
ISSN 1520-295X

Quintuple Friction Pendulum Isolator
Behavior, Modeling and Validation

by
Donghun Lee and Michael C. Constantinou

Technical Report MCEER-15-0007

December 28, 2015

This research was conducted at the University at Buffalo, State University of New York,  

and was supported by MCEER Thrust Area 3, Innovative Technologies.



NOTICE
This report was prepared by the University at Buffalo, State University of New 
York, as a result of research sponsored by MCEER. Neither MCEER, associates 
of MCEER, its sponsors, the University at Buffalo, State University of New 
York, nor any person acting on their behalf:

a.	 makes any warranty, express or implied, with respect to the use of any 
information, apparatus, method, or process disclosed in this report or that 
such use may not infringe upon privately owned rights; or

b.	 assumes any liabilities of whatsoever kind with respect to the use of, or the 
damage resulting from the use of, any information, apparatus, method, or 
process disclosed in this report.

Any opinions, findings, and conclusions or recommendations expressed in this 
publication are those of the author(s) and do not necessarily reflect the views 
of MCEER or other sponsors.



 

 

 

         
 

 
 
 
 
 

Quintuple Friction Pendulum Isolator 

Behavior, Modeling and Validation 

 

by 
 

Donghun Lee1 and Michael C. Constantinou2 
 

 

 
  
 

 

Publication Date: December 28, 2015 
Submittal Date: June 28, 2015 

 

Technical Report MCEER-15-0007 
 
 
 
 

MCEER Thrust Area 3, Innovative Technologies 
 

 
  
 
 
 
 
 
 
 

1 Ph.D. Candidate, Department of Civil, Structural and Environmental Engineering, University 

at Buffalo, State University of New York 
2 SUNY Distinguished Professor, Department of Civil, Structural and Environmental 

Engineering, University at Buffalo, State University of New York 
 
 

 
 

MCEER 
University at Buffalo, State University of New York 
212 Ketter Hall, Buffalo, NY 14260 
E-mail: mceer@buffalo.edu; WWW Site: http://mceer.buffalo.edu    

http://mceer.buffalo.edu/




iii 

 

 

PREFACE 

 
MCEER is a national center of excellence dedicated to the discovery and development of new 

knowledge, tools and technologies that equip communities to become more disaster resilient in the 

face of earthquakes and other extreme events. MCEER accomplishes this through a system of 

multidisciplinary, multi-hazard research, education and outreach initiatives. 

 

Headquartered at the University at Buffalo, State University of New York, MCEER was 

originally established by the National Science Foundation (NSF) in 1986, as the first National 

Center for Earthquake Engineering Research (NCEER). In 1998, it became known as the 

Multidisciplinary Center for Earthquake Engineering Research (MCEER), from which the current 

name, MCEER, evolved. 

 

Comprising a consortium of researchers and industry partners from numerous disciplines and 

institutions throughout the United States, MCEER’s mission has expanded from its original focus 

on earthquake engineering to one which addresses the technical and socioeconomic impacts of a 

variety of hazards, both natural and man-made, on critical infrastructure, facilities, and society. 

 

MCEER investigators derive support from the State of New York, National Science 

Foundation, Federal Highway Administration, National Institute of Standards and Technology, 

Department of Homeland Security/Federal Emergency Management Agency, other state 

governments, academic institutions, foreign governments and private industry. 

 

This report describes the Quintuple Friction Pendulum Isolator, which is a spherical sliding 

isolator with six sliding surfaces. Analytical models of behavior are presented to describe the 

force-displacement loop for two general cases of geometric and frictional parameters. The 

analytical model is useful in performing simplified calculations and in verifying more complex 

computational models.  Computational models are also presented which may be implemented in 

commercial software. A model isolator was tested and the results are used to validate the 

analytical and computational models.  
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ABSTRACT 

 

This report describes the behavior of the Quintuple Friction Pendulum Isolator, a spherical sliding 

isolator with six sliding surfaces, five effective pendula and nine regimes of operation that allow 

for complex multi-stage adaptive behavior, depending on the amplitude of displacement.  An 

analytical model is presented that is capable of tracing the behavior of the isolator in two general 

configurations of geometric and frictional properties.  This analytical model is useful for verifying 

computational models and in performing simplified calculations for analysis and design.  A 

computational model that can be implemented in program SAP2000 is also presented and verified 

by comparison to the analytical model.  Two configurations of a model Quintuple Friction 

Pendulum Isolator have been tested and the results have been used to validate the analytical and 

computational models.    
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SECTION 1  

INTRODUCTION 

 

The Quintuple Friction Pendulum (FP) Isolator is an extension of the Triple FP Isolator (Morgan, 

2007; Fenz and Constantinou, 2008a and 2008b) and consists of six spherical sliding surfaces.  It 

offers a more complex multi-stage behavior and smoother transition between regimes than the 

Triple FP Isolator.   It is envisioned as another isolator in the arsenal of isolators available to the 

engineer to choose from when very large displacement capacities are needed and when complex 

multi-stage behavior improves performance. 

 

Table 1-1 illustrates the evolution of the Friction Pendulum Isolator and presents information on 

the number of effective pendula and the number of sliding regimes (or stages) of behavior.  The 

Single FP Isolator (Zayas et al, 1987; Mokha et al, 1991) is characterized by a single sliding surface, 

one effective pendulum and has one stage of operation.  The Double FP Isolator (Fenz and 

Constantinou, 2006) offers the important advantages of reduced heating effects and increased 

displacement capacity for a given plan dimension, and can be configured for limited adaptive 

behavior (although then with the requirement for articulation, which would reduce the axial load 

capacity).  It has two effective pendula and three sliding regimes.  The Triple FP Isolator has the 

same advantages as the Double FP Isolator and also an increased capability for adaptive behavior.  

It has three effective pendula and five sliding regimes.  The Quintuple FP Isolator will be shown 

to have five effective pendula and nine sliding regimes.  The increased number of pendula and 

sliding regimes increases the adaptability of behavior at the expense of increased complexity in 

modeling its behavior.  The number of effective pendula denotes the name of each isolator.  Note 

that the schematics of isolators in Table 1-1 show the Double FP Isolator having an articulated 

slider as it is needed for adaptive behavior (Fenz and Constantinou, 2006).  Removal of the 

articulation requires certain friction and geometric constraints that reduce the isolator to having 

the same behavior as the Single FP Isolator.  Also, the Triple and Quintuple FP Isolators are shown 

to lack articulation for the inner most part–the rigid slider–as articulation would render the bearings 

unstable (Sarlis and Constantinou, 2013). 
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TABLE 1-1 Evolution of Friction Pendulum Isolator and Number of Effective Pendula and Sliding 

Regimes 

 Single FP Double FP Triple FP Quintuple FP 

Configuration 
    

Number of 

effective 

pendula 

1 2 3 5 

Number of 

sliding 

regimes 

1 3 5 9 

The existence of the Quintuple FP Isolator was postulated by Tsai et al (2010) who studied isolators 

with multiple sliding surfaces and presented a computational plasticity-based model of behavior.  

Tsai et al (2010) also presented simple algebraic force-displacement relations that only apply for 

the loading branch and provide no information for unloading.   

 

This paper presents a treatment of the Quintuple Friction Pendulum Isolator that includes: 

 

1) Analytical force-displacement relations for all sliding regimes which are valid for the 

loading and the unloading branches of the hysteresis loop, and for two general 

configurations of geometric and frictional properties. These relations may be used to 

perform simplified calculations in accordance with the Equivalent Lateral Force (ELF) 

procedure of the ASCE 7 Standard (ASCE, 2010).  They can also be used to verify 

computational models for use in response history analysis. 

 

2) A computational model that can be readily utilized in commercially available software, 

with examples developed in program SAP2000 (Computers and Structures, 2014).   

 

3) Test results on two configurations of a model Quintuple FP Isolator that are used to validate 

the analytical and computational models presented.  
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SECTION 2  

ANALYTICAL FORCE-DISPLACEMENT RELATIONS 

 

Figure 2-1 presents a cross section of the Quintuple FP Isolator and defines the geometric and 

frictional parameters.  Note that quantities Ri, i=1 to 6 are the radii of curvature of the six concave 

surfaces and quantities µ i, i=1 to 6 are the coefficients of friction at the six sliding interfaces.  The 

analytical force-displacement relations are derived using the approach of Fenz and Constantinou 

(2008a) and Morgan (2007) in which only equilibrium of horizontal and vertical forces is used.  

This necessitates certain geometric and frictional constraints.  A model for general geometric and 

frictional parameters further requires consideration of equilibrium of moments and results in a 

much higher complexity without any practical significance as shown by Sarlis and Constantinou 

(2013). 

 

 
FIGURE 2-1 Cross Section of Quintuple Friction Pendulum Isolator 

 

The basic assumptions of the theory for the Quintuple FP Isolators parallel those for the Triple FP 

Isolator in the model of Fenz and Constantinou (2008a).  They are as follows where quantity ,eff iR  

is the effective radius of curvature and *

id  is the actual displacement capacity. 

 

 ,eff i i iR R h   (1) 

  *

, /i i eff i id d R R  (2) 

 

1) The effective radii satisfy the condition: Reff3 = Reff4 <<  Reff2 ≤ Reff5  <<  Reff1 ≤ Reff6. 

 

6 6,R 

1 1,R  2 2,R 
5 5,R 

4 4,R 

3 3,R 

4d

3d

5d

2d

6d

1d

4h 5h
6h

3h
2h

1h

A
B

E

C

F
G

D
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2) The coefficients of friction satisfy either of the following two conditions:  

a. Configuration 1, where 3 4 5 2 6 1          . 

b. Configuration 2, where 3 4 2 5 6 1          . 

