last known term ܿ௦ିଵ݉௦ሾݕሶ௠ሺݐሻ ൅ ݇ଵ
 ሻሿ from the target motion as the new inputݐ௠ሺݕ∗

 ሻ and substituting y(t) in Eq. (3-63) lead to the closed loop system equationݐ௠ሺݑ

     * * 1
1 1( )s s s s s mx t k x t k c k x t u t      (3-64) 

which can be written in the matrix form with the state vector x(t) = [xs(t)  ẋs(t)]
T 

 
 

 
   * 1 *

1 1

0 1 0

1
s s

m
s s s s

x t x td
u t

x t k c k k x tdt 

      
               

 (3-65) 

The system matrix has all negative real part eigenvalues if ݇ଵ
∗cs

-1ks > 0 (i.e. the damping coefficient and 

stiffness of a structure are normally positive and ݇ଵ
∗  > 0 selected) and the input part ݑ௠ሺݐሻ ൌ

ܿ௦ିଵ݉௦ሾݕሶ௠ሺݐሻ ൅ ݇ଵ
 therefore, the responses ;(ሻ is boundedݐ௠ሺݕ i.e. the target motion) ሻሿ is boundedݐ௠ሺݕ∗

xs(t) and ẋs(t) are bounded according to the Bounded-Input-Bounded-Output (BIBO) stability (Crassidis et 

al., 2012), discussed in Section 3.2. 
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Application to 2DOF Shake Table-Linear Structure Systems 

The same feedback linearization tracking control method is applied to a linear structure mounted on a 

shake table (a 2DOF system model) described in Equations (2-24) and (2-25) with the output y(t) of the 

total acceleration response ẍs
t(t) at the structure.  

Using the same procedure described above, the control law can be obtained (see Derivation 3.2 in 

Appendix B.2) as 

Control Law  

     * 1 *u t a y t v t       (3-66) 

where u*(t) = (ωa
2ka)

-1u(t); u(t) = xd(t); and ݕሷ ∗(t) is defined as 

                     * *
s s a t ty t a a c b x t a b d x t ae f t af x t ag x t                  (3-67) 

in which new notations are introduced for simplification: 

           

1 1 1

2 2

* * 2

; ; ;

2 ; ; ;

/ ; ,

s s s s t s

a a a a a

a a t a a d d

a m c b m k c m c

e f g k

f t f t m u t k x t u t x t

   



    

  

  

 (3-68) 

Substituting u*(t) into the equation of the differentiated output ݕሷ (t), shown from Eq. (B-14) in Appendix 

B.2, leads to 

   y t v t  (3-69) 

To reduce the tracking error signal e(t) = y(t) - ym(t), the new input v(t) can be obtained as: 

       * *
1 2mv t y t k e t k e t     (3-70) 

where ݇ଵ
∗ and ݇ଶ

∗ are the tracking error design coefficients, which are constant and positive; these lead to 

the tracking error dynamics 

Expected Achieved Responses  

     * *
1 2 0e t k e t k e t     (3-71) 

in which the error signal e(t) goes to zero as time goes to infinity; e(t) → 0 as t → ∞. 

Stability 

It is shown in Eq. (3-71) that the tracking error goes to zero, e(t) → 0; this indicates that ym(t) = ẍs
t(t) is 

bounded; however, checking is needed to find if the responses x(t) of the closed loop system are bounded. 

By substituting the control input u(t) from Eq. (3-66) into the true system equation (2-24) and using the 

notations defined in Eq. (3-68), it is obtained 
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           
         

           

     
 

* * 1 *

1 1

1 * * 1 * * 1
1 1 2 2

1 * *
1 2

m

a a t t

s s

s s s

jih

m m m

u t

f t ef t fx t gx t a y t v t

a c a b x t b d x t a v t

a c a b k x t b d k a b k x t k a b x t

a y t k y t k y t



 

  



        
        

                

    

  

 

 
 

 
 

 (3-72) 

By substituting ẍs(t) of Eq. (2-24) and by introducing additional notations for simplification: 

   1 * * 1 * * 1
1 1 2 2; ; ;h a c a b k i b d k a b k j k a b                    (3-73) 

and also introducing the last known term ܽିଵሾݕሷ௠ሺݐሻ ൅ ݇ଵ
ሻݐሶ௠ሺݕ∗ ൅ ݇ଵ

 ሻሿ from the target motion as aݐ௠ሺݕ∗

new input ݑ௠ሺݐሻ, Eq. (3-72) can be rewritten 

         
       

*

* ( ) ( )

a s s s m

a s s m

f t hx t ix t jx t u t

hf t h a c i x t h b d j x t u t

   

               

  


 (3-74) 

From this equation and the equations from Eq. (2-24), one has the closed loop system equation, which can 

be written in the matrix form with the state vector x(t) = [xs(t)  ẋs(t)  ௔݂
∗(t)]T 

 
 
 

   
 
 
 

 
* *

0 1 0 0

1 0

( ) ( ) 1

s s

s s m

a a

x t x t
d

x t b d a c x t u t
dt

f t h b d j h a c i h f t

      
                  
                  

   (3-75) 

One can show that the state vector x(t) = [xs(t)  ẋs(t)  ௔݂
∗(t)]T will be bounded by showing that the 3 × 3 

closed loop system matrix has all negative real part eigenvalues with given parameters. To show if the 

remaining two state variables: xt(t) and ẋt(t); will be bounded, one can use the fact that ym(t) ≈ ẍs
t(t) (i.e. 

e(t) → 0 as shown in Eq. (3-71)). This indicates that the total displacement ݔ௦௧(t) = xs(t) + xt(t) and the 

total velocity ݔሶ௦௧(t) = ẋs(t) + ẋt(t) tend to be the integrations of the target motion (i.e. ym(t) = ẍs
t(t) = ẍs(t) + 

ẍt(t)), assuming the initial conditions are zeros: 

     

       
0

0 0

0

0 0

tt t
s s m

tt t t
s s s m

x t x y d

x t x x t y d d


 

  

 

  


 

 


 (3-76) 

Therefore, choosing the target motion ym(t) and its integration and double integration to be bounded leads 

to ݔ௦௧(t) and ݔሶ௦௧(t) are bounded. Since xs(t) and ẋs(t) are bounded, xt(t) and ẋt(t) are also bounded. It is noted 

that the boundedness of xt(t), the shake table displacement, might suffer from small tracking errors: e(t) = 

ẍs
t(t) - ym(t); as shown in the second equation of Eq. (3-76). This might be acceptable for the shake table 

control applications in this study where the total control time is relatively short. However, this issue might 

be more critical for applications where much longer control time is required. For these applications, one 
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can reformulate the tracking control law by modifying the original target motion: the total structure 

acceleration; to the total structure displacement through double integrations of the original target motion; 

then, the stability of the controlled system can be examined using the same procedure described above. 

 

3.3.3 Comparisons of Feedback Tracking Control Methods 

It is very interesting to see the similarity and/or differences between the two feedback control methods 

introduced in this section. To compare the two methods, the control law of the feedback linearization 

control method is reformulated in the matrix form using the system equations shown in Eq. (3-1) and Eq. 

(3-2).  

The system output y(t) = Cx(t) is differentiated until the control input u(t) appears in the expression of 

the differentiated output 

       y t Cx t CAx t CBu t     (3-77) 

Assuming the product matrix CB is invertible (i.e. for the SDOF expressed in Eq. (2-26) with the output 

y(t) of the total acceleration response ẍs
t(t) at the structure, CB is invertible), the feedback control is 

       1
u t CB CAx t v t

       (3-78) 

where the new input v(t) = ݕሶ௠ሺݐሻ െ	݇ଵ
∗݁ሺݐሻ; i.e. ݁ሺݐሻ ൌ ሻݐሺݕ െ  ሻ, is chosen to meet the tracingݐ௠ሺݕ

objective, and introducing A* = CA and B* = CB the control law of the feedback linearization becomes 

       * 1 * *
1mu t B y t k e t A x t       (3-79) 

Substituting this control input into Eq. (3-77) leads to  

     *
1my t y t k e t    (3-80) 

which can be rewritten to show the tracking error dynamics 

   *
1 0e t k e t   (3-81) 

that clearly shows the tracking error e(t) → 0 as t → ∞ if ݇ଵ
∗ ൐ 0.  

It is noted that the control law in Eq. (3-79) is very similar with the control law of the predictive 

tracking control shown in Eq. (3-39), which can be rewritten, assuming R = 0 and BD
* = CDBD is invertible 

as B* = CB is invertible, 

1* * * * * 1 *
, 1 , 1ˆ ˆT T

k D D D m k D k D m k D ku B QB R B Q y A x B y A x
 

                 (3-82) 

For the linear systems, these two equations (3-79) and (3-82) are equivalent by choosing ݇ଵ
∗ ൌ 1/Δݐ 

where Δݐ is the discrete time interval, and the equations can be seen as the continuous – discrete time 

counterparts of the feedback control inputs.  
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Equivalency of Methods for 2DOF Shake Table-Structure Systems  

One can also show that the two methods are equivalent for the shake table-structure system (where C 

× B is singular) under certain conditions. For example, the predictive tracking control law shown in Eq. 

(3-46) becomes the same as the control law (see Eq. (3-66)) of the feedback linearization tracking control 

method (i.e. see Derivation 3.3 in Appendix B.3), if the controlled system has B(x)* that is a non-zero 

scalar (i.e. an invertible matrix, size 1 × 1), and R = 0 chosen; by selecting the tracking error coefficients 

in Eq. (3-48) as ݇ଵ
∗ = 2 / h = 2ξeωe and ݇ଶ

∗ = 2 / h 2 = ωe
2; therefore, ξe = √2 / 2 ≈ 0.707 and h = √2 / ωe.  

 

3.4 Numerical Examples and Comparisons of Tracking Control Methods 

Simple tracking control examples are analyzed in order to examine the performance of the four 

tracking control methods for linear systems introduced in this section. For all examples, the target motion 

is the total acceleration of a structure (specimen) mounted on the shake table although any response; i.e. a 

displacement or velocity response, can be selected as the target motion.   

 

3.4.1 Examples of Linear Structures (SDOF System Model) 

As discussed in Section 2.2, in order to facilitate the development of the tracking control method, first, 

a simplified SDOF system model is used instead of a 2DOF system model for the shake table with an 

SDOF structure system. In this simplified system model (shown in Figure 3-2), the excitation force -

msẍt(t) due to the shake table acceleration ẍt(t) is considered as a new control excitation input u(t). 

However, the actual control excitation input u(t) for the 2DOF system model is the desired displacement 

xd(t) of the shake table, and u(t) shall be computed including the shake table dynamics and the shake 

table-structure interaction (as discussed in Section 2.2) as formulated in the following section (Section 

3.4.2).  

 

 

Figure 3-2 Tracking control of an SDOF system with known parameters 

 

The governing equation of an SDOF linear structure subjected to the shake table excitation is shown in 

Eq. (2-26). The tracking control task for this simplified system is to compute the control excitation input 
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u(t) = -msẍt(t) so that the system output y(t) = ẍs
t(t) (the total acceleration of the structure) follows the 

target motion ym(t) = ẍm
t(t) (the total acceleration of the reference model), and all responses of the 

controlled system are bounded. The initial condition x(0) = 0; i.e. the state of a system (shake table and 

structure) initial condition in this study is always zeros: x(0) = 0, unless otherwise stated. 

 

Example 3.1 : An SDOF Linear System with Known Parameters 

The properties of the example system are selected: ms = 1 kips·sec2/in., ks = 355 kips/in., and cs = 1.13 

kips·sec/in., (fn = 3.0 Hz, ξn = 0.03). Figure 3-3 (a – Target) shows the target motion. The target motion is 

the total acceleration output generated from a reference linear system, subjected to one-cycle sine input, 

whose frequency = 1.0 Hz. The reference input is high-pass-filtered at 0.2 Hz cutoff frequency to remove 

a large drift demand in the target motion. The properties of the reference system are: mm = 1 kips·sec2/in.; 

km = 987 kips/in.; and cm = 6.28 kips·sec/in. (fm = 5.0 Hz, ξm = 0.1). The reference input and the responses 

of the reference model are presented in Appendix A.2. The time step Δt of 0.002 sec is used for the 

simulation.  

Tracking control results are presented in Figure 3-3. The controlled outputs, y(t) = ẍs
t(t) the total 

acceleration of the structure, are shown in Figure 3-3(a) that shows very good agreement with the target 

motion ym(t) [Target]. For comparison purposes, the results of four linear tracking control schemes: 

optimal tracking control [OTC]; inverse transfer function control [ITF]; predictive tracking control [PTC]; 

and feedback linearization tracking control [FTC]; are presented together and show the similarity of their 

performance. Note that for the OTC, a much smaller time step (Δt = 0.00001), which is impractical, is 

used as a benchmark solution; i.e. for other methods Δt = 0.002 sec. The performance can be 

quantitatively measured using the normalized root-mean-square error (ENRMS), which is expressed as 

(Fienup, 1997): 

   2 2

, ,
1 1

N N

NRMS m i i m i
i i

E y y y
 

    (3-83) 

where ym is the target motion and y is the output of the controlled system as addressed. The error of each 

method is computed and shown in Table 3-1; this shows that the performance of the feedback control 

methods (PTC and FTC), which will be used for nonlinear system control, are as good as the feed-

forward method (ITF and OTC). It is noted that the performance of every method is highly affected by the 

control gain, which may have physical limitation in real applications. 

The computed control excitations, u(t) = -msẍt(t), for all four control methods using the control laws 

(i.e. Eq. (3-5) for the ITF method, Eq. (3-19) for the OTC method, Eq. (3-39) for the PTC method, and 

Eq. (3-58) for the FTC method) are shown in Figure 3-3(b) (for comparison purposes with other 

examples, ẍt(t) the shake table acceleration is presented). The achieved displacement and velocity 
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responses of the controlled structure xs(t), ẋs(t) are also presented in Figure 3-3 (c) and (d); it is noted that 

unlike the total acceleration (which was the target of the control design), the displacement and velocity 

responses are different from the ones of the reference because the system properties of the controlled 

system and ones of the reference system are different (the responses of the reference model are presented 

in Appendix A.2). Note that since the responses are very similar to each other, only the responses of the 

PTC method are presented. The relation between the structure resisting force fS(t) and displacement xs(t) 

is also presented in Figure 3-3 (e). As expected, all responses of the controlled system are bounded, 

satisfying the control objectives. 

 

Table 3-1 Comparison of the performance of linear tracking controllers for an SDOF linear system 

 OTC ITF PTC FTC 

ENRMS 0.0002 0.0000 0.0000 0.0000 
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Figure 3-3 Tracking control results of an SDOF linear system 
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3.4.2 Examples of Shake Table-Linear Structures (2DOF System Model) 

As discussed in Section 2.2, the shake table dynamics affect the performance of the control system and 

the interaction between the shake table and the mounted structure is to be considered. The same tracking 

control example above is resolved for the 2DOF linear system, expressed in Eq. (2-24) and Eq. (2-25), 

and schematically shown in Figure 3-4.  

 

 

Figure 3-4 Tracking control of the shake table- structure 2DOF system with known parameters 

 

When the target motion at a structure is specified, the required control input u(t) = xd(t), the desired 

shake table displacement, is determined such that the output of the system (y(t) = ẍs
t(t), the total 

acceleration of the structure), follows the target motion ym(t), and all responses of the controlled system 

are bounded. It is noted that the target motion might be required to be high-pass-filtered for the shake 

table applications, as discussed in Section 2.5.1 in order to avoid large drift of the shake table, by 

removing the DC error in the target. The 2nd order Butterworth high-pass filter (Chu, 2005) is used in the 

examples. 

 

Example 3.2 : A 2DOF Linear System with Known Parameters 

Like in example 3.1, the properties of the system are selected as: ms = 1 kips·sec2/in., ks = 355 kips/in., 

and cs = 1.13 kips·sec/in., (fn = 3.0 Hz, ξn = 0.03), μ = ms / mt = 0.1, fn,a = 30.0 Hz, ξa = 0.5, and ka = 25. 

The target motion is shown in Figure 3-5 (a) [Target]; i.e. the target motion is the total acceleration output 

generated from the same reference linear system (fm = 5.0 Hz, ξm = 0.1) used for Example 3.1. in Section 

3.4.1 (the reference excitation input and the responses of the reference model are presented in Appendix 

A.2). A time step of 0.002 sec is used for the simulation.  

Tracking control results are presented in Figure 3-5 and Figure 3-6. The controlled outputs, y(t) = ẍs
t(t) 

the total accelerations of the structure, are shown in Figure 3-5 (a), showin a very good agreement with 

the target motion ym(t) [Target]. For comparison purposes, the results of four linear tracking control 

schemes: optimal tracking control [OTC]; inverse transfer function control [ITF]; predictive tracking 
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control [PTC]; and feedback linearization tracking control [FTC]; are presented together; All show very 

good agreement to each other. Note that the OTC requires a much smaller time step (Δt = 0.00001), 

which is impractical; for all other methods the required time step is Δt = 0.002 sec. The error of each 

method is computed using the normalized root-mean-square error (ENRMS), expressed in Eq. (3-83), and 

shown in Table 3-2. The results show that the performance of the feedback control methods (PTC and 

FTC), which will be used also for nonlinear system control, are as good as the feedforward method (ITF 

and OTC). It is noted again that the performance of every method is highly affected by the control gain, 

which may have physical limitation in real applications. 

The computed control excitation inputs, u(t) = xd(t), for all four control methods using the control laws 

(i.e. Eq. (3-5) for the ITF method, Eq. (3-19) for the OTC method, Eq. (3-46) for the PTC method, and 

Eq. (3-66) for the FTC method) are shown in Figure 3-5 (b). The achieved displacement and velocity 

responses, xs(t), ẋs(t),  of the controlled structure are also presented in Figure 3-5 (b) and (c); it is noted 

that unlike the total acceleration (which was the target of the control design), the displacement and 

velocity responses are different from the ones of the reference because the system properties of the 

controlled system and ones of the reference system are different (the responses of the reference model are 

presented in Appendix A.2). The relation between the structure resisting force fS(t) and displacement xs(t) 

is also presented in Figure 3-5 (e). Note that since the responses are very similar to each other, only the 

responses of the PTC method are presented. Figure 3-6 presents the responses of the shake table, the 

achieved shake table actuator force fa(t), shake table acceleration ẍt(t), displacement xt(t) and velocity ẋt(t).  

It is also noted that the achieved shake table acceleration ẍt(t) (Figure 3-6 (b)) might be compared with 

the Example 3-1 table acceleration ẍt(t) (previously presented in Figure 3-3 (b)).  It can be shown that the 

difference is very small. However, the simplified SDOF linear system cannot be used for the real 

applications because the actual control input, u(t) = xd(t) (the desired displacement of the shake table), 

cannot be directly computed from the shake table acceleration ẍt(t). The actual control input u(t) = xd(t) 

should be computed using the coupled system equation (Eq. (2-24)) including the shake table dynamics 

and the shake table-structure interaction, as in this example. As expected, all responses of the controlled 

system are bounded, satisfying the control objectives. 

 

Table 3-2 Comparison of the performance of linear tracking controllers for a 2DOF system 

 OTC ITF PTC FTC 

ENRMS 0.0057 0.0102 0.0070 0.0070 
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Figure 3-5 Tracking control structure responses of a 2DOF linear system 
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Figure 3-6 Tracking control shake table responses of a 2DOF linear system 

 
In this section, the well-known tracking control methods including the feedforward, 

feedforward+feedback, and feedback control methods are reformulated in order to establish control laws 

for shake table and linear structure control applications. The performance of each tracking scheme is 

analytically examined from its expected achieved responses for the feedforward method and closed loop 

system responses for the feedback control methods. The performances of all control methods are also 

quantitatively compared using the numerical simulations. The results show very good and similar tracking 

performances. Especially, the performances of the feedback control methods (PTC and FTC), which will 

be used for nonlinear system controls, are as good as the feed-forward methods (ITF and OTC). It is also 

noted that the performance of every method is highly affected by the control gain, which may have 

physical limitation in real applications.   
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SECTION 4 

TRACKING CONTROL FOR NONLINEAR SYSTEMS WITH KNOWN 

PARAMETERS 

 

Structures (specimens) subjected to strong excitation can experience nonlinear hysteretic behavior due 

to yielding, or due to the nature of the seismically protected structure, such as a base isolated system. A 

class of smooth hysteretic models was originally proposed by Bouc (1967) and modified by several others 

(Wen, Y. K., 1976, Reinhorn et al., 1995, Sivaselvan and Reinhorn, 2000). In this model the restoring 

force fS(x) is modeled as a combination of elastic and hysteretic components as shown in Figure 4-1 (left). 

Even though the model is versatile and capable to simulate stiffness degradation, strength degradation, 

and pinching (Sivaselvan and Reinhorn, 2000), this study focuses only on a simple, bilinear type 

hysteretic behavior in order to facilitate the development of a real time controller; this restriction can be 

removed but it will require a much more elaborated explanation. For this hysteretic system, the model 

parameters include: ks, the elastic stiffness; dy, the yielding displacement (i.e. the yielding force fy = ksdy); 

α the post-yielding stiffness ratio to the elastic stiffness; and N, the power controlling the smoothness of 

the transition from elastic to inelastic range. For the controller development, it is necessary to know these 

parameters; however, in real applications, only initial approximations of the true parameters might be 

available from static tests; in particular, for dy and α, the hysteretic parameters, a real time estimator might 

be necessary. The hysteretic parameter, N, is also unknown (i.e which can be also estimated in real time  

 

 

Figure 4-1 Nonlinear system model: Restoring force model5 and effects of smoothness of transition6 

                                                      
5 (Simeonov et al., 2000); all terms are explained in the following section;  
6 (Constantinou, 2008); only the response in one positive direction is presented 
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as shown in Wu and Smyth, 2008); in this study, it is assumed as a fixed value, N = 3, considering that the 

influence of the smooth transition changes on the entire hysteretic behavior is not significant. Figure 4-1 

(right) shows different transitions due to various N of the hysteretic components. It is also noted that there 

are parameters (η1, η2 in Eq. (4-2)), which control the shape of the hysteretic loop; in this study, η1 = η2 = 

0.5 are chosen also for simplicity.  Feedback controllers are proposed first, in this section, assuming all 

parameters are known a priori. In later sections, real time estimators are introduced to be combined with 

the controllers.   

Four tracking control methods, including (i) a feed-forward control method, (ii) a combined feed-

forward feed-back control method, (iii) a predictive tracking control method and (iv) a feedback 

linearization tracking control method for linear systems, were introduced in the previous section. The two 

feedback control methods, the predictive tracking control and the feedback linearization tracking control, 

can be extended to nonlinear hysteretic systems. In this section, the nonlinear hysteretic model is 

presented first. The formulation of each control method is provided and numerical examples of an SDOF 

nonlinear structure and a 2DOF shake table with a nonlinear structure mounted on it are presented. The 

performances of these methods are compared.  

 

4.1 Nonlinear Hysteretic Structure Model  

Considering a nonlinear hysteretic SDOF system, the equation of motion can be written as (adapted 

from Sivaselvan and Reinhorn, 1999): 

( ) ( ) ( ) ( ) ( )s s s s S s tm x t c x t f x m x t or u t       (4-1) 

where fS(x) is a nonlinear restoring force and the governing equation is 

           1S T s s H sf x k x x t k k x x t       
    (4-2) 

in which kT(x) indicates the instantaneous tangent stiffness; ks is the elastic stiffness; kH(x) is the hysteretic 

stiffness; and α the post-yielding stiffness ratio to the elastic stiffness. In this parallel-spring 

representation, the stiffness of the hysteretic spring kH(x) is expressed as 

        
2 1 *

1 sgn

N

H

H s H s
y

f x
k x k f x x t

f
 

              

  (4-3) 

where the hysteretic force fH(x) = fS(x) – αksx(t); the hysteretic yielding force fy
* = (1 – α) fy with the 

yielding force fy = ksdy where dy is the yielding displacement; N is the power controlling the smoothness of 

the transition from elastic to inelastic range (see Figure 4-1(b)); and η1, η2 are parameters controlling the 

shape of the hysteretic loop, which must satisfy η1 + η1 = 1 (Constantinou and Adane, 1987) i.e. in this 
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study, η1 = η2 = 0.5 are chosen for simplicity. Equations (4-1) and(4-2), can be rewritten in the state space 

form as 

      
 
 
 

 
      

   
 1 1

0

f ,

, 0
s s

s s s s S s

S T s

x t x t u t or

x t x t
d

x t m c x t f x m u t x x
dt

f x k x x t

 



  
         
     





 



 (4-4) 

In the matrix form, this is 

        
 
 
   

 
 
 

 1 1 1
0

0 1 0 0

0 , (0)

0 0 0

s s

s s s s s s

S T S

x t A x t x t Bu t or

x t x t
d

x t m c m x t m u t x x
dt

f x k x f t

  

 

      
                
           



 
 (4-5) 

Considering the structure mounted on the shake table shown in Figure 2-1 is a nonlinear hysteretic SDOF 

system, the equations of motion of the table-structure system can be expressed as 

               
                 

              

 

 

,

,

*

2

1 sgn
1 1

2

1

s s s s S s t I s D S s t

t t s s S a I t D S a

N

HH s

S T s s s s
y

T

a

m x t c x t f x m x t or f t f t f x m x t

m x t c x t f x f t or f t f t f x f t

f xf x x t
f x k x x t k k x t

f

k x

f

 



       

     

                  

   

 


  



          2a a ta
a t a d

t a t

t f t dx t
k x t k x t

m m dt




   

 (4-6) 

where ωa (i.e. fn,a (Hz) = ωa / 2π), ξa, and ka are the natural frequency, the equivalent damping ratio, and 

the control gain of the shake table system as defined in Eq. (2-17). All parameters are previously defined. 

Eq. (4-6) can be written in the state space form as 

      
 
 
 
 
 

 

 
        

   
 

      
       

1 1 1

1

2 2 2

f ,

2

ss

s t s s S t as

S T s

t t

t t s s S a t

a t a a t a t a a a t a a d

x t x t u t or

x tx t

m m c x t f x m f tx t

f xd k x x t
x tdt x t
x t m c x t f x f t m

f t m k x t x t f t m k x t    

  





  
        
  
  
  
      
         











 



 (4-7) 

In the matrix form, this is 
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       
 
 
 
 
 

 

   
 

 
 
 
 
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S ST
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x t A x x t Bu t x x or

x t x t
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f x f td k x
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x t x tm c m
f t m f t mk    

   

 

  

   
          
   
   
   
   
   
        



 

 

 

2

0

0

0

0

0

d

a a

x t

k 

  
  
  
  
  

  
  
  

   
 (4-8) 

and for the output y(t) of the total acceleration response ẍs
t(t) at the structure, the output equation is 

1 1

( ),

0 0 0 0 ( )s s s

y Cx t or

y m c m x t 



    
 (4-9) 

The equations can be solved using the 4th order Runge-Kutta method.  

 

4.2 Predictive Tracking Control (PTC) 

For a tracking control of a nonlinear system, the predictive feedback control method introduced in 

Section 3.3.1 for a linear system can be applied. While the procedure is similar, for nonlinear systems it is 

required to update the system matrices in every instant, because of system variations.  

Assuming that the instant stiffness kT(x) in Eq. (4-2) is piecewise constant at every instant, the 

equation can be rewritten between two consecutive instants k∆t and (k+1)∆t as 

( ) ( ) ( ), ( 1)kx A x Bu k t k t           (4-10) 

Also, assuming that the control input u(t) is piecewise constant at every instant, the equation can be 

expressed in the discrete-time domain as 

1 , ,k D k k D k kx A x B u    (4-11) 

where AD,k and BD,k are computed from Eq. (3-38) by replacing AD with AD,k. The predicted output 

response ݕො௞ାଵ at instant k∆t can be expressed 

   
1 , ,

* *
1 1 , , , ,

ˆ ˆ

ˆ ˆ ˆ ˆ

k D k k D k k

k D k D D k k D D k k D k k D k k

x A x B u

y C x C A x C B u A x B u



 

 

    
 (4-12) 

where ݔො௞ is the estimate of the true state vector xk at instant kΔt; i.e. ݔො௞ ≈ xk for the systems with known 

parameters and no measurement noise considered as ∆t is sufficiently small such that the error due to the 

piecewise constant assumption of the nonlinear restoring force is negligible; therefore, the predicted 

output response is close to the true one ݕො௞ାଵ ≈ yk+1. Given a target ym, the control force uk to minimize the 
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instantaneous performance index J in Eq. (3-35) (i.e. ߲ݑ߲/ܬ௞ ൌ 0) can be defined based on Eq. 3-38 as 

follows:  

Control Law  

1* * * * *
, , , , 1 , , 1 ,ˆ ˆT T

k D k D k D k m k D k k k m k D k ku B QB R B Q y A x y A x


                 (4-13) 

where ܣ஽,௞
∗  = CDAD,k and  ܤ஽,௞

∗  = CDBD,k. and Γ௞ ൌ ሾܤ஽,௞
∗் ஽,௞ܤܳ

∗ ൅ ܴሿିଵܤ஽,௞
∗் ܳ. The true system responses 

will be measured at every instant k∆t by sensors in real experiments: the measurement responses are 

expressed as ݕk = ܪxk + vk (the true responses xk with measurement noise vk - see Eq. (5-51)). For 

numerical simulations, the true responses without noise (i.e. measurement noise will be present from 

SECTION 5 trough SECTION 8) can be computed by substituting the control input uk from Eq. (4-13) 

into the true system equation in Eq. (4-4) and using the following equation; 

 1

1

1 1

f ( ),
k

k

t

k k kt

k D k

x x x u d

y C x

 



 

 




 (4-14) 

where xk+1 and yk+1 are the true state vector and output at instant time (k+1)Δt, and f(x, uk) is the system 

differential equation defined in Eq. (4-4). For the numerical integration, the 4th order Runge-Kutta method 

(Sauer, 2006) with very small time step is used assuming that the control excitation input uk is piecewise 

constant. 

 However, in order to check the effectiveness of the proposed control scheme analytically, it is assumed 

that the instant stiffness kT(x) in Eq. (4-2) is piecewise constant at every instant. With this assumption, the 

error dynamics with the control scheme can be shown as following. Substitution of the control input uk 

from Eq. (4-13) into the approximated system equation shown in Eq. (4-12) leads to 

Expected Achieved Responses  

    * *

1 1 , , , 1 , , , , , , 1
ˆ ˆ ˆˆ ˆ

k D k D D k k D k k m k D k k D D k D k k D k k D k k m kC C A x B y A x C A B A x B yy x                (4-15) 

If BD,k
* = CDBD,k is an invertible matrix and R = 0 chosen (i.e. indicating no limit for the control input), 

then Eq. (4-15) becomes  

     * * * 1 1 * * *

1 1 , , , , , 1 , , 1
ˆ ˆˆ ˆ T T

k D k D k D k D k D k D k m k D k k m kC A x B B Q B B Q y A x yy x   
         (4-16) 

and the predicted tracking error ݁௞ାଵ ൌ ො௞ାଵݕ െ   .௠,௞ାଵ becomes zero as desiredݕ

To ensure the stability of the control scheme, one needs to check not only the output, but also the state 

responses of the controlled system. This can be done by tracing the closed loop stability. Note that the 

study of the closed loop stability of a feedback tracking control for a nonlinear structure is presented in 

Ch 4.3 where the feedback linearization method is used.  
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Limitation of 2DOF Shake Table-Structure Systems  

As discussed in Section 3.3.1, if the product of the output and input matrices C × B, in the equations 

Eq. (3-1) and Eq. (3-2), is singular, it is required to change the procedure in order to establish a valid 

control law. In order to force the control input uk to appear in the output equation, a higher order 

differentiation of the output ݕො௞ାଵ in discrete time or ݕො(t+h) in continuous time is needed.  As discussed in 

Section 3.3.1, it is preferred to formulate the control law in continuous time format. The procedure to 

formulate the predictive tracking control law for nonlinear continuous systems was presented by Lu 

(1994). For the shake table-structure 2DOF model, the output needs up to three terms. The approximated 

predicted output ݕො*(t+h) and target motion ݕ௠∗ (t+h) are presented in Equation (3-44) where ݕሶ (t) and ݕሷ (t) 

in the first equation can be expressed using Equations (4-8) and (4-9) for the nonlinear hysteretic system 

as: 

             

                     2

ˆ ˆ

ˆ ˆ

ˆ

ˆ ˆ

y Cx C A x t Bu t C

y C C C x C A x CA Bu

t t x A x x t

d d
t x t A x x t A x t A x x t x t

dt dt

   

   

  
    



   (4-17) 

It is noted that the control excitation input u(t) appears in the second equation because CA(x)B ≠ 0.  

The control excitation input u(t) can be obtained by minimizing the performance index J in Eq. (3-35) 

by replacing the output ݕො(t+h) and the target ym(t+h) to their approximations ݕො*(t+h) and ݕ௠∗ (t+h) after 

substituting Eq. (4-17) for ݕො*(t+h) as follows: 

Control Law  

             
1

** * * * ˆ
TT

mu B x QB x R B Q y t h A x x tt x


          (4-18) 

where A*(x) = [C + hCA(x) + (h2/2)C{d/dtA(x) + A(x)2}] and B*(x) = (h2/2)CA(x)B.  

 By substituting Eq. (4-18) into the second equation of Eq.(4-17), one can establish the error dynamics. 

For a system having B*(x) is a non-zero scalar (i.e. an invertible matrix, size 1 × 1), and R = 0 chosen, 

ሷݕ 	(t) becomes:  

Expected Achieved Responses  

                 

             

2 * *
1*

2

ˆˆ

2 /

m

m mm

y C A CA B B y t h A x x t

y h

d
t A x x x t x x

dt

t h y t y t y t y t


  



           
     



  
 (4-19) 

which can be rewritten by introducing the tracking error (e(t) = y(t) - ym(t)) to show its dynamics as 

         22 / 2 / 0e t h e t h e t     (4-20) 

This equation clearly shows the tracking error e(t) → 0 as t → ∞ since h > 0, where h, the predicted time 

interval, is not restricted to be the same as Δt, the sampling time step. Thus, h can be chosen by the design 



 

65 

 

engineer as a controller parameter (as discussed in Section 3.3.1). It is noted that this is the same tracking 

error dynamics achieved for the linear system shown in Eq. (3-48); this indicates that the control 

excitation input cancels the system nonlinearity and drives the system to fit the target motion.  

To ensure the stability of the control scheme, one needs to check not only the output, but also the state 

responses of the controlled system. This can be done by looking at the closed loop stability; this 

procedure is presented in Ch 4.3 where the feedback linearization method is used.  

 

4.3 Feedback Linearization Tracking Control (FTC) 

As discussed in Section 3.3.2, the controller can be designed such that the true system properties 

involving the nonlinear behavior are replaced to new ones that will lead to the desired linear behavior, and 

the output response of the controlled system will follow the target motion. 

 

Application when the Target Motion is the Structure Displacement Response 

This method is developed and applied to a nonlinear hysteretic system expressed in Eq. (4-1) using the 

structure displacement response xs(t) as the target motion; i.e. although feasible the formulation becomes 

more complex when the target motion is the total structure acceleration ẍs
t(t); therefore, for simplicity, the 

displacement response is considered first.  

Equations for the True System 

         
   

1 1 1
0, 0s s s s s S s

s

x t m c x t m f x m u t x x

y t x t

      



 
 (4-21) 

Equations for the Reference Model 

         
   

1 1 1
,0, 0m m m m m m m m m m

m m

x t m c x t m k x t m r t x x

y t x t

      



 
 (4-22) 

The system output y(t) is to be differentiated until the control input u(t) appears in the expression of the 

differentiated output 

   
    1 1 1( ) ( ) ( )

s

s s s s s S s

y t x t

y t x t m c x t m f x m u t  



    

 

  
 (4-23) 

In order to achieve the desired response, the feedback control law can be defined as: 

Control Law  

   1 1( ) ( )s s s s s Su t m m c x t m f x v t       (4-24) 

that leads to: 

   y t v t  (4-25) 
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To reduce the tracking error signal e(t) = y(t) - ym(t), the new input v(t) can be described as: 

       * *
1 2mv t y t k e t k e t     (4-26) 

where ݇ଵ
∗ and ݇ଶ

∗ are the tracking error design coefficients, which are constant and positive; these lead to 

the tracking error dynamics as follows: 

Expected Achieved Responses  

     * *
1 2 0e t k e t k e t     (4-27) 

in which the error signal e(t) goes to zero as time goes to infinity; e(t) → 0 as t → ∞. In this second order 

error differential equation, the error coefficients ݇ଵ
∗ and ݇ଶ

∗ can be considered as ݇ଵ
∗ = 2ξeωe and ݇ଶ

∗ = ωe
2. 

In general when the coefficients increase, the error will be rapidly reduced while it will require larger 

control inputs (therefore, larger actuator forces).  

Stability 

It is shown in Eq. (4-27) that the tracking error goes to zero, e(t) → 0. This indicates that the responses 

x(t) of the closed loop system are bounded since the target motion is y(t) = x(t). 

 

Application when the Target Motion is the Structure’s Total Acceleration Response 

If the target motion is the total structure acceleration ẍs
t(t), although the procedure is the same as 

above, more computations are involved to construct the control law. The procedure is as follows; the 

system output in Eq. (4-21) and the target motion in Eq. (4-22) become:  

       1 1t
s s s s s Sy t x t m c x t m f x       (4-28) 

       1 1t
m m m m m m m my t x t m c x t m k x t       (4-29) 

The system output function y(t) is to be differentiated until the control excitation input u(t) appears in the 

expression of the differentiated output 

     
        

1 1

2 1 2 ( )

s s s s S

s s s s S s T s s s

y t m c x t m f x

m c c x t f x m k x x t c m u t

 

  

  

     

 

 
 (4-30) 

which leads to the feedback control law: 

Control Law  

            1 2 2 1
s s s s s s S s T su t c m m c c x t f x m k x x t v t          (4-31) 

By substituting this control excitation input u(t) into Eq. (4-30), it is obtained that 

   y t v t  (4-32) 

The new input v(t) can be selected such that the error signal e(t) = y(t) - ym(t) will be reduced as shown in 

the previous example (see Eq. (3-61)). Again, the tracking error dynamics can be written: 
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Expected Achieved Responses  

   *
1 0e t k e t   (4-33) 

in which the tracking error signal e(t) → 0 as t → ∞ by selecting ݇ଵ
∗ > 0.  

Stability 

It is shown in Eq. (4-33) that the tracking error goes to zero, e(t) → 0. This indicates that the output 

ym(t) = ẍs
t(t) is bounded; however, one still needs to check if the state responses x(t) of the closed loop 

system are bounded.  

By substituting the control input u(t) from Eq. (4-31) into the true system equation (4-21) the total 

acceleration is: 

          
     
         

 

1 1 1 1 1 2

1 1

1 * 1 1 *
1 1

( ) ( ) ( )

m

s s s s S s s s S s s T s s s

s T s s s

s T s s s s s m m

u t

x t m c x t m f x m c x t f x c m k x x t c m v t

c k x x t c m v t

c k x x t k c m y t c m y t k y t

    

 

  

        
  

      

   



 


 (4-34) 

By introducing the last known term ܿ௦ିଵ݉௦ሾݕሶ௠ሺݐሻ ൅ ݇ଵ
 ሻሿ from the target motion ym(t) as a newݐ௠ሺݕ∗

input um(t) and substituting y(t) from Eq. (4-28), it leads to the closed loop system equation: 

       1 * 1 *
1 1( )s s T s s S mx t c k x k x t c k f x u t          (4-35) 

which is a nonlinear equation due to the variation of kT(x). The eigenvalue test of the system matrix is not 

applicable. The input-output stability of this nonlinear system can be checked using the Lp norm definition 

(Ioannou and Sun, 2012). This procedure is presented for the Application to 2DOF Shake Table-

Nonlinear Structure Systems shown below.  

For a special case, a stabilization problem, where the target motion ym = 0; i.e. the structure should 

have nil output (i.e. thus, um(t) = 0), the stability of this nonlinear equation can be shown by using the 

Lyapunov’s indirect method7 (Crassidis et al., 2012), assuming the nonlinear hysteretic terms involving 

the instantaneous stiffness kT(x) is differentiable. The procedure is presented in the work of the author 

(Ryu, 2015). However, since the input-output stability analysis shows the desired bounded responses of 

the controlled closed loop system, the approximated method using the Lyapunov’s indirect method is not 

included in this report.  

  

                                                      
7 The Lyapunov’s indirect method (Crassidis et al., 2012) gives the following stability condition: The equilibrium 

point of the actual nonlinear system is asymptotically stable if the linearized system has all eigenvalues of negative 

real parts. 
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Application to 2DOF Shake Table-Nonlinear Structure Systems 

The same tracking control method (feedback linearization method) can be applied to a nonlinear 

hysteretic structure mounted on a shake table (2DOF system model), expressed in Eq. (4-8) and Eq. (4-9) 

with the output y(t) of the total acceleration response ẍs
t(t) at the structure and the equations are repeated 

here for convenience. 

Equations of the True System 

       
        

     
         

 

       

0

2

1 1

, 0

21

s s s s S s t

t t s s S a

S T s

a a ta
a t a d

a t a t

t
s s s s s S

m x t c x t f x m x t

m x t c x t f x f t

x xf x k x x t

f t f t dx t
k x t k x t

m m dt

y t x t m c x t m f x


 

 

    


  
 

    


   

  

 

 



 

 (4-36) 

Equations of a Reference Model 

 
       

1 1 1
,0

1 1

( ) ( ) ( ) ( ), 0m m m m m m m m m m

t
m m m m m m m m

x t m c x t m k x t m r t x x

y t x t m c x t m k x t

  

 

   

  

 

 
 (4-37) 

Using the same procedure described above, the control law can be obtained (see Derivation 4.1 in 

Appendix B.4) as following: 

Control Law  

     * 1 *u t a y t v t       (4-38) 

where u*(t) = (ωa
2ka)

-1u(t); u(t) = xd(t); and ݕሷ ∗(t) is defined as 

               
           

* 1 1 1 1

*

s T s s T s t T s

a t t

y t a a c m k x x t m k x a m m k x x t

ae f t af x t ag x t

              
     

  


 (4-39) 

in which notations are introduced for simplification: 

           

1 1

2 2

* * 2

; ;

2 ; ; ;

/ ; ,

s s t s

a a a a a

a a t a a d d

a m c c m c

e f g k

f t f t m u t k x t u t x t

   



  

  

  

 (4-40) 

Substituting u*(t) into the equation of the differentiated output ݕሷ (t) shown in Eq. (B-35) in Appendix B.4  

leads to 

   y t v t  (4-41) 

To reduce the tracking error signal e(t) = y(t) - ym(t), the new input v(t) can be  

       * *
1 2mv t y t k e t k e t     (4-42) 
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where ݇ଵ
∗ and ݇ଶ

∗ are the tracking error design coefficients, which are constant and positive, these lead to 

the tracking error dynamics: 

Expected Achieved Responses  

     * *
1 2 0e t k e t k e t     (4-43) 

in which the error signal e(t) goes to zero as time goes to infinity; e(t) → 0 as t → ∞. 

Stability 

It is shown in Eq. (4-43) that the tracking error goes to zero, e(t) → 0. And this indicates that y(t) = 

ẍs
t(t) ≈ ym(t) is bounded; however, one still needs to check if the state responses x(t) of the closed loop 

system are bounded. By substituting the control excitation input u(t) from Eq. (4-38) into the true system 

equation (4-36) and using the notations defined in Eq. (4-40), one has 

           

               

    
 

          

* * 1 *

1 1 1 1 1 1 1

1 1 * 1 1 1 1 * 1 1 *
1 1 2

a a t t

s T s s T s t T s

s T s s T s t T s T

h x

f t ef t fx t gx t a y t v t

a c a m k x x t a m k x m m k x x t a v t

a c a m k x k x t a m k x m m k x k a m k x k



      

       

        
             

                

  

 




 

 

       
 

* 1 1 1 * *
2 1 2

m

s

i x

s S m m m

j u t

x t

k a m f x a y t k y t k y t        




 
 

 (4-44) 

By substituting ẍs
t(t) from Eq. (4-36) and by introducing additional notations for simplification: 

     

         

1 1 *
1

1 1 1 1 * 1 1 * * 1 1
1 2 2

;

; ;

s T

s T s t T s T s

h x a c a m k x k

i x a m k x m m k x k a m k x k j k a m

 

       

      
         


 

and also introducing the last known term ܽିଵሾݕሷ௠ሺݐሻ ൅ ݇ଵ
ሻݐሶ௠ሺݕ∗ ൅ ݇ଵ

 ሻሿ from the target motion as aݐ௠ሺݕ∗

new input ݑ௠ሺݐሻ, Eq. (4-44) can be rewritten 

             
                 

*

* 1 1

a s s s m

a s s t S m

f t h x x t i x x t jx t u t

h x f t h x a c i x x t h x m m j f x u t 

   

               

  


 (4-45) 

which is a nonlinear equation due to kT(x); therefore, the eigenvalue test of the system matrix is not 

applicable. The input-output stability of this nonlinear system can be checked as following.  

The tracking error equation in Eq. (4-43) can be rewritten 

   
   * *

2 1

0 1
e

e t
e t or A e t

e tk k

  
       




 (4-46) 

where Ae is a constant 2 × 2 matrix, whose real part eigenvalues are all negative with ݇ଵ
∗, ݇ଶ

∗ >0; i.e. a 

constant matrix having all negative real part eigenvalues is called a stable matrix. Using the Lyapunov’s 
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direct method introduced in Section 3.2, one can show that the tracking error e(t) is bounded (i.e. e ∈ L∞; 

Lp norm8 definition is adopted from Ioannou and Sun, 2012). Furthermore, it can be shown that e ∈ L2; 

therefore, e ∈ L∞ ∩ L2 (see Derivation 4.3 in Appendix B.6). Now, by choosing the target motion ym(t) ∈ 

L∞ ∩ L2 and from the tracking error equation e(t) = y(t) - ym(t), it can be shown that y(t) ∈ L∞ ∩ L2. 

