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PREFACE 
MCEER is a national center of excellence dedicated to the discovery and development of 

new knowledge, tools and technologies that equip communities to become more disaster resilient 
in the face of earthquakes and other extreme events. MCEER accomplishes this through a system 
of multidisciplinary, multi-hazard research, education and outreach initiatives. 

Headquartered at the University at Buffalo, State University of New York, MCEER was 
originally established by the National Science Foundation (NSF) in 1986, as the first National 
Center for Earthquake Engineering Research (NCEER). In 1998, it became known as the 
Multidisciplinary Center for Earthquake Engineering Research (MCEER), from which the 
current name, MCEER, evolved. 

Comprising a consortium of researchers and industry partners from numerous disciplines 
and institutions throughout the United States, MCEER’s mission has expanded from its original 
focus on earthquake engineering to one which addresses the technical and socioeconomic 
impacts of a variety of hazards, both natural and man-made, on critical infrastructure, facilities, 
and society. 

MCEER investigators derive support from the State of New York, National Science 
Foundation, Federal Highway Administration, National Institute of Standards and Technology, 
Department of Homeland Security/Federal Emergency Management Agency, other state 
governments, academic institutions, foreign governments and private industry. 

This report investigates the effect of discontinuities on the wave propagation characteristics 
of structures and proposes new architectures for attenuating stress waves. The effects of different 
types of material and geometric discontinuities are thoroughly explored, and their attenuation 
capacity is investigated using explicit formulas. Based on these concepts, an optimal design 
problem is defined for finding the most effective structural configurations to attenuate the effects 
of impulsive loadings. Due to the highly nonlinear nature of the optimization problem combined 
with lack of gradient information about the objective function with respect to design variables, a 
genetic algorithm (GA) optimization procedure is used for the optimal design of the newly 
defined attenuating systems. 
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ABSTRACT 

 

This report describes work aimed at investigating the effect of discontinuities on the wave propagation 

characteristics in structures and proposes new architectures for attenuating stress waves. Four types of 

stress wave attenuators are proposed in this report. These attenuators include: (i) layered collinear rod 

structures, (ii) layered diamond-shape beam structures, (iii) non-collinear beam structures, and (iv) porous 

plates. The layered stress wave attenuators have constant geometry while each material set-up is 

optimized during the design procedure. However, the non-collinear beam structures and porous plates are 

made of a single material, and the design procedure seeks to find the best geometry of these systems for 

mitigating the effects of impulsive loadings. In addition to the proposed stress wave attenuators, the 

problem of stress wave attenuation in bi-layered plates with a jagged interface profile is also studied in 

this research. Similar to the approach used in non-collinear systems and porous plates, the material 

properties of the bi-layered plates remains unchanged during the design procedure; however, the profile 

of the interface between the two materials changes for the objective of stress wave attenuation.   

The results of this research show that with the aid of the developed optimization procedure, very efficient 

and practical stress wave attenuators can be deployed for protecting structural systems against impulsive 

loadings with consideration to broad frequency ranges. 
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SECTION 1 

INTRODUCTION 

1.1 Introduction 

Wave propagation behavior in structures depends on the characteristics of their discontinuities. 

Discontinuities on the path of propagating waves can generally be categorized into two different groups—

material and geometric. When a propagating wave encounters a discontinuity, new reflected and 

transmitted waves will be generated within the structure. For example, when a wave enters a new medium 

(material discontinuity) reflected and transmitted waves will be produced in the structure based on the 

impedance mismatch of the two media. Similarly, geometric discontinuities, such as angled joints in beam 

structures and interface profiles in layered plates can cause wave reflection and transmission, along with 

producing different types of wave modes. Considering these facts, the discontinuities within a structure 

can be organized in appropriate patterns for various objectives such as stress wave attenuation and 

amplification.   

This report aims at developing new architectures for attenuating the effects of impulsive loadings. The 

proposed concepts in this report are based on harnessing the effects of reflection and transmission of 

waves at discontinuities. Hence, the characteristics of the discontinuities in different types of structures 

such as rods, beams, and plates are investigated. The results obtained from these investigations are then 

utilized to define optimal design problems for finding efficient structural configurations with high stress 

wave attenuation capacity. Due to the highly non-linear nature of the defined optimal design problems, a 

heuristic optimization procedure is exploited for designing the proposed architectures in this report.  

 

1.2 Objectives 

The primary objective of this report is developing efficient stress wave attenuators for mitigating the 

impulsive loadings with various frequency contents. To perform this task, it is necessary to have 

sufficient information about the characteristics of wave propagation at discontinuities within the 

structures. Furthermore, it is necessary to develop an appropriate methodology for optimal design of the 

stress wave attenuators.  

The key objectives of the research documented in this report are: 

 Investigate the effect of discontinuities in rods, beams, and plates 

 Characterize the design parameters for stress wave attenuators 
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 Define different type of stress wave attenuators  

 Develop an optimization methodology for designing the stress wave attenuators 

 Explore the concept of material optimization in layered rods and beams 

 Examine the concept of geometry optimization in beams and plates  

 Analyze the attenuation capacity of the proposed stress wave attenuators for the impulsive loadings 

with various frequency contents   

 

1.3 Report organization 

This report contains 11 Sections. The outline of the report is: 

 Section two presents a review of the literature about the wave propagation behavior of layered 

structures, the concept of topology optimization, and application of genetic algorithm in engineering 

problems.  

 Section three explores the effect of discontinuities on the reflection and transmission of stress waves 

within rod structures.  

 Section four reviews the flexural wave propagation in Timoshenko beams and investigates the effect 

of discontinuities in Timoshenko beam structures.  

 Section five introduces the proposed stress wave attenuators and the optimization methodology for 

design.  

 Section six represents the essential parameters that should be considered for designing the proposed 

stress wave attenuators.  

 Section seven explores the optimal design of the layered collinear stress wave attenuators.  

 Section eight studies the optimal design of the non-collinear stress wave attenuators. These 

structures include multi-layered and single-layered non-collinear systems.  

 Section nine investigates the stress wave attenuation in two-dimensional structures with circular 

holes.  

 Section ten examines the stress wave attenuation capacity of bi-layered plates with jagged interface 

profiles. 

 Section eleven summarizes the findings of this report, gives the final conclusions, and proposes 

future work.  
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SECTION 2  

BACKGROUND AND LITERATURE REVIEW 

 

2.1 Introduction 

Attenuation of stress wave amplitude in solid structures depends on the type and arrangement of 

discontinuities. Discontinuity is in fact a general term that can be attributed to any change in the material 

properties, geometry, or boundary condition of a structure that results in the scattering of the stress waves.  

In order to design efficient stress wave attenuators, it is necessary to study the effects of different types of 

discontinuities on the wave propagation characteristics of a structure. Furthermore, it is necessary to 

explore different methods of optimization to find the most appropriate approaches for optimizing the 

stress wave attenuators. In this research, Genetic Algorithm (GA) is used for the optimal design of the 

stress wave attenuators. This method is utilized for material (layered structures) and geometry (shape and 

topology) optimization of the systems. Due to the importance of these concepts, a brief review of 

literature about layered structures, topology optimization, and GA is presented in this section.   

 

2.2 Wave propagation in layered structures 

The problem of wave propagation in layered media is of practical interest for many applications, such as 

impact attenuation, thermal insulation, seismology, and acoustics. As a stress wave attenuator, layered 

composite materials have been extensively used in applications involving mitigation of blast and ballistic 

loadings. For instance, a new generation of layered and sandwich composites are developed by using 

special types of materials, such as polyuria and ceramics that can mitigate the effect of blast and high 

velocity impact loadings.  

Over the past decades a significant number of researchers have looked into wave propagation in layered 

structures. In one of the earliest works about this topic, Thomson (1950) derived analytical solutions for 

the propagation of plane elastic waves in stratified solid media consisting of parallel plates with different 

material properties and thickness. The solutions are derived by satisfying the continuity of particle 

velocity, normal stresses, and shear stresses at the interfaces of the layers using the matrix method. To 

provide general solutions, they assumed that the incident wave is oblique.  



 

4 
 

Lindholm and Doshi (1965) studied the wave propagation in a nonhomogeneous finite elastic free-free 

bar with varying modulus of elasticity which is subjected to a transient pressure pulse. They found 

analytical solutions for a bar with constant density while the elasticity modulus is continuously changing.  

Anfinsen (1967) studied the optimal design of the one-dimensional elastic layered structures for 

attenuating and amplifying the amplitude of the stress waves. The results showed that the proper selection 

of materials can attenuate (or amplify) the amplitude of the stress waves more than 99 percent.  

Maiboroda, Troyanovskii et al. (1992) derived the steady state solution for the wave propagation in two-

dimensional two-layered structures with finite thickness. They studied the propagation of viscoelastic and 

elastic waves, and concluded that the damping characteristics of non-uniform viscoelastic systems can be 

controlled by changing the physical properties and geometric dimensions.  

Konstanty and Santosa (1995) studied the optimal design of layered coatings subjected to incident pulses 

for minimization of the wave reflection. A regularization strategy is used for solving the problems and a 

computational scheme is proposed for designing the coatings. Their analyses showed that the optimal 

design problem is very dependent on the nature of the applied incident pulse and may be unstable for 

some pulses. The results that are obtained can be used for designing minimally reflective coatings in 

optics and acoustics.  

Wang, Rostamian et al. (2000) developed theoretical algorithms for designing reflective or absorptive 

layered coatings. These algorithms are established for the acoustic waves in elastic systems; however, 

they can be applied for any problem that is governed by linear wave equation. The results showed that the 

designed coatings can completely reflect or transmit the waves at certain ranges of frequencies (frequency 

band).  

Velo and Gazonas (2003) developed analytical solutions for the optimal design of two-layered elastic 

strips subjected to transient loadings. In their research, they used the method of characteristics and 

provided explicit formulas for the stresses in the layers. The results were used for validation of 

DYNA3D/GLO hybrid computational optimization software.  

Naik, Goel et al. (2008) studied the micro-attenuation of stress waves in ceramic plates using a one-

dimensional tracking algorithm. They validated the predictions with experimental results and concluded 

that the stress wave attenuation is a material property in ceramic plates with grains and grain boundaries.  

Luo, Aref et al. (2009) investigated the stress wave attenuation in layered structures subjected to 

impulsive loadings. They derived a stress transfer function for the layered structures situated between free 
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and fixed surfaces. It was observed that by proper selection of materials and layer dimensions, the 

amplitude of the stress pulse can be reduced, and the duration of the pulse can be elongated.  

Wave propagation analysis of the finite layered structures subjected to transient loadings is very complex, 

and, generally, it is difficult to derive explicit analytical solutions for most practical applications. Hence, 

many researchers have developed numerical and experimental approaches for studying the wave 

propagation behavior of layered structures. Rizzi and Doyle (1992) developed an efficient matrix 

methodology for analysis of wave propagation in layered media. This methodology is similar to the finite 

element method and exactly models the mass distribution. Therefore, the exact frequency response of the 

layers can be obtained using this method. The results show that the proposed methodology is robust and 

accurate, and is at least four times more computationally efficient than the direct global matrix method.  

Shim and Yap (1997) investigated the impact behavior of foam-plate sandwich systems consisting of 

polyurethane and mild steel plates. They did an extensive experimental study for this purpose and 

identified the effects of strain rate, system inertia, and stress wave interaction. The results showed that the 

behavior of polyurethane foam is rate-sensitive and the crushing force increases with the deformation 

rate. To validate the experimental data, the transient impact responses of the polyurethane-steel plates 

were analyzed using a one-dimensional mass-spring chain model with inertia and rate effects. It was 

observed that there is a good agreement between the experimental and numerical predictions.  

Pandya, Dharmane et al. (2012) conducted an experimental study on the stress wave attenuation in 

polymer composite plates during a ballistic impact. They examined the strain profiles at certain distances 

from the impact, and found that the peak strains are reduced as the waves propagate away from the impact 

surface.  

Alagappan, Rajagopal et al. (2014) studied the impact response of viscoelastic layered plates composed of 

Polymethylmethacrylate (PMMA) and Polycarbonate (PC) using a finite volume method (FVM). The 

plates were subjected to transient displacement at one end while the other end was clamped. They 

assumed that the behavior of PMMA and PC is nonlinearly rate dependent and studied the stress, velocity 

propagation, and their interactions at the interface for different material set-ups including pure PC, pure 

PMMA, bilayer PMMA/PC, bilayer PC/PMMA, trilayer PC/PMMA/PC, and trilayer PMMA/PC/PMMA. 

The results showed that the trilayer PMMA/PC/PMMA generates the lowest value of stress at the 

clamped wall.  
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2.3 Shape and topology optimization 

Structural optimization is a multidisciplinary field that combines mechanics and mathematics to find 

optimal design of the structures in various applications such as aerospace, civil, and mechanical 

engineering (Kirsch 1989). The algorithms and techniques for optimal structural design have remarkably 

progressed during the past decades as a result of developments in numerical methods, optimization 

algorithms, and fast computation.  

Structural optimization can be divided into three categories: size, shape, and topology optimization. A 

good explanation of the difference between these categories can be found in (Kirsch 1989). In size 

optimization problems, the geometry of the structure is fixed and the dimensions (size) of the components 

of the structure are varied to meet the design requirements. However, in shape and topology optimization 

problems, the layout of the structure is not fixed and it varies during the optimal design procedure. 

Although the layout of the structure is manipulated in shape and topology optimization problems, there is 

a slight difference between these two approaches. In shape optimization problems, the geometry of the 

structure is described using continuous variables while the design variables for topology optimization 

problems are characterized with the number of elements, joints, and supports along with the spatial 

sequence and the pattern of the connection of members. 

The shape optimization of continuous structures can be performed by varying the integration limits, 

which can be very difficult in particular problems. Generally, numerical analysis such as FE is utilized for 

shape optimization of continuous structures. In these problems, it is required that the FE model be 

modified during the optimization process. Shape optimization can also be used for discrete structures if 

the design variables such as nodal coordinates are defined by continuous parameters. 

Topological optimization algorithms are appropriate for discrete structures as the design parameters are 

discrete variables; however, these methods can be used for continuous structures such as surface-like 

systems if they are modeled with grid-like continuum space that consists of infinitesimal spacing (Kirsch 

1989). Finite element models are also utilized in topological optimal designs. In these problems, new 

members are added or deleted to the structure and both the FE model and design variables change during 

the optimal design procedure. Therefore, optimal topological designs are among the most complicated 

structural optimization problems.  

El-Sabbagh, Akl et al. (2008) used a topology optimization algorithm to widen the band gaps and 

maximize the natural frequency of periodic Mindlin plates (band gaps are the frequency bands in which 

the propagation of waves can be completely blocked). They developed an FE model for evaluating the 

natural frequencies of Mindlin plates and coupled it with a topology optimization algorithm which 
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considers a unit cell of the plate as the design space and replicates the optimized topology of the unit cell 

over the whole structure. In this case, the optimization procedure is very efficient because the design 

space is limited to a local unit cell although the objective function is related to the global performance of 

the periodic assembly of the optimized local cell. They applied the developed approach to fixed-free and 

fixed-fixed aluminum plates. The results showed that the proposed topology optimization methodology 

can be successfully used to stop or confine undesirable disturbances. 

During the past decades, various approaches and techniques are developed for shape and topology 

optimization of structures. Among the most common approaches we can name “ground structure 

method”, “homogenization method”, “evolutionary structural optimization (ESO)”, and “level set method 

(LSM)”. 

Ground structure method is one of the simplest topology optimization approaches which is introduced by 

Dorn, Gomory et al. (1964) for topology optimization of trusses under static loading considering the 

stress and displacement constraints. In this method, a ground structure is formed by generating a truss 

with many members and including the nodes on which the supports (boundary conditions) and loads are 

applied. Then some unnecessary members will be removed from the ground structure based on the 

permissible stress (or displacement) constraints, and, after some iterations, the remaining members will 

form the optimal topology of the structure.  

In homogenization methods, a porous medium is formed by introducing many micro-scale voids or holes 

within the design space, and the optimization algorithm seeks the optimal porosity of the generated 

porous medium with respect to the optimality criteria (Wang, Wang et al. (2003) and Suzuki and Kikuchi 

1991). In this method, the internal voids in the structures are generated without any prior knowledge 

about their existence. This method generally produces porous structures with infinitesimal pores, which 

are difficult to build from a manufacturing point of view.  

Evolutionary Structural Optimization (ESO) is based on the concept of removing the redundant materials 

gradually for obtaining the optimal designs. This method is proposed by Xie and Steven (1993) and Nha 

Chu, Xie et al. (1997). In considering ESO, a fixed model is used as the initial optimal design domain and 

the final topology of the structure is formed by removing the unwanted or low-stressed material. ESO was 

first developed for the problems with stress criteria and then extended for the problems with frequency 

optimization objectives and stiffness constraints (Nha Chu, Xie et al. (1997)). Generally, ESO is 

computationally expensive and it cannot ensure that the final optimal solution is not a local optimum. 

Querin, Steven et al. (1998) proposed a Bi-directional Evolutionary Structural Optimization (BESO) 

which is capable of searching the design space more thoroughly for finding the global minima. In BESO, 
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it is possible to add the materials as well as removing them during the optimization procedure; therefore, 

the design space can be explored more efficiently.   

Level set method (LSM) is another topology optimization approach which is introduced by Osher and 

Sethian (1988). This method relies on the theory of curve evolution in which the topology of the structure 

is altered by moving the boundaries. LSM has been successfully used for various problems such as 

multiphase fluid dynamical flows, image processing, and computer vision (Jia, Beom et al. 2011).  

Yang, Xie et al. (1999) utilized ESO and BESO procedures for structural topology optimization with 

frequency constraints. They performed the optimization problems for three different objectives: 

maximizing a single frequency, maximizing multiple frequencies, and designing structures for a specified 

set of frequencies. They observed that there is a good agreement between the results of ESO and BESO; 

however, BESO is more computationally efficient in most of the cases. 

Wang, Wang et al. (2003) presented a structural topology optimization methodology based on the LSM 

for optimizing linearly elastic structures with certain constraints and design objectives. In their proposed 

method, the structure is represented implicitly by a moving boundary which is defined by a scalar 

function with a higher dimensionality. The results of the 3D topology optimization with the proposed 

methodology showed that this method is very flexible in handling the topological changes compared to 

other topology optimization methods such as homogenization.   

Jia, Beom et al. (2011) proposed a combined ESO-LSM structural topology optimization algorithm. This 

algorithm incorporates the advantages of these two methods and eliminates the weaknesses related to 

LSM. In traditional LSM algorithms, the optimization procedure requires an initial topology; however, 

this method requires no initial structure. It was observed that this method can explore the design space 

more thoroughly and it is computationally more effective than LSM. This method can be applied to 

different engineering problems with local stress constraints, eigenvalue optimization, and design of 

compliant mechanism.   

 

2.4 Genetic algorithm 

Genetic Algorithms (GAs) are bio-inspired evolutionary algorithms that are capable of finding optimum 

solutions for complex engineering problems with highly nonlinear relationships between the variables and 

objective function. This method can be efficiently used for the problems without gradient information or 

any other type of problem for which there is little information about the behavior of the objective 
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function. GA is a very appropriate method for the problems studied in this research because there is not 

much information about the wave propagation behavior of the structures with multiple discontinuities.  

There is an extensive amount of research about GA and its application in different fields of science and 

engineering. The initial concept of GA was introduced by Holland (1975). Later, Goldberg (1989) and 

Mitchell (1998) provided a detailed descriptions about GA in their textbooks. In the following, a brief 

review of literature is presented for the application of GA in civil engineering problems.  

Hajela and Lee (1995) exploited GA for topology optimization of load-bearing trusses. Their proposed 

approach is a two-level GA based search in which the kinematic stability constraints are satisfied at the 

first level of optimization and followed by the treatment of response (member sizing) in the second level. 

The results showed that GA is a robust exploratory approach for topology optimization problems in 

discontinuous spaces.  

Pezeshk, Camp et al. (2000) utilized a GA-based optimization procedure for the design of geometrically 

linear and nonlinear steel-framed structures. They used AISC-LRFD specifications for design of the steel 

frames and investigated the effect of P-Δ effects. For the GA procedure, they employed group selection 

scheme for reproduction and improved the adapting crossover operator for their problems. They also 

exploited a specific penalty function to transform their constrained problem to an unconstrained one, 

which is appropriate for GA optimization. The results showed that GA optimization can be very effective 

in finding the discrete nonlinear optimal or near optimal designs of the steel-framed structures.  

Singh and Moreschi (2002) used GA for determining the optimal size and location of the viscous and 

viscoelastic dampers in the structures for reducing the seismic response. They found that GA can be used 

for any particular performance function of the structure as long as the functions can be presented 

numerically.  

Camp, Pezeshk et al. (2003) used GA for the optimal design of the reinforced concrete (RC) frames 

considering the limitations and specifications of American Concrete Institute (ACI) Building code. The 

fitness function of their RC-GA procedure was evaluated by minimizing the material and construction 

costs of RC structural elements (such as simply-supported beams, uniaxial columns, and multi-story 

frames), while the limitations of ACI code (constraints of the optimization problem) were applied as 

penalty functions. The results showed that the reduction in the cost of the RC members that are designed 

by the RC-GA procedure is insignificant comparing to the total cost of the structure.  

Yun and Kim (2005) incorporated a GA optimization procedure and a refined plastic hinge analysis into a 

program for optimum design of plane steel frames. The objective function of their program was 
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minimizing the weight of the steel frames. The constraints of the optimization problem were the design 

criteria such as load-carrying capacity, serviceability, ductility, and constructability, which were applied 

through the appropriate penalty functions. Tournament selection method and micro-genetic algorithm 

were employed in their GA program. The analyses showed that the results of the optimal designs are 

satisfactory compared to the previous works in this area; however, their GA based optimization 

methodology requires a large number of generations for convergence.  

Dargush and Sant (2005) proposed an evolutionary aseismic design methodology for discrete 

optimization of passively damped structural systems using GA. To determine robust designs, they 

included both the non-linearity of the structural systems and the uncertainty associated with the seismic 

environment. They applied the developed methodology to 5, 12, and 30 story buildings and configured 

the sizing and placement of passive dampers within the structures. In a similar work,  Lavan and Dargush 

(2009) developed an advanced GA to solve the multi-objective evolutionary seismic design of the 

structures with passive energy dissipation systems.    

Balling, Briggs et al. (2006) presented a GA methodology for simultaneous optimization of the size, 

shape, and topology of skeletal structures such as trusses and frames. The proposed algorithm is capable 

of finding multiple optimum and near-optimum topologies in a single run. They employed their algorithm 

for optimizing a bridge example and a plane frame, and found that the algorithm can generate either 

traditionally recognized or new (less familiar) topologies for the structures. The results showed that this 

algorithm provides the designer with more information than the algorithms that converge to a single 

solution; therefore, it can be used as a preprocessor to the human decision making.  

Bel Hadj Ali, Sellami et al. (2009) developed a GA based multi-stage method for the cost optimization of 

the semi-rigid steel frame structures. This method can generate and evaluate the design alternatives 

concurrently in the early design stages, which helps the designer to make better decisions. Generally, the 

cost of the joints in steel frame structures is about 20% of the total cost of the structure, and the behavior 

of joints has a very important effect on the response of structural frames. The proposed method can 

optimize the structural members and the detailing of the joints to generate economical layouts. The results 

showed that the developed GA-based method can reduce the total cost of the structures as much as 10 to 

25%. 

Sun, Fang et al. (2010) combined a hybrid genetic algorithm (HGA) with an artificial neural networks 

(ANN) method to minimize the equivalent thermal conductivity (ETC) of the concrete hollow bricks with 

different rows of enclosure. They found that the combination of ANN and HGA is very efficient for 
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improving the heat prevention properties of the bricks and the ETC of the bricks can be decreased as 

much as 21.69% for the given range of design parameters.  

Dede, Bekiroğlu et al. (2011) studied the efficiency of the binary and value encoding for the discrete and 

continuous optimization of the weight of the truss structures using GA. Unlike the binary encoding, they 

observed that the fit chromosome will never be lost in value encoding. Moreover, they found that value 

encoding overcomes the effect of Hamming-cliff, while binary encoding requires a large number of 

changes in the genes if a small change is needed in the optimization parameter. In order to overcome the 

problem of a very large solution space for continuous optimization, they introduced a restricted range 

approach (RRA). The analyses showed that the continuous optimization of the trusses using RRA 

generates much lighter trusses.  

Luo, Aref et al. (2011) investigated the optimal design of simple and bundled layered elastic stress wave 

attenuators using an adaptive real encoded GA. The developed GA optimization methodology is capable 

of optimizing the problems with mixed-float and integer type design parameters.  

Kociecki and Adeli (2013) developed a two-phase GA methodology for minimizing the weight of the 

space-frame roof structures. It was observed that the proposed method is computationally efficient for 

optimizing the large real-life structures that contain discrete commercially sections.  

 

2.5 Summary 

In this section, a brief review of literature is presented for the wave propagation behavior of layered 

structures, topology optimization of structures, and application of GA in engineering problems. These 

concepts will be utilized in the following sections for designing efficient stress wave attenuators.  
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SECTION 3  

WAVE REFLECTION AND TRANSMISSION IN RODS 

 

3.1 Introduction 

Analytical solutions of wave propagation in solid structures with physical boundary conditions that are 

subjected to real dynamic loads require complicated mathematical analyses. Longitudinal wave motion in 

thin rods is one of the simple problems that can be used for introducing the basic concepts of wave 

propagation in solids. Therefore, the problem of wave motion in rods is investigated in this section and 

the required relations for wave propagation analysis are introduced using this concept. In addition, the 

effect of discontinuities on the reflection and transmission of waves within rod structures is studied 

extensively in this section.  

 

3.2 Wave propagation in thin rods  

Rods are very important structural elements that can conduct longitudinal waves because of their axial 

load bearing capacity. The governing theory of an elastic thin rod can be found based on the exact 

equations of elasticity. In order to derive the governing equation of wave propagation in a thin rod, 

consider the straight prismatic rod that is shown in Figure 3-1. 

 

Figure 3-1 Straight prismatic thin rod with elastic properties 

 

There are several theories for deriving the equation of motion of the rod structures such as Elementary rod 

theory and Mindlin-Herrmann rod theory (Doyle (1989)). For simplicity, elementary theory will be used 

in this section for deriving the governing wave equation. The following assumptions are made in the 

elementary theory (Doyle (1989)): 

x

x(t)

u(x,t)

x

E, A, 
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 The rod is long. 

 The rod is slender. 

 The rod supports only one-dimensional axial stress. 

 The effect of Poisson’s ratio is neglected. 

On the contrary, in Mindlin-Herrmann rod theory, the effect of Poisson’s ratio is considered; therefore, 

one-dimensional axial stress assumption will cease to be valid.  

Figure 3-2 shows an element of a thin rod and the acting forces on this element. ݍሺݔ,  is the externally	ሻݐ

applied body force per unit volume.  

The equation of motion, or momentum balance, for this element is: 

ܨ ൌ ሷݑ݉ ⇒ െܨ  ሺF  Δܨሻ  ݔΔܣݍ െ ሷݑ݉ ൌ 0 (3.1)

 

 

Figure 3-2 Forces acting on a small element of a thin rod 

 

Therefore, in a differential form we can write: 

ܨ߲
ݔ߲

ൌ ܣߩ
߲ଶݑ
ଶݐ߲

െ (3.2) ܣݍ

  
In the above equation, the independent variable is x and t, and it is desirable to write the equation in terms 

of displacement. To do so, we should consider small deformation assumption of strain-displacement and 

stress-strain relations: 

ߝ ൌ
ݑ߲
ݔ߲

 (3.3)

 

ߪ ൌ
ܨ
ܣ
ൌ ߝܧ  (3.4)

F+ FF

X

 ü

q

 mü
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By combining the equations of (3.1) to (3.4), the longitudinal wave propagation equation can be written 

as: 

߲
ݔ߲

൜ܣܧ
ݑ߲
ݔ߲
ൠ ൌ ܣߩ

߲ଶݑ
ଶݐ߲

െ (3.5) ܣݍ

  
In the absence of body force, for a prismatic rod with constant Young’s modulus, we can write: 

ܧ
߲ଶݑ
ଶݔ߲

ൌ ߩ
߲ଶݑ
ଶݐ߲

 (3.6)

  
or 

ܿ
ଶ ߲

ଶݑ
ଶݔ߲

ൌ
߲ଶݑ
ଶݐ߲

, ܿ ൌ ඨ
ܧ
ߩ

 (3.7)

  
Equation (3.7) is the familiar wave equation, and it has the general D’Alembert solution, given by: 

,ݔሺݑ ሻݐ ൌ ݂ሺݔ െ ܿݐሻ  ݃ሺݔ  ܿݐሻ (3.8)

 

This solution is not used in the remainder of this section, but instead spectral analysis will be utilized as 

mentioned in Doyle (1989).  

 

3.2.1 Spectral analysis 

The key approach in spectral analysis of wave motion is to remove the time variable from the solution of 

the wave motion by using the spectral representation of the solution (Doyle (1989)). 

We know that the independent variables of the wave equation are time and space. For particular points in 

space, the spectral representation of the wave motion is (Doyle (1989)): 

,ଵݔሺݑ ,ଵݕ ሻݐ ൌ ଵ݂ሺݐሻ ൌ   ଵ݁ఠ௧ܥ∑

,ଶݔሺݑ ,ଶݕ ሻݐ ൌ ଶ݂ሺݐሻ ൌ   ଶ݁ఠ௧ܥ∑

,ݔሺݑ ,ݕ ሻݐ ൌ ݂ሺݐሻ ൌ   ݁ఠ௧ܥ∑

Therefore, for an arbitrary position we can write: 
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,ݔሺݑ y, ሻݐ ൌ ݑො ሺݔ, ,ݕ ߱ሻ݁ఠ௧ (3.9)

 

where, ݑො are the Fourier coefficients that are spatially dependent. It is obvious that the solution is a 

function of frequency and the number of independent variables is not reduced. Thus, using the spectral 

representation, the wave equation solution becomes dependent on the frequency instead of time: 

,ݔሺݑ y, ሻݐ ⇒ ,ݔොሺݑ	 y, ߱ሻ ݎ ,ݔሺݑ y, ߱ሻ (3.10)

 

The spectral representation of equation (3.6) is: 

ܧ
߲ଶݑො
ଶݔ߲

 ߱ଶρݑො ൌ 0 (3.11)

 

This is an ordinary differential equation with the solution (Doyle (1989)): 

ሻݔොሺݑ ൌ ௫ି݁ܣ  ା௫݁ܤ , ݇ ൌ ߱ට
ߩ
ܧ

 (3.12)

 

The complete solution can be derived by adding the time dependency of the response: 

,ݔሺݑ ሻݐ ൌି݁ܣሺ௫ିఠ௧ሻ ݁ܤାሺ௫ାఠ௧ሻ (3.13)

 

This means that the wave solution consists of forward moving (first term) and backward moving (second 

term) waves. The coefficients ܤ ,ܣ, and ݇ are frequency dependent.  