Note that configuration 2 is achieved by interchanging plates C and E of 

configuration 1 as shown in Figure 2-1.  Also, the combination of conditions 

3 4  and 3 4eff effR R  ensures that initiation of motion occurs simultaneously on 

interfaces 3 and 4 (per Figure 2-1).  Any other combination of these four parameters 

would have resulted in behavior that cannot be exactly predicted by the model 

presented herein and would require a more complex treatment (Sarlis and 

Constantinou, 2013).  Note that configurations 1 and 2 also encompass the simpler 

configuration where 3 4 5 2 6 1          , which is characterized by four 

effective pendula and seven regimes of operation. 

 

3) The displacement capacity of each surface is such that there is gradual stiffening at large 

displacement. For both configurations, motion on outer surfaces should initiate prior to 

reaching the restrainers of the inner surfaces (for example, motion on sliding surface 1 

should initiate prior to reaching the restrainer of part B, etc.) which leads to the following 

conditions: 

 
* *

1 2
1 2

1 2eff eff

d d

R R
     ,  

** *

31 2
2 3

1 2 3eff eff eff

dd d

R R R
          

(3) 

* *

5 6
6 5

5 6eff eff

d d

R R
     ,  

* **

5 64
5 4

4 5 6eff eff eff

d dd

R R R
        

 

4) Sliding should initiate on the surface of highest friction prior to the onset of any stiffening 

(i.e. prior to contacting any of the displacement restrainers).  This leads to the requirement 

that 

  *

6 1 6 6effd R    (4)  
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5) For the special case of Configuration 2 where 1 6eff effR R , the following condition is also 

needed: 

 
* ** *

5 61 2

5 2

1 2 5 6eff eff eff eff

d dd d

R R R R
 

   
       

   
   

 (5) 

 

Details of the derivation of the force-displacement relations are presented in Appendix A.  Summaries of 

the relations are presented in Table 2-1 for Configuration 1 and in Table 2-2 for Configuration 2.  Details 

of the unloading branch of each loop are presented in Appendix A.  Representative force-displacement 

relations based on the algebraic equations of Tables 2-1 and 2-2 will be presented in the next section 

together with results of computational analysis. 

 

Note that configurations 1 and 2 only differ in that regimes 2 and 3 and regimes 8 and 9 are interchanged.  

This leads to small differences in the loops, which will be illustrated in examples. 

 

TABLE 2-1 Force-Displacement Relation of Quintuple FP Isolator of Configuration 1 

Requirements 3 4 5 2 6 1           

Regime Conditions Force-displacement relation 

I 

Motion starts on  

surfaces 3 and 4. 

 

Motion occurs on 

surfaces 3 and 4. 

3 3 4 4

3 4 3 4

f eff f eff

eff eff eff eff

F R F RW
F u

R R R R


 

 
 

Valid until: 
I

5fF F ,    I

5 3 3 5 4 4eff effRu R         

II 

Motion stops on 4 

and starts on 5. 

 

Motion occurs on 

surfaces 3 and 5. 

 3 3 4 4 5 5 4

3 5 3 5

f eff f eff f eff eff

eff eff eff eff

F R F R F R RW
F u

R R R R

  
 

 
 

Valid until:
II

2fF F ,    II I

2 5 3 5 /f f eff effu F F R R Wu      
 

 

III 

Motion stops on 3 

and starts on 2. 

 

Motion occurs on 

surfaces 2 and 5. 

   2 2 3 3 3 4 4 5 5 4

2 5 2 5

f eff eff f eff f eff f eff eff

eff eff eff eff

F R R F R F R F R RW
F u

R R R R

    
 

 
 

Valid until:
III

6fF F ,    III II

6 2 2 5 /f f eff effF F Ru u R W     
 
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IV 

Motion stops on 5 

and starts on 6. 

 

Motion occurs on 

surfaces 2 and 6. 

 

   

2 2 3 3 3

2 6 2 6

4 4 5 5 4 6 6 5

2 6

f eff eff f eff

eff eff eff eff

f eff f eff eff f eff eff

eff eff

F R R F RW
F u

R R R R

F R F R R F R R

R R

 
 

 

   




 

Valid until:
IV

1fF F ,    IIV

1 6 6

II

2 /f f eff effF F Ru u R W     
 

 

V 

Motion stops on 2 

and starts on 1. 

 

Motion occurs on 

surfaces 1 and 6. 

   

   

1 1 2 2 2 3 3 3

1 6 1 6

4 4 5 5 4 6 6 5

1 6

f eff eff f eff eff f eff

eff eff eff eff

f eff f eff eff f eff eff

eff eff

F R R F R R F RW
F u

R R R R

F R F R R F R R

R R

   
 

 

   




 

Valid until: V *

6 6 6

6

dr f

eff

W
F F d F

R
   ,  

                        V IV

6 6 1 1 6 /dr dr f eff effu u F F R Wu R      
 

 

VI 

 

Motion reaches  

end on 6 and  

stops. Motion  

starts on 5. 

 

Motion occurs on 

surfaces 1 and 5. 

 6 6

1 5

dr dr

eff eff

W
F u u F

R R
  


 

Valid until: VI *

1 1 1

1

dr f

eff

W
F F d F

R
   , 

                       VI

1 6 1 6 1 5 /dr dr dr dr eff effu u u F F R R W      
 

 

VII 

 

Motion reaches  

end on 1 and  

stops. Motion  

starts on 2. 

 

Motion occurs on 

surfaces 2 and 5. 

 1 1

2 5

dr dr

eff eff

W
F u u F

R R
  


 

Valid until: 
* *

VII 5 6
5 5

5 6

dr f

eff eff

d d
F F W F

R R

 
    

 
 

, 

                        VII

5 1 5 1 2 5 /dr dr dr dr eff effu u u F F R R W      
 

 

VIII 

 

Motion reaches  

end on 5 and  

stops. Motion  

starts on 4. 

 

Motion occurs on 

surfaces 2 and 4. 

 5 5

2 4

dr dr

eff eff

W
F u u F

R R
  


 

Valid until: 
* *

VIII 1 2
2 2

1 2

dr f

eff eff

d d
F F W F

R R

 
    

 
 

, 

                        VIII

2 5 2 5 2 4 /dr dr dr dr eff effu u u F F R R W      
 
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IX 

 

Motion reaches  

end on 2 and  

stops. Motion  

starts on 3. 

 

Motion occurs on 

surfaces 3 and 4. 

 2 2

3 4

dr dr

eff eff

W
F u u F

R R
  


 

Valid until:  IX IX

2 2

3 4

dr dr

eff eff

W
F u u F

R R
  


 

                   
IX * * * * * *

1 2 3 4 5 6u d d d d d d       

 

 

TABLE 2-2 Force-Displacement Relation of Quintuple FP Isolator of Configuration 2 

Requirements 3 4 2 5 6 1           

Regime Conditions Force-displacement relation 

I 

Motion starts on  

surfaces 3 and 4. 

 

Motion occurs on 

surfaces 3 and 4. 

3 3 4 4

3 4 3 4

f eff f eff

eff eff eff eff

F R F RW
F u

R R R R


 

 
 

Valid until: 
I

2fF F ,     I

2 3 3 2 4 4eff effRu R        

II 

Motion stops on 

3 and starts on 2. 

 

Motion occurs on 

surfaces 2 and 4. 

 3 3 4 4 2 2 3

2 4 2 4

f eff f eff f eff eff

eff eff eff eff

F R F R F R RW
F u

R R R R

  
 

 
 

Valid until: 
II

5fF F ,    II I

5 2 2 4 /f f eff effu F F R R Wu      
 

 

 

III 

Motion stops on 

4 and starts on 5. 

 

Motion occurs on 

surfaces 2 and 5. 

   2 2 3 3 3 4 4 5 5 4

2 5 2 5

f eff eff f eff f eff f eff eff

eff eff eff eff

F R R F R F R F R RW
F u

R R R R

    
 

 
 

Valid until:
III

6fF F ,    III II

6 5 2 5 /f f eff effF F Ru u R W     
 

 

IV 

Motion stops on 

5 and starts on 6. 

 

Motion occurs on 

surfaces 2 and 6. 

 

   

2 2 3 3 3

2 6 2 6

4 4 5 5 4 6 6 5

2 6

f eff eff f eff

eff eff eff eff

f eff f eff eff f eff eff

eff eff

F R R F RW
F u

R R R R

F R F R R F R R

R R

 
 

 

   




 

Valid until: 
IV

1fF F ,    IV III

1 6 2 6 /f f eff effF F Ru u R W     
 
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V 

Motion stops on 

2 and starts on 1. 

 

Motion occurs on 

surfaces 1 and 6. 

   

   

1 1 2 2 2 3 3 3

1 6 1 6

4 4 5 5 4 6 6 5

1 6

f eff eff f eff eff f eff

eff eff eff eff

f eff f eff eff f eff eff

eff eff

F R R F R R F RW
F u

R R R R

F R F R R F R R

R R

   
 

 

   




 

Valid until: V *

6 6 6

6

dr f

eff

W
F F d F

R
   ,  

                       V IV

6 6 1 1 6 /dr dr f eff effu u F F R Wu R      
 

 

VI 

 

Motion reaches  

end on 6 and  

stops. Motion  

starts on 5. 

 

Motion occurs on 

surfaces 1 and 5. 

 6 6

1 5

dr dr

eff eff

W
F u u F

R R
  


 

Valid until: VI *

1 1 1

1

dr f

eff

W
F F d F

R
   , 

                       VI

1 6 1 6 1 5 /dr dr dr dr eff effu u u F F R R W      
 

 

VII 

 

Motion reaches  

end on 1 and  

stops. Motion  

starts on 2. 