It is noted that y(t) = ẍs
t(t), the total acceleration of the structure, which can be considered as the input 

to the structure. The first system equation in Eq. (4-36) can be rewritten using the notations in Eq. (4-40) 

         1
s s S t sax t m f x x t x t or y t           (4-47) 

and multiplying the instantaneous stiffness kT(x) leads to  

           
           

1

1 1 1

T s s T S T

T s s T S T

ak x x t m k x f x k x y t or

k x x t a m k x f x a k x y t



  

  

  




 (4-48) 

where kT(x) ẋs(t) = ሶ݂s(x) as shown in the third system equation in Eq. (4-36), and it gives  

         1 1 1
S s T S Tf x a m k x f x a k x y t      (4-49) 

where the instantaneous stiffness kT(x) is a positive bounded function (i.e. kT(x) ∈ L∞) as 

 s T sk k x k    (4-50) 

where the post-yielding stiffness ratio to the elastic stiffness, α, considered in this study has the following 

property: 0 < α < 1. It is noted that kT(x) shown in Eq. (4-6) can be expressed in two parts: the initial 

elastic stiffness ks and the inelastic part kin(x) 

          

 

*

1 sgn
1

2

N

HH s

T s s
y

in

f xf x x t
k x k k

f

k x


 

     
 





 (4-51) 

where kin(x) is a bounded function (i.e. kT(x) ∈ L∞), having  

   0 1in sk x k    (4-52) 

Using Eq. (4-51), Eq. (4-49) can be rewritten as   

         1 1 1
S s s in S Tf x a m k k x f x a k x y t        
  (4-53) 

                                                      
8 For functions of time, the Lp norm is defined as (Ioannou and Sun, 2012) 

  1/

0

p
p

p
x x d 


   

for p ∈ [1, ∞) and it is said that x ∈ Lp when ‖ݔ‖p is finite. The L∞ norm is defined as 

 
0

sup
t

x x t



  

and it is said that x ∈ L∞ when ‖ݔ‖∞ is finite. Note that x(t) can be a scalar or a vector function, and |x(t)| denotes the 
absolute value if x is a scalar function, and |x(t)| denotes the vector norm in Rn (i.e n = the vector size) at each time t .  
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where a-1, ms
-1 are positive constant scalars (i.e. a-1, ms

-1 > 0), and since kT(x) ∈ L∞ and y(t) ∈ L∞ ∩ L2, one 

can simplify the right-hand-side of the equation as following: ‒a-1kT(x)y(t) = ݑ(t) where the new input 

term ݑ(t) ∈ L∞ ∩ L2. Thus, Eq. (4-53) becomes 

         1 1 1 1
S s s S s in Sf x a m k f x a m k x f x u t       (4-54) 

Now, from this equation one can show that fS(x) ∈ L∞ ∩ L2 and ሶ݂S(x) ∈ L∞ ∩ L2 (see Derivation 4.4 in 

Appendix B.7); therefore, fS(x) → 0 as t → ∞ (refer to Lemma 3.2.59 in Ioannou and Sun, 2012), if the 

following condition is satisfied 

 s ink k x  (4-55) 

and in fact this condition is always met since the maximum value of kin(x) = (1‒ α)ks < ks with 0 < α < 1 in 

this study (see Eq. (4-52)). Since the restoring force fS(x) ∈ L∞ and fS(x) → 0 as t → ∞, it is known from 

the restoring force and structure displacement relationship (shown in Figure 4-1) that the structure 

displacement xs(t) is bounded (i.e. xs(t) ∈ L∞) and xs(t) → a constant value as t → ∞ 

Also, from Eq. (4-47), it can be shown that ẋs(t) ∈ L∞ ∩ L2 since fS(x), y(t) ∈ L∞ ∩ L2. Furthermore, the 

boundedness of the actuator force ௔݂
∗(t) can be checked as follows. Using that ẋs(t), fS(x) ∈ L∞ ∩ L2, and 

choosing the new input ݑ௠ሺݐሻ  = ܽିଵሾݕሷ௠ሺݐሻ ൅ ݇ଵ
ሻݐሶ௠ሺݕ∗ ൅ ݇ଵ

ሻሿݐ௠ሺݕ∗  ∈  L∞ ∩ L2, Eq. (4-45) can be 

expressed  

                   
 

* * 1 1
a a s s t S m

m

f t h x f t h x a c i x x t h x m m j f x u t

u t

                
 


 (4-56) 

where in the right-hand-side the new input term ݑm(t) is introduced for simplicity and ݑm(t) ∈ L∞ ∩ L2 

since ݄(x), ݅(x) are bounded functions (i.e. ݄(x), ݅(x) ∈ L∞). From this equation one can show that ௔݂
∗(t) ∈ 

L∞ ∩ L2 and ሶ݂௔∗(t) ∈ L∞ ∩ L2 (see Derivation 4.5 in Appendix B.8); therefore, ௔݂
∗(t) → 0 as t → ∞ (refer to 

Lemma 3.2.5 in Ioannou and Sun, 2012), if the following condition is satisfied 

* 1 1
1 s T sk a m k k a c     (4-57) 

and this condition can be easily met by choosing the design coefficient ݇ଵ
∗ in Eq. (4-42) to be larger than 

(a + c).  

From this stability analysis for the closed loop state responses, it has been shown that with the 

bounded target and output response (i.e. ym(t), y (t) ∈ L∞ ∩ L2), the state variables xs(t), ẋs(t), fS(x), ௔݂
∗(t) 

are bounded and ẋs(t), fS(x), ௔݂
∗(t) → 0 as t → ∞. From this results and the second system equation in Eq. 

(4-36), one can also show that the shake table acceleration ẍt(t) is bounded and ẍt(t) → 0 as t → ∞. 

However, in order to show the boundedness of the shake table displacement xt(t) and velocity ẋt(t), one 

                                                      
9 Lemma 3.2.5 (Ioannou and Sun, 2012): if f, ሶ݂ ∈ L∞ and f ∈ Lp for some p ∈ [1, ∞), then f(t) → 0 as t → ∞. 
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needs to modify the tracking control law (Eq. (4-42)), and one possible way is to add the following extra 

term to Eq. (4-42) 

         * *
3 40 0 0

t tt t
s m s mk x t y d k x t y d d


           (4-58) 

where ݇ଷ
∗ and ݇ସ

∗ are the positive constant tracking error design coefficients, the total displacement ݔ௦௧(t) = 

xs(t) + xt(t) and the total velocity ݔሶ௦௧(t) = ẋs(t) + ẋt(t), and the integration and double integration of the 

target motion ym(t) are also chosen to belong to L∞ ∩ L2 and their initial values are zeros. With the 

modified control excitation input, ݔ௦௧(t) and ݔሶ௦௧(t) are bounded, and also xs(t) and ẋs(t) are bounded as 

shown above; therefore, xt(t) and ẋt(t) are bounded. In this study, this additional term in Eq. (4-58) is not 

included for simplicity. This might be acceptable for the shake table control applications in this study 

where the total control time is relatively short. However, this issue might be more critical for applications 

where much longer control time is required. For these applications, one is to consider the extra term 

shown in Eq. (4-58); it is noted that the new control law with the extra term is equivalent to the control 

law that is obtained by modifying the original target motion (= the total structure acceleration) to the total 

structure displacement through double integrations of the original target motion. 

 

4.4 Comparisons of Feedback Tracking Control Methods 

As discussed in Section 3.3.3, it is very interesting to see the similarity and/or differences between the 

two feedback control methods introduced in this section.  

One can show that the two methods are equivalent for the controller of a structure having nonlinear 

hysteretic behavior, under certain conditions. For example, for the shake table-structure system the 

predictive tracking control (PTC) law shown in Eq. (4-18) becomes the same as the control law (see Eq. 

(4-38)) of the feedback linearization tracking control (FTC) method (i.e. see Derivation 4.2 in Appendix 

B.5) if the controlled system has B*(x) = a non-zero scalar (i.e. an invertible matrix, size 1 × 1), and R = 0 

chosen, and by selecting the tracking error coefficients in Eq. (4-20) as ݇ଵ
∗ = 2 / h = 2ξeωe and ݇ଶ

∗ = 2 / h2 

= ωe
2; therefore, ξe = √2 / 2 ≈ 0.707 and h = √2 / ωe. Here h is a tracking error design parameter and can 

be selected by the design engineer, not restricted to be the same as the sampling time step.  

 

4.5 Numerical Examples and Comparisons of Tracking Control Methods 

Simple tracking control examples (like the linear system cases) are analyzed in order to examine the 

performance of the two feedback tracking control methods introduced for nonlinear systems. The results 

obtained from the numerical simulations are presented. For all examples, the target motion is the total 

acceleration of a structure (specimen) mounted on the shake table although any response; i.e. a 

displacement or velocity response, can be selected as the target motion.  
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4.5.1 SDOF Nonlinear Hysteretic Structures  

As discussed in Section 2.2 and in the previous section, to facilitate the development of the tracking 

control method, first, a simplified SDOF system model is used instead of a 2DOF system model for the 

shake table with the SDOF structure system. In this simplified system model (shown in Figure 4-2), the 

excitation force msẍt(t) due to the shake table acceleration ẍt(t) is considered as a new control input u(t) 

(instead of the actual control input u(t) = xd(t), the desired shake table displacement, for the 2DOF system 

model). The governing equation of an SDOF nonlinear structure subjected to the shake table excitation is 

shown in the first equation of Eq. (4-1). 

 

 

Figure 4-2 Tracking control of an SDOF nonlinear system with known parameters 

 

For this simplified system, the tracking control task is to compute the control input u(t) = -msẍt(t) so 

that the system output y(t) = ẍs
t(t) (the total acceleration of the structure) follows the target motion ym(t) = 

ẍm
t(t) (the total acceleration of the reference model). For the shake table-structure system, however, the 

actual control input is the desired displacement xd(t) of the shake table and u(t) shall be computed 

including the shake table dynamics and the shake table-structure interaction (as discussed in Section 2.2), 

and will be reconsidered in the following section (Section 4.5.2).  

 

Example 4.1 : An SDOF Nonlinear System with Known Parameters 

The properties of a given system are: ms = 1 kips·sec2/in., ks = 355 kips/in., and cs = 1.13 kips·sec/in., 

(fn = 3.0 Hz, ξn = 0.03 before yielding). N = 3, dy = 0.11 in. (fy = 39 kips), and α = 0.1; i.e. all terms are 

explained in Eq. (4-2) and Eq. (4-3). The target motion is shown in Figure 4-3 (a) [Target]: i.e. the target 

motion is the total acceleration output generated from the same reference linear system (fm = 5.0 Hz, ξm = 

0.1) used for Example 3.1. in Section 3.4.1 (the reference excitation input and the responses of the 

reference model are presented in Appendix A.2). The time step used for the simulation is 0.002 sec.  

Tracking control results using the predictive tracking control (PTC) method are presented in Figure 

4-3. The selected control parameters for the PTC in this example are R = 0 and Δt = 0.002. The controlled 

output, ẍs
t(t) the total acceleration of the structure, is shown in Figure 4-3 (a) [Controlled] and shows very 
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good agreement with the target motion. The computed control excitation input, u(t) = -msẍt(t), using the 

control law in Eq. (4-13) is shown in Figure 4-3 (b). xs(t), ẋs(t) the achieved displacement and velocity 

responses of the controlled structure are also presented in Figure 4-3 (c) and (d); it is noted that unlike the 

total acceleration, the displacement and velocity responses are different from ones of the reference 

because the system properties of the controlled system and ones of the reference system are different (the 

responses of the reference model are presented in Appendix A.2). The relation between the structure 

resisting force fS(t) having hysteretic behavior and displacement xs(t) is also presented in Figure 4-3 (e). 

As desired, all responses of the controlled system are bounded. 

The tracking control results using the feedback linearization tracking control (FTC) method are 

presented in Figure 4-4. The controlled output ẍs
t(t) is shown in Figure 4-4 (a) [Controlled] and shows 

very good agreement with the target motion. The computed control excitation input, u(t) = -msẍt(t), using 

the control law in Eq. (4-31) is shown in Figure 4-4 (b). The selected control parameter in this example 

for the FTC is ݇ଵ
∗ ൌ 1/Δݐ. It is noted that by choosing the control parameters carefully to satisfy the 

tracking objective, the control excitation inputs of the two methods (PTC and FTC) are very similar; 

therefore, as expected, the control results of two methods are also very similar as shown in Figure 4-3 and 

Figure 4-4. 
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Figure 4-3 Predictive tracking control results of an SDOF nonlinear system 
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Figure 4-4 Feedback linearization tracking control results of an SDOF nonlinear system 
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4.5.2 2DOF Shake Table - Nonlinear Hysteretic Structure Systems 

As discussed in Section 2.2, the shake table dynamics affect the performance of the control system and 

the interaction between the shake table and the mounted structure is to be considered. The same tracking 

control example above is resolved for the 2DOF nonlinear system, expressed in Eq. (4-8) and Eq. (4-9), 

and schematically shown in Figure 4-5.  

 

 

Figure 4-5 Tracking control of the shake table- structure 2DOF nonlinear system with known parameters 

 

When a target motion at a structure is specified, the required control input u(t) = xd(t), the desired 

shake table displacement, is determined in order that the output of the system (y(t) = ẍs
t(t) the total 

acceleration of the structure) follows the target motion ym(t).  

 

Example 4.2 : A 2DOF Nonlinear System with Known Parameters 

The properties of a given system are: ms = 1 kips·sec2/in., ks = 355 kips/in., and cs = 1.13 kips·sec/in., 

(fn = 3.0 Hz, ξn = 0.03 before yielding); N = 3, dy = 0.11 in. (fy = 39 kips), and α = 0.1 for the hysteretic 

system (i.e. all terms are explained in Eq. (4-2) and Eq. (4-3)); and μ = ms / mt = 0.1, fn,a = 30.0 Hz, ξa = 

0.5 and ka = 25 for the shake table. Figure 4-6 (a) [Target] shows the target motion, which is the total 

acceleration generated from the same reference linear system (fm = 5.0 Hz, ξm = 0.1) used for Example 

3.1. in Section 3.4.1. The reference input and the responses of the reference model are presented in 

Appendix A.2. The time step of 0.002 sec is used for the simulation.  

Tracking control results using the predictive tracking control (PTC) method are presented in Figure 

4-6 and Figure 4-7. The selected control parameters in this example R = 0 and h = √2 / ωe where ωe = 

100. The controlled output, ẍs
t(t) the total acceleration of the structure, is shown in Figure 4-6 (a) 

[Controlled] and shows very good agreement with the target motion. The control excitation input u(t) = 

the desired table displacement xd(t), computed using the control law in Eq. (4-18) is shown in Figure 4-6 

(b). The shake table acceleration ẍt(t) due to the control excitation input u(t) is presented in Figure 4-7 (b); 

xs(t), ẋs(t) the achieved displacement and velocity responses of the controlled structure are also presented 
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in Figure 4-6 (c) and (d); it is noted that unlike the total acceleration (which was the target of the control 

design), the displacement and velocity responses are different from ones of the reference because the 

system properties of the controlled system and ones of the reference system are different. The relation 

between the structure resisting force fS(t) having hysteretic behavior and displacement xs(t) is also 

presented in Figure 4-6 (e). Figure 4-7 presents the responses of the shake table; the achieved shake table 

actuator force fa(t), shake table acceleration ẍt(t), displacement xt(t) and velocity ẋt(t). These shake table 

responses are presented to show the feasibility and the stability of the control scheme; for example, in real 

applications, the capacity of actuators’ force, displacement, and velocity are limited. This capacity limit of 

a shake table is examined in Ch 8 for a realistic application. As desired, all responses of the controlled 

system are bounded. 

The tracking control results using the feedback linearization tracking control (FTC) method are also 

presented in Figure 4-8 and Figure 4-9. The controlled output ẍs
t(t) is shown in Figure 4-8 (a) [Controlled] 

and shows very good agreement with the target motion. The computed control excitation input, u(t) = 

xd(t), using the control law in Eq. (4-38) is shown in Figure 4-9 (b). As discussed in Section 4.4, the 

control excitation inputs of the two methods (PTC and FTC) are the same if one chooses the tracking 

error coefficients as ݇ଵ
∗ = 2 / h = 2ξeωe and ݇ଶ

∗ = 2 / h2 = ωe
2; therefore, ξe = √2 / 2 ≈ 0.707 and h = √2 / 

ωe; (in this example, ωe = 100, ξe = 0.707 for the both methods); note that here h is a tracking error design 

parameter as discussed in Section 3.3.1 and it can be selected by the design engineer. As expected, the 

control results of the two methods are equivalent as shown in Figure 4-6 through Figure 4-9.   
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Figure 4-6 Predictive tracking control structure responses of a 2DOF nonlinear system 
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Figure 4-7 Predictive tracking control shake table responses of a 2DOF nonlinear system 
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Figure 4-8 Feedback linearization tracking control structure responses of a 2DOF nonlinear system 
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Figure 4-9 Feedback linearization tracking control shake table responses of a 2DOF nonlinear system 

 
In this section, the two tracking control algorithms: the predictive tracking control (PTC) and the 

feedback linearization tracking control (FTC); are reformulated in order to apply the methods to nonlinear 

hysteretic systems using shake table control. With assumption that all parameters are known, the 

performances of the controllers are analytically analyzed using their tracking error dynamics and closed 

loop system responses, and the boundedness of the state responses are shown by the input-output stability 

analyses. The performances of the tracking control methods are also examined using numerical 

simulations for examples where the target motion is a specific floor motion at the top of a nonlinear 

specimen. Very good tracking results are achieved. 
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SECTION 5 

PARAMETER IDENTIFICATION METHODS FOR TRACKING 

CONTROL 

 

When system properties are not fully known, it is essential to identify and quantify these system 

parameters for the tracking control problem. Two well-known online parameter identification methods 

(i.e. which are also called “parameter adaptive methods”) are reviewed here: the least squares method 

(LS) and the Extended Kalman filter (EKF). The effects of the selection of the initial guess of parameters 

and of covariance matrices are examined. The least squares method has been used for the online system 

identification of nonlinear hysteretic systems without hardening (Smyth et al., 1999); in this study this 

method is extended to nonlinear hysteretic systems with hardening. The two methods are compared in this 

section and the EKF scheme is adopted for further development of the tracking control method with 

unknown parameters in the following sections.  

 

5.1 Identification of a Linear Parametric Model using the Least Squares Method 

The least-squares method is to fit a mathematical model to a sequence of observed data by minimizing 

the sum of the squares of the difference between the observed and computed data. The method has been 

used in parameter estimation for the structural applications (Smyth et al., 1999 and Yang et al., 2004). 

The method is simple to apply if the model parameters appear in a linear form (Ioannou et al., 2012): 

   *Tz t t   (5-1) 

where z(t) (scalar) and ϕ(t) (vector) are the signals available for measurement (i.e. such as the state 

variables x, ẋ, ẍ and the excitation input u, and their filtered values), and θ* is the vector with all unknown 

parameters. Eq. (5-1) is known as the linear parametric model, which can represent a linear or nonlinear 

dynamic system. The linear or nonlinear dynamics in the original system are hidden in the selected 

signals z and ϕ, which include the measurements and their filtered values.  

The estimate error ε(t) is defined as the difference between the true signal z(t), obtained from the 

measurements, and an estimated signal ̂ݖ(t), computed using the least-squares method: 

     ˆt z t z t    (5-2) 

One can establish that the least-squares method guarantees that the estimation error ε(t) goes to zero when 

time goes to infinity; i.e. ε(t) → 0 as t → ∞ (Ioannou et. al, 2012 and Smyth et al., 1999), which is a very 

important and desired stability property of an online parameter identification method.  

Unfortunately, it will be shown that the nonlinear hysteretic system cannot be modeled in the form of 

the linear parametric model, if there is hardening after yielding (α > 0). 
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5.1.1 Formulation 

5.1.1.1 Estimate of Linear Structures with Unknown Parameters 

A linear SDOF system expressed in Eq. (2-26) can be rewritten with two unknown constant 

parameters for the stiffness ks and the damping cs, by placing the parameters to the right side of the 

equation (Ioannou et al., 2012) 

       
T

s st tmx u k c x t x t           (5-3) 

where the unknown parameters [ks  cs] appear linearly to the known signal vector. It is assumed that in 

this section the excitation input u(t) is known and bounded and a system is stable; thus, the responses are 

bounded (i.e. this assumption is relaxed in the following sections where the excitation input u(t) is not 

known a priori). It is also assumed that the displacement x(t) and velocity ẋ(t) can be measured; however, 

the acceleration response ẍ(t) is not available for measurement. In this case, in order to express Eq. (5-3) 

in the form of the linear parametric model (Eq. (5-1)), each side of Eq. (5-3) is divided by a first order 

stable filter 1/Λ(s) = (s+λ)-1, in which λ is the first order filter parameter (i.e. in a case, if only the 

displacement x(t) is measurable, a second order stable filter 1/Λ(s) (s+λ)-2 could be used to establish the 

linear parametric model for this problem); thus, Eq. (5-3) is expressed in the Laplace domain as 

        1 1T
s s

s
mx s u s

s s s
k c x s x s

  
          
    (5-4) 

where “s” is a complex variable of the Laplace transform. Using Eq. (5-4), the unknown parameters [ks  

cs] can be expressed in the form of Eq. (5-1) (repeated) in time domain and the Laplace domain as 

follows: 

       * *T Tz zt t or s s      (5-5) 

in which  

            

             

1 2

*

1 2

1
,

,

, , .
1 1

T
s s

T
T

s
z s mx s u s or z t t t

s s

s x s x s or t

k c

t t
s s

 
 



   
 

    
 

   

           





 

In order to estimate the unknown parameters in real time, each term in Eq. (5-4) is needed to be 

determined in every instant. Therefore, it is desired to represent Eq. (5-4) in a state-space form. The state-

space representation of Eq. (5-4) can be expressed by introducing augmented vectors ϕa(t) = [φ1(t)  φ2(t)  

ϕ1(t)  ϕ2(t)]
T and ua(t) = [mẋ(t)  -u(t)  -x(t)  -ẋ(t)]T: 

       
     

, 0 0a a a a

a a a

t A t B u t

t C t D u t

 

 

  

 

  

 



 (5-6) 
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where the additional state vector ߶a(t), which is different with ϕa(t), is introduced for this formulation and 

     
         

4 4 4 4

1 2 3 4

, , 1 1 1 , 1 0 0 0 ,

.
T

a

A I B I C diag D diag

t t t t t

    

    

      

   
 

Eq. (5-6) can be solved using any integration method such as the 4th order Runge-Kutta method with the 

known signals ua(t) from measurements at every instant and the signals ϕa(t) can be obtained. Using the 

signals ϕa(t), z(t) and ϕ(t) in Eq. (5-5) can be computed. 

The estimate ̂ݖሺݐሻ of zሺݐሻ at time t can also be generated by modifying Eq.(5-5) as  

              1 2
ˆ ˆˆˆ

T T

s sz k t c t t tt t t        (5-7) 

where ߠ෠ሺݐሻ is the estimate of θ* at time t. The estimation error ε(t) as in Eq. (5-2) is defined  

        ˆˆ ( ) ( )Tt z t z t z t t t       (5-8) 

A performance index function J(ߠ෠) in order to reduce the estimate error ε(t) in Eq. (5-8) is defined as 

     
2

0 ,0 00

1 1ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
2 2

Tt t T t
EJ e z t d e t Q t                             (5-9) 

where β ≥ 0 is the selected forgetting factor (i.e. as time t increases the effect of the old signals at time τ < 

t is reduced), and a penalty on the initial estimate ߠ෠0 of θ*. The index J(ߠ෠) is a convex function of ߠ෠ since 

∂2J / ∂ߠ෠2 > 0. The estimated parameter vector ߠ෠ሺݐሻ to minimize the index J(ߠ෠) with respect to ߠ෠ satisfies 

the following condition 

     ,0 0 0

ˆ ˆ ˆ( ) ( ) ( ) ( ) 0
ˆ

t tt T
E

J
e Q t e z t d          


                (5-10) 

which leads to the following equation known as the continuous-time non-recursive least squares 

algorithm  

       ,0 0 0

ˆ ˆ ( )
t tt T

Et P t e Q e z d                (5-11) 

where  

     
1

,0 0
( )

t tt T
EP t e Q e d      


          (5-12) 

which is also known as the covariance matrix and can be rewritten in a recursive form, in which the 

calculation of the inverse in this equation can be avoided. The continuous-time recursive least squares 

algorithm with forgetting factor can be derived from Eq. (5-11) and Eq. (5-12) (see Derivation 5.1 in 

Appendix B.9) with the definition of the estimation error ε(t) in Eq. (5-8) and expressed 
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


 (5-13) 

where the covariance matrix P(t) and the parameter estimate ߠ෠ሺݐሻ are obtained by solving the differential 

equations with the initial guess of ߠ෠ሺ0ሻ ൌ ෠଴ and P(0) = P0 = QE,0ߠ
-1. For implementation, the algorithm in 

Eq. (5-13) is developed in discrete time, known as the discrete-time recursive least squares algorithm 

with forgetting factor (Ioannou et al., 2006):  
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ˆ ˆ

1

k k k k k

T
k k k k

k k T
d d k k k

P

P P
P P

P

   

 
   

 



 

 
    

 (5-14) 

where βd is the forgetting factor 0 < βd ≤ 1 in the discrete time form. This algorithm with the initial guess 

of ߠ෠ሺ0ሻ ൌ  ෠଴ and P(0) = P0 is used in the following applications. It is shown in Ioannou et al. (2012)ߠ

using the Lyapunov’s method that the stability properties of the least squares method include the 

estimation error ε(t) → 0 as t → ∞ and the rate of parameter estimation ߠ෠ሶሺݐሻ → 0 as t → ∞. It is noted 

that the parameter estimate ߠ෠ሺݐሻ might not approach the true values θ*. However, without requiring the 

parameters to converge to their true values, the least squares method for unknown parameter estimation 

combined with the tracking control method, such as the feedback linearization method described in 

Section 3.3.2, can achieve the tracking control objective making the tracking error e(t) → 0 as t → ∞. 

This is very important and powerful property of the least squares method; however, the method is limited 

to the system which has constant parameters θ* as appear in a linear form shown in Eq. (5-1).  

 

Example 5.1 : Parameter estimation for an SDOF linear system 

In order to examine the performance of the least-squares (LS) method, the system identification to 

estimate unknown parameters of an SDOF linear system (shown in Figure 5-1) is numerically performed. 

It is noted that unlike the feedback tracking control methods, the control excitation input u(t) = -msẍt(t) is 

pre-defined and not updated in real time  

 

 
Figure 5-1 Parameter estimation of an SDOF system 
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The properties of the system are the same as the ones in Example 3.1; ms = 1 kips·sec2/in., ks = 355 

kips/in., and cs = 1.13 kips·sec/in., (fn = 3.0 Hz, ξn = 0.03). Two unknown parameters: cs the damping 

coefficient and ks the elastic stiffness; are selected and estimated in real time. The selected excitation 

input u(t) to the system is the sinusoidal motion (the forcing frequency ff = 1.0 Hz) and presented in 

Figure 5-2 (a) (for comparison purposes with other examples, ẍt(t) = -u(t)/ms, the shake table acceleration 

is presented). For the parameter estimation, it is chosen that the filter factor λ = 0.01; the forgetting factor 

βd = 1; the initial parameter estimate ߠ෠଴ = 0.5 × θ*; and the initial covariance matrix P0 = diag(ߠ෠଴
2). The 

time step = 0.002 sec. The relation between the structure resisting force fS(t) and displacement xs(t) is also 

presented in Figure 5-2 (b). 

 

 

Figure 5-2 Excitation and structure response: Real time parameter estimation using the LS 

 

The estimated parameters are updated using Eq. (5-14). The comparisons between the true parameters: 

ks the elastic stiffness and cs the damping coefficient; and the estimated parameters are shown in Figure 

5-3 and the results show that the agreements are reasonably good. The errors in the estimation might be 

attributed to the assumption that the augmented vector ua(t) in Eq. (5-6) is piecewise constant between k∆t 

and (k+1)∆t for the numerical implementation; i.e. as the time step becomes smaller, the estimated error 

between the true and the estimated parameters becomes smaller. It is also noted that the estimation 

performance is affected by various conditions that are discussed in Section 5.1.2. 
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Figure 5-3 Real time parameter estimation results using the LS for an SDOF linear system 

 

5.1.1.2 Estimate of Nonlinear Hysteretic Structures with Unknown Parameters 

For a nonlinear hysteretic SDOF system expressed in Eq. (4-1), four unknown constant parameters 

have to be estimated, i.e. the stiffness ks, the damping cs, the yielding displacement dy and the post-

yielding stiffness ratio α to the elastic stiffness. Unfortunately, the method is appropriate only for a linear 

equation in the parameter vector θ* from Eq. (4-1), only when α = 0 (no hardening). This is due to the 

function involving sgn(fH(x)ẋs(t)) where the hysteretic force fH(x) = fS(x) – αksxs(t) is unknown and it is 

impossible to separate the unknown parameters α, ks from the known functions of xs(t) and fS(t), which are 

to be measured. Only for a system without hardening after yielding, where α = 0 (i.e. elastic-ideal plastic 

system), fH(x) is the same as fS(x), which is measurable, and the governing equation of the restoring force 

in Eq. (4-2) can be rewritten (Smyth et al., 1999) as: 

               0.5 1 sgn
TNN

S S SS s s s s sf x k k f x f x x f x xt t t       
     (5-15) 

A nonlinear hysteretic SDOF system in Eq. (4-1) to estimate three unknown parameters of the stiffness ks, 

the damping coefficient cs and the yielding displacement dy can be expressed by placing the parameters to 

the right-hand side of the equation in the Laplace domain: 

       
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 
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

 (5-16) 

which is linear in θ* = [cs  ks  ks/(fy)
N]T and it is assumed that the relative displacement xs(t), velocity ẋs(t), 

acceleration ẍs(t) and the restoring force fS(x) are measurable. Dividing each side of Eq. (5-16) by a first 

order stable filter 1/Λ(s) = (s+λ)-1, Eq. (5-16) can be expressed as 
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      * 1T
s a
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 
 

 
  (5-17) 

and this equation can be expressed in the form of Eq. (5-1) (repeated) as following 

       * *T Tz zt t or s s      (5-18) 

where 
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 (5-19) 

A state-space representation of Eq. (5-19) by introducing augmented vectors ϕa(t) = [φ1(t)  ϕ1(t)  ϕ2(t)  

ϕ3(t)]
T and ua(t) = [(mẍs(t)-u(t))  xa(t)

T]T is obtained 
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 (5-20) 

where the additional state vector ߶a(t), which is different with ϕa(t), is introduced for this formulation and 

     
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    

       

   
 

By solving Eq. (5-20), the signals ϕa(t) can be obtained at every instant. Using the signals ϕa(t), z(t) and 

ϕ(t) in Eq. (5-19) can be computed. The unknown parameters θ* can be estimated in real time using the 

discrete-time recursive least squares algorithm shown in Eq. (5-14).  
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Example 5.2 : Parameter estimation for an SDOF nonlinear hysteretic system 

The LS method is used for the system identification to estimate unknown parameters of an SDOF 

nonlinear hysteretic system (see Figure 5-1); in this example the structure experiences nonlinear behavior 

due to yielding. It is noted that unlike the feedback tracking control methods, the control excitation input 

u(t) = -msẍt(t) is pre-defined and not updated in real time.  

The properties of the system are the same as the ones in Example 4.1 (except the post-yielding 

stiffness ratio to the elastic stiffness α = 0); ms = 1 kips·sec2/in.; ks = 355 kips/in.; and cs = 1.13 

kips·sec/in.; (fn = 3.0 Hz, ξn = 0.03 before yielding); N = 3 and dy = 0.11 in. (fy = 39 kips). Three unknown 

parameters: cs the damping coefficient; ks the elastic stiffness; and dy the yielding displacement; are 

selected and estimated in real time. The selected excitation input u(t) to the system is the sinusoidal 

motion (the forcing frequency ff = 1.0 Hz) and presented in Figure 5-4 (a) (for comparison purposes with 

other examples, ẍt(t) = -u(t)/ms, the shake table acceleration is presented). For the parameter estimation, it 

is chosen that the filter factor λ = 0.01; the forgetting factor βd = 1; the initial parameter estimate ߠ෠଴ = 0.5 

× θ*; and the initial covariance matrix P0 = diag(ߠ෠଴
2). The time step = 0.002 sec. The relation between the 

structure resisting force fS(t) and displacement xs(t) is also presented in Figure 5-4 (b). 

 

 

Figure 5-4 Excitation and structure responses: Real time parameter estimation using the LS 

 
The estimated parameters are updated using Eq. (5-14). The comparisons between the true parameters: 

kT(x) the instantaneous stiffness (i.e. the estimate of kT(x) is computed using the estimates of ks and dy); cs 

the damping coefficient; ks the elastic stiffness; and dy the yielding displacement; and the estimated 

parameters are shown in Figure 5-5; the agreements are reasonably good although there are large errors in 

the beginning of the estimation procedure, which might become challenges to the tracking control. 
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Figure 5-5 Real time parameter estimation results using the LS for an SDOF nonlinear system  
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5.1.1.3 Estimate of Nonlinear Hysteresis Structures with Hardening  

As mentioned above, it is not possible to directly formulate a linear equation in the constant parameter 

vector θ* from Eq. (4-2), which is the governing equation of the restoring force in nonlinear hysteresis 

systems. However, by introducing the following approximation in the governing equation, a linear 

parametric model for hysteretic systems can be obtained (i.e. the effects of this approximation on the 

responses are discussed below – see Eq. (5-30)):  
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 (5-21) 

which leads to the approximated governing equation of the restoring force, which is linear in the constant 

parameters (i.e. a very similar form of this approximate equation can be found in Constantinou, 2008) 
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where N = 3 (i.e. chosen for this study), p0 = െ 1 / {(1െα)2ks
2(dy)

3} and p1 = െ αks. Thus, a nonlinear 

hysteretic SDOF system in Eq. (4-1) to estimate four unknown parameters of the stiffness ks, the damping 

cs, the yielding displacement dy and the post-yielding stiffness ratio α to the elastic stiffness can be 

expressed by placing the parameters to the right-hand side of the equation in the Laplace domain 
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 (5-23) 

which is linear in θ* = [cs  ks  p0  p0p1
3  3p0p1  3p0p1

2]T and it is assumed that the relative displacement 

xs(t), velocity ẋs(t), acceleration ẍs(t) and the restoring force fS(x) are measurable. Dividing each side of 

Eq. (5-23) by a first order stable filter 1/Λ(s) = (s+λ)-1, Eq. (5-23) is expressed as 
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and this equation can be expressed in the form of Eq. (5-1) (repeated) as following 
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in which p0 = െ 1 / {(1െα)2ks
2(dy)

3} and p1 = െ αks and xa(s) are defined in Eq. (5-23).  

A state-space representation of Eq. (5-25) by introducing augmented vectors ϕa(t) = [φ1(t)  ϕ1(t)  ϕ2(t)  

ϕ3(t)  ϕ4(t)  ϕ5(t)  ϕ6(t)]
T and ua(t) = [(mẍs(t)-u(t))  xa(t)

T]T is 

       
     

, 0 0aa a a

a a a

t A t B u t

t C t D u t

 

 

 

 

  

 



 (5-26) 

where  

     7 7 7 7, , 1 1 1 1 1 , 1 1 0 0 0 0 0A I B I C diag D diag              

The signals ϕa(t) can be obtained at every instant by solving Eq.(5-26). Using these signals ϕa(t), z(t) and 

ϕ(t) in Eq. (5-25) can be computed. The unknown parameters θ* can be estimated in real time using the 

discrete-time recursive least squares algorithm expressed in Eq. (5-14).  

 

Errors in the approximated model 

The approximate model of hysteretic systems with hardening after yielding (α > 0) in order to 

formulate a linear parametric model for the least squares system identification introduces errors. The 

effects are examined by comparing the response of the original model (the model introduced by 

Sivaselvan and Reinhorn, 1999) and that of the approximate model. In the original model the rate form of 

the plasticity relation of the restoring force fS(x) is shown in Eq. (4-2) and the elastic-ideal plastic force 

fH(x) (hysteretic force) in the equation involves two Heaviside step functions H1(x) and H2(x) as 

(Sivaselvan and Reinhorn, 1999) 

          2 11 1H s sf x k H x H x x t     (5-27) 

where H1(x) signifies yielding and H2(x) signifies unloading from the yield surface 

       

       

* * *
1

2

Heaviside , 1

1 sgn 2

N

H y H y y y

H s

H x f x f f x f f f

H x f x x t

          

  
 (5-28) 
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In order to separate unknown parameters (α, ks, dy) from the measured signals (xs(t), ẋs(t), fs(x)) in (5-27), 

it is necessary to introduce an alternate form of sgn(fH(x)); and sgn(fH(x)) might be approximated as 

sgn(ẋs(t)) if N = odd. The effects can be seen in three regions of the hysteresis behavior (see in Figure 5-6)  

       

     
     

 

*

*

. sgn sgn ,

. sgn sgn ,

. sgn sgn ,

s yH H

sH
yH

sH

x ti f x f x f

ii f x x t loading
f x f

iii f x x t unloading







 












 (5-29) 

 

Figure 5-6 Schematic of a hysteresis behavior (elastic-ideal plastic) of fH(x) 

 

The difference (error) is introduced in the region iii where sgn(fH(x)) ≠ sgn(ẋs(t)) and at which 

unloading occurs as shown in Figure 5-6 in dot circles: i.e. at the transition fH(x) ≈ fy
*, the instant stiffness 

kT(x) of the original system and kT
*(x) of the approximate system can be expressed  

   
         

              *
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1 1 1
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1 1 sgn 1 2 2
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H H
s s s s sT
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x t x
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x t
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f x f
k k k k k k

f

f
k k k x k k k

f

   

    

         
         


       

        





 (5-30) 

The maximum error is kT
*(x) - kT(x) = (1 - α) ks at the transition where unloading starts and the error 

rapidly decreases as (fH(x) / fy
*)N goes to zero. Also noted that if N ≈ ∞, the error becomes zero since (fH(x) 

/ fy
*)N ≈ 0 (fH(x) ≠ fy

*).  

 

Example 5.3 : Parameter estimation for an SDOF nonlinear hysteresis system with hardening 

The LS method is used for the system identification to estimate unknown parameters of an SDOF 

nonlinear hysteretic structure like the previous example (Example 5.2); however, in this example the 

hysteretic resisting force of the structure experiences hardening after yielding. It is noted that unlike the 

feedback tracking control methods, the control excitation input u(t) = -msẍt(t) is pre-defined and not 

updated in real time  

s

s 
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The properties of the system are the same as the ones in Example 4.1; ms = 1 kips·sec2/in.; ks = 355 

kips/in.; and cs = 1.13 kips·sec/in.; (fn = 3.0 Hz, ξn = 0.03 before yielding). N = 3; dy = 0.11 in. (fy = 39 

kips); and α = 0.1; i.e. all terms are explained in Eq. (4-2). Four unknown parameters: cs the damping 

coefficient; ks the elastic stiffness; dy the yielding displacement; and α the post-yielding stiffness ratio to 

the elastic stiffness; are selected and estimated in real time. The selected excitation input u(t) to the 

system is the sinusoidal motion (the forcing frequency ff = 1.0 Hz) and presented in Figure 5-7 (a) (for 

comparison purposes with other examples, ẍt(t) = -u(t)/ms, the shake table acceleration is presented). For 

the parameter estimation, it is chosen that the filter factor λ = 0.01; the forgetting factor βd = 1; the initial 

parameter estimate ߠ෠଴ = 0.5 × θ* (50% error in the initial guess); and the initial covariance matrix P0 = 

diag(ߠ෠଴
2) × I6×6. The time step = 0.002 sec. The relation between the structure resisting force fS(t) and 

displacement xs(t) is also presented in Figure 5-7 (b). 

 

 

Figure 5-7 Excitation and structure responses: Real time parameter estimation using the LS 

 
The estimated parameters are updated using Eq. (5-14). The comparisons between the true parameters: 

kT(x) the instantaneous stiffness (i.e. the estimate of kT(x) is computed using the estimates of ks and dy); cs 

the damping coefficient; ks the elastic stiffness; dy the yielding displacement; and α the post-yielding 

stiffness ratio to the elastic stiffness; and the estimated parameters are shown in Figure 5-8. The errors in 

estimation of kT(x) at the transition in Figure 5-8 (a) are attributed to the approximated model as discussed 

in this section; and the errors in the model seems to affect the estimation of other parameters such as cs as 

shown in Figure 5-8 (b). Although the damping error is large in Figure 5-8 (b), since this damping 

represents the inherent damping, which is very small in hysteretic systems less important than the 

hysteretic energy dissipation, such error should not affect the tracking problem.  However, these above 
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errors in the parameter estimation might become challenges to the tracking control implementation as 

discussed in Section 5.3.  

 

 

Figure 5-8 Real time parameter estimation results using the LS for an SDOF nonlinear system  
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5.1.2 Effects of Initial Guesses of Unknown Parameters and Covariance Matrices 

The performance of the parameter estimation might be influenced by various conditions including the 

initial guess of the unknown parameters and by the covariance matrices, measurement noise, model 

errors, etc. The effects of the initial guesses of the unknown parameters and covariance matrices are 

numerically investigated below. The same SDOF linear model described in Example 5-1 is used where 

two parameters θ* = [ks  cs]
T : ks the elastic stiffness and cs the damping coefficient; are selected and 

estimated in real time. The excitation input u(t) to the system is the same sinusoidal motion (the forcing 

frequency ff = 1.0 Hz), shown in Figure 5-2 (a). The time step = 0.002 sec. 

 

Example 5.4 : Effects of initial guess of unknown parameters on the LS estimator performance 

The effects of the initial guess of the unknown parameters are investigated numerically. Three 

different initial guesses ߠ෠଴ are made as the 10%, 50% and 200% of the true parameters; ߠ෠଴ = 0.1 × θ*; ߠ෠଴ 

= 0.5 × θ*; ߠ෠଴  = 2.0 × θ*. The initial covariance matrix P0 = diag([0.5 × θ*]2) for all cases. The 

comparisons between the true parameters: ks the elastic stiffness and cs the damping coefficient; and the 

estimated parameters are shown in Figure 5-9 (the initial guess factors: 0.1, 0.5, 2.0; are shown in the 

figure); the results show that the overall agreements are reasonably good while the speed of convergence 

might be affected by the initial guess. As discussed in Example 5-1, the estimate error between the true 

and the estimated parameters becomes smaller as the time step becomes smaller.  

 

 

Figure 5-9 Real time parameter estimation results using the LS for an SDOF linear system  

 

Example 5.5 : Effects of selection of the covariance matrices on the LS estimator performance  

The effects of the selection of the covariance matrices are investigated numerically. Three different 
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10%, 50% and 200% of the true parameters; P0 = diag([0.1 × θ*]2); P0 = diag([0.5 × θ*]2); P0 = diag([2.0 × 

θ*]2). The initial guesses of the unknown parameters ߠ෠଴ = 0.5 × θ* for all cases. The comparisons between 

the true parameters: ks the elastic stiffness and cs the damping coefficient; and the estimate of the true 

parameters are shown in Figure 5-10 (the selected initial covariance matrix factors: 0.1, 0.5, 2.0; are 

shown in the figure); the results show that the lager covariance matrix might leads faster estimation, but 

might occur larger overshooting at the beginning of estimation while the overall agreements are 

reasonably good. As discussed in Example 5-1, the estimate error between the true and the estimated 

parameters becomes smaller as the time step becomes smaller.  

 

 

Figure 5-10 Real time parameter estimation results using the LS for an SDOF linear system  
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5.2 Identification of System Parameters using the Extended Kalman Filter (EKF) 

Another well-known system identification method, which has been used in the structural applications 

for numerical studies (Yun and Shinozuka, 1980, and Wu and Smyth, 2007), is the extended Kalman filter 

(EKF). It is known that the EKF can be used as the online parameter estimation for linear and nonlinear 

systems including the systems having hysteretic behavior (Wu and Smyth, 2007). The main concept of 

the EKF assumes that the true state is sufficiently close to the estimated state; therefore, the error 

dynamics can be represented fairly accurately by a linearized first-order Taylor series expansion 

(Crassidis and Junkin, 2012). Because the effects of the remaining terms in the series expansion are 

difficult to determine, it is very difficult to show a certain stability property of the EKF. Even so, 

Crassidis and Junkin (2012) addressed that the performance of the EKF method can be verified through 

simulation and this method has been successfully and widely used in practice, and they presented the 

application to the real time aircraft parameter estimation. 

First, the general formulation of the extended Kalman filter is reviewed. The method is applied to the 

online parameter estimations for nonlinear hysteretic structures mounted on the shake table. The effects of 

the initial guess of the parameters and the selection of the covariance matrices are examined.  

 

5.2.1 Formulation 

5.2.1.1 KF and EKF review 

The extended Kalman filter (EKF) method is the extension of the Kalman filter (KF), which is well 

known state estimator for linear systems. Unlike the KF, the EKF can be used to estimate state variables 

of nonlinear systems and also unknown parameters of linear and nonlinear systems.  

The KF (Crassidis and Junkin, 2012) is a “sequential state estimator”, which is used to not only 

reconstruct state variables x (size n × 1) from limited measurements ݕ (size m × 1, where m ≤ n), but also 

“filter” noisy measurement processes. Assuming that the errors in measurements and in system models 

are a zero-mean Gaussian noise process10 , the KF determines the ‘optimal’ estimate gain with the 

information of the covariance matrices of the measurement noise and process noise, such that the KF 

provides the ‘optimal’ estimation of true state variables.  

Before presenting the applications; first, the KF method and the EKF formulation using a linearized 1st 

order Taylor series expansion are briefly described as following; i.e. the thorough mathematical 

derivation of the methods in detail can be found in elsewhere, such as Crassidis and Junkin (2012). 

 

                                                      
10 Gaussian noise process (Crassidis and Junkin, 2012) is the noise process having the normal distribution, which is 

defined by mean and variance. A zero-mean Gaussian noise process has its mean = 0.  
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Brief Review of the Kalman Filter 

The truth model of a linear system in continuous time is expressed 

       x Bux t A t t Gw t   (5-31) 

     xt t ty H v   (5-32) 

where A and B are the system matrices and G is the matrix, defined based on processing noise w(t), 

indicating possible errors in the model, and H is the measurement matrix. x(t) is the n × 1 state vector, u(t) 

is a control excitation input, ݕ(t) is the m × 1 measurement output vector, and v(t) is measurement noise 

and w(t) is process noise (or errors in the model). The KF structure for the state estimate ݔො(t) and output 

estimate ݕ෠(t) is expressed 

           ˆ ˆ ˆx x ut A t B t K t t ty y       (5-33) 

   ˆˆ xt ty H  (5-34) 

where K(t) is the Kalman gain matrix (size n × m), indicating that if K(t) is large, the estimator relies on 

measurements and if K(t) decreases, the estimator relies more on the model. By defining the state error 

 ො(t) - x(t) (i.e. the estimate state - the true state) and using Equations (5-31) through (5-34), theݔ = ෤(t)ݔ

estimate state error dynamics are given by 

           x xt A K t H t G t K t tw v        (5-35) 

By selecting the ‘best’ gain K(t), the error ݔ෤(t) will diminish and the estimator will be stable. Thus, ݔො(t) 

will be close to x(t). This concept can be expanded for parameter estimation by augmenting unknown 

parameter vector θ to the state vector; i.e. xa(t) = [xT(t)  θ T]T, which will be discussed later in the subject 

of the EKF.  

For practical applications, the further development of the KF is described in discrete time form. The 

truth model (shown in Eq. (5-31) and Eq. (5-32) in continuous time) is rewritten in discrete time 

1k D k D k D kx x B uA G w    (5-36) 

k k kxy H v   (5-37) 

where AD and BD are the system matrices and GD is the processing noise matrix, and H is the measurement 

matrix (i.e. H is the same as that in continuous time form). vk and wk are measurement and process noise 

(or errors in the model), respectively, and they are assumed to be zero-mean Gaussian white-noise 

processes;  i.e. white-noise means that the errors are not correlated forward or backward in time, so that  
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 (5-38) 

where E{·} is the expected value11 or “average value” of a given function. It is further assumed that vk and 

wk are uncorrelated so that E{vk wk
T} = 0 for all k. In this study, both noise covariance matrices RE,k and 

QE,k are assumed to be constant at all time; thus RE,k = RE and QE,k = QE. The measurement noise 

covariance matrix RE (size m × m) is usually well known, derived from the properties of the instruments; 

but, the processing noise covariance QE (size n × n) is usually not well known and is often derived from 

experience by the design engineer based on the knowledge of the particular system (Crassidis and Junkin, 

2012).  