 

3.3 Required relations in wave propagation analysis 

The longitudinal wave solution in thin rods can be utilized for introducing the basic concepts and relations 

of wave propagation. To do so, the solution of a forward moving wave in one-dimensional space is 

considered. This solution can be written in the following forms: 

uሺݔ, ሻݐ ൌ A݁ିሺ௫ିఠ௧ሻ ൌ A݁ିሺ௫ି௧ሻ (3.14)

 

where, A is the amplitude and it can be complex. Based on this solution, a summary of the wave relations 

is presented in Table 3-1.  
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Table 3-1 Summary of wave relations 

Name Symbol Formula Dimension 

Amplitude ܣ --- length 

Phase Ф ሺݔߢ െ  ሻ Radiansݐ߱

Radial(angular) 

frequency 
߱ ݇ܿ Radians/time 

Cyclic frequency ݂ ߱ ⁄ߨ2  Hertz,1/time 

Wavelength ߨ2 ߣ ⁄ߢ  length 

Wavenumber ߨ2 ߢ ⁄ߣ  1/length 

Phase speed ܿ ߱ ⁄ߢ  Length/time 

Group speed ܿ  ݀߱ ⁄ߢ݀  Length/time 

Period ܶ 1 ݂⁄  Time 

 

In addition to the relations that are presented in Table 3-1, there are two other important relations that are 

used in wave propagation analysis—namely, spectrum relation and dispersion relation. Spectrum relation 

is the relation between the wavenumber ሺߢሻ and radial frequency (߱). The spectrum relation for the 

longitudinal wave propagation in a thin rod is:  

݇ ൌ േ߱ට
ߩ
ܧ

 (3.15)

 

The dispersion relation is the relation between the phase speed ሺܿሻ and radial frequency (߱). The 

dispersion relation for the longitudinal wave motion can be expressed by: 

ܿ ൌ
߱
݇
ൌ ඨ

ܧ
ߩ
ൌ ܿ (3.16)

 

Due to the importance of the concepts of the phase and group speed in wave propagation, a brief 

explanation about these concepts is provided herein.  
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3.3.1 Phase speed 

In general, the wavenumber of a wave motion can have real and imaginary parts:  

κ ൌ ோߢ  ூ (3.17)ߢ݅

 

Therefore, the general solution of the one-dimensional wave propagation in rods can be written in the 

following form (Doyle (1989)): 

uሺݔ, ሻݐ ൌ ܨ݁ି௫݁ି
ሺೃ௫ିఠ௧ሻ (3.18)

 

The wave motion in equation ((3.18) has three distinct parts:  

 : Amplitude spectrumܨ

݁ି௫: Spatially decaying term  

݁ିሺೃ௫ିఠ௧ሻ: Harmonic propagating waves  

Each individual harmonic wave moves with a speed that is called “phase speed”. To keep the harmonic 

waves moving with the phase speed, it is required to keep the phase of the harmonic waves constant as the 

time increases. Hence, the phase speed can be found as: 

c ൌ
߱
ோߢ

 (3.19)

 

3.3.2 Group Speed 

Phase speed is the propagation speed of individual harmonics. The complete solution of a wave is the 

superposition of all the harmonic waves as a group. This group might have a different response than the 

individual response. Group speed is a parameter that can be used for analyzing the group behavior. It can 

be found using the following relationship (Doyle (1989)): 

c݃ ൌ
݀߱

dߢ
ൌ ܿ  ߢ

݀ܿ

ߢ݀
 (3.20)

 

In general, the phase speed and group speed are not equal. The group speed of the longitudinal wave 

motion is: 
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ܿ ൌ
݀߱
݀݇

ൌ ඨ
ܧ
ߩ
ൌ ܿ (3.21)

 

The above equation shows that the phase and group speeds are equal, which means that the longitudinal 

wave in rods is non-dispersive and the shape of the wave will not change as it propagates. 

The material properties and the wave speed of some of the commonly used materials are presented in 

Table 3-2. In this table, ݖ is the impedance of each medium, which is the product of density and the wave 

velocity: 

ݖ ൌ ܿߩ ൌ ඥ(3.22) ܧߩ
 

Table 3-2 Properties of some materials for wave propagation analysis 

Material 
Density 

(݇݃/݉ଷ) 

Young’s Modulus 

 (ܽܲܩ)

Wave speed 

 (ܿ݁ݏ/݉)

Impedance 

ሺ݇݃ ݉ଶ⁄ .  ሻܿ݁ݏ

Impedance Ratio 

ሺݖ௦௧ ⁄ݖ ሻ 

Aluminum 2700 72.7 5189 14.0E+06 2.8 

Brass 8100 82.3 3188 25.8E+06 1.5 

Cadmium 8650 50 2404 20.8E+06 1.9 

Concrete  2400  27.4 3379 8.1E+06 4.9 

Copper 8500 89.1 3238 27.5E+06 1.4 

Epoxy 1000 3.4 1844 1.8E+06 21.5 

Glass 2300 68.6 5461 12.6E+06 3.2 

Gold 19300 79 2023 39.0E+06 1.0 

Iron 7874 211 5177 40.8E+06 1.0 

Lead 11340 16 1188 13.5E+06 2.9 

Magnesium 1738 45 5088 8.8E+06 4.5 

Nickel 8908 200 4738 42.2E+06 0.9 

Rock 2500 30.1 3470 8.7E+06 4.6 

Silver 10490 83 2813 29.5E+06 1.3 

Steel 7850 200 5048 39.6E+06 1.0 

Tin 7365 50 2606 19.2E+06 2.1 

Tungsten 19250 411 4621 88.9E+06 0.4 

Zinc 7140 108 3889 27.8E+06 1.4 

Oak black 

Wood 
669 11.53 4151 2.8E+06 14.1 
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3.3.3 Mechanical relations 

Since we have the solution of wave motion, the mechanical relationships for a particular frequency can be 

easily derived. These relationships are listed in Table 3-3. The relations are shown separately for forward 

moving (designated with the index	݅) and backward moving (designated with the index	ݎ) waves. It is 

assumed that the deformations are small and material has an elastic behavior. It is worthwhile to note that 

the particle velocity and stress have the same profile; however, forward moving (tensile) stress causes 

backward movement in the particles (negative velocity) and vice versa (Doyle (1989)).  

Table 3-3 Mechanical relationships for an elastic material with small deformations assumption 

Parameter Forward moving wave Backward moving wave 

Displacement ݑ ൌ ݑ ሺ௫ିఠ௧ሻି݁ܣ ൌ  ሺ௫ାఠ௧ሻ݁ܤ

Strain ߝ ൌ ݑ݀ ⁄ݔ݀ ൌ െ݅݇ݑ ߝ ൌ ݑ݀ ⁄ݔ݀ ൌ  ݑ݇݅	

Stress ߪ ൌ ߝܧ ൌ െ݅݇ݑܧ ߪ ൌ ߝܧ ൌ  ݑܧ݇݅	

Force ܨ ൌ ߪܣ ൌ െ݅݇ݑܣܧ ܨ ൌ ߪܣ ൌ  ݑܣܧ݇݅	

Particle Velocity ݒ ൌ ݑ݀ ⁄ݐ݀ ൌ ݑ߱݅	 ൌ ݅݇ܿݑ ൌ െ
ܿ
ܧ
ݒ ߪ ൌ ݑ݀ ⁄ݐ݀ ൌ ݑ߱݅	 ൌ ݅݇ܿݑ ൌ

ܿ
ܧ
 ߪ

 

3.4 Reflection and transmission at discontinuities of rod structures 

In reality all of the structures have finite length, and the wave encounters different types of discontinuities 

as it passes through a physical medium. Discontinuity is a general term that can be attributed to any type 

of change in the material properties, geometry, and boundary conditions of a system, which results in the 

reflection and/or transmission of waves.  

In this section, different types of discontinuities in rod structures are extensively investigated. These 

discontinuities include different types of end boundaries and changes in the material properties 

(impedance mismatch) along the wave path.  

 

3.4.1 End boundaries in rods 

As we know the wave solution in an infinite rod produces forward and backward moving waves (see 

equation ((3.13)): 
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,ݔሺݑ ሻݐ ൌ ሺ௫ିఠ௧ሻି݁ߙ∑    ାሺ௫ାఠ௧ሻ݁ߚ∑

For a finite rod, the incident wave produces a reflected wave at the boundary. These two waves are 

superposed at the boundary to satisfy the boundary conditions. The incident wave is the forward moving 

wave with the amplitude ߙ which is known. Our problem is to find the unknown reflected wave with the 

amplitude	ߚ. The end boundary conditions are applied in terms of displacement (ݑ), velocity (ݑሶ ), and 

force (ݑ݀ܣܧ ⁄ݔ݀ ). Table 3-4 shows the properties of different types of boundary conditions in the time 

domain and spectral analysis format.  

Table 3-4 Some boundary condition properties (Doyle (1989)) 

Type of Boundary Time domain Spectral Analysis 

Fixed ݑሺ0, ሻݐ ൌ ොݑ 0 ൌ 0 

Free ܣܧ ,ሺ0ݑ߲ ሻݐ ⁄ݔ߲ ൌ ොሺ0ሻݑ݀ܣܧ 0 ⁄ݔ݀ ൌ 0 

Spring ܣܧ ,ሺ0ݑ߲ ሻݐ ⁄ݔ߲ ൌ െݑܭሺ0, ොሺ0ሻݑ݀ܣܧ ሻݐ ⁄ݔ݀ ൌ െݑܭොሺ0ሻ 

Dashpot ܣܧ ,ሺ0ݑ߲ ሻݐ ⁄ݔ߲ ൌ െߟ ,ሺ0ݑ߲ ሻݐ ⁄ݐ߲ ොሺ0ሻݑ݀ܣܧ  ⁄ݔ݀ ൌ  ොሺ0ሻݑ߱݅ߟ

Mass ܣܧ ,ሺ0ݑ߲ ሻݐ ⁄ݔ߲ ൌ െ߲݉ଶݑሺ0, ሻݐ ⁄ଶݐ߲ ොሺ0ሻݑ݀ܣܧ  ⁄ݔ݀ ൌ ݉߱ଶݑොሺ0ሻ 

 

Fixed end 

The displacement at the fixed end (ݔ ൌ 0) is zero; therefore we can write: 

ሻݔොሺݑ ൌ ௫ି݁ߙ  ା௫݁ߚ ⇒ ොሺ0ሻݑ ൌ ߙ  ߚ ൌ 0  

Therefore: 

ߙ ൌ െ(3.23) ߚ

 

This means that the reflected displacement wave is inverted at the fixed boundary. Now, the incident and 

reflected waves can be shown by: 

Incident displacement ൌ	ݑ ൌ   ௫ି݁ߙ	

Reflected displacement = ݑ ൌ 	െ݁ߙା௫  

The corresponding stresses are: 
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Incident stress: ߪ ൌ 	െ݅݇ି݁ߙܧ௫  

Reflected stress:	ߪ ൌ 	െ݅݇݁ߙܧା௫  

Thus, the reflected stress wave is the same as the incident wave. Incident and reflected waves are 

superposed at the boundary. Therefore, at ݔ ൌ 0 we have: 

௫ୀ|ߪ ൌ |௫ୀߪ	  |௫ୀߪ ൌ െ2݅݇ߙܧ ൌ   |௫ୀߪ2

This shows that a stress pulse is doubled at a fixed boundary; a classically known finding. The main 

characteristics of the fixed boundary are: 

 Displacement pulse will be inverted after reflection from a fixed boundary. 

 Stress pulse will remain the same after reflection from a fixed boundary. 

 Incident stress pulse is doubled when it hits a fixed boundary. 

  

Free end 

To insure the zero stress condition at a free boundary, we have (it is assumed that the free boundary is 

at	ݔ ൌ 0): 

ሻݔሺߪ ൌ ௫ି݁݇݅ߙ൫െܧ  ା௫൯݁݇݅ߚ ⇒ ሺ0ሻߪ ൌ ݇݅ߙሺെܧ  ሻ݇݅ߚ ൌ 0  

Therefore: 

ߙ ൌ (3.24) ߚ

 

The incident and reflected stresses are: 

Incident stress at a free boundary: 	ߪ ൌ 	െ݅݇ି݁ߙܧ௫  

Reflected stress at a free boundary:	ߪ ൌ   ା௫݁ߙܧ݇݅	

This shows that stress will be inverted at a free boundary. For a displacement pulse at the free boundary 

we can write: 

௫ୀ|ݑ ൌ |௫ୀݑ	  |௫ୀݑ ൌ ߙ2 ൌ   |௫ୀݑ2
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This means that the displacement pulse will be doubled at the free boundary. The main characteristics of 

the free boundary are: 

 Stress pulse will be inverted after reflection from a free boundary. 

 Displacement pulse will remain the same after reflection from a free boundary. 

 Incident displacement pulse is doubled when it hits a free boundary. 

In Table 3-5, the reflection characteristics of fixed and free boundaries are compared.  

 

Table 3-5 Comparison of the fixed and free boundary conditions in rods 

Boundary 
Reflected stress 

 (ߪ)

Reflected Disp. 

 (ݑ)

Stress at boundary 

 (௫ୀ|ߪ)

Disp. at boundary 

 (௫ୀ|ݑ)

Fixed No change Inverted Doubled Zero 

Free Inverted No change Zero Doubled 

 

Elastic boundaries 

A typical elastic boundary condition (spring) is shown in Figure 3-3. The force condition at ݔ ൌ 0 

requires: 

ܣܧ ,ሺ0ݑ߲ ሻݐ ⁄ݔ߲ ൌ െݑܭሺ0, ሻݐ ⇒ ߙሺെ݅݇ܣܧ  ሻߚ݇݅ ൌ 	െܭሺߙ    ሻߚ

Thus, the amplitude of reflected wave is (Doyle (1989)): 

ߚ ൌ
ܣܧ݇݅ െ ܭ
ܣܧ݇݅  ܭ

(3.25) ߙ

 

To check the accuracy of the derived equation, we can consider the limits on the stiffness of the spring.  If 

the stiffness of the spring becomes zero (ܭ ൌ 0), it is similar to the free boundary and we have: 

ߚ ൌ   ߙ

Similarly, for a very stiff spring (ܭ ൌ ∞) we have the fixed end condition: 

ߚ ൌ െߙ  
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Figure 3-3 Elastic boundary condition (spring) 

 

Equation ((3.25) can be written in terms of the frequency (߱), and the relation between the reflected and 

incident amplitudes can be expressed by the following transfer function:  

ሺ߱ሻܩ ൌ
ܣܧ߱݅ െ ܿܭ
ܣܧ߱݅  ܿܭ

 (3.26)

 

This transfer function can be expressed by real and imaginary parts: 

ሺ߱ሻܩ ൌ 	
ሺ߱ܣܧሻଶ െ ሺܿܭሻଶ

ሺ߱ܣܧሻଶ  ሺܿܭሻଶ


߱ܿܭܣܧ2
ሺ߱ܣܧሻଶ  ሺܿܭሻଶ

݅ (3.27)

ሺܴ݁ሻܩ ൌ
ሺ߱ܣܧሻ2 െ ሺ0ܿܭሻ2

ሺ߱ܣܧሻ2  ሺ0ܿܭሻ2
 (3.28)

ሺ݉ܫሻܩ ൌ
0߱ܿܭܣܧ2

ሺ߱ܣܧሻ2  ሺ0ܿܭሻ2
 (3.29)

݁݀ݑݐ݈݅݉ܣ ൌ ටሺܴ݁ሻீ
ଶ  ሺ݉ܫሻீ

ଶ ൌ 1 (3.30)

 

Similar to the stiffness limits, the behavior of the spring can be investigated for the frequency limits. For 

very low frequencies (߱ → 0), the transfer function is equal to -1, which means that the spring behaves as 

a rigid end condition for low frequency loadings. On the other hand, for very high frequencies (߱ → ∞), 

the transfer is unity and the spring behaves as a free end. Considering equation ((3.26), we can say: 

 The effect of elastic boundary condition is dependent to the frequency; therefore, each frequency 

component is affected differently. Consequently, for a pulse with a spectrum of frequencies the 

reflected signal will be distorted (Doyle (1989)).  

 The propagated signal (longitudinal wave) is inherently non-dispersive; however, it becomes 

dispersive when it interacts with elastic boundary condition.  

x = 0

x
ui

K
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3.4.2 Impedance mismatch 

When the material properties and/or cross section change along the path of a longitudinal wave, reflection 

and transmission will occur at the interface of the two media. This happens due to the impedance 

mismatch between the two sections. To study this phenomenon, three different types of problems are 

explored in this section: “lumped mass”, “stepped rod”, and “elastic joint”. In all of the problems, the 

reflected and transmitted waves are defined by considering the continuity of force and displacement at the 

interface.  

Lumped mass 

Consider two similar rods that are connected by a mass (Figure 3-4). To satisfy the continuity of force and 

displacement at the interface we can write ((Doyle 1989)): 

1ܨ െ 2ܨ ൌ ሷݑܿ݉ ܿ (3.31)
 

1ݑ ൌ 2ݑ ൌ (3.32) ܿݑ
 

 

Figure 3-4 Effect of lumped mass on reflection and transmission of waves 

 

If we assume that the amplitudes of incident, reflected, and transmitted waves are	ߙଵ,	ߚଵ, and ߙଶ, 

respectively, we have (assuming that the cross section and material properties of the rods are similar): 

1ݑ ൌ ൛1݁ߙെ݅݇1ݔ  1݁ߚ
ൟ݁ఠ௧ (3.33)ݔ1݇݅

 
2ݑ ൌ ሼ2݁ߙെ݅݇2ݔሽ݁ఠ௧ (3.34)

 

ui utur
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1ܨ ൌ ݔ1݁െ݅݇1ߙ൛െ݅݇1ܣܧ  1݁ߚ1݇݅
ൟ݁ఠ௧ (3.35)ݔ1݇݅

 
2ܨ ൌ ሽ݁ఠ௧ (3.36)ݔ2݁െ݅݇2ߙሼെ݅݇2ܣܧ

 

For simplicity, it is assumed that the center of the lumped mass is located at	ݔ ൌ 0. Consequently, we can 

write:  

ଵߙሼെ݅݇ଵܣܧ  ݅݇ଵߚଵሽ െ ଶሽߙሼെ݅݇ଶܣܧ ൌ െ݉ߙଶ߱ଶ (3.37)

 

1ߙ  1ߚ ൌ (3.38) 2ߙ

 

By solving equations ((3.37) and ((3.38) simultaneously, ߚଵ and ߙଶ can be found in term of	ߙଵ. 

1ߚ ൌ
െ݉ܿ߱

2

ܣܧ2݅݇  ݉ܿ߱2 (3.39) 1ߙ

 

2ߙ ൌ
ܣܧ2݅݇

ܣܧ2݅݇  ݉ܿ߱2 (3.40) 1ߙ

 

Based on equations ((3.39) and ((3.40) following results can be concluded: 

 The effect of lumped mass on the wave propagation is frequency dependent. This means that the 

wave can be distorted.  

 At very small frequencies the mass has no effect on the propagating wave: 

߱ → 0 ଵߚ	⇒ ൌ ଶߙ		݀݊ܽ		0 ൌ   ଵߙ	

 At very high frequencies the mass behaves as a rigid boundary and wave cannot be transmitted: 

߱ → ∞ ଵߚ	⇒ ൌ െߙଵ		ܽ݊݀		ߙଶ ൌ 	0  

 The similar limit can be observed for the mass limits: 

݉ → 0 ଵߚ	⇒ ൌ ଶߙ		݀݊ܽ		0 ൌ   ଵߙ	

݉ → ∞ ଵߚ	⇒ ൌ െߙଵ		ܽ݊݀		ߙଶ ൌ 	0  

 The summation of the magnitudes of the amplitude of the reflected and transmitted waves is always 

equal to unity (|ߚଵ|  |ଶߙ| ൌ 1).  
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Changing the material properties and/or cross section 

When a wave enters a different medium with different material properties and/or cross section, reflection 

and transmission occurs at the intersection of the two media. Figure 3-5 shows two rods with different 

material and cross section properties that are attached at	ݔ ൌ 0. 

 

Figure 3-5 Effect of changing material properties and cross section 

 

According to the continuity of force and displacement at the interface (ݔ ൌ 0), we have: 

1ܨ ൌ ;2ܨ 1ݑ ൌ 2ݑ  (3.41)

 

Therefore, 

ଵߙሼെ݅݇ଵܣܧ  ݅݇ଵߚଵሽ ൌ ଶሽ (3.42)ߙሼെ݅݇ଶܣܧ

 

1ߙ  1ߚ ൌ (3.43) 2ߙ

 

Solving equations ((3.42) and ((3.43) gives: 

ଵߚ ൌ 	

1 െ ඨܧଶ
ଵܧ
ଶߩ
ଵߩ
ቀܣଶܣଵ

ቁ
ଶ

1  ඨܧଶ
ଵܧ
ଶߩ
ଵߩ
ቀܣଶܣଵ

ቁ
ଶ
ଵߙ ൌ

1 െ
ଶܣଶݖ
ଵܣଵݖ

1 
ଶܣଶݖ
ଵܣଵݖ

ଵ (3.44)ߙ

ui utur
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2ߙ ൌ 	
2

1  ඨ1ܧ2ܧ
2ߩ
1ߩ
ቀ1ܣ2ܣ

ቁ
2

1ߙ ൌ
2

1 
2ܣ2ݖ
1ܣ1ݖ

 1ߙ
(3.45)

where, ݖ is the impedance of each medium (equation (3.22). 

Equations ((3.44) and ((3.45) show that the response is independent of frequency. For the static loads, 

changing the material properties and cross section is exactly similar to the problem of an elastic spring. 

However, since we have distributed mass in the stepped rod problem the response is completely 

independent of frequency while in the elastic spring the results are frequency dependent. 

Since the reflected and transmitted amplitudes are known, the reflected and transmitted stresses can be 

found as: 

rߪ ൌ 	
െ1ߚ
1ߙ

iߪ ൌ

2ܣ2ݖ
1ܣ1ݖ

െ 1

2ܣ2ݖ
1ܣ1ݖ

 1
i (3.46)ߪ

 

tߪ ൌ 	
2ܧ
1ܧ

݇2
݇1

2ߙ
1ߙ
iߪ ൌ

2ܧ
1ܧ

ܿ1
ܿ2

2ߙ
1ߙ
iߪ ൌ

2ݖ
1ݖ

2ߙ
1ߙ
iߪ ൌ

2
2ݖ
1ݖ

1 
2ܣ2ݖ
1ܣ1ݖ

i (3.47)ߪ

 

If the second medium has very small impedance (ݖଶ → 0), it is similar to the free end condition (ߪ୰ ൌ െߪ୧ 

and ߪ୲ ൌ 0).  

If the second medium has very large impedance (ݖଶ → ∞), it is similar to the fixed end condition (ߪ୰ ൌ  ୧ߪ

and ߪ୲ ൌ 2
భ
మ
ଵܣ) ୧). Therefore, if the cross section of the two rods are equalߪ ൌ  ଶ), the transmittedܣ

amplitude will be doubled when the second rod has very large impedance.  

 

Effect of a finite elastic rod between two long bars 

Consider an elastic finite bar that is implanted between two long elastic rods. If the material properties of 

the two long bars are the same, the problem would be very similar to a Split Hopkinson test.  
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Figure 3-6 Effect of a finite rod between two long bars on wave propagation 

 

Figure 3-6 shows the displacements and forces of the three bars. According to the continuity of 

displacement and stress at the two sides of the finite rod, we can write: 

ݔ	ݐܽ ൌ 0,			 ଵݑ ൌ ଶݑ ܽ݊݀ ଵܨ ൌ ଶ (3.48)ܨ

 

ݔ	ݐܽ ൌ 					,ܮ ଶݑ ൌ ଷݑ ܽ݊݀ ଶܨ ൌ ଷ (3.49)ܨ

 

where,  

1ݑ ൌ 1݁ߙ
െ݅݇1ݔ  1݁ߚ

݀݊ܽ			ݔ1݇݅ 1ܨ ൌ ሺܣܧሻ1൛െ݅݇11݁ߙ
െ݅݇1ݔ  1݁ߚ1݇݅

ൟ (3.50)ݔ1݇݅

 

2ݑ ൌ 2݁ߙ
െ݅݇2ݔ  2݁ߚ

݀݊ܽ			ݔ2݇݅ 2ܨ ൌ ሺܣܧሻ2൛െ݅݇22݁ߙ
െ݅݇2ݔ  2݁ߚ2݇݅

ൟ (3.51)ݔ2݇݅

 

3ݑ ൌ 3݁ߙ
െ݅݇3ݔ																 ܽ݊݀ 3ܨ ൌ ሺܣܧሻ3൛െ݅݇33݁ߙ

െ݅݇3ݔൟ (3.52)

 

By substituting equations ((3.50) to ((3.52) in equations ((3.48) and ((3.49), we can write the reflected and 

transmitted amplitudes in the following matrix form ((Doyle 1989)): 

൦

െ1
ሺ݇ܣܧሻଵ

0
0

			

1
ሺ݇ܣܧሻଶ
݁ିమ

െሺ݇ܣܧሻଶ݁ିమ
			

1
െሺ݇ܣܧሻଶ
݁మ

ሺ݇ܣܧሻଶ݁మ

0
0

െ݁ିయ

ሺ݇ܣܧሻଷ݁ିయ
൪ ൞

ଵߚ
ଶߙ
ଶߚ
ଷߙ

ൢ ൌ ൞

1
ሺ݇ܣܧሻଵ

0
0

ଵ (3.53)ߙൢ

u3

x

x = 0

 F1  F3

u2

u1

 F2  F2
x = L

L
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The general solution of equation ((3.53) is very long. In the following the solution is given for a special 

case when rods one and three have the same material properties (ܧଵ ൌ ଶܧ ൌ and ݇ଵ ܧ ൌ ݇ଶ ൌ ݇) and the 

cross section of all of the rods are equal (ܣଵ ൌ ଶܣ ൌ ଷܣ ൌ  Please note that the results are presented in .(ܣ

terms of frequency (߱).  

ଵߚ ൌ 	
ଶܿܧ ቆܧଶܿ െ ଶܿܧ  ଶܿ݁ܧ

ቀ
ଶ௪
మ

ቁ
 ଶ݁ܿܧ

ቀ
ଶ௪
మ

ቁ
ቇ െ ቆܧଶ

ଶܿଶ݁
ቀ
ଶ௪
మ

ቁ
െ ଶܧ

ଶܿଶ  ଶܿܿܧଶܧ  ଶ݁ܿܿܧଶܧ
ቀ
ଶ௪
మ

ቁ
ቇ

ଶܧ
ଶܿଶ݁

ቀ
ଶ௪
మ

ቁ
െ ଶܿଶܧ

ଶ െ ଶܧ
ଶܿଶ  ଶܿଶܧ

ଶ݁
ቀ
ଶ௪
మ

ቁ
 ଶܿܿܧଶܧ2  ଶ݁ܿܿܧଶܧ2

ቀ
ଶ௪
మ

ቁ
 (3.54) 

 

ଶߙ ൌ 	
ଶ݁ܿܧ2

ቀ
௪
మ

ቁ
ቆܧଶܿ݁

ቀ
௪
మ

ቁ
 ଶ݁ܿܧ

ቀ
௪
మ

ቁ
ቇ

ଶܧ
ଶܿଶ݁

ቀ
ଶ௪
మ

ቁ
െ ଶܿଶܧ

ଶ െ ଶܧ
ଶܿଶ  ଶܿଶܧ

ଶ݁
ቀ
ଶ௪
మ

ቁ
 ଶܿܿܧଶܧ2  ଶ݁ܿܿܧଶܧ2

ቀ
ଶ௪
మ

ቁ
 (3.55)

 

ଶߚ ൌ 	
ଶܿܧଶሺܿܧ2 െ ଶሻܿܧ

ଶܧ
ଶܿଶ݁

ቀ
ଶ௪
మ

ቁ
െ ଶܿଶܧ

ଶ െ ଶܧ
ଶܿଶ  ଶܿଶܧ

ଶ݁
ቀ
ଶ௪
మ

ቁ
 ଶܿܿܧଶܧ2  ଶ݁ܿܿܧଶܧ2

ቀ
ଶ௪
మ

ቁ
 (3.56)

 

ଷߙ ൌ 	
ଶ݁ܿܿܧଶܧ4

ቀ
௪
ୡ ቁ݁

ቀ
ଶ௪
మ

ቁ

ଶܧ
ଶܿଶ݁

ቀ
ଶ௪
మ

ቁ
െ ଶܿଶܧ

ଶ െ ଶܧ
ଶܿଶ  ଶܿଶܧ

ଶ݁
ቀ
ଶ௪
మ

ቁ
 ଶܿܿܧଶܧ2  ଶ݁ܿܿܧଶܧ2

ቀ
ଶ௪
మ

ቁ
 (3.57)

 

3.5 Summary 

In this section, the solution of wave propagation in thin rods is reviewed extensively, and basic concepts 

and relations of wave propagation in solids are introduced based on this solution. In addition, a review of 

the wave reflection and transmission characteristics at different types of discontinuities in rod structures is 

presented in this section. These discontinuities include various types of end boundary conditions and 

changes in the material and cross section properties.  The analyses show that the reflection and 

transmission properties are very different for various types of discontinuities. Some discontinuities such 

as lumped mass and elastic boundaries can disperse the waves although the propagating signal is 

inherently non-dispersive, while some others such as stepped rods induce no dispersion.   
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 SECTION 4 

WAVE REFLECTION AND TRANSMISSION IN BEAMS 

 

4.1 Introduction 

Beams are one of the major structural components that can carry lateral loads. Because of the lateral 

loading, the displacement of a beam is transverse to the centerline, and therefore, under dynamic loadings 

flexural waves will be generated in the beam structures.   