 

Motion occurs on 

surfaces 2 and 5. 

 1 1

2 5

dr dr

eff eff

W
F u u F

R R
  


 

Valid until: 
* *

VII 1 2
2 2

1 2

dr f

eff eff

d d
F F W F

R R

 
    

 
 

, 

                        VII

2 1 2 1 2 5 /dr dr dr dr eff effu u u F F R R W      
 

 

VIII 

 

Motion reaches  

end on 2 and  

stops. Motion  

starts on 3. 

 

Motion occurs on 

surfaces 3 and 5. 

 2 2

3 5

dr dr

eff eff

W
F u u F

R R
  


 

Valid until: 
* *

VIII 5 6
5 5

5 6

dr f

eff eff

d d
F F W F

R R

 
    

 
 

, 

                        VIII

5 2 5 2 3 5 /dr dr dr dr eff effu u u F F R R W      
 

 

IX 

 

Motion reaches  

end on 5 and  

stops. Motion  

starts on 4. 

 

Motion occurs on 

surfaces 3 and 4. 

 5 5

3 4

dr dr

eff eff

W
F u u F

R R
  


 

Valid until:  IX IX

5 5

3 4

dr dr

eff eff

W
F u u F

R R
  


 

                   
IX * * * * * *

1 2 3 4 5 6u d d d d d d       
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SECTION 3  

MODELING QUINTUPLE FRICTION PENDULUM ISOLATORS FOR 

RESPONSE HISTORY ANALYSIS 

 

The analytical algebraic model presented in Tables 2-1 and 2-2 is useful in quickly constructing 

force-displacement loops of the quintuple FP Isolator to better understand its behavior, in 

performing simplified calculations of response based on the Equivalent Lateral Force (ELF) 

procedure of the ASCE 7 Standard (ASCE, 2010) and in verifying more complex computational 

methods used in response history analysis.  Moreover, the model may be used to develop a 

computational tri-axial model (biaxial horizontal motion under varying vertical load) based on the 

procedures presented in Ray et al (2013).  However, of interest to the profession is the availability 

of a verified computational model of the isolator that can be readily utilized in available 

commercial software.  Two such models are described in this section.  Both utilize elements 

available in program SAP2000 (Computers and Structures, 2014).  The first of these models 

utilizes a combination of five Single Friction Pendulum elements and additional gap elements.  

The second model utilizes a combination of one Double Friction Pendulum and one Triple Friction 

Pendulum elements. 

 

3.1 Series Model Based on Single FP Elements 

 

This model uses a series representation of up to five pendula based on the paradigm of Fenz and 

Constantinou (2008c) in modeling the Triple FP Isolator in SAP2000, although the model can be 

implemented in any program.  The five pendula are needed in the general case where five different 

values of friction and/or five different values of the effective radius describe the isolator behavior 

(say in configuration 1 when 3 4 5 2 6 1          ).  The number of needed pendula reduces 

depending on the number of friction values and effective radii.  For example, a case with 3 4eff effR R ,

2 5eff effR R , 1 6eff effR R and 3 4 5 2 6 1           would require only three pendula as the 

isolator effectively behaves as a Triple FP Isolator. 
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Figure 3-1 illustrates the model. Each single FP element is characterized by: (a) a linear elastic 

spring of stiffness / effW R where W is the instantaneous axial load on the isolator, (b) a friction 

force W where    is a coefficient of friction that may be dependent on the velocity and (c) a gap 

element with displacement capacity, d , that is related to the displacement capacity of each sliding 

surface.   

 

 

FIGURE 3-1 Representation of Series Model of Quintuple Friction Pendulum Isolator 

 

 

TABLE 3-1a Parameters Used in Series Model with Five Single FP Elements to Represent the 

Behavior of the Quintuple FP Isolator of Configuration 1 

Element Coefficient of friction Radius of curvature Displacement capacity 

Single FP1 1 3 4     1 3 4eff eff effR R R    *

1 2 3 4 5 6totald d d d d d d       

Single FP2 2 5   2 5 4eff eff effR R R    
* *

5 6
2 5 4

5 6

eff eff

eff eff

d d
d R R

R R

 
    
 

 

Single FP3 3 2   3 2 3eff eff effR R R    
* *

1 2
3 2 3

1 2

eff eff

eff eff

d d
d R R

R R

 
    
 

 

Single FP4 4 6   4 6 5eff eff effR R R   5*

4 6

6

1
eff

eff

R
d d

R

 
   

 

 

Single FP5 5 1   5 1 2eff eff effR R R   2*

5 1

1

1
eff

eff

R
d d

R

 
   

 

 

Note: 
* * * * * * *

1 2 3 4 5 6totald d d d d d d      is the displacement capacity of the isolator  

1d

1eff

W

R

2d 3d 4d

2eff

W

R 3eff

W

R 4eff

W

R

5d

5eff

W

R

FF
1 2 3 4 5

FP1 FP2 FP3 FP4 FP5 
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The parameters in the series model are selected to represent the actual behavior of the isolator as 

revealed in the analytical model of Tables 2-1 and 2-2.  The force-displacement relation of the 

series model of Figure 3-1 may be easily constructed and is shown in Figure 3-2.  Comparison of 

this loop to the model described in Tables 2-1 and 2-2 leads to relations presented in Table 3-1a 

and 3-1b that define the parameters of the model. 

 

TABLE 3-1b Parameters Used in Series Model with Five Single FP Elements to Represent the 

Behavior of the Quintuple FP Isolator of Configuration 2 

Element 
Coefficient of 

friction 
Radius of curvature Displacement capacity 

Single FP1 1 3 4     
1 3 4eff eff effR R R    *

1 2 3 4 5 6totald d d d d d d       

Single FP2 2 2   
2 2 3eff eff effR R R    

* *

1 2

2 2 3

1 2

eff eff

eff eff

d d
d R R

R R

 
   
 
 

 

Single FP3 3 5   
3 5 4eff eff effR R R    

* *

5 6

3 5 4

5 6

eff eff

eff eff

d d
d R R

R R

 
   
 
 

 

Single FP4 4 6   
4 6 5eff eff effR R R   

5*

4 6

6

1
eff

eff

R
d d

R

 
  

 
 

 

Single FP5 5 1   
5 1 2eff eff effR R R   

2*

5 1

1

1
eff

eff

R
d d

R

 
  

 
 
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FIGURE 3-2 Force-Displacement Relation of Series Model with Five Single FP Elements 

 

The series model with five single FP elements shown in Figure 3-1 can be implemented as an 

assembly of vertically-connected single FP elements and gap elements in commercial software 

SAP2000.   Admittedly, however, this modeling approach is complicated because it would require 

37 nodes, 27 rigid beam elements, four additional boundary supports, five single FP elements and 

at least 16 gap elements to model the tri-axial behavior of the bearing (see Fenz and Constantinou, 

2008c for the similar case of the Triple FP Isolator).  Figure 3-3 illustrates the model with five 

single FP elements.  The figure also shows that this element may be reduced to a pair of one Triple 

FP and one Double FP elements, of which the Triple FP element exist in the most recent version 

of program SAP2000, and the Double FP Element may be simulated as a subversion of the Triple 

FP element in program SAP2000. 

1fF

2fF

3fF

4fF

4drF

5drF

2drF

5fF

3drF
12 fF

5 52dr fF F

4 42dr fF F

2 22dr fF F

3 32dr fF F

1eff

W

R

1 2eff eff

W

R R

1 2 3eff eff eff

W

R R R 

1 2 3 4eff eff eff eff

W

R R R R  

1 2 3 4 5eff eff eff eff eff

W

R R R R R   

1 2 3 5eff eff eff eff

W

R R R R  

1 2 3eff eff eff

W

R R R 

1 3eff eff

W

R R

1eff

W

R

1eff

W

R

1 3eff eff

W

R R

1 2 3eff eff eff

W

R R R 

1 2 3 5eff eff eff eff

W

R R R R  

1 2 3 4 5eff eff eff eff eff

W

R R R R R   
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FIGURE 3-3 Series Model of Quintuple FP Isolator with (a) Five Single FP Elements in Series and 

(b) Pair of Double and Triple FP Elements 

 

3.2 Series Model Based on Combination of Triple FP and Double FP Elements 

 

The series model with five Single FP elements shown in Figure 3-3 can be represented by a pair 

of one Double and one Triple FP Isolator element as shown in Figure 3-4.  These two elements are 

already available in program SAP2000 (the Double FP element is a subversion of the Triple FP 

element).  However, their use in modeling the Quintuple FP Isolator requires that the Double and 

Triple FP element parameters be correctly specified.   

 

 The Triple FP element will be used to represent the behavior of an idealized Triple FP Isolator 

with the parameters shown in Figure 3-4(a) and the Double FP element will be used to represent 

the behavior of an idealized Double FP element with the parameters shown in Figure 3-4(b).  Note 

that the parameters of this idealized isolator will be determined so that the two elements represent 

the behavior of the actual isolator.  The assembly of these two elements consists of five pendula 

that produce the same behavior as the series model of Figure 3-1. 