The estimator structure shown in Eq. (5-33) in continuous time can be expressed in two stages 

equations in discrete time as 

1ˆ ˆk D k D kx x B uA 
   (5-39) 

ˆ ˆ ˆk k k k kx x K y Hx        (5-40) 

where Kk is the estimator gain (size n × m) and Eq. (5-39) with sign ‘-’ is known as the prediction 

equation, and Eq. (5-40) with sign ‘+’ is known as the update equation. The estimate error covariance 

matrices are defined as 

 1 1 1
T

k k kP E x x  
      (5-41) 

 T
k k kP E x x      (5-42) 

where the estimate state errors are  ݔ෤௞ାଵ
ି ො௞ାଵݔ ≡ 

ି െ ෤௞ݔ ௞ାଵ andݔ
ା ≡ ݔො௞

ା െ  - ௞ (i.e. the current estimate stateݔ

the true state). Substitutions of Equations (5-39) and (5-36) in ݔ෤௞ାଵ
ି ො௞ାଵݔ ≡ 

ି െ  ௞ାଵ giveݔ

1k D k D kx x G wA 
     (5-43) 

Then, ௞ܲାଵ
ି  is defined by substituting this equation into Eq. (5-41) and using that E{wk ݔ෤௞

ାT} = 0: 

                                                      
11 The expected value of a function f (x) of a discrete random variable x is expressed (Crassidis and Junkin, 2012) 

        
j

E f x f x j p x j   

where p(x(j)) is a probability mass function 0 ≤ p(x(j)) ≤ 1 and ∑p(x(j)) = 1. For example, the expected values of x 

and (x – μ)2 are the mean (μ) and variance (σ2) of x: 

      

        22 2

j

j

E x x j p x j

E x x j p x j



  

 

   




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1
T T

k D k D D E DP P QA A G G 
    (5-44) 

For the update stage, substitution of Eq. (5-40) with Eq. (5-37) for ݔො௞
ା in ݔ෤௞

ା ≡ ݔො௞
ା െ  ௞ givesݔ

 k k k k kx I K H x K v      (5-45) 

Then, ௞ܲ
ା is defined by substituting this equation into Eq. (5-42) and using that E{vk ݔ෤௞

ିT} = 0: 

   T T
k k k k k E kP I K H P I K H K R K      (5-46) 

The optimal estimator gain Kk is determined by minimizing the trace of Pk
+, which is equivalent to 

minimize the length of the estimation error vector. The index function is expressed as: 

   Trk kJ K P   (5-47) 

By taking the partial derivative with respect to the gain: ߲ܭ߲/ܬ௞ ൌ 0, and solving this equation for Kk, it 

results in: 

1T T
k k k EK P H HP H R

      (5-48) 

Substitution of Eq. (5-48) in Eq. (5-46) leads to  

 k k kP I K H P    (5-49) 

Therefore, with the initial guess of the state ݔො଴
ି and the error covariance matrix ଴ܲ

ି, the Kalman filter 

update stage defined in Eq. (5-40) and Eq. (5-49) and the prediction stage defined in Eq. (5-39) and Eq. 

(5-44) can be implemented using instant measurements. This optimal estimator for linear systems can be 

expanded for nonlinear systems not only to estimate the state variables, but also unknown parameters.  

 

Expansion to the Extended Kalman Filter 

The truth model of a nonlinear system in continuous time is expressed 

 ( ) f ( ), ( ), ( ) ( )x t x t u t t G t w t   (5-50) 

     ( ),ht x t t ty v   (5-51) 

where f(x(t),u(t),t) is a nonlinear system differential equation, such as one shown in Eq. (4-4), and G is the 

matrix, defined based on processing noise w(t), indicating possible errors in the model, and h(x(t),t) is a 

nonlinear equation for measurements ݕ(t), and other terms are previously defined in the KF model shown 

in Eq. (5-31) and Eq. (5-32). In the EKF, it is assumed that the true state x(t) is sufficiently close to the 

estimated state ݔො(t); therefore, the error dynamics can be represented fairly accurately by a linearized 

first-order Taylor series expansion (Crassidis and Junkin, 2012). Using the Taylor series expansion about 

the current estimate ݔො(t) (i.e. assuming that the true state ݔ(t) is sufficiently close to the estimated state 

 :ො(t), which is used for the nominal state), the f(x(t),u(t),t) can be written asݔ
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         
   

    
 ˆ ,

ˆ
fˆf , , f , ,

x t u t
x t

t t t t x t x t
x

x u t x u t


  





 (5-52) 

Also, the measurement function in Eq. (5-51) can also be approximated as 

    
 

    
 ˆ

ˆ
hˆ, ( ),h h

x t
x t

t x t x t
x

x t x t t


  





 (5-53) 

The EKF structure for the state estimate ݔො(t) and output estimate ݕ෠(t) is expressed  

       ˆ ˆ( ) f ( ), ( ), ˆx t x t u t t K t t ty y 
     (5-54) 

   ˆ ( ),ˆ ht x t ty   (5-55) 

From the definition of the estimate state error ݔ෤(t) = ݔො(t) - x(t), its derivative is ݔ෤ሶ(t) = ݔොሶ(t) - ẋ(t). The 

estimate state error dynamics can be expressed by substituting ݔොሶ(t) from Eq. (5-54) with Equations (5-53), 

(5-51), and Eq. (5-55), and substituting ẋ(t) from Eq. (5-50) with Eq. (5-52) as:  

                 x xt F t K t t t G t t K t tH w v        (5-56) 

where F(t) and H(t) are introduced for the Jacobian matrices, shown in Eq. (5-52) and Eq. (5-53), for 

brevity 

     ˆ ˆ,

( ) , ( )
f h

x t u t x t

F t H t
x x

 
 
 

 (5-57) 

The estimate state error dynamics in Eq. (5-56) of the EKF (i.e. the linearized error equation at instants 

using the Jacobian matrices in Eq. (5-57)) has the same structure as that of Eq. (5-35) of the KF. 

Therefore, through the same procedure presented above for the KF, the EKF update equations for ݔො௞
ା and 

௞ܲ
ା and the EKF prediction equations for ݔො௞ାଵ

ି  and ௞ܲାଵ
ି  can be obtained (see Derivation 5.2 in Appendix 

B.10). The extended Kalman filter in discrete time form is expressed as following (which can be also 

found in other references such as Yun et al., 1980). 

In the update state, the estimate state ݔො௞
ା and its error covariance matrix ௞ܲ

ା are computed as: 

 ˆ ˆ ˆhk k k k kx x K y x        (5-58) 

 T
k k k k k kP E x x I K H P          (5-59) 

The optimal gain Kk is determined by minimizing the trace of Pk
+, which is equivalent to minimize the 

length of the estimation error vector:  

1T T
k k k k k k EK P H H P H R

      (5-60) 
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where Hk (size m × n) is obtained from the linearization of the Kalman filter using the first-order Taylor 

series expansion about the selected nominal state, which is the current estimate ݔො௞
ି, (i.e. as mentioned, the 

EKF assumes that the true state ݔ(t) is sufficiently close to the estimated state ݔො(t); thus the current 

estimate ݔො௞
ି is used for the nominal state estimate) of the output in Eq. (5-55) and is expressed as:   

ˆ

h ( )

k

k
k

k x

x
H

x 





 (5-61) 

In the predicted state, the estimate state ݔො௞ାଵ
ି  and its error covariance matrix ௞ܲାଵ

ି  can be approximated 

as: 

    1

1 ,ˆ ˆ ˆf ,
k

k

t

k k t
t t tx x x u dt

 
     (5-62) 

 1 1 1
T T T

k k k k k k k E kP E x x P Q   
           (5-63) 

where Фk (size n × n) the state transition matrix and ϒk (size n × n) can be approximated as:  

 
ˆ

ˆ
f ( ), ( ),

( )
( )

k

k kk

x

x
x t u t t

I t or I tF
x t 


     


 (5-64) 

 k tG t    (5-65) 

where the matrix ∂f / ∂x = Fk(ݔො௞
ା) is obtained from the linearization of the Kalman filter using the first-

order Taylor series expansion about the current estimate ݔො௞
ା. The predicted state in Eq. (5-62) is evaluated 

using the Runge-Kutta 4th order method in this study. With the initial guess of the state ݔො଴
ି and the error 

covariance matrix ଴ܲ
ି and instant measurements ݕk, the EKF update and prediction stages defined above 

can be implemented. 

 

5.2.1.2 Estimate of Nonlinear Hysteresis Structures using the EKF 

The nonlinear extended Kalman filter (EKF) method is used in order to estimate the state and the system 

parameters of the nonlinear hysteretic system, described in Section 4.1 (see Eq. (4-4)).  

 

System State Estimation 

First, it is desired to estimate the true state x(t) = [xs(t)  ݔሶ s(t)  fS(x)]T from the discrete state 

measurements ݕk = [ݔs,k  ݔሶ s,k  ݂S,k]
T, obtained from instruments, in which measurement noise vk are added 

as shown in Eq. (5-51). The 3 × 3 measurement noise covariance matrix RE is chosen as a diagonal matrix 

assuming measurements are not correlated to each other. The 3 × 3 process noise covariance matrix QE is 

chosen as a matrix whose all elements are zeroes, assuming there is negligible error in the system model.   
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The Jacobian matrix (shown in Eq. (5-57)) of the system equations is required for the EKF method. 

The 3 × 3 Jacobian matrix F(t) can be expressed by defining the state [xs(t)  ݔሶ s(t)  fS(x)]T ≡ [x1  x2  x3]
T: 

1 1

3 1 3 3

0 1 0
f

( ) 0

f ( ) f
s

T

F t c m m
x

x k x x

 

 
      

     

 (5-66) 

where  

   

     

2
*

*

( )1 sgn ( )
( ) 1 ( ) ( )

2

0.5 1 ; ( ) 1 sgn ( ) ; ( ) ( )

N

HH
T s s s

y

N N

s y H s H

f xf x x
k x k k or k x x

f

k f x f x x x f x

   

   


 
       

 

     

 (5-67) 

in which fH(x) = fS(x) – αksxs(t), fy
* = (1 – α) fy with fy = ksdy as defined earlier, and by defining that δ(x(t)) 

× x(t) ≡ 0 (i.e. that is indeterminate if x(t) = 0 since δ(x(t)) × x(t) = ∞ × 0; in this study the relation δ(x) × x 

= 0 (Dannon, 2012) (i.e. δ(x) is the Dirac delta function) is used)  

  13
2 2

1 1 1 1

f ( ) ( ) ( )
( ) ; ( ) sgn ( )

NT
H H s

k x x x
x x x N f x f x k

x x x x

        
            

 (5-68) 

  13
2 2

3 3 3 3

f ( ) ( ) ( )
( ) ; ( ) sgn ( ) 1

NT
H H

k x x x
x x x N f x f x

x x x x

        
           

 (5-69) 

 3
2 2 2

2 2 2 2
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( ) ( ) ( ) ( ); 2 ( ) sgn ( )T
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k x x x
x k x x x k x k x x f x
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  
      

              
 (5-70) 

It is noted that the δ(x2) in the last equation indicates that the function kT(x) has a jump at the unloading 

instant (where x2 = 0) from the hardening stiffness to the initial stiffness as shown in the hysteretic loop 

(Figure 4-1 (left)).  

For the selected measurements ݕk = [ݔs,k  ݔሶ s,k  ݂S,k]
T, the output vector h(xk) and the linearized matrix Hk 

in Eq. (5-61) are expressed as: 

,

3 3,

ˆ
,

h( )
h( ) and

k

s k
k

k s k k k
k x

S k

x
x

x x x H I
x

f 


 
 
 
 
 


   


  (5-71) 

 

State and Parameter Estimation 

In addition to the true state estimation, one can estimate the system parameters using the EKF. In order 

to estimate the parameters, new states are augmented to the state vector. The covariance matrix QE in Eq. 

(5-63) is selected to consider the errors in these states as well as the errors in the model due to the system 

uncertainty. In order to identify four parameters cs, ks, α, and dy shown in Eq. (4-6), the 7 × 1 augmented 
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state vector and the 7 × 7 matrix QE (i.e. QE is chosen as a diagonal matrix assuming each state is not 

correlated, and its first three elements are chosen as zeroes assuming the system model has no errors) are 

defined as:  

5 71 2 3 4 6( ) ( ) ( ) ( )s s

T T
s s ySx t x t x t f t c k d or x x x x x x x        (5-72) 

 44 55 66 770 0 0
T

EQ Q Q Q Q  (5-73) 

The augmented deferential equations of the system is 
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 
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 (5-74) 

where the last four state derivatives are zeros since the unknown parameters are constant. The 7 × 7 

Jacobian matrix F(t) shown in Eq. (5-57) can be expressed as: 

 

1 1 1
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 (5-75) 

where kT(x) is the instantaneous stiffness and expressed in Eq. (5-67), repeated here for convenience, 
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 (5-76) 

and by defining that δ(x(t)) × x(t) ≡ 0 (i.e. that is indeterminate if x(t) = 0 since δ(x(t)) × x(t) = ∞ × 0) 

  13
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 (5-77) 
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 (5-81) 

For the selected measurements ݕ෤k = [ݔk  ݔሶ k  ݂S,k]
T, the output vector h(xk) and the linearized matrix Hk in 

Eq. (5-61) are expressed as: 
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Example 5.6 : Parameter estimation for an SDOF linear system 

The EKF12 method is used for the system identification to estimate unknown parameters of an SDOF 

linear system (as shown in Figure 5-1). It is noted that the formulation unlike the feedback tracking 

control methods, the control excitation input u(t) = -msẍt(t) is pre-defined and not updated in real time. 

The properties of the system are the same as the ones in Example 3.1; ms = 1 kips·sec2/in., ks = 355 

kips/in., and cs = 1.13 kips·sec/in., (fn = 3.0 Hz, ξn = 0.03). The measurement noise, a zero-mean Gaussian 

white-noise process of 1% RMS noise-to-signal, are added to the measurements ݕk = [ݔs,k  ݔሶ s,k]
T. Two 

unknown parameters: cs the damping coefficient and ks the elastic stiffness; are selected and estimated in 

real time. The selected excitation input u(t) to the system is the sinusoidal motion (the forcing frequency ff 

= 1.0 Hz) and presented in Figure 5-11 (a) (for comparison purposes with other examples, ẍt(t) = -u(t)/ms, 

the shake table acceleration is presented). For the parameter estimation, the initial parameter estimate ߠ෠଴ 

                                                      
12 Although the only EKF formulation for nonlinear systems is presented above, the formulation for linear systems is 

very similar. Only analysis results are presented in this example for comparison purposes to the LS in Example 5.1.). 
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= 0.5 × θ*; and the initial covariance matrix is chosen as P0 = diag([0  0  ෠݇௦,௢
2  ܿ̂௦,௢

2]T × 0.001). The 

covariance matrices QE and RE are chosen as follows: QE = 0 × I4×4 (all zeroes) and the RE = diagonal 

matrix, whose elements; i.e. noise variance = 1% × corresponding signal variance (noise variances are 

assumed to be known from the instruments information). The time step = 0.002 sec. The relation between 

the structure resisting force fS(t) and displacement xs(t) is also presented in Figure 5-11 (b). 

 

 

Figure 5-11 Excitation and structure responses: Real time parameter estimation using the EKF 

 

The estimated parameters are updated using Eq. (5-58) and Eq. (5-62). The comparisons between the 

true parameters: ks the elastic stiffness and cs the damping coefficient; and the estimated parameters are 

shown in Figure 5-12 and the results show that the agreements are very good. It is noted that the 

estimation performance is affected by various conditions and will be discussed in Section 5.2.2. 

 

 

Figure 5-12 Real time parameter estimation results using the EKF for an SDOF linear system  
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Example 5.7 : Parameter estimation for an SDOF nonlinear hysteresis system with hardening  

The EKF method is used for the system identification to estimate unknown parameters and the state of 

an SDOF nonlinear hysteretic structure (as shown in Figure 5-1; but, in this example the structure 

experiences nonlinear behavior due to yielding). It is noted that unlike the feedback tracking control 

methods, the control excitation input u(t) = -msẍt(t) is pre-defined and not updated in real time . 

The properties of the system are the same as the ones in Example 4.1; ms = 1 kips·sec2/in.; ks = 355 

kips/in.; and cs = 1.13 kips·sec/in.; (fn = 3.0 Hz, ξn = 0.03 before yielding). N = 3; dy = 0.11 in. (fy = 39 

kips); and α = 0.1; i.e. all terms are explained in Eq. (4-2). The measurement noise, a zero-mean Gaussian 

white-noise process of 10% RMS noise-to-signal, are added to the measurements ݕk = [ݔs,k  ݔሶ s,k  ݂S,k]
T. 

Four unknown parameters: cs the damping coefficient; ks the elastic stiffness; dy the yielding 

displacement; and α the post-yielding stiffness ratio to the elastic stiffness; are selected and estimated in 

real time. The selected excitation input u(t) to the system is the sinusoidal motion (the forcing frequency ff 

= 1.0 Hz) and presented in Figure 5-13 (a) (for comparison purposes with other examples, ẍt(t) = -u(t)/ms, 

the shake table acceleration is presented). For the parameter estimation, it is chosen that the initial 

parameter estimate ߠ෠଴ = 0.5 × θ* (50% error in the initial guess); and the initial covariance matrix P0 = 

diag([0  0  0  ܿ̂௦,௢
2  ෠݇௦,௢

ො௢ߙ  2
2  መ݀௬,௢

2]T × 1). The covariance matrices QE and RE are chosen as follows: QE = 

0 × I7×7 (all zeroes) and the RE = diagonal matrix, whose elements; i.e. noise variance = 10% × 

corresponding signal variance (noise variances are assumed to be known from the instruments 

information). The time step = 0.002 sec. The relation between the structure resisting force fS(t) and 

displacement xs(t) is also presented in Figure 5-13 (b). 

 

 

Figure 5-13 Excitation and structure responses: Real time parameter estimation using the LS 
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The estimated parameters are updated using Eq. (5-58) and Eq. (5-62). The comparisons between the 

true parameters: kT(x) the instantaneous stiffness (i.e. the estimate of kT(x) is computed using the estimates 

of ks, dy and α); cs the damping coefficient; ks the elastic stiffness; dy the yielding displacement; and α the 

post-yielding stiffness ratio to the elastic stiffness; and the estimated parameters are shown in Figure 

5-14: the results show very good agreements. In addition to the parameter estimation, the EKF is used to 

estimate the state responses; i.e. the state x = [xs(t)  ݔሶ s(t)  fS(x)]T is estimated from the selected 

measurements ݕk = [ݔs,k  ݔሶ s,k  ݂S,k]
T, which are contaminated by measurement noise as explained in Eq. 

(5-51). Figure 5-15 shows the results of the state estimation; the comparisons between the measured and 

the truth and between the estimated and the truth are presented for the state x: the structure displacement 

xs(t), velocity ݔሶ s(t), and the resisting force fS(x); the estimated state show very good agreements to the true 

state. However, it is noted that the estimation performance can be sensitive to various conditions 

involving the selected parameters and measurement noise; the effects will be discussed in Section 5.2.2. 
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Figure 5-14 Real time parameter estimation results using the EKF for an SDOF nonlinear system  
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Figure 5-15 Real time state estimation results using the EKF for an SDOF nonlinear system  
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5.2.1.3 Estimate of Nonlinear Hysteresis Structures on Shake Tables  

The nonlinear extended Kalman filter (EKF) method is now applied to the shake table-structure system 

considering their interaction, which are modeled as the 2DOF system, described in Section 4.1 (see Eq. 

(4-6)) in order to estimate the state and the unknown system parameters in real time.  

 

State Estimation 

First, it is desired to estimate the true state x(t) = [xs(t)  ݔሶ s(t)  fS(x)  xt(t)  ݔሶ t(t)  fa(t)/mt]
T from the discrete 

state measurements ݕk = [ݔs,k  ݔሶ s,k  ݂S,k  ݔt,k  ݔሶ t,k  ݂a,k/mt]
T, obtained from instruments, where noise are 

added. The 6 × 6 covariance matrix R is chosen as a diagonal matrix assuming measurements are not 

correlated to each other and the 6 × 6 covariance matrix QE is chosen as a matrix whose all elements are 

zeroes, assuming there is no error in the system model.   

The 6 × 6 Jacobian matrix of the system equations is, by defining the state vector [xs(t)  ݔሶ s(t)  fS(x)  xt(t)  

ሶݔ t(t)  fa(t)/mt] ≡ [x1  x2  x3  x4  x5  x6]
T: 

   
 

1 1 1 1

3 1 3 3

1 1

2 2

0 1 0 0 0 0

0 0 0 1

f f f 0 0 0( )
0 0 0 0 1 0

0 0 0 1

0 0 0 2

s t s s t

T

t s t

a a a a a

m m c m m

x k x xF t
x

m c m

k    

   

 

 
 

     
       

  
 
 
    

 (5-83) 

where kT(x), ∂f3/∂x1, and ∂f3/∂x3 are expressed in Equations (5-67), (5-68), and (5-69). 

For the selected measurements ݕk = [ݔs,k  ݔሶ s,k  ݂S,k  ݔt,k  ݔሶ t,k  ݂a,k/mt]
T, the output vector h(xk) and the 

linearized matrix Hk in Eq. (5-61) are expressed as: 

6 6, , , , , ,

ˆ

h ( )
h ( ) and

k

T
k

tk s k s k S k t k t k a k k k
k x

x
x x x f x x f m x H I

x 
  


   


   (5-84) 

State and Parameter Estimation 

In addition to the true state estimation, one can estimate the system parameters using the EKF. In order 

to estimate the parameters, new states are augmented to the state vector. The covariance matrix QE in Eq. 

(5-63) is selected to consider the errors in these states as well as the errors in the model due to the system 

uncertainty. It is assumed that the system parameters, ωa, ξa, and ka, of the servo-valve and actuator of the 

shake table system are known before the shake table tests and remain the same during the tests (as 

discussed in Section 2.3). In order to identify four parameters cs, ks, α, and dy of the nonlinear hysteretic 

structure in Eq. (4-6), the 10 × 1 augmented state vector and the 10 × 10 matrix QE (i.e. QE is chosen as a 
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diagonal matrix assuming each state is not correlated, and its first six elements are chosen as zeroes 

assuming the system model has no errors) are defined as:  

5 71 2 3 4 6 8 9 10

( ) ( ) ( ) ( ) ( ) ( ) ( ) /
T

s s t t a t s s yS

T

x t x t x t f t x t x t f t m c k d or

x x x x x x x x x x

  

  

  
 (5-85) 

 77 88 99 1010( 0 0 0 0 0 0 )EQ diag Q Q Q Q  (5-86) 

The augmented deferential equations of the system is 
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 (5-87) 

where the last four state derivatives are zeros since the unknown parameters are constant. The 10 × 10 

Jacobian matrix F(t) shown in Eq. (5-57) can be expressed as: 
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 (5-88) 

where kT(x), ∂f3/∂x1, ∂f3/∂x3, ∂f3/∂x8, ∂f3/∂x9, and ∂f3/∂x10 are expressed in Equations (5-76), (5-77), (5-78), 

(5-79), (5-80), and (5-81), respectively, by replacing the unknown state numbers from x4, x5, x6, x7 of the 

SDOF system to x7, x8, x9, x10 of the 2DOF system. 

For the selected measurements ݕk = [ݔs,k  ݔሶ s,k  ݂S,k  ݔt,k  ݔሶ t,k  ݂a,k/mt]
T, the output vector h(xk) and the 

linearized matrix Hk in Eq.(5-61) are expressed as: 

 , , , , , , 6 6 6 4
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T k
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Example 5.8 : Parameter estimation for a 2DOF nonlinear hysteresis system with hardening  

The EKF method is used for the system identification to estimate unknown parameters and the state of 

a 2DOF nonlinear hysteretic structure (as shown in Figure 5-16). It is noted that unlike the feedback 

tracking control methods, the control excitation input u(t) = xd(t) ), the desired shake table displacement, 

is pre-defined and not updated in real time. 

 

 

Figure 5-16 Parameter estimation of a 2DOF system 

 

The properties of the system are the same as the ones in Example 4.2; ms = 1 kips·sec2/in.; ks = 355 

kips/in.; and cs = 1.13 kips·sec/in.; (fn = 3.0 Hz, ξn = 0.03 before yielding). N = 3; dy = 0.11 in. (fy = 39 

kips); and α = 0.1; i.e. all terms are explained in Eq. (4-2), for the hysteretic system and μ = ms / mt = 0.1, 

fn,a = 30.0 Hz, ξa = 0.5 and ka = 25 for the shake table. The measurement noise, a zero-mean Gaussian 

white-noise process of 10% RMS noise-to-signal, are added to the measurements ݕk = [ݔs,k  ݔሶ s,k  ݂S,k  ݔt,k  

ሶݔ t,k  ݂a,k/mt]
T. Four unknown parameters: cs the damping coefficient; ks the elastic stiffness; dy the yielding 

displacement; and α the post-yielding stiffness ratio to the elastic stiffness; are selected and estimated in 

real time. The selected excitation input u(t) = xd(t) is the sinusoidal motion (the forcing frequency ff = 1.0 

Hz) and presented in Figure 5-17 (a). For the parameter estimation, it is chosen that the initial parameter 

estimate ߠ෠଴ = 0.5 × θ* (50% error in the initial guess); and the initial covariance matrix P0 = diag([0  0  0  

0  0  0  ܿ̂௦,௢
2  ෠݇௦,௢

ො௢ߙ  2
2  መ݀௬,௢

2]T × 1). The covariance matrices QE and RE are chosen as follows: QE = 0 × 

I10×10 (all zeroes) and the RE = diagonal matrix, whose elements; i.e. noise variance = 10% × 

corresponding signal variance (noise variances are assumed to be known from the instruments 

information). The time step = 0.002 sec. The relation between the structure resisting force fS(t) and 

displacement xs(t) is also presented in Figure 5-17 (b). 
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Figure 5-17 Excitation and structure responses: Real time parameter estimation using the EKF 

 
The estimated parameters are updated using Eq. (5-58) and Eq. (5-62). The comparisons between the 

true parameters: kT(x) the instantaneous stiffness (i.e. the estimate of kT(x) is computed using the estimates 

of ks, dy and α); cs the damping coefficient; ks the elastic stiffness; dy the yielding displacement; and α the 

post-yielding stiffness ratio to the elastic stiffness; and the estimated parameters are shown in Figure 

5-18: the results show very good agreements. In addition to the parameter estimation, the EKF is used to 

estimate the state responses; i.e. the state x(t) = [xs(t)  ݔሶ s(t)  fS(x)  xt(t)  ݔሶ t(t)  fa(t)/mt]
T is estimated from the 

selected measurements ݕk = [ݔs,k  ݔሶ s,k  ݂S,k  ݔt,k  ݔሶ t,k  ݂a,k/mt]
T, which are contaminated by measurement 

noise as explained in Eq. (5-51). Figure 5-19 and Figure 5-20 show the results of the state estimation; the 

comparisons between the measured and the truth and between the estimated and the truth are presented 

for the state x: the structure displacement xs(t), velocity ݔሶ s(t), and the resisting force fS(x) and the shake 

table displacement xt(t), velocity ݔሶ t(t), and the actuator force fa(x); the estimated state shows very good 

agreement to the true state. However, it is noted that the estimation performance can be sensitive to 

various conditions involving the selected parameters and measurement noise; the effects will be discussed 

in Section 5.2.2. 
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Figure 5-18 Real time parameter estimation results using the EKF for a 2DOF nonlinear system  
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Figure 5-19 Real time state estimation (EKF) - structure responses for a 2DOF nonlinear system 
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Figure 5-20 Real time state estimation (EKF) – shake table responses for a 2DOF nonlinear system  
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5.2.2 Effects of Initial Guesses of Unknown Parameters and Covariance Matrices 

As discussed in Section 5.2, it is very difficult to show a certain stability property of the EKF 

(Crassidis and Junkin, 2012) due to a possible error in a linearized first-order Taylor series expansion. 

Therefore, the robustness of the EKF is examined through numerical simulations. Two factors, which 

play important roles on the performance of the EKF; are considered: first, the effects of initial guess of 

unknown parameters; and secondly, the effects of the selection of the covariance matrices. It is noted that 

the estimation performance can be also affected by other conditions involving modeling errors, 

measurement noise, different excitation, etc. The same SDOF linear model described in Example 5.1 and 

Example 5.6 are used where two parameters θ* = [ks  cs]
T : ks the elastic stiffness and cs the damping 

coefficient; are selected and estimated in real time. The excitation input u(t) to the system is the same 

sinusoidal motion (the forcing frequency ff = 1.0 Hz), shown in Figure 5-11 (a). The time step = 0.002 

sec. 

 

Example 5.9 : Effects of initial guess of unknown parameters on the EKF estimator performance 

The effects of the initial guess of the unknown parameters are investigated numerically. Three 

different initial guesses ߠ෠଴ are made as the 10%, 50% and 200% of the true parameters; ߠ෠଴ = 0.1 × θ*; ߠ෠଴ 

= 0.5 × θ*; ߠ෠଴ = 2.0 × θ*. The initial covariance matrix is chosen as P0 = diag([0  0  ݇௦,௢
2  ܿ௦,௢

2]T × 0.0005) 

for all cases. The comparisons between the true parameters: ks the elastic stiffness and cs the damping 

coefficient; and the estimated parameters are shown in Figure 5-21 (the initial guess factors: 0.1, 0.5, 2.0; 

are shown in the figure); the results show that the overall agreements are reasonably good while the speed 

of convergence might be affected by the initial guess.  

 

 

Figure 5-21 Real time parameter estimation results using the EKF for an SDOF linear system  
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Example 5.10 : Effects of selection of the covariance matrices on the EKF estimator performance  

The effects of the selection of the covariance matrices are investigated numerically. Three different 

initial covariance matrices P0 are selected as the diagonal matrix whose elements are the square of the 

0.005%, 0.05% and 50% of the true parameters; P0 = diag([0  0  ݇௦,௢
2  ܿ௦,௢

2]T × 0.00005;  P0 = diag([0  0  

݇௦,௢
2  ܿ௦,௢

2]T × 0.005; P0 = diag([0  0  ݇௦,௢
2  ܿ௦,௢

2]T × 0.5). The initial guesses of the unknown parameters 

 ෠଴ = 0.5 × θ* for all cases. The comparisons between the true parameters: ks the elastic stiffness and cs theߠ

damping coefficient; and the estimate of the true parameters are shown in Figure 5-22 (the selected initial 

covariance matrix factors: 0.005%, 0.05% and 50%; are shown in the figure); the results show that the 

lager covariance matrix might lead faster estimation, but might occur larger overshooting at the beginning 

of estimation while the overall agreements are reasonably good.  

 

 

Figure 5-22 Real time parameter estimation results using the EKF for an SDOF linear system  

 

5.3 Comparison between the Least Squares Method and Extended Kalman Filter  

The least squares method (LS) and the extended Kalman filter (EKF) are introduced as real time 

parameter estimation methods for the tracking control of nonlinear hysteretic systems with unknown 

parameters. Even though both methods can be used, each one has different advantages over the other one 

as summarized below.  

One of the most important features of the LS is that it can be shown the estimation error converges to 

zero ε(t) → 0 as t → ∞ with proper design of the estimator for systems whose unknown parameters vary 

linearly (Ioannou et al., 2006). However, the nonlinear hysteretic system with hardening after yielding (α 

> 0) cannot be modeled in the form of the linear parametric model as shown in Section 5.1.1.3.  
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Unlike the LS, it is very difficult to show a certain stability property of the EKF estimator due to the 

approximation error in the first order Taylor expansion (Crassidis et al., 2012). Nevertheless, the EKF has 

important advantages; (i) the method can be applied to more complex nonlinear systems including the 

nonlinear hysteretic system with hardening after yielding as shown in 5.2.1.2; (ii) the EKF requires less 

measurements, which is more realistic and might make the EKF more practical than the LS; for example, 

the parameter identification can be performed using only the total accelerations (Wu and Smyth, 2007) 

while the LS requires more measurements, and (iii) in addition the EKF can be used not only to estimate 

the unknown parameters, but also to estimate the true state vector from the measurements with associated 

noise (as discussed in Section 5.2); i.e. both estimates of the true state vector and unknown parameters are 

required for the tracking control schemes.  

Therefore, the EKF is adopted in this study, as the real time parameter estimator for further 

development of the adaptive tracking control.   
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SECTION 6 

TRACKING CONTROL FOR LINEAR SYSTEMS WITH UNKNOWN 

PARAMETERS 

 

The feedback tracking control methods and the real time parameter identification method, which were 

separately presented in the preceding sections, are combined herein, and new adaptive tracking control 

schemes are introduced. The two feedback tracking control methods; namely, the predictive tracking 

control (PTC) and the feedback linearized tracking control methods (FTC), combined with the extended 

Kalman filter (EKF) for the real time parameter estimation, are applied to linear systems control in this 

section. The methods are then extended to the nonlinear hysteretic systems in the following section.  

 

6.1 Predictive Tracking Control with Real-time Parameter Estimation 

In Section 3.3.1, the predictive control method was used to develop the control law for linear system 

tracking problems with known parameters. The control excitation input uk to reduce the predicted tracking 

error (i.e. ݁௞ାଵ ൌ ො௞ାଵݕ െ  ௞ାଵ) is shown in Eq. (3-39). When there are unknown parameters in a givenݕ

system to be controlled, the parameters can be estimated in real time using the system parameter estimator 

such as the extended Kalman filter, introduced in the previous section. The estimated parameters ߠ෠௞ at 

instant k∆t are used instead of known constant parameters θ*
. The control law equation with the estimated 

parameters at instants becomes 

Control Law  

1
* * * * *

, , , , 1 , , 1 ,
ˆ ˆˆ ˆ ˆ ˆˆ ˆT T

k D k D k D k m k D k k k m k D k ku B QB R B Q y A x y A x


 
               (6-1) 

where the hat ^ indicates that the system matrix uses the estimated parameters ߠ෠௞, and 

1 ˆ ˆ* * * * *
, , , , , , , , , , , 0

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆˆ , , , ,k k
tA t AT T

k D k D k D k D k D k D k D k D k D k D k D k kB QB R B Q A C A B C B A e B e d B 
            

and the system matrices ܣመ஽,௞ and ܤ෠஽,௞  and the output matrix ܥመ஽,௞ (i.e. ܥመ஽,௞  መ௞) are updated at everyܥ = 

instant k∆t with estimated parameters, ߠ෠௞ = [ ෠݇௦,௞  ܿ̂௦,௞]T of the true parameters θ* = [ks  cs]
T; for example, 

the continuous-time system matrices of the linear SDOF system shown in Eq. (2-26) with estimated 

parameters ߠ෠௞are  

, ,

0 1 0ˆ ,ˆ 1/ˆ/ /
k

s k s k

A B
mk m c m

   
         

 

and the output matrix ܥመ௞ is defined according to the target motion. For example, if the target motions are 

the displacement and velocity ym = [xm  ẋm]T, the matrix ܥመ஽,௞ ൌ  ,ଶൈଶ that is an identity (constant) matrixܫ
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and if the target is the total acceleration ym = ẍm
t, the matrix ܥመ஽,௞ ൌ [- ෠݇௦,௞ /m  -ܿ̂௦,௞ /m]T. The control 

excitation input uk can be calculated using Eq. (6-1). The predicted response can be obtained by 

substituting the computed control input uk into Eq. (3-36): 

Expected Achieved Responses  

 1

*
, , 1

ˆˆ ˆˆ ˆ
k D D D k D k k D k m kCy A B A x B y         (6-2) 

where Γ෠௞ and ܣመ஽,௞
∗  are defined in Eq. (6-1). If BD

* = CDBD is an invertible matrix, and R = 0 and Q = I (i.e. 

I = identity matrix) are chosen, then Eq. (6-2) becomes  

   * * * 1 * * * 1

1 , , , , 1
ˆˆ ˆˆˆ

k D D D k D k k D D k m kA B B A x B By y 
      (6-3) 

where AD
* = CDAD and BD

* = CDBD are the true system matrices. 

Stability 

The predicted tracking error equation might be obtained from Eq. (6-3) by collecting the tracking error 

term ek+1 = ݕොk+1 - ym,k+1  in the left-hand side and the estimate error terms in the right-hand side: 

 1 1 , 1ˆ, ,k k k k m kg xe y     (6-4) 

where the function gk+1 indicates some residual error caused by parameter estimate error ߠ෨௞ = ߠ෠௞ െ  .∗ߠ

The tracking error ݁௞ାଵ  will decrease when the estimated parameters error ߠ෨௞  becomes smaller. As 

discussed in Section 5.3, the stability of the error dynamics cannot be analyzed analytically because of the 

lack of knowledge of the stability properties of the extended Kalman filter (EKF), so the performance of 

the adaptive tracking control method introduced is examined using the numerical simulation in Section 

6.4.  

 

Limitations of Shake Table-Structure Systems 

As discussed in Section 3.3.1, for the shake table-structure 2DOF model, the predicted output ݕො௞ାଵ in 

discrete time or ݕො(t+h) in continuous time might be approximated including higher order differentiations 

when the product of the output and input matrices C × B is singular. Using the approximated predicted 

output ݕො*(t+h) and the target motion ݕ௠∗ (t+h) (shown in Eq. (3-44)), the control law is established as 

shown in Eq. (3-46). When some parameters are unknown, the control input u(t) can be computed using 

the estimated parameters ߠ෠(t) at instant time as following: 

Control Law  

             
1

* * * * *ˆ ˆ ˆ ˆˆ ˆ ˆˆˆ
TT

mu B QB R Q y t h A x tt B  


          (6-5) 
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where ܣመ∗ሺߠ෠ሻ= [ܥመሺߠ෠ሻ + hܥመሺߠ෠ሻ	ܣመሺߠ෠ሻ	 + (h2/2)	ܥመሺߠ෠ሻ	ܣመሺߠ෠ሻ2] and ܤ෠∗ሺߠ෠ሻ= (h2/2)ܥመሺߠ෠ሻ	ܣመሺߠ෠ሻܤ. By substituting 

Eq. (6-5) into the second equation of Eq. (3-45), one can establish the error dynamics. For a system 

having ܤ෠∗ሺߠ෠ሻ as a non-zero scalar (i.e. an invertible matrix, size 1 × 1) and R = 0 chosen, ݕሷ (t) becomes as 

described below: 

 
Expected Achieved Responses  

           2 * *
1

* ˆ ˆ ˆˆˆˆ
my CA CAB y t h A x tt x t B 



        
  (6-6) 

which can be rewritten introducing the tracking error (e(t) = y(t) - ym(t)) to show its dynamics  

                2 *ˆ2 / 2 / , , me t h e t h e t g t x t y t h      (6-7) 

where the function g(·) indicates some residual error, which are caused by the parameter estimation error 

෨ߠ (t) = ߠ෠ሺݐሻ 	െ ∗ߠ . The tracking error e(t) will decrease when the estimated parameters error ߠ෨ (t) is 

reduced. As discussed in Section 5.3, the performance of the adaptive tracking controller is examined by 

means of the numerical simulations in Section 6.4. 

 
6.2 Feedback Linearization Tracking Control with Real-time Parameter Estimation 

Another possible tracking control scheme introduced in Section 3.3.2 is the Feedback Linearization 

Tracking Control (FTC) (Ioannou and Fidan, 2006). FTC can be also used for systems with unknown 

parameters by using the real time estimator such as the extended Kalman filter (EKF).  

For the simplest case with a first order system as first presented in Section 3.3.2, the equations of the 

true system and the reference model are shown in Eq. (3-49) and (3-50). In order to achieve the tracking 

control objective, the tracking control law is established as shown in Eq. (3-56). With unknown 

parameters; for example if the parameter a in Eq. (3-49) is unknown, the possible control law is  

Control Law  

          *
1

1
ˆ mu t ca t x t y t k e t

cb
       (6-8) 

where ොܽ(t) is the estimate of the true parameter a in real time, and the tracking error e(t) = y(t) - ym(t). By 

substituting this control input u(t) into Eq. (3-51), it is obtained: 

          *
1my t ca t x t y t k e t      (6-9) 

where the parameter estimate error ෤ܽ(t) = ොܽ(t) – a. From this equation, the tracking error dynamics can be 

shown below 

Expected Achieved Responses  

       *
1e t k e t ca t x t    (6-10) 
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One may establish an adaptive law for the real time parameter estimation using the Lyapunov method or 

the least squares method (Ioannou and Sun, 2012), such that the tracking error signal e(t) goes to zero as 

time goes to infinity. However, this approach is not applicable to the nonlinear hysteretic system as 

discussed in Section 5.3. Therefore, the EKF is used as the real time estimator, and the performance of the 

adaptive tracking control method introduced is examined using the numerical simulation, presented in 

Section 6.4. 

 

Application to SDOF Linear Structures  

For a linear structure (the SDOF system model) expressed in Eq. (2-26) with the output y(t) of the total 

acceleration response ẍs
t(t) at the structure, the tracking control law is established as shown in Eq. (3-58) 

for known parameters. With unknown parameters, the possible control law using the estimate ߠ෠(t) = [ ෠݇௦(t)  

ܿ̂௦(t)]
T of the true parameters θ* = [ks  cs]

T; becomes 

Control Law  

        12 *
ŝ su t c t m y t v t

        (6-11) 

where ݕሶ ∗(t) is defined as 

               * 2 1ˆ ˆˆ ˆs s s s s s s s sy t m c t c t x t k t x t m k t x t         (6-12) 

and v(t) is selected to reduce the tracking error as 

     *
1mv t y t k e t   (6-13) 

in which e(t) = y(t) - ym(t) and y(t) = -ms
-1[ܿ̂௦(t)	ݔሶ௦(t)+	 ෠݇௦(t)	ݔ௦(t)]. Substituting u(t) from Eq. (6-11) into 

the equation of the differentiated output ݕሶ (t) (shown in Eq. (B-3) in Appendix 3.1) and collecting the 

tracking error terms e(t) to the left-hand side and residual error terms due to estimation error to the right-

hand side leads to the following tracking error dynamic equation: 

Expected Achieved Responses  

          *
1 , , mg t x t y te t k e t    (6-14) 

where the function g(·) indicates some residual error caused by parameter estimate error ߠ෨(t) = ߠ෠ሺݐሻ 	െ

 ෨(t) becomes smaller. Theߠ The tracking error e(t) will decrease when the estimated parameters error .∗ߠ

performance of this adaptive tracking controller is examined using the numerical simulation in Section 

6.4. 

 

Application to 2DOF Shake Table-Linear Structure Systems  
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For a linear structure mounted on a shake table (the 2DOF system model) expressed in Equations 

(2-24) and (2-25) with the output y(t) of the total acceleration response ẍs
t(t) at the structure, the tracking 

control law is established as shown in Eq. (3-66) for known parameters. With unknown parameters, the 

possible control law using the estimate ߠ෠(t) = [ ෠݇௦(t)  ܿ̂௦(t)]
T of the true parameters θ* = [ks  cs]

T becomes 

Control Law  

       1* *ˆu t a t y t v t
       (6-15) 

where u*(t) = (ωa
2ka)

-1u(t); u(t) = xd(t); and ݕሷ ∗(t) is defined as 

                     
              

*

*

ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ

s s

a t t

y t a t a t c t b t x t a t b t d t x t

a t e f t a t f x t a t g x t

      
     

  


 (6-16) 

in which several functions are clustered  for simplification: 

               

           

1 1 1 1

2 2

* * 2

ˆ ˆˆ ˆ ˆ; ; ; ;

2 ; ; ;

/ ; ,

s s s s t s t s

a a a a a

a a t a a d d

a t m c t b t m k t c t m c t d t m k t

e f g k

f t f t m u t k x t u t x t

   



      

  

  

 (6-17) 

v(t) is selected to reduce the tracking error as 

       * *
1 2mv t y t k e t k e t     (6-18) 

in which e(t) = y(t) - ym(t) with y(t) = -݉௦
ିଵ[ܿ̂௦(t)	ݔሶ௦(t)+	 ෠݇௦(t)	ݔ௦(t)]; and ሶ݁(t) = ݕሶ (t) - ݕሶm(t) with ݕሶ (t) = -

݉௦
ିଵ [ܿ̂௦(t)	ݔሷ௦(t)+	 ෠݇௦(t)	ݔሶ௦(t)]. Substituting u*(t) from Eq. (6-15) into the differentiated output equation ݕሷ (t) 

(shown in Eq. (B-14) in Appendix B.2) and collecting the tracking error terms e(t) to the left-hand side 

and residual error terms due to estimation error to the right-hand side gives the tracking error dynamic 

equation: 

Expected Achieved Responses  

            * *
1 2 , , mg t x t y te t k e t k e t      (6-19) 

where the function g(·) indicates some residual error, which are caused by parameter estimate error ߠ෨(t) = 

ሻݐ෠ሺߠ 	െ  ෨(t) is reduced. Asߠ The tracking error e(t) will diminish when the estimated parameters error .∗ߠ

discussed in Section 5.3, the performance of this adaptive tracking controller using the EKF is examined 

by means of the numerical simulations in Section 6.4. 

 

6.3 Comparisons of Feedback Tracking Control Methods 

As discussed in Section 3.3.3, one can show that the two tracking control methods are equivalent for 

the shake table-structure system under certain conditions and with known parameters. For the unknown 

parameters, the formulations of the control laws for the two tracking control methods have not changed; 
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therefore, one can also show that the predictive tracking control law shown in Eq. (6-5) is the same as the 

control law (shown in Eq. (6-15)) of the feedback linearization tracking control method with the same 

conditions applied to the known parameter controllers; i.e. the controlled system has B(x)* = a non-zero 

scalar (i.e. an invertible matrix, size 1 × 1), and R = 0 chosen, and the tracking error coefficients in Eq. 

(4-20) are ݇ଵ
∗ = 2 / h = 2ξeωe and ݇ଶ

∗ = 2 / h2 = ωe
2; therefore, ξe = √2 / 2 ≈ 0.707 and h = √2 / ωe. 

 
6.4 Numerical Examples and Comparisons of Tracking Control Methods 

Simple tracking control examples (as demonstrated in Section 3.4 and Section 4.5 for the systems with 

known parameters) are analyzed in order to examine the performance of the introduced two feedback 

tracking control methods combined with the real time parameter estimation for linear systems with 

unknown parameters. The results are presented herein. For all examples, the target motion is the total 

acceleration of a structure (specimen) mounted on the shake table. 

 
6.4.1 Examples of Linear Structures (SDOF System Model) 

As discussed in Section 2.2, to facilitate the development of the tracking control method, first, a 

simplified SDOF system model is used instead of a 2DOF system model for a shake table with an SDOF 

structure system. In this simplified system model (shown in Figure 6-1), the excitation force -msẍt(t) due 

to the shake table acceleration ẍt(t) is considered as a new control input u(t). However, the actual control 

excitation input u(t) for the 2DOF system model is the desired displacement xd(t) of the shake table, and 

u(t) shall be computed including the shake table dynamics and the shake table-structure interaction (as 

discussed in Section 2.2) as formulated in the following section (Section 6.4.2). 