There are significant differences between the wave propagation in rods and beams. Beams have higher 

order differential equations in comparison to the rods and there is no D’Alembert solution available. 

Flexural waves in beams are dispersive, and due to the inherent higher order differential equations, they 

have two fundamental modes—propagating and evanescent (near field).  

There are different types of formulations that describe the kinematic relations of beams such as Euler-

Bernoulli, Rayleigh, and Timoshenko. Based on the assumptions for calculating the lateral deformation of 

each beam formulation, the associated dynamic behavior is different. Euler-Bernoulli formulation is 

appropriate for analysis of beams under low frequency excitations as it predicts unrealistic speed of waves 

at high frequencies due to neglecting the effect of rotary inertia. Timoshenko formulation for beams, on 

the other hand, considers the effect of shear deformation and rotary inertia. Therefore, more accurate 

results can be achieved for either low or high frequency excitations. Due to these facts, this section only 

focuses on the behavior of Timoshenko structures. 

In this section, the flexural wave propagation formulation in Timoshenko beams and the effect of 

different types of discontinuities on the wave reflection and transmission in these structures are 

investigated extensively.   

 

4.2 Wave propagation in Timoshenko beams  

As mentioned in the previous section, the Euler-Bernoulli model is not appropriate for analyzing the 

beams under very high frequency loads. Rayleigh (1926) considered the effect of rotary inertia in the 

wave propagation formulation of beams. Timoshenko (1921) and (1922) extended Rayleigh’s assumption 

and introduced the effect of shear deformation in addition to the rotary inertia. 
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4.2.1 Governing differential equation of Timoshenko beams 

To derive the governing differential equation, consider a Timoshenko beam in Figure 4-1 which is under 

positive bending moment and shear force. The positive directions of moment and shear forces are shown 

on an element of the beam. The equation of motion (momentum balance) for this element in the vertical 

direction can be written as: 

௬ܨ∑  ൌ ሷݕ݉ ⇒ െܸ  ቀܸ 
డ

డ௫
Δݔቁ  ݔΔݍ െ ݔΔܣߩ	

డమ௬

డ௧మ
ൌ 0  

or 

߲ܸ

ݔ߲
 ݍ ൌ ܣߩ

ݕ2߲

2ݐ߲
 (4.1) 

Similarly, the equation of motion can be written for the moments for an axis which is perpendicular to x-y 

plane and passes through the center of the element: 

ܯ∑ ൌ ψሷܬ ⇒ െܯ  ቀܯ 
డெ

డ௫
Δݔቁ  ܸΔݔ െ ܬ	

డమట

డ௧మ
ൌ 0  

where, ܬ is the polar moment of inertia about the perpendicular axis to x-y plane and can be written as: 

ܬ ൌ ଶܸ݀ݕߩ ൌ 	 ܣ݀ݔଶΔݕߩ ൌ   ܫݔΔߩ

where, ܫ is the second moment of area of the cross section of the beam about the axis of perpendicular to 

x-y plane. Consequently, the moment equilibrium equation can be written as: 

ܯ߲

ݔ߲
 ܸ ൌ ܫߩ

߲2߰

2ݐ߲
 (4.2)

 

According to Figure 4-1, the displacements of the beam can be written as: 

௫ݑ ൌ 	െ߰ݕሺݔ, ;ሻݐ ௬ݑ ൌ ,ݔሺݕ ;ሻݐ ௭ݑ ൌ 0 (4.3)

 

For small deformations the strain-displacement relations are: 

௫௫ߝ ൌ
௫ݑ߲
ݔ߲

ൌ െݕ
߲߰
ݔ߲

௫௬ߝ			; ൌ
1
2
ቆ
௫ݑ߲
ݕ߲


௬ݑ߲
ݔ߲

ቇ ൌ
1
2
൬െ߰ 

ݕ߲
ݔ߲
൰ (4.4)
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where, ߰ is the rotation angle of the normal to the cross section and 
డ௬

డ௫
 is the slope of the midline. The 

difference between these two angles is the shearing angle	ߛ which is shown in Figure 4-1.  

 

Figure 4-1 Kinematics of Timoshenko beam under flexure 

 

The actual shear is not constant over the cross section. Therefore, a correction factor should be used 

for	ߝ௫௬: 

௫௬ߝ ൌ
1
2
ߢ ൬െ߰ 

ݕ߲
ݔ߲
൰ (4.5)

 

Based on the sign of the positive moment and shear force in Figure 4-1 we can write: 

ሻݔሺܯ ൌ െනߪݕ௫௫݀ܣ ൌ 	െනߝܧݕ௫௫݀ܣ ൌ නݕଶܧ
߲߰
ݔ߲

ܣ݀ ൌ ܫܧ
߲߰
ݔ߲

 (4.6)

 

ܸሺݔሻ ൌ නߪ௫௬݀ܣ ൌ න2ߝܩ௫௬݀ܣ ൌ නܩߢ ൬െ߰ 
ݕ߲
ݔ߲
൰ ܣ݀ ൌ ܩܣߢ ൬െ߰ 

ݕ߲
ݔ߲
൰ (4.7)

 

ݕ߲
ݔ߲

 
ѱ 

V
M
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γ0
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q

M +

u

y

M+ M
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By substituting equations (4.6) and (4.7) into equations (4.1) and (4.2), the equations of motion can be 

written in terms of the rotation angle ߰ሺݔ, ,ݔሺݕ ሻ and the transverse deflectionݐ  ሻ of the beam as followsݐ

ܩܣߢ ቆ
߲߰
ݔ߲

െ
߲ଶݕ
ଶݔ߲

ቇ  ܣߩ
߲ଶݕ
ଶݐ߲

ൌ ,ݔሺݍ ሻ (4.8)ݐ

 

ܩܣߢ ൬
ݕ߲
ݔ߲

െ ߰൰  ܫܧ
߲ଶ߰
ଶݔ߲

ൌ ܫߩ
߲ଶ߰
ଶݐ߲

 (4.9)

 

When no external force is applied, the free vibration equation of the beam can be found by eliminating ߰ 

from equations (4.8) and (4.9): 

ܫܧ

ܣߩ

ݕ4߲

4ݔ߲
െ
ܫ

ܣ
൬1 

ܧ

ߢܩ
൰

ݕ4߲

2ݐ2߲ݔ߲

ݕ2߲

2ݐ߲


ܫߩ

ܩܣߢ

ݕ4߲

4ݐ߲
ൌ 0 (4.10)

 

The solution for the above equation can be written as: 

,ݔሺݕ ሻݐ ൌ ௫݁ఠ௧ (4.11)ି݁ߙ

 

For convenience, we can define the following parameters for solving equation (4.10): 

ܾܥ ൌ ඨ
ܫܧ

ܣߩ
;			 ݏܥ ൌ ඨ

ߢܣܩ

ܣߩ
; ݎܥ ൌ ඨ

ܫߩ

ܣߩ
 (4.12)

 

  represent bending, shear, and rotational stiffness of the beam. By substituting equationܥ ௦, andܥ ,ܥ

(4.11) into equation (4.10), and using the stiffness parameters the following fourth-order equation can be 

written in terms of the wavelength (ߢ) and frequency (߱): 

4ߢ െ ቈ൬
1

ݏܥ
൰
2

 ൬
ݎܥ
ܾܥ
൰
2

 2ߢ2߱ െ ൬
1

ܾܥ
൰
2

߱2  ൬
ݎܥ
ݏܥܾܥ

൰
2

߱4 ൌ 0 (4.13)

 

This equation is the dispersion equation of the beam and its solution takes the following form: 
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݇ ൌ 	േቐ
1
2
ቈ൬
1
௦ܥ
൰
ଶ

 ൬
ܥ
ܥ
൰
ଶ

߱ଶ േ ඨ൬
߱
ܥ
൰
ଶ

1
4
ቈ൬
1
௦ܥ
൰
ଶ

െ ൬
ܥ
ܥ
൰
ଶ


ଶ

߱ସቑ

ଵ
ଶ

 (4.14)

 

Since there is no linear relationship between the wavelength and frequency, the flexural waves in 

Timoshenko beams are dispersive. There are two േ signs in the above equation. The first sign indicates 

that the waves are moving in positive and negative directions, while the second sign (in the middle of 

bracket) relates to the existence of two different pairs of wavenumbers (two different modes). The first 

pair is always a real number, and its corresponding wave is a propagating wave because ݁ି௫ will have 

an imaginary term. The type of the corresponding wave of the second pair depends on the frequency of 

the applied load. Based on the material and geometrical properties of the beam, there is a cutoff frequency 

(߱). This frequency is defined as: 

߱ܿ ൌ
ݏܥ
ݎܥ

 (4.15)

 

If ߱ ൏ ߱, the second pair of the wave numbers is imaginary, which means that the second mode of the 

wave is a decaying or evanescent wave. This is the most common situation because the value of the cutoff 

frequency is usually high. 

If ߱  ߱, the second pair of the wave numbers is real; therefore, the second mode will also be  a 

propagating wave. This condition happens in applications when the frequency of the applied load is very 

high such as audio-frequency applications, Mei and Mace (2005). 

The spectral solution for equation (4.10) can be written by suppressing the time dependence	݁ఠ௧ as 

follows (Mei (2012)): 

ሻݔሺݕ ൌ 	ܽଵ
ା݁ିభ௫  ܽଶ

ା݁ିమ௫  ܽଵ
ି݁భ௫  ܽଶ

ି݁మ௫ (4.16)
 

A similar equation can be written for the angle of rotation: 

߰ሺݔሻ ൌ 	ܽଵ
ାതതതത݁ିభ௫  ܽଶ

ାതതതത݁ିమ௫  ܽଵ
ିതതതത݁భ௫  ܽଶ

ିതതതത݁మ௫ (4.17)
 

where, ݇ଵ and ݇ଶ are the propagating and evanescent wavenumbers: 
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݇1 ൌ 	ቐ
1

2
ቈ൬
1

ݏܥ
൰
2

 ൬
ݎܥ
ܾܥ
൰
2

 ߱2  ඨ൬
߱

ܾܥ
൰
2


1

4
ቈ൬
1

ݏܥ
൰
2

െ ൬
ݎܥ
ܾܥ
൰
2


2

߱4ቑ

1
2

 (4.18)

 

݇2 ൌ 	ቐቮ
1

2
ቈ൬
1

ݏܥ
൰
2

 ൬
ݎܥ
ܾܥ
൰
2

 ߱2 െ ඨ൬
߱

ܾܥ
൰
2


1

4
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൰
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െ ൬
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൰
2


2

߱4ቮቑ

1
2

݂݅	߱ ൏ ߱ܿ 

(4.19)

݇2 ൌ 	 ݅ ቐቮ
1

2
ቈ൬
1

ݏܥ
൰
2

 ൬
ݎܥ
ܾܥ
൰
2

 ߱2 െ ඨ൬
߱

ܾܥ
൰
2


1

4
ቈ൬
1

ݏܥ
൰
2

െ ൬
ݎܥ
ܾܥ
൰
2


2

߱4ቮቑ

1
2

݂݅	߱  ߱ܿ 

 

The amplitudes of the transverse deflection ݕ and the angle of rotation ߰ can be found by considering 

equations (4.8) and (4.9), with	ݍ ൌ 0. Since there are two dependent variables and the coefficients of the 

equations are constant, the solution for both of the variables is in the form of equation (4.11): 

,ݔሺݕ ሻݐ ൌ ,ଵ݁ି௫݁ఠ௧ܤ	 ߰ሺݔ, ሻݐ ൌ ଶ݁ି௫݁ఠ௧ (4.20)ܤ

 

By substituting the above equations in equations (4.8) and (4.9) we can find: 


ଶ݇ܩܣߢ െ ଶ߱ܣߩ െ݅݇ܩܣߢ

݇ܩܣߢ݅ ܩܣߢ  ଶ݇ܫܧ െ ଶ൨߱ܫߩ 
ଵܤ
ଶܤ
൨ ൌ 0 (4.21)

 

Thus, 

ଶܤ
ଵܤ

ൌ ݅
ଶ߱ܣߩ െ ଶ݇ܩܣߢ

݇ܩܣߢ
ൌ െ݅݇ ቆ1 െ

߱ଶ

௦ଶ݇ଶܥ
ቇ (4.22)

 

Therefore, the relations between the coefficients of the spectral solutions in equations (4.16) and (4.17) 

can be expressed by: 

ܽ1
തതത

ܽ1
 ൌ 	െ݅ܲ,			

ܽ1
െതതത

ܽ1
െ ൌ ݅ܲ,

ܽ2
തതത

ܽ2
 ൌ െܰ,

ܽ2
െതതത

ܽ2
െ ൌ ܰ (4.23)

 

where 
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ܲ ൌ 	݇ଵ ቆ1 െ
߱ଶ

݇ଵ
ଶܥ௦

ଶቇ , ܰ ൌ ݇ଶ ቆ1 
߱ଶ

݇ଶ
ଶܥ௦

ଶቇ (4.24)

 

4.3 Reflection and transmission at discontinuities of Timoshenko beam structures 

In this section, different types of discontinuities in Timoshenko beam structures are extensively 

investigated. These discontinuities include various types of end boundaries, stepped beams, and angled 

joints.  

 

4.3.1 End boundaries in Timoshenko beams 

The boundary conditions and their properties for three different types of end boundaries are presented in 

Figure 4-2 and Table 4-1. For simplicity, it is assumed that the end boundaries are located at	ݔ ൌ 0.  

Figure 4-2 Pin, clamped, and free boundary conditions 

 

In Figure 4-2, ܽା and ܽି represent the incident and reflected flexural wave amplitudes, respectively. 

These amplitudes are related to each other using a reflection matrix,	ݎ, as follows: 

ܽെ ൌ  (4.25)ܽݎ

 

where 

ܽା ൌ 	 
ܽଵ
ା

ܽଶ
ା൨,			ܽ

ି ൌ 
ܽଵ
ି

ܽଶ
ି൨ , ݎ ൌ ቂ

ଵଵݎ ଵଶݎ
ଶଵݎ ଶଶݎ

ቃ (4.26)

 

The moment and shear force of the beam can be found using equations (4.6), (4.7), (4.16), and (4.17): 
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ሻݔሺܯ ൌ 	EI൛െP݇ଵܽଵ
ା݁ିభ௫  N݇ଶܽଶ

ା݁ିమ௫ െ P݇ଵܽଵ
ି݁భ௫  N݇ଶܽଶ

ି݁మ௫ൟ (4.27)

 

ܸሺݔሻ ൌ 	κAG൛݅ሺP െ ݇ଵሻܽଵ
ା݁ିభ௫  ሺN െ ݇ଶሻܽଶ

ା݁ିమ௫  ݅ሺെP  ݇ଵሻܽଵ
ି݁భ௫

 ሺെN  ݇ଶሻܽଶ
ି݁మ௫ൟ 

(4.28)

 

Table 4-1 End boundary condition properties for Timoshenko beams 

Type of Boundary Boundary conditions 

Clamped ݕሺ0ሻ ൌ 0, ߰ሺ0ሻ ൌ 0 

Free ܸ ൌ ܩܣߢ	 ൭
ሺ0ሻݕ߲

ݔ߲
െ ߰ሺ0ሻ൱ ൌ 0, ܯ ൌ ܫܧ ݀߰ሺ0ሻ ⁄ݔ݀ ൌ 0 

Pin ݕሺ0ሻ ൌ 0, ܯ ൌ ܫܧ ݀߰ሺ0ሻ ⁄ݔ݀ ൌ 0 

 

By applying the boundary conditions for each end boundary, a two-by-two system of equations can be 

obtained. The reflection matrices for pinned (ݎ), clamped (ݎ), and free (ݎ) boundaries can be found by 

solving these equations Mei (2012): 

ݎ ൌ ቂെ1 0
0 െ1

ቃ 

 

ܿݎ ൌ 	 ൦

ܲ െ ݅ܰ

ܲ  ݅ܰ

െ2݅ܰ

ܲ  ݅ܰ
െ2ܲ

ܲ  ݅ܰ
െ
ܲ െ ݅ܰ

ܲ  ݅ܰ

൪ 

 

݂ݎ ൌ 	

ۏ
ێ
ێ
ێ
ۍ
െܲ݇1ሺെܰ  ݇2ሻ  ݅݇2ܰሺ݇1 െ ܲሻ

ܲ݇1ሺെܰ  ݇2ሻ  ݅݇2ܰሺ݇1 െ ܲሻ
2ܰ݇2ሺെܰ  ݇2ሻ

ܲ݇1ሺെܰ  ݇2ሻ  ݅݇2ܰሺ݇1 െ ܲሻ
2݅ܲ݇1ሺെܲ  ݇1ሻ

ܲ݇1ሺെܰ  ݇2ሻ  ݅݇2ܰሺ݇1 െ ܲሻ
ܲ݇1ሺെܰ  ݇2ሻ െ ݅݇2ܰሺ݇1 െ ܲሻ

ܲ݇1ሺെܰ  ݇2ሻ  ݅݇2ܰሺ݇1 െ ܲሻے
ۑ
ۑ
ۑ
ې
 

(4.29)

 

Consider a beam with ܧ ൌ ܩ ,ܽܲܩ190 ൌ ߴ ,ܽܲܩ77.5 ൌ ߩ ,0.29 ൌ 7680 ݇݃ ݉ଷ⁄ , ܾ ൌ 0.6݉, ݄ ൌ 0.4݉, 

and ܮ ൌ 2݉, where, ܾ, ݄, and ܮ are representing the width, height, and length, respectively. The moment 
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and shear ratio at the end of the beam for clamped, free, and pinned boundary conditions are shown in 

Figure 4-3 and Figure 4-4.  

Figure 4-3 shows the results when the propagating flexural wave (ܽଵ
ା) is the incident wave, while Figure 

4-4 depicts the results for evanescent flexural wave (ܽଶ
ା) as the incident wave. The moment and shear 

ratios can be defined as follows: 

ܴெ ൌ ݏܾܽ ቆ
௫ୀ|ܯ
|௫ୀܯ

ቇ ൌ abs ൬
ܯ  ܯ

ܯ
൰ (4.30) 

 

ܴ ൌ ݏܾܽ ቆ
ܸ|௫ୀ
ܸ|௫ୀ

ቇ ൌ abs ൬ ܸ  ܸ

ܸ
൰ (4.31)

 

where, 

݅ܯ ൌ ሼെܲ݇1ܽ1ܫܧ	
  ܰ݇2ܽ2

ሽ (4.32)

 

ܯ ൌ ଵଵܽଵݎሼെܲ݇ଵሺܫܧ	
ା  ଵଶܽଶݎ

ାሻ  ܰ݇ଶሺݎଶଵܽଵ
ା  ଶଶܽଶݎ

ାሻሽ (4.33)

 

ܸ݅ ൌ ሼ݅ሺܲߢܣܩ	 െ ݇1ሻܽ1
  ሺܰ െ ݇2ሻܽ2

ሽ (4.34)

 

ܸ ൌ ሼ݅ሺെܲߢܣܩ	  ݇ଵሻሺݎଵଵܽଵ
ା  ଵଶܽଶݎ

ାሻ  ሺെܰ  ݇ଶሻሺݎଶଵܽଵ
ା  ଶଶܽଶݎ

ାሻሽ (4.35)

 

According to Figure 4-3 and Figure 4-4, it can be observed that the moment and shear ratios are zero for 

the free boundary which proves the accuracy of the derivation of the reflection matrices. Moreover, the 

results show that these ratios are dependent on the frequency of the loading for the clamped boundary 

while there is no such dependency for the pinned support. For a clamped boundary, the trend of changing 

of ܴெ with respect to the frequency when ܽଵ
ା is the incident wave is similar to ܴ when ܽଶ

ା hits the 

boundary and vice versa. For a pinned boundary ܴ is equal to 2 at all frequencies for both ܽଵ
ା and ܽଶ

ା 

incident waves. 
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Figure 4-3 Moments and shear forces at boundaries when ࢇ
 is the incident amplitude 

 

 

Figure 4-4 Moments and shear forces at boundaries when ࢇ
 is the incident amplitude 
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4.3.2 Lumped mass at the end of a Timoshenko beam 

Mei (2012) found the reflection matrix for the problem of a Timoshenko beam with a lumped end mass 

(Figure 4-5). The reflection matrix for this problem (ݎ) can be found by satisfying the compatibility and 

equilibrium equations at the end of the beam.  

Based on the positive directions for the forces and displacements in Figure 4-5, the equations of motion 

(equilibrium equations) for the lumped mass are: 

െܸ ൌ ሷݕ݉ , െ ܯ  ܸ
݄
2
ൌ ܬ ሷ߰ (4.36)

 

 

Figure 4-5 Lumped mass at the end of a Timoshenko beam 

 

Here, ݕ and ߰ can be related to the transverse deflection and rotation angle of the end of the beam  

using the compatibility equations: 

ݕ ൌ ݕ 
݄
2
߰, ߰ ൌ ߰ (4.37)

 

By combining the compatibility and equilibrium equations, the reflection matrix for a lumped mass can be 

found as: 

ܽି ൌ ;ܽାݎ ݉ݎ ൌ ଵܯ
ିଵܯଶ (4.38)

 

where, 
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ଵܯ ൌ 	 ൦
െ݅ܲܩܣߢ  ݅݇ଵܩܣߢ െ݉߱ଶ െ ݅ܲ݉߱ଶ ݄

2
െܰܩܣߢ  ݇ଶܩܣߢ െ݉߱ଶ െ ܰ݉߱ଶ ݄

2

ܲ݇ଵܫܧ െ ܩܣߢܲ݅
݄
2
 ݅݇ଵܩܣߢ

݄
2
 ߱ଶܬܲ݅ െܰ݇ଶܫܧ  ߱ଶܬܰ െ ܩܣߢܰ

݄
2
 ݇ଶܩܣߢ

݄
2

൪ (4.39)

 

ଶܯ ൌ 	 ൦
െ݅ܲܩܣߢ  ݅݇ଵܩܣߢ ݉߱ଶ െ ݅ܲ݉߱ଶ ݄

2
െܰܩܣߢ  ݇ଶܩܣߢ ݉߱ଶ െ ܰ݉߱ଶ ݄

2

െܲ݇ଵܫܧ െ ܩܣߢܲ݅
݄
2
 ݅݇ଵܩܣߢ

݄
2
 ߱ଶܬܲ݅ ܰ݇ଶܫܧ  ߱ଶܬܰ െ ܩܣߢܰ

݄
2
 ݇ଶܩܣߢ

݄
2

൪ (4.40)

 

Figure 4-6 and Figure 4-7 show the moment and shear ratios for a beam with a lumped end mass. The 

beam properties are exactly the same as the beam in the previous section. It is assumed that the lumped 

mass dimensions are	݄,	2݄, and ܾ as shown in Figure 4-5, where  ݄ and ܾ are the height and width of the 

beam, respectively. The mass ratios in Figure 4-6 and Figure 4-7 are representing the ratio of the mass of 

the lumped end mass to the mass of the beam. The results show that the beam behaves as a free end 

structure when the mass ratio is zero, which proves the accuracy of the derivation. For mass ratios larger 

than 5 the moment (ܴெ) and shear ratios (ܴ) are very similar to the clamped boundary.  

 

 

Figure 4-6 Effect of lumped end mass, mass ratios 0, 0.5,1, and 2 
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Figure 4-7 Effect of lumped end mass, mass ratios 5, 10, 50, and 100 

 

4.3.3 Stepped Timoshenko beam 

The flexural waves are reflected and transmitted when they encounter a change in the material properties 

and/or cross section dimensions along the beam. The beams with different material or cross section 

properties are called stepped beams. The reflection and transmission matrices for a stepped Timoshenko 

beam has been found by Mei and Mace (2005).  

Figure 4-8 shows a stepped Timoshenko beam with the shear forces and moments at the point where the 

material or cross section properties are changing. Similar to the lumped end mass, the equilibrium and 

compatibility equations should be satisfied for finding the reflection and transmission matrices.  
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Figure 4-8 Stepped Timoshenko beam 

 

The reflection and transmission matrices can be defined as follows: 

ܾା ൌ ,ାܽݐ ܽି ൌ ା (4.41)ܽݎ

 

where, 

ݎ ൌ ቂ
ଵଵݎ ଵଶݎ
ଶଵݎ ଶଶݎ

ቃ ݐ			, ൌ ቂ
ଵଵݐ ଵଶݐ
ଶଵݐ ଶଶݐ

ቃ, ܽା ൌ 
ܽଵ
ା

ܽଶ
ା൨, ܽି ൌ 

ܽଵ
ି

ܽଶ
ି൨, ܾା ൌ 

ܾଵ
ା

ܾଶ
ା൨ (4.42)

 

The transverse deflection and rotation angle of the beam at the left and right hand side of the stepped 

beam are: 

ܮݕ ൌ 	 ܽ1
݁െ݅݇L1ݔ  ܽ2

݁െ݇L2ݔ  ܽ1
െ݁݅݇L1ݔ  ܽ2

െ݁݇L2ݔ 

ܴݕ ൌ 	 ܾ1
݁െ݅݇R1ݔ  ܾ2

݁െ݇R2ݔ 

ܮ߰ ൌ െ݅ܲ1ܽܮ
݁െ݅݇ݔ1ܮ െ 2ܽܮܰ

݁െ݇ݔ2ܮ  1ܽܮܲ݅
െ݁݅݇ݔ1ܮ  2ܽܮܰ

െ݁݇ݔ2ܮ 

ܴ߰ ൌ െܴܾ݅ܲ1
݁െܴ݅݇1ݔ െ ܴܾܰ2

݁െܴ݇2ݔ 

(4.43)

 

The compatibility and the equilibrium equations can be written as: 

ܮݕ ൌ ,ܴݕ ܮ߰ ൌ ܴ߰ (4.44)

ܮܯ ൌ ,ܴܯ ܮܸ ൌ ܸܴ (4.45)
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By combining the above equations, the final system of equations for finding the reflected and transmitted 

coefficients is: 

ܺܣ ൌ (4.46) ܤ

 

where,  

 

ܣ ൌ	

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

1
0
݅ ܲ

0
ܲ݇ଵ
0

݅ሺെ ܲ  ݇ଵሻ
0

			

0
1
0
݅ ܲ

0
ܲ݇ଵ
0

݅ሺെ ܲ  ݇ଵሻ

			

1
0
ܰ

0
െ ܰ݇ଶ

0
ሺെ ܰ  ݇ଶሻ

0

			

0
1
0
ܰ

0
െ ܰ݇ଶ

0
ሺെ ܰ  ݇ଶሻ

			

െ1
0
݅ ோܲ

0
െߚோ ோܲ݇ோଵ

0
ோሺെߛ݅ ோܲ  ݇ோଵሻ

0

			

0
െ1
0
݅ ோܲ

0
െߚோ ோܲ݇ோଵ

0
ோሺെߛ݅ ோܲ  ݇ோଵሻ

			

െ1
0
ோܰ

0
ோߚ ோܰ݇ோଶ

0
ோሺെߛ ோܰ  ݇ோଶሻ

0

			

0
െ1
0
ோܰ

0
ோߚ ோܰ݇ோଶ

0
ோሺെߛ ோܰ  ݇ோଶሻے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

ܺ ൌ 	

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
ଵଵݎ
ଵଶݎ
ଶଵݎ
ଶଶݎ
ଵଵݐ
ଵଶݐ
ଶଵݐ
ےଶଶݐ

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ܤ			, ൌ 	

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

െ1
െ1
݅ ܲ

ܰ
െ ܲ݇ଵ

ܰ݇ଶ
݅ሺെ ܲ  ݇ଵሻ
ሺെ ܰ  ݇ଶሻے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ோߚ			, ൌ 	 ሺܫܧሻோ ሺܫܧሻ⁄ ோߛ			, ൌ 	 ሺߢܣܩሻோ ሺߢܣܩሻ⁄  

(4.47) 

 

Figure 4-9 and Figure 4-10 show the absolute value of the ratio of the reflected and transmitted moment 

and shear forces to the corresponding incident values in a stepped Timoshenko beam which is made of 

Aluminum and Steel. It is assumed that the incident wave has a propagating flexural component (ܽଵ
ା), and 

it hits the stepped part of the beam from left hand side (see Figure 4-8). The dimensions of the beam are 

similar to the beam in the previous section, and the material properties of Steel and Aluminum are as 

follows: 

ௌ௧ܧ ൌ ܧ   ;ܽܲܩ	200 ൌ  ;ܽܲܩ	68.9

ௌ௧ߩ ൌ 7850	 ݇݃ ݉ଷ⁄ ߩ   ; ൌ 2700	 ݇݃ ݉ଷ⁄  

ௌ௧ߴ ൌ ߴ   ;0.3 ൌ 0.33 

The incident, reflected, and transmitted moment and shear forces are determined as: 
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݅ܯ ൌ 	 ሺܫܧሻܮሼെܲ1݇ܮLܽ1
  2Lܽ2݇ܮܰ

ሽ (4.48)

 

ܯ ൌ 	 ሺܫܧሻሼെ ܲ݇ଵሺݎଵଵܽଵ
ା  ଵଶܽଶݎ

ାሻ  ܰ݇ଶሺݎଶଵܽଵ
ା  ଶଶܽଶݎ

ାሻሽ (4.49)

 

ݐܯ ൌ 	 ሺܫܧሻܴሼെܴܲ݇1Rሺ11ܽ1ݐ
  12ܽ2ݐ

ሻ  ܴܰ݇2Rሺ21ܽ1ݐ
  22ܽ2ݐ

ሻሽ (4.50)

 

ܸ݅ ൌ 	 ሺߢܣܩሻܮሼ݅ሺܲܮ െ ݇1Lሻܽ1
  ሺܰܮ െ ݇2Lሻܽ2

ሽ (4.51)

 

ܸ ൌ 	 ሺߢܣܩሻሼ݅ሺെ ܲ  ݇ଵሻሺݎଵଵܽଵ
ା  ଵଶܽଶݎ

ାሻ  ሺെ ܰ  ݇ଶሻሺݎଶଵܽଵ
ା  ଶଶܽଶݎ

ାሻሽ (4.52)

 

ݐܸ ൌ 	 ሺߢܣܩሻܴሼ݅ሺܴܲ െ ݇1Rሻሺ11ܽ1ݐ
  12ܽ2ݐ

ሻ  ሺܴܰ െ ݇2Rሻሺ21ܽ1ݐ
  22ܽ2ݐ

ሻሽ (4.53)

 

where, the subscripts ܮ and ܴ refer to the left and right sections, respectively. The critical frequency (߱) 

in Figure 4-9 and Figure 4-10 is the critical frequency of the left part of the beam.  