 

Gap3 Gap3

Gap2 Gap2

Single FP1

Gap4 Gap4

Single FP2

Single FP3

Single FP4

Single FP5
Gap5 Gap5

Double FP Element

Triple FP Element

Rigid 
Connection

Rigid Bar

Superstructure
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FIGURE 3-4 Parameters of (a) Triple FP Element and (b) Double FP Element Representing a 

Quintuple FP Isolator 

 

 

TABLE 3-2 Parameters Used in Series Model with One Triple and One Double FP Element to 

Represent the Behavior of the Quintuple FP Isolator 

Element Surface 
Coefficient of  

friction 
Radius of curvature Displacement capacity 

Triple FP 

element 

Inner  

surfaces 

 

 

2 3

3 4

 

 



 
 

 

 

2 3

3 4

eff eff

eff eff

R R

R R



 
 

2 3d d =

 *

1 4 5 6 / 2totald d d d d    
 

 

Outer top  

surface 
4 5   

4 5eff effR R  
5* *

4 5 6

6

eff

eff

R
d d d

R
   

Outer bottom

 surface 
1 2   

1 2eff effR R  
2* *

1 2 1

1

eff

eff

R
d d d

R
   

Double FP

 element 

Upper  

surface 
5 6   

5 6 5eff eff effR R R   
5*

5 6

6

1
eff

eff

R
d d

R

 
   

 

 

Lower  

surface 
6 1   

6 1 2eff eff effR R R   
2*

6 1

1

1
eff

eff

R
d d

R

 
   

 

 

* * * * * * *

1 2 3 4 5 6totald d d d d d d       

 

The parameters of Triple FP and Double FP elements are derived using the actual parameters of 

the Quintuple FP Isolator are presented in Table 3-2.  For the Triple FP element, the parameters 

are derived by use of the following: (a) the relation between the actual parameters of the Triple FP 

Isolator and the series model with three single FP pendula presented in Fenz and Constantinou 

(2008c), and (b) the relation between the first three pendula of the series model in Figure 3-1 to 

the actual parameters of Quintuple FP Isolator. 

(a) Triple FP element (b) Double FP element

FP1 FP2 FP3 FP4 FP5

1d

1eff

W

R

2d 3d 4d

2eff

W

R 3eff

W

R 4eff

W

R

5d

5eff

W

R

FF
1 2 3 4 5



 

15 

 

3.3 Model Verification  

 

To verify the computational models presented, a case of the Quintuple FP Isolator in Configuration 

1 is modeled in program SAP2000, analyzed to obtain force-displacement relations and then 

compared to the predictions of the analytical model.  Table 3-3 presents the parameters of the 

example Quintuple FP Isolator.  For the analysis, a simple seismically-isolated structure was 

constructed and analyzed in SAP2000.  The lateral force-displacement relation was obtained by 

imposing a history of displacement at a control point.  Details are provided in Appendix B.  A 

second example of Configuration 2 will also be presented and discussed. The second example 

consists of an isolator with the same geometric and frictional characteristics as the example of 

Configuration 1, but with µ2=0.03 and µ5=0.06.   

 

TABLE 3-3 Parameters of Analyzed Quintuple FP Isolator of Configuration 1 

Radius (inch) Height (inch) Friction Coefficient 
Displacement Capacity 

(inch) 

R1 238 h1 8 µ1 0.10 d1 14 

R2 50 h2 6 µ2 0.06 d2 6 

R3 24 h3 4 µ3 
0.01 

d3 2.25 

R4 24 h4 4 ( = µ4) d4 2.25 

R5 50 h5 6 µ5 0.03 d5 6 

R6 156 h6 8 µ6 0.07 d6 14 

 

Figure 3-5 compares force-displacement loops obtained by the computational SAP2000 model to 

that constructed using the analytical model of Table 2-1 for the example of Configuration 1.  The 

five Single FP element model and the Triple-Double FP element model gave exactly the same 

results so only the results of the latter are shown in Figure 3-5.  The loops were constructed to a 

displacement of 40inch, which is in regime IX and just short of the displacement capacity of 

41.1inch.  Loops at intermediate amplitudes of displacement are also shown in Figure 3-5.  The 

transition points between regimes are identified in the graphs.  Evidently, the SAP2000 

computational model predicts exactly the behavior of the isolator as determined by the analytical 

model of Table 2-1.   
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FIGURE 3-5 Comparison of Analytical and Computational Force-Displacement Loops for Example 

of Configuration 1 in Table 3-3 

 

The example of Configuration 2 also resulted in identical analytical and computational force-

displacement loops.  However, the behavior of the isolator of Configuration 2 was the same as that 

of Configuration 1 except for some small difference in the stiffening regimes which are related to 

differences in the sliding regimes as revealed in Tables 2-1 and 2-2.  Accordingly, only results of 

the analytical model are presented in order to expose differences between the two configurations.  

The comparison of loops for the configurations is presented in Figure 3-6.  The small difference 

between the two configurations is highlighted by zooming on the stiffening regimes.  Analysis of 

isolators with different geometric and frictional properties revealed generally small differences in 

the force-displacement loops between the two configurations.  An example of the largest 

differences calculated is for a case for which the loops are presented in Figure 3-7.  Configurations 

1 is the same as that of Table 3-3 in terms of frictional and geometric properties but for the radius 

of surface 5 being R5=120inch instead of 50inch and coefficient of friction µ5=0.02 instead of 0.03.  

Configuration 2 has the properties of surfaces 2 and 5 interchanged. 
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FIGURE 3-6 Comparison of Analytical Force-Displacement Loops for Examples of Configurations 

1 and 2 per Table 3-3 

 

FIGURE 3-7 Comparison of Analytical Force-Displacement Loops for Examples of Configurations 

1 and 2 per Table 3-3 but with R5=120in. and µ5=0.02 

 

The results in Figures 3-6 and 3-7 demonstrate small differences between configurations 1 and 2.  

Nevertheless, the force-displacement relations of the two configurations are governed by different 

sets of equations, respectively given in Tables 2-1 and 2-2.   
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The presented results provide verification for the computational model in program SAP2000.  

Nevertheless, the analytical model and the computational model in program SAP2000 require 

validation by comparison to experimental data.  This is provided in the next section where test 

results are presented. 
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SECTION 4  

MODEL VALIDATION 

 

A model Quintuple FP Isolator was tested in the bearing test machine at the University at Buffalo 

(Kasalanati and Constantinou, 1999).  Table 4-1 presents the properties of the tested isolator.  Two 

configurations were tested, 1 and 2.  Configuration 2 was created by simply interchanging the 

position of parts C and E per Figure 2-1 and resulted in a change in the distribution of friction 

values.  Note the values of the friction coefficient in Table 4-1 were measured in the experiments 

and are typical of very low speed conditions and an axial load W=20kip.  The values of friction 

varied a little during the testing as will be discussed later.  An image of the tested isolator, deformed 

in the bearing testing machine is shown in Figure 4-1.  Its basic dimensions (height of 3.8in is for 

the un-deformed position) and the seven parts of the bearings are shown in the figure (also, see 

Figure B-3 for detailed dimensions). 

 

TABLE 4-1 Parameters of Tested Quintuple FP Isolator (Values of Friction are for Configuration 1.  

Values in Parenthesis are for Configuration 2.) 

Radius 

(inch) 

Height 

(inch) 
Friction Coefficient 

Displacement Capacity 

(inch) 

R1 18 h1 1.4 µ1 
0.12 

(0.12) 
d1 1.5 

R2 8 h2 1.2 µ2 
0.085 

(0.035) 
d2 1.3 

R3 2 h3 0.9 µ3 

0.015 

(0.015) 

d3 0.55 

R4 2 h4 0.9 ( = µ4) d4 0.55 

R5 8 h5 1.2 µ5 
0.035 

(0.085) 
d5 1.3 

R6 18 h6 1.4 µ6 
0.11 

(0.11) 
d6 1.5 
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FIGURE 4-1 Image of Deformed Quintuple FP Isolator in Testing Machine 

 

Testing of the isolator was first conducted under quasi-static conditions (harmonic motion of 

frequency equal to 0.005Hz, peak velocity of 0.16in/sec) so that the coefficient of friction remained 

essentially constant (Coulomb friction).  Accordingly, the tested isolator clearly exhibited the nine 

regimes of operation and allowed for comparison to the analytical model.  Subsequently testing 

was conducted under dynamic conditions to reveal the smooth behavior that results from the 

velocity dependence of the coefficient of friction. 

 

Testing of the isolator was conducted under a specified constant load W=20kip.  Table 4-2 presents 

the conducted test program.  The peak displacement was 5.0inch that represented a limit of the test 

machine.  The displacement capacity of the isolator was 5.58inch.  The isolator was deformed up 

to regime VIII. 

 

TABLE 4-2 Test Matrix for Quintuple FP Isolator 

Configuration 
Test 

no. 

Vertical load 

(kip) 

Displacement 

amplitude (in) 

Frequency 

(Hz) 

No. of 

cycles 
Regime 

1 

1 20 0.5 0.005 2 III 

2 20 1.5 0.005 2 V 

3 20 3.0 0.005 2 V 

4 20 4.5 0.005 2 VII 

5 20 5.0 0.005 2 VIII 

2 6 20 5.0 0.005 2 VIII 

B

F

C

E

11 inch

3.8 inch
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During testing it was observed that parts of the isolator exhibited some rotation about the vertical 

axis and, as a result of that, they had small out-of-plane motion.  This resulted in slight variation 

of the displacement at each of the transition points between regimes (uncertainty on what the 

displacement exactly is).   

 

Figure 4-2 presents a comparison of experimental and analytical results for the tests of 

Configuration 1 in Table 4-1.  Only the results of the analytical model are presented since the 

computational model obtained in SAP2000 produces exactly the same results as the analytical 

model.  The values of friction coefficients used in the analytical model are those in Table 4-1.  In 

reality the values of friction varied in the loops at various amplitudes as a result of the velocity 

dependence of the coefficient of friction.  Note that velocity in the five tests shown in Figure 4-2 

varied from a peak value of 0.016 to 0.16in/sec, a range over which there is some effect of velocity.  