 

 
Figure 6-1 Tracking control of an SDOF nonlinear system with unknown parameters 

 
The governing equation of an SDOF linear structure subjected to the shake table excitation is shown in 

Eq. (2-26). The tracking control task for this simplified system is to compute the control excitation input 

u(t) = -msẍt(t) at every instant using the real time estimated parameters so that the system output y(t) = 

ẍs
t(t) (the total acceleration of the structure) follows the target motion ym(t) = ẍm

t(t) (the total acceleration 

of the reference model).   
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Example 6.1 : An SDOF Linear System with Unknown Parameters using PTC 

The properties of the given system are: ms = 1 kips·sec2/in., ks = 355 kips/in., and cs = 1.13 

kips·sec/in., (fn = 3.0 Hz, ξn = 0.03), the same as the ones in Example 3.1. In order to examine the effects 

of measurement noise, a zero-mean Gaussian white-noise process of 3% RMS noise-to-signal are added 

to the measurements ݕk = [ݔs,k  ݔሶ s,k  ݂S,k]
T, which are described in Section 5.2.1.2 (i.e. the EKF estimator is 

developed for a nonlinear system in Section 5.2.1.3, but, of course, this is capable for this linear system as 

well since a linear system is a special case of nonlinear systems having kT(x) → ks; thus fS(x) = ksx(t)). 

Two unknown parameters: cs the damping coefficient and ks the elastic stiffness; are selected and 

estimated in real time using the extended Kalman filter. 

The target motion is shown in Figure 6-3 (a) [Target]. The target motion is the total acceleration 

output generated from the same reference linear system (fm = 5.0 Hz, ξm = 0.1), used for Example 3.1. in 

Section 3.4.1. The reference model is subjected to high-pass-filtered one-cycle sine input, whose 

frequency is 1.0 Hz. The reference excitation input and the responses of the reference model are presented 

in Appendix A.2. For the parameter estimation, the initial parameter estimate ߠ෠଴ is chosen as ߠ෠଴ = 0.5 × θ* 

(50% error in the initial guess), and the initial covariance matrix is chosen as P0 = diag([0  0  0  ܿ̂௦,௢
2  ෠݇௦,௢

2  

0  0]T × 0.01). The covariance matrices QE and RE are chosen as follows: QE = 0 × I7×7 (all zeroes) and the 

RE = diagonal matrix, whose elements; i.e. noise variance = 3% × corresponding signal variance (noise 

variances are assumed to be known from the instruments information). The time step of 0.002 sec is used 

for the simulation. 

The tracking control results using the predictive tracking control (PTC) method with the real time 

parameter estimations are presented in Figure 6-2 and Figure 6-3. The selected control parameters for the 

PTC in this example are R = 0.0003 and Δt = 0.002. Figure 6-2 shows the comparisons between the 

estimated parameters: ks the elastic stiffness and cs the damping coefficient; and the true parameters, and 

they show very good agreements. The controlled output, ẍs
t(t) the total acceleration of the structure, is 

shown in Figure 6-3 (a) [Controlled] and also shows very good agreement with the target motion. The 

computed control excitation input, u(t) = -msẍt(t), using the control law in Eq. (6-5) is shown in Figure 6-3 

(b). xs(t), ẋs(t) the achieved displacement and velocity responses of the controlled structure are also 

presented in Figure 6-3 (c) and (d); it is noted that unlike the total acceleration, the displacement and 

velocity responses are different from ones of the reference because the system properties of the controlled 

system and ones of the reference system are different. The relation between the structure resisting force 

fS(t) having hysteretic behavior and displacement xs(t) is also presented in Figure 6-3 (e). As desired, all 

responses of the controlled system are bounded. 
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The tracking control results using the feedback linearization tracking control (FTC) method are 

presented in Figure 6-4 and Figure 6-5. Figure 6-4 presents the results of the parameter estimation in real 

time. The controlled output ẍs
t(t) is shown in Figure 6-5 (a) [Controlled]; it shows very good agreement 

with the target motion. The computed control excitation input, u(t) = -msẍt(t), using the control law in Eq. 

(6-11) is shown in Figure 6-5 (b). The selected control parameter in this example for the FTC is ݇ଵ
∗ ൌ

ଵ

Δ௧
/100 (i.e. the smaller value of ݇ଵ

∗ than that of the system with the known parameter case in Section 

3.4.1 is chosen due to the uncertainty and indicates that the tracking error will decrease slowly). It is 

noted that if the control parameters are carefully chosen to satisfy the tracking object, the control 

excitation input for the two methods (PTC and FTC) are very similar; therefore, as expected, the control 

results of two methods are very similar as shown in Figure 6-2 through Figure 6-5. 

 

 

Figure 6-2 Real time parameter estimation results of the PTC for an SDOF linear system
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Figure 6-3 PTC - structure responses for an SDOF linear system with real time estimation 
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Figure 6-4 Real time parameter estimation results of the FTC for an SDOF linear system 

  

0 1 2 3 4 5
0

200

400

600

..t (sec)

(c) Estimated parameter ks

k s

 

 
Estimate

True

0 1 2 3 4 5
0

0.5

1

1.5

2

..t (sec)

(b) Estimated parameter cs

c s

 

 
Estimate

True



 

133 

 

 

 

Figure 6-5 FTC - structure responses for an SDOF linear system with real time estimation 
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6.4.2 Examples of Shake Table - Linear Structures (2DOF System Model)  

As discussed in Section 2.2, the shake table dynamics affect the performance of the control system and 

the interaction between the shake table and the mounted structure has to be considered. The same tracking 

control example (described in Section 6.4.1) is resolved for the 2DOF linear system considering the 

interaction, as expressed in Eq. (2-24) and Eq. (2-25), and schematically shown in Figure 6-6. 

 

 

Figure 6-6 Tracking control of the shake table- structure 2DOF linear system with unknown parameters 

 

When a target motion is specified for the specimen, the required control excitation input u(t) = xd(t), 

the desired shake table displacement is determined at every instant using the real time estimated 

parameters such that the output of the system (y(t) = ẍs
t(t), i.e. the total acceleration of the structure) 

follows the target motion ym(t).  

 

Example 6.2 : A 2DOF Linear System with Unknown Parameters 

The properties of a given system are: ms = 1 kips·sec2/in., ks = 355 kips/in., and cs = 1.13 kips·sec/in., 

(fn = 3.0 Hz, ξn = 0.03) for the mounted structure, and μ = ms / mt = 0.1, fn,a = 30.0 Hz, ξa = 0.5 and ka = 25 

for the shake table, the same as the ones in Example 3.2. In order to examine the measurement noise 

effects, a zero-mean Gaussian white-noise process of 3% RMS noise-to-signal are added to the 

measurements ݕk = [ݔs,k  ݔሶ s,k  ݂S,k  ݔt,k  ݔሶ t,k  ݂a,k/mt]
T, which are described in Section 5.2.1.3 (i.e. the EKF 

estimator is developed for a nonlinear system in Section 5.2.1.3, but, of course, this is capable for this 

linear system as well since a linear system is a special case of nonlinear systems having kT(x) → ks; thus 

fS(x) = ksx(t)). Two unknown parameters: cs the damping coefficient and ks the elastic stiffness; are 

selected and estimated in real time using the extended Kalman filter. 

The target motion is shown in Figure 6-8 (a) [Target]. The target motion is the total acceleration 

output generated from the same reference linear system (fm = 5.0 Hz, ξm = 0.1), used for Example 6.1. in 

Section 6.4.1 (the reference input and the responses of the reference model are presented in Appendix 

A.2). For the parameter estimations, the initial parameter estimate ߠ෠଴ is chosen as ߠ෠଴ = 0.5 × θ* (50% 
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error in the initial guess), and the initial covariance matrix is chosen as P0 = diag([0  0  0  0  0  0  ܿ̂௦,௢
2  

෠݇௦,௢
2  0  0]T × 0.01). The covariance matrices QE and RE are chosen as follows: QE = 0 × I10×10 (all zeroes) 

and the RE = diagonal matrix, whose elements; i.e. noise variance = 3% × corresponding signal variance 

(noise variances are assumed to be known from the instruments information). The time step of 0.002 sec 

is used for the simulation. 

The tracking control results using the predictive tracking control (PTC) method with the real time 

parameter estimations are presented in Figure 6-7 and Figure 6-9. The selected control parameters in this 

example R = 0 and h = √2 / ωe where ωe = 100. Figure 6-7 shows the comparisons between the estimated 

parameters: cs the damping coefficient and ks the elastic stiffness; and the true parameters, and they show 

very good agreements. The controlled output, ẍs
t(t) the total acceleration of the structure, is shown in 

Figure 6-8 (a) [Controlled] and also shows very good agreement with the target motion. The computed 

control excitation input, u(t) = xd(t), using the control law in. Eq. (6-5) is shown in Figure 6-8 (b). xs(t), 

ẋs(t) the achieved displacement and velocity responses of the controlled structure are also presented in 

Figure 6-8 (c) and (d); it is noted that unlike the total acceleration (which was the target of the control 

design), the displacement and velocity responses are different from ones of the reference because the 

system properties of the controlled system and ones of the reference system are different. The relation 

between the structure resisting force fS(t) and displacement xs(t) is also presented in Figure 6-8 (e). Figure 

6-9 presents the responses of the shake table; the achieved shake table actuator force fa(t), shake table 

acceleration ẍt(t), displacement xt(t) and velocity ẋt(t). As desired, all responses of the controlled system 

are bounded.  

The tracking control results using the feedback linearization tracking control (FTC) method with the 

real time parameter estimations are also presented in Figure 6-10 and Figure 6-12. Figure 6-10 presents 

the results of the parameter estimation in real time. The controlled output ẍs
t(t) is shown in Figure 7-11 (a) 

[Controlled] and shows very good agreement with the target motion. The computed control excitation 

input, u(t) = xd(t), using the control law in Eq. (6-15) is shown in Figure 6-11 (b). As discussed in Section 

6.3, the control excitation inputs of the two methods (PTC and FTC) are the same if one chooses the 

tracking error coefficients as ݇ଵ
∗ = 2 / h = 2ξeωe and ݇ଶ

∗ = 2 / h2 = ωe
2; therefore, ξe = √2 / 2 ≈ 0.707 and h 

= √2 / ωe; (in this example, ωe = 100, ξe = 0.707 for the both methods). As expected, the control results of 

two methods are equivalent as shown in Figure 6-7 through Figure 6-12.  
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Figure 6-7 Real time parameter estimation results of the PTC for a 2DOF linear system 
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Figure 6-8 PTC - structure responses for a 2DOF linear system with real time estimation 
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Figure 6-9 PTC - shake table responses for a 2DOF linear system with real time estimation 
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Figure 6-10 Real time parameter estimation results of the FTC for a 2DOF linear system 
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Figure 6-11 FTC - structure responses for a 2DOF linear system with real time estimation 
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Figure 6-12 FTC - shake table responses for a 2DOF linear system with real time estimation 

 

In this section, the two feedback tracking control algorithms: the predictive tracking control (PTC) and 

the feedback linearization tracking control (FTC) introduced in SECTION 3; are expanded to the 

applications of linear systems whose parameters are not fully known a priori. In order to deal with the 

uncertainties in the system models, the real time estimators using the extended Kalman filter (EKF) 

introduced in SECTION 5 are combined with the tracking control methods. The tracking control laws are 

reformulated in order to adapt the estimated parameters. Because of the lack of the knowledge of stability 

properties of the EKF, the performances of tracking and the boundedness of controlled system responses 

are examined through numerical simulations. The results show that very good tracking performances can 

be obtained with fairly good initial guess of unknown parameters (i.e. 50% errors in the initial guess are 

used in the examples).    
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SECTION 7 

TRACKING CONTROL FOR NONLINEAR SYSTEMS WITH UNKNOWN 

PARAMETERS 

 

The adaptive tracking control schemes, which combine the predictive tracking control (PTC) and the 

feedback linearized tracking control methods (FTC) with the extended Kalman filter (EKF) for the real 

time parameter estimation, formulated and applied to linear systems in SECTION 6 are extended to 

nonlinear hysteretic systems in this section. The performance of each method is examined using the 

numerical simulation. 

 

7.1 Predictive Tracking Control with Real-time Parameter Estimation 

The predictive control method was used in Section 4.2 in order to develop the control law for 

nonlinear system tracking problems with known parameters. The control input uk to minimize the 

instantaneous performance index J in Eq. (3-35) is shown in Eq. (4-13). When there are unknown 

parameters in a given system to be controlled, the parameters can be estimated in real time using the 

system parameter estimator such as the extended Kalman filter (EKF).  

Control Law  

The control excitation input can be computed using the same equation shown in Eq. (4-13) (repeated 

here for convenience) by using the estimated parameters ߠ෠௞ ൌ ሾܿ̂௦,௞		 ෠்݇ሺݔሻ	ሿ
T at instant k∆t instead of the 

true parameters ߠ௞
∗ = [cs  kT(x)]T

: 

1
* * * * *

, , , , 1 , , 1 ,
ˆ ˆˆ ˆ ˆ ˆˆ ˆT T

k D k D k D k m k D k k k m k D k ku B QB R B Q y A x y A x


 
                (7-1) 

where the hat ^ indicates that the system matrix uses the estimated parameters ߠ෠௞, and  

1
* * * * *

, , , , , , , , ,
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ , ,T T

k D k D k D k D k D k D k D k D k D kB QB R B Q A C A B C B


        

and the true system matrices in discrete-time AD,k and BD,k and the true output matrix CD (i.e. CD = C) are 

defined in Section 4.2 (see Eq. (4-10) to Eq. (4-12)), and their estimate matrices ܣመ஽,௞,  ܤ෠஽,௞, and ܥመ஽,௞ (i.e. 

 ෠௞. For numerical simulation, theߠ መ௞) are updated at every instant k∆t with estimated parametersܥ = መ஽,௞ܥ

true responses are computed by substituting the control excitation input uk from Eq. (7-1) into the true 

system equation in Eq. (4-4) and using Eq. (4-14) for numerical integration, while in real experiments the 

true system responses will be measured at every instant k∆t by sensors: the measurements using sensors 

are expressed as ݕk = ܪxk + vk (the true responses xk with measurement noise vk - see Eq. (5-51)).  
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 However, as discussed in Section 4.2, it is assumed that the instant stiffness kT(x) in Eq. (4-4) is 

piecewise constant at every instant in order to examine the effectiveness of the proposed control scheme 

analytically. With this assumption, the error dynamics with the control scheme can be shown as 

following.  

 Expected Achieved Responses 

 Substitution of the control excitation input uk excitation Eq. (7-1) into the approximated system in Eq. 

(4-12) leads to 

 1

*
, , , , , 1

ˆˆ ˆˆ ˆ
k D D k D k k D k k D k k m kCy A B A x B y         (7-2) 

where Γ෠௞.and ܣመ஽,௞
∗  are defined in Eq. (7-1). If ܤ෠஽,௞

∗ = CDBD,k is an invertible matrix, and R = 0 and Q = I 

(i.e. I = identity matrix) are chosen, then Eq. (7-2) becomes  

   * * * 1 * * * 1

1 , , , , , , , 1
ˆˆ ˆˆˆ

k D k D k D k D k k D k D k m kA B B A x B By y 
      (7-3) 

where ܣ஽,௞
∗  = CDAD,k and ܤ஽,௞

∗  = CDBD,k are the true system matrices. 

Stability 

The predicted tracking error equation can be obtained from Eq. (7-3) by collecting the tracking error 

term ek+1 = ݕොk+1 - ym,k+1 in the left-hand side and the estimate error terms in the right-hand side: 

 1 1 , 1ˆ, ,k k k k m kg xe y     (7-4) 

where the function gk+1 indicates some residual error due to parameter estimate error ߠ෨௞ = ߠ෠௞ െ ௞ߠ
∗. The 

tracking error ݁௞ାଵ will decrease when the estimated parameters error ߠ෨௞ becomes smaller. As discussed 

in Section 5.3, because of the lack of knowledge of the stability properties of the extended Kalman filter 

(EKF), the performance of the adaptive tracking control method introduced is examined using the 

numerical simulation in Section 7.4.1.  

 

Limitations of Shake Table-Structure Systems  

As discussed in Section 4.2, if the product of the output and input matrices C × B is singular for the 

shake table-structure 2DOF model, the predicted output ݕො௞ାଵ in discrete time or ݕො(t+h) in continuous 

time might be approximated including higher order differentiations. Using the approximated predicted 

output ݕො*(t+h) and target motion ݕ௠∗ (t+h) (shown in Eq. (3-44)), the control law is established as shown 

also in Eq. (4-18). When some parameters are unknown, the control input u(t) can be computed using the 

estimated parameters ߠ෠(t) of the true parameters θ* at instant time as following: 
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Control Law  

             
1

* * * * *ˆ ˆ ˆˆ ˆ ˆˆˆ
TT

mu B QB R Q y t h A x x tt B  


          (7-5) 

where ܣመ*(x) = [ܥመሺߠ෠ሻ	 + hܥመሺߠ෠ሻ	ܣመ(x) + (h2/2)	ܥመሺߠ෠ሻ	{d/dtܣመ(x) + ܣመ(x)2}] and ܤ෠∗ሺߠ෠ሻ = (h2/2)ܥመሺߠ෠ሻ	ܣመ(x)B.  

 By substituting Eq. (7-5) into the second equation of Eq. (4-17), one can establish the error dynamics 

for the nonlinear system. For a system having ܤ෠∗ሺߠ෠ሻ as a non-zero scalar (i.e. an invertible matrix, size 1 

× 1) and R = 0 chosen, ݕሷሺݐሻ becomes:  

Expected Achieved Responses  

                 2 * *
1

* ˆˆ ˆˆˆ
my C A CA B B y t h A x x t

d
t A x x x t x

dt




              
  (7-6) 

which can be rewritten by introducing the tracking error (e(t) = y(t) - ym(t)) to show its dynamics are: 

                2 *ˆ2 / 2 / , , me t h e t h e t g t x t y t h      (7-7) 

where the function g(·) indicates some residual error, which are caused by the parameter estimate errors 

ሻݐ෠ሺߠ = ෨(t)ߠ 	െ  .෨(t) is reducedߠ The tracking error e(t) will decrease when the estimated parameter error .∗ߠ

The performance of the adaptive tracking controller is examined using the numerical simulation in 

Section 7.4.2.  

 
7.2 Feedback Linearization Tracking Control with Real-time Parameter Estimation 

The Feedback Linearization Tracking Control (FTC) (Ioannou and Fidan, 2006) formulated in Section 

4.3 can also be used for the tracking control of nonlinear hysteretic systems with unknown parameters 

with some modifications. The controller is designed such that the true system properties involving the 

nonlinear behavior are replaced to new ones that will lead to the desired linear behavior, and the output 

response of the controlled system will follow the target motion. For the real time parameter estimation the 

extended Kalman filter (EKF) is used.  

 

Application to SDOF Linear Structures  

The tracking control procedure for the nonlinear hysteretic structure was introduced in Section 4.3 for 

known parameters. The equations of the true system and the reference model are shown in Eq. (4-21) and 

Eq. (4-22) and for the total acceleration as the target motion the output equations are shown in Eq. (4-28) 

and Eq. (4-29). In order to achieve the tracking control objective, the tracking control law is established as 

shown in Eq. (4-31). However for unknown parameters; i.e. the structure damping cs and the 

instantaneous stiffness kT(x) are unknown;  the possible control law can be formulated as: 
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Control Law  

                  1 2 2 1 ˆˆ ˆ ˆs s s s s S s Tu t c t m m c t c t x t f x m k x x t v t
          (7-8) 

where a function v(t) = [ݕሶm - ݇ଵ
∗{y(t) - ym(t)}] is selected to reduce the tracking error, and ܿ̂s(t) and ෠݇T(x) 

are the estimates of the true parameters cs and kT(x) respectively. It is noted that the estimate ෠݇T(x) of the 

instantaneous stiffness kT(x) is computed using the estimates of constant parameters ks, α, and dy as shown 

in Section 5.2.1.2. By substituting this control input u(t) into Eq. (4-30), it is obtained 

                  

                  
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1
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ˆˆ ˆ( )

s s S s s s s S

T s s T s s m m

y t m c c x t f x c c t m c t c t x t f x

m k x x t c c t m k x x t c c t y t k y t y t

 

  

    
 
         

  

  
 (7-9) 

From this equation, the tracking error dynamics might be determined using the defined tracking error 

terms: e(t) = y(t) - ym(t) and ሶ݁(t) = ݕሶ (t) - ݕሶm(t); as presented below: 

Expected Achieved Responses  

            *
1 , , ,m me t k e t g t x t y t y t     (7-10) 

where the function g(·) indicates some residual error caused by the parameter estimate errors ߠ෨(t) = 

ሻݐ෠ሺߠ 	െ  ෠(t) = [ܿ̂s(t)  ෠݇T(x)]T is the estimate of the true parameters θ*(t)  = [cs  kT(x)]T. Theߠ ሻ, in whichݐሺ∗ߠ

tracking error e(t) will decrease when the estimated parameters error ߠ෨௞ = ߠ෠௞ െ  ௞ becomes smaller. Asߠ

discussed in Section 5.3, the performance of the adaptive tracking controller with the extended Kalman 

filter(EKF) is examined using a numerical simulation in Section 7.4.1. 

 

Application to 2DOF Shake Table-Nonlinear Structure Systems  

For a nonlinear structure with known parameters mounted on a shake table (the 2DOF system model) 

expressed in Eq. (4-8) and Eq. (4-9) with the output y(t) of the total acceleration response ẍs
t(t) at the 

structure, the tracking control law is established as shown in Eq. (4-38). However, with unknown 

parameters the possible control law is using the only the estimate ߠ෠(t) = [ ܿ̂ s(t)  ෠݇ T(x)]T of the true 

parameters θ*(t)  = [cs  kT(x)]T:  

Control Law  

       1* *ˆu t a t y t v t
       (7-11) 

where u*(t) = (ωa
2ka)u(t); u(t) = xd(t); and ݕሷ ∗(t) is defined as 
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in which abbreviated parameters are introduced for simplification: 

       
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2 2

* * 2

ˆ ˆ ˆ; ;
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/ ; ,

s s t s

a a a a a

a a t a a d d

a t m c t c t m c t

e f g k

f t f t m u t k x t u t x t

   



  

  

  
 (7-13) 

v(t) is selected to reduce the tracking error as 

       * *
1 2mv t y t k e t k e t     (7-14) 

in which e(t) = y(t) - ym(t) with y(t) = -݉௦
ିଵ[ܿ̂௦(t)	ݔሶ௦(t)+	fS(x)]; and ሶ݁(t) = ݕሶ (t) - ݕሶm(t) with ݕሶ (t) = -݉௦

ିଵ 

[ܿ̂௦(t)	ݔሷ௦(t)+	 ෠்݇(t)	ݔሶ௦(t)]. Substituting u*(t) from Eq. (7-11) into the differentiated output equation ݕሷ (t) 

(shown in Eq. (B-35) in Appendix B.4) and collecting the tracking error terms e(t) to the left-hand side 

and residual error terms due to estimation error to the right-hand side gives the tracking error dynamic 

equation: 

Expected Achieved Responses  

            * *
1 2 , , me t k e t k e t g t x t y t      (7-15) 

where the function g(·) indicates some residual error, which are caused by parameter estimate error ߠ෨(t) = 

ሻݐ෠ሺߠ 	െ  ෨(t) becomesߠ ሻ. The tracking error e(t) will diminish when the estimated parameters errorݐሺ∗ߠ

small. The performance of this adaptive tracking controller is examined by means of a numerical 

simulation in Section 7.4.2. 

 

7.3 Comparisons of Feedback Tracking Control Methods 

As discussed in Section 4.4, one can show that the two tracking control methods are equivalent for the 

shake table-structure system, having nonlinear hysteretic behavior, under certain conditions and with 

known parameters. For the unknown parameters, the formulations of the control laws for the two tracking 

control methods have not changed; therefore, one can also show that the predictive tracking control law 

shown in Eq. (7-5) is the same as the control law of the feedback linearization tracking control method 

shown in Eq. (7-11) with the same conditions applied to the known parameter controllers; i.e. the 

controlled system has B*(x) = a non-zero scalar (i.e. an invertible matrix, size 1 × 1), and R = 0 chosen, 

and the tracking error coefficients in Eq. (4-20) are ݇ଵ
∗ = 2 / h = 2ξeωe and ݇ଶ

∗ = 2 / h2 = ωe
2; therefore, ξe = 

√2 / 2 ≈ 0.707 and h = √2 / ωe. 

 
7.4 Numerical Examples and Comparison of Tracking Control Methods 

Simple tracking control examples (as demonstrated in Section 6.4 for linear systems) are analyzed in 

order to examine the performance of the introduced two feedback tracking control methods combined 
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with the real time parameter estimation for nonlinear systems with unknown parameters. The obtained 

results are presented. For all examples, the target motion is the total acceleration of a structure (specimen) 

mounted on the shake table. 

 
7.4.1 SDOF Nonlinear Hysteretic Structure 

As discussed in Section 2.2, to facilitate the development of the tracking control method, first, a 

simplified SDOF system model is used instead of a 2DOF system model for a shake table with an SDOF 

structure system. In this simplified system model (shown in Figure 7-1), the excitation force -msẍt(t) due 

to the shake table acceleration ẍt(t) is considered as a new control input u(t) However, the actual control 

excitation input u(t) for the 2DOF system model is the desired displacement xd(t) of the shake table, and 

u(t) shall be computed including the shake table dynamics and the shake table-structure interaction (as 

discussed in Section 2.2) as formulated in the following section (Section 7.4.2). 

 

 

Figure 7-1 Tracking control of an SDOF nonlinear system with unknown parameters 

 

The governing equation of an SDOF nonlinear structure subjected to the shake table excitation is 

shown in Eq. (4-1). The tracking control task for this simplified system is to compute the control 

excitation input u(t) = -msẍt(t) at every instant using the real time estimated parameters so that the system 

output y(t) = ẍs
t(t) (the total acceleration of the structure) follows the target motion ym(t) = ẍm

t(t) (the total 

acceleration of the reference model). 

 
Example 7.1 : Tracking A SDOF Nonlinear System with Unknown Parameters using the PTC 

The properties of a given system are: ms = 1 kips·sec2/in., ks = 355 kips/in., and cs = 1.13 kips·sec/in., 

(fn = 3.0 Hz, ξn = 0.03 before yielding). N = 3, dy = 0.11 in. (fy = 39 kips), and α = 0.1 (i.e. all terms are 

explained in Eq. (4-2) and Eq. (4-3)), the same as the ones in Example 4.1. In order to examine the 

measurement noise effects, a zero-mean Gaussian white-noise process of 3% RMS noise-to-signal are 

added to the measurements ݕk = [ݔs,k  ݔሶ s,k  ݂S,k]
T, which are described in Section 5.2.1.2. Four unknown 

parameters: cs the damping coefficient; ks the elastic stiffness; α the post-yielding stiffness ratio to the 
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elastic stiffness; and dy the yielding displacement; are selected and estimated in real time using the 

extended Kalman filter.  

The target motion is shown in Figure 7-3 (a) [Target]. The target motion is the total acceleration 

output generated from the same reference linear system (fm = 5.0 Hz, ξm = 0.1), used for Example 6.1. in 

Section 6.4.1 (the reference input and the responses of the reference model are presented in Appendix 

A.2). For the parameter estimation, the initial parameter estimate ߠ෠଴ is chosen as ߠ෠଴ = 0.8 × θ* (20% error 

in the initial guess), and the initial covariance matrix is chosen as P0 = diag([0  0  0  ܿ̂௦,௢
2  ෠݇௦,௢

ො௢ߙ  2
2  

መ݀௬,௢
2]T × 0.05). The covariance matrices QE and RE are chosen as follows: QE = 0 × I7×7 (all zeroes) and 

the RE = diagonal matrix, whose elements; i.e. noise variance = 3% × corresponding signal variance 

(noise variances are assumed to be known from the instruments information). A time step of 0.002 sec is 

used for the simulation. 

The tracking control results using the predictive tracking control (PTC) method with the real time 

parameter estimations are presented in Figure 7-2 and Figure 7-3. The selected control parameters for the 

PTC in this example are R = 0.0001 and Δt = 0.002. Figure 7-2 shows the comparison between the true 

and the estimated parameters: kT(x) the instantaneous stiffness (i.e. the estimate of kT(x) is computed using 

the estimates of ks, α, and dy); cs the damping coefficient; ks the elastic stiffness; α the post-yielding 

stiffness ratio to the elastic stiffness; and dy the yielding displacement; and they show very good 

agreements. The controlled output, ẍs
t(t) the total acceleration of the structure, is shown in Figure 7-3 (a) 

[Controlled] and also shows very good agreement with the target motion. The computed control 

excitation input, u(t) = -msẍt(t), using the control law in Eq. (7-1) is shown in Figure 7-3 (b). xs(t), ẋs(t) the 

achieved displacement and velocity responses of the controlled structure are also presented in Figure 7-3 

(c) and (d); it is noted that unlike the total acceleration, the displacement and velocity responses are 

different from ones of the reference because the system properties of the controlled system and ones of 

the reference system are different. The relation between the structure resisting force fS(t) having hysteretic 

behavior and displacement xs(t) is also presented in Figure 7-3 (e). As desired, all responses of the 

controlled system are bounded. 

The tracking control results using the feedback linearization tracking control (FTC) method are 

presented in Figure 7-4 and Figure 7-5. Figure 7-4 presents the results of the parameter estimation in real 

time. The controlled output ẍs
t(t) is shown in Figure 7-5 (a) [Controlled] and shows very good agreement 

with the target motion. The computed control excitation input, u(t) = -msẍt(t), using the control law in Eq. 

(7-8) is shown in Figure 7-5 (b). The selected control parameter in this example for the FTC is ݇ଵ
∗ ൌ

ଵ

Δ௧
/100 (i.e. the smaller value of ݇ଵ

∗ than that of the system with the known parameter case in Section 

4.5.1 is chosen due to the uncertainty and indicates that the tracking error will decrease slowly). It is 
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noted that by choosing the control parameters carefully to satisfy the tracking object, the control 

excitation inputs of the two methods (PTC and FTC) are very similar; therefor, as expected, the control 

results of two methods are very similar as shown in Figure 7-2 through Figure 7-5. 

 

 

Figure 7-2 Real time parameter estimation results of the PTC for an SDOF nonlinear system
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Figure 7-3 PTC - structure responses for an SDOF nonlinear system with real time estimation 
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Figure 7-4 Real time parameter estimation results of the FTC for an SDOF nonlinear system 
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Figure 7-5 FTC - structure responses for an SDOF nonlinear system with real time estimation 
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7.4.2 2DOF Shake Table – Nonlinear Hysteretic Structure Systems 

As discussed in Section 2.2, the shake table dynamics affect the performance of the control system and 

the interaction between the shake table and the mounted structure is to be considered. The same tracking 

control example demonstrated in Section 7.4.1 is resolved for the 2DOF nonlinear system, expressed in 

Eq. (4-8) and Eq. (4-9), and schematically shown in Figure 7-6. 

 

 

Figure 7-6 Tracking control of the shake table- structure 2DOF nonlinear system with unknown 

parameters 

 

When a target motion at a structure is specified, the required control input u(t) = xd(t), the desired 

shake table displacement, is determined at every instant using the real time estimated parameters in order 

that the output of the system (y(t) = ẍs
t(t) the total acceleration of the structure) follows the target motion 

ym(t).  

 
Example 7.2 : A 2DOF Nonlinear System with Unknown Parameters 

The properties of a given system are: ms = 1 kips·sec2/in., ks = 355 kips/in., and cs = 1.13 kips·sec/in., 

(fn = 3.0 Hz, ξn = 0.03 before yielding). N = 3, dy = 0.11 in. (fy = 39 kips), and α = 0.1; i.e. all terms are 

explained in Eq. (4-2), for the hysteretic system and μ = ms / mt = 0.1, fn,a = 30.0 Hz, ξa = 0.5 and ka = 25 

for the shake table. In order to examine the measurement noise effects, a zero-mean Gaussian white-noise 

process of 3% RMS noise-to-signal are added to the measurements ݕk = [ݔs,k  ݔሶ s,k  ݂S,k  ݔt,k  ݔሶ t,k  ݂a,k/mt]
T, 

which are described in Section 5.2.1.3. Four unknown parameters: cs the damping coefficient; ks the 

elastic stiffness; α the post-yielding stiffness ratio to the elastic stiffness; and dy the yielding 

displacement; are selected and estimated in real time using the extended Kalman filter.  

The target motion is shown in Figure 7-8 (a – Target). The target motion is the total acceleration 

output generated from the same reference linear system (fm = 5.0 Hz, ξm = 0.1), used for Example 6.1. in 

Section 6.4.1 (the reference input and the responses of the reference model are presented in Appendix 

A.2). For the parameter estimations, the initial parameter estimate ߠ෠଴ is chosen as ߠ෠଴ = 0.8 × θ* (20% 
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error in the initial guess), and the initial covariance matrix is chosen as P0 = diag([0  0  0  0  0  0  ܿ̂௦,௢
2  

෠݇௦,௢
ො௢ߙ  2

2  መ݀௬,௢
2]T × 0.01). The covariance matrices QE and RE are chosen as follows: QE = 0 × I10×10 (all 

zeroes) and the RE = diagonal matrix, whose elements; i.e. noise variance = 3% × corresponding signal 

variance (noise variances are assumed to be known from the instruments information). The time step of 

0.002 sec is used for the simulation. 

The tracking control results using the predictive tracking control (PTC) method with the real time 

parameter estimations are presented in Figure 7-7 and Figure 7-9. The selected control parameters in this 

example R = 0 and h = √2 / ωe where ωe = 100. Figure 7-7 shows the comparisons between the true 

parameters and the estimated parameters: kT(x) the instantaneous stiffness (i.e. the estimate of kT(x) is 

computed using the estimates of ks, α, and dy); cs the damping coefficient; ks the elastic stiffness; α the 

post-yielding stiffness ratio to the elastic stiffness; and dy the yielding displacement; and they show very 

good agreements. The controlled output, ẍs
t(t) the total acceleration of the structure, is shown in Figure 

7-7 (a) [Controlled] and also shows very good agreement with the target motion. The computed control 

excitation input, u(t) = xd(t), using the control law in Eq. (7-5) is shown in Figure 7-8 (b). xs(t), ẋs(t) the 

achieved displacement and velocity responses of the controlled structure are also presented in Figure 7-8 

(c) and (d); it is noted that unlike the total acceleration (which was the target of the control design), the 

displacement and velocity responses are different from ones of the reference because the system 

properties of the controlled system and ones of the reference system are different. The relation between 

the structure resisting force fS(t) having hysteretic behavior and displacement xs(t) is also presented in 

Figure 7-8 (e). Figure 7-9 presents the responses of the shake table; the achieved shake table actuator 

force fa(t), shake table acceleration ẍt(t), displacement xt(t) and velocity ẋt(t). As desired, all responses of 

the controlled system are bounded. 

The tracking control results using the feedback linearization tracking control (FTC) method with the 

real time parameter estimations are also presented in Figure 7-10 and Figure 7-12. Figure 7-10 presents 

the results of the parameter estimation in real time. The controlled output ẍs
t(t) is shown in Figure 7-11 (a) 

[Controlled] and shows very good agreement with the target motion. The computed control excitation 

input, u(t) = xd(t), using the control law in Eq. (7-11) is shown in Figure 7-11 (b). As discussed in Section 

7.3, the control excitation inputs of the two methods (PTC and FTC) are the same if one chooses the 

tracking error coefficients as ݇ଵ
∗ = 2 / h = 2ξeωe and ݇ଶ

∗ = 2 / h2 = ωe
2; therefore, ξe = √2 / 2 ≈ 0.707 and h 

= √2 / ωe; (in this example, ωe = 100, ξe = 0.707 for the both methods). As expected, the control results of 

two methods are equivalent as shown in Figure 7-7 through Figure 7-12.  

  



 

156 

 

 

 

Figure 7-7 Real time parameter estimation results of the PTC for a 2DOF nonlinear system 
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Figure 7-8 PTC - structure responses for a 2DOF nonlinear system with real time estimation 
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Figure 7-9 PTC - shake table responses for a 2DOF nonlinear system with real time estimation 
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Figure 7-10 Real time parameter estimation results of the FTC for a 2DOF nonlinear system 
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Figure 7-11 FTC - structure responses for a 2DOF nonlinear system with real time estimation 
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Figure 7-12 FTC - shake table responses for a 2DOF nonlinear system with real time estimation 
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SECTION 8 

NUMERICAL SIMULATIONS FOR A SHAKE TABLE – STRUCTURE 

SYSTEM 

 

The feedback tracking control method combined with the real time parameter estimator is applied to a 

realistic shake table and structure system whose characteristics are obtained from the real systems in the 

Structural Engineering and Earthquake Simulation Laboratory (SEESL) at the University at Buffalo (UB). 

Numerical simulations are performed for practical target motions generated from the selected excitation 

motions including real earthquake motions. The results will show the feasibility and the limitations of the 

proposed tracking control method in real applications.  

 

8.1 Test Setup 

The selected system for the simulation study consists of a shake table and an SDOF structure.  The 

shake table consists of one uniaxial actuator having the maximum horizontal actuator force = 5.5 kips and 

4 × 3 ft. platform as shown in Figure 8-1 (a) (Stefanakis and Sivaselvan, 2015). The structure in this 

simulation, shown in Figure 8-1 (b), is a three-story steel frame shear building rigidly braced in the top 

two floors to simulate an SDOF system (Chung, Reinhorn, and Soong, 1989). The weight of the structure 

is 6.4 kips.  The model was previously used in multiple studies of control, either active or passive (Chung, 

Reinhorn, and Soong, 1989, Soong, 1990, Symans and Constantinou, 1997, Dyke et al., 1994, Stefanakis 

and Sivaselvan, 2015, etc.) and can be considered as a benchmark model for control studies. 

 

 
Figure 8-1 UB uniaxial shake table and an SDOF structure  

(a) Uniaxial shake table 
(after Stefanakis and Sivaselvan, 2015)

(b) SDOF steel frame structure 
(after UB-SEESL, 2015) 
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The properties of the shake table and the SDOF test structure are summarized in Table 8-1. It is noted 

that in real life experiments after mounting the structure on the shake table, the properties presented here 

are subject to change because of the shake table-structure interaction.  Therefore it is necessary to identify 

them again using quasi-static (e.g. impact hammer and snap-back tests) and/or dynamic (e.g. white noise 

tests - the curve fitting methods using the obtained transfer functions) system identification procedures as 

described in Bracci et al., (1992) and Rinawi and Clough (1991). In this study, however, the properties 

presented in Table 8-1 are used for the numerical simulations.  

 

Table 8-1 Properties of the UB uniaxial shake table and the SDOF structure 

System Item Description 
(1) (2) (3) 

Shake table 

Platform size 4.0 ft × 3.0 ft 

Base plate size (for structure installation) 4.5 ft × 4.5 ft 

Maximum specimen weight 33.6 kips 

Maximum overturning moment 82.0 kip-ft 

Frequency of operation 0.1~30 Hz 

Maximum actuator force; fa,max  5.5 kips 

Stroke (X axis); xt,max 3.0 in. 

Platform weight (with base plate); mt × g 3.5 kips 

Fundamental frequency; fn,a  30 Hz 

Equivalent damping ratio; ξa 50* % 

Control gain factor; ka 25ǂ 

SDOF structure 

Weight; ms × g 6.5 kips 

Elastic stiffness; ks 8.0 kips/in. 

Damping coefficient; cs 0.0091 kips·sec/in. 

Fundamental frequency; fn,s (before yielding) 3.47 Hz 

Inherent damping ratio; ξs 1.24 % 

Yielding force§; fy 5.6 kips 

Post-yielding stiffness ratio  
to the elastic stiffness; α 

0.1 

* Equivalent damping ratio of the shake table in open-loop conditions is  ξa = 10%; the damping ratio 
can be increased by feedback (Rinawi and Clough, 1991) to ξa = 50 %, as assumed in this numerical 
study. 
ǂ Control gain factor can be identified from the test setup; in this study ka = 25 assumed.  
§ Different yielding forces are selected for different tests in order to demonstrate the hysteresis 
behavior effects on the tracking control. 

 

Figure 8-2 shows the schematic of the tracking control test setup for the shake table-structure. The 

target motion ym(t) is pre-defined according to test objectives. The control excitation input u(t) = xd(t) is 
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computed by using a tracking control method (i.e. the predictive tracking control (PTC) method or 

feedback linearization tracking control (FTC) method) introduced in the previous sections with the 

measurements from instrument sensors. In order to examine the measurement noise effects, a zero-mean 

Gaussian white-noise process of 3% noise-to-signal RMS are added to the measurements ݕk = [ݔs,k  ݔሶ s,k  

݂S,k  ݔt,k  ݔሶ t,k  ݂a,k/mt]
T, which are described in Section 5.2.1.3. Four unknown parameters: cs the damping 

coefficient; ks the elastic stiffness; α the post-yielding stiffness ratio to the elastic stiffness; and dy the 

yielding displacement; are selected. The extended Kalman filter (EKF) is used to estimate the system 

responses from contaminated responses with measurement noise and the unknown parameters as the 

procedure is described in the previous sections.  

 

 

Figure 8-2 Tracking control of an SDOF nonlinear system using a shake table with unknown parameters 

 

8.2 Test Protocol and Loading 

The control objective of this study is to compute the control excitation input u(t) to drive the shake 

table in order to simulate a target motion ym(t) at any specific location in the test structure.  For this 

numerical simulation, the target motion is the total acceleration of a structure (specimen) mounted on the 

shake table although any response; i.e. displacement or velocity response, can be selected as the target 

motion. In this testing program, several target motions ym(t) are selected to examine the tracking control 

performance.  

 

Target ym 

u = xd 

[ො  መ݀yߙ  s  ෠݇ŝܿ] = ෠ߠ
T 

 T fa[෠Tߠ   ොTݔ] = ොaݔ

Measurements ݕ 

 ݒ
Output y = ẍs

t 
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First, for Test #1 through Test #3 the target motions are the total acceleration outputs generated from a 

reference linear system, whose properties are: mm = 6.5 kips/g, km = 16.6 kips/in., and cm = 0.053 

kips·sec/in. (fm = 5.0 Hz, ξm = 0.05), subjected to one-cycle sine excitation input whose frequency = 1.0 

Hz, 5.0 Hz, and 10.0 Hz and which is high-pass filtered at 0.2 Hz cutoff frequency. The purpose of these 

one-cycle sine motion tests where the lengths of the excitation time are relatively short is to check the 

feasibility of the control algorithm and to calibrate the design parameters of the tracking controller and 

estimator such as the tracking error dynamic coefficients ݇ଵ
∗  and ݇ଶ

∗  for controllers and the initial 

estimator guesses of ߠ෠଴ and P0 as defined in the previous sections. After ensuring that the controller can 

simulate these simple motions, more complex target motions are given to be tracked.   

Second, for Test #4 to Test #5 the target motions are the total acceleration outputs generated from the 

same reference linear system, subjected to a real earthquake motion, Elcentro N-S, 1940 (Vibrationdata, 

2015) 100% and 80%, which are high-pass filtered at 0.3 Hz cutoff frequency. These tests are performed 

to verify if the tracking controller can produce the realistic target floor motion at the top of the structure. 

It is expected that at the beginning the tracking error might be large due to the estimate error in unknown 

parameters, but the tracking error will diminish as the estimate error is reduced by the estimator.    

Third, for Test #6 to Test #7 the target motions are the random floor motions generated to match the 

required response spectrum (RRS) per the ICC-ES AC156 (ICC, 2010), which are high-pass filtered at 

0.2 Hz cutoff frequency and low-pass filtered at 25 Hz cutoff frequency to meet the shake table operation 

capacity. These tests are also performed to verify if the tracking controller can produce the realistic, 

general target floor motion at the top of the structure. It is noted that no reference model is used to 

generate the target floor motion, since the floor motion is directly defined according to the AC156. 

Similar performances with Test #4 and #5 are expected.          

The testing program is summarized in Table 8-2.  

 
Table 8-2 Testing program of the tracking control of the shake table-structure system 

Test No. Target motion* description 

(1) (2) 
1 Reference model response subjected to one-cycle sine excitation whose freq. = 1.0 Hz 
2 Reference model response subjected to one-cycle sine excitation whose freq. = 5.0 Hz 
3 Reference model response subjected to one-cycle sine excitation whose freq. = 10.0 Hz 
4 Reference model response subjected to Elcentro N-S 100% excitation 
5 Reference model response subjected to Elcentro N-S 80% excitation 
6 Floor motion to match the RRS 100% per AC156 
7 Floor motion to match the RRS 30% per AC156 

* All excitations are filtered as explain in the text to meet the shake table operation capacity.  
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8.3 Simulation Results              

The tracking control results using the feedback linearization tracking control (FTC) method combined 

with the extended Kalman filter (EKF) estimator are obtained through numerical analyses; some of the 

interesting results are presented herein.   

 As discussed above, the purpose of Test #1 to #3 are to check the feasibility of the control algorithm 

and to calibrate the parameters of the controller and estimator; therefore, only the tracking performances 

between the target motion ym and output y of the controlled structure are presented in Figure 8-3 (more 

results of Test #2 can be found in Appendix A.3). From the results of these pre-tests, it is ensured that the 

unknown parameters can be fairly accurately estimated at the beginning of the procedure, and the output 

follows the target motion very well and all responses are bounded in the interested time range, as desired.  

 

 

Figure 8-3 Tracking performances: Controlled (y) vs. Target motions (ym) (Test #1 to #3) 
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 The selected control parameters for the FTC are ݇ଵ
∗ = 2ξeωe and ݇ଶ

∗ = ωe
2 where ωe = 25, ξe = 0.707. 

For the parameter estimations using the EKF, the initial parameter estimate ߠ෠଴ is chosen as ߠ෠଴ = 0.8 × θ* 

(20% error in the initial guess), and the initial covariance matrix is chosen as P0 = diag([0  0  0  0  0  0  

ܿ̂௦,௢
2  ෠݇௦,௢

ො௢ߙ  2
2  መ݀௬,௢

2]T × 0.01). The error covariance matrices QE and RE are chosen as follows: QE = 0 × 

I10×10 (all zeroes) and the RE = diagonal matrix, whose elements; i.e. noise variance = 3% × corresponding 

signal variance (noise variances are assumed to be known from the instruments information). The time 

step of 0.002 sec (sampling rate = 500 sec-1) is used for the simulations. The tracking control results of 

Test #4 and #5 are presented in Figure 8-4 through Figure 8-8. The target motion and the controlled 

output of Test #4 are compared in Figure 8-4 (a) and show very good agreements. Figure 8-4 (b) presents 

the control excitation input u(t). The structure responses: the relative displacement xs(t) of the structure 

and the relation between the resisting force fS(x) and the relative displacement xs(t), are shown in Figure 

8-4 (c) and (d), respectively. Figure 8-6 presents the parameter estimation results and show fast 

convergence to the true values.  
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Figure 8-4 Tracking control - structure responses (Test #4)  
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Figure 8-4 (Cont’d) Tracking control - structure responses (Test #4) 
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Figure 8-5 Tracking control – shake table responses (Test #4) 
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Figure 8-6 Real time parameter estimation results of tracking control (Test #4) 
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Although the tracking performance is very good and all responses of the controlled system are 

bounded, Figure 8-5 shows that the actuator force fa(t) and table displacement xt(t) operating capacities 

(shown in Table 8-1) of the shake table are exceeded. This limitation might be overcome by adjusting the 

target motion and/or the properties of the structure and shake table. In this study, the reference excitation 

is reduced by 20% (as usually done for practical purposes in laboratory when the equipment has 

limitations) such that the target motion is generated from the reference model subjected to Elcentro N-S 

80% excitation, which is used for the target motion in Test #5.  