 

Figure 4-9 Changing of moment and shear when the wave enters from Aluminum to Steel 
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Figure 4-10 Changing of moment and shear when the wave enters from Steel to Aluminum 

 

The results show that the amount of the transmitted moment (ܯ௧ ⁄ܯ ) and shear ( ௧ܸ ܸ⁄ ) ratios are larger 

when the wave passes from Aluminum to Steel (Figure 4-9), which is similar to the behavior of the 

stepped rods (the transmitted stress amplifies when the wave passes from a soft to hard medium).  

 

4.3.4 Angled joints in Timoshenko beams 

In this section, the wave propagation behavior of arbitrary “L” and “T” shaped angled joints in 

Timoshenko beams is investigated.   

Wave reflection and transmission in an arbitrary “L” joint 

Figure 4-11 shows a schematic of an arbitrary “L” joint of two Timoshenko beams. It is assumed that the 

joint is a rigid member with physical values for mass and polar moment of inertia. The reflection and 

transmission matrices for this joint can be found by satisfying the equations of motion and compatibility. 

The detailed geometry of the “L” joint is depicted in Figure 4-12, and its required dimensions are 

extracted in Rafiee-Dehkharghani (2014). The equations of motion for the joint can be written as: 

െܨଵ െ ଶܸ sin ߠ  ଶܨ cos ߠ ൌ ሷ (4.54)ݑ݉
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ଶܨ sin ߠ െ ଵܸ  ଶܸ cos ߠ ൌ ሷ (4.55)ݕ݉

 

െܯଵ ܯଶ  ଵܸீݔ  ଶܸܩܤതതതത െ ீݕଵሺܨ െ ݄ 2⁄ ሻ െ തതതതܥܤଶܨ ൌ ܬ ሷ߰ (4.56)

 

 

Figure 4-11 Two beams jointed at an arbitrary “L” joint 

 

And, the compatibility equations are: 

ଵݑ ൌ ݑ  ଵ߰ܮ sin (4.57) ߙ

 

ଶݑ ൌ ݑ cos ߠ  ݕ sin ߠ െ ଶ߰ܮ sin (4.58) ߚ

 

ଵݕ ൌ ݕ െ ଵ߰ܮ cos (4.59) ߙ

  

ଶݕ ൌ െݑ sin ߠ  ݕ cos ߠ  ଶ߰ܮ cos (4.60) ߚ
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߰ଵ ൌ ߰ (4.61)

 

߰ଶ ൌ ߰ (4.62)

 

 

 

Figure 4-12 Geometry of the “L” joint 

 

It is assumed that positive waves with the amplitude vector of ܣା are the incident waves at the angled 

joint. These waves generate transmitted and reflected waves in beam 2 and beam 1, respectively. The 

relation between the amplitudes of the transmitted and reflected waves with the incident waves can be 

expressed using the transmission (ݐ) and reflection (ݎ) matrices as follows: 

ܤ ൌ ,ܣݐ െܣ ൌ  (4.63)ܣݎ

 

where, 
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ܣ ൌ ൝
ܽ

ܽܰ


ܿ
ൡ, െܣ ൌ ቊ

ܽെ

ܽܰ
െ

ܿെ
ቋ, ܤ ൌ ൝

ܾ

ܾܰ


݀
ൡ (4.64)

 

Six equations are required for finding the six unknown reflected and transmitted amplitudes. These 

equations are derived in Rafiee-Dehkharghani (2014).  

Figure 4-13 to Figure 4-18 show the reflected and transmitted amplitudes for an “L” joint with 90°, 45°, 

and 15° angles. It is assumed that both beams have similar material properties and dimensions as 

indicated in section 4.3.1. 

Figure 4-13, Figure 4-15, and Figure 4-17 represent the amplitudes when the incident wave is a 

longitudinal wave (ܿା), while Figure 4-14, Figure 4-16, and Figure 4-18 show the results for the case 

when the incident wave is a propagating flexural wave (ܽା).  

For a longitudinal incident wave, the results show that the reflected longitudinal amplitude (ܿି) 

approaches to unity by increasing the frequency of the loading. This is in accordance with the results that 

are obtained in Section 3 for a rod with a lumped end mass. It was observed that a lumped end mass 

behaves as a rigid boundary at high frequencies and the reflected amplitude is unity. In lower frequencies, 

it can be observed that the reflected longitudinal amplitude is decreasing by decreasing the angle of the 

joint. A reversed trend can be seen in the behavior of the transmitted longitudinal amplitude (݀ା), which 

is conceivable since more longitudinal waves should be transferred in small angles.  
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Figure 4-13 Longitudinal incident (ࢉା), ࣂ ൌ ૢ°, “L” joint 

 

Figure 4-14 Propagating flexural incident (ࢇା), ࣂ ൌ ૢ°, “L” joint 
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Figure 4-15 Longitudinal incident (ࢉା), ࣂ ൌ °, “L” joint 

 

Figure 4-16 Propagating flexural incident (ࢇା), ࣂ ൌ °, “L” joint 
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Figure 4-17 Longitudinal incident (ࢉା), ࣂ ൌ °, “L” joint 

 

Figure 4-18 Propagating flexural incident (ࢇା), ࣂ ൌ °, “L” joint 
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Wave reflection and transmission in an arbitrary “T” joint 

Figure 4-19 shows a schematic of an arbitrary “T” joint of three Timoshenko beams. Similar to the “L” 

joint, it is assumed that the “T” joint is rigid with physical values for mass and polar moment of inertia. A 

closer view of the “T” joint is depicted in Figure 4-20, and the details of its geometric characteristics can 

be found in  Rafiee-Dehkharghani (2014).   

 

 

Figure 4-19 Three beams jointed at an arbitrary “T” joint 

 

The equations of motion for the “T” joint can be written as: 

െܨଵ െ ଶܸ sin ଶߠ  ଶܨ cos ଶߠ  ଷܸ sin ଷߠ  ଷܨ cos ଷߠ ൌ ሷ (4.65)ݑ݉
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െ ଵܸ  ଶܨ sin ଶߠ  ଶܸ cos ଶߠ െ ଷܨ sin ଷߠ  ଷܸ cos ଷߠ ൌ ሷ (4.66)ݕ݉

 

െܯଵ ܯଶ ܯଷ  ଵܸீݔ  ଶܸܩܤതതതത  ଷܸܩܧതതതത െ ீݕଵሺܨ െ ݄ଵ 2⁄ ሻ െ തതതതܥܤଶܨ  തതതതܨܧଷܨ ൌ ܬ ሷ߰ (4.67)

 

 

Figure 4-20 Geometry of the “T” joint 

 

And, the compatibility equations are: 

ଵݑ ൌ ݑ  ଵ߰ܮ sin (4.68) ߙ

 

ଶݑ ൌ ݑ cos ଶߠ  ݕ sin ଶߠ െ ଶ߰ܮ sin (4.69) ߚ

 

ଷݑ ൌ ݑ cos ଷߠ െ ݕ sin ଷߠ  ଷ߰ܮ sin (4.70) ߛ

 

ଵݕ ൌ ݕ െ ଵ߰ܮ cos (4.71) ߙ
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ଶݕ ൌ െݑ sin ଶߠ  ݕ cos ଶߠ  ଶ߰ܮ cos (4.72) ߚ

 

ଷݕ ൌ ݑ sin ଷߠ  ݕ cos ଷߠ  ଷ߰ܮ cos (4.73) ߛ

 

߰ଵ ൌ ߰ (4.74)

 

߰ଶ ൌ ߰ (4.75)

 

߰ଷ ൌ ߰ (4.76)

 

It is assumed that positive going waves with the amplitude vector of ܣା are the incident waves at the 

angled joint. These waves generate transmitted waves in beams 2 and 3 and reflected waves in beam 1. 

The relations between the amplitudes of the transmitted and reflected waves with the incident waves can 

be expressed using the transmission (ݐଵଷ and ݐଵଶ) and reflection (ݎଵଵ) matrices as follows: 

ାܧ ൌ 		,ାܣଵଷݐ ܤ ൌ ܣ12ݐ
, െܣ ൌ ܣ11ݎ

 (4.77)

 

where, 

ܣ ൌ ൝
ܽ

ܽܰ


ܿ
ൡ,			ܣെ ൌ ቊ

ܽെ

ܽܰ
െ

ܿെ
ቋ, ܤ ൌ ൝

ܾ

ܾܰ


݀
ൡ, ܧ ൌ ቐ

݁

݁ܰ


݃
ቑ (4.78)

 

Nine equations are required for finding the nine unknown reflected and transmitted amplitudes. These 

equations are derived in Rafiee-Dehkharghani (2014).  

Figure 4-21 to Figure 4-26 show the reflected and transmitted amplitudes for a “T” joint with three 

different combinations for angles ߠଶ and ߠଷ. These combinations include	ߠଶ ൌ ଷߠ ൌ ଶߠ ,90° ൌ ଷߠ ൌ 45°, 

and ߠଶ ൌ 15°, ଷߠ ൌ 60°. 

It is assumed that all of the beams have similar material properties and dimensions as indicated in section 

4.3.1.  
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Figure 4-21, Figure 4-23, and Figure 4-25 represent the amplitudes when the incident wave is a 

longitudinal wave (ܿା), while Figure 4-22, Figure 4-24, and Figure 4-26 show the results for the case 

when the incident wave is a propagating flexural wave (ܽା).  

For a longitudinal incident wave (ܿା), the longitudinal transmitted components (݀ା) and (݃ା) for the joint 

with ߠଶ ൌ ଷߠ ൌ 90° are zero. Moreover, the reflected flexural components (ܽଵ
ି) and (ܽଶ

ି) are zero, and 

the transmitted flexural components in beams 2 and 3 are equal due to the symmetry of the joint. For the 

joint with,	ߠଶ ൌ ଷߠ ൌ 45°, the transmitted longitudinal components are not zero, and their moduli are 

equal due to the symmetry; however, the reflected flexural components are still zero. For the joint with 

ଶߠ ൌ 15° and ߠଷ ൌ 60° the transmitted longitudinal amplitude in beam 2, ݀ା, is larger than the amplitude 

in beam 3, ݃ା, since more waves can be transmitted to beam 2 because of having a small angle with 

respect to the horizontal line. Since the joint with ߠଶ ൌ 15° and ߠଷ ൌ 60° is not symmetric, the reflected 

flexural components are not zero.  

When the incident wave has a flexural propagating component (ܽଵ
ା), the reflected longitudinal amplitude 

(ܿି) is zero for the joints with ߠଶ ൌ ଷߠ ൌ 90° and ߠଶ ൌ ଷߠ ൌ 45°. Similar to the longitudinal incident, 

the transmitted amplitudes are equal for symmetric joints. The transmitted flexural amplitudes for the 

joint with ߠଶ ൌ 15° and ߠଷ ൌ 60° are larger in beam 3 because of the larger angle of this beam with 

respect to the horizontal line.  

 

Figure 4-21 Longitudinal incident (ࢉା), ࣂ ൌ ࣂ ൌ ૢ°, “T” joint 
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Figure 4-22 Propagating flexural incident (ࢇା), ࣂ ൌ ࣂ ൌ ૢ°, “T” joint 

 

Figure 4-23 Longitudinal incident (ࢉା), ࣂ ൌ ࣂ ൌ °, “T” joint 
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Figure 4-24 Propagating flexural incident (ࢇା), ࣂ ൌ ࣂ ൌ °, “T” joint 

 

Figure 4-25 Longitudinal incident (ࢉା), ࣂ ൌ °, ࣂ ൌ °, “T” joint 
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Figure 4-26 Propagating flexural incident (ࢇା), ࣂ ൌ °, ࣂ ൌ °, “T” joint 

 

4.4 Summary 

In this section, the flexural wave propagation in Timoshenko beams is studied, and the effect of different 

types of discontinuities on the reflection and transmission of the waves in Timoshenko structures is 

reviewed broadly. These discontinuities include different types of end boundaries, lumped mass, and 

stepped beam. In addition, the reflection and transmission matrices at arbitrary “L” and “T” shaped 

angled joints are developed in this section. The results show that the reflection and transmission 

phenomena in Timoshenko beams are much more complex than rods due to the dispersive nature of the 

flexural waves, and reflection and transmission matrices are completely dependent of the material 

properties, geometry of the cross section, and frequency of loading.  
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SECTION 5 

OPTIMIZATION METHODOLOGY FOR DESIGNING STRESS WAVE 

ATTENUATORS 

 

5.1 Introduction 

The effect of discontinuities on the wave propagation through rods and beams was extensively studied in 

Sections 3 and 4, and it was observed that the discontinuities can alter the wave properties significantly. 

In real structures the waves will definitely encounter such discontinuities along their path since any real 

system has finite dimensions and boundaries. The simplest real systems are homogenous systems in 

which the waves interact, merely, with the boundaries and geometric discontinuities. More complex 

systems such as composite and layered structures include more discontinuities as the waves travel in 

different media within the structure. The common characteristic for the problem of wave propagation in 

real systems is the changing of the wave behavior due to the existence of discontinuities. This concept can 

be exploited in designing the systems that can attenuate or amplify the effect of stress waves.  

This section introduces different types of protective systems for mitigating the effects of impulsive 

loadings, and describes an optimization methodology for designing these systems. The basic concept of 

designing these systems is centered on exploiting a variety of discontinuities within the structure for 

attenuating the effects of stress waves.  

 

5.2 Elastic stress wave attenuators 

The main purpose of this research is designing elastic systems for stress wave attenuation. These systems 

are called “Elastic Stress Wave Attenuators.” For designing the stress wave attenuators, a design 

procedure is introduced which aims at optimizing the type, location, and size of discontinuities for finding 

the most effective mitigating structure. This can be illustrated with a simple example.  

Consider an eight-layered structure shown in Figure 5-1 that can be used as a stress wave attenuator. The 

structure has a constant cross section and its length is long enough for one-dimensional wave propagation 

analysis. For each individual layer, we may select from an array of eight materials, each supporting equal 

wave speeds, but having different impedances separated by a factor of two (଼ݖ ൌ ݖ2 ൌ ݖ4 ൌ ⋯ ൌ

 ଵ). Based on the analytical solutions for the stepped rods in Section 3 (Equation 3.47), theݖ128
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transmitted stress amplitude at each point between the loading face and boundary can be found using the 

following equation: 

୧ାଵߪ ൌ 	ቌ
2
୧ାଵݖ
୧ݖ

1 
୧ାଵݖ
୧ݖ

ቍߪ୧ , ݅ ൌ 1,2,3, … ,7 (5.1)

 

Then, due to the stress doubling phenomenon at the clamped boundary, we have: 

ଽߪ ൌ (5.2) ଼ߪ2
 

 

Figure 5-1 Eight layered structure 

 

Therefore, an optimization problem can be defined for finding the best material setup of the layered 

structure which can attenuate the first arriving pulse to the boundary. Since the structure has eight layers 

and eight different materials are available, the minimum value of the stress at the boundary can be found 

by solving Equations (5.1) and (5.2), for every single combination of materials, which means solving 

these equations 88=16,777,216 times. By searching all of the possible combinations, it was observed that 

the best material string for attenuating the amplitude of the first arriving pulse to the boundary is 

“81818181”, which reduces the amplitude by 99.9999 percent. Clearly, this type of exhaustive search for 

finding the best solution is very time consuming, and is more challenging for real complex systems as the 

optimization function becomes more sophisticated.   

The computational cost of the problem at hand can be significantly reduced by utilizing an optimization 

method, such as Genetic Algorithms (GA). In the next section, it will be explained how GA can be used 

as a robust optimization tool for designing such classes of optimization problems. For the simple problem 

at hand, the GA optimization method can give very good results such as “81818161” or “81718181” in a 
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very small amount of computing time compared to the exhaustive search, which shows the efficiency of 

this approach. 

In real problems, the stress wave attenuators should be designed for attenuating the transient stress waves 

over a larger period of time compared to the time of the first arriving pulse. Therefore, to solve a problem 

analytically, the analytical solutions should be used numerously, since the number of reflected and 

transmitted waves increases by extending the analysis time. This becomes cumbersome as the number of 

layers increases, and, from the practical point of view, it is required to use some other techniques, such as 

finite element (FE) method for solving these problems. In Figure 5-2, the time history of the stress at the 

boundary of the layered structure in Figure 5-1 is plotted for three different material strings over the time 

period, which is taken to be 20 times the duration of the transient loading. According to this figure, it is 

obvious that although the structure with the material string “81818181” is the best solution for mitigating 

the amplitude of the first arriving pulse, it is not the desired stress wave attenuator over a larger period of 

time, because there are some other solutions, such as the structure with the graded impedance, i.e. 

“87654321” or “88816121” that can provide larger attenuation capacities.  

The problem of designing the stress wave attenuators using the analytical solutions becomes even more 

challenging, if the structure has non-straight parts or more than one dimension. For non-straight 

structures, the dispersive nature of the flexural waves and the complexity of the behavior of the 

discontinuities make the analytical analysis more difficult. Similarly, in two-dimensional and three-

dimensional structures, finding the closed form solutions for the structures with finite dimensions and 

multiple types of discontinuities is not feasible. Therefore, for a realistic problem, it is required to use a 

numerical method, such as FE analysis, to track the stress history within the structure. However, the 

analytical relations that are obtained in the previous sections can be very useful in selecting the 

appropriate design parameters. For example, based on the formulas for the reflected and transmitted 

waves in the stepped rods and beams, it can be concluded that a set of materials with a wide range of 

impedance values is required for designing effective stress wave attenuators.  
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Figure 5-2 Stress history at the boundary of the structure in Figure 5-1 for three different setups 

 

Due to the facts that are mentioned above, it is obvious that a robust optimization technique should be 

utilized for optimal design of the stress wave attenuators. The optimization methodology should be based 

on a heuristic and evolutionary procedure (such as GA) since there is no gradient information of the 

optimization function in designing the real stress wave attenuators. Furthermore, since it is not possible to 

find the closed-form solutions for wave propagation in complex systems, it is required that the 

optimization methodology be coupled with robust numerical methods such as FE analysis.  

In this research, a coupled GA-FE optimization tool will be introduced for designing the stress wave 

attenuators using the concepts that exploit the effects of discontinuities. A brief explanation of GA is 

provided in the next section. Various types of stress wave attenuators and the coupled GA-FE 

optimization methodology for optimal design of these structures are described in sections 5.4 and 5.5.  

 

5.3 Genetic algorithms  

Genetic algorithms (GA) are stochastic methods of optimization that are inspired by Darwin’s theory of 

evolution. In comparison to the traditional methods of optimization, GA have certain advantages in 

optimizing complicated problems. One of the main advantages of this method, which is very useful for 

the optimal design of the stress wave attenuators, is its capability in handling discontinuities and non-

convex regions. Consequently, there is no need to have gradient information for optimizing a problem.  

Genetic algorithms differ from the classical optimization procedures in two ways. The first difference is 

that the classical optimization methods generate a single solution at each iteration which approaches the 

best solution, while GA generate a population of solutions at each iteration, and the better solutions 
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among this population advance toward the optimal solution. The second difference relates to the selection 

of the next optimization point. Classical methods select the next point based on the deterministic 

procedures; however, GA selects the next generation of solutions using some random number generators 

(MATLAB (2012)).  

Extensive research has appeared on GA development and application in the literature, and a review of this 

topic is presented in Section 2. A brief description about utilizing this method (along with GA 

parameters) will be provided in this section. A typical GA procedure follows the steps below: 

 Generating initial population: In this step, a random population of candidate solutions is generated 

based on the population size. Each candidate solution has a set of characteristics (chromosomes or 

genotypes) which can be evolved according to the biological rules such as crossover and mutation.  

 Evaluating the optimization function: In this step, the optimization function (fitness function) is 

calculated for each solution in the population.  

 Creating new generation: The GA problem evolves by creating a new generation by repeating the 

following steps until the stopping criteria is satisfied. These steps are: 

 Selection: During this step, a proportion of candidate solutions will be selected to breed the new 

generation. The selected solutions are called parents. The parents are selected based on their fitness 

value (the better fitness, the bigger chance to be selected). It is better to carry over some of the best 

solutions of the current generation to the next generation without altering them. This strategy is 

called elitism, which is very efficient in preserving the best solution that can be generated within the 

whole optimization procedure.  

 Crossover: In this step, two parents are combined to form a new offspring (children). This is 

performed using a crossover function.   

 Mutation: In this step, small random changes will be made on the new solutions using an 

appropriate mutation function. Mutation provides genetic diversity and helps the GA to search a 

broader solution space. 

 Evaluating the fitness value of the new generation and checking the stopping criteria: In this 

step, the fitness value of the new generation is calculated, and the stopping criteria are examined to 

find whether the GA should be terminated or continued. Stopping criteria can be determined based 

on the nature of the optimization problem. Some of the most common stopping criteria include: 

reaching a maximum number of generations, maximum analysis time, fitness limit, and function 

tolerance. 
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There are different methods and functions for generating the populations, and performing selection, 

crossover, and mutation. More information about these methods and their relevance to biological 

evolution can be found in Holland (1975), Goldberg (1989), and Mitchell (1998).  

 

5.4 Proposed stress wave attenuators 

Four different types of stress wave attenuators are introduced in this research. These attenuators include: 

layered collinear rod structures, layered diamond-shape beam structures, non-collinear beam structures, 

and porous plates. These structures are shown schematically in Figure 5-3 to Figure 5-6.  

Layered collinear rod structures and layered diamond-shape beam structures have constant geometry. 

These systems are divided into a specific number of layers in the horizontal direction and the optimization 

algorithm aims to find the best material setup for attenuation of a stress pulse when it reaches the 

boundary. This procedure is called “Material Optimization” as the geometry of the structure remains 

unchanged and the only variable parameter, during the optimal design, is the material setup.  

Non-collinear beam structures and porous plates are made of a single material, and the optimization 

method tries to find the best geometry of the structure for mitigating the effects of a stress pulse. 

Therefore, this procedure is called “Geometry Optimization” as the structure is made of a single material 

and its geometric characteristics are the variables that are changing during the optimization procedure.  

 

Figure 5-3 Layered collinear stress wave attenuator 
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Figure 5-4 Layered diamond-shape stress wave attenuator 

 

 

 

Figure 5-5 Non-collinear stress wave attenuator 
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Figure 5-6 Two-dimensional porous stress wave attenuator 

 

5.5 Design of stress wave attenuators using GA and FE 

The general design procedure of the stress wave attenuators can be explained with a simple example. 

Consider the layered collinear structures in Figure 5-7 which is subjected to a transient loading at point A. 

The structure has ݊ layers with a total length of ܮ in the horizontal direction, and the material of each 

layer can be selected from a group of ݉ materials. It is assumed that the objective of the optimization 

problem is minimizing the peak amplitude of the force history at the clamped boundary of the layered 

structure. This can be accomplished by selecting an appropriate material and tuning the length for each 

layer. In the mathematical form, the GA optimization problem can be defined as: 

൞

݂	݁ݑ݈ܽݒ	݉ݑ݉݅݊݅݉	݀݊݅ܨ ݁ܿݎ݂ ݐܽ ݄݁ݐ ݕݎܽ݀݊ݑܾ :݈݄݁݅ݓ 							
ଵܺ  ܺଶ ⋯ ୧ܺ  ⋯ ܺ ൌ ܮ 							
0 ൏ ଵܺ, ܺଶ, … , ୧ܺ, … , ܺ ൏ ܮ 							
1  ,ଶݐܽ݉,ଵݐܽ݉ … ,୧ݐܽ݉, ݐܽ݉…  ݉ 							

 (5.3)

 

where ୧ܺ and ݉ܽݐ୧ denote the length and material number of each layer, respectively. This is a multiple-

variable constrained optimization problem since there are a number of design parameters (material and 

length of each layer) and there is a constraint condition for the summation of the length of the layers.  

These types of problems can be easily optimized using GA; however, there are some practical limitations 

if we consider the computational cost of the optimization procedure. For example, when the optimization 

problem contains a constrained condition (such as the finite length of the structure), some specific 

functions should be used for the GA operators such as crossover and mutation. Therefore, to obtain 

appropriate results, the population size should be increased and the problem should be run for multiple 

times to avoid premature convergence. To avoid these practical problems, attempts are made to remove 



 

69 
 

the constraint conditions of the problems in this research. This will be explained with more details in the 

next sections.  

 

Figure 5-7 Schematic of a layered stress wave attenuator 

 

In this research, the Genetic Algorithm Optimization Solver of MATLAB (2012) is used for all of the 

optimization problems. This solver is one of the solvers of Optimization Toolbox 6.2. For optimal design 

of the stress wave attenuators, this toolbox is coupled with Abaqus 6.12 commercial software (Simulia 

(2012)) for finding the fitness function. This procedure is explained below.  

 

5.5.1 Calculating fitness function 

The GA optimization fitness function for optimal design of the stress wave attenuators is minimizing the 

maximum amplitude of the force history at the boundary: 

݊݅ݐܿ݊ݑܨ	ݏݏ݁݊ݐ݅ܨ ൌ ݉݅݊൫݉ܽݔሺܨሻ൯ (5.4)
 

where, ܨ is the force history at the boundary. As mentioned before, for real complex structures it is very 

difficult to find closed form solutions for finding	ܨ. Therefore, to calculate the fitness function for each 

design within a GA run, the force history at the boundary of the stress wave attenuator is derived using FE 

analysis and its minimum value is calculated. In the present work, this process is performed using Abaqus 

6.12 (Simulia (2012)). Since the material or geometric properties of the structures are changing for each 

design within each run of the GA, it is required to change the Abaqus model at each step. This is done 

using the Abaqus Scripting Interface. By using this interface, a new Abaqus model can be created for 

each fitness evaluation within GA using Python scripts. The scripts are generated based on the values of 
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the optimization variables at each step. In summary, the following general tasks are performed by each 

script: 

 Creating the components of the Abaqus model such as parts, materials, and sections, based on the 

material and geometric characteristics of the stress wave attenuators 

 Assembling the model, defining the required surfaces and requesting the history output 

parameters 

 Creating the load amplitude based on the input wavelength  

 Estimating the size of the mesh and partitioning the model for generating an appropriate mesh 

 Initiating the Abaqus transient dynamic analysis   

 Reading the force history at the boundary from the Abaqus output database 

 Calculating the peak value of the force history at the boundary  

The details of the above steps are different for various types of the structures. These details will be 

explained separately for each category of the stress wave attenuators in the next sections.  

 

5.6 Summary 

In this section, various types of stress wave attenuators are introduced, and the optimization methodology 

for designing these structures is explained. It is observed that a heuristic or evolutionary optimization 

methodology such as GA should be used for optimal design of the stress wave attenuators as there is no 

gradient information about the optimization function. Furthermore, it is recognized that GA should be 

coupled with a robust numerical method such as FE for calculating the fitness function due to the 

complexity of the closed form solutions for real stress wave attenuators with multiple number of 

discontinuities. Therefore, a coupled GA-FE optimization methodology is introduced, which will be used 

in the next sections for designing the mitigating systems.  
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SECTION 6 

DESIGN PARAMETERS FOR STRESS WAVE ATTENUATORS 

 

6.1 Introduction 

There are many parameters that should be considered for designing the stress wave attenuators. These 

parameters relate to the material setup and geometry of the stress wave attenuators and the nature of the 

dynamic loading. This section presents the essential parameters that should be considered for designing 

the proposed stress wave attenuators in this research. A general two-dimensional stress wave attenuator is 

used for this purpose since all of the parameters can be defined using this general example. Based on the 

type of the structure, one or a few of these parameters should be considered for the optimal design of the 

proposed stress wave attenuators in the following sections.   

 

6.2 Design parameters 

To define the parameters for designing the stress wave attenuators, consider the structure in Figure 6-1. 

This structure is a two-layered plate with the length ܮ and the height	݄. A half-sine transient loading with 

the duration of ܶ 2⁄  is applied to the left hand side of the plate, and the plate is attached to a block on the 

right hand side, which is called the “host structure”. The main purpose of designing the stress wave 

attenuators in this research is reducing the effect of the transient loading when it reaches to the host 

structure. For simplicity, it is assumed that the plate has two layers with the length of ܮଵ and	ܮଶ. The 

mechanical impedance of the layers and the host structure are	ܼଵ,	ܼଶ, and ܼு, respectively.  

 

Figure 6-1 Schematic of a stress wave attenuator and the design parameters 
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Generally, the following five parameters can be defined for designing the stress wave attenuators: 

 Relative length of the layers: The relative length is the ratio of the length of each layer to the total 

length of the structure,	ܴ ൌ



. For an ݊-layered structure, there are “݊ െ 1” relative length ratios as 

the relative length ratio of the last layer can be defined by knowing the length ratio of the other 

layers. For the two-layered structures in Figure 6-1, the relative length ratio is defined as	ܴ ൌ
భ


.  

 Rigidity of the host structure: This parameter shows the impedance mismatch between the host 

structure and the last layer of the stress wave attenuator (here the second layer), which can be defined 

as	ܴ ൌ
ಹ
ಽమ

.  

 Wavelength ratio: In this research, it is assumed that the incident pulse to all of the stress wave 

attenuators is a half-sine transient loading with the duration of	ܶ 2⁄ . The ratio of the wavelength 

associated with this pulse to the horizontal length of the structure is called wavelength ratio and can 

be designated as	ܴఒ ൌ
ఒ

ଶ
, where ߣ	is the wavelength which is the product of the minimum wave 

speed within in the structure (ܿ) and the duration of a complete sine pulse ܶ. The minimum wave 

speed in the collinear and non-collinear stress wave attenuators relates to minimum longitudinal and 

flexural wave speed of the materials within the structure, respectively. For plate structures, the 

minimum wave speed refers to the minimum shear speed of the materials.  