This explains the observed “smoothness” of the experimental loops whereas the analytical loops 

show sharper transition from one regime to the next.  Nevertheless, the analytical results are in 

good agreement with the experimental results. 

 

The experimental results of Figure 4-2 (and also in results presented later in this report under faster 

motion conditions) show an uneven behavior as if there is a momentary stop of motion in the 

stiffening regime of operation.  It is not precisely known what caused this behavior but 

experimental results and advanced theory presented in Sarlis and Constantinou (2013) indicate that 

this may be caused by small differences in the values of friction at surfaces 3 and 4.  Note that the 

theory presented in this report is based on the assumption that these two values of friction are equal.   

 

The single test of the isolator in Configuration 2 produced practically the same force-displacement 

loop as that of Configuration 1, and both were accurately predictable by the analytical model.  

Instead of comparing the force-displacement loops for the two configurations in this slow test, a 

comparison is made when the two isolators were tested under dynamic conditions.  
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FIGURE 4-2 Experimental and Analytical Force-Displacement Loops of Isolator in Configuration 1 

 

Additional tests were conducted on the isolators of Configuration 1 and 2 under the same load but 

larger velocity of motion in order to reveal the behavior of the isolators under dynamic conditions. 

Test results are presented in Figures 4-3 and 4-4.  Testing was conducted by first imposing a slow 

motion to the maximum displacement over a period of 70sec, then pausing for 10sec and then 

imposing two and a half cycles of harmonic motion of frequency of 0.1Hz and amplitude of either 

3 or 5inch.  The peak velocity of motion was either 1.9 or 3.1 in/sec.  Figure 4-3 shows the results 

for Configuration 1 in the test at peak velocity of 1.9in/sec, and Figures 4-4 and 4-5 show the 

results in Configurations 1 and 2 in the tests at peak velocity of 3.1in/sec.  The history of imposed 

motion is included in the graphs of Figures 4-3 to 4-5.  The graphs also include the loops obtained 

in the quasi-static testing at the same amplitude of motion for comparison.  The results clearly 

illustrate the effect of velocity in affecting friction (increase) and in causing the loops to have 

smooth transitions between regimes.  
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FIGURE 4-3 Experimental Force-Displacement Loops of Isolator in Configuration 1 for Quasi-Static 

Test and at Peak Velocity of 1.9in/sec 

 

 

 

FIGURE 4-4 Experimental Force-Displacement Loops of Isolator in Configuration 1 for Quasi-Static 

Test and at Peak Velocity of 3.1in/sec 
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FIGURE 4-5 Experimental Force-Displacement Loops of Isolator in Configuration 2 for Quasi-Static 

test and at Peak Velocity of 3.1in/sec 

 

Prediction by the computational model of the force-displacement loops under dynamic conditions 

requires (a) knowledge of the coefficient of friction-velocity relations for each sliding surface, and 

(b) a procedure for specifying these properties in the Triple-Double model of the isolator in 

program SAP2000.  It is generally assumed that the coefficient of friction follows the relation 

 

( )e aV

FAST FAST SLOW           (6) 

 

where FAST and SLOW are values of the coefficient of sliding friction valid for large velocity and 

for quasi-static conditions, respectively, V is the velocity of sliding, and “a” is the rate parameter 

used to describe the velocity-dependence of friction. 

   

Specification of the three parameters of the model for each sliding surface is complicated by the 

fact that the Triple FP bearing model in program SAP2000 (also the models of Morgan, 2007 and 

Fenz and Constantinou, 2008a) does not truly trace the motion on the four sliding surfaces but 

rather simulates the behavior through the motion of the three effective pendula.  The result is that 

the sliding velocity is not precisely known at each sliding surface but it can be estimated by the 
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procedure described in Fenz and Constantinou (2008c) and with details provided in Sarlis and 

Constantinou (2010).  This requires the specification of fictitious values for the rate parameter for 

the three effective pendula.  This is further complicated by the fact that the manual of program 

SAP2000 does not provide details and does not present verification examples.  A comparison of 

the results produced by the Triple FP element in the program and the validated series model of 

Fenz and Constantinou (2008c) implemented in SAP2000 resulted in essentially the same results 

and, therefore, it is believed that the values of the rate parameter for the Triple FP element in 

SAP2000 should be specified using the approach outlined in Fenz and Constantinou (2008a) and 

Sarlis and Constantinou (2010).   

 

TABLE 4-3 Values of Friction Coefficient and Rate Parameter Used in Analysis of Isolator of 

Configuration 1 (Top Table Reports Properties of Isolator; Bottom Table Reports Parameters of 

Computational Model) 

 

Quintuple Isolator 1  2  3 4    5  6  

SLOW  0.12 0.085 0.015 0.035 0.11 

FAST  0.16 0.11 0.04 0.09 0.15 

Rate parameter a  

(sec/inch) 
4.0 3.6 3.0 3.6 4.0 

Triple-Double Model 1  2 3   4  5  6  

SLOW  0.085 0.015 0.035 0.11 0.12 

FAST  0.11 0.04 0.09 0.15 0.16 

Rate parameter a  

(sec/inch) 
3.0 1.5 3.0 2.0 2.0 

 

The computational model of the Quintuple FP Isolator described in Appendix B requires the use 

of three nodes interconnected by two Triple FP elements, one of which has been reduced to behave 

as a Double FP element (this is done by specifying artificial values of the radius and friction to 

impede motion of the inner sliding surfaces-see Table B-2b).  Accordingly, the division of velocity 

for the sliding surfaces of the Quintuple FP model should be based on approach described in Fenz 

and Constantinou (2006) for the Double FP element and in Fenz and Constantinou (2008c) for the 

Triple FP element.  Table 4-3 presents values of friction and the rate parameter used in an analysis 
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of the tested isolator of Configuration 1.  Note that the values of the rate parameter were assumed 

for each sliding surface to have a value in a range consistent with what is typically assumed in 

analysis (e.g., Sarlis and Constantinou, 2010).   

 

There are three sources of uncertainty in the data of Table 4-3: (a) unlike the case of quasi-static 

conditions, the actual values of friction at high velocity ( FAST ) are not directly measured (uncertain 

due to the smoothness of the experimental loops) but assumed although some information was 

obtained from the recorded loops, (b) the actual values of the rate parameter for each sliding 

surface are not known but rather assumed, and (c) the values of the rate parameter in the 

computational model are approximate as the velocities are not directly computed but rather 

estimated on the basis of a simplified theory. 

 

Figure 4-6 presents comparisons of experimental and computational force-displacement loops of 

the tested isolator of Configuration 1 (with the properties of Table 4-3–also see Table B-2 for other 

details) in the two tests at velocities of 1.9 and 3.1in/sec.  The comparison is good given the several 

sources of uncertainty in the values of the model parameters and the fact that the sliding velocities 

are small (portions of the peak velocity of testing) so that there is considerable variability of friction, 

which would not be dominant in testing with much higher velocity.  (Unfortunately, testing at 

higher velocities could not be performed due to instabilities in the control mechanism of the testing 

machine).  Nevertheless, it is noted that changes in the specified values of the rate parameter 

resulted in noticeable changes in the computed loops for the motions used in the testing (up to 

3.1in/sec) but the effects where minor or insignificant when the peak velocity was larger than 

10in/sec. 
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FIGURE 4-6 Comparison of Experimental and Computational Force-Displacement Loops of Isolator 

in Configuration 1 at Peak Test Velocities of 1.9 and 3.1in/sec 

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

L
A

T
E

R
A

L
 F

O
R

C
E

 /
  
W

E
IG

H
T

DISPLACEMENT (in)

Velocity 1.9in/sec

Experimental

Computational

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

L
A

T
E

R
A

L
 F

O
R

C
E

 /
  
W

E
IG

H
T

DISPLACEMENT (in)

Velocity 3.1in/sec

Experimental

Computational





 

29 

 

SECTION 5  

CONCLUSIONS 

 

The behavior of the Quintuple Friction Pendulum Isolator has been investigated.  This isolator has 

six spherical sliding surfaces, five effective pendula and nine regimes of operation that allow for 

complex adaptive behavior and smooth transition between regimes of operation.  Analytical 

models of behavior have been presented for two configurations that are envisioned to include all 

cases of interest in applications.  Moreover, a computational model has been developed that is 

readily implementable in computer program SAP2000.  Comparison of results obtained by the 

computational and analytical model provided verification of the computational model. 

 

A model isolator was tested and the results were compared to predictions of the analytical and 

computational models.  The comparison demonstrated the validity of the analytical model and of 

the computational model.  It is believed that this isolator will be a useful addition to the arsenal of 

isolators available to the engineer for use in the seismic protection of structures. 
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APPENDIX A 

DERIVATION OF FORCE-DISPLACEMENT RELATIONS FOR 

CONFIGURATION 1 
 

The derivation of the force-displacement relation of the quintuple FP Isolator is presented in detail 

for configuration 1. The force-displacement relation is derived from the equilibrium and geometric 

considerations following the paradigm of Fenz and Constantinou (2006 and 2008a) and 

distinguishing the relation in accordance with the sliding regime.  In what follows, W is the normal 

load acting at the center of the top plate of the bearing, F is the horizontal force, fF W is the 

friction force, µ is assumed constant and independent of the conditions of motion (Coulomb 

friction) and S is the resultant force acting perpendicularly to a sliding surface.  Moreover, the 

following quantities are defined in which i=1 to 6: 

 

The effective radius of curvature 

 

 ,eff i i iR R h   (A-1) 

 

The actual displacement capacity of each sliding surface: 

 

  *

, /i i eff i id d R R  (A-2) 

 

A-1 Sliding Regime I 

 

Sliding Regime I begins with sliding on surfaces 3 and 4 which are characterized by the least 

friction forces.  Motion initiates when horizontal force is equal to friction force on surface 2 and 3 

( 3 4f fF F F  ).  The displaced shape (with the sliding surfaces highlighted in red) and the free 

body diagram (FBD) of parts C and E during Sliding Regime I are shown in Figure A-1.  