The results of Test #5 are shown in Figure 8-7 and Figure 8-8. Figure 8-7 (a) shows the comparison 

between the target motion and the controlled output and show very good agreement. Figure 8-7 (b) 

presents the control excitation input u(t). As expected, using the reduced amplitude of the target motion, 

the actuator force fa(t) and table displacement xt(t) responses of the shake table are within the limits as 

shown in Figure 8-8. It is noted that the reduced demand (the target motion) requires smaller resisting 

force and structural deformation as shown in Figure 8-7 (c) and (d), such that less nonlinear hysteresis 

behavior occurs and results in smaller responses of the shake table.  
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Figure 8-7 Tracking control - structure responses (Test #5)  
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Figure 8-7 (Cont’d) Tracking control - structure responses (Test #5) 
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Figure 8-8 Tracking control – shake table responses (Test #5) 
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The tracking control results for qualification testing obtained from Test #6 and #7 are presented in 

Figure 8-9 through Figure 8-13. For Test #6 and #7, the yielding force fy = 3.4 kips used (instead of 5.6 

kips in Table 8-1, but all other values in the table are the same); i.e. if the same yielding force was used, 

only mild hysteresis behavior would have occurred with this target motion. The decrease insured 

possibility to emphasize performance in a nonlinear structure.  The selected control parameters for the 

FTC in Test #6 and #7 simulations are ݇ଵ
∗ = 2ξeωe and ݇ଶ

∗ = ωe
2 where ωe = 25.6, ξe = 0.707. The time step 

of 0.002 sec (sampling rate = 512 sec-1) is used. The target motion and the controlled output of Test #6 are 

compared in Figure 8-9 (a) and show very good agreements. Figure 8-9 (b) presents the control excitation 

input u(t). The structure responses: the relative displacement xs(t) of the structure and the relation between 

the resisting force fS(x) and the relative displacement xs(t), are shown in Figure 8-9 (c) and (d), 

respectively. Figure 8-11 presents the parameter estimation results and show fast convergence to the true 

values.  
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Figure 8-9 Tracking control - structure responses (Test #6) 
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Figure 8-9 (Cont’d) Tracking control - structure responses (Test #6) 
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Figure 8-10 Tracking control – shake table responses (Test #6) 
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Figure 8-11 Real time parameter estimation results of tracking control (Test #6) 
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Although the tracking performance is very good and all responses of the controlled system are 

bounded, Figure 8-10 shows that the actuator force fa(t) and table displacement xt(t) operating capacities 

(shown in Table 8-1) of the shake table are exceeded. This limitation might be overcome by adjusting the 

target motion and/or the properties of the structure and shake table. In this study, the target motion is 

reduced by 70% such that the target motion is the 30% RRS matching motion, which is the target motion 

of Test #7.  

The results of Test #7 are shown in Figure 8-12 and Figure 8-13. Figure 8-12 (a) shows the 

comparison between the target motion and the controlled output and shows very good agreements. Figure 

8-7 (b) presents the control excitation input u(t). As expected, using the reduced amplitude of the target 

motion, the actuator force fa(t) and table displacement xt(t) responses of the shake table are within the 

limits as shown in Figure 8-13. It is noted that the reduced demand (the target motion) requires smaller 

resisting force and structural deformation as shown in Figure 8-12 (c) and (d), such that the structure does 

not yield and only linear responses are observed in this test.  
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Figure 8-12 Tracking control - structure responses (Test #7)  
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Figure 8-12 (Cont’d) Tracking control - structure responses (Test #7) 
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Figure 8-13 Tracking control – shake table responses (Test #7) 
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The numerical simulations using the realistic test setup prove that the proposed tracking control 

algorithm works for nonlinear structures experiencing hysteretic behavior as shown in especially the 

results of Test #4 and Test #6. However, the results indicate that the performance of the tracking control 

depends on the capabilities of the equipment (i.e. especially, the force capacity and the stroke length of 

actuators). For example, if the test structure would be mounted on a larger shake table such as the UB 

6DOF shake table (whose capacities are presented in Table 8-3), then test #4 and test #6 would be 

realistic, where the maximum forces (8.6 kips and 31.5 kips) and the maximum table displacements (3.4 

in and 3.0 in) are smaller than the ones of the shake table capacities (50.7 kips and 5.9 in.).     

 
Table 8-3 Performance data for six degrees-of-freedom (6DOF) shake table at UB (Reinhorn et al., 2011) 

Item Description 
(1) (2) 

Platform size 11.8 ft × 11.8 ft 
Usable testing surface 23.0 ft × 23.0 ft 

Maximum specimen mass 110.2 kips/g max.; 44.1 kips/g nominal 
Maximum overturning moment 332 kip-ft 

Frequency of operation 0.1~50 Hz nominal; 100 Hz max. 
Maximum actuators force in X axis*; fa,max 50.7 kips 

Stroke (X axis, Y axis, Z axis) ±5.9 in,  ±5.9 in, ±3.0 in 
Velocity (X axis, Y axis, Z axis) ±49.2 in/sec, ±49.2 in/sec, ±49.2 in/sec 

Acceleration (X axis, Y axis, Z axis) 
±1.2 g, ±1.2 g, ±1.2 g  

(with 44.1 kips specimen) 
* fa,max is computed by 44.1 kips/g × 1.15 g ≈ 50.7 kips 

 
In this section, the performance of the proposed tracking control scheme combined with the real time 

estimator is examined by means of numerical simulations of realistic shake table nonlinear system 

applications. The results show that not only simple target motions (in Test #1 to #3), but also realistic 

floor motions including that induced by an earthquake (in Test #4 to #5) and code required floor motion 

(in Test #6 to #7) can be reproduced using the proposed control method. The control performance is 

dependent on the degree of knowledge on unknown parameters (e.g. 20% errors in the initial guess are 

used for the simulations) for the real time estimators and the capacities of control equipment. The effects 

and limitations of these control parameters could be more clearly revealed through actual experimental 

studies.  
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SECTION 9 

REMARKS AND CONCLUSIONS  

 

High fidelity of bare shake table controls can be obtained through actuator control methods and table 

tuning. When shake tables are loaded with specimens, the interaction between shake tables and specimens 

influence the system dynamics and might result in undesired performance of shake tables. In order to 

compensate for the interaction and to simulate desired target motions using shake tables, open loop 

feedforward methods with offline iterative error correction have been widely used in practice (Spencer 

and Yang, 1998 and Maddaloni, Ryu, and Reinhorn, 2010). More recently, researchers developed more 

advanced methods to provide high quality of shake table motions using feedback closed loop controls, 

combined with the feedforward control methods (Nakata, 2010 and Phillips and Spencer, 2012). Even 

though these methods were verified to be valuable, practical tools to test linear structures, most 

developments assume that specimens remain linear or their nonlinear behavior is not significant. When 

flexible and heavy specimens (compared to shake table weight) experience nonlinear behavior, the signal 

reproduction can be unsatisfactory (e.g. large differences between the target and achieved shake table 

motions with a heavy nonlinear specimen were observed by Schachter and Reinhorn, 2007). These 

phenomena might be acceptable for the purpose of research exploring responses of structures subjected to 

random excitations where it is important to challenge the structures to their maximum capacity or 

collapse. Note that researchers have also developed several methods to compensate the nonlinear behavior 

of specimens, but the efforts were focused on simulating target motions at the shake table level (Stoten 

and Gomez, 2001, Iwasaki et al., 2005, and Yang et al., 2015), not within the tested specimens. 

Unlike research projects, for qualification tests to verify certain performance of test structures or 

equipment, it is important to challenge the specimens by the required target motions; therefore, the 

fidelity of signal reproduction becomes more important. For example, qualification tests of nonstructural 

ceiling systems demand the reproduction of the required motions at certain levels of specimens; i.e. the 

required target motion is defined at the floor of a specimen (not the base) for ceiling system shake table 

tests per AC156 (ICC., 2010).  

In this study, tracking control schemes are proposed to simulate target motions at specific locations of 

specimens, which experience nonlinear behavior due to possible extreme excitations. To account for the 

uncertainties in system parameters, real time estimators are also introduced and combined with the 

proposed control methods. Furthermore, the proposed methods can be expanded in order to control real 

structures using base motion controls. Similar structural control concepts, known as active base isolation 

that consists of a passive isolation system combined with control actuators (Chang and Spencer, 2010), 
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have been developed by many researchers, including Reinhorn et al. (1987), Inaudi et al. (1992), 

Nagarajaiah et al. (1992), Yang et al. (1996), Luo et al. (2000), Pozo et al. (2006), Chang and Spencer 

(2010), and Suresh et al. (2012). These control methods have provided excellent active base isolation 

control design. While most methods focus on stabilizing (making zeros of) the system responses, the 

proposed control method in this study can be also used to control system responses to track desired target 

motions like the controllers by Pozo et al. (2006), providing another possible and flexible control scheme 

to the design engineers.  

 

9.1 Concluding Remarks 

The main results of this study are summarized as follows:  

 Feedback tracking controllers are proposed in order to simulate target motions within nonlinear 

hysteretic structures mounted on shake tables. The tracking controllers can be used for nonlinear 

systems whose parameters are known or unknown a priori. Moreover, the controllers can be expanded 

to other applications to achieve desired performance during extreme seismic events.  

 For shake table applications, two system models are introduced with and without the consideration of 

the shake table–structure interaction. In the first model, to facilitate the development of control 

methods, only structures are modeled, assuming that the effects of shake table dynamics can be 

ignored. The developed control methods are extended to the shake table–structure system models 

where their interactions are explicitly included in the governing equations. As discussed, since the 

responses of the controlled system are influenced by the shake table–structure interaction, it might be 

necessary to use the shake table–structure system models for real tracking control applications.  

 For linear systems, four tracking control methods are introduced and the performances are 

qualitatively and quantitatively compared through numerical simulations. The results show that the 

performance of the feedback tracking control methods are as good as that of the optimal tracking 

control method, which involves the feedforward loop. It is also noted that the performance of any 

controller depends on the control gain, which is related to actuator capacities.  

 When there are unknown parameters, adaptive tracking control schemes where feedback tracking 

controllers are combined with real time estimators are proposed. For the selection of a real time 

estimator, the least squares method (LS) and the extended Kalman filter (EKF) are considered. In this 

study, the EKF is adopted as the real time parameter estimator because of its important advantages as 

follows; (i) the method can be applied to the nonlinear hysteretic system with hardening after yielding; 

(ii) the EKF requires fewer measurements, which is more practical; and (iii) the EKF is used not only 

to estimate the unknown parameters, but also to estimate the true state vector from the measurements 
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with measurement noise; i.e. both estimates of the true state vector and unknown parameters are 

required for the tracking control procedure.  

 Assuming all parameters are known, the stability of the controller is analytically examined and the 

stability properties are shown. For systems with unknown parameters and with measurement noise 

present, numerical simulations are conducted, and the tracking results including the differences 

between the target and output motions and the performances of all system responses are examined.  

 The proposed tracking control scheme with the real time estimator is applied to a realistic test setup 

for a structural test specimen and a shake table at the University at Buffalo by means of numerical 

simulations. The results verify that realistic floor motions including one induced by an earthquake and 

a code required floor motion can be tracked using the proposed control method. The results also show 

that control performance depends on the capacities of shake table actuators and the degree of 

knowledge on unknown parameters.   

 Although the developments are limited to unidirectional motions, the extension to multidirectional 

motions will follow the same equations with larger matrices, but with the same convergence 

properties.   

 

9.2 Discussion 

 The proposed methods can be expanded to control real building structures having complex nonlinear 

behavior such as isolated buildings (i.e. active base isolation systems) subjected to high intensity 

earthquakes. 

 Experimental study will be very beneficial in order to solve possible implementation issues and to 

explore the effects of other uncertainties.  

 While systems having one control excitation input in order to simulate one output target motion (i.e. 

Single-Input-Single-Output systems) are presented in this study, the proposed control methods can be 

extended to simulate more than one output target motion using one control excitation input (i.e. 

Single-Input-Multi-Output systems) and using several control excitation inputs (i.e. Multi-Input-Multi-

Output systems). In order to deal with the excitation input and the output target vectors, a matrix 

format of the predictive tracking control method with weighting matrices should be used. 

 For simplicity, it is assumed that all state responses are measurable with noise. Measurement output 

feedback through the proposed estimator using limited measurements such as total acceleration 

responses for measurement are to be considered for more practical applications.   

 Although an approximately defined model of nonlinearity (bilinear hysteretic behavior) has been 

considered, the proposed control methods can be expanded to more complex nonlinear structures, 

formulated by more advanced models that can capture stiffness and strength degradation and/or bond-
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slip effects. Additionally, modeless procedures can be developed using more complex real time 

identification techniques at the expense of loss of some fidelity due to intense computational effort.  
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APPENDIX A.  ADDITIONAL EXAMPLES 

 

A.1 Shake Table - Nonlinear Hysteretic System (2DOF System Model) 

The tracing control results of the example shown in Figure 1-2 are shown in this Appendix. The 2DOF 

shake table and a nonlinear structure system is schematically shown in Figure A-1.  

 

 

Figure A-1 Tracking control of the shake table- structure 2DOF nonlinear system with known parameters 

 

When a target motion at a specimen is specified, the required control input u(t) = xd(t), the desired 

shake table displacement, is determined in order that the output of the system (y(t) = ẍs
t(t) the total 

acceleration of the structure) follows the target motion ym(t).  

 

Example A-1 : A 2DOF Nonlinear System with Known Parameters 

The properties of a given system are the same as ones of Example 4-2: ms = 1 kips·sec2/in., ks = 355 

kips/in., and cs = 1.13 kips·sec/in., (fn = 3.0 Hz, ξn = 0.03 before yielding). N = 3, dy = 0.11 in. (fy = 39 

kips), and α = 0.1, for the hysteretic system and μ = ms / mt = 0.1, fa = 30.0 Hz, ξa = 0.5 and ka = 25 for the 

shake table. The target motion is shown in Figure A-1 (a) [Target]; i.e. the target motion is the total 

acceleration output generated from a reference linear system, whose properties are: mm = 1 kips·sec2/in., 

km = 987 kips/in., and cm = 6.28 kips·sec/in. (fm = 5.0 Hz, ξm = 0.1), subjected to one-cycle sine input 

whose frequency = 3.0 Hz and which is filtered at 0.2 Hz cutoff frequency (the reference input and the 

responses of the reference model are presented in Appendix A.2). The time step of 0.002 sec is used for 

the simulation.  

The tracking control results using the feedback linearization tracking control (FTC) method are 

presented in Figure 4-8 and Figure 4-9 (i.e. it is noted that although the system used in this example is the 

same as the one of Example 4-2, the range of the responses are different due to the different excitation; 

thus, the scales of figures are different with the ones from Example 4-2). The controlled output ẍs
t(t) is 

shown in Figure 4-8 (a) [Controlled] and shows very good agreement with the target motion. The 

computed control excitation input, u(t) = xd(t), using the control law (i.e. Eq. (4-31)) is shown in Figure 
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4-8 (b). The tracking error coefficients are chosen as ݇ଵ
∗ = 2 / h = 2ξeωe and ݇ଶ

∗ = 2 / h2 = ωe
2; therefore, ξe 

= √2 / 2 ≈ 0.707 and h = √2 / ωe; (in this example, ωe = 25, ξe = 0.707 for the both methods).  

 

 

Figure A-2 Feedback linearization tracking control structure responses of a 2DOF nonlinear system 
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Figure A-3 Feedback linearization tracking control shake table responses of a 2DOF nonlinear system 

 

Example A-2 : A 2DOF Nonlinear System with Known Parameters  

(The control excitation input is pre-computed using the feedforward tracking control method, 

assuming the system remained linear without yielding) 

In order to demonstrate the limit of the feedforward tracking control method, the same nonlinear 

hysteretic system described above in Example A-1 is subjected to a pre-computed excitation input (see 

Figure A-4 (b)) using the feedforward tracking control method: i.e. the excitation input is pre-computed 

for the same system but assuming the system remained linear without yielding.   

The results are presented in Figure A-4 and Figure A-5. Figure A-4 shows the discrepancies between 

the controlled output ẍs
t(t) and the target motion ym(t); the discrepancies are caused by the nonlinear 

hysteretic behavior in the structure, which cannot be captured by the pre-computed control excitation as 

discussed in SECTION 1.  
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Figure A-4 Feedforward tracking control - structure responses of a 2DOF nonlinear system 
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Figure A-5 Feedforward tracking control - shake table responses of a 2DOF nonlinear system 
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A.2 Reference Model and Its Responses (SDOF Linear System) 

In order to generate a realistic target motion at a structure, an SDOF reference structure model is 

selected as shown in Figure A-6; the characteristics of the reference model and the reference excitation 

input r(t) = -mmẍg(t) can be selected such that the target motion can be designed as desired.  

 

 

Figure A-6 Schematic of an SDOF reference model subjected to a ground excitation 

 

The selected properties of the reference model (used in Examples 3.1, 3.2, 4.1, 4.2, 6.1, 6.2, 7.1, and 

7.2) are: mm = 1 kips·sec2/in., km = 987 kips/in., and cm = 6.28 kips·sec/in. (fm = 5.0 Hz, ξm = 0.1) and 

subjected to one-cycle sine excitation input r(t) whose frequency = 1.0 Hz and which is highpass filtered 

at 0.2 Hz cutoff frequency as shown in Figure A-7 (b) (for comparison purposes with other examples, 

r(t)/- mm the ground excitation acceleration input is presented): i.e. the excitation input is highpass filtered 

in order to avoid large draft in the displacement and the velocity excitation, which is required for the 

shake table applications. The time step of 0.002 sec is used for the simulation. 

The responses of the reference model are presented in Figure A-7: ẍm
t(t) the total acceleration response 

is shown in Figure 4-8 (a); xm(t), ẋm(t) the displacement and velocity responses are presented in Figure 

A-7 (c) and (d). The relation between the structure resisting force fS,m(t) and displacement xm(t) is also 

presented in Figure A-7 (e).  
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Figure A-7 The responses of the SDOF linear reference model 
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A.3 Numerical Simulations for Shake table-Structure Systems 

In SECTION 8 the developed tracking control method combined with the real time estimator was 

applied to a realistic shake table and an SDOF nonlinear system. The schematic of the control scheme was 

shown in Figure 8-2. The performance of the control method was examined through numerical 

simulations; the list of testing is presented in Table 8-2. In this Appendix, the results of Test #2 in which 

the target motion was generated from a reference model subjected to one-cycle sine excitation whose freq. 

= 5.0 Hz. All system parameters were explained in Section 8.2. 

The tracking control results are presented in Figure A-8 through Figure A-10. The selected control and 

estimator parameters for the FTC (feedback tracking control) in Test #2 simulations are the same as the 

ones of Test #4 explained in Section 8.2.  

Figure A-8 presents the parameter estimation results and show fast convergence to the true values. The 

target motion and the controlled output are compared in Figure A-9 (a) and show very good agreements. 

Figure A-9 (b) presents the control excitation input u(t) = the desired shake table displacement xd(t). The 

structure responses: the relative displacement xs(t) and velocity ẋs(t) of the structure and the relation 

between the resisting force fS(x) and the relative displacement xs(t), are shown in Figure A-9 (c) to (e), 

respectively. Although the tracking performance is very good, Figure A-10 presents the shake table 

responses; the achieved shake table actuator force fa(t), shake table acceleration ẍt(t), displacement xt(t) 

and velocity ẋt(t) in order  to show the feasibility and the stability of the control scheme. Although all 

state responses are bounded, Figure A-10 (a) shows that the actuator force fa(t) operating capacity (shown 

in Table 8-1) of the shake table is exceeded. This limitation might be overcome by adjusting the target 

motion and/or the properties of the structure and shake table as discussed in Section 8.2. 
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Figure A-8 Real time parameter estimation results of tracking control (Test #2) 
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Figure A-9 Tracking control - structure responses (Test #2) 
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Figure A-10 Tracking control – shake table responses (Test #2) 
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APPENDIX B. DERIVATIONS 

  

B.1  [Derivation 3.1] 

Control law for a linear structure - SDOF system model using the FTC method 

Equations for the True System 

       
       

1 1 1
0

1 1

( ), 0s s s s s s s s

t
s s s s s s s

x t m c x t m k x t m u t x x

y t x t m c x t m k x t

  

 

    

   

 

 
 (B-1) 

Equations for the Reference Model 

         
       

1 1 1
,0

1 1

, 0m m m m m m m m m m

t
m m m m m m m m

x t m c x t m k x t m r t x x

y t x t m c x t m k x t

  

 

    

  

 

 
 (B-2) 

The system output y(t) is to be differentiated until the control input u(t) appears in the expression of the 

differentiated output 

     
 

1 1

2 1 2( ) ( ) ( )

s s s s s s

s s s s s s s s s s s

y t m c x t m k x t

m c c x t k x t m k x t c m u t

 

  

  

      

 

 
 (B-3) 

which leads to the feedback control law 

Control Law  

       12 *
s su t c m y t v t

        (B-4) 

where ݕሶ ∗(t) is defined from Eq. (B-3) as 

   * 2 1( ) ( )s s s s s s s s sy t m c c x t k x t m k x t          (B-5) 

Substituting u*(t) in Eq. (B-3) leads to 

   y t v t  (B-6) 

To reduce the tracking error signal e(t) = y(t) - ym(t), the new input v(t) can be  

     *
1mv t y t k e t   (B-7) 

where ݇ଵ
∗  is the tracking error design coefficient, which is constant and positive, which leads to the 

tracking error dynamics 

Expected Achieved Responses  

   *
1 0e t k e t   (B-8) 

in which the tracking error signal e(t) → 0 as t → ∞ by selectin ݇ଵ
∗ > 0.  
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B.2 [Derivation 3.2] 

Control law for a shake table – linear structure - 2DOF system model using the FTC method 

Equations for the True System 

       
          
         

       

0

2

1 1

, 0

21

s s s s s s s t

t t s s s s a

a a ta
a t a d

a t a t

t
s s s s s s s

m x t c x t k x t m x t

m x t c x t k x t f t x x

f t f t dx t
k x t k x t

m m dt

y t x t m c x t m k x t


 

 

   

   

   
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  
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

 

 (B-9) 

Equations for the Reference Model 

         
       

1 1 1
,0

1 1

, 0m m m m m m m m m m

t
m m m m m m m m

x t m c x t m k x t m r t x x

y t x t m c x t m k x t

  

 

    

  

 

 
 (B-10) 

By introducing notations for simplification: 

           

1 1 1 1

2 2

* * 2

; ; ; ;

2 ; ; ;

/ ; ,

s s s s t s t s

a a a a a

a a t a a d d

a m c b m k c m c d m k

e f g k

f t f t m u t k x t u t x t

   



      

  

  
 (B-11) 

Eq. (B-9) can be rewritten,  

       
        
         
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, 0
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s s
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x t cx t dx t f t x x

f t ef t fx t gx t u t

y t ax t bx t

    


   
    

  

  

 

 



 (B-12) 

The system output y(t) is to be differentiated until the control input u(t) appears in the expression of the 

differentiated output 

     
         *

s s

s s a

y t ax t bx t

a a c b x t a b d x t af t

  

        

  


 (B-13) 

         
             * *

s s

a t t

y t a a c b x t a b d x t

ae f t af x t ag x t au t

       
      

  


 (B-14) 

which leads to the feedback control law 

Control Law  

     * 1 *u t a y t v t       (B-15) 

where u*(t) = (ωa
2ka)

-1u(t); u(t) = xd(t); and ݕሷ ∗(t) is defined from Eq. (B-14) as 
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                     * *
s s a t ty t a a c b x t a b d x t ae f t af x t ag x t                  (B-16) 

Substituting u*(t) in Eq. (B-14) leads to 

   y t v t  (B-17) 

To reduce the tracking error signal e(t) = y(t) - ym(t), the new input v(t) can be  

       * *
1 2mv t y t k e t k e t     (B-18) 

where ݇ଵ
∗ and ݇ଶ

∗ are the tracking error design coefficients, which are constant and positive, these lead to 

the tracking error dynamics 

Expected Achieved Responses  

     * *
1 2 0e t k e t k e t     (B-19) 

in which the error signal e(t) goes to zero as time goes to infinity; e(t) → 0 as t → ∞. 

 

B.3 [Derivation 3.3] 

Comparisons of Feedback Tracking Control Methods: PTC vs FTC for a 2DOF linear system 

For a the shake table-structure 2DOF system, the control law of the predictive tracking control (PTC) 

shown in Eq. (3-46) becomes the same as the control law of the feedback linearization tracking control 

(FTC) method in Eq. (3-66) (or (B-15)) under certain conditions (i.e. R = 0 and the chosen tracking error 

coefficients). 

For convenience, the control law of the PTC shown in Eq. (3-46) is repeated here (i.e. ݔො(t) = x(t) for 

the systems with known parameters) 

     1* * * * *T T

mu B QB R B Q y t h A x tt


           (B-20) 

where A* = [C + hCA + (h2/2)CA2] and B* = (h2/2)CAB; i.e. here h is a time interval for prediction, 

which is a tracking error design parameter and can be selected by an engineer, not restricted to be equal to 

the sampling time step. The system matrices A, B and C in Eq. (2-24) can be expressed as, by using the 

notations in (B-11),  

   

 

2

0 1 0 0 0 0

0 0 1 0

;0 0 0 1 0 0

0 0 1 0

0 0 1

0 0 0

a a

b d a c

A B k

d c

g f e

C b a



   
          
    
   
   
        

  

 (B-21) 

Using these matrices, A*x(t) and B* (size = 1 × 1) in Eq. (B-20) are computed  
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             * 2 2 2 2[ / 2 ] / 2A x t C hCA h CA x t Cx t hCAx t h CA x t       (B-22) 

which can be rewritten using y(t)  = Cx(t) and ݕሶ (t)  = CAx(t) (see Eq. 3-44):  

         * 2 2/ 2A x t y t hy t h CA x t    (B-23) 

Substituting this equation and ݕ௠∗ (t+h) in Eq. (3-43) in Eq. (B-20) leads to 

                   

             

* * 2 2 2

2 2 2

/ 2 / 2

/ 2 2/ 2/

m m m

m

my t h A x t y t hy t h y t y t hy t h CA x t

h y t h e t h e t CA x t

                
     

  

 
 (B-24) 

where e(t) = y(t) - ym(t). If one chose the tracking error coefficients: ݇ଵ
∗ = 2 / h and ݇ଶ

∗ = 2 / h2 like the ones 

in the FTC (see Eq. (B-18)), Eq. (B-24) becomes 

         * * 2 2/ 2my t h A x t h v t CA x t          (B-25) 

in which CA2x(t) can be expressed 

           
    

2CA x t b a a c b d a b d b a a c a c

ag af b a a c ae x t

                
        

 (B-26) 

One can show that this equation is the same as ݕሷ ∗(t) in Eq. (B-16) by substituting ẍs(t) of Eq. (B-12): 

                

              

*

*

s s

t t a

y t a a c b a c a b d x t a a c b b d x t

af x t ag x t a a c b ae f t

                     

            

 


 (B-27) 

B* (size = 1 × 1) in Eq. (B-20) is also computed 

     * 2 2 2/ 2 / 2 a aB h CAB h a k    (B-28) 

which is a non-zero scalar (i.e. an invertible matrix, size 1 × 1); thus ሾܤ்ܳ∗ܤ∗ ൅ ܴሿିଵܤ = ்ܳ∗ܤ∗ିଵ. 

By substituting the equations (B-25) and (B-28) in Eq. (B-20), the control law of the PTC can be 

expressed 

             1* 1 2 2 1 2 */ 2 a au t B h v t CA x t a k y t v t
             (B-29) 

which is the same as the control law of the FTC shown in Eq. (B-15) (where u*(t) = (ωa
2ka)

-1u(t)).  
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B.4 [Derivation 4.1] 

Control law for a shake table – nonlinear structure - 2DOF system model using the FTC method 

Equations for the True System 

       
        

     
         

 

       

0

2

1 1

, 0

21

s s s s S s t

t t s s S a

S T s

a a ta
a t a d

a t a t

t
s s s s s S

m x t c x t f x m x t

m x t c x t f x f t

x xf x k x x t

f t f t dx t
k x t k x t

m m dt

y t x t m c x t m f x


 

 

    


  
 

    


   

  

 

 



 

 (B-30) 

Equations for the Reference Model 

         
       

1 1 1
,0

1 1

, 0m m m m m m m m m m

t
m m m m m m m m

x t m c x t m k x t m r t x x

y t x t m c x t m k x t

  

 

    

  

 

 
 (B-31) 

By introducing notations for simplification: 

           

1 1 1

2 2

* * 2

; ; ;

2 ; ; ;

/ ; ,

s s s s t s

a a a a a

a a t a a d d

a m c b m k c m c

e f g k

f t f t m u t k x t u t x t

   



    

  

  
 (B-32) 

Eq. (B-30) can be rewritten,  

       
        
     
         

 

     

1

1 *

0

* * *

1

, 0

s s s S t

t s t S a

S T s

a a t t

s s S

x t ax t m f x x t

x t cx t m f x f t
x x

f x k x x t

f t ef t fx t gx t u t

y t ax t m f x







    

   




    
  

  

 

 

 



 (B-33) 

The system output y(t) is to be differentiated until the control input u(t) appears in the expression of the 

differentiated output 

     
         

1

1 1 1 *( )

s s S

s T s s t S a

y t ax t m f x

a a c m k x x t a m m f x af t



  

  

       

 


 (B-34) 

               
             

1 1 1 1

* *

s T s s T s t T s

a t t

y t a a c m k x x t m k x a m m k x x t

ae f t af x t ag x t au t

              
      

  


 (B-35) 

where ሶ݇ ்(x) is expressed as, by defining the state [xs(t)  ݔሶ s(t)  fS(x)]T ≡ [x1  x2  x3]
T: 

         
1 2 3

1 2 3

T T T T
T

dk x k x k x k x
k x x x x

dt x x x

  
   

  
     (B-36) 
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where each term is defined in Section 5.2.1.2 (i.e. Eq. (5-68) through Eq. (5-70)) and repeated here for 

convenience: 

  1

1 1 1

( ) ( ) ( )
( ); ( ) sgn ( )

NT
H H s

k x x x
x N f x f x k

x x x

    
  

  
 (B-37) 

  1

3 3 3

( ) ( ) ( )
( ); ( ) sgn ( ) 1

NT
H H

k x x x
x N f x f x

x x x

    
 

  
 (B-38) 

 2
2 2 2

( ) ( ) ( )
( ); 2 ( )sgn ( ) .T

H

k x x x
x x f x

x x x

    
 

  
 (B-39) 

where the relation δ(x) × x = 0 (Dannon, 2012) (i.e. δ(x) is the Dirac delta function) is used, and the δ(x2) 

in the last equation indicates that the function kT(x) has a jump at the unloading instant (where x2 = 0) 

from the hardening stiffness to the initial stiffness as shown in the hysteretic loop (Figure 4-1 (left)). This 

δ(x2) in ሶ݇ ்(x) is multiplied by x2 as ሶ݇ ்(x) × x2 in Eq. (B-41); thus, it does not affect the control law in Eq. 

(B-40).  

The differentiated output equation in Eq. (B-35) leads to the feedback control law 

Control Law  

     * 1 *u t a y t v t       (B-40) 

where u*(t) = (ωa
2ka)

-1u(t); u(t) = xd(t); and ݕሷ ∗(t) is defined from Eq. (B-35) as 

               
           

* 1 1 1 1

*

s T s s T s t T s

a t t

y t a a c m k x x t m k x a m m k x x t

ae f t af x t ag x t

              
     

  


 (B-41) 

Substituting u*(t) in Eq. (B-35) leads to 

   y t v t  (B-42) 

To reduce the tracking error signal e(t) = y(t) - ym(t), the new input v(t) can be  

       * *
1 2mv t y t k e t k e t     (B-43) 

where ݇ଵ
∗ and ݇ଶ

∗ are the tracking error design coefficients, which are constant and positive, these lead to 

the tracking error dynamics 

Expected Achieved Responses  

     * *
1 2 0e t k e t k e t     (B-44) 

in which the error signal e(t) goes to zero as time goes to infinity; e(t) → 0 as t → ∞. 
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B.5 [Derivation 4.2] 

Comparisons of Feedback Tracking Control Methods: PTC vs FTC for a 2DOF nonlinear system 

As shown for a the shake table-structure 2DOF linear system, for a 2DOF nonlinear system one can 

also show that the control law of the predictive tracking control (PTC), shown in Eq. (4-18), becomes the 

same as the control law of the feedback linearization tracking control (FTC) method in Eq. (4-38) with 

certain conditions (i.e. R = 0 and the chosen tracking error coefficients). 

For convenience, the control law of the PTC shown in Eq. (4-18) is repeated here (i.e. ݔො(t) = x(t) for 

the systems with known parameters) 

             
1* * * **T T

mu t B x QB x R B x Q y t h A x x t


           (B-45) 

where A(x)* = [C + hCA(x) + (h2/2)C{d/dtA(x) + A(x)2}] and B(x)* = (h2/2)CA(x)B; i.e. here h is a time 

interval for prediction, which is a tracking error design parameter and can be selected by an engineer, not 

restricted to be equal to the time step of the controller or estimator. The system matrices A(x), B and C in 

Eq. (4-8) and Eq. (4-9) can be expressed as, by using the notations in (B-32),  

   
 

1 1

2

1

1

0 1 0 0 0 0 0

0 0 0 1 0

00 0 0 0 0 ;
00 0 0 0 1 0
00 0 0 1
10 0 0

0 0 0 0

s t

T
a a

t

s

a c m m

k xA B k

c m

g f e

C a m



 





   
          
   
    
   
   
   
        
   

 (B-46) 

Using these matrices, A(x)*x(t) and B(x)* in Eq. (B-45) are computed  

              * 22[ / 2 / ]A x x t C hCA x h C d dtA x A x x t     (B-47) 

which can be rewritten using y(t)  = Cx(t) and ݕሶ (t)  = CA(x)x(t) (see Eq. (4-17)):  

              2* 2 / 2 / ]A x t y t hy t h C d dtA x A x x t     (B-48) 

Substituting this equation and ݕ௠∗ (t+h) of Eq. (3-44) in Eq. (B-45) leads to 

                        * 2* 2 2/ 2 2/ 2/ /mmy t h A x x t h y t h e t h e t C d dtA x A x x t           
 

 (B-49) 

where e(t) = y(t) - ym(t). If one chose the tracking error coefficients: ݇ଵ
∗ = 2 / h and ݇ଶ

∗ = 2 / h2 like the ones 

in the FTC (see Eq.(B-43)), Eq. (B-49)becomes 

              2* * 2 / 2 /my t h A x t h v t C d dtA x A x x t          (B-50) 
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in which C{d/dtA(x) + A(x)2}x(t) can be expressed 

                  

            

2 1 1 1 1

1 1 1 1

/ 0 s T s t T s T

s T s t s T

C d dtA x A x x t m k x a m m k x a a c m k x a c

a a c m k x m m ag af a a c m k x ae x t

   

   

            

              



 (B-51) 

One can show that this equation is the same as ݕሷ ∗(t) in Eq. (B-41) by substituting ẍs(t) of Eq. (B-33): 

                

           

            

* 1 1 1 1

1 1 1

1 *

s T s T s t T s

s T s t S t

t s T a

y t a a c m k x a c m k x a m m k x x t

a a c m k x m m f x af x t

ag x t a a c m k x ae f t

   

  



             

        

         

 

  (B-52) 

B(x)* in Eq.(B-45) is also computed 

         * 2 2 2/ 2 / 2 a aB x h CA x B h a k    (B-53) 

which is a non-zero scalar (i.e. an invertible matrix, size 1 × 1); thus ሾܤሺݔሻ	∗்ܳܤሺݔሻ	∗ ൅ ܴሿିଵܤሺݔሻ	∗்ܳ = 

 .∗ିଵ	ሻݔሺܤ

By substituting the equations (B-50) and (B-53) in Eq.(B-45), the control law of the PTC can be 

expressed 

                  1* 1 22 1 2 */ 2 / a au B x h v t C d dtA x A x a k y t v tt 
              (B-54) 

which is the same as the control law of the FTC shown in Eq. (4-38) (where u*(t) = (ωa
2ka)

-1u(t)).  

 

B.6 [Derivation 4.3] 

Lp property of the state with a stable matrix  

For a following LTI (linear time invariant) system with a n × n stable matrix A,  

   x t Ax t  (B-55) 

it can be shown that a n × 1 state vector x belongs to L2 as well as L∞ (i.e. x ∈ L∞ ∩ L2) as following. Since 

A is a stable matrix, the following Lyapunov function (i.e. a chosen scalar function V(x) > 0 for x ≠ xe) 

can be found (i.e. refer to the Lyapunov direct method introduced in Section 3.2) 

   TV x t Px t  (B-56) 

where P is a n × n positive definite matrix (P > 0) and a unique solution of the following Lyapunov 

matrix equation 

TA P PA Q    (B-57) 

where Q is a n × n positive definite matrix (Q > 0). The time derivative of Eq. (B-56) yields 
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    0
T

V x t Qx t    (B-58) 

(for x ≠ xe). Therefore, the equilibrium point xe = 0 is asymptotically stable. From Eq. (B-56) and Eq. 

(B-58) we also know that x is bounded (i.e. x ∈ L∞) (refer to Theorem 3.4.3 in Ioannou and Sun, 2012), 

and V(t) is bounded from below (V(t) ≥ 0) and is nonincreasing with time ( ሶܸ (t) ≤ 0), which indicates that 

limt→∞ V(t) = V∞ (finite). In addition, since Q > 0, we have 

       2 2

min max

T
Q x x t Qx t Q x    (B-59) 

It is noted that in this study the following notation is adopted unless stated otherwise: |x| ≡ |x(t)|2 and ‖ܣ‖ 

 .representing the Euclidean norm and the induced Euclidean norm respectively. Substituting Eq ,2‖ܣ‖ ≡

(B-59) into Eq. (B-58) leads 

      2

min

T
V x t Qx t Q x    (B-60) 

Now one can show that  

           1 12

min min0 0
0x d Q V d Q V V    

  
            (B-61) 

which is finite (i.e. x ∈ L2). Therefore, it is shown that x ∈ L∞ ∩ L2 for the LTI system with a stable matrix 

A shown in Eq. (B-55). 

 

B.7 [Derivation 4.4] 

Lp property of the restoring force of the nonlinear hysteretic system 

The nonlinear hysteretic system shown in Eq. (4-54) is repeated here for convenience 

         1 1 1 1
S s s S s in Sf x a m k f x a m k x f x u t       (B-62) 

where a-1, ms
-1, ks are positive constant scalars (i.e. a-1, ms

-1, ks > 0), the inelastic part kin(x) is bounded as 0 

≤ kin(x) ≤ (1‒ α)ks < ks with 0 < α < 1 in this study (see Eq. (4-52)), and the input term ݑ(t) ∈ L∞ ∩ L2. 

From this equation, one can show that fS(x) ∈ L∞ ∩ L2 and ሶ݂S(x) ∈ L∞ ∩ L2 as following.  

For simplicity, introducing new notations: fS(x) ≡ x(t); a-1ms
-1ks ≡ ݇s; and a-1ms

-1kin(x) ≡ ݇ in(t); Eq. 

(B-62) becomes 

         s inx t k x t k t x t u t    (B-63) 

The solution of this equation can be expressed 

       

     

0

0 0

0

0 0

( ) ( ) ( )
0

0

s s s

s s s s s s

t tk t t k t k t
int t

t tk t k t k t k k t k
int t

x t e x e k x d e u d

e e x e e k x d e e u d

 

 

    

    

     

  

  

  

 

 
 (B-64) 

where x0 = x(t0) and by multiplying each side by exp(݇st) one has 

       0

0 0
0

s s s s
t tk t k t k k

int t
e x t e x e k x d e u d          (B-65) 
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Hence, the following inequality can be expressed 

       0

0 0
0

s s s s
t tk t k t k k

int t
e x t e x e k x d e u d          (B-66) 

which can be rewritten as 

       
0

t

int
x t t k x d       (B-67) 

where  

       0

0
0, .s s s

tk t k t k

t
x t e x t t e x e u d        

Applying the Bellman-Gronwall Lemma II (refer to Lemma 3.3.813 in Ioannou and Sun, 2012) with k(t) = 

݇in(t), one has 

   
 

   
0

0
0

t t
in int s

k s ds t k d

t
x t t e s e ds

 
       (B-68) 

where  

     0
0 0 , .s sk t k st x e s e u s    

Therefore, using that the maximum of kin(x) ≡ kin,m = (1‒ α)ks with 0 < α < 1, 

 
 

   

     

0 0

0

, 0 ,0

0

0

0

t t
in ints s s

in m in ms s

k s ds t k dk t k s

t

tk t t k t sk t k

t

x t x e e e u s e ds

x e e e e u s ds

 

 

  

 




 (B-69) 

By multiplying each side by exp(‒݇st), one has 

           
       

, 0 ,0

0

, 0 ,

0

0

0

in m in ms s

s in m s in m

tk t t k t sk t t k t s

t

tk k t t k k t s

t

x t x e e e e u s ds

x e e u s ds

    

     

 

 




 (B-70) 

where the right-hand-side is bounded if (݇s ‒ ݇in,m) > 0, and it is always satisfied in this study since 0 < α 

< 1; thus, (݇s ‒ ݇in,m) = α݇s = c1αks > 0. Furthermore, the right-hand-side belongs to L2 because the first 

term belongs to L2 (i.e. the L2 norm is finite) and the second term also belongs to L2 according to Theorem 

                                                      
13 Lemma 3.3.8 (Ioannou and Sun, 2012): Let λ(t), k(t) be nonnegative piecewise continuous function of time t and 

let λ(t) be differentiable. If the function y(t) satisfies the inequality  

       
0

0, 0
t

t
y t t k y d t t         

then 

   
 

   
0

0
0 0, 0.

t t

t s
k s ds t k d

t
y t t e s e ds t t

 
         
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3.3.214 (refer to Ioannou and Sun, 2012) where h(t ‒ τ) = exp[‒(݇s ‒ ݇in,m)(t ‒ τ)], which belongs to L1 

since (݇s ‒ ݇in,m) > 0, and u(t) ∈ L∞ ∩ L2. Therefore, it is shown that x(t) ∈ L∞ ∩ L2 since the right-hand-

side of Eq. (B-70) belongs to L∞ ∩ L2.  

 

B.8 [Derivation 4.5] 

Lp property of the actuator force of the nonlinear hysteretic system 

The nonlinear system equation of the actuator force shown in Eq. (4-56) is repeated here for convenience 

                   
 

* * 1 1
a a s s t S m

m

f t h x f t h x a c i x x t h x m m j f x u t

u t

                
 


 (B-71) 

where in the right-hand-side the new input term ݑm(t) is introduced for simplicity, and ݑm(t) ∈ L∞ ∩ L2 

since ẋs(t), fS(x), um(t) ∈ L∞ ∩ L2 (as discussed for (4-56) in Section 4.3). Also, ݄(x), ݅(x) are bounded 

functions (i.e. ݄(x), ݅(x) ∈ L∞) as shown in Eq. (4-44): 

     

         

1 1 *
1

1 1 1 1 * 1 1 *
1 2

;

;

s T

s T s t T s T

h x a c a m k x k

i x a m k x m m k x k a m k x k

 

     

      
        


 

where all terms are positive constants except kT(x) and ሶ݇ T(x), and kT(x) ∈ L∞ (as shown in (4-51)). ሶ݇ T(x) is 

expressed, by defining the state [xs(t)  ݔሶ s(t)  fS(x)]T ≡ [x1  x2  x3]
T, in Eq. (B-36): as repeated here for 

convenience 

         
1 2 3

1 2 3

T T T T
T

dk x k x k x k x
k x x x x

dt x x x

  
   

  
     (B-72) 

where each term is defined in Section 5.2.1.2 (i.e. Eq. (5-68) through Eq. (5-70)) and all terms are 

bounded except the following term 

 2
2 2 2

( ) ( ) ( )
( ); 2 ( )sgn ( )T

H

k x x x
x x f x

x x x

    
 

  
 

                                                      
14 Theorem 3.3.1 (Ioannou and Sun, 2012):  

The reference considers an LTI (linear time invariant) system described by the convolution of two functions u, h : R+ 

→ R (i.e. t ≥ 0) defined as 

     
0

t
y t u h h t u d       

where h(t) is the impulse response of the system.  

The reference says that the following results hold for the system above. If u ∈ Lp and h ∈ L1 then 

1p p
y h u  

where p ∈ [1, ∞]. 
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where the relation δ(x) × x = 0 (Dannon, 2012) (i.e. δ(x) is the Dirac delta function) is used, and the δ(x2) 

in the last equation indicates that the function kT(x) has a jump at the unloading instant (where x2 = 0) 

from the hardening stiffness to the initial stiffness as shown in the hysteretic loop (Figure 4-1 (left)). This 

δ(x2) in ሶ݇ ்(x) is multiplied by x2 as ሶ݇ ்(x) × x2 in Eq. (B-71); thus, it does not affect the stability of the 

system and it concludes that ݅(x) ∈ L∞. 

Now, from Eq. (B-71) one can show that ௔݂
∗ (t) ∈  L∞ ∩ L2 and ሶ݂௔∗ (t) ∈  L∞ ∩ L2 using the same 

procedure shown in Derivation 4.4 in Appendix B.7. The function ݄(x) in the left-hand-side of Eq. (B-71)

can be expressed in two parts: an elastic part ݇ and inelastic part ݇in; 

         
 

1 1 * 1 1 * 1 1
1 1s T s s s in

in

h x a c a m k x k a m k k a c a m k x

k k t

                         
 (B-73) 

Thus, Eq. (B-71) can be rewritten as 

         * * *
a a in a mf t kf t k t f t u t    (B-74) 

which is the same form as Eq. (B-63); therefore, it can be shown that ௔݂
∗(t) ∈ L∞ ∩ L2 if (݇ ‒ ݇in,m) > 0 

where  

     1 1 * 1 1 1 1 *
, 1 11in m s s s s s sk k a m k k a c a m k a m k k a c                        (B-75) 

and this condition can be easily met by choosing the design coefficient ݇ଵ
∗ in Eq. (4-42) to be larger than 

(a + c). Since ݄(x) ∈ L∞ and ௔݂
∗(t), um(t) ∈ L∞ ∩ L2, from Eq. (B-71) ሶ݂௔∗(t) ∈ L∞ ∩ L2. 

 

B.9 [Derivation 5.1] 

Derivation of the recursive least squares algorithm with forgetting factor 

The continuous-time non-recursive least squares algorithm is given in Eq. (5-11) and Eq. (5-12), 

which are repeated for convenience: 

       ,0 0 0

ˆ ˆ ( )
t tt T

Et P t e Q e z d                (B-76) 

where  

     
1

,0 0
( )

t tt T
EP t e Q e d      


          (B-77) 

Since QE,0 > 0 (selected) and ϕ(t)ϕT(t) ≥ 0, P(t) is a positive definite matrix and invertible. Using the 

identity,  

           1 1 1 0
d

P t P t P t P t P t P t
dt

       
   (B-78) 

ሶܲ (t) is expressed 
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       1P t P t P t P t    (B-79) 

where ሶܲ -1(t) can be obtained by taking inverse of P(t) in Eq.(B-77), then differentiating it with respect to t   

        
   

1
,0 0

1

( ) ( )

( )

t tt T T
E

T

P t e Q t t e d

t t P t

         

  

  



     

 



 (B-80) 

Substitution of this equation into Eq. (B-79) gives  

         ( )TP t P t P t t t P t     (B-81) 

with P(0) = P0 = QE,0
-1. Similarly, by differentiating ߠ෠ሺݐሻ in Eq. (B-76) with respect to t, one has 

       

       

,0 0 0

,0 0 0

ˆ ˆ ( )

ˆ( ) ( )

t tt T
E

t tt T
E

d
t P t e Q e z d

dt

P t z t t e Q e z d

 

 

     

      

 

 

       
           







 (B-82) 

which can be simplified using Eq. (B-81) and Eq. (B-76) 

               
 

     

         

,0 0 0

ˆ

ˆ ˆ

ˆ

t tT t T
E

t

T

d
t P t t t P t e Q e z d P t z t t

dt

P t z t t t t

 



        

  

         

   




 (B-83) 

which can be further simplified using the definition of the estimation error ε(t) in Eq. (5-8) 

       ˆ t P t t t  
 (B-84) 

This equation with Eq. (B-81) is known as the continuous-time recursive least squares algorithm with 

forgetting factor, which are the same as Eq. (5-13). 