 Impedance mismatch ratio: For each layer in a layered structure, the impedance mismatch ratio 

(ܴ) is the ratio between the impedance of the corresponding layer to the minimum impedance of 

the materials available for the optimal design. For the two-layered plate in Figure 6-1, this parameter 

can be defined as ܴ ൌ
ಽభ
ಽమ

 (assuming that the first layer has larger impedance). 

 In-plane and out-of-plane dimensions: These parameters are only applicable to the two-

dimensional stress wave attenuators. The in-plane dimension parameter is the ratio of the height over 

the length of the plate. For the structure in Figure 6-1, this parameter can be defined as	ܴ ൌ



. The 

out-of-plane parameter relates to the thickness of the structure. Thin structures should be analyzed 

using plane stress (PS) analysis, while thick structures should be analyzed using the plane strain (PE) 

formulations.  

In the following sections the effect of each of these parameters on the behavior of the two-layered stress 

wave attenuator, depicted in Figure 6-1, will be investigated. It should be noted that this structure is a 

representative of a general stress wave attenuator, which can be utilized for defining the design 

parameters. This means that there is no need to examine the effect of all of these parameters in designing 
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the stress wave attenuators, and, only, a few (or one) of these parameters should be changed for the 

optimal design of the proposed stress wave attenuators in Section 5.  

6.3 Effect of relative length of each layer (ࡸࡾ) 

To study the effect of the relative length of each layer	ܴ, a parametric study is performed on thin layered 

stress wave attenuators for different values of ܴ (the impedance mismatch between layers), and incident 

wave frequencies	ܴఒ. The rigidity of the host structure ܴ and the in-plane dimensions ratio ܴ are kept 

constant to infinity and 0.5, respectively. The value of ܴ ൌ
భ


 is varied from 
ଵ

଼
 to	



଼
. The ratio of the 

maximum amplitude of the force history at the boundary to the amplitude of the loading 

௨ௗ௬ܨ) ⁄ௗܨ ) is plotted versus ܴ in Figure 6-2. This figure shows that ܴ is an important design 

parameter for layered stress wave attenuators as the maximum force amplitude at the boundary is 

changing significantly for all values of ܴఒ and ܴ (except for ܴ=1, which refers to a structure that is 

made of a single material). For the two-layered structure in Figure 6-1, the maximum attenuation of the 

force happens for ܴ ൌ
ଷ

଼
 to	

ହ

଼
. This ratio can be different for different types of the structures based on 

their geometries and the material properties of the layers.  

 

Figure 6-2 Effect of ࡸࡾ on the peak force at the boundary of a thin stress wave attenuator with 
ࡰࡾ ൌ .   
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Since the maximum attenuation for this type of stress wave attenuator happens when ܴ ൌ
ଷ

଼
 to	

ହ

଼
, in the 

following sections a constant value of 1 2⁄  is used for	ܴ, and consequently the effects of the other design 

parameters are investigated for a stress wave attenuator with a constant	ܴ ൌ 1 2⁄ .  

To investigate the effect of	ܴ,	ܴఒ,	ܴ,	ܴ, and out-of-plane dimensions, the ratio of the maximum 

force amplitude at the boundary over the amplitude of the loading are plotted in Figure 6-3 to Figure 6-8 

for different values of these  parameters. Considering these figures the effect of each parameter is 

explained in the following sub-sections. 

 

6.4 Effect of the impedance mismatch ratio (ࡸࢆࡾ) 

Efficiency of a stress wave attenuator increases as ܴ increases. For both thin and thick layered 

structures, the stress wave attenuation capacity is heavily dependent on	ܴ. As the value of this 

parameter increases from 1 to 32, the efficiency of the stress wave attenuators goes up by approximately 

90% for all cases. The larger impedance mismatch between two layers leads to higher attenuation of 

stress wave amplitude, and thus provides better efficiency. This trend is consistent across all parameters. 

 

6.5 Effect of the wavelength ratio (ࣅࡾ) 

Efficiency of a stress wave attenuator decreases as ܴఒ increases. This is due to the fact that when the 

length of a stress wave attenuator is long compared to the incident wavelength, the incident pulse will be 

reflected and transmitted many times within the system, and thus, will attenuate to a larger extent. This 

trend is also consistent across all parameters. 

 

6.6 Effect of the rigidity of the host structure (ࢆࡾ) 

Efficiency of a stress wave attenuator decreases as ܴ increases. The larger impedance mismatch 

between the host structure and the last layer results in greater reflection at the boundary as compared to 

the transmission of incident waves through the host structure; consequently, the wave attenuation 

efficiency is reduced. Again, this trend is also consistent across all parameters. 
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6.7 Effect of the in-plane dimension parameter (ࡰࡾ) 

Efficiency dependence on in-plane dimension parameter ܴ cannot be generalized across all parameters. 

For smaller wavelength parameter	ܴఒ, lower values of ܴ provides better efficiency, while for larger	ܴఒ, 

higher values are superior. This trend is largely applicable for	ܴ  4, and has minimal observable effect 

on efficiency for	ܴ  4; however, we do not see any influence of	ܴ, and attenuator thickness on this 

trend. We expected that larger width to incident wavelength ratio will lead to reflection and transmission 

of waves for a large number of times (for small value of	ܴఒ), and will provide better attenuation 

efficiency; however, the results seem to indicate that smaller width is desirable for smaller	ܴఒ. This 

implies that the selection of in-plane dimension parameter ܴ is important, and must be tuned to incident 

loading wavelength for	ܴ  4, as the effect of tuning the ܴ in relation to ܴఒ can lead to an efficiency 

gain as large as 25% and 15% for thick and thin layered stress wave attenuators, respectively. 

 

 

Figure 6-3 Effect of ࣅࡾ ,ࡸࢆࡾ, and ࢆࡾ on the peak force at the boundary of a thin stress wave 
attenuator with ࡰࡾ ൌ .  
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Figure 6-4 Effect of ࣅࡾ ,ࡸࢆࡾ, and ࢆࡾ on the peak force at the boundary of a thick stress wave 
attenuator with ࡰࡾ ൌ .  

 

 

Figure 6-5 Effect of ࣅࡾ ,ࡸࢆࡾ, and ࢆࡾ on the peak force at the boundary of a thin stress wave 
attenuator with ࡰࡾ ൌ .  
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Figure 6-6 Effect of ࣅࡾ ,ࡸࢆࡾ, and ࢆࡾ on the peak force at the boundary of a thick stress wave 
attenuator with ࡰࡾ ൌ .  

 

 

Figure 6-7 Effect of ࣅࡾ ,ࡸࢆࡾ, and ࢆࡾ on the peak force at the boundary of a thin stress wave 
attenuator with ࡰࡾ ൌ . ૠ 
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Figure 6-8 Effect of ࣅࡾ ,ࡸࢆࡾ, and ࢆࡾ on the peak force at the boundary of a thick stress wave 
attenuator with ࡰࡾ ൌ . ૠ 

 

6.8 Effect of the out-of-plane dimension (PS & PE) 

Again, dependency of efficiency on out-of-plane dimension (thin and thick layered structures) cannot be 

generalized across all parameters. For smaller wavelength parameter, ܴఒ, thick layered stress wave 

attenuators have better efficiency, while for larger ܴఒ values, there is no clear difference between the 

efficiency of the thin and thick layered stress wave attenuators. This trend is more noticeable for	ܴ  8; 

however, the trend is true for larger values of ܴ as well. For smaller	ܴఒ values, the efficiency gain with 

thick structures is as high as 20% compared to the thin layered structures. 

Figure 6-3 to Figure 6-8 can be used as the design charts for analyzing the general plate structure in this 

section. In the next section, the application of these design charts will be illustrated using two examples.  

 

6.9 Examples for elastic stress wave attenuator design  

Example 6-1 

This example provides the details for designing a stress wave attenuator with a concrete host structure, 

which is subjected to an incident pulse shown in Figure 6-9. The frequency content of the incident wave 

is assumed to be in the range from 15 KHz to 60 KHz. For the design calculations, the length of the stress 

wave attenuator is fixed to be	ܮ ൌ 0.25݉. The schematic of the design is shown in Figure 6-10. Table 6-1 

presents the various design combinations that are explored in this example. The impedance mismatch 
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ratio in 2D analyses with normal incident wave (plane stress and plane strain) is given by Sauren, 

Claessens et al. (1994) as: ܼଶ ܼଵ⁄ ൌ ܿଵߣଶ ܿଶߣଵ⁄ , where ܿ ൌ ሺߣ  ሻߤ2 ⁄ߩ  is the longitudinal wave speed 

in the material, ߣ and ߤ are Lame's constants, and ߩ is the density of the material. Thus, as we look in 

Table 6-1, the impedance mismatch ratios are different for plane stress and plane strain analyses because 

Lame's constant ߣ is different for each case. Since, the frequency content of the incident wave is 

calculated to be in the range from 15 KHz to 60 KHz, the range of ܴఒ in Table 6-1 has been calculated 

using 
ೞ

ೌೣ
൏ ܴఒ ൏

ೞ


, where ݂ and ݂௫ are the minimum and maximum values of the given 

frequency content, and ܿ௦ is the minimum shear wave velocity of the two layers. It should be noted that 

the minimum shear wave velocity of the two layers is chosen, as it provides the minimum wavelength, 

which can be used to tune the finite element mesh size (mesh size = ߣ 20⁄ ) and minimum range of ܴఒ. 

Table 6-1 also provides the stress wave attenuation efficiency for three different values of the in-plane 

parameter	ܴ. Design requirements and cost constraints can determine the most suitable design. 

Figure 6-9 Incident pulse time history and its frequency content for the stress wave attenuator 
design in Example 6-1 
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Figure 6-10 Schematic of the stress wave attenuator in Example 6-1 
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Table 6-1 Peak force at the boundary of the structure in Example 6.1, PS = Plane Stress & PE = 
Plane Strain 

Layer 1 Layer 2 ܴఒ ܴ 
ܴ ܴ 

௨ௗ௬ܨ
ௗܨ

% 

PS PE PS PE PS PE 

Steel 

Steel 

Steel 

Steel 

Concrete 

Concrete 

Aluminum 

Concrete 

Oak Wood, Black 

Epoxy 

Epoxy 

Oak Wood, Black 

0.20-0.85 

0.15-0.60 

0.15-0.65 

0.07-0.30 

0.07-0.30 

0.15-0.60 

0.33 

0.33 

0.33 

0.33 

0.33 

0.33 

2.5 

8.4 

9.0 

17.6 

2.1 

1.1 

2.3 

10.6 

4.6 

14.9 

1.4 

0.4 

0.3 

1.0 

1.1 

2.1 

2.1 

1.1 

0.2 

1.0 

0.4 

1.4 

1.4 

0.4 

30 

22 

22 

15 

75 

100 

25 

22 

22 

12 

68 

--- 

Steel 

Steel 

Steel 

Steel 

Concrete 

Concrete 

Aluminum 

Concrete 

Oak Wood, Black 

Epoxy 

Epoxy 

Oak Wood, Black 

0.20-0.85 

0.15-0.60 

0.15-0.65 

0.07-0.30 

0.07-0.30 

0.15-0.60 

0.50 

0.50 

0.50 

0.50 

0.50 

0.50 

2.5 

8.4 

9.0 

17.6 

2.1 

1.1 

2.3 

10.6 

4.6 

14.9 

1.4 

0.4 

0.3 

1.0 

1.1 

2.1 

2.1 

1.1 

0.2 

1.0 

0.4 

1.4 

1.4 

0.4 

35 

20 

20 

13 

74 

90 

32 

17 

20 

10 

68 

--- 

Steel 

Steel 

Steel 

Steel 

Concrete 

Concrete 

Aluminum 

Concrete 

Oak Wood, Black 

Epoxy 

Epoxy 

Oak Wood, Black 

0.20-0.85 

0.15-0.60 

0.15-0.65 

0.07-0.30 

0.07-0.30 

0.15-0.60 

0.67 

0. 67 

0. 67 

0. 67 

0. 67 

0. 67 

2.5 

8.4 

9.0 

17.6 

2.1 

1.1 

2.3 

10.6 

4.6 

14.9 

1.4 

0.4 

0.3 

1.0 

1.1 

2.1 

2.1 

1.1 

0.2 

1.0 

0.4 

1.4 

1.4 

0.4 

30 

20 

20 

15 

75 

88 

20 

18 

20 

11 

68 

--- 

 

Example 6-2 

This example is similar to Example 6.1, except the host structure is made of black oak wood, and the 

incident pulse time history has frequency content ranging from 25 KHz to 50 KHz as shown in Figure 6-

11. The length of the wave attenuator has been fixed to	ܮ ൌ 0.15݉. The various design possibilities 

providing different stress wave attenuation efficiency are listed in Table 6-2, while the schematic of the 
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designed structure is shown in Figure 6-12. The design calculations, parameters, and notations are the 

same as Example 6.1.  

 

Figure 6-11 Incident pulse time history and its frequency content for the stress wave attenuator 
design in Example 6-2 

 

 

Figure 6-12 Schematic of the stress wave attenuator in Example 6-2 
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Table 6-2 Peak force at the boundary of the structure in Example 6-2 

Layer 1 Layer 2 ܴఒ ܴ 
ܴ ܴ 

௨ௗ௬ܨ
ௗܨ

% 

PS PE PS PE PS PE 

Steel 

Steel 

Steel 

Steel 

Concrete 

Concrete 

Aluminum 

Concrete 

Oak Wood, Black 

Epoxy 

Epoxy 

Oak Wood, Black 

0.40-0.85 

0.30-0.60 

0.30-0.65 

0.15-0.30 

0.15-0.30 

0.30-0.60 

0.33 

0.33 

0.33 

0.33 

0.33 

0.33 

2.5 

8.4 

9.0 

17.6 

2.1 

1.1 

2.3 

10.6 

4.6 

14.9 

1.4 

0.4 

0.3 

0.9 

1.0 

2.0 

2.0 

1.0 

0.5 

2.3 

1.0 

3.3 

3.3 

1.0 

30 

22 

22 

15 

70 

100 

48 

32 

42 

15 

65 

--- 

Steel 

Steel 

Steel 

Steel 

Concrete 

Concrete 

Aluminum 

Concrete 

Oak Wood, Black 

Epoxy 

Epoxy 

Oak Wood, Black 

0.40-0.85 

0.30-0.60 

0.30-0.65 

0.15-0.30 

0.15-0.30 

0.30-0.60 

0.50 

0.50 

0.50 

0.50 

0.50 

0.50 

2.5 

8.4 

9.0 

17.6 

2.1 

1.1 

2.3 

10.6 

4.6 

14.9 

1.4 

0.4 

0.3 

0.9 

1.0 

2.0 

2.0 

1.0 

0.5 

2.3 

1.0 

3.3 

3.3 

1.0 

30 

20 

20 

13 

74 

88 

49 

25 

33 

11 

62 

--- 

Steel 

Steel 

Steel 

Steel 

Concrete 

Concrete 

Aluminum 

Concrete 

Oak Wood, Black 

Epoxy 

Epoxy 

Oak Wood, Black 

0.40-0.85 

0.30-0.60 

0.30-0.65 

0.15-0.30 

0.15-0.30 

0.30-0.60 

0.67 

0. 67 

0. 67 

0. 67 

0. 67 

0. 67 

2.5 

8.4 

9.0 

17.6 

2.1 

1.1 

2.3 

10.6 

4.6 

14.9 

1.4 

0.4 

0.3 

0.9 

1.0 

2.0 

2.0 

1.0 

0.5 

2.3 

1.0 

3.3 

3.3 

1.0 

29 

21 

21 

14 

76 

87 

45 

25 

36 

13 

63 

--- 

 

6.10 Summary 

The required parameters for designing the proposed stress wave attenuators are investigated in this 

section. These parameters include relative length of each layer, in-plane and out-of-plane dimensions, 

incident wave frequencies (wavelength), rigidity of the host structure, and impedance mismatch between 

different layers. The concurrent effects of these parameters are analyzed for a general two-dimensional 
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stress wave attenuator, and comments are provided. It is observed that the efficiency of the stress wave 

attenuator is a complex function of all parameters, and varies significantly in different ranges. 

Furthermore, two quantitative examples are provided to illustrate a design process, and to highlight the 

collective interdependency of the design parameters with the stress wave attenuator efficiency. The 

analyses reflect that the impedance mismatch between different layers, ܴ, incident wave frequencies 

(wavelength), ܴఒ, and rigidity of the host structure,	ܴ, are the most critical parameters for designing the 

stress wave attenuators. 
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SECTION 7 

LAYERED COLLINEAR STRESS WAVE ATTENUATORS 

 

7.1 Introduction 

This section presents the procedure for designing layered collinear stress wave attenuators. These 

structures are one-dimensional layered systems with various material properties. The wave attenuation 

mechanism for these structures is mainly related to the impedance mismatch between the layers, which 

affects the reflected and transmitted waves as discussed in Section 3. The optimization procedure tries to 

arrange the layers in a configuration which can provide a high amount of attenuation. Therefore, material 

optimization is performed for the optimal design of these collinear systems as the geometry of the systems 

remains unaffected during the optimal design.  

 

7.2 Optimal design parameters and characteristics of collinear stress wave attenuators 

A schematic of a layered collinear stress wave attenuator and its corresponding design parameters are 

shown in Figure 7-1. It is assumed that the cross sectional area of these structures is small and one-

dimensional wave propagation theory can be used for the analysis. Therefore, the in-plane (ܴ) and out-

of-plane (PS & PE) design parameters are not applicable for this type of stress wave attenuators.  

The effect of the rigidity of the host structure (ܴ) on the behavior of the stress wave attenuators was 

studied in Section 6. It was observed that the magnitude of the force at the end boundary of the stress 

wave attenuators increases by increasing the rigidity of the boundary, which is due to the larger 

impedance mismatch between the last layer and the host structure. Since we know this general trend, the 

optimal design of the layered collinear stress wave attenuators in this section is performed by considering 

a fixed value for	ܴ. It is assumed that the host structure is very rigid and ܴ is infinity. However, the 

optimal design can be easily performed for any other value of ܴ, if it is required. Another reason for 

considering a single value for ܴ is to reduce the number of optimal designs, as each design process is 

quite time consuming.  
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Figure 7-1 Schematic of a collinear stress wave attenuator and its design parameters 

 

According to section 6, the impedance mismatch ratio (ܴ) for a layer is the ratio between the impedance 

of the material of the layer to the minimum impedance of the materials available for the optimal design. 

In this section, four different types of materials are used for the optimal design of the collinear stress 

wave attenuators. These materials are introduced in the next section.  

It is assumed that the relative length of each layer (ܴ) is constant. This assumption is made to avoid the 

constraints in the GA optimization process. Therefore, ܴ for each layer within the structure is	1 ݊⁄ , 

where ݊ is the total number of layers.  

It was observed in Section 6 that the wavelength (frequency) of the incident pulse has a significant effect 

on the behavior of the stress wave attenuators. In fact, for each value of the wavelength (frequency) of the 

incident pulse a different structure can be obtained from the optimal design. As we know, the exact 

amount of the wavelength of the incident loadings is not a deterministic value in practical applications. 

Furthermore, it is not possible to perform the optimal design for a very large number of wavelength 

values because of the computational cost limitations. Therefore, in this section, the collinear stress wave 

attenuators will be optimized for 6 different wavelength ratios, i.e., ܴఒ ൌ

0.125, 0.25, 0.375, 0.50, 0.625,	and	0.75.  

All of the chosen values are smaller than unity because the efficiency of the stress wave attenuators 

decreases significantly when the incident pulse produces a very large wavelength. This is due to the fact 

that the number of reflection and transmission of the total incident pulse within the structure decreases by 

increasing the wavelength, and the stress wave attenuator cannot be effective in mitigating the amplitude 

of the waves. The minimum selected wavelength ratio is 0.125. This value is chosen based on the 
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computational cost limitations. As we know, the size of the mesh in FE models decreases by reducing the 

wavelength associated with the loading (or increasing the frequency). Consequently, very fine meshed 

models should be used during the optimal design, which is very time consuming.  

It should be noted that the wavelength ratios in this section are selected to provide appropriate examples 

for the optimal design procedure and highlighting its dependence on the wavelength (frequency) of the 

incident pulse. Therefore, the optimal design scheme is not limited to any specific value or range of the 

frequency content, and can be easily applied for designing the stress wave attenuators under different 

types of transient and dynamic loadings with a wide range of frequency content.  

 

7.3 Material properties 

Four different types of materials are selected for the optimal design of the layered collinear stress wave 

attenuators. These materials are Steel, Aluminum, HDPE, and Aluminum Foam, and their properties are 

listed in Table 7-1. The reason for selecting these materials is that they cover a wide range for the 

impedance parameter; consequently, the performance of the optimal design can be investigated well. 

Furthermore, these materials are real materials that are commonly used for various applications. It should 

be noted that the design procedure can be applied to any group of materials with different numbers and 

material properties and it is not restricted to the four materials that are presented in this section.  

 

7.4 Optimization procedure 

The general optimization procedure for designing the stress wave attenuators are explained in Section 5.5. 

In this section, the specific details for layered collinear stress wave attenuators are pointed out.  

Table 7-1 Materials used for optimal design of the layered collinear stress wave attenuators 

Material index 
Elastic 

modulus 
(GPa) 

Density 
(kg/m3) 

Poisson’s 
ratio 

Velocity 
C (m/s) 

Impedance 
(kg/m2/s) 

Steel 1 200.0 7850 0.30 5047 39.62 
Aluminum 2 68.9 2700 0.33 5189 13.64 

HDPE 3 1.2 950 0.42 1123 1.06 
AL Foam 4 0.4 800 0.30 707 0.57 

 

Consider the collinear layered stress wave attenuator in Figure 7-1 with total length of	ܮ, which is 

subjected to a half-sine transient pulse with the duration of ܶ/2 and amplitude of	ܨ. It is assumed that the 



 

88 
 

stress wave attenuator has ݊ layers (with equal length) and the material properties of each layer can be 

selected from the group of four materials that are listed in Table 7-1.  

As mentioned earlier, it is assumed that the stress wave attenuator is composed of the layers with equal 

length. The optimization procedure can be performed by assuming layers with variable length; however, 

as the total length of the structure is finite, constrained GA analysis should be utilized for the optimal 

design. Constrained optimization problems can be easily implemented in the GA procedure; however, 

because of the limitations on the type of the functions of the GA operators such as crossover and 

mutation, it is required to increase the size of the populations in order to avoid the premature 

convergence. Enlarging the population size increases the computation time significantly, especially for 

the problems in this research as the fitness function is calculated using Abaqus 6.12 FE software (Simulia 

(2012)). Consequently, the layered optimized structures in this research are designed by dividing the total 

length of the structure into equal parts.  

During the optimization procedure, the material of each layer can be expressed with an integer number 

between 1 and 4, which means the optimization variables are integer-valued. The Global Optimization 

Toolbox of MATLAB (2012) can solve these types of problems by using special creation, crossover, and 

mutation functions. Further details can be found in the product help of the software.  

The general procedure for finding the fitness function is explained in Section 5.5. It should be noted that 

the layered collinear stress wave attenuators are modeled using 2-node linear 2-D truss element from the 

Abaqus (Simulia 2012) element library (element T2D2). 

 

7.5 Results and discussion 

Consider the layered collinear stress wave attenuator in Figure 7-1 with	ܮ ൌ 8ܿ݉. This structure is 

designed for 6 different wavelength ratios ranging from 0.125 to 0.75. The duration of the pulses which 

correspond to these wavelength ratios are presented in Table 7-2. 

Based on the definition of the wavelength ratio in Figure 7-1, the duration of the sine pulse (ܶ) can be 

found as: 

ܶ ൌ
ఒܴܮ2
ܥ

 (7. 1)

 
where, ܥ is the minimum longitudinal velocity of the available materials, which is Aluminum Foam in 

this section.  
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The structure is divided into 16 equal layers (ܮ ൌ 5݉݉), and an integer-valued GA optimization is 

performed for each wavelength ratio with 16 integer variables with lower bound of 1 and upper bound of 

4. This means that the solution space is composed of 4ଵ ൌ  combinations, and, obviously, it is 9ܧ4.29

impossible to operate an exhaustive search for finding the best solution due to the extensive 

computational cost.  

Table 7-2 Wavelength ratios and duration of the applied pulses 

Wavelength ratio 

(ܴఒ) 

 ܥ

ሺ݉ ⁄ܿ݁ݏ ሻ 

Duration of the sine pulse 
 (ܿ݁ݏ)

Duration of the half-sine pulse 
 (ܿ݁ݏ)

0.125 707 2.83E-05 1.41E-05 

0.250 707 5.66E-05 2.83E-05 

0.375 707 8.49E-05 4.24E-05 

0.500 707 1.13E-04 5.66E-05 

0.625 707 1.41E-04 7.07E-05 

0.750 707 1.70E-04 8.49E-05 

 

The initial population of the GA is set to 100 for this problem, and the GA was run until the change in the 

fitness function value becomes less than the function tolerance of 1e-6. The GA procedure includes the 

elitism operator, and two of the best solutions in each generation are guaranteed to survive to the next 

generation, which increases the rate of convergence to the optimal point.  

Figure 7-2 Optimal material string for the layered collinear stress wave attenuators 
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The final optimal design of the layered collinear stress wave attenuators for 6 different wavelength ratios 

are shown in Figure 7-2 and Figure 7-3. Figure 7-2 represents the material string of the optimized systems 

and the amount of the attenuation that can be achieved with each structure, while Figure 7-3 depicts the 

length and the material of each layer within each optimal design. The force history at the boundary of 

each optimized structure is presented in Figure 7-4.  

Figure 7-3 Optimal design of the collinear layered stress wave attenuators 

 

According to Figure 7-2, Figure 7-3, and Figure 7-4, the following comments can be mentioned about the 

optimal design of each structure: 

 For	ܴఒ ൌ 0.125, the optimal design is made of 5 layers with the length of 3, 1.5, 0.5, 2.5, and 

0.5cm. The material of each layer from the left hand side is Steel, AL Foam, Steel, AL Foam, and 

AL. According to Figure 7-4 the amplitude of the force history at the boundary of this structure is 

attenuated as much as 93%. 

 For	ܴఒ ൌ 0.250, the optimal design is made of 2 layers with the length of 4.5 and 3.5cm. The first 

layer is made of Steel which has the highest impedance, while the second layer is made of AL 

Foam which has the lowest impedance. According to Figure 7-4, the amount of attenuation at the 

boundary is 87%.  

 For	ܴఒ ൌ 0.375, the optimal design is made of 2 layers with the length of 5 and 3cm. Similar to 

the previous case, layers 1 and 2 are made of Steel and AL Foam, respectively. The amount of 

attenuation at the boundary is 82%.  
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 For	ܴఒ ൌ 0.500, the length of the layers and their material properties are exactly the same as the 

structure which is optimized for	ܴఒ ൌ 0.375. The amount of attenuation at the boundary is 77%.  

 For	ܴఒ ൌ 0.625, the length of the layers and their material properties are exactly the same as the 

structure which is optimized for	ܴఒ ൌ 0.375. The amount of attenuation at the boundary is 72%.  

 For	ܴఒ ൌ 0.750, the length of the layers and their material properties are exactly the same as the 

structure which is optimized for	ܴఒ ൌ 0.375. The amount of attenuation at the boundary is 68%.  

Figure 7-4 Force history at the boundary of the optimized structures 

These results show that the optimized structures are mainly composed of the materials with the highest 

(Steel) and lowest (AL Foam) impedance values. In fact, all of the systems are composed of Steel and AL 

Foam except the structure that is designed for	ܴఒ ൌ 0.125, which has only a short layer of AL at its end. 

In addition, the results demonstrate that the layers should be arranged in a pattern in which the wave 
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passes from a high impedance to a low impedance medium (except the structure which is optimized 

for	ܴఒ ൌ 0.125). These phenomena can be justified using Equation 3.47. According to this formula, the 

amount of the transmission of the stress waves at the intersection of two media decreases when a wave 

passes from a high to low impedance material. This reduction becomes more dramatic by increasing the 

impedance mismatch ratio.  

Moreover, according to Figure 7-4, it can be observed that the amount of the attenuation at the boundary 

of the stress wave attenuators decreases significantly by increasing the wavelength ratio. Therefore, to 

achieve higher amount of attenuation, it is required to have long structures compared to the wavelength 

associated with the incident forces. 

Optimized structures subjected to different wavelength ratios: To further explore the attenuation 

capacity of the optimal designs, each optimized structure is subjected to the loads with various 

wavelengths and the amount of attenuation at their boundary is presented in Table 7-3. Using this table, 

the amount of the force attenuation in each structure can be plotted versus the parameter	ܴఒ, as it is shown 

in Figure 7-5. This figure shows that the attenuation capacity of the structures that are optimized for 

ܴఒ ൌ 0.25 and ܴఒ ൌ 0.375, 0.5, 0.625,	and 0.75 is much higher than the attenuation capacity of the 

structure which is optimized for	ܴఒ ൌ 0.125. The attenuation capacity for the structure that is optimized 

for ܴఒ ൌ 0.375, 0.5, 0.625,	and 0.75 is slightly higher than the structure that is optimized for	ܴఒ ൌ 0.25. 

Therefore, for a collinear stress wave attenuator with the length of 8cm which is subjected to half-sine 

transient loadings with the wavelength ratios (ܴఒ) between 0.125 to 0.75, the best optimal design is a two-

layered structure which has 5cm of steel and 3cm of AL Foam.   
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Table 7-3 Amount of attenuation of the optimized structures for different values of ࣅࡾ 

Attenuation 
at ܴఒ (%) 

Optimized for ܴఒ: 

0.125 0.250  0.375  0.500  0.625 0.750 

0.125 93 92 92 92 92 92 
0.250 87 88 87 87 87 87 
0.375 80 82 82 82 82 82 
0.500 74 76 77 77 77 77 
0.625 67 72 72 72 72 72 
0.750 61 67 68 68 68 68 

 

 

 

Figure 7-5 Attenuation vs. ࣅࡾ 

 

7.6 Three dimensional structures with layered collinear stress wave attenuators 

To provide a practical example, consider the three dimensional (3D) structure in Figure 7-6. In this 

structure, four layered collinear stress wave attenuators are sandwiched between two steel plates.  
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Figure 7-6 3D model with collinear stress wave attenuators 

A transient half-sine force is applied to the plate on the left hand side, and the structure is fixed to a rigid 

boundary at the right hand side as shown in Figure 7-7. It is assumed that the layered stress wave 

attenuators have the best optimized structure as explained in the previous section; that is, they have two 

layers: 5cm of Steel and 3cm of AL Foam. The wavelength ratio (ܴఒ) and the amplitude of the applied 

transient loading are 0.375 and	ܨ, respectively.  