 

Equilibrium in the vertical and horizontal directions of the FBD of part C in Figure A-1 (b) results 

in:  

 
 3 3 3 3sinθ cosθ 0fW F S    (A-3a) 

 3 3 3 3cosθ sinθ 0fF S F    (A-3b) 
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From geometry, the relative displacement of slider C, 3u , is 

 

 3 3 3sinθeffu R  (A-4) 

 

Assuming small rotations (so that cosθ 1 and sinθ  ) and rearranging equations (A-3) and (A-4), 

the following is derived for force F : 

 3 3

3

f

eff

W
F u F

R
   (A-5) 

 

 

 
FIGURE A-1   Displaced Shape (a) and Free Body Diagrams (b) of the Quintuple FP Isolator During 

Sliding Regime I 

 

Similarly, equilibrium for part E leads to: 

 

 4 4

4

f

eff

W
F u F

R
   (A-6) 
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Since 3 4u u u   and 1 2 5 6 0u u u u    , combination of equations (A-5) and (A-6) results in 

 

 
3 3 4 4

3 4 3 4

f eff f eff

eff eff eff eff

F R F RW
F u

R R R R


 

 
 (A-7) 

 

The force-displacement loop in regime I is shown in Figure A-2.  Note that on reversal motion the 

force drops by  3 42 2f fF F .  This regime is valid until a displacement u=uI is reached. 

 

 
FIGURE A-2   Force-Displacement Relationship in Sliding Regime I 
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A-2 Sliding Regime II 

 

Sliding regime II initiates when the lateral force 5fF F , motion on surface 4 stops, motion initiates 

on surface 5 and motion continues on surface 3 as shown in Figure A-3(a).  This sequence of 

motion is required for compatibility of displacements and is consistent with what occurs in the 

Triple FP Isolator.   

 

The transition displacement between sliding regimes I and II, uI, is obtained by solving equation 

(A-7) for the displacement u when force 5fF F : 

 

    I

5 3 3 5 4 4eff effRu R        (A-8) 

 
FIGURE A-3   Displaced Shape (a) and Free Body Diagrams (b) of the Quintuple FP Isolator During 

Sliding Regime II 
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Based on the FBD of Figure A-3(b) and geometric considerations in similarity to the presentation 

for regime I, the following is obtained: 

 

 4 4 4sinθeffu R  (A-9a) 

 5 5 5sinθeffu R  (A-9b) 

 3 3

3

f

eff

W
F u F

R
   (A-10a) 

 5 5

5

f

eff

W
F u F

R
   (A-10b) 

    5 5 4 4 5 4 4 5 5 5cosθ sin θ θ cos θ θ sinθ 0f fS F S F       (A-11a) 

    4 4 5 4 4 5 5 5 5 5sin θ θ cos θ θ sinθ cosθ 0f fS F S F       (A-11a) 

 

Assuming small rotations, the force-displacement relation is obtained as, 

 54
4

4 5

f

eff eff

uu
F W F

R R

 
   

 
 

 (A-12) 

 

Combining equations (A-10) and (A-12) and using 3 4 5u u u u   , the force-displacement relation 

in regime II is obtained: 

 

 
 3 3 4 4 5 5 4

3 5 3 5

f eff f eff f eff eff

eff eff eff eff

F R F R F R RW
F u

R R R R

  
 

 
 (A-13) 

 

This relationship is shown in Figure A-4 together with that of regime I for completeness.  This 

regime is valid until a displacement u=uII is reached. 
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FIGURE A-4   Force-Displacement Relationship in Sliding Regime II 

 
 

A-3 Sliding Regime III 

The sliding regime III initiates when the lateral force 2fF F , motion stops on surface 3, motion 

begins on surface 2 and motion continues on surface 4 as shown in Figure A-5(a). The transition 

occurs at a displacement uII obtained by solving equation (A-13) for displacement u when 2fF F  : 

    II I

2 5 3 5 /f f eff effu F F R R Wu      
 

 (A-14) 
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FIGURE A-5   Displaced Shape (a) and Free Body Diagrams (b) of the Quintuple FP Isolator During 

Sliding Regime III 

 

Based on the FBD of Figure A-5(b) and geometric considerations in similarity to the presentation 

for regimes I and II, the following is obtained: 

 2 2 2sinθeffu R  (A-15a) 

 3 3 3sinθeffu R  (A-15b) 

 2 2
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f
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W
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   (A-16) 
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 32
3

2 3

f

eff eff

uu
F W F

R R

 
   

 
 

 (A-17) 

 

The force-displacement relationship in sliding regime III is finally obtained by combining 

equations (A-10b), (A-12), (A-16) and (A-17) and using 2 3 4 5u u u u u    : 

 

 
   2 2 3 3 3 4 4 5 5 4

2 5 2 5

f eff eff f eff f eff f eff eff

eff eff eff eff

F R R F R F R F R RW
F u

R R R R

    
 

 
 (A-18) 

 

This relationship is shown in Figure A-6 together with those for regimes II and III.  This regime is 

valid until a displacement u=uIII is reached. 

 

 
FIGURE A-6   Force-Displacement Relationship in Sliding Regime III 
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A-4 Sliding Regime IV 

The sliding regime IV initiates when the lateral force 6fF F , motion stops on surface 5, motion 

begins on surface 6 and motion continues on surface 2 as shown in Figure A-7(a).  The transition 

occurs at a displacement uIII obtained by solving equation (A-18) for displacement u when 6fF F  : 

    III II

6 2 2 5 /f f eff effF F Ru u R W     
 

 (A-19) 

 

 
FIGURE A-7   Displaced Shape (a) and Free Body Diagrams (b) of the Quintuple FP Isolator During 

Sliding Regime IV 
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Based on the FBD of Figure A-7(b) and geometric considerations in similarity to the presentation 

for regimes I to III, the following is obtained: 

 

 6 6 6sinθeffu R  (A-20) 

 
6 6

6

f

eff

W
F u F

R
   (A-21) 

 5 6
5

5 6

f

eff eff

u u
F W F

R R

 
   

 
 

 (A-22) 

 

The equilibrium equations for part E are obtained by considering the FBD shown in Figure A-7(b) 

and accounting for the its rotation: 

 

        5 5 6 4 4 5 6 4 4 5 6 5 5 6cos θ θ sin θ θ θ cos θ θ θ sin θ θ 0f fS F S F           (A-23a) 

        4 4 5 6 4 4 5 6 5 5 6 5 5 6sin θ θ θ cos θ θ θ sin θ θ cos θ θ 0f fS F S F           (A-23b) 

 

Assuming small displacements, equations (A-23) can be solved for force F:  

 

 5 64
4

4 5 6

f

eff eff eff

u uu
F W F

R R R

 
    

 
 

 (A-24) 

 

Inspection of free body diagrams of parts B and C in Figure A-7(b) shows that parts B and C 

experience in regime IV only an increase in angle 2θ by comparison to regime III.  Thus, the force-

displacement relationships for parts B and C are still governed by equations (A-16) and (A-17).  

Therefore, the force and total displacement relationship in sliding regime IV can be obtained by 

combining equations (A-16), (A-17), (A-21), (A-22), and (A-24) and using 2 3 4 5 6u u u u u u     : 

 
     2 2 3 3 3 4 4 5 5 4 6 6 5

2 6 2 6

f eff eff f eff f eff f eff eff f eff eff

eff eff eff eff

F R R F R F R F R R F R RW
F u

R R R R

      
 

 
 

  (A-25) 

 

This relationship is shown in Figure A-8 together with those for the previous regimes.  This regime 

is valid until a displacement u=uIV is reached. 
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FIGURE A-8   Force-Displacement Relationship in Sliding Regime IV 

 

A-5 Sliding Regime V 

The sliding regime V initiates when the lateral force 1fF F , motion stops on surface 2, motion 

begins on surface 1 and motion continues on surface 6 as shown in Figure A-9(a). The transition 

occurs at a displacement uIV obtained by solving equation (A-25) for displacement u when 1fF F  : 

    IV III

1 6 2 6 /f f eff effF F Ru u R W     
 

 (A-26) 

 

Based on the FBD of Figure A-9(b) and geometric considerations in similarity to the presentation 

for regimes I to IV, the following is obtained: 

 

 1 1 1sinθeffu R  (A-27) 

 1 1

1

f

eff

W
F u F

R
   (A-28) 
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1 2
2

1 2

f

eff eff

u u
F W F

R R

 
   

 
 

 (A-29) 

 31 2
3

1 2 3

f

eff eff eff

uu u
F W F

R R R

 
    

 
 

 (A-30) 

 

 

 
FIGURE A-9   Displaced Shape (a) and Free Body Diagrams (b) of the Quintuple FP Isolator in 

Sliding Regime V 

W

u4

u3

F

F

W

u5

Ff5

Ff2

W

W

Ff4

Ff3



S4

S3

S5

Ff5



θ5

u1

S2

F f2
θ2

u6

θ6
S6

F f5

θ5



θ6

θ4

S1
θ1

Ff1

F f1

θ2



θ1

θ3

u2

F

F

(a)

(b)

A
B

E

C

F

G

D

B

E

C

F

G

A



 

45 

 

The force-displacement relation in regime V is obtained by combining equations (A-21), (A-22), 

(A-24), (A-28), (A-29) and (A-30) and using 1 2 3 4 5 6u u u u u u u      : 

 

       1 1 2 2 2 3 3 3 4 4 5 5 4 6 6 5

1 6 1 6

f eff eff f eff eff f eff f eff f eff eff f eff eff

eff eff eff eff

F R R F R R F R F R F R R F R RW
F u

R R R R

        
 

 

  (A-31) 

 

This relationship is shown in Figure A-10 together with those for the previous regimes.  This 

regime is valid until a displacement u= udr6 is reached. 