 

B.10 [Derivation 5.2] 

Derivation of the EKF in discrete time for implementation  

The truth model of a nonlinear system (shown in Eq. (5-50) and Eq. (5-51) in continuous time) is 

rewritten in discrete time 

      1

1 ,f ,
k

k
k k

t

t
x x t t t t tx u Gw d



     (B-85) 

 hk kkxy v   (B-86) 

where all terms are explained in Section 5.2.1.1. vk and wk are measurement and process noise (or errors 

in model), respectively, and they are assumed to be zero-mean Gaussian white-noise processes. In this 

study, both noise covariance matrices RE,k and QE,k are assumed to be constant at all time; thus RE,k = RE 

and QE,k = QE.  
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The estimator structure shown in Eq. (5-54) in continuous time can be expressed in two stages 

equations in discrete time as 

    1

1 ,ˆ ˆ ˆf ,
k

k

t

k k t
t t tx x x u dt

 
     (B-87) 

 ˆ ˆ ˆhk k k k kx x K y x        (B-88) 

where Kk is the estimator gain and Eq. (B-87) with sign ‘-’ is known as the prediction equation, and Eq. 

(B-88) with sign ‘+’ is known as the update equation. The estimate error covariance matrices are defined 

as 

 1 1 1
T

k k kP E x x  
      (B-89) 

 T
k k kP E x x      (B-90) 

where the estimate state errors are ݔ෤௞ାଵ
ି ො௞ାଵݔ ≡ 

ି െ ௞ାଵݔ  and ݔ෤௞
ା ො௞ݔ ≡ 

ା െ ௞ݔ . Using the Taylor series 

expansion about the current estimate ݔො(t) (i.e. assuming that the true state ݔ(t) is sufficiently close to the 

estimated state ݔො(t), which is used for the nominal state), the f(x(t),u(t),t) and h(x(t),t) were expressed in 

Eq. (5-52) and Eq. (5-53) and repeated here: 
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The estimate state errors are ݔ෤௞ାଵ
ି ො௞ାଵݔ ≡ 

ି െ ො௞ାଵݔ ௞ାଵ is given by using Eq. (B-87) forݔ
ି  and Eq. (B-85) 

for ݔ௞ାଵ, after substituting Eq. (B-91) for f(x(t),u(t),t):  
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where F(t) is introduced for the Jacobian matrix of f(x(t),u(t),t) as shown in Eq. (5-57), evaluated at the 

current estimate ݔො(t). Using the first order approximation of the integral part, Eq. (B-93) can be rewritten 

as 

 
   

1 ˆ

ˆ

k k k k k k k

k k k k k k k k k

k
k

x x tF x x tG w

I tF x x tG w x w

   


  

    

        


  

 


 (B-94) 

where Fk(ݔො௞
ା) is the same Jacobian matrix of f(x(t),u(t),t), evaluated at the current estimate ݔො௞

ା. It is noted 

that Eq. (B-94) is the same structure of the estimate state error ݔ෤௞ାଵ
ି  equation of the KF, shown in Eq. 

(5-43). Then, ௞ܲାଵ
ି  is defined by substituting Eq. (B-94) into Eq. (B-89) and using that E{wk ݔ෤௞

ାT} = 0: 
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For the update stage, substitution of Eq. (B-88) with Eq. (B-92) for ݔො௞
ା in ݔ෤௞
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where Hk(ݔො௞
ି) (or Hk for brevity) is introduced for the Jacobian matrix of h(x(t),t) as shown in Eq. (5-57), 

evaluated at the current estimate ݔො௞
ି. Then, ௞ܲ

ା is defined by substituting Eq. (B-96) into Eq. (B-90) and 

using that E{vk ݔ෤௞
ିT} = 0: 
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The optimal estimator gain Kk is determined by minimizing the trace of Pk
+, which is equivalent to 

minimize the length of the estimation error vector. The index function, the same as that of the KF shown 

in Eq. (5-47), is repeated here: 

   Trk kJ K P   (B-98) 

By solving ߲ܭ߲/ܬ௞ ൌ 0 for Kk, it results in: 

1T T
k k k k k k EK P H H P H R

      (B-99) 

Substitution of Eq. (B-99) in Eq. (B-97) leads to  

 k k k kP I K H P    (B-100) 

The EKF update stage defined in Eq. (B-88) and Eq. (B-100) with the optimal gain Kk in Eq. (B-99) and 

the EKF prediction stage defined in Eq. (B-87) and Eq. (B-95) are presented in Section 5.2.1.1. 

  



 

224 

 

“This Page Intentionally Left Blank”  



 
 
 

225 
 
 

MCEER Technical Reports 
 

MCEER publishes technical reports on a variety of subjects written by authors funded through MCEER.  These reports are 
available from both MCEER Publications and the National Technical Information Service (NTIS).  Requests for reports should 
be directed to MCEER Publications, MCEER, University at Buffalo, State University of New York, 133A Ketter Hall, Buffalo, 
New York 14260.  Reports can also be requested through NTIS, P.O. Box 1425, Springfield, Virginia 22151.  NTIS accession 
numbers are shown in parenthesis, if available. 
 
NCEER-87-0001 "First-Year Program in Research, Education and Technology Transfer," 3/5/87, (PB88-134275, A04, MF-

A01). 
 
NCEER-87-0002 "Experimental Evaluation of Instantaneous Optimal Algorithms for Structural Control," by R.C. Lin, T.T. 

Soong and A.M. Reinhorn, 4/20/87, (PB88-134341, A04, MF-A01). 
 
NCEER-87-0003 "Experimentation Using the Earthquake Simulation Facilities at University at Buffalo," by A.M. Reinhorn 

and R.L. Ketter, not available. 
 
NCEER-87-0004 "The System Characteristics and Performance of a Shaking Table," by J.S. Hwang, K.C. Chang and G.C. 

Lee, 6/1/87, (PB88-134259, A03, MF-A01).  This report is available only through NTIS (see address given 
above). 

 
NCEER-87-0005 "A Finite Element Formulation for Nonlinear Viscoplastic Material Using a Q Model," by O. Gyebi and G. 

Dasgupta, 11/2/87, (PB88-213764, A08, MF-A01). 
 
NCEER-87-0006 "Symbolic Manipulation Program (SMP) - Algebraic Codes for Two and Three Dimensional Finite Element 

Formulations," by X. Lee and G. Dasgupta, 11/9/87, (PB88-218522, A05, MF-A01). 
 
NCEER-87-0007 "Instantaneous Optimal Control Laws for Tall Buildings Under Seismic Excitations," by J.N. Yang, A. 

Akbarpour and P. Ghaemmaghami, 6/10/87, (PB88-134333, A06, MF-A01). This report is only available 
through NTIS (see address given above). 

 
NCEER-87-0008 "IDARC: Inelastic Damage Analysis of Reinforced Concrete Frame - Shear-Wall Structures," by Y.J. Park, 

A.M. Reinhorn and S.K. Kunnath, 7/20/87, (PB88-134325, A09, MF-A01). This report is only available 
through NTIS (see address given above). 

 
NCEER-87-0009 "Liquefaction Potential for New York State: A Preliminary Report on Sites in Manhattan and Buffalo," by 

M. Budhu, V. Vijayakumar, R.F. Giese and L. Baumgras, 8/31/87, (PB88-163704, A03, MF-A01).  This 
report is available only through NTIS (see address given above). 

 
NCEER-87-0010 "Vertical and Torsional Vibration of Foundations in Inhomogeneous Media," by A.S. Veletsos and K.W. 

Dotson, 6/1/87, (PB88-134291, A03, MF-A01). This report is only available through NTIS (see address 
given above). 

 
NCEER-87-0011 "Seismic Probabilistic Risk Assessment and Seismic Margins Studies for Nuclear Power Plants," by Howard 

H.M. Hwang, 6/15/87, (PB88-134267, A03, MF-A01). This report is only available through NTIS (see 
address given above). 

 
NCEER-87-0012 "Parametric Studies of Frequency Response of Secondary Systems Under Ground-Acceleration Excitations," 

by Y. Yong and Y.K. Lin, 6/10/87, (PB88-134309, A03, MF-A01). This report is only available through 
NTIS (see address given above). 

 
NCEER-87-0013 "Frequency Response of Secondary Systems Under Seismic Excitation," by J.A. HoLung, J. Cai and Y.K. 

Lin, 7/31/87, (PB88-134317, A05, MF-A01). This report is only available through NTIS (see address given 
above). 

 
NCEER-87-0014 "Modelling Earthquake Ground Motions in Seismically Active Regions Using Parametric Time Series 

Methods," by G.W. Ellis and A.S. Cakmak, 8/25/87, (PB88-134283, A08, MF-A01). This report is only 
available through NTIS (see address given above). 

 



 
 
 

226 
 
 

NCEER-87-0015 "Detection and Assessment of Seismic Structural Damage," by E. DiPasquale and A.S. Cakmak, 8/25/87, 
(PB88-163712, A05, MF-A01). This report is only available through NTIS (see address given above). 

 
NCEER-87-0016 "Pipeline Experiment at Parkfield, California," by J. Isenberg and E. Richardson, 9/15/87, (PB88-163720, 

A03, MF-A01). This report is available only through NTIS (see address given above). 
 
NCEER-87-0017 "Digital Simulation of Seismic Ground Motion," by M. Shinozuka, G. Deodatis and T. Harada, 8/31/87, 

(PB88-155197, A04, MF-A01).  This report is available only through NTIS (see address given above). 
 
NCEER-87-0018 "Practical Considerations for Structural Control: System Uncertainty, System Time Delay and Truncation of 

Small Control Forces," J.N. Yang and A. Akbarpour, 8/10/87, (PB88-163738, A08, MF-A01). This report is 
only available through NTIS (see address given above). 

 
NCEER-87-0019 "Modal Analysis of Nonclassically Damped Structural Systems Using Canonical Transformation," by J.N. 

Yang, S. Sarkani and F.X. Long, 9/27/87, (PB88-187851, A04, MF-A01). 
 
NCEER-87-0020 "A Nonstationary Solution in Random Vibration Theory," by J.R. Red-Horse and P.D. Spanos, 11/3/87, 

(PB88-163746, A03, MF-A01). 
 
NCEER-87-0021 "Horizontal Impedances for Radially Inhomogeneous Viscoelastic Soil Layers," by A.S. Veletsos and K.W. 

Dotson, 10/15/87, (PB88-150859, A04, MF-A01). 
 
NCEER-87-0022 "Seismic Damage Assessment of Reinforced Concrete Members," by Y.S. Chung, C. Meyer and M. 

Shinozuka, 10/9/87, (PB88-150867, A05, MF-A01).  This report is available only through NTIS (see address 
given above). 

 
NCEER-87-0023 "Active Structural Control in Civil Engineering," by T.T. Soong, 11/11/87, (PB88-187778, A03, MF-A01). 
 
NCEER-87-0024 "Vertical and Torsional Impedances for Radially Inhomogeneous Viscoelastic Soil Layers," by K.W. Dotson 

and A.S. Veletsos, 12/87, (PB88-187786, A03, MF-A01). 
 
NCEER-87-0025 "Proceedings from the Symposium on Seismic Hazards, Ground Motions, Soil-Liquefaction and Engineering 

Practice in Eastern North America," October 20-22, 1987, edited by K.H. Jacob, 12/87, (PB88-188115, A23, 
MF-A01). This report is available only through NTIS (see address given above). 

 
NCEER-87-0026 "Report on the Whittier-Narrows, California, Earthquake of October 1, 1987," by J. Pantelic and A. 

Reinhorn, 11/87, (PB88-187752, A03, MF-A01).  This report is available only through NTIS (see address 
given above). 

 
NCEER-87-0027 "Design of a Modular Program for Transient Nonlinear Analysis of Large 3-D Building Structures," by S. 

Srivastav and J.F. Abel, 12/30/87, (PB88-187950, A05, MF-A01). This report is only available through NTIS 
(see address given above). 

 
NCEER-87-0028 "Second-Year Program in Research, Education and Technology Transfer," 3/8/88, (PB88-219480, A04, MF-

A01). 
 
NCEER-88-0001 "Workshop on Seismic Computer Analysis and Design of Buildings With Interactive Graphics," by W. 

McGuire, J.F. Abel and C.H. Conley, 1/18/88, (PB88-187760, A03, MF-A01). This report is only available 
through NTIS (see address given above). 

 
NCEER-88-0002 "Optimal Control of Nonlinear Flexible Structures," by J.N. Yang, F.X. Long and D. Wong, 1/22/88, (PB88-

213772, A06, MF-A01). 
 
NCEER-88-0003 "Substructuring Techniques in the Time Domain for Primary-Secondary Structural Systems," by G.D. 

Manolis and G. Juhn, 2/10/88, (PB88-213780, A04, MF-A01). 
 
NCEER-88-0004 "Iterative Seismic Analysis of Primary-Secondary Systems," by A. Singhal, L.D. Lutes and P.D. Spanos, 

2/23/88, (PB88-213798, A04, MF-A01). 
 
NCEER-88-0005 "Stochastic Finite Element Expansion for Random Media," by P.D. Spanos and R. Ghanem, 3/14/88, (PB88-

213806, A03, MF-A01). 



 
 
 

227 
 
 

 
NCEER-88-0006 "Combining Structural Optimization and Structural Control," by F.Y. Cheng and C.P. Pantelides, 1/10/88, 

(PB88-213814, A05, MF-A01). 
 
NCEER-88-0007 "Seismic Performance Assessment of Code-Designed Structures," by H.H-M. Hwang, J-W. Jaw and H-J. 

Shau, 3/20/88, (PB88-219423, A04, MF-A01). This report is only available through NTIS (see address given 
above). 

 
NCEER-88-0008 "Reliability Analysis of Code-Designed Structures Under Natural Hazards," by H.H-M. Hwang, H. Ushiba 

and M. Shinozuka, 2/29/88, (PB88-229471, A07, MF-A01). This report is only available through NTIS (see 
address given above). 

 
NCEER-88-0009 "Seismic Fragility Analysis of Shear Wall Structures," by J-W Jaw and H.H-M. Hwang, 4/30/88, (PB89-

102867, A04, MF-A01). 
 
NCEER-88-0010 "Base Isolation of a Multi-Story Building Under a Harmonic Ground Motion - A Comparison of 

Performances of Various Systems," by F-G Fan, G. Ahmadi and I.G. Tadjbakhsh, 5/18/88, (PB89-122238, 
A06, MF-A01). This report is only available through NTIS (see address given above). 

 
NCEER-88-0011 "Seismic Floor Response Spectra for a Combined System by Green's Functions," by F.M. Lavelle, L.A. 

Bergman and P.D. Spanos, 5/1/88, (PB89-102875, A03, MF-A01). 
 
NCEER-88-0012 "A New Solution Technique for Randomly Excited Hysteretic Structures," by G.Q. Cai and Y.K. Lin, 

5/16/88, (PB89-102883, A03, MF-A01). 
 
NCEER-88-0013 "A Study of Radiation Damping and Soil-Structure Interaction Effects in the Centrifuge," by K. Weissman, 

supervised by J.H. Prevost, 5/24/88, (PB89-144703, A06, MF-A01). 
 
NCEER-88-0014 "Parameter Identification and Implementation of a Kinematic Plasticity Model for Frictional Soils," by J.H. 

Prevost and D.V. Griffiths, not available. 
 
NCEER-88-0015 "Two- and Three- Dimensional Dynamic Finite Element Analyses of the Long Valley Dam," by D.V. 

Griffiths and J.H. Prevost, 6/17/88, (PB89-144711, A04, MF-A01). 
 
NCEER-88-0016 "Damage Assessment of Reinforced Concrete Structures in Eastern United States," by A.M. Reinhorn, M.J. 

Seidel, S.K. Kunnath and Y.J. Park, 6/15/88, (PB89-122220, A04, MF-A01). This report is only available 
through NTIS (see address given above). 

 
NCEER-88-0017 "Dynamic Compliance of Vertically Loaded Strip Foundations in Multilayered Viscoelastic Soils," by S. 

Ahmad and A.S.M. Israil, 6/17/88, (PB89-102891, A04, MF-A01). 
 
NCEER-88-0018 "An Experimental Study of Seismic Structural Response With Added Viscoelastic Dampers," by R.C. Lin, Z. 

Liang, T.T. Soong and R.H. Zhang, 6/30/88, (PB89-122212, A05, MF-A01).  This report is available only 
through NTIS (see address given above). 

 
NCEER-88-0019 "Experimental Investigation of Primary - Secondary System Interaction," by G.D. Manolis, G. Juhn and 

A.M. Reinhorn, 5/27/88, (PB89-122204, A04, MF-A01). 
 
NCEER-88-0020 "A Response Spectrum Approach For Analysis of Nonclassically Damped Structures," by J.N. Yang, S. 

Sarkani and F.X. Long, 4/22/88, (PB89-102909, A04, MF-A01). 
 
NCEER-88-0021 "Seismic Interaction of Structures and Soils: Stochastic Approach," by A.S. Veletsos and A.M. Prasad, 

7/21/88, (PB89-122196, A04, MF-A01). This report is only available through NTIS (see address given 
above). 

 
NCEER-88-0022 "Identification of the Serviceability Limit State and Detection of Seismic Structural Damage," by E. 

DiPasquale and A.S. Cakmak, 6/15/88, (PB89-122188, A05, MF-A01).  This report is available only through 
NTIS (see address given above). 

 
NCEER-88-0023 "Multi-Hazard Risk Analysis: Case of a Simple Offshore Structure," by B.K. Bhartia and E.H. Vanmarcke, 

7/21/88, (PB89-145213, A05, MF-A01). 



 
 
 

228 
 
 

 
NCEER-88-0024 "Automated Seismic Design of Reinforced Concrete Buildings," by Y.S. Chung, C. Meyer and M. 

Shinozuka, 7/5/88, (PB89-122170, A06, MF-A01).  This report is available only through NTIS (see address 
given above). 

 
NCEER-88-0025 "Experimental Study of Active Control of MDOF Structures Under Seismic Excitations," by L.L. Chung, 

R.C. Lin, T.T. Soong and A.M. Reinhorn, 7/10/88, (PB89-122600, A04, MF-A01). 
 
NCEER-88-0026 "Earthquake Simulation Tests of a Low-Rise Metal Structure," by J.S. Hwang, K.C. Chang, G.C. Lee and 

R.L. Ketter, 8/1/88, (PB89-102917, A04, MF-A01). 
 
NCEER-88-0027 "Systems Study of Urban Response and Reconstruction Due to Catastrophic Earthquakes," by F. Kozin and 

H.K. Zhou, 9/22/88, (PB90-162348, A04, MF-A01). 
 
NCEER-88-0028 "Seismic Fragility Analysis of Plane Frame Structures," by H.H-M. Hwang and Y.K. Low, 7/31/88, (PB89-

131445, A06, MF-A01). 
 
NCEER-88-0029 "Response Analysis of Stochastic Structures," by A. Kardara, C. Bucher and M. Shinozuka, 9/22/88, (PB89-

174429, A04, MF-A01). 
 
NCEER-88-0030 "Nonnormal Accelerations Due to Yielding in a Primary Structure," by D.C.K. Chen and L.D. Lutes, 

9/19/88, (PB89-131437, A04, MF-A01). 
 
NCEER-88-0031 "Design Approaches for Soil-Structure Interaction," by A.S. Veletsos, A.M. Prasad and Y. Tang, 12/30/88, 

(PB89-174437, A03, MF-A01).  This report is available only through NTIS (see address given above). 
 
NCEER-88-0032 "A Re-evaluation of Design Spectra for Seismic Damage Control," by C.J. Turkstra and A.G. Tallin, 11/7/88, 

(PB89-145221, A05, MF-A01). 
 
NCEER-88-0033 "The Behavior and Design of Noncontact Lap Splices Subjected to Repeated Inelastic Tensile Loading," by 

V.E. Sagan, P. Gergely and R.N. White, 12/8/88, (PB89-163737, A08, MF-A01). 
 
NCEER-88-0034 "Seismic Response of Pile Foundations," by S.M. Mamoon, P.K. Banerjee and S. Ahmad, 11/1/88, (PB89-

145239, A04, MF-A01). 
 
NCEER-88-0035 "Modeling of R/C Building Structures With Flexible Floor Diaphragms (IDARC2)," by A.M. Reinhorn, S.K. 

Kunnath and N. Panahshahi, 9/7/88, (PB89-207153, A07, MF-A01). 
 
NCEER-88-0036 "Solution of the Dam-Reservoir Interaction Problem Using a Combination of FEM, BEM with Particular 

Integrals, Modal Analysis, and Substructuring," by C-S. Tsai, G.C. Lee and R.L. Ketter, 12/31/88, (PB89-
207146, A04, MF-A01). 

 
NCEER-88-0037 "Optimal Placement of Actuators for Structural Control," by F.Y. Cheng and C.P. Pantelides, 8/15/88, 

(PB89-162846, A05, MF-A01).  
 
NCEER-88-0038 "Teflon Bearings in Aseismic Base Isolation: Experimental Studies and Mathematical Modeling," by A. 

Mokha, M.C. Constantinou and A.M. Reinhorn, 12/5/88, (PB89-218457, A10, MF-A01). This report is 
available only through NTIS (see address given above). 

 
NCEER-88-0039 "Seismic Behavior of Flat Slab High-Rise Buildings in the New York City Area," by P. Weidlinger and M. 

Ettouney, 10/15/88, (PB90-145681, A04, MF-A01). 
 
NCEER-88-0040 "Evaluation of the Earthquake Resistance of Existing Buildings in New York City," by P. Weidlinger and M. 

Ettouney, 10/15/88, not available. 
 
NCEER-88-0041 "Small-Scale Modeling Techniques for Reinforced Concrete Structures Subjected to Seismic Loads," by W. 

Kim, A. El-Attar and R.N. White, 11/22/88, (PB89-189625, A05, MF-A01). 
 
NCEER-88-0042 "Modeling Strong Ground Motion from Multiple Event Earthquakes," by G.W. Ellis and A.S. Cakmak, 

10/15/88, (PB89-174445, A03, MF-A01). 
 



 
 
 

229 
 
 

NCEER-88-0043 "Nonstationary Models of Seismic Ground Acceleration," by M. Grigoriu, S.E. Ruiz and E. Rosenblueth, 
7/15/88, (PB89-189617, A04, MF-A01). 

 
NCEER-88-0044 "SARCF User's Guide: Seismic Analysis of Reinforced Concrete Frames," by Y.S. Chung, C. Meyer and M. 

Shinozuka, 11/9/88, (PB89-174452, A08, MF-A01). 
 
NCEER-88-0045 "First Expert Panel Meeting on Disaster Research and Planning," edited by J. Pantelic and J. Stoyle, 9/15/88, 

(PB89-174460, A05, MF-A01).  
 
NCEER-88-0046 "Preliminary Studies of the Effect of Degrading Infill Walls on the Nonlinear Seismic Response of Steel 

Frames," by C.Z. Chrysostomou, P. Gergely and J.F. Abel, 12/19/88, (PB89-208383, A05, MF-A01). 
 
NCEER-88-0047 "Reinforced Concrete Frame Component Testing Facility - Design, Construction, Instrumentation and 

Operation," by S.P. Pessiki, C. Conley, T. Bond, P. Gergely and R.N. White, 12/16/88, (PB89-174478, A04, 
MF-A01). 

 
NCEER-89-0001 "Effects of Protective Cushion and Soil Compliancy on the Response of Equipment Within a Seismically 

Excited Building," by J.A. HoLung, 2/16/89, (PB89-207179, A04, MF-A01). 
 
NCEER-89-0002 "Statistical Evaluation of Response Modification Factors for Reinforced Concrete Structures," by H.H-M. 

Hwang and J-W. Jaw, 2/17/89, (PB89-207187, A05, MF-A01). 
 
NCEER-89-0003 "Hysteretic Columns Under Random Excitation," by G-Q. Cai and Y.K. Lin, 1/9/89, (PB89-196513, A03, 

MF-A01).  
 
NCEER-89-0004 "Experimental Study of `Elephant Foot Bulge' Instability of Thin-Walled Metal Tanks," by Z-H. Jia and R.L. 

Ketter, 2/22/89, (PB89-207195, A03, MF-A01). 
 
NCEER-89-0005 "Experiment on Performance of Buried Pipelines Across San Andreas Fault," by J. Isenberg, E. Richardson 

and T.D. O'Rourke, 3/10/89, (PB89-218440, A04, MF-A01). This report is available only through NTIS (see 
address given above). 

 
NCEER-89-0006 "A Knowledge-Based Approach to Structural Design of Earthquake-Resistant Buildings," by M. Subramani, 

P. Gergely, C.H. Conley, J.F. Abel and A.H. Zaghw, 1/15/89, (PB89-218465, A06, MF-A01). 
 
NCEER-89-0007 "Liquefaction Hazards and Their Effects on Buried Pipelines," by T.D. O'Rourke and P.A. Lane, 2/1/89, 

(PB89-218481, A09, MF-A01). 
 
NCEER-89-0008 "Fundamentals of System Identification in Structural Dynamics," by H. Imai, C-B. Yun, O. Maruyama and 

M. Shinozuka, 1/26/89, (PB89-207211, A04, MF-A01). 
 
NCEER-89-0009 "Effects of the 1985 Michoacan Earthquake on Water Systems and Other Buried Lifelines in Mexico," by 

A.G. Ayala and M.J. O'Rourke, 3/8/89, (PB89-207229, A06, MF-A01). 
 
NCEER-89-R010 "NCEER Bibliography of Earthquake Education Materials," by K.E.K. Ross, Second Revision, 9/1/89, 

(PB90-125352, A05, MF-A01). This report is replaced by NCEER-92-0018. 
 
NCEER-89-0011 "Inelastic Three-Dimensional Response Analysis of Reinforced Concrete Building Structures (IDARC-3D), 

Part I - Modeling," by S.K. Kunnath and A.M. Reinhorn, 4/17/89, (PB90-114612, A07, MF-A01). This 
report is available only through NTIS (see address given above). 

 
NCEER-89-0012 "Recommended Modifications to ATC-14," by C.D. Poland and J.O. Malley, 4/12/89, (PB90-108648, A15, 

MF-A01). 
 
NCEER-89-0013 "Repair and Strengthening of Beam-to-Column Connections Subjected to Earthquake Loading," by M. 

Corazao and A.J. Durrani, 2/28/89, (PB90-109885, A06, MF-A01). 
 
NCEER-89-0014 "Program EXKAL2 for Identification of Structural Dynamic Systems," by O. Maruyama, C-B. Yun, M. 

Hoshiya and M. Shinozuka, 5/19/89, (PB90-109877, A09, MF-A01). 
 



 
 
 

230 
 
 

NCEER-89-0015 "Response of Frames With Bolted Semi-Rigid Connections, Part I - Experimental Study and Analytical 
Predictions," by P.J. DiCorso, A.M. Reinhorn, J.R. Dickerson, J.B. Radziminski and W.L. Harper, 6/1/89, 
not available. 

 
NCEER-89-0016 "ARMA Monte Carlo Simulation in Probabilistic Structural Analysis," by P.D. Spanos and M.P. Mignolet, 

7/10/89, (PB90-109893, A03, MF-A01). 
 
NCEER-89-P017 "Preliminary Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake 

Education in Our Schools," Edited by K.E.K. Ross, 6/23/89, (PB90-108606, A03, MF-A01). 
 
NCEER-89-0017 "Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake Education in Our 

Schools," Edited by K.E.K. Ross, 12/31/89, (PB90-207895, A012, MF-A02). This report is available only 
through NTIS (see address given above). 

 
NCEER-89-0018 "Multidimensional Models of Hysteretic Material Behavior for Vibration Analysis of Shape Memory Energy 

Absorbing Devices, by E.J. Graesser and F.A. Cozzarelli, 6/7/89, (PB90-164146, A04, MF-A01). 
 
NCEER-89-0019 "Nonlinear Dynamic Analysis of Three-Dimensional Base Isolated Structures (3D-BASIS)," by S. 

Nagarajaiah, A.M. Reinhorn and M.C. Constantinou, 8/3/89, (PB90-161936, A06, MF-A01).  This report has 
been replaced by NCEER-93-0011. 

 
NCEER-89-0020 "Structural Control Considering Time-Rate of Control Forces and Control Rate Constraints," by F.Y. Cheng 

and C.P. Pantelides, 8/3/89, (PB90-120445, A04, MF-A01). 
 
NCEER-89-0021 "Subsurface Conditions of Memphis and Shelby County," by K.W. Ng, T-S. Chang and H-H.M. Hwang, 

7/26/89, (PB90-120437, A03, MF-A01). 
 
NCEER-89-0022 "Seismic Wave Propagation Effects on Straight Jointed Buried Pipelines," by K. Elhmadi and M.J. O'Rourke, 

8/24/89, (PB90-162322, A10, MF-A02). 
 
NCEER-89-0023 "Workshop on Serviceability Analysis of Water Delivery Systems," edited by M. Grigoriu, 3/6/89, (PB90-

127424, A03, MF-A01). 
 
NCEER-89-0024 "Shaking Table Study of a 1/5 Scale Steel Frame Composed of Tapered Members," by K.C. Chang, J.S. 

Hwang and G.C. Lee, 9/18/89, (PB90-160169, A04, MF-A01). 
 
NCEER-89-0025 "DYNA1D: A Computer Program for Nonlinear Seismic Site Response Analysis - Technical 

Documentation," by Jean H. Prevost, 9/14/89, (PB90-161944, A07, MF-A01).  This report is available only 
through NTIS (see address given above). 

 
NCEER-89-0026 "1:4 Scale Model Studies of Active Tendon Systems and Active Mass Dampers for Aseismic Protection," by 

A.M. Reinhorn, T.T. Soong, R.C. Lin, Y.P. Yang, Y. Fukao, H. Abe and M. Nakai, 9/15/89, (PB90-173246, 
A10, MF-A02). This report is available only through NTIS (see address given above). 

 
NCEER-89-0027 "Scattering of Waves by Inclusions in a Nonhomogeneous Elastic Half Space Solved by Boundary Element 

Methods," by P.K. Hadley, A. Askar  and A.S. Cakmak, 6/15/89, (PB90-145699, A07, MF-A01). 
 
NCEER-89-0028 "Statistical Evaluation of Deflection Amplification Factors for Reinforced Concrete Structures," by H.H.M. 

Hwang, J-W. Jaw and A.L. Ch'ng, 8/31/89, (PB90-164633, A05, MF-A01). 
 
NCEER-89-0029 "Bedrock Accelerations in Memphis Area Due to Large New Madrid Earthquakes," by H.H.M. Hwang, 

C.H.S. Chen and G. Yu, 11/7/89, (PB90-162330, A04, MF-A01). 
 
NCEER-89-0030 "Seismic Behavior and Response Sensitivity of Secondary Structural Systems," by Y.Q. Chen and T.T. 

Soong, 10/23/89, (PB90-164658, A08, MF-A01). 
 
NCEER-89-0031 "Random Vibration and Reliability Analysis of Primary-Secondary Structural Systems," by Y. Ibrahim, M. 

Grigoriu and T.T. Soong, 11/10/89, (PB90-161951, A04, MF-A01). 
 



 
 
 

231 
 
 

NCEER-89-0032 "Proceedings from the Second U.S. - Japan Workshop on Liquefaction, Large Ground Deformation and 
Their Effects on Lifelines, September 26-29, 1989," Edited by T.D. O'Rourke and M. Hamada, 12/1/89, 
(PB90-209388, A22, MF-A03). 

 
NCEER-89-0033 "Deterministic Model for Seismic Damage Evaluation of Reinforced Concrete Structures," by J.M. Bracci, 

A.M. Reinhorn, J.B. Mander and S.K. Kunnath, 9/27/89, (PB91-108803, A06, MF-A01). 
 
NCEER-89-0034 "On the Relation Between Local and Global Damage Indices," by E. DiPasquale and A.S. Cakmak, 8/15/89, 

(PB90-173865, A05, MF-A01). 
 
NCEER-89-0035 "Cyclic Undrained Behavior of Nonplastic and Low Plasticity Silts," by A.J. Walker and H.E. Stewart, 

7/26/89, (PB90-183518, A10, MF-A01). 
 
NCEER-89-0036 "Liquefaction Potential of Surficial Deposits in the City of Buffalo, New York," by M. Budhu, R. Giese and 

L. Baumgrass, 1/17/89, (PB90-208455, A04, MF-A01). 
 
NCEER-89-0037 "A Deterministic Assessment of Effects of Ground Motion Incoherence," by A.S. Veletsos and Y. Tang, 

7/15/89, (PB90-164294, A03, MF-A01). 
 
NCEER-89-0038 "Workshop on Ground Motion Parameters for Seismic Hazard Mapping," July 17-18, 1989, edited by R.V. 

Whitman, 12/1/89, (PB90-173923, A04, MF-A01). 
 
NCEER-89-0039 "Seismic Effects on Elevated Transit Lines of the New York City Transit Authority," by C.J. Costantino, 

C.A. Miller and E. Heymsfield, 12/26/89, (PB90-207887, A06, MF-A01). 
 
NCEER-89-0040 "Centrifugal Modeling of Dynamic Soil-Structure Interaction," by K. Weissman, Supervised by J.H. Prevost, 

5/10/89, (PB90-207879, A07, MF-A01). 
 
NCEER-89-0041 "Linearized Identification of Buildings With Cores for Seismic Vulnerability Assessment," by I-K. Ho and 

A.E. Aktan, 11/1/89, (PB90-251943, A07, MF-A01). 
 
NCEER-90-0001 "Geotechnical and Lifeline Aspects of the October 17, 1989 Loma Prieta Earthquake in San Francisco," by 

T.D. O'Rourke, H.E. Stewart, F.T. Blackburn and T.S. Dickerman, 1/90, (PB90-208596, A05, MF-A01). 
 
NCEER-90-0002 "Nonnormal Secondary Response Due to Yielding in a Primary Structure," by D.C.K. Chen and L.D. Lutes, 

2/28/90, (PB90-251976, A07, MF-A01). 
 
NCEER-90-0003 "Earthquake Education Materials for Grades K-12," by K.E.K. Ross, 4/16/90, (PB91-251984, A05, MF-

A05). This report has been replaced by NCEER-92-0018. 
 
NCEER-90-0004 "Catalog of Strong Motion Stations in Eastern North America," by R.W. Busby, 4/3/90, (PB90-251984, A05, 

MF-A01). 
 
NCEER-90-0005 "NCEER Strong-Motion Data Base: A User Manual for the GeoBase Release (Version 1.0 for the Sun3)," by 

P. Friberg and K. Jacob, 3/31/90 (PB90-258062, A04, MF-A01). 
 
NCEER-90-0006 "Seismic Hazard Along a Crude Oil Pipeline in the Event of an 1811-1812 Type New Madrid Earthquake," 

by H.H.M. Hwang and C-H.S. Chen, 4/16/90, (PB90-258054, A04, MF-A01). 
 
NCEER-90-0007 "Site-Specific Response Spectra for Memphis Sheahan Pumping Station," by H.H.M. Hwang and C.S. Lee, 

5/15/90, (PB91-108811, A05, MF-A01). 
 
NCEER-90-0008 "Pilot Study on Seismic Vulnerability of Crude Oil Transmission Systems," by T. Ariman, R. Dobry, M. 

Grigoriu, F. Kozin, M. O'Rourke, T. O'Rourke and M. Shinozuka, 5/25/90, (PB91-108837, A06, MF-A01). 
 
NCEER-90-0009 "A Program to Generate Site Dependent Time Histories: EQGEN," by G.W. Ellis, M. Srinivasan and A.S. 

Cakmak, 1/30/90, (PB91-108829, A04, MF-A01). 
 
NCEER-90-0010 "Active Isolation for Seismic Protection of Operating Rooms," by M.E. Talbott, Supervised by M. 

Shinozuka, 6/8/9, (PB91-110205, A05, MF-A01). 
 



 
 
 

232 
 
 

NCEER-90-0011 "Program LINEARID for Identification of Linear Structural Dynamic Systems," by C-B. Yun and M. 
Shinozuka, 6/25/90, (PB91-110312, A08, MF-A01). 

 
NCEER-90-0012 "Two-Dimensional Two-Phase Elasto-Plastic Seismic Response of Earth Dams," by A.N. Yiagos, Supervised 

by J.H. Prevost, 6/20/90, (PB91-110197, A13, MF-A02). 
 
NCEER-90-0013 "Secondary Systems in Base-Isolated Structures: Experimental Investigation, Stochastic Response and 

Stochastic Sensitivity," by G.D. Manolis, G. Juhn, M.C. Constantinou and A.M. Reinhorn, 7/1/90, (PB91-
110320, A08, MF-A01). 

 
NCEER-90-0014 "Seismic Behavior of Lightly-Reinforced Concrete Column and Beam-Column Joint Details," by S.P. 

Pessiki, C.H. Conley, P. Gergely and R.N. White, 8/22/90, (PB91-108795, A11, MF-A02). 
 
NCEER-90-0015 "Two Hybrid Control Systems for Building Structures Under Strong Earthquakes," by J.N. Yang and A. 

Danielians, 6/29/90, (PB91-125393, A04, MF-A01). 
 
NCEER-90-0016 "Instantaneous Optimal Control with Acceleration and Velocity Feedback," by J.N. Yang and Z. Li, 6/29/90, 

(PB91-125401, A03, MF-A01). 
 
NCEER-90-0017 "Reconnaissance Report on the Northern Iran Earthquake of June 21, 1990," by M. Mehrain, 10/4/90, (PB91-

125377, A03, MF-A01). 
 
NCEER-90-0018 "Evaluation of Liquefaction Potential in Memphis and Shelby County," by T.S. Chang, P.S. Tang, C.S. Lee 

and H. Hwang, 8/10/90, (PB91-125427, A09, MF-A01). 
 
NCEER-90-0019 "Experimental and Analytical Study of a Combined Sliding Disc Bearing and Helical Steel Spring Isolation 

System," by M.C. Constantinou, A.S. Mokha and A.M. Reinhorn, 10/4/90, (PB91-125385, A06, MF-A01). 
This report is available only through NTIS (see address given above). 

 
NCEER-90-0020 "Experimental Study and Analytical Prediction of Earthquake Response of a Sliding Isolation System with a 

Spherical Surface," by A.S. Mokha, M.C. Constantinou and A.M. Reinhorn, 10/11/90, (PB91-125419, A05, 
MF-A01). 

 
NCEER-90-0021 "Dynamic Interaction Factors for Floating Pile Groups," by G. Gazetas, K. Fan, A. Kaynia and E. Kausel, 

9/10/90, (PB91-170381, A05, MF-A01). 
 
NCEER-90-0022 "Evaluation of Seismic Damage Indices for Reinforced Concrete Structures," by S. Rodriguez-Gomez and 

A.S. Cakmak, 9/30/90, PB91-171322, A06, MF-A01). 
 
NCEER-90-0023 "Study of Site Response at a Selected Memphis Site," by H. Desai, S. Ahmad, E.S. Gazetas and M.R. Oh, 

10/11/90, (PB91-196857, A03, MF-A01). 
 
NCEER-90-0024 "A User's Guide to Strongmo: Version 1.0 of NCEER's Strong-Motion Data Access Tool for PCs and 

Terminals," by P.A. Friberg and C.A.T. Susch, 11/15/90, (PB91-171272, A03, MF-A01). 
 
NCEER-90-0025 "A Three-Dimensional Analytical Study of Spatial Variability of Seismic Ground Motions," by L-L. Hong 

and A.H.-S. Ang, 10/30/90, (PB91-170399, A09, MF-A01). 
 
NCEER-90-0026 "MUMOID User's Guide - A Program for the Identification of  Modal Parameters,"  by S. Rodriguez-Gomez 

and E. DiPasquale, 9/30/90, (PB91-171298, A04, MF-A01). 
 
NCEER-90-0027 "SARCF-II User's Guide - Seismic Analysis of Reinforced Concrete Frames," by S. Rodriguez-Gomez, Y.S. 

Chung and C. Meyer, 9/30/90, (PB91-171280, A05, MF-A01). 
 
NCEER-90-0028 "Viscous Dampers: Testing, Modeling and Application in Vibration and Seismic Isolation," by N. Makris 

and M.C. Constantinou, 12/20/90 (PB91-190561, A06, MF-A01). 
 
NCEER-90-0029 "Soil Effects on Earthquake Ground Motions in the Memphis Area," by H. Hwang, C.S. Lee, K.W. Ng and 

T.S. Chang, 8/2/90, (PB91-190751, A05, MF-A01). 
 



 
 
 

233 
 
 

NCEER-91-0001 "Proceedings from the Third Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and 
Countermeasures for Soil Liquefaction, December 17-19, 1990," edited by T.D. O'Rourke and M. Hamada, 
2/1/91, (PB91-179259, A99, MF-A04). 

 
NCEER-91-0002 "Physical Space Solutions of Non-Proportionally Damped Systems," by M. Tong, Z. Liang and G.C. Lee, 

1/15/91, (PB91-179242, A04, MF-A01). 
 
NCEER-91-0003 "Seismic Response of Single Piles and Pile Groups," by K. Fan and G. Gazetas, 1/10/91, (PB92-174994, 

A04, MF-A01). 
 
NCEER-91-0004 "Damping of Structures: Part 1 - Theory of Complex Damping," by Z. Liang and G. Lee, 10/10/91, (PB92-

197235, A12, MF-A03). 
 
NCEER-91-0005 "3D-BASIS - Nonlinear Dynamic Analysis of Three Dimensional Base Isolated Structures: Part II," by S. 

Nagarajaiah, A.M. Reinhorn and M.C. Constantinou, 2/28/91, (PB91-190553, A07, MF-A01). This report 
has been replaced by NCEER-93-0011. 

 
NCEER-91-0006 "A Multidimensional Hysteretic Model for Plasticity Deforming Metals in Energy Absorbing Devices," by 

E.J. Graesser and F.A. Cozzarelli, 4/9/91, (PB92-108364, A04, MF-A01). 
 
NCEER-91-0007 "A Framework for Customizable Knowledge-Based Expert Systems with an Application to a KBES for 

Evaluating the Seismic Resistance of Existing Buildings," by E.G. Ibarra-Anaya and S.J. Fenves, 4/9/91, 
(PB91-210930, A08, MF-A01). 

 
NCEER-91-0008 "Nonlinear Analysis of Steel Frames with Semi-Rigid Connections Using the Capacity Spectrum Method," 

by G.G. Deierlein, S-H. Hsieh, Y-J. Shen and J.F. Abel, 7/2/91, (PB92-113828, A05, MF-A01). 
 
NCEER-91-0009 "Earthquake Education Materials for Grades K-12," by K.E.K. Ross, 4/30/91, (PB91-212142, A06, MF-

A01). This report has been replaced by NCEER-92-0018. 
 
NCEER-91-0010 "Phase Wave Velocities and Displacement Phase Differences in a Harmonically Oscillating Pile," by N. 

Makris and G. Gazetas, 7/8/91, (PB92-108356, A04, MF-A01). 
 
NCEER-91-0011 "Dynamic Characteristics of a Full-Size Five-Story Steel Structure and a 2/5 Scale Model," by K.C. Chang, 

G.C. Yao, G.C. Lee, D.S. Hao and Y.C. Yeh," 7/2/91, (PB93-116648, A06, MF-A02). 
 
NCEER-91-0012 "Seismic Response of a 2/5 Scale Steel Structure with Added Viscoelastic Dampers," by K.C. Chang, T.T. 

Soong, S-T. Oh and M.L. Lai, 5/17/91, (PB92-110816, A05, MF-A01). 
 
NCEER-91-0013 "Earthquake Response of Retaining Walls; Full-Scale Testing and Computational Modeling," by S. 

Alampalli and A-W.M. Elgamal, 6/20/91, not available. 
 
NCEER-91-0014 "3D-BASIS-M: Nonlinear Dynamic Analysis of Multiple Building Base Isolated Structures," by P.C. 

Tsopelas, S. Nagarajaiah, M.C. Constantinou and A.M. Reinhorn, 5/28/91, (PB92-113885, A09, MF-A02). 
 
NCEER-91-0015 "Evaluation of SEAOC Design Requirements for Sliding Isolated Structures," by D. Theodossiou and M.C. 

Constantinou, 6/10/91, (PB92-114602, A11, MF-A03). 
 
NCEER-91-0016 "Closed-Loop Modal Testing of a 27-Story Reinforced Concrete Flat Plate-Core Building," by H.R. 

Somaprasad, T. Toksoy, H. Yoshiyuki and A.E. Aktan, 7/15/91, (PB92-129980, A07, MF-A02). 
 
NCEER-91-0017 "Shake Table Test of a 1/6 Scale Two-Story Lightly Reinforced Concrete Building," by A.G. El-Attar, R.N. 

White and P. Gergely, 2/28/91, (PB92-222447, A06, MF-A02). 
 
NCEER-91-0018 "Shake Table Test of a 1/8 Scale Three-Story Lightly Reinforced Concrete Building," by A.G. El-Attar, R.N. 

White and P. Gergely, 2/28/91, (PB93-116630, A08, MF-A02). 
 
NCEER-91-0019 "Transfer Functions for Rigid Rectangular Foundations," by A.S. Veletsos, A.M. Prasad and W.H. Wu, 

7/31/91, not available. 
 



 
 
 

234 
 
 

NCEER-91-0020 "Hybrid Control of Seismic-Excited Nonlinear and Inelastic Structural Systems," by J.N. Yang, Z. Li and A. 
Danielians, 8/1/91, (PB92-143171, A06, MF-A02). 

 
NCEER-91-0021 "The NCEER-91 Earthquake Catalog: Improved Intensity-Based Magnitudes and Recurrence Relations for 

U.S. Earthquakes  East of New Madrid," by L. Seeber and J.G. Armbruster, 8/28/91, (PB92-176742, A06, 
MF-A02). 

 
NCEER-91-0022 "Proceedings from the Implementation of Earthquake Planning and Education in Schools: The Need for 

Change - The Roles of the Changemakers," by K.E.K. Ross and F. Winslow, 7/23/91, (PB92-129998, A12, 
MF-A03). 

 
NCEER-91-0023 "A Study of Reliability-Based Criteria for Seismic Design of Reinforced Concrete Frame Buildings," by 

H.H.M. Hwang and H-M. Hsu, 8/10/91, (PB92-140235, A09, MF-A02). 
 
NCEER-91-0024 "Experimental Verification of a Number of Structural System Identification Algorithms," by R.G. Ghanem, 

H. Gavin and M. Shinozuka, 9/18/91, (PB92-176577, A18, MF-A04). 
 
NCEER-91-0025 "Probabilistic Evaluation of Liquefaction Potential," by H.H.M. Hwang and C.S. Lee," 11/25/91, (PB92-

143429, A05, MF-A01). 
 