 

Figure 7-7 Boundary condition and loading of the 3D model 
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To investigate the attenuation capacity of the collinear layered stress wave attenuators, two 3D models are 

built in Abaqus, and the force history at the boundary of these models are compared. The first model is 

made of optimized collinear structures, while the second model is composed of the single-layered steel 

rods. The optimized and steel rods are shown in Figure 7-8.  

 

Figure 7-8 Two types of layered collinear structures used in the 3D model 

The normalized force histories at the boundary of the two structures are presented in Figure 7-9. It is 

obvious that a significantly higher amount of attenuation can be achieved using the structure with 

optimized collinear stress wave attenuators.  

 

Figure 7-9 Force histories at the boundary of the 3D models with collinear stress 
wave attenuators 
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7.7 Summary 

The optimal design of the layered collinear stress wave attenuators is explored in this section. It was 

observed that the optimized structures are mainly composed of the materials with the highest and lowest 

impedance values. Furthermore, it was observed that the structures are usually optimized in a pattern in 

which the waves should pass from a high to low impedance material. This is due to the fact that the 

magnitude of the transmitted waves is significantly affected when the waves pass through the intersection 

of two media with high impedance mismatch ratio.  

It was also found that the attenuation capacity of the layered collinear stress wave attenuators increases 

significantly by decreasing the wavelength ratio (ܴఒ). This means that the impedance mismatch between 

the layers of the structure can highly influence the characteristics of the propagating waves when the 

applied force has a short wavelength, and the optimal design procedure can find more efficient 

attenuators.  

At the end of the section, the optimized collinear stress wave attenuators were implemented in a three 

dimensional model to examine their attenuation capacity. It is observed that a significant amount of 

attenuation can be achieved in real 3D structures using the optimized layered collinear structures.  
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SECTION 8 

NON-COLLINEAR STRESS WAVE ATTENUATORS 

 

8.1 Introduction 

The wave propagation characteristics of the layered collinear stress wave attenuators were studied in the 

previous section. It was observed that a reasonable amount of attenuation can be obtained by optimizing 

the material setup of each structure. In layered collinear systems, longitudinal wave reflection and 

transmission at the intersection of two layers is the only mechanism that can attenuate the amplitude of an 

applied pulse when it reaches the boundary. By changing the geometry of the collinear systems to non-

collinear structures, flexure can occur during the wave propagation. As discussed in Section 4, flexural 

waves have a dispersive nature, and their characteristics change as they propagate within a system. This 

characteristic might provide a higher potential for the attenuation of the stress loadings, and can be 

implemented in our developed heuristic optimization tool to find more efficient stress wave attenuators.  

In this section, the optimal design of non-collinear stress wave attenuators is studied extensively. These 

structures include multi-layered and single-layered non-collinear systems. The optimal design parameters 

and procedure for each type of the systems are presented, and their attenuation capacity is discussed in the 

following sections.  

 

8.2 Non-collinear stress wave attenuators and effect of symmetry 

In this research, the first attempt in changing the geometry of the stress wave attenuators was performed 

by inclining the middle section of a straight structure as shown in Figure 8-1. The total length of the 

structure is 8cm in the horizontal direction and its cross section is a rectangular section with the width of 

2mm and height of 4mm. The angle of the inclined part with respect to the horizontal line is 45 degrees. It 

is assumed the structure is composed of two layers: 5cm of Steel and 3 cm of Aluminum foam. The 

properties of these materials are presented in Table 7.1.  

To examine the behavior of this structure, a 3D model is built in Abaqus and a half-sine pulse is applied 

to the left hand side of the structure. This pulse generates the wavelength ratio (ܴఒ) of 0.375. The Abaqus 

3D model is shown in Figure 8-2. 
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Figure 8-1 Non-symmetric inclined structure 

 

In order to investigate the behavior at the boundary, five elements are selected at the surface of the fixed 

boundary and their stress histories are extracted from the Abaqus model. These elements are shown in 

Figure 8-3. The maximum normalized stresses at each element of the boundary are presented in Table 8-

1. It should be noted that the normalized amount of the total force and moment at the boundary of the 

structure are ܨ ⁄ܨ ൌ 9.63% and	ܯ ሺܨܮሻ⁄ ൌ 6.17%, respectively. ܨ, ܨ, ܯ, and ܮ represent the 

amplitude of the force at the clamped boundary, amplitude of the force at the loading surface, amplitude 

of the bending moment at the boundary, and the total horizontal length of the structure, respectively.  

 

  

Figure 8-2 3D Abaqus model of the non-symmetric inclined structure 
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Figure 8-3 Element positions at the boundary 

 
By looking closely at Table 8-1, it is obvious that the peak value of stress at the corner elements 

(Elements 1, 2, 4, and 5) is much higher than the stress at the mid-section (Element 3). This phenomenon 

can be justified by considering the effect of bending in the boundary surface. In fact, if the applied 

loading was a static load, there should have been no bending moment at the boundary of the structure 

since the load vector has no arm with respect to the center of the boundary surface. However, this is not 

true for the case of transient loading because when the load is passing through the inclined part of the 

structure, it makes a bending moment at the boundary. This is the reason for getting very large amount of 

stress at the elements far from the neutral axis.  

 

Table 8-1 Normalized stress at the boundary of the non-symmetric structure 

Element position Normalized Stress (ߪ ⁄ߪ ) 

1 (bottom left) 0.712 
2 (bottom right) 0.712 

3 (middle) 0.080 
4 (top left) 0.600 

5 (top right) 0.600 
 

One of the best solutions for removing the effect of the bending moment at the boundary is making the 

structure symmetric about the centerline of the cross section. To investigate the effectiveness of this idea, 

the non-symmetric structure in Figure 8-1 is made symmetric by adding a lower inclined part as shown in 

Figure 8-4. This symmetric diamond-shape structure has the same layers and material properties as the 

non-symmetric structure, and it is subjected to a transient loading with the wavelength ratio (ܴఒ) of 0.375.  

1 2

4 5

3
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Figure 8-4 Symmetric diamond-shape structure 

 
The 3D Abaqus model of the symmetric structure is shown in Figure 8-5. The maximum normalized 

stresses at each element of the boundary are presented in Table 8-2. 

  

  

Figure 8-5 3D Abaqus model of the symmetric diamond-shape structure 

 

By examining the results given in Table 8-2, it is obvious that there is no significant difference between 

the maximum stress amplitude of the corner and middle elements. This means that the distribution of the 

force over the surface of the boundary is even due to the symmetry, which means the effect of bending is 

removed successfully. This can be confirmed by checking the total force and moment at the clamped 
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boundary of the structure. The results of the 3D Abaqus modeling reveals that the normalized amount of 

the total force and moment at the boundary of the structure are ܨ ⁄ܨ ൌ 17.5% and	ܯ ሺܨܮሻ⁄ ൌ 0.22%, 

respectively. If we compare the amount of the normalized moment at the boundary of the symmetric 

diamond-shape structure with the non-symmetric inclined structure, we can observe that the moment at 

the boundary has significantly declined (compare 0.22% with 6.17%), which results in the reduction of 

the stress at the elements which are far from the neutral axis. It should be noted that the normalized 

amount of the force at the boundary of the diamond-shape structure is higher than the non-symmetric 

structure because all of the elements on the boundary of the symmetric structure would experience tension 

or compression simultaneously, and thus the force history will have higher amplitude. However, in the 

non-symmetric structure, the bending moment will cause the end boundary to experience both tension and 

compression at each time step, which results in lower total force.  

Table 8-2 Normalized stress at the boundary of the symmetric diamond-shape structure 

Element position Normalized Stress (ߪ ⁄ߪ ) 

1 (bottom left) 0.232 
2 (bottom right) 0.232 

3 (middle) 0.159 
4 (top left) 0.232 

5 (top right) 0.232 
 

Considering the above facts about the symmetric and non-symmetric structures, it is desirable to utilize 

symmetric stress wave attenuators since these structures will produce even distribution of the stress at the 

boundary. Therefore, the total force at the cross section of the boundary, which is the target of the 

optimization, will give a better estimation of the amount of the all of the stresses at the cross section. 

Consequently, in the remainder of this section, the optimal design of the symmetric non-collinear 

structures will be sought extensively. The first type of these structures is the layered diamond-shape 

structure which has a constant geometry and the optimization algorithm tries to find the best material 

setup of the system for attenuation of an applied stress pulse. These structures are studied in section 8.3. 

The second type of the symmetric non-collinear stress wave attenuators are single-layered structures, and 

the optimization methodology tries to find their optimal geometry. These structures are studied in section 

8.5.  
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8.3 Layered diamond-shape stress wave attenuators  

In this section, the material optimization of a symmetric diamond-shape stress wave attenuator is 

introduced. A schematic of this structure and its corresponding design parameters are shown in Figure 8-

6. It is assumed that the angle of the non-collinear part of the structure is 45 degrees and the cross 

sectional areas of the different parts are constant and small comparing to the length of the system. 

Therefore, the in-plane (ܴ) and out-of-plane (PS & PE) design parameters are not applicable for this 

type of stress wave attenuators. It should be noted that the optimal design of this structure is provided to 

show the capability of the non-collinear layered systems in attenuating the stress waves, and it is not 

limited to this particular case. Therefore, the same procedure can be applied to any layered structure with 

multiple non-collinear parts and various angles.  

 

 

Figure 8-6 Schematic of a layered diamond-shape stress wave attenuator and its design parameters 

Similar to the layered collinear systems in Section 7, the rigidity of the host structure (ܴ) and the 

relative length of each layer (ܴ) are infinity and	1 ݊⁄ , respectively, where ݊ is the total number of layers. 

Furthermore, the structures are optimized for 6 different wavelength ratios, i.e., 

ܴఒ ൌ 0.125, 0.25, 0.375, 0.50, 0.625,	and	0.75. The materials that are used for the optimal design are also 

identical to the materials in Section 7, and their properties are presented in Table 7.1.  

The optimization procedure is similar to the straight structures as described in section 7.4. To prevent 

constrained optimization, the structure is divided into equal layers, and an integer-valued GA 

optimization procedure is performed using MATLAB (2012). The integer variables can have a value in 

the range of 1 to 4 as there are four materials available for the optimal design. To keep the symmetry of 

the system, the material properties in the lower and upper branches of the diamond-shape part are exactly 

the same. The fitness function of the GA is calculated using Abaqus 6.12, and the structures are modeled 
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using 2-node linear Timoshenko beam elements from the Abaqus (Simulia (2012)) element library 

(element B21).  

8.3.1 Results and discussion  

The optimal design of the diamond shape structure (Figure 8-6) with	ܮ ൌ 8ܿ݉, which is subjected to 6 

different wavelength ratios (ܴఒ) ranging from 0.125 to 0.75 is presented in this section. The duration of 

the half-sine pulses are calculated by considering the minimum longitudinal wave speed of the materials 

(Equation 7.1); therefore, all of the durations are the same as the values that are presented in Table 7.2. 

The reason for using the longitudinal wave speed for finding the durations is that the longitudinal waves 

are non-dispersive and their speed is not related to the frequency of loading.   

The structure is divided into 16 equal layers in the horizontal direction and an integer-valued GA is 

performed for each wavelength ratio with 16 integer variables with lower and upper bounds of 1 and 4, 

respectively. Therefore, the solution space is composed of 4ଵ ൌ  combinations. Similar to the 9ܧ4.29

optimal design of the collinear systems, the population size and function tolerance are 100 and 1E-6, 

respectively, and the GA carries over the best two solutions in each generation to the next generation to 

provide the elitism in the optimization process.  

The final optimal design of the layered non-collinear stress wave attenuators for 6 different wavelength 

ratios (ܴఒ) are shown in Table 8-3, Figure 8-7 and Figure 8-8. The force histories at the boundary of the 

optimized structures are depicted in Figure 8-9.   

Table 8-3 Optimal material strings for the layered diamond-shape stress wave attenuators 

Wavelength ratio (ܴఒ) Optimal material string 

0.125 1-1-1-1-1-1-4-4-4-1-4-4-1-4-4-3 
0.250 1-1-1-1-1-4-4-4-4-1-4-4-3-4-2-1 
0.375 1-1-1-1-1-1-4-4-4-4-1-4-4-4-1-1 
0.500 1-1-1-1-1-1-4-4-4-4-1-4-4-4-2-2 
0.625 1-1-1-1-1-1-4-4-4-4-1-4-4-4-1-1 
0.750 1-1-1-1-1-4-4-4-4-1-4-4-3-3-1-1 
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Figure 8-7 Optimal material strings for the layered diamond-shape stress wave attenuators 
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Figure 8-8 Optimal design of the layered diamond-shape stress wave attenuators 
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Figure 8-9 Force history at the boundary of the optimized diamond-shape structures 

 

According to Figure 8-7 to Figure 8-9, the results of the optimization procedure for each wavelength ratio 

(ܴఒ) can be explained as follows: 

 For	ܴఒ ൌ 0.125, the optimal design is made of 7 layers with the horizontal length of 3, 1.5, 0.5, 1, 

0.5, 1, and 0.5cm. The material of each layer from the left hand side is Steel, AL Foam, Steel, AL 

Foam, Steel, AL Foam, and HDPE. The amount of attenuation that can be achieved with this 

structure is 98%.  

 For	ܴఒ ൌ 0.250, the optimal design is made of 8 layers with the horizontal length of 2.5, 2, 0.5, 1, 

0.5, 0.5, 0.5, and 0.5cm. The material of each layer from the left hand side is Steel, AL Foam, Steel, 

‐0.015

‐0.010

‐0.005

0.000

0.005

0.010

0.015

0.020

0.025

0 0.0005 0.001 0.0015 0.002

F/FL

Time (sec)

Rλ=0.125

‐0.06

‐0.04

‐0.02

0.00

0.02

0.04

0.06

0.08

0.10

0 0.0005 0.001 0.0015 0.002

F/FL

Time (sec)

Rλ=0.500

‐0.03

‐0.02

‐0.01

0.00

0.01

0.02

0.03

0.04

0.05

0 0.0005 0.001 0.0015 0.002

F/FL

Time (sec)

Rλ=0.250

‐0.10

‐0.05

0.00

0.05

0.10

0.15

0 0.0005 0.001 0.0015 0.002

F/FL

Time (sec)

Rλ = 0.625

‐0.06

‐0.04

‐0.02

0.00

0.02

0.04

0.06

0.08

0 0.0005 0.001 0.0015 0.002

F/FL

Time (sec)

Rλ=0.375

‐0.10

‐0.05

0.00

0.05

0.10

0.15

0 0.0005 0.001 0.0015 0.002

F/FL

Time (sec)

Rλ = 0.750

Attenuation = 98% Attenuation = 92% 

Attenuation = 95% Attenuation = 90% 

Attenuation = 94% Attenuation = 88% 



 

107 
 

AL Foam, HDPE, AL Foam, AL, and Steel. The amount of attenuation that can be achieved with this 

structure is 95% 

 For	ܴఒ ൌ 0.375, the optimal design is made of 5 layers with the horizontal length of 3, 2, 0.5, 1.5, 

and 1cm. The material of each layer from the left hand side is Steel, AL Foam, Steel, AL Foam, and 

Steel. The amount of attenuation that can be achieved with this structure is 94%.  

 For	ܴఒ ൌ 0.500, the optimal design is made of 5 layers with the horizontal length of 3, 2, 0.5, 1.5, 

and 1cm. The material of each layer from the left hand side is Steel, AL Foam, Steel, AL Foam, and 

AL. The amount of attenuation that can be achieved with this structure is 92%. 

 For	ܴఒ ൌ 0.625, the length of the layers and their material properties are exactly the same as the 

optimal design for ܴఒ ൌ 0.375. The amount of attenuation that can be achieved with this structure is 

90%. 

 For	ܴఒ ൌ 0.750, the optimal design is made of 6 layers with the horizontal length of 2.5, 2, 0.5, 1, 1, 

and 1cm. The material of each layer from the left hand side is Steel, AL Foam, Steel, AL Foam, 

HDPE, and Steel. The amount of attenuation that can be achieved with this structure is 88%. 

These results show that the optimized structures are mainly composed of the materials with the highest 

(Steel) and lowest (AL Foam) impedance values, which is similar to the results that are obtained from the 

optimization of the collinear structures in Section 7. In addition, the first two layers of the structures are 

always composed of Steel (first layer) and AL Foam (second layer) and they have larger length compared 

to the other layers.  

The joints of the diamond shape structure, J1, J2, J3, and J4, are shown in Figure 8-6. In all of the 

structures the first (J1) and the second (J2) joints are made of steel and AL Foam, respectively. The third 

joint (J3) is also made of AL Foam due to the symmetry. The material of the fourth joint (J4) is different 

for various wavelength ratios and is made of Steel for	ܴఒ ൌ 0.125, HDPE for	ܴఒ ൌ 0.250	and	0.750, and 

AL Foam for	ܴఒ ൌ 0.375, 0.5, &	0.625.  

Similar to the collinear structures, the amount of the attenuation at the boundary of the stress wave 

attenuators decreases by increasing the wavelength ratio (ܴఒ); however, the range of the attenuation is 

88% (for ܴఒ ൌ 0.75) to 98% (for ܴఒ ൌ 0.125), which is significantly smaller than the similar range for 

the collinear structures (compare to 68 to 93). Therefore, it can be concluded that the optimized layered 

diamond-shape structures are more robust than the collinear structures in attenuating the stress waves with 

various amount of frequencies.  

To further explore the attenuation capacity of the optimal designs, each optimized structure is subjected to 

the loadings with various wavelengths, and the amount of attenuation at their boundary is presented in 
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Table 8-4. Similar to the collinear structures in Section 7, the amount of the force attenuation in each 

structure is plotted versus the parameter	ܴఒ, as it is shown in Figure 8-10. This figure shows that the 

attenuation capacity of the structures that are optimized for ܴఒ ൌ 0.125, 0.375. , 0.5, and 0.625 is higher 

than the attenuation capacity of the structures that are optimized for	ܴఒ ൌ 0.25 and	0.75. Therefore, for a 

diamond-shape stress wave attenuator with the horizontal length of 8cm under half-sine transient loadings 

with the wavelength ratios (ܴఒ) between 0.125 to 0.75, the best optimal design can be one of the 

structures that are optimized for ܴఒ ൌ 0.125, 0.375. , 0.5, and 0.625.  

It should be noted that for	ܴఒ ൌ 0.25, the amount of attenuation that can be obtained from the structure 

which is optimized for	ܴఒ ൌ 0.375, 0.5,	and 0.625 is higher than the attenuation which is achieved by the 

optimized structure for	ܴఒ ൌ 0.25. However, the values are very close to each other. This phenomenon 

happens because of the nature of the GA, as this method cannot always find the best possible solution; 

however, it provides acceptable results based on the type of the optimization problem.  

Table 8-4 Attenuation at the optimized layered diamond-shape structures for different ࣅࡾ values 

Attenuation at 
ܴఒ (%) 

Optimized for ܴఒ: 

0.125 0.250  0.375  0.500  0.625 0.750 

0.125 98 98 98 98 98 97 
0.250 96 95 96 96 96 94 
0.375 94 93 94 94 94 93 
0.500 92 91 92 92 92 91 
0.625 90 89 90 90 90 89 
0.750 88 87 88 88 88 88 
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Figure 8-10 Attenuation vs. ࣅࡾ, Diamond-shape structure 

 

8.4 Three dimensional structure with layered diamond-shape stress wave attenuators 

Similar to Section 7, an example of using the layered diamond-shape structure in a 3D configuration is 

presented in this section. In this structure, four layered diamond-shape stress wave attenuators are 

sandwiched between two steel plates as shown in Figure 8-11. It is assumed that each layered stress wave 

attenuator supports a square area with the dimensions of 5cm by 5cm. Therefore, the front and back plates 

have the dimension of 10cm by 10cm. Other dimensions are shown in Figure 8-11.  

 

Figure 8-11 3D model with layered diamond-shape stress wave attenuators, a) dimensions, b) whole 
model 
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As mentioned in the previous section, the diamond-shape structures that are optimized for ܴఒ ൌ

0.125, 0.375. , 0.5, and 0.625 have high attenuation capacity comparing to the other structures. Therefore, 

to show the efficiency of this structure, the optimal design for ܴఒ ൌ 0.125 is used in the 3D model. The 

material setup for this structure is presented in Figure 8-7 and Figure 8-8.  

The boundary conditions of the 3D structure are shown in Figure 8-12. A transient half-sine load with the 

wavelength ratio of 0.125 and amplitude of ܨ is applied to the front plate, and the back plate is 

constrained for all of the displacements and rotations.  

 

Figure 8-12 Boundary condition and loading of the 3D model with diamond-shape stress wave 
attenuators  

 

To investigate the attenuation capacity of the layered diamond-shape stress wave attenuators, two 3D 

models are built in Abaqus and the force history at the boundary of these models are compared to each 

other. The material properties of the diamond-shape structures of the first model are the same as the 

structure that is optimized for	ܴఒ ൌ 0.125, while in the second model, the diamond shape structures are 

only made of steel.  

The normalized force histories at the boundary of the two structures are presented in Figure 8-13. It is 

obvious that a significantly higher amount of attenuation can be achieved using the structure with 

optimized diamond-shape stress wave attenuators.  
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Figure 8-13 Force histories at the boundary of the 3D models with diamond-shape stress wave 
attenuators 
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8.5 Non-collinear single-layered stress wave attenuators 

Up to the present moment, all of the studied stress wave attenuators had a constant geometry, and their 

attenuation capacity was mainly due to the impedance mismatch between the multiple layers within the 

structure. As mentioned in Section 4, the geometric discontinuities such as angled joints in beams can 

affect the wave propagation characteristics of a system by generating new reflected and transmitted 

waves. In this section, it will be shown how a geometric discontinuity such as angled joints can be 

utilized in optimal design of the structures that are made of Timoshenko beam members. These structures 

are only made of a single material and geometry optimization is performed to find the most efficient 

mitigating configuration. In the remainder of this research, these structures are called “non-collinear stress 

wave attenuators”.  

 

 

Figure 8-14 Concept of geometry optimization for non-collinear stress wave attenuators 

 

To introduce the geometry optimization procedure for designing non-collinear stress wave attenuators, 

consider the structure that is shown in Figure 8-14. This structure is composed of three different parts 

with the lengths of	ܮଵ,	ܮଶ, and	ܮଷ in the horizontal direction. It is assumed that the load is applied to point 

 are (ଷܮ	ଵ andܮ) The first and the third part of the structure .ܦ	and the structure is clamped at point ܣ

collinear, while the second part consists of non-collinear members. The second part has the horizontal and 

vertical length of ܮଶ and	ܮସ, respectively, and it is called the “optimization zone”. To perform the optimal 

design procedure, the optimization zone can be divided into ݊௫ ൌ ݊  and ݊௬ ൌ ݉ segments in the 

horizontal and vertical directions to generate an ݊ ൈ ݉ grid, and the GA will try to select the grid points 
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to find the best attenuating pattern. For example, if  ܮଶ and	ܮସ are divided into ݊ and ݉ segments, the 

solution space will contain ݉ combinations, and a GA optimization can be performed with ݊ integer 

variables with the lower and upper bounds of 1 and ݉, respectively. To clarify more, consider the 

example in Figure 8-15 which is divided into 6 and 8 segments in the horizontal and vertical directions, 

respectively. Points ܤ and ܥ are fixed, and the GA will choose the best path by connecting the points in 

the 6 ൈ 8 grid. For instance, the path that is shown in Figure 8-15, is made by connecting 6 points along 

the horizontal direction which have the vertical positions (݊௬) of 2, 5, 3, 2, 4, and 8. Due to the reasons 

that are declared in section 8.2, all of the non-collinear structures in this research have a symmetric 

configuration. Therefore, the path in the optimization zone is mirrored with respect to line ܥܤ to keep the 

symmetry. 

 

 

Figure 8-15 Example for the geometry optimization of non-collinear stress wave attenuators  

 

In the following sections, the optimal design of the non-collinear stress wave attenuators will be pursued 

for different grid numbers. For all of the structures, it is assumed that sections ܤܣ and ܦܥ have equal 

length of 2ܿ݉ and the optimization zone has the dimension of	ܮଶ ൈ ଶܮ ଶ, withܮ0.5 ൌ 18ܿ݉. Therefore, 

the total length of the structure in the horizontal direction is	22ܿ݉. All of the sections of the structure are 

made of a single material which is Aluminum with the properties that are mentioned in Table 7.1. The 
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structure has a constant cross section with the width and height of 2mm and 4mm, respectively. The 

number of the vertical points in the optimization zone (݊௬) is kept to be 8 in all of the structures, and 

optimization is performed for different values of ݊௫ which is changing from 1 to 8. Since the solution 

space is not very large for the structures with ݊௫ ൌ 1 to	4, exhaustive search has been performed to find 

the most attenuating configurations. However, for higher values of	݊௫, GA optimization methodology is 

utilized for this purpose.  

Each structure is subjected to 6 different wavelength ratios (ܴఒ) ranging from 0.125 to 0.75. The duration 

of the half-sine pulses are calculated by substituting the longitudinal wave speed of Aluminum in 

Equation 7.1, and their values are presented in Table 8-5. Similar to the diamond-shape structures, 

longitudinal wave speed is used for finding the duration of the loads because of their non-dispersive 

nature.  

Table 8-5 Wavelength ratios and duration of the applied pulses on the non-collinear structures 

Wavelength ratio 
(ܴఒ) 

 ܥ
ሺ݉ ⁄ܿ݁ݏ ሻ 

Duration of the sine pulse 
 (ܿ݁ݏ)

Duration of the half-sine pulse 
 (ܿ݁ݏ)

0.125 5052 1.09E-05 5.44E-06 

0.250 5052 2.18E-05 1.09E-05 

0.375 5052 3.27E-05 1.63E-05 

0.500 5052 4.36E-05 2.18E-05 

0.625 5052 5.44E-05 2.72E-05 

0.750 5052 6.53E-05 3.27E-05 

 

In the following sections, the optimized configurations for the structures with different values of ݊௫ will 

be presented in detail.  
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8.5.1 Non-collinear stress wave attenuator with ࢞ ൌ  

The optimization zone for the stress wave attenuator with ݊௫ ൌ 1 is shown in Figure 8-16. As mentioned 

above, the number of vertical points is constant and equal to 8 for all of the non-collinear structures in this 

section. Therefore, for each value of wavelength ratio (ܴఒ), there are only 8 combinations available for 

the structure with	݊௫ ൌ 1, and the best solution can be easily found by an exhaustive search.  

 

Figure 8-16 Optimization zone for the non-collinear structure with ࢟ ൌ ૡ and ࢞ ൌ  

The vertical position string for the structure with ݊௫ ൌ 1 contains only one number. The optimized 

vertical string is shown in Table 8-6, and the optimized structures and their attenuation capacities are 

depicted in Figure 8-17. In addition, the force histories at the boundary of the optimized structures are 

presented in Figure 8-18.  

Table 8-6 Optimized vertical position string for the non-collinear structure with ࢞ 	ൌ  

ܴఒ 0.125 0.250 0.375 0.500 0.625 0.750 

݊௬ 5 5 6 8 5 5 
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Figure 8-17 Optimal design of the non-collinear stress wave attenuators, ࢞ 	ൌ 	 
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Figure 8-18 Force history at the boundary of the optimized non-collinear structures with ࢞ ൌ  

 

According to Figure 8-17 and Figure 8-18, the results of the exhaustive search for the structure with 

݊௫ ൌ 1 can be explained as follows: 

 For	ܴఒ ൌ 0.125, 0.250, 0.625, and 0.750, the vertical position string (݊௬) for the optimized 

structure is 5, and the amount of attenuation at the boundary of each structure is 23, 27, 13, and 

12%.  
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 For	ܴఒ ൌ 0.375, the vertical position string (݊௬) for the optimized structure is 6, and the amount 

of attenuation at the boundary is 18%.  

 For	ܴఒ ൌ 0.500, the vertical position string (݊௬) for the optimized structure is 8, and the amount 

of attenuation at the boundary is 18%. 

To further explore the attenuation capacity of the optimal designs, each optimized structure is subjected to 

the loads with various wavelength ratios and the amount of attenuation at their boundary is presented in 

Table 8-7. Using this table, the force attenuation versus the wavelength ratio is plotted in Figure 8-19. 

This figure shows that the optimized structures for	ܴఒ ൌ 0.125, 0.25, 0.625, and 0.750 have, generally, 

higher attenuation capacity and thus for a non-collinear stress wave attenuator with ݊௫ ൌ 1 which is 

subjected to half-sine transient loading with the wavelength ratios (ܴఒ) between 0.125 to 0.75, the vertical 

position string for the best optimal design is 5. In addition, according to Table 8-7 and Figure 8-19, the 

attenuation range for the non-collinear structure with ݊௫ ൌ 1 is 37% with the lowest and highest values of 

-10 and 27%, respectively. The minimum amount of attenuation (-10%) happens in the structure which is 

optimized for	ܴఒ ൌ 0.5 and is subjected to the load with wavelength ratio	ܴఒ ൌ 0.25, while the maximum 

amount of attenuation (27%) happens in the structure which is optimized for	ܴఒ ൌ 0.125, 0.25, 0.625, 

and 0.750 and is subjected to the loads with the same wavelength ratio. It should be noted that the 

negative attenuation means that the maximum amount of the force history at the boundary is larger than 

the amplitude of the applied force and the structure experiences amplification at its boundary.  
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Table 8-7 Attenuation at the optimized non-collinear structures for different ࣅࡾ values, ࢞ ൌ  

Attenuation at ܴఒ 
(%) 

Optimized for ܴఒ: 

0.125 0.250  0.375  0.500  0.625 0.750 

0.125 23 23 0 -6 23 23 
0.250 27 27 25 -10 27 27 
0.375 14 14 18 17 14 14 
0.500 10 10 3 18 10 10 
0.625 13 13 0 4 13 13 
0.750 12 12 6 -3 12 12 

Range (%) 10-27 12-27 0-25 -10-18 10-27 10-27 
 

 

Figure 8-19 Attenuation vs. ࢞ non-collinear structure with ,ࣅࡾ ൌ  
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8.5.2 Non-collinear stress wave attenuator with ࢞ ൌ  

The optimization zone for the non-collinear stress wave attenuator with ݊௫ ൌ 2 is shown in Figure 8-20. 