 

 
FIGURE A-10   Force-Displacement Relationship in Sliding Regime V 
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A-6 Sliding Regime VI 

The sliding regime VI initiates when part F of the isolator contacts the restrainer of part G so that 

motion on surface 6 stops, motion starts on surface 5 and motion continues on surface 1 as shown 

in Figure A-11(a). This occurs at a displacement equal to udr6.  

 
FIGURE A-11   Displaced Shape (a) and Free Body Diagrams (b) of the Quintuple FP Isolator in 

Sliding Regime VI 
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At the point of transition, the displacement on surface 6 is *

6 6u d  and the horizontal force F is 

given by the following equation and termed 6drF   

 

 *

6 6 6

6

dr f

eff

W
F d F

R
   (A-32) 

Displacement 6dru  is obtained by solving equation (A-31) for the displacement and using 6drF F :  

 

    IV

6 6 1 1 6 /dr dr f eff effu F F R R Wu      
 

 (A-33) 

 

Based on the FBD of Figure A-11(b) and geometric considerations in similarity to the presentation 

for regimes I to V, the following equations are obtained: 

 

 *

6 6 6

6

f r

eff

W
F d F F

R
    (A-34) 

 
*

5 6
5

5 6

f

eff eff

u d
F W F

R R

 
   

 
 

 (A-35) 

 
*

5 64
4

4 5 6

f

eff eff eff

u du
F W F

R R R

 
    

 
 

 (A-36) 

 

The force-displacement relation in regime VI is obtained by combining equations (A-28),  (A-29), 

(A-30), (A-35) and (A-36) and using *

1 2 3 4 5 6u d u u u u u      : 

 

  6 6

1 5

dr dr

eff eff

W
F u u F

R R
  


 (A-37) 

 

This relationship is shown in Figure A-12 together with those for the previous regimes.  This 

regime is valid until a displacement u=udr1 is reached.  The unloading process is same as regime 

V until the lateral force drops by amount 22 fF .  Motion then starts on surface 6 when the horizontal 

force drops by 6 62r fF F , that is, when the horizontal force is equal to 

 

 6 62dr fF F F   (A-38) 
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For this to occur, the condition 6 6 12 2dr f fF F F F    must be valid or, otherwise, motion will start 

on surface 1 instead of 6.  Accordingly, motion occurs on surface 1 when the displacement satisfies 

the following condition 

 

   6 1 6 1 52dr eff effu u R R      (A-39) 

 

However, based on equation (A-41b) that follows, for typical configurations with * *

1 6d d  and

1 6eff effR R , equation (A-39) will not be satisfied prior to the start of sliding regime VII.  Thus for 

typical configurations, motion will start on surface 6 prior to surface 1, as shown in Figure A-12. 

 

 
FIGURE A-12   Force-Displacement Relationship During Sliding Regime VI 
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A-7 Sliding Regime VII 

The sliding regime VII initiates when part B of the isolator contacts the restrainer of part A so that 

motion on surface 1 stops, motion starts on surface 2 and motion continues on surface 5 as shown 

in Figure A-13(a).  This occurs at a displacement equal to udr1. 

 
FIGURE A-13   Displaced Shape (a) and Free Body Diagrams (b) of the Quintuple FP Isolator During 

Sliding Regime VII 
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At the transition point, the displacement on surface 1 is *

1 1u d  and the horizontal force F is given 

by the following equation and termed Fdr1  

 

 *

1 1 1

1

dr f

eff

W
F d F

R
   (A-40) 

 

Displacement udr1 is obtained by solving equation (A-37) for the displacement and using F=Fdr1: 

 

    1 6 1 6 1 5 /dr dr dr dr eff effu u F F R R W     
 

 (A-41a) 

or 

  
**

61
1 6 1 6 1 5

1 6

dr dr eff eff

eff eff

dd
u u R R

R R
 

    
         

        

 (A-41b) 

 

Based on the FBD in Figure A-13(b) and geometric considerations in similarity to the presentation 

for regimes I to VI, the followings is obtained: 

 

 *

1 1 1

1

f r

eff

W
F d F F

R
    (A-42) 

 
*

1 2
2

1 2

f

eff eff
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R R

 
   

 
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 (A-43) 
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eff eff eff

ud u
F W F

R R R

 
    

 
 

 (A-44) 

 

The force-displacement relation in regime VII is obtained by combining equations (A-34), (A-35), 

(A-36), (A-43) and (A-44) and using * *

1 2 3 4 5 6u d u u u u d      : 

 

  1 1

2 5

dr dr

eff eff

W
F u u F

R R
  


 (A-45) 

 

This relationship is shown in Figure A-14 together with those for the previous regimes.  This 

regime is valid until a displacement udr5 is reached.  The unloading process is the same as that of 

regime VI until the lateral force drops by 22 fF .  Motion then starts on surface 6 to be followed by 
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motion on surface 1.  For this to occur, the condition 6 62dr fF F > 1 12dr fF F  must be valid or, 

otherwise, motion will start on surface 1 and will be followed by motion on surface 6.  For typical 

configurations ( * *

1 6d d  and 1 6eff effR R ), motion will start on surface 6 prior to surface 1, as shown 

in Figure A-14. 

 

 
FIGURE A-14   Force-Displacement Relationship During Sliding Regime VII 

 

A-8 Sliding Regime VIII 

The sliding regime VIII initiates when part E of the isolator contact to the restrainer of slider F so 

that motion on surface 5 stops, motion resumes on surface 4 and motion continues on surface 2 as 

shown in Figure 15(a).  This occurs at a displacement equal to udr5.  
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FIGURE A-15   Displaced Shape (a) and Free Body Diagrams (b) of the Quintuple FP Isolator During 

Sliding Regime VIII 
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At the transition point, the displacement on surface 5 is *

5 5u d  and the horizontal force F is given 

by the following equation and termed Fdr5  

 

 
* *

5 6
5 5

5 6

dr f

eff eff

d d
F W F

R R

 
   

 
 

 (A-46) 

 

Displacement udr5 is determined by solving equation (A-46) for the displacement and using F= 

Fdr5: 

 

    5 1 5 1 2 5 /dr dr dr dr eff effu u F F R R W     
 

 (A-47) 

 

From the FBD in Figure A-15(b) and geometric considerations in similarity to the presentation for 

regimes I to VII, the followings is obtained:  
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F d F F

R
    (A-48) 

 
* *

5 6
5 5

5 6

f r

eff eff

d d
F W F F
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 
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 (A-49) 

 
* *
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eff eff eff

d du
F W F

R R R

 
    
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 (A-50) 

 

The force-displacement relation in regime VIII is obtained combining equations (A-43), (A-44) 

and (A-50) and using * * *

1 2 3 4 5 6u d u u u d d      : 

 

  5 5

2 4

dr dr

eff eff

W
F u u F

R R
  


 (A-51) 

 

This relationship is shown in Figure A-16 together with those for the previous regimes.  This 

regime is valid until a displacement udr2 is reached.  Upon reversal of motion, the lateral force 

drops by  3 42 2f fF F .  Motion then starts on surface 5 when the horizontal force is equal to

5 52dr fF F .  For this to occur, the condition 5 52dr fF F > 22 fF F must be valid or, otherwise, 
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motion will start on surface 2 instead of 5.  Based on the similar analysis in regime VI, motion will 

start on surface 5 prior to surface 2 for typical configurations ( 2 5eff effR R  and * *

2 5d d ), as shown 

in Figure A-16.  Motion then follows on the surfaces 1 and 6, as presented in regime VII. 

 

 
FIGURE A-16   Force-Displacement Relationship During Sliding Regime VIII 
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FIGURE A-17   Displaced Shape (a) and Free Body Diagrams (b) of the Quintuple FP Isolator During 

Sliding Regime IX 
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* *

1 2
2 2

1 2

dr f

eff eff

d d
F W F

R R
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 (A-52) 

 

Displacement udr2 is obtained by solving equation (A-51) for the displacement and using 2drF F : 

 

    2 5 2 5 2 4 /dr dr dr dr eff effu u F F R R W     
 

 (A-53) 

 

Based on FBD in Figure A-17 (b) and geometric considerations in similarity to the presentation 

for regimes I to VIII, the followings are obtained:  
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 (A-55) 

 
* *
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 (A-56) 

 

The force-displacement relation in regime IX is obtained by combining equations (A-50) and (A-

56) and using * * * *

1 2 3 4 5 6u d d u u d d      : 

 

  5 2

3 4

dr dr

eff eff

W
F u u F

R R
  


 (A-57) 

 

This relationship is shown in Figure A-18 together with those for the previous regimes.  This 

regime is valid until total displacement capacity is reached.  Upon reversal of motion, the lateral 

force drops by  3 42 2f fF F .  Motion then starts on surface 5 instead of surface 2.  For this to occur, 

the condition Fdr5-2Ff5 >Fdr2-2Ff2 must be valid or, otherwise, motion will start on surface 2 instead 

of surface 5 prior to surface 2.  For typical configurations ( 2 5eff effR R  and * *

2 5d d ), motion will 

start on surface.  Motion then follows on the surfaces 1 and 6, as presented in regime VII. 
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FIGURE A-18   Force-Displacement Relationship During Sliding Regime IX 
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APPENDIX B 

DETAILS OF COMPUTATIONAL MODEL IN PROGRAM SAP2000 
 

B-1 Computational Model for the Isolator in Table 3-3 

Figure B-1 presents a section of the analyzed isolator that shows the dimensional and the frictional 

parameters (friction is constant in this analysis).  This is the isolator of Configuration 1 with the 

properties presented in Table 3-3 and with force-displacement loops shown in Figure 3-5. 