NCEER-91-0026 "Instantaneous Optimal Control for Linear, Nonlinear and Hysteretic Structures - Stable Controllers," by J.N. 

Yang and Z. Li, 11/15/91, (PB92-163807, A04, MF-A01). 
 
NCEER-91-0027 "Experimental and Theoretical Study of a Sliding Isolation System for Bridges," by M.C. Constantinou, A. 

Kartoum, A.M. Reinhorn and P. Bradford, 11/15/91, (PB92-176973, A10, MF-A03). 
 
NCEER-92-0001 "Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Volume 1: Japanese Case 

Studies," Edited by M. Hamada and T. O'Rourke, 2/17/92, (PB92-197243, A18, MF-A04). 
 
NCEER-92-0002 "Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Volume 2: United States 

Case Studies," Edited by T. O'Rourke and M. Hamada, 2/17/92, (PB92-197250, A20, MF-A04). 
 
NCEER-92-0003 "Issues in Earthquake Education," Edited by K. Ross, 2/3/92, (PB92-222389, A07, MF-A02). 
 
NCEER-92-0004 "Proceedings from the First U.S. - Japan Workshop on Earthquake Protective Systems for Bridges," Edited 

by I.G. Buckle, 2/4/92, (PB94-142239, A99, MF-A06). 
 
NCEER-92-0005 "Seismic Ground Motion from a Haskell-Type Source in a Multiple-Layered Half-Space," A.P. Theoharis, G. 

Deodatis and M. Shinozuka, 1/2/92, not available. 
 
NCEER-92-0006 "Proceedings from the Site Effects Workshop," Edited by R. Whitman, 2/29/92, (PB92-197201, A04, MF-

A01). 
 
NCEER-92-0007 "Engineering Evaluation of Permanent Ground Deformations Due to Seismically-Induced Liquefaction," by 

M.H. Baziar, R. Dobry and A-W.M. Elgamal, 3/24/92, (PB92-222421, A13, MF-A03). 
 
NCEER-92-0008 "A Procedure for the Seismic Evaluation of Buildings in the Central and Eastern United States," by C.D. 

Poland and J.O. Malley, 4/2/92, (PB92-222439, A20, MF-A04). 
 
NCEER-92-0009 "Experimental and Analytical Study of a Hybrid Isolation System Using Friction Controllable Sliding 

Bearings," by M.Q. Feng, S. Fujii and M. Shinozuka, 5/15/92, (PB93-150282, A06, MF-A02). 
 
NCEER-92-0010 "Seismic Resistance of Slab-Column Connections in Existing Non-Ductile Flat-Plate Buildings," by A.J. 

Durrani and Y. Du, 5/18/92, (PB93-116812, A06, MF-A02). 
 
NCEER-92-0011 "The Hysteretic and Dynamic Behavior of Brick Masonry Walls Upgraded by Ferrocement Coatings Under 

Cyclic Loading and Strong Simulated Ground Motion," by H. Lee and S.P. Prawel, 5/11/92, not available. 
 
NCEER-92-0012 "Study of Wire Rope Systems for Seismic Protection of Equipment in Buildings," by G.F. Demetriades, 

M.C. Constantinou and A.M. Reinhorn, 5/20/92, (PB93-116655, A08, MF-A02). 
 



 
 
 

235 
 
 

NCEER-92-0013 "Shape Memory Structural Dampers: Material Properties, Design and Seismic Testing," by P.R. Witting and 
F.A. Cozzarelli, 5/26/92, (PB93-116663, A05, MF-A01). 

 
NCEER-92-0014 "Longitudinal Permanent Ground Deformation Effects on Buried Continuous Pipelines," by M.J. O'Rourke, 

and C. Nordberg, 6/15/92, (PB93-116671, A08, MF-A02). 
 
NCEER-92-0015 "A Simulation Method for Stationary Gaussian Random Functions Based on the Sampling Theorem," by M. 

Grigoriu and S. Balopoulou, 6/11/92, (PB93-127496, A05, MF-A01). 
 
NCEER-92-0016 "Gravity-Load-Designed Reinforced Concrete Buildings: Seismic Evaluation of Existing Construction and 

Detailing Strategies for Improved Seismic Resistance," by G.W. Hoffmann, S.K. Kunnath, A.M. Reinhorn 
and J.B. Mander, 7/15/92, (PB94-142007, A08, MF-A02). 

 
NCEER-92-0017 "Observations on Water System and Pipeline Performance in the Limón Area of Costa Rica Due to the April 

22, 1991 Earthquake," by M. O'Rourke and D. Ballantyne, 6/30/92, (PB93-126811, A06, MF-A02). 
 
NCEER-92-0018 "Fourth Edition of Earthquake Education Materials for Grades K-12," Edited by K.E.K. Ross, 8/10/92, 

(PB93-114023, A07, MF-A02). 
 
NCEER-92-0019 "Proceedings from the Fourth Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities 

and Countermeasures for Soil Liquefaction," Edited by M. Hamada and T.D. O'Rourke, 8/12/92, (PB93-
163939, A99, MF-E11). 

 
NCEER-92-0020 "Active Bracing System: A Full Scale Implementation of Active Control," by A.M. Reinhorn, T.T. Soong, 

R.C. Lin, M.A. Riley, Y.P. Wang, S. Aizawa and M. Higashino, 8/14/92, (PB93-127512, A06, MF-A02). 
 
NCEER-92-0021 "Empirical Analysis of Horizontal Ground Displacement Generated by Liquefaction-Induced Lateral 

Spreads," by S.F. Bartlett and T.L. Youd, 8/17/92, (PB93-188241, A06, MF-A02). 
 
NCEER-92-0022 "IDARC Version 3.0: Inelastic Damage Analysis of Reinforced Concrete Structures," by S.K. Kunnath, A.M. 

Reinhorn and R.F. Lobo, 8/31/92, (PB93-227502, A07, MF-A02). 
 
NCEER-92-0023 "A Semi-Empirical Analysis of Strong-Motion Peaks in Terms of Seismic Source, Propagation Path and 

Local Site Conditions, by M. Kamiyama, M.J. O'Rourke and R. Flores-Berrones, 9/9/92, (PB93-150266, 
A08, MF-A02). 

 
NCEER-92-0024 "Seismic Behavior of Reinforced Concrete Frame Structures with Nonductile Details, Part I: Summary of 

Experimental Findings of Full Scale Beam-Column Joint Tests," by A. Beres, R.N. White and P. Gergely, 
9/30/92, (PB93-227783, A05, MF-A01). 

 
NCEER-92-0025 "Experimental Results of Repaired and Retrofitted Beam-Column Joint Tests in Lightly Reinforced Concrete 

Frame Buildings," by A. Beres, S. El-Borgi, R.N. White and P. Gergely, 10/29/92, (PB93-227791, A05, MF-
A01). 

 
NCEER-92-0026 "A Generalization of Optimal Control Theory: Linear and Nonlinear Structures," by J.N. Yang, Z. Li and S. 

Vongchavalitkul, 11/2/92, (PB93-188621, A05, MF-A01). 
 
NCEER-92-0027 "Seismic Resistance of Reinforced Concrete Frame Structures Designed Only for Gravity Loads: Part I -

Design and Properties of a One-Third Scale Model Structure," by J.M. Bracci, A.M. Reinhorn and J.B. 
Mander, 12/1/92, (PB94-104502, A08, MF-A02). 

 
NCEER-92-0028 "Seismic Resistance of Reinforced Concrete Frame Structures Designed Only for Gravity Loads: Part II -

Experimental Performance of Subassemblages," by L.E. Aycardi, J.B. Mander and A.M. Reinhorn, 12/1/92, 
(PB94-104510, A08, MF-A02). 

 
NCEER-92-0029 "Seismic Resistance of Reinforced Concrete Frame Structures Designed Only for Gravity Loads: Part III - 

Experimental Performance and Analytical Study of a Structural Model," by J.M. Bracci, A.M. Reinhorn and 
J.B. Mander, 12/1/92, (PB93-227528, A09, MF-A01). 

 



 
 
 

236 
 
 

NCEER-92-0030 "Evaluation of Seismic Retrofit of Reinforced Concrete Frame Structures: Part I - Experimental Performance 
of Retrofitted Subassemblages," by D. Choudhuri, J.B. Mander and A.M. Reinhorn, 12/8/92, (PB93-198307, 
A07, MF-A02). 

 
NCEER-92-0031 "Evaluation of Seismic Retrofit of Reinforced Concrete Frame Structures: Part II - Experimental 

Performance and Analytical Study of a Retrofitted Structural Model," by J.M. Bracci, A.M. Reinhorn and 
J.B. Mander, 12/8/92, (PB93-198315, A09, MF-A03). 

 
NCEER-92-0032 "Experimental and Analytical Investigation of Seismic Response of Structures with Supplemental Fluid 

Viscous Dampers," by M.C. Constantinou and M.D. Symans, 12/21/92, (PB93-191435, A10, MF-A03). This 
report is available only through NTIS (see address given above). 

 
NCEER-92-0033 "Reconnaissance Report on the Cairo, Egypt Earthquake of October 12, 1992," by M. Khater, 12/23/92, 

(PB93-188621, A03, MF-A01). 
 
NCEER-92-0034 "Low-Level Dynamic Characteristics of Four Tall Flat-Plate Buildings in New York City," by H. Gavin, S. 

Yuan, J. Grossman, E. Pekelis and K. Jacob, 12/28/92, (PB93-188217, A07, MF-A02). 
 
NCEER-93-0001 "An Experimental Study on the Seismic Performance of Brick-Infilled Steel Frames With and Without 

Retrofit," by J.B. Mander, B. Nair, K. Wojtkowski and J. Ma, 1/29/93, (PB93-227510, A07, MF-A02). 
 
NCEER-93-0002 "Social Accounting for Disaster Preparedness and Recovery Planning," by S. Cole, E. Pantoja and V. Razak, 

2/22/93, (PB94-142114, A12, MF-A03). 
 
NCEER-93-0003 "Assessment of 1991 NEHRP Provisions for Nonstructural Components and Recommended Revisions," by 

T.T. Soong, G. Chen, Z. Wu, R-H. Zhang and M. Grigoriu, 3/1/93, (PB93-188639, A06, MF-A02). 
 
NCEER-93-0004 "Evaluation of Static and Response Spectrum Analysis Procedures of SEAOC/UBC for Seismic Isolated 

Structures," by C.W. Winters and M.C. Constantinou, 3/23/93, (PB93-198299, A10, MF-A03). 
 
NCEER-93-0005 "Earthquakes in the Northeast - Are We Ignoring the Hazard? A Workshop on Earthquake Science and 

Safety for Educators," edited by K.E.K. Ross, 4/2/93, (PB94-103066, A09, MF-A02). 
 
NCEER-93-0006 "Inelastic Response of Reinforced Concrete Structures with Viscoelastic Braces," by R.F. Lobo, J.M. Bracci, 

K.L. Shen, A.M. Reinhorn and T.T. Soong, 4/5/93, (PB93-227486, A05, MF-A02). 
 
NCEER-93-0007 "Seismic Testing of Installation Methods for Computers and Data Processing Equipment," by K. Kosar, T.T. 

Soong, K.L. Shen, J.A. HoLung and Y.K. Lin, 4/12/93, (PB93-198299, A07, MF-A02). 
 
NCEER-93-0008 "Retrofit of Reinforced Concrete Frames Using Added Dampers," by A. Reinhorn, M. Constantinou and C. 

Li, not available. 
 
NCEER-93-0009 "Seismic Behavior and Design Guidelines for Steel Frame Structures with Added Viscoelastic Dampers," by 

K.C. Chang, M.L. Lai, T.T. Soong, D.S. Hao and Y.C. Yeh, 5/1/93, (PB94-141959, A07, MF-A02). 
 
NCEER-93-0010 "Seismic Performance of Shear-Critical Reinforced Concrete Bridge Piers," by J.B. Mander, S.M. Waheed, 

M.T.A. Chaudhary and S.S. Chen, 5/12/93, (PB93-227494, A08, MF-A02). 
 
NCEER-93-0011 "3D-BASIS-TABS: Computer Program for Nonlinear Dynamic Analysis of Three Dimensional Base Isolated 

Structures," by S. Nagarajaiah, C. Li, A.M. Reinhorn and M.C. Constantinou, 8/2/93, (PB94-141819, A09, 
MF-A02). 

 
NCEER-93-0012 "Effects of Hydrocarbon Spills from an Oil Pipeline Break on Ground Water," by O.J. Helweg and H.H.M. 

Hwang, 8/3/93, (PB94-141942, A06, MF-A02). 
 
NCEER-93-0013 "Simplified Procedures for Seismic Design of Nonstructural Components and Assessment of Current Code 

Provisions," by M.P. Singh, L.E. Suarez, E.E. Matheu and G.O. Maldonado, 8/4/93, (PB94-141827, A09, 
MF-A02). 

 
NCEER-93-0014 "An Energy Approach to Seismic Analysis and Design of Secondary Systems," by G. Chen and T.T. Soong, 

8/6/93, (PB94-142767, A11, MF-A03). 



 
 
 

237 
 
 

 
NCEER-93-0015 "Proceedings from School Sites: Becoming Prepared for Earthquakes - Commemorating the Third 

Anniversary of the Loma Prieta Earthquake," Edited by F.E. Winslow and K.E.K. Ross, 8/16/93, (PB94-
154275, A16, MF-A02). 

 
NCEER-93-0016 "Reconnaissance Report of Damage to Historic Monuments in Cairo, Egypt Following the October 12, 1992 

Dahshur Earthquake," by D. Sykora, D. Look, G. Croci, E. Karaesmen and E. Karaesmen, 8/19/93, (PB94-
142221, A08, MF-A02). 

 
NCEER-93-0017 "The Island of Guam Earthquake of August 8, 1993," by S.W. Swan and S.K. Harris, 9/30/93, (PB94-

141843, A04, MF-A01). 
 
NCEER-93-0018 "Engineering Aspects of the October 12, 1992 Egyptian Earthquake," by A.W. Elgamal, M. Amer, K. 

Adalier and A. Abul-Fadl, 10/7/93, (PB94-141983, A05, MF-A01). 
 
NCEER-93-0019 "Development of an Earthquake Motion Simulator and its Application in Dynamic Centrifuge Testing," by I. 

Krstelj, Supervised by J.H. Prevost, 10/23/93, (PB94-181773, A-10, MF-A03). 
 
NCEER-93-0020 "NCEER-Taisei Corporation Research Program on Sliding Seismic Isolation Systems for Bridges: 

Experimental and Analytical Study of a Friction Pendulum System (FPS)," by M.C. Constantinou, P. 
Tsopelas, Y-S. Kim and S. Okamoto, 11/1/93, (PB94-142775, A08, MF-A02). 

 
NCEER-93-0021 "Finite Element Modeling of Elastomeric Seismic Isolation Bearings," by L.J. Billings, Supervised by R. 

Shepherd, 11/8/93, not available. 
 
NCEER-93-0022 "Seismic Vulnerability of Equipment in Critical Facilities: Life-Safety and Operational Consequences," by 

K. Porter, G.S. Johnson, M.M. Zadeh, C. Scawthorn and S. Eder, 11/24/93, (PB94-181765, A16, MF-A03). 
 
NCEER-93-0023 "Hokkaido Nansei-oki, Japan Earthquake of July 12, 1993, by P.I. Yanev and C.R. Scawthorn, 12/23/93, 

(PB94-181500, A07, MF-A01). 
 
NCEER-94-0001 "An Evaluation of Seismic Serviceability of Water Supply Networks with Application to the San Francisco 

Auxiliary Water Supply System," by I. Markov, Supervised by M. Grigoriu and T. O'Rourke, 1/21/94, 
(PB94-204013, A07, MF-A02). 

 
NCEER-94-0002 "NCEER-Taisei Corporation Research Program on Sliding Seismic Isolation Systems for Bridges: 

Experimental and Analytical Study of Systems Consisting of Sliding Bearings, Rubber Restoring Force 
Devices and Fluid Dampers," Volumes I and II, by P. Tsopelas, S. Okamoto, M.C. Constantinou, D. Ozaki 
and S. Fujii, 2/4/94, (PB94-181740, A09, MF-A02 and PB94-181757, A12, MF-A03). 

 
NCEER-94-0003 "A Markov Model for Local and Global Damage Indices in Seismic Analysis," by S. Rahman and M. 

Grigoriu, 2/18/94, (PB94-206000, A12, MF-A03). 
 
NCEER-94-0004 "Proceedings from the NCEER Workshop on Seismic Response of Masonry Infills," edited by D.P. Abrams, 

3/1/94, (PB94-180783, A07, MF-A02). 
 
NCEER-94-0005 "The Northridge, California Earthquake of January 17, 1994: General Reconnaissance Report," edited by 

J.D. Goltz, 3/11/94, (PB94-193943, A10, MF-A03). 
 
NCEER-94-0006 "Seismic Energy Based Fatigue Damage Analysis of Bridge Columns: Part I - Evaluation of Seismic 

Capacity," by G.A. Chang and J.B. Mander, 3/14/94, (PB94-219185, A11, MF-A03). 
 
NCEER-94-0007 "Seismic Isolation of Multi-Story Frame Structures Using Spherical Sliding Isolation Systems," by T.M. Al-

Hussaini, V.A. Zayas and M.C. Constantinou, 3/17/94, (PB94-193745, A09, MF-A02). 
 
NCEER-94-0008 "The Northridge, California Earthquake of January 17, 1994: Performance of Highway Bridges," edited by 

I.G. Buckle, 3/24/94, (PB94-193851, A06, MF-A02). 
 
NCEER-94-0009 "Proceedings of the Third U.S.-Japan Workshop on Earthquake Protective Systems for Bridges," edited by 

I.G. Buckle and I. Friedland, 3/31/94, (PB94-195815, A99, MF-A06). 
 



 
 
 

238 
 
 

NCEER-94-0010 "3D-BASIS-ME: Computer Program for Nonlinear Dynamic Analysis of Seismically Isolated Single and 
Multiple Structures and Liquid Storage Tanks," by P.C. Tsopelas, M.C. Constantinou and A.M. Reinhorn, 
4/12/94, (PB94-204922, A09, MF-A02). 

 
NCEER-94-0011 "The Northridge, California Earthquake of January 17, 1994: Performance of Gas Transmission Pipelines," 

by T.D. O'Rourke and M.C. Palmer, 5/16/94, (PB94-204989, A05, MF-A01). 
 
NCEER-94-0012 "Feasibility Study of Replacement Procedures and Earthquake Performance Related to Gas Transmission 

Pipelines," by T.D. O'Rourke and M.C. Palmer, 5/25/94, (PB94-206638, A09, MF-A02). 
 
NCEER-94-0013 "Seismic Energy Based Fatigue Damage Analysis of Bridge Columns: Part II - Evaluation of Seismic 

Demand," by G.A. Chang and J.B. Mander, 6/1/94, (PB95-18106, A08, MF-A02). 
 
NCEER-94-0014 "NCEER-Taisei Corporation Research Program on Sliding Seismic Isolation Systems for Bridges: 

Experimental and Analytical Study of a System Consisting of Sliding Bearings and Fluid Restoring 
Force/Damping Devices," by P. Tsopelas and M.C. Constantinou, 6/13/94, (PB94-219144, A10, MF-A03). 

 
NCEER-94-0015 "Generation of Hazard-Consistent Fragility Curves for Seismic Loss Estimation Studies," by H. Hwang and 

J-R. Huo, 6/14/94, (PB95-181996, A09, MF-A02). 
 
NCEER-94-0016 "Seismic Study of Building Frames with Added Energy-Absorbing Devices," by W.S. Pong, C.S. Tsai and 

G.C. Lee, 6/20/94, (PB94-219136, A10, A03). 
 
NCEER-94-0017 "Sliding Mode Control for Seismic-Excited Linear and Nonlinear Civil Engineering Structures," by J. Yang, 

J. Wu, A. Agrawal and Z. Li, 6/21/94, (PB95-138483, A06, MF-A02). 
 
NCEER-94-0018 "3D-BASIS-TABS Version 2.0: Computer Program for Nonlinear Dynamic Analysis of Three Dimensional 

Base Isolated Structures," by A.M. Reinhorn, S. Nagarajaiah, M.C. Constantinou, P. Tsopelas and R. Li, 
6/22/94, (PB95-182176, A08, MF-A02). 

 
NCEER-94-0019 "Proceedings of the International Workshop on Civil Infrastructure Systems: Application of Intelligent 

Systems and Advanced Materials on Bridge Systems," Edited by G.C. Lee and K.C. Chang, 7/18/94, (PB95-
252474, A20, MF-A04). 

 
NCEER-94-0020 "Study of Seismic Isolation Systems for Computer Floors," by V. Lambrou and M.C. Constantinou, 7/19/94, 

(PB95-138533, A10, MF-A03). 
 
NCEER-94-0021 "Proceedings of the U.S.-Italian Workshop on Guidelines for Seismic Evaluation and Rehabilitation of 

Unreinforced Masonry Buildings," Edited by D.P. Abrams and G.M. Calvi, 7/20/94, (PB95-138749, A13, 
MF-A03). 

 
NCEER-94-0022 "NCEER-Taisei Corporation Research Program on Sliding Seismic Isolation Systems for Bridges: 

Experimental and Analytical Study of a System Consisting of Lubricated PTFE Sliding Bearings and Mild 
Steel Dampers," by P. Tsopelas and M.C. Constantinou, 7/22/94, (PB95-182184, A08, MF-A02). 

 
NCEER-94-0023 “Development of Reliability-Based Design Criteria for Buildings Under Seismic Load,” by Y.K. Wen, H. 

Hwang and M. Shinozuka, 8/1/94, (PB95-211934, A08, MF-A02). 
 
NCEER-94-0024 “Experimental Verification of Acceleration Feedback Control Strategies for an Active Tendon System,” by 

S.J. Dyke, B.F. Spencer, Jr., P. Quast, M.K. Sain, D.C. Kaspari, Jr. and T.T. Soong, 8/29/94, (PB95-212320, 
A05, MF-A01). 

 
NCEER-94-0025 “Seismic Retrofitting Manual for Highway Bridges,” Edited by I.G. Buckle and I.F. Friedland, published by 

the Federal Highway Administration (PB95-212676, A15, MF-A03). 
 
NCEER-94-0026 “Proceedings from the Fifth U.S.-Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and 

Countermeasures Against Soil Liquefaction,” Edited by T.D. O’Rourke and M. Hamada, 11/7/94, (PB95-
220802, A99, MF-E08). 

 



 
 
 

239 
 
 

NCEER-95-0001 “Experimental and Analytical Investigation of Seismic Retrofit of Structures with Supplemental Damping: 
Part 1 - Fluid Viscous Damping Devices,” by A.M. Reinhorn, C. Li and M.C. Constantinou, 1/3/95, (PB95-
266599, A09, MF-A02). 

 
NCEER-95-0002 “Experimental and Analytical Study of Low-Cycle Fatigue Behavior of Semi-Rigid Top-And-Seat Angle 

Connections,” by G. Pekcan, J.B. Mander and S.S. Chen, 1/5/95, (PB95-220042, A07, MF-A02). 
 
NCEER-95-0003 “NCEER-ATC Joint Study on Fragility of Buildings,” by T. Anagnos, C. Rojahn and A.S. Kiremidjian, 

1/20/95, (PB95-220026, A06, MF-A02). 
 
NCEER-95-0004 “Nonlinear Control Algorithms for Peak Response Reduction,” by Z. Wu, T.T. Soong, V. Gattulli and R.C. 

Lin, 2/16/95, (PB95-220349, A05, MF-A01). 
 
NCEER-95-0005 “Pipeline Replacement Feasibility Study: A Methodology for Minimizing Seismic and Corrosion Risks to 

Underground Natural Gas Pipelines,” by R.T. Eguchi, H.A. Seligson and D.G. Honegger, 3/2/95, (PB95-
252326, A06, MF-A02). 

 
NCEER-95-0006 “Evaluation of Seismic Performance of an 11-Story Frame Building During the 1994 Northridge 

Earthquake,” by F. Naeim, R. DiSulio, K. Benuska, A. Reinhorn and C. Li, not available. 
 
NCEER-95-0007 “Prioritization of Bridges for Seismic Retrofitting,” by N. Basöz and A.S. Kiremidjian, 4/24/95, (PB95-

252300, A08, MF-A02). 
 
NCEER-95-0008 “Method for Developing Motion Damage Relationships for Reinforced Concrete Frames,” by A. Singhal and 

A.S. Kiremidjian, 5/11/95, (PB95-266607, A06, MF-A02). 
 
NCEER-95-0009 “Experimental and Analytical Investigation of Seismic Retrofit of Structures with Supplemental Damping: 

Part II - Friction Devices,” by C. Li and A.M. Reinhorn, 7/6/95, (PB96-128087, A11, MF-A03). 
 
NCEER-95-0010 “Experimental Performance and Analytical Study of a Non-Ductile Reinforced Concrete Frame Structure 

Retrofitted with Elastomeric Spring Dampers,” by G. Pekcan, J.B. Mander and S.S. Chen, 7/14/95, (PB96-
137161, A08, MF-A02). 

 
NCEER-95-0011 “Development and Experimental Study of Semi-Active Fluid Damping Devices for Seismic Protection of 

Structures,” by M.D. Symans and M.C. Constantinou, 8/3/95, (PB96-136940, A23, MF-A04). 
 
NCEER-95-0012 “Real-Time Structural Parameter Modification (RSPM): Development of Innervated Structures,” by Z. 

Liang, M. Tong and G.C. Lee, 4/11/95, (PB96-137153, A06, MF-A01). 
 
NCEER-95-0013 “Experimental and Analytical Investigation of Seismic Retrofit of Structures with Supplemental Damping: 

Part III - Viscous Damping Walls,” by A.M. Reinhorn and C. Li, 10/1/95, (PB96-176409, A11, MF-A03). 
 
NCEER-95-0014 “Seismic Fragility Analysis of Equipment and Structures in a Memphis Electric Substation,” by J-R. Huo and 

H.H.M. Hwang, 8/10/95, (PB96-128087, A09, MF-A02). 
 
NCEER-95-0015 “The Hanshin-Awaji Earthquake of January 17, 1995: Performance of Lifelines,” Edited by M. Shinozuka, 

11/3/95, (PB96-176383, A15, MF-A03). 
 
NCEER-95-0016 “Highway Culvert Performance During Earthquakes,” by T.L. Youd and C.J. Beckman, available as 

NCEER-96-0015. 
 
NCEER-95-0017 “The Hanshin-Awaji Earthquake of January 17, 1995: Performance of Highway Bridges,” Edited by I.G. 

Buckle, 12/1/95, not available. 
 
NCEER-95-0018 “Modeling of Masonry Infill Panels for Structural Analysis,” by A.M. Reinhorn, A. Madan, R.E. Valles, Y. 

Reichmann and J.B. Mander, 12/8/95, (PB97-110886, MF-A01, A06). 
 
NCEER-95-0019 “Optimal Polynomial Control for Linear and Nonlinear Structures,” by A.K. Agrawal and J.N. Yang, 

12/11/95, (PB96-168737, A07, MF-A02). 
 



 
 
 

240 
 
 

NCEER-95-0020 “Retrofit of Non-Ductile Reinforced Concrete Frames Using Friction Dampers,” by R.S. Rao, P. Gergely and 
R.N. White, 12/22/95, (PB97-133508, A10, MF-A02). 

 
NCEER-95-0021 “Parametric Results for Seismic Response of Pile-Supported Bridge Bents,” by G. Mylonakis, A. Nikolaou 

and G. Gazetas, 12/22/95, (PB97-100242, A12, MF-A03). 
 
NCEER-95-0022 “Kinematic Bending Moments in Seismically Stressed Piles,” by A. Nikolaou, G. Mylonakis and G. Gazetas, 

12/23/95, (PB97-113914, MF-A03, A13). 
 
NCEER-96-0001 “Dynamic Response of Unreinforced Masonry Buildings with Flexible Diaphragms,” by A.C. Costley and 

D.P. Abrams,” 10/10/96, (PB97-133573, MF-A03, A15). 
 
NCEER-96-0002 “State of the Art Review: Foundations and Retaining Structures,” by I. Po Lam, not available. 
 
NCEER-96-0003 “Ductility of Rectangular Reinforced Concrete Bridge Columns with Moderate Confinement,” by N. Wehbe, 

M. Saiidi, D. Sanders and B. Douglas, 11/7/96, (PB97-133557, A06, MF-A02). 
 
NCEER-96-0004 “Proceedings of the Long-Span Bridge Seismic Research Workshop,” edited by I.G. Buckle and I.M. 

Friedland, not available. 
 
NCEER-96-0005 “Establish Representative Pier Types for Comprehensive Study: Eastern United States,” by J. Kulicki and Z. 

Prucz, 5/28/96, (PB98-119217, A07, MF-A02). 
 
NCEER-96-0006 “Establish Representative Pier Types for Comprehensive Study: Western United States,” by R. Imbsen, R.A. 

Schamber and T.A. Osterkamp, 5/28/96, (PB98-118607, A07, MF-A02). 
 
NCEER-96-0007 “Nonlinear Control Techniques for Dynamical Systems with Uncertain Parameters,” by R.G. Ghanem and 

M.I. Bujakov, 5/27/96, (PB97-100259, A17, MF-A03). 
 
NCEER-96-0008 “Seismic Evaluation of a 30-Year Old Non-Ductile Highway Bridge Pier and Its Retrofit,” by J.B. Mander, 

B. Mahmoodzadegan, S. Bhadra and S.S. Chen, 5/31/96, (PB97-110902, MF-A03, A10). 
 
NCEER-96-0009 “Seismic Performance of a Model Reinforced Concrete Bridge Pier Before and After Retrofit,” by J.B. 

Mander, J.H. Kim and C.A. Ligozio, 5/31/96, (PB97-110910, MF-A02, A10). 
 
NCEER-96-0010 “IDARC2D Version 4.0: A Computer Program for the Inelastic Damage Analysis of Buildings,” by R.E. 

Valles, A.M. Reinhorn, S.K. Kunnath, C. Li and A. Madan, 6/3/96, (PB97-100234, A17, MF-A03). 
 
NCEER-96-0011 “Estimation of the Economic Impact of Multiple Lifeline Disruption: Memphis Light, Gas and Water 

Division Case Study,” by S.E. Chang, H.A. Seligson and R.T. Eguchi, 8/16/96, (PB97-133490, A11, MF-
A03). 

 
NCEER-96-0012 “Proceedings from the Sixth Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and 

Countermeasures Against Soil Liquefaction, Edited by M. Hamada and T. O’Rourke, 9/11/96, (PB97-
133581, A99, MF-A06). 

 
NCEER-96-0013 “Chemical Hazards, Mitigation and Preparedness in Areas of High Seismic Risk: A Methodology for 

Estimating the Risk of Post-Earthquake Hazardous Materials Release,” by H.A. Seligson, R.T. Eguchi, K.J. 
Tierney and K. Richmond, 11/7/96, (PB97-133565, MF-A02, A08). 

 
NCEER-96-0014 “Response of Steel Bridge Bearings to Reversed Cyclic Loading,” by J.B. Mander, D-K. Kim, S.S. Chen and 

G.J. Premus, 11/13/96, (PB97-140735, A12, MF-A03). 
 
NCEER-96-0015 “Highway Culvert Performance During Past Earthquakes,” by T.L. Youd and C.J. Beckman, 11/25/96, 

(PB97-133532, A06, MF-A01). 
 
NCEER-97-0001 “Evaluation, Prevention and Mitigation of Pounding Effects in Building Structures,” by R.E. Valles and 

A.M. Reinhorn, 2/20/97, (PB97-159552, A14, MF-A03). 
 
NCEER-97-0002 “Seismic Design Criteria for Bridges and Other Highway Structures,” by C. Rojahn, R. Mayes, D.G. 

Anderson, J. Clark, J.H. Hom, R.V. Nutt and M.J. O’Rourke, 4/30/97, (PB97-194658, A06, MF-A03). 



 
 
 

241 
 
 

 
NCEER-97-0003 “Proceedings of the U.S.-Italian Workshop on Seismic Evaluation and Retrofit,” Edited by D.P. Abrams and 

G.M. Calvi, 3/19/97, (PB97-194666, A13, MF-A03). 
 
NCEER-97-0004 "Investigation of Seismic Response of Buildings with Linear and Nonlinear Fluid Viscous Dampers," by 

A.A. Seleemah and M.C. Constantinou, 5/21/97, (PB98-109002, A15, MF-A03). 
 
NCEER-97-0005 "Proceedings of the Workshop on Earthquake Engineering Frontiers in Transportation Facilities," edited by 

G.C. Lee and I.M. Friedland, 8/29/97, (PB98-128911, A25, MR-A04). 
 
NCEER-97-0006 "Cumulative Seismic Damage of Reinforced Concrete Bridge Piers," by S.K. Kunnath, A. El-Bahy, A. 

Taylor and W. Stone, 9/2/97, (PB98-108814, A11, MF-A03). 
 
NCEER-97-0007 "Structural Details to Accommodate Seismic Movements of Highway Bridges and Retaining Walls," by R.A. 

Imbsen, R.A. Schamber, E. Thorkildsen, A. Kartoum, B.T. Martin, T.N. Rosser and J.M. Kulicki, 9/3/97, 
(PB98-108996, A09, MF-A02). 

 
NCEER-97-0008 "A Method for Earthquake Motion-Damage Relationships with Application to Reinforced Concrete Frames," 

by A. Singhal and A.S. Kiremidjian, 9/10/97, (PB98-108988, A13, MF-A03). 
 
NCEER-97-0009 "Seismic Analysis and Design of Bridge Abutments Considering Sliding and Rotation," by K. Fishman and 

R. Richards, Jr., 9/15/97, (PB98-108897, A06, MF-A02). 
 
NCEER-97-0010 "Proceedings of the FHWA/NCEER Workshop on the National Representation of Seismic Ground Motion 

for New and Existing Highway Facilities," edited by I.M. Friedland, M.S. Power and R.L. Mayes, 9/22/97, 
(PB98-128903, A21, MF-A04). 

 
NCEER-97-0011 "Seismic Analysis for Design or Retrofit of Gravity Bridge Abutments," by K.L. Fishman, R. Richards, Jr. 

and R.C. Divito, 10/2/97, (PB98-128937, A08, MF-A02). 
 
NCEER-97-0012 "Evaluation of Simplified Methods of Analysis for Yielding Structures," by P. Tsopelas, M.C. Constantinou, 

C.A. Kircher and A.S. Whittaker, 10/31/97, (PB98-128929, A10, MF-A03). 
 
NCEER-97-0013 "Seismic Design of Bridge Columns Based on Control and Repairability of Damage," by C-T. Cheng and 

J.B. Mander, 12/8/97, (PB98-144249, A11, MF-A03). 
 
NCEER-97-0014 "Seismic Resistance of Bridge Piers Based on Damage Avoidance Design," by J.B. Mander and C-T. Cheng, 

12/10/97, (PB98-144223, A09, MF-A02). 
 
NCEER-97-0015 “Seismic Response of Nominally Symmetric Systems with Strength Uncertainty,” by S. Balopoulou and M. 

Grigoriu, 12/23/97, (PB98-153422, A11, MF-A03). 
 
NCEER-97-0016 “Evaluation of Seismic Retrofit Methods for Reinforced Concrete Bridge Columns,” by T.J. Wipf, F.W. 

Klaiber and F.M. Russo, 12/28/97, (PB98-144215, A12, MF-A03). 
 
NCEER-97-0017 “Seismic Fragility of Existing Conventional Reinforced Concrete Highway Bridges,” by C.L. Mullen and 

A.S. Cakmak, 12/30/97, (PB98-153406, A08, MF-A02). 
 
NCEER-97-0018 “Loss Asssessment of Memphis Buildings,” edited by D.P. Abrams and M. Shinozuka, 12/31/97, (PB98-

144231, A13, MF-A03). 
 
NCEER-97-0019 “Seismic Evaluation of Frames with Infill Walls Using Quasi-static Experiments,” by K.M. Mosalam, R.N. 

White and P. Gergely, 12/31/97, (PB98-153455, A07, MF-A02). 
 
NCEER-97-0020 “Seismic Evaluation of Frames with Infill Walls Using Pseudo-dynamic Experiments,” by K.M. Mosalam, 

R.N. White and P. Gergely, 12/31/97, (PB98-153430, A07, MF-A02). 
 
NCEER-97-0021 “Computational Strategies for Frames with Infill Walls: Discrete and Smeared Crack Analyses and Seismic 

Fragility,” by K.M. Mosalam, R.N. White and P. Gergely, 12/31/97, (PB98-153414, A10, MF-A02). 
 



 
 
 

242 
 
 

NCEER-97-0022 “Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils,” edited by T.L. 
Youd and I.M. Idriss, 12/31/97, (PB98-155617, A15, MF-A03). 

 
MCEER-98-0001 “Extraction of Nonlinear Hysteretic Properties of Seismically Isolated Bridges from Quick-Release Field 

Tests,” by Q. Chen, B.M. Douglas, E.M. Maragakis and I.G. Buckle, 5/26/98, (PB99-118838, A06, MF- 
A01). 

 
MCEER-98-0002 “Methodologies for Evaluating the Importance of Highway Bridges,” by A. Thomas, S. Eshenaur and J. 

Kulicki, 5/29/98, (PB99-118846, A10, MF-A02). 
 
MCEER-98-0003 “Capacity Design of Bridge Piers and the Analysis of Overstrength,” by J.B. Mander, A. Dutta and P. Goel, 

6/1/98, (PB99-118853, A09, MF-A02). 
 
MCEER-98-0004 “Evaluation of Bridge Damage Data from the Loma Prieta and Northridge, California Earthquakes,” by N. 

Basoz and A. Kiremidjian, 6/2/98, (PB99-118861, A15, MF-A03). 
 
MCEER-98-0005 “Screening Guide for Rapid Assessment of Liquefaction Hazard at Highway Bridge Sites,” by T. L. Youd, 

6/16/98, (PB99-118879, A06, not available on microfiche). 
 
MCEER-98-0006 “Structural Steel and Steel/Concrete Interface Details for Bridges,” by P. Ritchie, N. Kauhl and J. Kulicki, 

7/13/98, (PB99-118945, A06, MF-A01). 
 
MCEER-98-0007 “Capacity Design and Fatigue Analysis of Confined Concrete Columns,” by A. Dutta and J.B. Mander, 

7/14/98, (PB99-118960, A14, MF-A03). 
 
MCEER-98-0008 “Proceedings of the Workshop on Performance Criteria for Telecommunication Services Under Earthquake 

Conditions,” edited by A.J. Schiff, 7/15/98, (PB99-118952, A08, MF-A02). 
 
MCEER-98-0009 “Fatigue Analysis of Unconfined Concrete Columns,” by J.B. Mander, A. Dutta and J.H. Kim, 9/12/98, 

(PB99-123655, A10, MF-A02). 
 
MCEER-98-0010 “Centrifuge Modeling of Cyclic Lateral Response of Pile-Cap Systems and Seat-Type Abutments in Dry 

Sands,” by A.D. Gadre and R. Dobry, 10/2/98, (PB99-123606, A13, MF-A03). 
 
MCEER-98-0011 “IDARC-BRIDGE: A Computational Platform for Seismic Damage Assessment of Bridge Structures,” by 

A.M. Reinhorn, V. Simeonov, G. Mylonakis and Y. Reichman, 10/2/98, (PB99-162919, A15, MF-A03). 
 
MCEER-98-0012 “Experimental Investigation of the Dynamic Response of Two Bridges Before and After Retrofitting with 

Elastomeric Bearings,” by D.A. Wendichansky, S.S. Chen and J.B. Mander, 10/2/98, (PB99-162927, A15, 
MF-A03). 

 
MCEER-98-0013 “Design Procedures for Hinge Restrainers and Hinge Sear Width for Multiple-Frame Bridges,” by R. Des 

Roches and G.L. Fenves, 11/3/98, (PB99-140477, A13, MF-A03). 
 
MCEER-98-0014 “Response Modification Factors for Seismically Isolated Bridges,” by M.C. Constantinou and J.K. Quarshie, 

11/3/98, (PB99-140485, A14, MF-A03). 
 
MCEER-98-0015 “Proceedings of the U.S.-Italy Workshop on Seismic Protective Systems for Bridges,” edited by I.M. Friedland 

and M.C. Constantinou, 11/3/98, (PB2000-101711, A22, MF-A04). 
 
MCEER-98-0016 “Appropriate Seismic Reliability for Critical Equipment Systems: Recommendations Based on Regional 

Analysis of Financial and Life Loss,” by K. Porter, C. Scawthorn, C. Taylor and N. Blais, 11/10/98, (PB99-
157265, A08, MF-A02). 

 
MCEER-98-0017 “Proceedings of the U.S. Japan Joint Seminar on Civil Infrastructure Systems Research,” edited by M. 

Shinozuka and A. Rose, 11/12/98, (PB99-156713, A16, MF-A03). 
 
MCEER-98-0018 “Modeling of Pile Footings and Drilled Shafts for Seismic Design,” by I. PoLam, M. Kapuskar and D. 

Chaudhuri, 12/21/98, (PB99-157257, A09, MF-A02). 
 



 
 
 

243 
 
 

MCEER-99-0001 "Seismic Evaluation of a Masonry Infilled Reinforced Concrete Frame by Pseudodynamic Testing," by S.G. 
Buonopane and R.N. White, 2/16/99, (PB99-162851, A09, MF-A02). 

 
MCEER-99-0002 "Response History Analysis of Structures with Seismic Isolation and Energy Dissipation Systems: 

Verification Examples for Program SAP2000," by J. Scheller and M.C. Constantinou, 2/22/99, (PB99-
162869, A08, MF-A02). 

 
MCEER-99-0003 "Experimental Study on the Seismic Design and Retrofit of Bridge Columns Including Axial Load Effects," 

by A. Dutta, T. Kokorina and J.B. Mander, 2/22/99, (PB99-162877, A09, MF-A02). 
 
MCEER-99-0004 "Experimental Study of Bridge Elastomeric and Other Isolation and Energy Dissipation Systems with 

Emphasis on Uplift Prevention and High Velocity Near-source Seismic Excitation," by A. Kasalanati and M. 
C. Constantinou, 2/26/99, (PB99-162885, A12, MF-A03). 

 
MCEER-99-0005 "Truss Modeling of Reinforced Concrete Shear-flexure Behavior," by J.H. Kim and J.B. Mander, 3/8/99, 

(PB99-163693, A12, MF-A03). 
 
MCEER-99-0006 "Experimental Investigation and Computational Modeling of Seismic Response of a 1:4 Scale Model Steel 

Structure with a Load Balancing Supplemental Damping System," by G. Pekcan, J.B. Mander and S.S. Chen, 
4/2/99, (PB99-162893, A11, MF-A03). 

 
MCEER-99-0007 "Effect of Vertical Ground Motions on the Structural Response of Highway Bridges," by M.R. Button, C.J. 

Cronin and R.L. Mayes, 4/10/99, (PB2000-101411, A10, MF-A03). 
 
MCEER-99-0008 "Seismic Reliability Assessment of Critical Facilities: A Handbook, Supporting Documentation, and Model 

Code Provisions," by G.S. Johnson, R.E. Sheppard, M.D. Quilici, S.J. Eder and C.R. Scawthorn, 4/12/99, 
(PB2000-101701, A18, MF-A04). 

 
MCEER-99-0009 "Impact Assessment of Selected MCEER Highway Project Research on the Seismic Design of Highway 

Structures," by C. Rojahn, R. Mayes, D.G. Anderson, J.H. Clark, D'Appolonia Engineering, S. Gloyd and 
R.V. Nutt, 4/14/99, (PB99-162901, A10, MF-A02). 

 
MCEER-99-0010 "Site Factors and Site Categories in Seismic Codes," by R. Dobry, R. Ramos and M.S. Power, 7/19/99, 

(PB2000-101705, A08, MF-A02). 
 
MCEER-99-0011 "Restrainer Design Procedures for Multi-Span Simply-Supported Bridges," by M.J. Randall, M. Saiidi, E. 

Maragakis and T. Isakovic, 7/20/99, (PB2000-101702, A10, MF-A02). 
 
MCEER-99-0012 "Property Modification Factors for Seismic Isolation Bearings," by M.C. Constantinou, P. Tsopelas, A. 

Kasalanati and E. Wolff, 7/20/99, (PB2000-103387, A11, MF-A03). 
 
MCEER-99-0013 "Critical Seismic Issues for Existing Steel Bridges," by P. Ritchie, N. Kauhl and J. Kulicki, 7/20/99, 

(PB2000-101697, A09, MF-A02). 
 
MCEER-99-0014 "Nonstructural Damage Database," by A. Kao, T.T. Soong and A. Vender, 7/24/99, (PB2000-101407, A06, 

MF-A01). 
 
MCEER-99-0015 "Guide to Remedial Measures for Liquefaction Mitigation at Existing Highway Bridge Sites," by H.G. 

Cooke and J. K. Mitchell, 7/26/99, (PB2000-101703, A11, MF-A03). 
 
MCEER-99-0016 "Proceedings of the MCEER Workshop on Ground Motion Methodologies for the Eastern United States," 

edited by N. Abrahamson and A. Becker, 8/11/99, (PB2000-103385, A07, MF-A02).  
 
MCEER-99-0017 "Quindío, Colombia Earthquake of January 25, 1999: Reconnaissance Report," by A.P. Asfura and P.J. 

Flores, 10/4/99, (PB2000-106893, A06, MF-A01). 
 
MCEER-99-0018 "Hysteretic Models for Cyclic Behavior of Deteriorating Inelastic Structures," by M.V. Sivaselvan and A.M. 

Reinhorn, 11/5/99, (PB2000-103386, A08, MF-A02). 
 



 
 
 

244 
 
 

MCEER-99-0019 "Proceedings of the 7th U.S.- Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and 
Countermeasures Against Soil Liquefaction," edited by T.D. O'Rourke, J.P. Bardet and M. Hamada, 
11/19/99, (PB2000-103354, A99, MF-A06). 

 
MCEER-99-0020 "Development of Measurement Capability for Micro-Vibration Evaluations with Application to Chip 

Fabrication Facilities," by G.C. Lee, Z. Liang, J.W. Song, J.D. Shen and W.C. Liu, 12/1/99, (PB2000-
105993, A08, MF-A02). 

 
MCEER-99-0021 "Design and Retrofit Methodology for Building Structures with Supplemental Energy Dissipating Systems," 

by G. Pekcan, J.B. Mander and S.S. Chen, 12/31/99, (PB2000-105994, A11, MF-A03). 
 
MCEER-00-0001 "The Marmara, Turkey Earthquake of August 17, 1999: Reconnaissance Report," edited by C. Scawthorn; 

with major contributions by M. Bruneau, R. Eguchi, T. Holzer, G. Johnson, J. Mander, J. Mitchell, W. 
Mitchell, A. Papageorgiou, C. Scaethorn, and G. Webb, 3/23/00, (PB2000-106200, A11, MF-A03). 

 
MCEER-00-0002 "Proceedings of the MCEER Workshop for Seismic Hazard Mitigation of Health Care Facilities," edited by 

G.C. Lee, M. Ettouney, M. Grigoriu, J. Hauer and J. Nigg, 3/29/00, (PB2000-106892, A08, MF-A02). 
 