The solution space for this problem is composed of 8ଶ ൌ 64 combinations and an exhaustive search can 

be easily performed to find the best solution for each value of the wavelength ratio. The optimized 

vertical position string for this structure is composed of two numbers and is presented in Table 8-8. 

Schematics of the optimal designs (with their attenuation capacity) and their corresponding force histories 

at the boundary are depicted in Figure 8-21 and Figure 8-22, respectively.  

 

Figure 8-20 Optimization zone for the non-collinear structure with ࢟ ൌ ૡ and ࢞ ൌ  

 

According to Figure 8-21and Figure 8-22, the results of the exhaustive search for the structure with 

݊௫ ൌ 2 can be explained as follows: 

 For	ܴఒ ൌ 0.125 the vertical position string (݊௬) for the optimized structure is 3-5, and the amount 

of attenuation at the boundary is 39%.  

 For	ܴఒ ൌ 0.25 the vertical position string (݊௬) for the optimized structure is 8-4, and the amount 

of attenuation at the boundary is 33%.  

 For	ܴఒ ൌ 0.375 the vertical position string (݊௬) for the optimized structure is 8-5, and the amount 

of attenuation at the boundary is 42%.  

Table 8-8 Optimized vertical position string for the non-collinear structure with ࢞ 	ൌ  

ܴఒ 0.125 0.250 0.375 0.500 0.625 0.750 

݊௬ 3-5 8-4 8-5 3-7 4-7 3-7 
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Figure 8-21 Optimal design of the non-collinear stress wave attenuators, ࢞ 	ൌ 	 
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Figure 8-22 Force history at the boundary of the optimized non-collinear structures with ࢞ ൌ  

 

 For	ܴఒ ൌ 0.5 and 0.75 the vertical position strings (݊௬) for the optimized structures is 3-7, and 

the amount of attenuation at the boundary of each structure is 42 and 47%, respectively.  

 For	ܴఒ ൌ 0.625 the vertical position string (݊௬) for the optimized structure is 4-7, and the amount 

of attenuation at the boundary is 48%.  

The amount of attenuation for each optimized structure at different values of wavelength ratios are 

presented in Table 8-9 and the attenuation-ܴఒ curve is plotted in Figure 8-23. According to this figure, it 
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is difficult to say which structure has the highest attenuation capacity for the total range of ܴఒ values. 

However, the range of attenuation for each optimized structure can be found using Table 8-9, and the best 

structure can be selected using these information. The attenuation range for the structures that are 

optimized for ܴఒ ൌ 0.125, 0.25, 0.375, 0.5, 0.625, and 0.750 are “14-39”, “20-38”, “25-42”, “5-47”, “13-

48”, and “5-47”, respectively. These results show that the minimum value of attenuation for the structure 

that is optimized for ܴఒ ൌ 0.375 is 25% which is higher than the other structures; therefore, it can be 

recommended to use this structure (with vertical position string 8-5) for attenuating the applied stress 

waves with the wavelength ratio of 0.125 to 0.75.  

The global attenuation range for the structure with ݊௫ ൌ 2 is 5-48%, and the structures are sensitive to the 

wavelength ratio. The minimum attenuation value (5%) occurs for the structure which is optimized 

for	ܴఒ ൌ 0.5 and is subjected to the load with	ܴఒ ൌ 0.25, while the maximum attenuation value (48%) 

relates to the structure that is optimized for ܴఒ ൌ 0.625 and is subjected to the load with the same value 

of	ܴఒ. It should be noted that the amount of attenuation is increasing (except for	ܴఒ ൌ 0.25) by increasing 

the value of wavelength ratio (ܴఒ), which is in contrast to the trends that have been observed for the 

layered stress wave attenuators.  

Table 8-9 Attenuation at the optimized non-collinear structures for different ࣅࡾ values, ࢞ ൌ  

Attenuation at 
ܴఒ (%) 

Optimized for ܴఒ: 

0.125 0.250  0.375  0.500  0.625 0.750 

0.125 39 20 25 28 27 28 
0.250 19 33 27 5 13 5 
0.375 35 38 42 21 23 21 
0.500 24 37 34 42 41 42 
0.625 25 33 31 47 48 47 
0.750 14 33 35 47 35 47 

Range (%) 14-39 20-38 25-42 5-47 13-48 5-47 
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Figure 8-23 Attenuation vs. ࢞ non-collinear structure with ,ࣅࡾ 	ൌ 	 
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8.5.3 Non-collinear stress wave attenuator with ࢞ ൌ  

The optimization zone for the non-collinear stress wave attenuator with ݊௫ ൌ 3 is shown in Figure 8-24. 

The solution space for this problem is composed of 8ଷ ൌ 512 combinations, and an exhaustive search is 

performed to find the best solution for each value of the wavelength ratio. The optimized vertical position 

string for this structure is composed of three numbers and it is presented in Table 8-10. Schematics of the 

optimal designs (with their attenuation capacity) and their corresponding force histories at the boundary 

are depicted in Figure 8-25 and Figure 8-26, respectively.  

 

Figure 8-24 Optimization zone for the non-collinear structure with ࢟ ൌ ૡ and ࢞ ൌ  

According to Figure 8-25 and Figure 8-26, the results of the exhaustive search for the structure with 

݊௫ ൌ 3 can be explained as follows: 

 For	ܴఒ ൌ 0.125, the vertical position string (݊௬) for the optimized structure is 7-1-7, and the amount 

of attenuation at the boundary is 68%. 

 For	ܴఒ ൌ 0.25, the vertical position string (݊௬) for the optimized structure is 8-1-8, and the amount 

of attenuation at the boundary is 61%. 

 For	ܴఒ ൌ 0.375, the vertical position string (݊௬) for the optimized structure is 8-2-8, and the amount 

of attenuation at the boundary is 60%. 

 For	ܴఒ ൌ 0.5, the vertical position string (݊௬) for the optimized structure is 3-8-2, and the amount of 

attenuation at the boundary is 61%. 

 For	ܴఒ ൌ 0.625 and 0.75, the vertical position string (݊௬) for the optimized structure is 8-3-5, and 

the amount of attenuation at the boundary of each structure is 62 and 65%, respectively. 
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Table 8-10 Optimized vertical position string for the non-collinear structure with ࢞ ൌ  

ܴఒ 0.125 0.250 0.375 0.500 0.625 0.750 

݊௬ 7-1-7 8-1-8 8-2-8 3-8-2 8-3-5 8-3-5 

 

 

Figure 8-25 Optimal design of the non-collinear stress wave attenuators, ࢞ ൌ  
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Figure 8-26 Force history at the boundary of the optimized non-collinear structures with ࢞ ൌ  

 

The amount of attenuation for each optimized structure at different values of wavelength ratios are 

presented in Table 8-11, and the attenuation-ܴఒ curve is plotted in Figure 8-27. The attenuation ranges in 

Table 8-11 show that the minimum value of attenuation for the structure that is optimized for ܴఒ ൌ 0.25 

is 56% which is higher than the other structures; therefore, it can be recommended to use the structure 

with the vertical position string of “8-1-8” for attenuating the loads with the wavelength ratios of 0.125 to 

0.75.   
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The global attenuation range for the structure with ݊௫ ൌ 3 is from 20 to 68%. The minimum attenuation 

value (20%) occurs for the structure which is optimized for	ܴఒ ൌ 0.5 and is subjected to the load 

with	ܴఒ ൌ 0.25, while the maximum attenuation value (68%) relates to the structure that is optimized for 

ܴఒ ൌ 0.125 and is subjected to the load with the same value of	ܴఒ. It should be noted that the amount of 

attenuation decreases by increasing the value of wavelength ratio (ܴఒ) from 0.125 to 0.375, while it 

increases by increasing the value of wavelength ratio (ܴఒ) from 0.5 to 0.75.  

Table 8-11 Attenuation at the optimized non-collinear structures for different ࣅࡾ values, ࢞ ൌ  

Attenuation at 
ܴఒ (%) 

Optimized for ܴఒ: 

0.125 0.250  0.375  0.500  0.625 0.750 

0.125 68 64 53 24 29 29 
0.250 54 61 48 20 41 41 
0.375 59 59 60 50 51 51 
0.500 50 59 57 61 54 54 
0.625 52 56 56 61 62 62 
0.750 51 58 56 63 65 65 

Range (%) 50-68 56-64 48-60 20-63 29-65 29-65 
 

 

Figure 8-27 Attenuation vs. ࢞ non-collinear structure with ,ࣅࡾ ൌ  
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8.5.4 Non-collinear stress wave attenuator with ࢞ ൌ  

The optimization zone for the non-collinear stress wave attenuator with ݊௫ ൌ 4 is shown in Figure 8-28. 

The solution space for this problem is composed of 8ସ ൌ 4096 combinations and an exhaustive search is 

performed to find the best solution for each value of the wavelength ratio. The optimized vertical position 

string for this structure is composed of four numbers and it is presented in Table 8-12. Schematics of the 

optimal designs and their corresponding force histories at the boundary are depicted in Figure 8-29 and 

Figure 8-30, respectively.  

 

Figure 8-28 Optimization zone for the non-collinear structure with ࢟ ൌ ૡ and ࢞ ൌ  

According to Figure 8-29 and Figure 8-30, the results of the exhaustive search for the structure with 

݊௫ ൌ 4 can be explained as follows: 

 For	ܴఒ ൌ 0.125 and 0.25, the vertical position string (݊௬) for the optimized structure is 8-5-2-8, and 

the amount of attenuation at the boundary of each structure is 82 and 75%, respectively. 

 For	ܴఒ ൌ 0.375 and 0.5, the vertical position string (݊௬) for the optimized structure is 7-2-8-1, and 

the amount of attenuation at the boundary of each structure is 73 and 70%, respectively. 

 For	ܴఒ ൌ 0.625 and 0.75 the vertical position string (݊௬) for the optimized structure is 7-1-8-5, and 

the amount of attenuation at the boundary of each structure is 73 and 76%, respectively. 

Table 8-12 Optimized vertical position string for the non-collinear structure with ࢞ ൌ  

ܴఒ 0.125 0.250 0.375 0.500 0.625 0.750 

݊௬ 8-5-2-8 8-5-2-8 7-2-8-1 7-2-8-1 7-1-8-5 7-1-8-5 

 



 

130 
 

 

Figure 8-29 Optimal design of the non-collinear stress wave attenuators, ࢞ ൌ  
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Figure 8-30 Force history at the boundary of the optimized non-collinear structures with ࢞ ൌ  

The amount of attenuation for each optimized structure at different values of wavelength ratios are 

presented in Table 8-13 and the attenuation-ܴఒ curve is plotted in Figure 8-31. The attenuation ranges in 

Table 8-13 show that the minimum value of attenuation for the structure that is optimized for ܴఒ ൌ 0.375 

and 0.5 is 65% which is higher than the other structures; therefore, it can be recommended to use the 

structure with the vertical position string of “7-2-8-1” for attenuating the loads with the wavelength ratios 

of 0.125 to 0.75.   
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The global attenuation range for the structure with ݊௫ ൌ 4 is from 52 to 82%. The minimum attenuation 

value (52%) occurs for the structure which is optimized for	ܴఒ ൌ 0.625 and is subjected to the load 

with	ܴఒ ൌ 0.125, while the maximum attenuation value (82%) relates to the structure that is optimized 

for ܴఒ ൌ 0.125 and is subjected to the load with the same value of	ܴఒ. Similar to the structure with	݊௫ ൌ

3, the amount of attenuation decreases by increasing the value of wavelength ratio (ܴఒ) from 0.125 to 

0.375, while it increases by increasing the value of	ܴఒ from 0.5 to 0.75. 

Table 8-13 Attenuation at the optimized non-collinear structures for different ࣅࡾ values, ࢞ ൌ  

Attenuation at 
ܴఒ (%) 

Optimized for ܴఒ: 

0.125 0.250  0.375  0.500  0.625 0.750 

0.125 82 82 65 65 52 52 
0.250 75 75 69 69 60 60 
0.375 70 70 73 73 65 65 
0.500 66 66 70 70 69 69 
0.625 64 64 70 70 73 73 
0.750 61 61 68 68 76 76 

Range(%) 61-82 61-82 65-73 65-73 52-76 52-76 
 

 

Figure 8-31 Attenuation vs. ࢞ non-collinear structure with ,ࣅࡾ ൌ  
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8.5.5 Non-collinear stress wave attenuator with ࢞ ൌ  

The optimization zone for the non-collinear stress wave attenuator with ݊௫ ൌ 5 is shown in Figure 8-32. 

The solution space for this problem is composed of 8ହ ൌ 32768 combinations and it is very time 

consuming to perform an exhaustive search for finding the best solution. Therefore, the developed GA-FE 

optimization methodology is utilized for finding the optimal design of the structures. An integer-valued 

GA is performed for each wavelength ratio with 5 integer variables with lower and upper bounds of 1 and 

8, respectively. The details of the GA are similar to the optimization of the collinear structures. The 

population size and function tolerance are 100 and 1E-6, respectively.   

The optimized vertical position string for this structure is composed of five numbers and it is presented in 

Table 8-14. Schematic of the optimal designs (with their attenuation capacity) and their corresponding 

force histories at the boundary are depicted in Figure 8-33 and Figure 8-34, respectively.   

 

 

Figure 8-32 Optimization zone for the non-collinear structure with ࢟ ൌ ૡ and ࢞ ൌ  

Considering the results presented in Figure 8-33 and Figure 8-34, the outcome of the GA optimization for 

the structure with ݊௫ ൌ 5 can be explained as follows: 

 For	ܴఒ ൌ 0.125, the vertical position string (݊௬) for the optimized structure is 8-1-6-1-6, and the 

amount of attenuation at the boundary is 81%. 

 For	ܴఒ ൌ 0.25, the vertical position string (݊௬) for the optimized structure is 8-1-7-1-8, and the 

amount of attenuation at the boundary is 82%. 

 For	ܴఒ ൌ 0.375, the vertical position string (݊௬) for the optimized structure is 8-3-8-4-5, and the 

amount of attenuation at the boundary is 78%. 



 

134 
 

 For	ܴఒ ൌ 0.5, 0.625 and	0.75, the vertical position string (݊௬) for the optimized structure is 8-2-5-3-

8, and the amount of attenuation at the boundary of each structure is 83, 82, and 82%, respectively. 

 

Table 8-14 Optimized vertical position string for the non-collinear structure with ࢞ ൌ  

ܴఒ 0.125 0.250 0.375 0.500 0.625 0.750 

݊௬ 8-1-6-1-6 8-1-7-1-8 8-3-8-4-5 8-2-5-3-8 8-2-5-3-8 8-2-5-3-8 

 

 

 

Figure 8-33 Optimal design of the non-collinear stress wave attenuators, ࢞ ൌ  
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Figure 8-34 Force history at the boundary of the optimized non-collinear structures with ࢞ ൌ  

The amount of attenuation, for each optimized structure at different values of wavelength ratios, is 

presented in Table 8-15 and the attenuation-ܴఒ curve is plotted in Figure 8-35. The attenuation ranges in 

Table 8-15 show that the minimum value of attenuation for the structure that is optimized for ܴఒ ൌ

0.5, 0.625, and 0.75 is 78% which is higher than the other structures; therefore, it can be recommended to 

use the structure with the vertical position string of “8-2-5-3-8” for attenuating the transient loadings with 

the wavelength ratios of 0.125 to 0.75.   
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The global attenuation range for the structure with ݊௫ ൌ 5 is 56-83%. The minimum attenuation value 

(56%) occurs at the structure which is optimized for	ܴఒ ൌ 0.125 and is subjected to the load with	ܴఒ ൌ

0.75, while the maximum attenuation value (83%) happens at the structure that is optimized for ܴఒ ൌ

0.5, 0.625, and 0.75 and is subjected to the loading with the same value of	ܴఒ.  

To check the efficiency of the developed GA procedure, the amount of attenuation in a structure which 

has the vertical position string of “8-1-8-1-8” is found for various values of ܴఒ and presented in Table 8-

15. This structure has the maximum length of the optimization zone, and one might predict that it can 

have the highest attenuation capacity. However, the results show that, for all of the wavelength ratios, this 

structure has lower amount of attenuation in comparison to the optimized structures, which proves the 

efficiency of the GA optimization procedure.  

 

Table 8-15 Attenuation at the optimized non-collinear structures for different ࣅࡾ values, ࢞ ൌ  

Attenuation at ܴఒ 
(%) 

Optimized for ܴఒ: 
Arrangement  

8‐1‐8‐1‐8 0.125 0.250  0.375  0.500  0.625 0.750 

0.125 81 77 66 80 80 80 79 
0.250 74 82 72 77 77 77 74 
0.375 70 82 78 78 78 78 70 
0.500 63 78 77 83 83 83 72 
0.625 60 74 75 82 82 82 76 
0.750 56 72 73 82 82 82 76 

Range (%) 56-81 72-82 66-78 78-83 78-83 78-83 70-79 
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Figure 8-35 Attenuation vs. ࣅࡾ, non-collinear structure with ࢞ ൌ   
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8.5.6 Non-collinear stress wave attenuator with ࢞ ൌ  

The optimization zone for the non-collinear stress wave attenuator with ݊௫ ൌ 6 is shown in Figure 8-36. 

The solution space for this problem is composed of 8 ൌ 262,144 combinations and the GA optimization 

methodology is utilized for the optimal design of the structures. An integer-valued GA is performed for 

each wavelength ratio with 6 integer variables with lower and upper bounds of 1 and 8, respectively. The 

population size and function tolerance of GA are 100 and 1E-6, respectively.   

The optimized vertical position string for this structure is composed of 6 numbers and is presented in 

Table 8-16. Schematic of the optimal designs (with their attenuation capacity) and their corresponding 

force histories at the boundary are depicted in Figure 8-37 and Figure 8-38, respectively.    

 

Figure 8-36 Optimization zone for the non-collinear structure with ࢟ ൌ ૡ and ࢞ ൌ  

 

According to Figure 8-37 and Figure 8-38, the results of the GA optimization for the structure with 

݊௫ ൌ 6 can be explained as follows: 

 For	ܴఒ ൌ 0.125, the vertical position string (݊௬) for the optimized structure is 8-1-5-7-1-8, and the 

amount of attenuation at the boundary is 86%. 

 For	ܴఒ ൌ 0.25, the vertical position string (݊௬) for the optimized structure is 8-1-7-6-1-8, and the 

amount of attenuation at the boundary is 85%. 

 For	ܴఒ ൌ 0.375, the vertical position string (݊௬) for the optimized structure is 8-1-4-3-2-8, and the 

amount of attenuation at the boundary is 85%. 

 For	ܴఒ ൌ 0.5, the vertical position string (݊௬) for the optimized structure is 8-2-4-3-2-8, and the 

amount of attenuation at the boundary is 85%. 
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 For	ܴఒ ൌ 0.625, the vertical position string (݊௬) for the optimized structure is 8-1-4-3-1-8, and the 

amount of attenuation at the boundary is 84%. 

 For	ܴఒ ൌ 0.75, the vertical position string (݊௬) for the optimized structure is 7-3-8-1-7-8, and the 

amount of attenuation at the boundary is 84%. 

Table 8-16 Optimized vertical position string for the non-collinear structure with ࢞ ൌ  

ܴఒ 0.125 0.250 0.375 0.500 0.625 0.750 

݊௬ 8-1-5-7-1-8 8-1-7-6-1-8 8-1-4-3-2-8 8-2-4-3-2-8 8-1-4-3-1-8 7-3-8-1-7-8 

 

Figure 8-37 Optimal design of the non-collinear stress wave attenuators, ࢞ ൌ  
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Figure 8-38 Force history at the boundary of the optimized non-collinear structures with ࢞ ൌ  

The amounts of attenuation for each optimized structure at different values of wavelength ratios are 

presented in Table 8-17, and the attenuation-ܴఒ curve is plotted in Figure 8-39. The attenuation ranges in 

Table 8-17 show that the minimum value of attenuation for the structure that is optimized for ܴఒ ൌ 0.5 is 

82%, which is higher than the other structures; therefore, it can be recommended to use the structure with 

the vertical position string of “8-2-4-3-2-8” for attenuating the loads with the wavelength ratios of 0.125 

to 0.75.   
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The global attenuation range for the structure with ݊௫ ൌ 6 is from 74 to 86%. The minimum attenuation 

value (74%) occurs at the structure which is optimized for	ܴఒ ൌ 0.125 and is subjected to the load 

with	ܴఒ ൌ 0.75, while the maximum attenuation value (86%) happens at the structure that is optimized 

for ܴఒ ൌ 0.375 and is subjected to the load with the same value of	ܴఒ.  

The attenuation values for the structure with the vertical position string of “8-1-8-1-8-1” are presented in 

Table 8-17, and it is obvious that this structure has a significantly lower attenuation capacity in 

comparison to the optimized configurations.    

 

Table 8-17 Attenuation at the optimized non-collinear structures for different ࣅࡾ values, ࢞ ൌ  

Attenuation at 
ܴఒ (%) 

Optimized for ܴఒ: 
Arrangement  

8‐1‐8‐1‐8‐1 0.125 0.250  0.375  0.500  0.625 0.750 

0.125 86 84 84 83 82 73 77 
0.250 76 85 86 83 81 74 72 
0.375 76 82 85 82 82 78 70 
0.500 76 83 83 85 83 80 71 
0.625 75 82 81 83 84 82 69 
0.750 74 79 79 82 83 84 67 

Range (%) 74-86 79-85 79-86 82-85 81-84 73-84 67-77 
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Figure 8-39 Attenuation vs. ࢞ non-collinear structure with ,ࣅࡾ ൌ  
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8.5.7 Non-collinear stress wave attenuator with ࢞ ൌ ૠ 

The optimization zone for the non-collinear stress wave attenuator with ݊௫ ൌ 7 is shown in Figure 8-40. 

The solution space for this problem is composed of 8 ൌ 2,097,152 combinations, and the GA 

optimization procedure is utilized for the optimal design. An integer-valued GA is performed for each 

wavelength ratio with 7 integer variables with lower and upper bounds of 1 and 8, respectively. The 

population size and function tolerance of GA are 100 and 1E-6, respectively.   

The optimized vertical position string for this structure is composed of 7 numbers and it is presented in 

Table 8-18. Schematic of the optimal designs (with their attenuation capacity) and their corresponding 

force histories at the boundary are depicted in Figure 8-41 and Figure 8-42.   

 

Figure 8-40 Optimization zone for the non-collinear structure with ࢟ ൌ ૡ and ࢞ ൌ ૠ 

The results of the GA optimization for the structure with ݊௫ ൌ 7 can be explained as follows (see Figure 

8-41 and Figure 8-42): 

 For	ܴఒ ൌ 0.125, the vertical position string (݊௬) for the optimized structure is 8-1-5-1-7-1-8, and the 

amount of attenuation at the boundary is 89%. 

 For	ܴఒ ൌ 0.25, the vertical position string (݊௬) for the optimized structure is 8-1-3-1-7-1-8, and the 

amount of attenuation at the boundary is 90%. 

 For	ܴఒ ൌ 0.375, the vertical position string (݊௬) for the optimized structure is 8-1-4-5-7-1-8, and the 

amount of attenuation at the boundary is 89%. 

 For	ܴఒ ൌ 0.5, the vertical position string (݊௬) for the optimized structure is 8-1-4-5-7-1-8, and the 

amount of attenuation at the boundary is 89%. 
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 For	ܴఒ ൌ 0.625, the vertical position string (݊௬) for the optimized structure is 4-1-8-6-8-1-8, and the 

amount of attenuation at the boundary is 89%. 

 For	ܴఒ ൌ 0.75, the vertical position string (݊௬) for the optimized structure is 8-3-8-1-3-1-8, and the 

amount of attenuation at the boundary is 88%. 

Table 8-18 Optimized vertical position string for the non-collinear structure with ࢞ ൌ ૠ 

ܴఒ 0.125 0.250 0.375 0.500 0.625 0.750 

݊௬ 8-1-5-1-7-1-8 8-1-3-1-7-1-8 8-1-4-5-7-1-8 8-1-4-5-7-1-8 4-1-8-6-8-1-8 8-3-8-1-3-1-8 

 

Figure 8-41 Optimal design of the non-collinear stress wave attenuators, ࢞ ൌ ૠ 
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Figure 8-42 Force history at the boundary of the optimized non-collinear structures with ࢞ ൌ ૠ 

The amounts of attenuation for each optimized structure at different values of wavelength ratios are 

presented in Table 8-19 and the attenuation-ܴఒ curve is plotted in Figure 8-43. The attenuation ranges in 

Table 8-19 show that the minimum value of attenuation for the structure that is optimized for ܴఒ ൌ

0.25, 0.375, and 0.5 is 85% which is higher than the other structures; therefore, it can be recommended to 

use the structure with the vertical position strings of “8-1-3-1-7-1-8” and “8-1-4-5-7-1-8” for attenuating 

the loads with the wavelength ratios of 0.125 to 0.75.   
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The global attenuation range for the structure with ݊௫ ൌ 7 is 80-90%. The minimum attenuation value 

(80%) occurs at the structure which is optimized for	ܴఒ ൌ 0.75 and is subjected to the load with	ܴఒ ൌ

0.125, while the maximum attenuation value (90%) relates to the structure that is optimized for ܴఒ ൌ

0.25 and is subjected to the load with the same value of	ܴఒ.  

The attenuation values for the structure with the vertical position string of “8-1-8-1-8-1-8” are presented 

in Table 8-19. The results show that the optimized structures have much higher attenuation capacity.  

 

 

Table 8-19 Attenuation at the optimized non-collinear structures for different ࣅࡾ values, ࢞ ൌ ૠ 

Attenuation at ܴఒ 
(%) 

Optimized for ܴఒ: 
Arrangement  

8‐1‐8‐1‐8‐1‐8 0.125 0.250  0.375  0.500  0.625 0.750 

0.125 89 86 88 88 85 80 82 

0.250 87 90 88 88 83 85 73 
0.375 83 89 89 89 87 85 69 
0.500 84 86 89 89 90 86 73 
0.625 84 86 87 87 89 87 80 
0.750 84 85 85 85 88 88 80 

Range (%) 83-89 85-90 85-89 85-89 83-90 80-88 69-82 
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Figure 8-43 Attenuation vs. ࣅࡾ, non-collinear structure with ࢞ ൌ ૠ 
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8.5.8 Non-collinear stress wave attenuator with ࢞ ൌ ૡ 

The optimization zone for the non-collinear stress wave attenuator with ݊௫ ൌ 8 is shown in Figure 8-44. 

The solution space for this problem is composed of 8଼ ൌ 16,777,216 combinations and the GA 

optimization methodology is utilized for the optimal design. An integer-valued GA is performed for each 

wavelength ratio with 8 integer variables with lower and upper bounds of 1 and 8, respectively. The 

population size and function tolerance of GA are 100 and 1E-6, respectively.   

The optimized vertical position string for this structure is composed of 8 numbers, and it is presented in 

Table 8-20. Schematic of the optimal designs (with their attenuation capacity) and their corresponding 

force histories at the boundary are depicted in Figure 8-45 and Figure 8-46.   

 

Figure 8-44 Optimization zone for the non-collinear structure with ࢟ ൌ ૡ and ࢞ ൌ ૡ 

According to Figure 8-45 and Figure 8-46, the results of the GA optimization for the structure with 

݊௫ ൌ 8 can be explained as follows: 

 For	ܴఒ ൌ 0.125, the vertical position string (݊௬) for the optimized structure is 8-1-7-5-8-6-1-8, and 

the amount of attenuation at the boundary is 91%. 

 For	ܴఒ ൌ 0.25, the vertical position string (݊௬) for the optimized structure is 8-1-8-1-8-1-3-8, and the 

amount of attenuation at the boundary is 91%. 

 For	ܴఒ ൌ 0.375, the vertical position string (݊௬) for the optimized structure is 8-1-7-5-8-3-1-5, and 

the amount of attenuation at the boundary is 89%. 

 For	ܴఒ ൌ 0.5, the vertical position string (݊௬) for the optimized structure is 8-1-1-8-1-7-1-8, and the 

amount of attenuation at the boundary is 90%. 

 For	ܴఒ ൌ 0.625, the vertical position string (݊௬) for the optimized structure is 8-1-4-8-1-5-1-8, and 

the amount of attenuation at the boundary is 90%. 
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 For	ܴఒ ൌ 0.75 the vertical position string (݊௬) for the optimized structure is 8-1-8-8-1-5-1-8, and the 

amount of attenuation at the boundary is 90%. 

Table 8-20 Optimized vertical position string for the non-collinear structure with ࢞ ൌ ૡ 

ܴఒ 0.125 0.250 0.375 0.500 0.625 0.750 

݊௬ 8-1-7-5-8-6-1-8 8-1-8-1-8-1-3-8 8-1-7-5-8-3-1-5 8-1-1-8-1-7-1-8 8-1-4-8-1-5-1-8 8-1-8-8-1-5-1-8 

 

 

Figure 8-45 Optimal design of the non-collinear stress wave attenuators, ࢞ ൌ ૡ 
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Figure 8-46 Force history at the boundary of the optimized non-collinear structures with ࢞ ൌ ૡ 

The amounts of attenuation for each optimized structure at different values of wavelength ratios are 

presented in Table 8-21 and the attenuation-ܴఒ curve is plotted in Figure 8-47. The attenuation ranges in 

Table 8-21 show that the minimum value of attenuation for the structure that is optimized for ܴఒ ൌ 0.25	 

is 89% which is higher than the other structures; therefore, it can be recommended to use the structure 

with the vertical position string of “8-1-8-1-8-1-3-8” for attenuating the loads with the wavelength ratios 

of 0.125 to 0.75.   
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The global attenuation range for the structure with ݊௫ ൌ 8 is 82-91%. The minimum attenuation value 

(82%) occurs for the structure which is optimized for	ܴఒ ൌ 0.375 and is subjected to the load with	ܴఒ ൌ

0.75, while the maximum attenuation value (91%) relates to the structure that is optimized for ܴఒ ൌ 0.25 

and is subjected to the load with the same value of	ܴఒ.  