 
FIGURE B-1 Geometrical and Frictional Properties of Analyzed Quintuple FP Isolator 

 

Figure B-2 illustrates the model of the isolator used in program SAP2000 for simulating the 

behavior of a single isolator under imposed gravity load W and lateral history of prescribed 

displacement. A rigid massless bar was used to connect two identical isolators and impose motion 

through a control point.  Each of the two isolators in the model represented the analyzed isolator 

carrying the load W.  The model depicted in Figure B-2 is for the case of using the Triple FP 

element of SAP2000.  Table B-1a presents the effective properties of the analyzed isolator that 

were used to calculate the properties of elements used in the computational model.   

24 , 0.01R   50 , 0.03 / 0.06R  

238 , 0.07R  

156 , 0.10R  
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FIGURE B-2 Model of Quintuple FP Isolator for Analysis in Program SAP2000 

 

The input parameters for each of the Triple FP and the Double FP elements in program SAP2000 

utilized in the simulation are presented in Table B-1b.  These parameters include the radii of 

curvature, the friction coefficient values, and the displacement capacities (defined as stop distances 

in SAP2000). It is noted that the “fast” and “slow” values of the coefficient of friction were 

specified equal and the rate parameter in the SAP2000 elements was defined as zero (or an arbitrary 

value) so that there is no velocity dependence of the coefficient of friction.  Other parameters such 

as element mass, effective stiffness and rotational moment of inertia did not have any noticeable 

effect in the analysis results as long as they were selected to reasonably represent properties of the 

isolator.  The values for element mass and rotational moment of inertia were properly estimated 

considering the isolator geometry.  The effective stiffness in SAP2000 was selected to be half of 

that of the isolator at a displacement equal to half of the isolator displacement capacity.  This 

stiffness was then assigned to the triple FP and double FP elements in a series.  The vertical 

stiffness was calculated as the stiffness of a column having the height of the isolator (19 inch) and 

diameter equal to the diameter of part D of the isolator (18 inch) and distributed on the basis of the 

details provided in the document of Sarlis and Constantinou (2010). The rotational and torsional 

stiffness were specified to be zero.  
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TABLE B-1a Effective Properties of Quintuple FP Isolator and Properties in Computational Model 

in SAP2000 per Table 3-3 (Top Table Reports Properties of Isolator; Bottom Table Reports 

Parameters of SAP2000 Model) 

 

Sliding surface 

 

Radius of curvature  

(in) 

Coefficient of friction 

 

Displacement capacity 

(in) 

Surface 1 1effR  230 
1 0.10   *

1d =13.53 

Surface 2 2effR  44 
2 0.06   *

2d =5.28 

Surface 3 3effR  20  
3 0.01   *

3d =1.875 

Surface 4 4effR  20 
4 0.01   *

4d =1.875 

Surface 5 5effR  44 
5 0.03   *

5d =5.28 

Surface 6 6effR  148 
6 0.07   *

6d =13.28 

Sliding surface 

 

Radius of curvature  

(in) 

Coefficient of friction 

 

Displacement capacity 

(in) 

Triple FP 

Element 

Lower surface 1effR = 44 1 0.06   
1d = 7.868 

Inner surfaces 2,3effR = 20 2,3 0.01   
2d , 3d = 1.875 

Upper surface 4effR = 44 4 0.03   
4d = 9.229 

Double FP 

Element 

Upper surface 5effR = 104 5 0.07   
5d = 9.333 

Lower surface 6effR = 186 6 0.10   
6d = 10.941 
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TABLE B-1b Values of Parameters of Elements in Program SAP2000 in Case without Velocity-

Dependence of Friction per Table 3-3 

 

Models Triple FP Double FP 

Sliding surface Lower 
Inner  

Surfaces 
Upper Upper 

1Inner   

Surfaces 
Lower 

Radius of sliding surface  

(inch) 
44 20 44 104 0 186 

Friction coefficient  

(FAST and SLOW) 
0.03 0.01 0.06 0.07 1 0.10 

Rate parameter (sec/in) 0 0 0 0 0 0 

Stop distance (inch) 9.229 1.875 7.868 9.333 0 10.941 

Supported weight (kip) 900 900 900 900 900 900 

Yield displacement (inch) 0.01 0.01 0.01 0.01 0.01 0.01 

Stiffness (elastic) (kip/in) 1350 450 2700 3150 2 3825 4500 

Effective stiffness (kip/in) 5.6 5.6 

Rotational moment of inertia  

(kip-in-sec2) 
0.057 0 

Element height (inch) 9.5 9.5 

Shear deformation location  

(in)-(distance from top joint of

 FP element) 

4.75 4.75 

Element mass (kip-s2/in) 0.001 0.001 

Vertical stiffness (kip/in) 323,667 485,500 

Rotational / torsional stiffness  

(R1,R2,R3) 
0 fixed 

1Values of parameters specified for inner surfaces in Double FP element are artificial and intend to impede 

motion at the inner sliding surfaces, specifically (a) zero for radius and stop distance and (b) unity for 

friction. 
2 Value arbitrarily selected to be average of values for upper and lower parts.  Very large values should not 

be used as they result in convergence problems. 
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B-2 Computational Model for the Isolator in Table 4-1 

 

Figure B-3 presents a section of the tested isolator that shows the dimensional and frictional 

parameters (friction values are for quasi-static conditions).  This is the isolator with the properties 

presented in Table 4-1 and with force-displacement loops shown in Figure 4-2. 

 

A computational model of the tested isolator was also constructed based on the approach described 

above.  The properties for the tested isolator used in computational model are presented in Tables 

B-2a (actual properties) and B-2b (input parameters for each of the Triple FP and Double FP 

elements). 

 

 

 
 

FIGURE B-3 Geometrical and Frictional Properties of Tested Quintuple FP Isolator 

 

  

2", 0.015R  
8", 0.085R  

18 , 0.11R  

18", 0.12R  

8 , 0.035R  
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TABLE B-2a Effective Properties of the Tested Isolator and Properties in Computational Model in 

SAP2000 per Table 4-1 (Top Table Reports Properties of Isolator; Bottom Table Reports Parameters 

of SAP2000 Model) 

 

Sliding surface 

 

Radius of curvature 

(in) 

Coefficient of friction 

 

Displacement capacity

 (in) 

Surface 1 1effR  16.6 
1 0.12   *

1d = 1.383 

Surface 2 2effR  6.8 
2 0.085   *

2d = 1.105 

Surface 3 3effR  1.1 
3 0.015   *

3d = 0.303 

Surface 4 4effR  1.1 
4 0.015   *

4d = 0.303 

Surface 5 5effR  6.8 
5 0.035   *

5d = 1.105 

Surface 6 6effR  16.6 
6 0.11   *

6d = 1.383 

Sliding surface 

 

Radius of curvature  

(in) 

Coefficient of friction 

 

Displacement capacity

 (in) 

Triple FP 

Element 

Lower surface 1effR = 6.8 1 0.085  (0.11) 
1d = 1.672 

Inner surfaces 2,3effR = 1.1 2,3 0.015  (0.04) 
2d , 3d = 0.303 

Upper surface 4effR = 6.8 4 0.035  (0.09) 
1d = 1.672 

Double FP 

Element 

Upper surface 5effR = 9.8 5 0.11  (0.15) 
5d = 0.816 

Lower surface 6effR = 9.8 6 0.12  (0.16) 
6d = 0.816 
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TABLE B-2b Values of Parameters of Elements in Program SAP2000 in Case without Velocity-

Dependence of Friction per Table 4-1 (Values in Parenthesis are for Case with Velocity-Dependence 

of Friction) 

 

Models Triple FP Double FP 

Sliding surface Lower 
Inner 

Surfaces 
Upper Upper 

Inner 

Surfaces 
Lower 

Radius of sliding surface  

(inch) 
6.8 1.1 6.8 9.8 0 9.8 

Friction coefficient SLOW 0.085 0.015 0.035 0.11 1 0.12 

Friction coefficient FAST 
0.085 

(0.11) 

0.015 

(0.04) 

0.035 

(0.09) 

0.11 

(0.15) 

1 

(1) 

0.12 

(0.16) 

Rate parameter (sec/in) 
0 

(3.0) 

0 

(1.5) 

0 

(3.0) 

0 

(2.0) 

0 

(0) 

0 

(2.0) 

Stop distance (inch) 1.672 0.303 1.672 0.816 0 0.816 

Supported weight (kip) 20 20 20 20 20 20 

Yield displacement (inch) 0.01 0.01 0.01 0.01 0.01 0.01 

Stiffness (elastic) (kip/in) 110 40 90 150  155 160 

Effective stiffness (kip/in) 1.25 1.25 

Rotational moment of inertia 

 (kip-in-sec2) 
1.455×10-4 0 

Element height (inch) 1.95 1.95 

Shear deformation location (in)- 

(distance from top joint of FP      

element) 

0.975 0.975 

Element mass (kip-s2/in) 0.0001 0.0001 

Vertical stiffness (kip/in) 10,945 16,417 

Rotational / torsional stiffness 

  (R1,R2,R3) 
0 fixed 
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