MCEER-00-0003 "The Chi-Chi, Taiwan Earthquake of September 21, 1999: Reconnaissance Report," edited by G.C. Lee and 

C.H. Loh, with major contributions by G.C. Lee, M. Bruneau, I.G. Buckle, S.E. Chang, P.J. Flores, T.D. 
O'Rourke, M. Shinozuka, T.T. Soong, C-H. Loh, K-C. Chang, Z-J. Chen, J-S. Hwang, M-L. Lin, G-Y. Liu, 
K-C. Tsai, G.C. Yao and C-L. Yen, 4/30/00, (PB2001-100980, A10, MF-A02). 

 
MCEER-00-0004 "Seismic Retrofit of End-Sway Frames of Steel Deck-Truss Bridges with a Supplemental Tendon System: 

Experimental and Analytical Investigation," by G. Pekcan, J.B. Mander and S.S. Chen, 7/1/00, (PB2001-
100982, A10, MF-A02). 

 
MCEER-00-0005 "Sliding Fragility of Unrestrained Equipment in Critical Facilities," by W.H. Chong and T.T. Soong, 7/5/00, 

(PB2001-100983, A08, MF-A02). 
 
MCEER-00-0006 "Seismic Response of Reinforced Concrete Bridge Pier Walls in the Weak Direction," by N. Abo-Shadi, M. 

Saiidi and D. Sanders, 7/17/00, (PB2001-100981, A17, MF-A03). 
 
MCEER-00-0007 "Low-Cycle Fatigue Behavior of Longitudinal Reinforcement in Reinforced Concrete Bridge Columns," by 

J. Brown and S.K. Kunnath, 7/23/00, (PB2001-104392, A08, MF-A02). 
 
MCEER-00-0008 "Soil Structure Interaction of Bridges for Seismic Analysis," I. PoLam and H. Law, 9/25/00, (PB2001-

105397, A08, MF-A02). 
 
MCEER-00-0009 "Proceedings of the First MCEER Workshop on Mitigation of Earthquake Disaster by Advanced 

Technologies (MEDAT-1), edited by M. Shinozuka, D.J. Inman and T.D. O'Rourke, 11/10/00, (PB2001-
105399, A14, MF-A03). 

 
MCEER-00-0010 "Development and Evaluation of Simplified Procedures for Analysis and Design of Buildings with Passive 

Energy Dissipation Systems, Revision 01," by O.M. Ramirez, M.C. Constantinou, C.A. Kircher, A.S. 
Whittaker, M.W. Johnson, J.D. Gomez and C. Chrysostomou, 11/16/01, (PB2001-105523, A23, MF-A04). 

 
MCEER-00-0011 "Dynamic Soil-Foundation-Structure Interaction Analyses of Large Caissons," by C-Y. Chang, C-M. Mok, 

Z-L. Wang, R. Settgast, F. Waggoner, M.A. Ketchum, H.M. Gonnermann and C-C. Chin, 12/30/00, 
(PB2001-104373, A07, MF-A02). 

 
MCEER-00-0012 "Experimental Evaluation of Seismic Performance of Bridge Restrainers," by A.G. Vlassis, E.M. Maragakis 

and M. Saiid Saiidi, 12/30/00, (PB2001-104354, A09, MF-A02). 
 
MCEER-00-0013 "Effect of Spatial Variation of Ground Motion on Highway Structures," by M. Shinozuka, V. Saxena and G. 

Deodatis, 12/31/00, (PB2001-108755, A13, MF-A03). 
 
MCEER-00-0014 "A Risk-Based Methodology for Assessing the Seismic Performance of Highway Systems," by S.D. Werner, 

C.E. Taylor, J.E. Moore, II, J.S. Walton and S. Cho, 12/31/00, (PB2001-108756, A14, MF-A03). 
 



 
 
 

245 
 
 

MCEER-01-0001 “Experimental Investigation of P-Delta Effects to Collapse During Earthquakes,” by D. Vian and M. 
Bruneau, 6/25/01, (PB2002-100534, A17, MF-A03). 

 
MCEER-01-0002 “Proceedings of the Second MCEER Workshop on Mitigation of Earthquake Disaster by Advanced 

Technologies (MEDAT-2),” edited by M. Bruneau and D.J. Inman, 7/23/01, (PB2002-100434, A16, MF-
A03). 

 
MCEER-01-0003 “Sensitivity Analysis of Dynamic Systems Subjected to Seismic Loads,” by C. Roth and M. Grigoriu, 

9/18/01, (PB2003-100884, A12, MF-A03). 
 
MCEER-01-0004 “Overcoming Obstacles to Implementing Earthquake Hazard Mitigation Policies: Stage 1 Report,” by D.J. 

Alesch and W.J. Petak, 12/17/01, (PB2002-107949, A07, MF-A02). 
 
MCEER-01-0005 “Updating Real-Time Earthquake Loss Estimates: Methods, Problems and Insights,” by C.E. Taylor, S.E. 

Chang and R.T. Eguchi, 12/17/01, (PB2002-107948, A05, MF-A01). 
 
MCEER-01-0006 “Experimental Investigation and Retrofit of Steel Pile Foundations and Pile Bents Under Cyclic Lateral 

Loadings,” by A. Shama, J. Mander, B. Blabac and S. Chen, 12/31/01, (PB2002-107950, A13, MF-A03). 
 
MCEER-02-0001 “Assessment of Performance of Bolu Viaduct in the 1999 Duzce Earthquake in Turkey” by P.C. Roussis, 

M.C. Constantinou, M. Erdik, E. Durukal and M. Dicleli, 5/8/02, (PB2003-100883, A08, MF-A02). 
 
MCEER-02-0002 “Seismic Behavior of Rail Counterweight Systems of Elevators in Buildings,” by M.P. Singh, Rildova and 

L.E. Suarez, 5/27/02. (PB2003-100882, A11, MF-A03). 
 
MCEER-02-0003 “Development of Analysis and Design Procedures for Spread Footings,” by G. Mylonakis, G. Gazetas, S. 

Nikolaou and A. Chauncey, 10/02/02, (PB2004-101636, A13, MF-A03, CD-A13). 
 
MCEER-02-0004 “Bare-Earth Algorithms for Use with SAR and LIDAR Digital Elevation Models,” by C.K. Huyck, R.T. 

Eguchi and B. Houshmand, 10/16/02, (PB2004-101637, A07, CD-A07). 
 
MCEER-02-0005 “Review of Energy Dissipation of Compression Members in Concentrically Braced Frames,” by K.Lee and 

M. Bruneau, 10/18/02, (PB2004-101638, A10, CD-A10). 
 
MCEER-03-0001 “Experimental Investigation of Light-Gauge Steel Plate Shear Walls for the Seismic Retrofit of Buildings” 

by J. Berman and M. Bruneau, 5/2/03, (PB2004-101622, A10, MF-A03, CD-A10). 

MCEER-03-0002 “Statistical Analysis of Fragility Curves,” by M. Shinozuka, M.Q. Feng, H. Kim, T. Uzawa and T. Ueda, 
6/16/03, (PB2004-101849, A09, CD-A09). 

 
MCEER-03-0003 “Proceedings of the Eighth U.S.-Japan Workshop on Earthquake Resistant Design f Lifeline Facilities and 

Countermeasures Against Liquefaction,” edited by M. Hamada, J.P. Bardet and T.D. O’Rourke, 6/30/03, 
(PB2004-104386, A99, CD-A99). 

 
MCEER-03-0004 “Proceedings of the PRC-US Workshop on Seismic Analysis and Design of Special Bridges,” edited by L.C. 

Fan and G.C. Lee, 7/15/03, (PB2004-104387, A14, CD-A14). 
 
MCEER-03-0005 “Urban Disaster Recovery: A Framework and Simulation Model,” by S.B. Miles and S.E. Chang, 7/25/03, 

(PB2004-104388, A07, CD-A07). 
 
MCEER-03-0006 “Behavior of Underground Piping Joints Due to Static and Dynamic Loading,” by R.D. Meis, M. Maragakis 

and R. Siddharthan, 11/17/03, (PB2005-102194, A13, MF-A03, CD-A00). 
 
MCEER-04-0001 “Experimental Study of Seismic Isolation Systems with Emphasis on Secondary System Response and 

Verification of Accuracy of Dynamic Response History Analysis Methods,” by E. Wolff and M. 
Constantinou, 1/16/04 (PB2005-102195, A99, MF-E08, CD-A00). 

 
MCEER-04-0002 “Tension, Compression and Cyclic Testing of Engineered Cementitious Composite Materials,” by K. Kesner 

and S.L. Billington, 3/1/04, (PB2005-102196, A08, CD-A08). 
 



 
 
 

246 
 
 

MCEER-04-0003 “Cyclic Testing of Braces Laterally Restrained by Steel Studs to Enhance Performance During Earthquakes,” 
by O.C. Celik, J.W. Berman and M. Bruneau, 3/16/04, (PB2005-102197, A13, MF-A03, CD-A00). 

 
MCEER-04-0004 “Methodologies for Post Earthquake Building Damage Detection Using SAR and Optical Remote Sensing: 

Application to the August 17, 1999 Marmara, Turkey Earthquake,” by C.K. Huyck, B.J. Adams, S. Cho, 
R.T. Eguchi, B. Mansouri and B. Houshmand, 6/15/04, (PB2005-104888, A10, CD-A00). 

 
MCEER-04-0005 “Nonlinear Structural Analysis Towards Collapse Simulation: A Dynamical Systems Approach,” by M.V. 

Sivaselvan and A.M. Reinhorn, 6/16/04, (PB2005-104889, A11, MF-A03, CD-A00). 
 
MCEER-04-0006 “Proceedings of the Second PRC-US Workshop on Seismic Analysis and Design of Special Bridges,” edited 

by G.C. Lee and L.C. Fan, 6/25/04, (PB2005-104890, A16,  CD-A00). 
 
MCEER-04-0007 “Seismic Vulnerability Evaluation of Axially Loaded Steel Built-up Laced Members,” by K. Lee and M. 

Bruneau, 6/30/04, (PB2005-104891, A16, CD-A00). 
 
MCEER-04-0008 “Evaluation of Accuracy of Simplified Methods of Analysis and Design of Buildings with Damping Systems 

for Near-Fault and for Soft-Soil Seismic Motions,” by E.A. Pavlou and M.C. Constantinou, 8/16/04, 
(PB2005-104892, A08, MF-A02, CD-A00). 

 
MCEER-04-0009 “Assessment of Geotechnical Issues in Acute Care Facilities in California,” by M. Lew, T.D. O’Rourke, R. 

Dobry and M. Koch, 9/15/04, (PB2005-104893, A08, CD-A00). 
 
MCEER-04-0010 “Scissor-Jack-Damper Energy Dissipation System,” by A.N. Sigaher-Boyle and M.C. Constantinou, 12/1/04 

(PB2005-108221). 
 
MCEER-04-0011 “Seismic Retrofit of Bridge Steel Truss Piers Using a Controlled Rocking Approach,” by M. Pollino and M. 

Bruneau, 12/20/04 (PB2006-105795). 
 
MCEER-05-0001 “Experimental and Analytical Studies of Structures Seismically Isolated with an Uplift-Restraint Isolation 

System,” by P.C. Roussis and M.C. Constantinou, 1/10/05 (PB2005-108222). 
 
MCEER-05-0002 “A Versatile Experimentation Model for Study of Structures Near Collapse Applied to Seismic Evaluation of 

Irregular Structures,” by D. Kusumastuti, A.M. Reinhorn and A. Rutenberg, 3/31/05 (PB2006-101523). 
 
MCEER-05-0003 “Proceedings of the Third PRC-US Workshop on Seismic Analysis and Design of Special Bridges,” edited 

by L.C. Fan and G.C. Lee, 4/20/05, (PB2006-105796). 
 
MCEER-05-0004 “Approaches for the Seismic Retrofit of Braced Steel Bridge Piers and Proof-of-Concept Testing of an 

Eccentrically Braced Frame with Tubular Link,” by J.W. Berman and M. Bruneau, 4/21/05 (PB2006-
101524). 

 
MCEER-05-0005 “Simulation of Strong Ground Motions for Seismic Fragility Evaluation of Nonstructural Components in 

Hospitals,” by A. Wanitkorkul and A. Filiatrault, 5/26/05 (PB2006-500027). 
 
MCEER-05-0006 “Seismic Safety in California Hospitals: Assessing an Attempt to Accelerate the Replacement or Seismic 

Retrofit of Older Hospital Facilities,” by D.J. Alesch, L.A. Arendt and W.J. Petak, 6/6/05 (PB2006-105794). 
 
MCEER-05-0007 “Development of Seismic Strengthening and Retrofit Strategies for Critical Facilities Using Engineered 

Cementitious Composite Materials,” by K. Kesner and S.L. Billington, 8/29/05 (PB2006-111701). 
 
MCEER-05-0008 “Experimental and Analytical Studies of Base Isolation Systems for Seismic Protection of Power 

Transformers,” by N. Murota, M.Q. Feng and G-Y. Liu, 9/30/05 (PB2006-111702). 
 
MCEER-05-0009 “3D-BASIS-ME-MB: Computer Program for Nonlinear Dynamic Analysis of Seismically Isolated 

Structures,” by P.C. Tsopelas, P.C. Roussis, M.C. Constantinou, R. Buchanan and A.M. Reinhorn, 10/3/05 
(PB2006-111703). 

 
MCEER-05-0010 “Steel Plate Shear Walls for Seismic Design and Retrofit of Building Structures,” by D. Vian and M. 

Bruneau, 12/15/05 (PB2006-111704). 
 



 
 
 

247 
 
 

MCEER-05-0011 “The Performance-Based Design Paradigm,” by M.J. Astrella and A. Whittaker, 12/15/05 (PB2006-111705). 
 
MCEER-06-0001 “Seismic Fragility of Suspended Ceiling Systems,” H. Badillo-Almaraz, A.S. Whittaker, A.M. Reinhorn and 

G.P. Cimellaro, 2/4/06 (PB2006-111706). 
 
MCEER-06-0002 “Multi-Dimensional Fragility of Structures,” by G.P. Cimellaro, A.M. Reinhorn and M. Bruneau, 3/1/06 

(PB2007-106974, A09, MF-A02, CD A00). 
 
MCEER-06-0003 “Built-Up Shear Links as Energy Dissipators for Seismic Protection of Bridges,” by P. Dusicka, A.M. Itani 

and I.G. Buckle, 3/15/06 (PB2006-111708). 
 
MCEER-06-0004 “Analytical Investigation of the Structural Fuse Concept,” by R.E. Vargas and M. Bruneau, 3/16/06 

(PB2006-111709). 
 
MCEER-06-0005 “Experimental Investigation of the Structural Fuse Concept,” by R.E. Vargas and M. Bruneau, 3/17/06 

(PB2006-111710). 
 
MCEER-06-0006 “Further Development of Tubular Eccentrically Braced Frame Links for the Seismic Retrofit of Braced Steel 

Truss Bridge Piers,” by J.W. Berman and M. Bruneau, 3/27/06 (PB2007-105147). 
 
MCEER-06-0007 “REDARS Validation Report,” by S. Cho, C.K. Huyck, S. Ghosh and R.T. Eguchi, 8/8/06 (PB2007-106983). 
 
MCEER-06-0008 “Review of Current NDE Technologies for Post-Earthquake Assessment of Retrofitted Bridge Columns,” by 

J.W. Song, Z. Liang and G.C. Lee, 8/21/06 (PB2007-106984). 
 
MCEER-06-0009 “Liquefaction Remediation in Silty Soils Using Dynamic Compaction and Stone Columns,” by S. 

Thevanayagam, G.R. Martin, R. Nashed, T. Shenthan, T. Kanagalingam and N. Ecemis, 8/28/06 (PB2007-
106985). 

 
MCEER-06-0010 “Conceptual Design and Experimental Investigation of Polymer Matrix Composite Infill Panels for Seismic 

Retrofitting,” by W. Jung, M. Chiewanichakorn and A.J. Aref, 9/21/06 (PB2007-106986). 
 
MCEER-06-0011 “A Study of the Coupled Horizontal-Vertical Behavior of Elastomeric and Lead-Rubber Seismic Isolation 

Bearings,” by G.P. Warn and A.S. Whittaker, 9/22/06 (PB2007-108679). 
 
MCEER-06-0012 “Proceedings of the Fourth PRC-US Workshop on Seismic Analysis and Design of Special Bridges: 

Advancing Bridge Technologies in Research, Design, Construction and Preservation,” Edited by L.C. Fan, 
G.C. Lee and L. Ziang, 10/12/06 (PB2007-109042). 

 
MCEER-06-0013 “Cyclic Response and Low Cycle Fatigue Characteristics of Plate Steels,” by P. Dusicka, A.M. Itani and I.G. 

Buckle, 11/1/06 06 (PB2007-106987). 
 
MCEER-06-0014 “Proceedings of the Second US-Taiwan Bridge Engineering Workshop,” edited by W.P. Yen, J. Shen, J-Y. 

Chen and M. Wang, 11/15/06 (PB2008-500041).  
 
MCEER-06-0015 “User Manual and Technical Documentation for the REDARSTM Import Wizard,” by S. Cho, S. Ghosh, C.K. 

Huyck and S.D. Werner, 11/30/06 (PB2007-114766). 
 
MCEER-06-0016 “Hazard Mitigation Strategy and Monitoring Technologies for Urban and Infrastructure Public Buildings: 

Proceedings of the China-US Workshops,” edited by X.Y. Zhou, A.L. Zhang, G.C. Lee and M. Tong, 
12/12/06 (PB2008-500018). 

 
MCEER-07-0001 “Static and Kinetic Coefficients of Friction for Rigid Blocks,” by C. Kafali, S. Fathali, M. Grigoriu and A.S. 

Whittaker, 3/20/07 (PB2007-114767). 
 
MCEER-07-0002 “Hazard Mitigation Investment Decision Making: Organizational Response to Legislative Mandate,” by L.A. 

Arendt, D.J. Alesch and W.J. Petak, 4/9/07 (PB2007-114768). 
 
MCEER-07-0003 “Seismic Behavior of Bidirectional-Resistant Ductile End Diaphragms with Unbonded Braces in Straight or 

Skewed Steel Bridges,” by O. Celik and M. Bruneau, 4/11/07 (PB2008-105141). 



 
 
 

248 
 
 

MCEER-07-0004 “Modeling Pile Behavior in Large Pile Groups Under Lateral Loading,” by A.M. Dodds and G.R. Martin, 
4/16/07(PB2008-105142). 

 
MCEER-07-0005 “Experimental Investigation of Blast Performance of Seismically Resistant Concrete-Filled Steel Tube 

Bridge Piers,” by S. Fujikura, M. Bruneau and D. Lopez-Garcia, 4/20/07 (PB2008-105143). 
 
MCEER-07-0006 “Seismic Analysis of Conventional and Isolated Liquefied Natural Gas Tanks Using Mechanical Analogs,” 

by I.P. Christovasilis and A.S. Whittaker, 5/1/07, not available. 
 
MCEER-07-0007 “Experimental Seismic Performance Evaluation of Isolation/Restraint Systems for Mechanical Equipment – 

Part 1: Heavy Equipment Study,” by S. Fathali and A. Filiatrault, 6/6/07 (PB2008-105144). 
 
MCEER-07-0008 “Seismic Vulnerability of Timber Bridges and Timber Substructures,” by A.A. Sharma, J.B. Mander, I.M. 

Friedland and D.R. Allicock, 6/7/07 (PB2008-105145). 
 
MCEER-07-0009 “Experimental and Analytical Study of the XY-Friction Pendulum (XY-FP) Bearing for Bridge 

Applications,” by C.C. Marin-Artieda, A.S. Whittaker and M.C. Constantinou, 6/7/07 (PB2008-105191). 
 
MCEER-07-0010 “Proceedings of the PRC-US Earthquake Engineering Forum for Young Researchers,” Edited by G.C. Lee 

and X.Z. Qi, 6/8/07 (PB2008-500058). 
 
MCEER-07-0011 “Design Recommendations for Perforated Steel Plate Shear Walls,” by R. Purba and M. Bruneau, 6/18/07, 

(PB2008-105192). 
 
MCEER-07-0012 “Performance of Seismic Isolation Hardware Under Service and Seismic Loading,” by M.C. Constantinou, 

A.S. Whittaker, Y. Kalpakidis, D.M. Fenz and G.P. Warn, 8/27/07, (PB2008-105193). 
 
MCEER-07-0013 “Experimental Evaluation of the Seismic Performance of Hospital Piping Subassemblies,” by E.R. Goodwin, 

E. Maragakis and A.M. Itani, 9/4/07, (PB2008-105194). 
 
MCEER-07-0014 “A Simulation Model of Urban Disaster Recovery and Resilience: Implementation for the 1994 Northridge 

Earthquake,” by S. Miles and S.E. Chang, 9/7/07, (PB2008-106426). 
 
MCEER-07-0015 “Statistical and Mechanistic Fragility Analysis of Concrete Bridges,” by M. Shinozuka, S. Banerjee and S-H. 

Kim, 9/10/07, (PB2008-106427). 
 
MCEER-07-0016 “Three-Dimensional Modeling of Inelastic Buckling in Frame Structures,” by M. Schachter and AM. 

Reinhorn, 9/13/07, (PB2008-108125). 
 
MCEER-07-0017 “Modeling of Seismic Wave Scattering on Pile Groups and Caissons,” by I. Po Lam, H. Law and C.T. Yang, 

9/17/07 (PB2008-108150). 
 
MCEER-07-0018 “Bridge Foundations: Modeling Large Pile Groups and Caissons for Seismic Design,” by I. Po Lam, H. Law 

and G.R. Martin (Coordinating Author), 12/1/07 (PB2008-111190). 
 
MCEER-07-0019 “Principles and Performance of Roller Seismic Isolation Bearings for Highway Bridges,” by G.C. Lee, Y.C. 

Ou, Z. Liang, T.C. Niu and J. Song, 12/10/07 (PB2009-110466). 
 
MCEER-07-0020 “Centrifuge Modeling of Permeability and Pinning Reinforcement Effects on Pile Response to Lateral 

Spreading,” by L.L Gonzalez-Lagos, T. Abdoun and R. Dobry, 12/10/07 (PB2008-111191). 
 
MCEER-07-0021 “Damage to the Highway System from the Pisco, Perú Earthquake of August 15, 2007,” by J.S. O’Connor, 

L. Mesa and M. Nykamp, 12/10/07, (PB2008-108126). 
 
MCEER-07-0022 “Experimental Seismic Performance Evaluation of Isolation/Restraint Systems for Mechanical Equipment – 

Part 2: Light Equipment Study,” by S. Fathali and A. Filiatrault, 12/13/07 (PB2008-111192). 
 
MCEER-07-0023 “Fragility Considerations in Highway Bridge Design,” by M. Shinozuka, S. Banerjee and S.H. Kim, 12/14/07 

(PB2008-111193). 
 



 
 
 

249 
 
 

MCEER-07-0024 “Performance Estimates for Seismically Isolated Bridges,” by G.P. Warn and A.S. Whittaker, 12/30/07 
(PB2008-112230). 

 
 
MCEER-08-0001 “Seismic Performance of Steel Girder Bridge Superstructures with Conventional Cross Frames,” by L.P. 

Carden, A.M. Itani and I.G. Buckle, 1/7/08, (PB2008-112231). 
 
MCEER-08-0002 “Seismic Performance of Steel Girder Bridge Superstructures with Ductile End Cross Frames with Seismic 

Isolators,” by L.P. Carden, A.M. Itani and I.G. Buckle, 1/7/08 (PB2008-112232). 
 
MCEER-08-0003 “Analytical and Experimental Investigation of a Controlled Rocking Approach for Seismic Protection of 

Bridge Steel Truss Piers,” by M. Pollino and M. Bruneau, 1/21/08 (PB2008-112233). 
 
MCEER-08-0004 “Linking Lifeline Infrastructure Performance and Community Disaster Resilience: Models and Multi-

Stakeholder Processes,” by S.E. Chang, C. Pasion, K. Tatebe and R. Ahmad, 3/3/08 (PB2008-112234). 
 
MCEER-08-0005 “Modal Analysis of Generally Damped Linear Structures Subjected to Seismic Excitations,” by J. Song, Y-L. 

Chu, Z. Liang and G.C. Lee, 3/4/08 (PB2009-102311). 
 
MCEER-08-0006 “System Performance Under Multi-Hazard Environments,” by C. Kafali and M. Grigoriu, 3/4/08 (PB2008-

112235). 
 
MCEER-08-0007 “Mechanical Behavior of Multi-Spherical Sliding Bearings,” by D.M. Fenz and M.C. Constantinou, 3/6/08 

(PB2008-112236). 
 
MCEER-08-0008 “Post-Earthquake Restoration of the Los Angeles Water Supply System,” by T.H.P. Tabucchi and R.A. 

Davidson, 3/7/08 (PB2008-112237). 
 
MCEER-08-0009 “Fragility Analysis of Water Supply Systems,” by A. Jacobson and M. Grigoriu, 3/10/08 (PB2009-105545). 
 
MCEER-08-0010 “Experimental Investigation of Full-Scale Two-Story Steel Plate Shear Walls with Reduced Beam Section 

Connections,” by B. Qu, M. Bruneau, C-H. Lin and K-C. Tsai, 3/17/08 (PB2009-106368). 
 
MCEER-08-0011 “Seismic Evaluation and Rehabilitation of Critical Components of Electrical Power Systems,” S. Ersoy, B. 

Feizi, A. Ashrafi and M. Ala Saadeghvaziri, 3/17/08 (PB2009-105546). 
 
MCEER-08-0012 “Seismic Behavior and Design of Boundary Frame Members of Steel Plate Shear Walls,” by B. Qu and M. 

Bruneau, 4/26/08 . (PB2009-106744). 
 
MCEER-08-0013 “Development and Appraisal of a Numerical Cyclic Loading Protocol for Quantifying Building System 

Performance,” by A. Filiatrault, A. Wanitkorkul and M. Constantinou, 4/27/08 (PB2009-107906). 
 
MCEER-08-0014 “Structural and Nonstructural Earthquake Design: The Challenge of Integrating Specialty Areas in Designing 

Complex, Critical Facilities,” by W.J. Petak and D.J. Alesch, 4/30/08 (PB2009-107907). 
 
MCEER-08-0015 “Seismic Performance Evaluation of Water Systems,” by Y. Wang and T.D. O’Rourke, 5/5/08 (PB2009-

107908). 
 
MCEER-08-0016 “Seismic Response Modeling of Water Supply Systems,” by P. Shi and T.D. O’Rourke, 5/5/08 (PB2009-

107910). 
 
MCEER-08-0017 “Numerical and Experimental Studies of Self-Centering Post-Tensioned Steel Frames,” by D. Wang and A. 

Filiatrault, 5/12/08 (PB2009-110479). 
 
MCEER-08-0018 “Development, Implementation and Verification of Dynamic Analysis Models for Multi-Spherical Sliding 

Bearings,” by D.M. Fenz and M.C. Constantinou, 8/15/08 (PB2009-107911). 
 
MCEER-08-0019 “Performance Assessment of Conventional and Base Isolated Nuclear Power Plants for Earthquake Blast 

Loadings,” by Y.N. Huang, A.S. Whittaker and N. Luco, 10/28/08 (PB2009-107912). 
 



 
 
 

250 
 
 

MCEER-08-0020  “Remote Sensing for Resilient Multi-Hazard Disaster Response – Volume I: Introduction to Damage 
Assessment Methodologies,” by B.J. Adams and R.T. Eguchi, 11/17/08 (PB2010-102695). 

 
MCEER-08-0021 “Remote Sensing for Resilient Multi-Hazard Disaster Response – Volume II: Counting the Number of 

Collapsed Buildings Using an Object-Oriented Analysis: Case Study of the 2003 Bam Earthquake,” by L. 
Gusella, C.K. Huyck and B.J. Adams, 11/17/08 (PB2010-100925). 

 
 MCEER-08-0022 “Remote Sensing for Resilient Multi-Hazard Disaster Response – Volume III: Multi-Sensor Image Fusion 

Techniques for Robust Neighborhood-Scale Urban Damage Assessment,” by B.J. Adams and A. McMillan, 
11/17/08 (PB2010-100926). 

 
 MCEER-08-0023 “Remote Sensing for Resilient Multi-Hazard Disaster Response – Volume IV: A Study of Multi-Temporal 

and Multi-Resolution SAR Imagery for Post-Katrina Flood Monitoring in New Orleans,” by A. McMillan, 
J.G. Morley, B.J. Adams and S. Chesworth, 11/17/08 (PB2010-100927). 

 
MCEER-08-0024 “Remote Sensing for Resilient Multi-Hazard Disaster Response – Volume V: Integration of Remote Sensing 

Imagery and VIEWSTM Field Data for Post-Hurricane Charley Building Damage Assessment,” by J.A. 
Womble, K. Mehta and B.J. Adams, 11/17/08 (PB2009-115532). 

 
MCEER-08-0025 “Building Inventory Compilation for Disaster Management: Application of Remote Sensing and Statistical 

Modeling,” by P. Sarabandi, A.S. Kiremidjian, R.T. Eguchi and B. J. Adams, 11/20/08 (PB2009-110484). 
 
MCEER-08-0026 “New Experimental Capabilities and Loading Protocols for Seismic Qualification and Fragility Assessment 

of Nonstructural Systems,” by R. Retamales, G. Mosqueda, A. Filiatrault and A. Reinhorn, 11/24/08 
(PB2009-110485). 

 
MCEER-08-0027 “Effects of Heating and Load History on the Behavior of Lead-Rubber Bearings,” by I.V. Kalpakidis and 

M.C. Constantinou, 12/1/08 (PB2009-115533). 
 
MCEER-08-0028 “Experimental and Analytical Investigation of Blast Performance of Seismically Resistant Bridge Piers,” by 

S.Fujikura and M. Bruneau, 12/8/08 (PB2009-115534). 
 
MCEER-08-0029 “Evolutionary Methodology for Aseismic Decision Support,” by Y. Hu and G. Dargush, 12/15/08. 
 
MCEER-08-0030 “Development of a Steel Plate Shear Wall Bridge Pier System Conceived from a Multi-Hazard Perspective,” 

by D. Keller and M. Bruneau, 12/19/08 (PB2010-102696). 
 
 
MCEER-09-0001 “Modal Analysis of Arbitrarily Damped Three-Dimensional Linear Structures Subjected to Seismic 

Excitations,” by Y.L. Chu, J. Song and G.C. Lee, 1/31/09 (PB2010-100922). 
 
MCEER-09-0002 “Air-Blast Effects on Structural Shapes,” by G. Ballantyne, A.S. Whittaker, A.J. Aref and G.F. Dargush, 

2/2/09 (PB2010-102697). 
 
MCEER-09-0003 “Water Supply Performance During Earthquakes and Extreme Events,” by A.L. Bonneau and T.D. 

O’Rourke, 2/16/09 (PB2010-100923). 
 
MCEER-09-0004 “Generalized Linear (Mixed) Models of Post-Earthquake Ignitions,” by R.A. Davidson, 7/20/09 (PB2010-

102698). 
 
MCEER-09-0005 “Seismic Testing of a Full-Scale Two-Story Light-Frame Wood Building: NEESWood Benchmark Test,” by 

I.P. Christovasilis, A. Filiatrault and A. Wanitkorkul, 7/22/09 (PB2012-102401). 
 
MCEER-09-0006 “IDARC2D Version 7.0: A Program for the Inelastic Damage Analysis of Structures,” by A.M. Reinhorn, H. 

Roh, M. Sivaselvan, S.K. Kunnath, R.E. Valles, A. Madan, C. Li, R. Lobo and Y.J. Park, 7/28/09 (PB2010-
103199). 

 
MCEER-09-0007 “Enhancements to Hospital Resiliency: Improving Emergency Planning for and Response to Hurricanes,” by 

D.B. Hess and L.A. Arendt, 7/30/09 (PB2010-100924). 
 



 
 
 

251 
 
 

MCEER-09-0008 “Assessment of Base-Isolated Nuclear Structures for Design and Beyond-Design Basis Earthquake Shaking,” 
by Y.N. Huang, A.S. Whittaker, R.P. Kennedy and R.L. Mayes, 8/20/09 (PB2010-102699). 

 
MCEER-09-0009 “Quantification of Disaster Resilience of Health Care Facilities,” by G.P. Cimellaro, C. Fumo, A.M Reinhorn 

and M. Bruneau, 9/14/09 (PB2010-105384). 
 
MCEER-09-0010 “Performance-Based Assessment and Design of Squat Reinforced Concrete Shear Walls,” by C.K. Gulec and 

A.S. Whittaker, 9/15/09 (PB2010-102700). 
 
MCEER-09-0011 “Proceedings of the Fourth US-Taiwan Bridge Engineering Workshop,” edited by W.P. Yen, J.J. Shen, T.M. 

Lee and R.B. Zheng, 10/27/09 (PB2010-500009). 
 
MCEER-09-0012 “Proceedings of the Special International Workshop on Seismic Connection Details for Segmental Bridge 

Construction,” edited by W. Phillip Yen and George C. Lee, 12/21/09 (PB2012-102402). 
 
 
MCEER-10-0001 “Direct Displacement Procedure for Performance-Based Seismic Design of Multistory Woodframe 

Structures,” by W. Pang and D. Rosowsky, 4/26/10 (PB2012-102403). 
 
MCEER-10-0002 “Simplified Direct Displacement Design of Six-Story NEESWood Capstone Building and Pre-Test Seismic 

Performance Assessment,” by W. Pang, D. Rosowsky, J. van de Lindt and S. Pei, 5/28/10 (PB2012-102404). 
 
MCEER-10-0003 “Integration of Seismic Protection Systems in Performance-Based Seismic Design of Woodframed 

Structures,” by J.K. Shinde and M.D. Symans, 6/18/10 (PB2012-102405). 
 
MCEER-10-0004 “Modeling and Seismic Evaluation of Nonstructural Components: Testing Frame for Experimental 

Evaluation of Suspended Ceiling Systems,” by A.M. Reinhorn, K.P. Ryu and G. Maddaloni, 6/30/10 
(PB2012-102406). 

 
MCEER-10-0005 “Analytical Development and Experimental Validation of a Structural-Fuse Bridge Pier Concept,” by S. El-

Bahey and M. Bruneau, 10/1/10 (PB2012-102407). 
 
MCEER-10-0006 “A Framework for Defining and Measuring Resilience at the Community Scale: The PEOPLES Resilience 

Framework,” by C.S. Renschler, A.E. Frazier, L.A. Arendt, G.P. Cimellaro, A.M. Reinhorn and M. Bruneau, 
10/8/10 (PB2012-102408). 

 
MCEER-10-0007 “Impact of Horizontal Boundary Elements Design on Seismic Behavior of Steel Plate Shear Walls,” by R. 

Purba and M. Bruneau, 11/14/10 (PB2012-102409). 
 
MCEER-10-0008 “Seismic Testing of a Full-Scale Mid-Rise Building: The NEESWood Capstone Test,” by S. Pei, J.W. van de 

Lindt, S.E. Pryor, H. Shimizu, H. Isoda and D.R. Rammer, 12/1/10 (PB2012-102410). 
 
MCEER-10-0009 “Modeling the Effects of Detonations of High Explosives to Inform Blast-Resistant Design,” by P. Sherkar, 

A.S. Whittaker and A.J. Aref, 12/1/10 (PB2012-102411). 
 
MCEER-10-0010 “L’Aquila Earthquake of April 6, 2009 in Italy: Rebuilding a Resilient City to Withstand Multiple Hazards,” 

by G.P. Cimellaro, I.P. Christovasilis, A.M. Reinhorn, A. De Stefano and T. Kirova, 12/29/10. 
 
 
MCEER-11-0001 “Numerical and Experimental Investigation of the Seismic Response of Light-Frame Wood Structures,” by 

I.P. Christovasilis and A. Filiatrault, 8/8/11 (PB2012-102412).  
 
MCEER-11-0002 “Seismic Design and Analysis of a Precast Segmental Concrete Bridge Model,” by M. Anagnostopoulou, A. 

Filiatrault and A. Aref, 9/15/11. 
 
MCEER-11-0003 ‘Proceedings of the Workshop on Improving Earthquake Response of Substation Equipment,” Edited by 

A.M. Reinhorn, 9/19/11 (PB2012-102413). 
 
MCEER-11-0004 “LRFD-Based Analysis and Design Procedures for Bridge Bearings and Seismic Isolators,” by M.C. 

Constantinou, I. Kalpakidis, A. Filiatrault and R.A. Ecker Lay, 9/26/11. 
 



 
 
 

252 
 
 

MCEER-11-0005 “Experimental Seismic Evaluation, Model Parameterization, and Effects of Cold-Formed Steel-Framed 
Gypsum Partition Walls on the Seismic Performance of an Essential Facility,” by R. Davies, R. Retamales, 
G. Mosqueda and A. Filiatrault, 10/12/11. 

 
MCEER-11-0006 “Modeling and Seismic Performance Evaluation of High Voltage Transformers and Bushings,” by A.M. 

Reinhorn, K. Oikonomou, H. Roh, A. Schiff and L. Kempner, Jr., 10/3/11. 
 
MCEER-11-0007 “Extreme Load Combinations: A Survey of State Bridge Engineers,” by G.C. Lee, Z. Liang, J.J. Shen and 

J.S. O’Connor, 10/14/11. 
 
 
MCEER-12-0001 “Simplified Analysis Procedures in Support of Performance Based Seismic Design,” by Y.N. Huang and 

A.S. Whittaker. 
 
MCEER-12-0002 “Seismic Protection of Electrical Transformer Bushing Systems by Stiffening Techniques,” by M. Koliou, A. 

Filiatrault, A.M. Reinhorn and N. Oliveto, 6/1/12. 
 
MCEER-12-0003 “Post-Earthquake Bridge Inspection Guidelines,” by J.S. O’Connor and S. Alampalli, 6/8/12. 
 
MCEER-12-0004 “Integrated Design Methodology for Isolated Floor Systems in Single-Degree-of-Freedom Structural Fuse 

Systems,” by S. Cui, M. Bruneau and M.C. Constantinou, 6/13/12. 
 
MCEER-12-0005 “Characterizing the Rotational Components of Earthquake Ground Motion,” by D. Basu, A.S. Whittaker and 

M.C. Constantinou, 6/15/12. 
 
MCEER-12-0006 “Bayesian Fragility for Nonstructural Systems,” by C.H. Lee and M.D. Grigoriu, 9/12/12. 
 
MCEER-12-0007 “A Numerical Model for Capturing the In-Plane Seismic Response of Interior Metal Stud Partition Walls,” 

by R.L. Wood and T.C. Hutchinson, 9/12/12. 
 
MCEER-12-0008 “Assessment of Floor Accelerations in Yielding Buildings,” by J.D. Wieser, G. Pekcan, A.E. Zaghi, A.M. 

Itani and E. Maragakis, 10/5/12. 
 
 
MCEER-13-0001 “Experimental Seismic Study of Pressurized Fire Sprinkler Piping Systems,” by Y. Tian, A. Filiatrault and 

G. Mosqueda, 4/8/13. 
 
MCEER-13-0002 “Enhancing Resource Coordination for Multi-Modal Evacuation Planning,” by D.B. Hess, B.W. Conley and 

C.M. Farrell, 2/8/13. 
 
MCEER-13-0003 “Seismic Response of Base Isolated Buildings Considering Pounding to Moat Walls,” by A. Masroor and G. 

Mosqueda, 2/26/13. 
 
MCEER-13-0004 “Seismic Response Control of Structures Using a Novel Adaptive Passive Negative Stiffness Device,” by 

D.T.R. Pasala, A.A. Sarlis, S. Nagarajaiah, A.M. Reinhorn, M.C. Constantinou and D.P. Taylor, 6/10/13. 
 
MCEER-13-0005 “Negative Stiffness Device for Seismic Protection of Structures,” by A.A. Sarlis, D.T.R. Pasala, M.C. 

Constantinou, A.M. Reinhorn, S. Nagarajaiah and D.P. Taylor, 6/12/13. 
 
MCEER-13-0006 “Emilia Earthquake of May 20, 2012 in Northern Italy: Rebuilding a Resilient Community to Withstand 

Multiple Hazards,” by G.P. Cimellaro, M. Chiriatti, A.M. Reinhorn and L. Tirca, June 30, 2013. 
 
MCEER-13-0007 “Precast Concrete Segmental Components and Systems for Accelerated Bridge Construction in Seismic 

Regions,” by A.J. Aref,  G.C. Lee, Y.C. Ou and P. Sideris, with contributions from K.C. Chang, S. Chen, A. 
Filiatrault and Y. Zhou, June 13, 2013. 

 
MCEER-13-0008 “A Study of U.S. Bridge Failures (1980-2012),” by G.C. Lee, S.B. Mohan, C. Huang and B.N. Fard, June 15, 

2013. 
 
MCEER-13-0009 “Development of a Database Framework for Modeling Damaged Bridges,” by G.C. Lee, J.C. Qi and C. 

Huang, June 16, 2013. 



 
 
 

253 
 
 

MCEER-13-0010 “Model of Triple Friction Pendulum Bearing for General Geometric and Frictional Parameters and for Uplift 
Conditions,” by A.A. Sarlis and M.C. Constantinou, July 1, 2013. 

 
MCEER-13-0011 “Shake Table Testing of Triple Friction Pendulum Isolators under Extreme Conditions,” by A.A. Sarlis, 

M.C. Constantinou and A.M. Reinhorn, July 2, 2013. 
 
MCEER-13-0012 “Theoretical Framework for the Development of MH-LRFD,” by G.C. Lee (coordinating author), H.A 

Capers, Jr., C. Huang, J.M. Kulicki, Z. Liang, T. Murphy, J.J.D. Shen, M. Shinozuka and P.W.H. Yen, July 
31, 2013. 

 
MCEER-13-0013 “Seismic Protection of Highway Bridges with Negative Stiffness Devices,” by N.K.A. Attary, M.D. Symans, 

S. Nagarajaiah, A.M. Reinhorn, M.C. Constantinou, A.A. Sarlis, D.T.R. Pasala, and D.P. Taylor, September 
3, 2014. 

 
 
MCEER-14-0001 “Simplified Seismic Collapse Capacity-Based Evaluation and Design of Frame Buildings with and without 

Supplemental Damping Systems,” by M. Hamidia, A. Filiatrault, and A. Aref, May 19, 2014. 
 
MCEER-14-0002 “Comprehensive Analytical Seismic Fragility of Fire Sprinkler Piping Systems,” by Siavash Soroushian, 

Emmanuel “Manos” Maragakis, Arash E. Zaghi, Alicia Echevarria, Yuan Tian and Andre Filiatrault, August 
26, 2014. 

 
MCEER-14-0003 “Hybrid Simulation of the Seismic Response of a Steel Moment Frame Building Structure through 

Collapse,” by M. Del Carpio Ramos, G. Mosqueda and D.G. Lignos, October 30, 2014. 
 
MCEER-14-0004 “Blast and Seismic Resistant Concrete-Filled Double Skin Tubes and Modified Steel Jacketed Bridge 

Columns,” by P.P. Fouche and M. Bruneau, June 30, 2015. 
 
MCEER-14-0005 “Seismic Performance of Steel Plate Shear Walls Considering Various Design Approaches,” by R. Purba and 

M. Bruneau, October 31, 2014. 
 
MCEER-14-0006 “Air-Blast Effects on Civil Structures,” by Jinwon Shin, Andrew S. Whittaker, Amjad J. Aref and David 

Cormie, October 30, 2014. 
 
MCEER-14-0007 “Seismic Performance Evaluation of Precast Girders with Field-Cast Ultra High Performance Concrete 

(UHPC) Connections,” by G.C. Lee, C. Huang, J. Song, and J. S. O’Connor, July 31, 2014. 
 
MCEER-14-0008 “Post-Earthquake Fire Resistance of Ductile Concrete-Filled Double-Skin Tube Columns,” by Reza Imani, 

Gilberto Mosqueda and Michel Bruneau, December 1, 2014. 
 
MCEER-14-0009 “Cyclic Inelastic Behavior of Concrete Filled Sandwich Panel Walls Subjected to In-Plane Flexure,” by Y. 

Alzeni and M. Bruneau, December 19, 2014. 
 
MCEER-14-0010 “Analytical and Experimental Investigation of Self-Centering Steel Plate Shear Walls,” by D.M. Dowden 

and M. Bruneau, December 19, 2014. 
 
 
MCEER-15-0001 “Seismic Analysis of Multi‐story Unreinforced Masonry Buildings with Flexible Diaphragms,” by J. 

Aleman, G. Mosqueda and A.S. Whittaker, June 12, 2015. 
 
MCEER-15-0002 “Site Response, Soil-Structure Interaction and Structure-Soil-Structure Interaction for Performance 

Assessment of Buildings and Nuclear Structures,” by C. Bolisetti and A.S. Whittaker, June 15, 2015. 
 
MCEER-15-0003 “Stress Wave Attenuation in Solids for Mitigating Impulsive Loadings,” by R. Rafiee-Dehkharghani, A.J. 

Aref and G. Dargush, August 15, 2015. 
 
MCEER-15-0004 “Computational, Analytical, and Experimental Modeling of Masonry Structures,” by K.M. Dolatshahi and 

A.J. Aref, November 16, 2015. 
 
MCEER-15-0005 “Property Modification Factors for Seismic Isolators: Design Guidance for Buildings,” by W.J. McVitty and 

M.C. Constantinou, June 30, 2015. 



 
 
 

254 
 
 

 
MCEER-15-0006 “Seismic Isolation of Nuclear Power Plants using Sliding Bearings,” by Manish Kumar, Andrew S. 

Whittaker and Michael C. Constantinou, December 27, 2015. 
 
MCEER-15-0007 “Quintuple Friction Pendulum Isolator Behavior, Modeling and Validation,” by Donghun Lee and Michael 

C. Constantinou, December 28, 2015. 
 
MCEER-15-0008 “Seismic Isolation of Nuclear Power Plants using Elastomeric Bearings,” by Manish Kumar, Andrew S. 

Whittaker and Michael C. Constantinou, December 29, 2015. 
 
 
MCEER-16-0001 “Experimental, Numerical and Analytical Studies on the Seismic Response of Steel-Plate Concrete (SC) 

Composite Shear Walls,” by Siamak Epackachi and Andrew S. Whittaker, June 15, 2016. 
 
MCEER-16-0002 “Seismic Demand in Columns of Steel Frames,” by Lisa Shrestha and Michel Bruneau, June 17, 2016. 
 
MCEER-16-0003 “Development and Evaluation of Procedures for Analysis and Design of Buildings with Fluidic Self-

Centering Systems” by Shoma Kitayama and Michael C. Constantinou, July 21, 2016. 
 
MCEER-16-0004 “Real Time Control of Shake Tables for Nonlinear Hysteretic Systems,” by Ki Pung Ryu and Andrei M. 

Reinhorn, October 22, 2016. 
 



 

  



ISSN 1520-295X

ISSN 1520-295X 

University at Buffalo, The State University of New York
133A Ketter Hall      Buffalo, New York 14260-4300
Phone: (716) 645-3391      Fax: (716) 645-3399
Email: mceer@buffalo.edu      Web: http://mceer.buffalo.edu

Characterizing the Rotational 
Components of Earthquake

Ground Motion

by 
Dhiman Basu, Andrew S. Whittaker

and Michael C. Constantinou 

Technical Report MCEER-12-0005

June 15, 2012

C
haracterizing the R

otational C
om

ponents of Earthquake G
round M

otion
M

C
EER

-12-0005 This research was conducted at the University at Buffalo, State University of New York and was

supported by MCEER Thrust Area 3, Innovative Technologies.