The attenuation values for the structure with the vertical position string of “8-1-8-1-8-1-8-1” are presented 

in Table 8-21. The results show that the optimized structures have much higher attenuation capacity. 

 

Table 8-21 Attenuation at the optimized non-collinear structures for different ࣅࡾ values, ࢞ ൌ ૡ 

Attenuation at 
ܴఒ (%) 

Optimized for ܴఒ: 
Arrangement   

8‐1‐8‐1‐8‐1‐8‐1 0.125 0.250  0.375  0.500  0.625 0.750 

0.125 91 90 86 85 90 84 78 
0.250 90 91 90 89 89 83 76 
0.375 88 89 89 90 87 87 73 
0.500 87 90 87 90 89 88 78 
0.625 86 90 85 89 90 89 80 
0.750 84 89 82 86 89 90 81 

Range (%) 84-91 89-91 82-90 85-90 87-90 83-90 73-81 
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Figure 8-47 Attenuation vs. ࣅࡾ, non-collinear structure with ࢞ ൌ ૡ 

 

8.5.9 Effect of ࢞ on the attenuation capacity  

The attenuation range for the non-collinear stress wave attenuators with various values of ݊௫ are 

presented in Table 8-22. The numbers show that the attenuation capacity increases significantly by 

increasing	݊௫, and more robust solutions can be obtained for higher values of	݊௫.  

Table 8-22 Attenuation range for various  ࢞ values 

݊௫ 1 2 3 4 5 6 7 8 
Attenuation 
range (%) 

-10 to 27 5 to 48 20 to 68 52 to 82 56 to 83 74 to 86 80 to 90 82 to 91 

 

 

8.6 Summary 

The optimal design of the non-collinear stress wave attenuators is explored in this section. Two types of 

non-collinear structures were thoroughly studied—namely, multi-layered diamond shape structure with 

constant geometry and single layered structure with varying non-collinear segments. It was observed that 

the multi-layered structures have very high attenuation capacity in comparison to the collinear structures 

because of the existence of the flexural waves. A very good amount of attenuation is also achieved with 

single-layered structures, especially for higher values of the vertical positions,	݊௫. The major amount of 

attenuation in non-collinear structures happens due to the existence of angled joints. The angled joints 
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generate new reflected and transmitted waves within the structure, and the developed optimization 

methodology tries to arrange them in a configuration that can provide high amount of attenuation. 

The results of this section show that the developed GA-FE tool is very efficient for designing the non-

collinear stress wave attenuators, and robust structures can be obtained for a wide range of frequencies.  
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SECTION 9 

STRESS WAVE ATTENUATION IN POROUS PLATES 

 

9.1 Introduction 

The optimal design of the non-collinear stress wave attenuators was studied in the previous section, and it 

was found that the geometry optimization can be very effective in mitigating the stress waves within the 

structures that are made of a single material.  

In this section, this concept will be examined for two-dimensional (2D) structures (plates) with circular 

holes. These holes are the geometric discontinuities which affect the wave propagation characteristics of 

the plates and they can attenuate the stress waves if they are arranged in appropriate patterns. To do so, 

the developed heuristic optimization methodology will try to spread the circular holes with various 

diameters within the area of a plate (optimization zone) to find the most mitigating configuration. In the 

following, a detailed procedure for the geometric optimization of the structures with circular holes will be 

explained and the optimization results will be presented for the plates with various dimensions.   

 

9.2 Geometry optimization of porous plates for stress wave attenuation  

In this section, it will be shown how the dimensions and positions of the circular holes can be optimized 

for stress wave mitigation in plates. These plates are made of a single material (Aluminum in this 

research), and are called “2D porous stress wave attenuators”.  

To introduce the geometry optimization procedure for designing 2D porous stress wave attenuators 

consider the structure that is shown in Figure 9-1. This structure is an Aluminum plate with the length and 

height of ܮ௫ and	ܮ௬, respectively. A transient load is applied to the left hand side of the plate and the 

structure is clamped at the right hand side. To perform the optimal design procedure, the whole area of the 

plate is considered as the “optimization zone“, and it is divided into ݊௫ ൌ ݊ (along x-axis) and ݊௬ ൌ ݉ 

(along y-axis) parts to generate a grid with an	݊ ൈ ݉ rectangular segments. It is assumed that there are ݎ 

different diameter coefficients (ߙ) available for the circular holes, which can be used for finding the 

diameters using:  

݅ܦ ൌ (1 .9) ݄݅ߙ
 



 

156 
 

where, ݄ is the minimum dimension of the rectangular segments.  For each segment along the x-axis (݊௫), 

the developed GA optimization methodology will try to select one rectangular segment in the vertical 

direction (݊௬) and a diameter coefficient (ߙ). Therefore, two optimization strings will be generated: 

“position string” and “diameter string”. The position string consists of ݊ integer numbers with the lower 

and upper bounds of 1 and	݉, respectively. Similarly, the diameter string is formed of ݊ integer numbers 

with the lower and upper bounds of 1 and	ݎ. After defining the optimization strings, the developed GA-FE 

tool will insert the holes with the selected diameters into the selected segments to generate the geometry 

of the 2D porous stress wave attenuator. Figure 9-2 provides an example for a plate with the width of ܮ௫ 

and height of ቀ
ଷ

଼
ቁ  ௫ which is divided into 8 and 3 square segments along the horizontal and verticalܮ

directions, respectively. There are four diameter coefficients available for this structure (ݎ ൌ 4) and the 

figure depicts the 2D porous stress wave attenuator with the position string of “1-3-3-1-2-2-1-3” and 

diameter string of “1-4-4-2-3-1-1-4”.   

 

Figure 9-1 Concept of geometry optimization for 2D porous stress wave attenuators 

It should be noted that for a plate with ݊ ൈ ݉ grid and ݎ diameter coefficients, the solution space contains 

ሺ݉ ൈ  ሻ combinations and a GA optimization can be performed with 2݊ integer variables with theݎ

bounds of ሾ1,݉ሿ for the variables 1 to ݊ and ሾ1, ݊ ሿ for the variablesݎ  1 to	2݊. For the example shown 

in Figure 9-2, the GA optimization should be performed with 16 integer variables. The lower and upper 

bounds of the first 8 variables are 1 and 3, while for the variables 9 to 16 these bounds are 1 and 4, 

respectively.    
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Figure 9-2 Example for geometry optimization of 2D porous stress wave attenuators 

In the following sections, the optimal design of the 2D porous stress wave attenuators will be pursued for 

different grid and diameter numbers. It is assumed that all of the plates are made of Aluminum (with the 

properties as shown in Table 7.1) with the width (ܮ௫) of 30.48cm (12in), and there are four different 

values available for the height (ܮ௬) of the plates which are:	ܮ௫ 8⁄ ௫ܮ	, 4⁄ ௫ܮ3	, 8⁄ , and ܮ௫ 2⁄ . In addition, it 

is assumed that four different diameter coefficients (ߙ) are available for the circular holes with the values 

of 0.15, 0.30, 0.45, and 0.6. The thicknesses of the plates are chosen to be	ܮ௫ 190.5⁄ ൌ 0.16ܿ݉, which is 

small enough to perform plane stress analysis.  

For all of the structures, the number of horizontal segments in the optimization zone (݊௫) and the number 

of diameter coefficients are kept to be eight and four, respectively, and optimization is performed for 

different values of ݊௬ which are changing from 1 to 4. Unlike the non-collinear structures, no exhaustive 

search is performed for 2D porous stress wave attenuators because the solution spaces are quite large as 

the optimal design of these structures requires one extra optimization variable in addition to the grid 

variables, which is the diameter coefficient.  

Each structure is subjected to 6 different wavelength ratios (ܴఒ) ranging from 0.125 to 0.75 with the steps 

of 0.125. The duration of the half-sine pulses (corresponding to these wavelength ratios) are presented in 

Table 9-1. These values are calculated by substituting the shear wave speed of Aluminum in Equation 7.1. 

The shear wave speed in Aluminum is: 

௦ܸ ൌ ට
ா

ଶఘሺଵାణሻ
ൌ ට

଼.ଽாଽ

ଶൈଶൈሺଵା.ଷଷሻ
ൌ 3097.3



௦
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In the following sections the design parameters for 2D porous stress wave attenuators will be introduced, 

and the optimized configurations for the structures with different values of ݊௬ will be presented in detail. 

Table 9-1 Wavelength ratios and duration of the applied pulses on the 2D porous stress wave 
attenuators 

Wavelength ratio 
(ܴఒ) 

 ௦ܥ
ሺ݉ ⁄ܿ݁ݏ ሻ 

Duration of the sine pulse 
 (ܿ݁ݏ)

Duration of the half-sine pulse 
 (ܿ݁ݏ)

0.125 3097 2.46E-05 1.23E-05 

0.250 3097 4.92E-05 2.46E-05 

0.375 3097 7.38E-05 3.69E-05 

0.500 3097 9.84E-05 4.92E-05 

0.625 3097 1.23E-04 6.15E-05 

0.750 3097 1.48E-04 7.38E-05 

 

9.3 Design parameters for 2D porous stress wave attenuators 

A schematic of a 2D porous stress wave attenuator and its corresponding design parameters are shown in 

Figure 9-3. The in-plane dimension parameter (ܴ) of this structure is	݄ ⁄ܮ . Since the thickness of the 

plate (out-of-plane dimension) is small comparing to the other dimensions of the plate, plane stress (PS) 

analysis is performed. Similar to the other stress wave attenuators, the rigidity of the host structure ܴ is 

assumed to be infinity. As shown in Figure 9-3, this type of stress wave attenuator is not a layered 

structure; however, the impedance mismatch ratio (ܴூ) can be considered as the ratio of the impedance 

of the circular holes (ܼூ) over the impedance of the plate (ܼ), which is zero. As mentioned above, the 

structures are optimized for 6 different wavelength ratios (ܴఒ) with the values of 0.125, 0.25, 0.375, 0.5, 

0.625, and 0.75.  
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Figure 9-3 Schematic of a 2D porous stress wave attenuator and its design parameters 

The general optimization procedure is similar to the non-collinear stress wave attenuators, and integer-

valued GA optimization is performed using MATLAB. The fitness function of the GA is calculated by 

employing the Python Abaqus scripts, and the structures are modeled with 4-node bilinear plane stress 

quadrilateral elements from the Abaqus element library (element CPS4R). 

Thus far, the amount of attenuation that can be achieved by stress wave attenuators was calculated by 

comparing the maximum amplitude of the force at the boundary with the amplitude of the applied 

transient load. However, this is not appropriate for 2D porous stress wave attenuators as the amount of the 

mitigation of the applied load is not significant for the loads with large wavelength ratios. Therefore, to 

provide a better description of the attenuation capacity of the porous structures, the amount of attenuation 

is calculated by comparing the maximum force amplitude at the boundary of the optimized structure with 

the maximum force amplitude at the boundary of a solid plate (with the same dimensions) with no holes: 

݊݅ݐܽݑ݊݁ݐݐܣ ሺ%ሻ ൌ ൬1 െ
ைܨ
ௌܨ

൰ ൈ 100 (9. 2)

 

where, ܨை and ܨௌ are the maximum amplitude at the boundary of the optimized and solid plates, 

respectively.   
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9.4 2D porous stress wave attenuators with ࢟ ൌ  

The optimization zone for the 2D porous stress wave attenuator with ݊௬ ൌ 1 is shown in Figure 9-4. The 

solution space for this problem is composed of ሺ1 ൈ 4ሻ଼ ൌ 65,536 combinations and GA optimization 

procedure is utilized for the optimal design. In fact, since there is only one segment available in the 

vertical direction (for each x value), the position string is “1-1-1-1-1-1-1-1” and the diameter string 

should only be optimized. To do so, an integer-valued GA is performed for each wavelength ratio with 8 

integer variables with lower and upper bounds of 1 and 4, respectively. The population size and function 

tolerance of GA are 100 and 1E-6, respectively. 

The optimized diameter string for this structure is composed of eight numbers and it is presented in Table 

9-2. Schematics of the optimal designs (with their attenuation capacity) and their corresponding force 

histories at the boundary are depicted in Figure 9-5 and Figure 9-6, respectively. To provide a better 

comparison, the force histories at the boundary of a solid plate with similar dimensions are also depicted 

in Figure 9-6 for each value of	ܴఒ.  

 

 

Figure 9-4 Optimization zone for the 2D porous structure with ࢞ ൌ ૡ, ࢘ ൌ , and ࢟ ൌ  
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Table 9-2 Optimized diameter string for the 2D 
porous structure with ࢟ ൌ  

ܴఒ ݊ 

0.125 1-1-4-4-2-2-4-4 
0.25 1-1-4-4-1-1-4-4 
0.375 1-1-4-4-1-1-4-4 
0.5 1-1-1-4-1-1-4-4 

0.625 1-1-1-4-1-1-4-4 
0.75 1-1-1-4-4-4-4-4 

 

The ratio of the amplitude of the boundary force over the amplitude of the applied transient load ܨ ⁄ܨ  is 

presented in Table 9-3 for different wavelength ratios. Using this table, the amount of attenuation for each 

optimized structure under the transient loadings with different wavelength ratios are presented in Table 9-

4. 

Examining Figure 9-5 and Figure 9-6 along with Table 9-4 shows that the results of the GA optimization 

for the porous structure with ݊௬ ൌ 1 can be explained as follows: 

 For	ܴఒ ൌ 0.125, the diameter string (݊) of the optimized structure is 1-1-4-4-2-2-4-4, and the ratio 

of the amplitude of the force at the boundary to the amplitude of loading (ܨ ⁄ܨ ) is 0.481. For a 

solid plate with no holes, the amount of  ܨ ⁄ܨ  is 1.409; therefore, the amount of attenuation that can 

be obtained with this optimized structure is	1 െ 0.481 1.409⁄ ൌ 66%.  

 For	ܴఒ ൌ 0.250, the diameter string (݊) of the optimized structure is 1-1-4-4-1-1-4-4, and the 

amplitude ratio (ܨ ⁄ܨ ) is 0.825. For a similar solid plate ܨ ⁄ܨ  is 2.042, and thus the amount of 

attenuation is 60%.  

 For	ܴఒ ൌ 0.375, the diameter string is similar to the structure that is optimized for	ܴఒ ൌ 0.250, 

which is 1-1-4-4-1-1-4-4. The amplitude ratios of the optimized and solid structures are 1.138 and 

2.053, respectively, and the amount of attenuation is 45%.  

 For	ܴఒ ൌ 0.5, the diameter string (݊) for the optimized structure is 1-1-1-4-1-1-4-4. The values of 

ܨ ⁄ܨ  for the optimized and solid structures are 1.428 and 2.093, respectively. The amount of 

attenuation is 32%.  

 For	ܴఒ ൌ 0.625, the diameter string is similar to the structure that is optimized for	ܴఒ ൌ 0.50, which 

is 1-1-1-4-1-1-4-4. ܨ ⁄	ܨ values for the optimized and solid plates are 1.524 and 2.022, respectively, 

which gives an attenuation value of 25%.  
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 For	ܴఒ ൌ 0.75, the diameter string (݊) for the optimized structure is 1-1-1-4-4-4-4-4, and ܨ ⁄	ܨ for 

the optimized and solid plates are 1.539 and 2.023, respectively.  The amount of attenuation for this 

structure is 24%.  

 

Figure 9-5 Optimal design of the 2D porous stress wave attenuators, ࢟ ൌ  
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Figure 9-6 Force history at the boundary of the optimized 2D porous structures with ࢟ ൌ  

The optimization results for the plate with ݊௬ ൌ 1 shows that in all of the structures, the first and the last 

holes have the smallest and largest diameters, respectively. Generally, it can be observed that the holes 

are repeated in a pattern in which the large holes are preceded by small holes. Moreover, in all of the 

structures, except the structure that is optimized for	ܴఒ ൌ 0.125, the holes have the smallest and largest 

available diameters. These observations are similar to the results that are obtained for the material 

optimization of the layered structures. In layered structures, it was observed that the optimized structures 

are generally composed of the materials with lowest and highest impedances, and the materials are 

usually arranged in a pattern that the wave passes from a high to low impedance medium. For the porous 

structures, the part of the structure that has a hole with a small diameter is similar to a high impedance 
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material as it behaves more stiffly. For the parts with larger holes, the stiffness is lower and thus the zones 

with large holes behave similar to the low impedance materials. 

 

Table 9-3 ࡲ ⁄ࡸࡲ  of the optimized structures for different values of  2D porous ,ࣅࡾ
structure (࢟ ൌ ) 

ܨ ⁄ܨ  at ܴఒ 

Optimized for ܴఒ: 

Solid plate 
0.125 0.250 0.375 0.500 0.625 0.750 

0.125 0.481 0.513 0.513 0.703 0.703 0.587 1.409 
0.250 0.876 0.825 0.825 1.085 1.085 0.872 2.042 
0.375 1.188 1.138 1.138 1.324 1.324 1.269 2.053 
0.500 1.442 1.43 1.43 1.428 1.428 1.484 2.093 
0.625 1.60 1.583 1.583 1.524 1.524 1.559 2.022 
0.750 1.70 1.692 1.692 1.642 1.642 1.539 2.023 

 

Table 9-4 Attenuation at the optimized 2D porous structures for different 
࢟) ,values ࣅࡾ ൌ ) 

Attenuation at 
ܴఒ (%) 

Optimized for ܴఒ: 

0.125 0.250 0.375 0.500 0.625 0.750 

0.125 66 64 64 50 50 58 
0.250 57 60 60 47 47 57 
0.375 42 45 45 36 36 38 
0.500 31 32 32 32 32 29 
0.625 21 22 22 25 25 23 
0.750 16 16 16 19 19 24 

Range (%) 16-66 16-64 16-64 19-50 19-50 23-58 
 

Using the attenuation values in Table 9-4, the attenuation-ܴఒ curve for the porous structure with ݊௬ ൌ 1 is 

plotted in Figure 9-7. The attenuation ranges in Table 9-4 show that the minimum value of attenuation for 

the structure that is optimized for ܴఒ ൌ 0.75 is 23% which is higher than the other structures; therefore, it 

can be recommended to use the structure with the diameter string of “1-1-1-4-4-4-4-4” for attenuating the 

loads with the wavelength ratios of 0.125 to 0.75.   
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The global attenuation range for the structure with ݊௬ ൌ 1 is 16 to 66%. The minimum attenuation value 

(16%) occurs for the structures which are optimized for	ܴఒ ൌ 0.125, 0.25, 0.375 and are subjected to the 

load with	ܴఒ ൌ 0.75, while the maximum attenuation value (66%) relates to the structure that is 

optimized for ܴఒ ൌ 0.125 and is subjected to the transient loading with the same value of	ܴఒ. 

 

 

Figure 9-7 Attenuation vs. ࢟ 2D Porous structure with ,ࣅࡾ ൌ  
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9.5 2D porous stress wave attenuators with ࢟ ൌ  

The optimization zone for the 2D porous stress wave attenuator with ݊௬ ൌ 2 is shown in Figure 9-8. The 

solution space for this problem is composed of ሺ2 ൈ 4ሻ଼ ൌ 16,777,216 combinations and GA 

optimization procedure is utilized for the optimal design. Unlike the structure with ݊௬ ൌ 1, both the 

position and diameter strings should be optimized for the structure with ݊௬ ൌ 2. To do so, an integer-

valued GA is performed for each wavelength ratio with 16 integer variables. The first 8 variables are 

related to the position of the holes, and since there are only two vertical positions available at each	݊௫, the 

lower and upper bounds are 1 and 2, respectively. Variables 9 to 16 are related to the diameter of the 

holes and their lower and upper bounds are 1 and 4.  Similar to the previous case, the population size and 

function tolerance of GA are 100 and 1E-6, respectively. 

The optimized position and diameter strings for this structure are presented in Table 9-5. Schematic of the 

optimal designs and their corresponding force histories at the boundary are depicted in Figure 9-9 and 

Figure 9-10.  To provide a better understanding of the behavior, the force histories at the boundary of a 

solid plate with similar dimensions are also depicted in Figure 9-10 for each value of	ܴఒ. The values of 

ܨ ⁄ܨ  and amount of attenuation at each porous plate are presented in Table 9-6 and Table 9-7. 

 

 

Figure 9-8 Optimization zone for the porous structure with ࢞ ൌ ૡ, ࢘ ൌ , and ࢟ ൌ  
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Table 9-5 Optimized position and diameter string for the 2D porous structure 
with ࢟ ൌ  

ܴఒ ݊௬ ݊ 

0.125 1-1-2-1-2-2-2-1 1-4-4-4-4-4-4-4 
0.25 1-1-2-1-2-1-2-1 1-1-4-4-4-3-4-4 
0.375 1-1-1-2-2-1-1-2 1-1-4-4-4-4-4-4 
0.5 1-1-1-1-2-2-2-1 1-1-4-4-4-4-4-4 

0.625 1-2-2-1-1-2-2-1 1-1-1-4-4-4-4-4 
0.75 2-2-2-2-2-1-2-1 1-1-1-4-1-4-4-4 

 

Figure 9-9 Optimal design of the 2D porous stress wave attenuators, ࢟ ൌ  

According to Figure 9-9 and Figure 9-10, Table 9-6 and Table 9-7, the results of the GA optimization for 

the porous structure with ݊௬ ൌ 2 can be explained as follows: 

 For	ܴఒ ൌ 0.125, the position (݊௬) and diameter (݊) strings for the optimized structure are 1-1-2-1-

2-2-2-1 and 1-4-4-4-4-4-4-4, respectively.  The ratio of the amplitude of the force at the boundary to 

the amplitude of the loading (ܨ ⁄ܨ ) is 0.547. For a solid plate with no holes, the amount of  ܨ ⁄ܨ  

is 1.232; therefore, the amount of attenuation that can be obtained with the optimized structure 

is	1 െ 0.547 1.232⁄ ൌ 56%.  
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 For	ܴఒ ൌ 0.250, the position (݊௬) and diameter (݊) strings for the optimized structure are 1-1-2-1-

2-1-2-1 and 1-1-4-4-4-3-4-4, respectively. The amplitude ratio (ܨ ⁄ܨ ) for the optimized and solid 

structures and the amount of attenuation are 0.916, 1.516, and 40%, respectively. 

 For	ܴఒ ൌ 0.375, the position (݊௬) and diameter (݊) strings for the optimized structure are 1-1-1-2-

2-1-1-2 and 1-1-4-4-4-4-4-4, respectively. The amplitude ratio (ܨ ⁄ܨ ) for the optimized and solid 

structures and the amount of attenuation are 1.263, 1.930, and 35%, respectively. 

 For	ܴఒ ൌ 0.5, the position (݊௬) and diameter (݊) strings for the optimized structure are 1-1-1-1-2-2-

2-1 and 1-1-4-4-4-4-4-4, respectively. The amplitude ratio (ܨ ⁄ܨ ) for the optimized and solid 

structures and the amount of attenuation are 1.581, 2.109, and 25%, respectively. 

 For	ܴఒ ൌ 0.625, the position (݊௬) and diameter (݊) strings for the optimized structure are 1-2-2-1-

1-2-2-1 and 1-1-1-4-4-4-4-4, respectively. The amplitude ratio (ܨ ⁄ܨ ) for the optimized and solid 

structures and the amount of attenuation are 1.709, 2.083, and 18%, respectively. 

 For	ܴఒ ൌ 0.75, the position (݊௬) and diameter (݊) strings for the optimized structure are 2-2-2-2-2-

1-2-1 and 1-1-1-4-1-4-4-4, respectively. The amplitude ratio (ܨ ⁄ܨ ) for the optimized and solid 

structures and the amount of attenuation are 1.735, 2.108, and 18%, respectively. 
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Figure 9-10 Force history at the boundary of the optimized 2D porous structures with ࢟ ൌ  

Similar to the structure with	݊௬ ൌ 1, it can be observed that the first and last holes of the optimized 

structures with ݊௬ ൌ 2 have the smallest and largest diameters. In addition, all of the optimized structures 

(except the structure which is optimized for	ܴఒ ൌ 0.25) contain the holes with the smallest and largest 

diameters.  
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Table 9-6 ࡲ ⁄ࡸࡲ  of the optimized structures for different values of  2D porous ,ࣅࡾ
structure (࢟ ൌ ) 

ܨ ⁄ܨ  at ܴఒ 

Optimized for ܴఒ: 

Solid plate 
0.125 0.250 0.375 0.500 0.625 0.750 

0.125 0.547 0.606 0.589 0.643 0.666 0.668 1.232 
0.250 0.994 0.916 0.984 1.047 1.059 1.021 1.516 
0.375 1.366 1.345 1.263 1.294 1.325 1.397 1.930 
0.500 1.718 1.656 1.579 1.581 1.585 1.630 2.109 
0.625 1.890 1.779 1.742 1.739 1.709 1.718 2.083 
0.750 1.953 1.828 1.804 1.781 1.735 1.735 2.108 

 

Table 9-7 Attenuation at the optimized 2D porous structures for different 
࢟) ,values ࣅࡾ ൌ ) 

Attenuation at 
ܴఒ (%) 

Optimized for ܴఒ: 

0.125 0.250 0.375 0.500 0.625 0.750 

0.125 56 51 52 48 46 46 
0.250 34 40 35 31 30 33 
0.375 29 30 35 33 31 28 
0.500 19 21 25 25 25 23 
0.625 9 15 16 17 18 18 
0.750 7 13 14 16 18 18 

Range (%) 7-56 13-51 14-52 16-48 18-46 18-46 
 

The attenuation-ܴఒ curve for the porous structure with ݊௬ ൌ 2 is plotted in Figure 9-11. This figure and 

the attenuation ranges in Table 9-7 show that the minimum value of attenuation for the structure that is 

optimized for ܴఒ ൌ 0.625 and 0.75 is 18% which is higher than the other structures; therefore, for the 

structure with ݊௬ ൌ 2, it can be recommended to use the optimized structures for ܴఒ ൌ 0.625 and 0.75 

for attenuating the loads with the wavelength ratios of 0.125 to 0.75.   

The global attenuation range for the structure with ݊௬ ൌ 2 is 7-56%. The minimum attenuation value 

(7%) occurs at the structure which is optimized for	ܴఒ ൌ 0.125 and is subjected to the loading with	ܴఒ ൌ

0.75, while the maximum attenuation value (56%) happens for the structure that is optimized for ܴఒ ൌ

0.125 and is subjected to the loading with the same value of	ܴఒ. 
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Figure 9-11 Attenuation vs. ࢟ 2D Porous structure with ,ࣅࡾ ൌ  
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9.6 2D porous stress wave attenuators with ܡܖ ൌ  

The optimization zone for the 2D porous stress wave attenuator with ݊௬ ൌ 3 is shown in Figure 9-12. The 

solution space for this problem is composed of ሺ3 ൈ 4ሻ଼ ൌ 429,981,696 combinations and the GA 

optimization procedure is utilized for the optimal design. Similar to the structure with	݊௬ ൌ 2, an integer-

valued GA is performed for each wavelength ratio with 16 integer variables. The first eight variables, 

which represent the position of the holes, have the lower and upper bound values of 1 and 3, respectively. 

Variables 9 to 16 are related to the diameter of the holes and their lower and upper bounds are 1 and 4. 

Similar to the previous case, the population size and function tolerance of GA are 100 and 1E-6, 

respectively. 

The optimized position and diameter strings for this structure are presented in Table 9-8. Schematics of 

the optimal designs (with their attenuation capacity) and their corresponding force histories at the 

boundary are depicted in Figure 9-13 and Figure 9-14, respectively.  To provide a better comparison, the 

force histories at the boundary of a solid plate with similar dimensions are also depicted in Figure 9-14 for 

each value of	ܴఒ. The values of ܨ ⁄ܨ  and amount of attenuation for each porous plate are presented in 

Table 9-9 and Table 9-10. 

 

 

Figure 9-12 Optimization zone for the porous structure with ࢞ ൌ ૡ, ࢘ ൌ , and ࢟ ൌ  
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Table 9-8 Optimized position and diameter string for the 2D porous structure 
with ࢟ ൌ  

ܴఒ ݊௬ ݊ 

0.125 3-2-3-1-3-1-2-3 4-4-4-4-4-4-4-4 
0.25 2-1-3-3-1-3-1-3 1-4-1-4-4-4-4-4 
0.375 2-1-1-2-1-3-2-1 1-1-4-4-4-4-4-4 
0.5 3-2-3-2-1-2-3-1 1-1-1-4-4-4-4-4 

0.625 1-2-2-3-2-1-2-3 1-1-4-4-4-4-4-4 
0.75 1-1-2-2-2-1-2-3 1-1-1-4-4-4-4-4 

 

Figure 9-13 Optimal design of the 2D porous stress wave attenuators, ࢟ ൌ  
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Figure 9-14 Force history at the boundary of the optimized 2D porous structures with ࢟ ൌ  

According to Figure 9-13, Figure 9-14, Table 9-9 and Table 9-10, the results of the GA optimization for 

the porous structure with ݊௬ ൌ 3 can be explained as follows: 

 For	ܴఒ ൌ 0.125, the position (݊௬) and diameter (݊) strings for the optimized structure are 3-2-3-1-

3-1-2-3 and 4-4-4-4-4-4-4-4, respectively.  The ratio of the amplitude of the force at the boundary to 

the amplitude of the loading (ܨ ⁄ܨ ) is 0.683. For a solid plate with no holes, the amount of  ܨ ⁄ܨ  

is 1.364; therefore, the amount of attenuation that can be obtained with the optimized structure 

is	1 െ 0.683 1.364⁄ ൌ 50%.  
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 For	ܴఒ ൌ 0.250, the position (݊௬) and diameter (݊) strings for the optimized structure are 2-1-3-3-

1-3-1-3 and 1-4-1-4-4-4-4-4, respectively. The amplitude ratio (ܨ ⁄ܨ ) for the optimized and solid 

structures and the amount of attenuation are 1.015, 1.514, and 33%, respectively. 

 For	ܴఒ ൌ 0.375, the position (݊௬) and diameter (݊) strings for the optimized structure are 2-1-1-2-

1-3-2-1 and 1-1-4-4-4-4-4-4, respectively. The amplitude ratio (ܨ ⁄ܨ ) for the optimized and solid 

structures and the amount of attenuation are 1.277, 1.649, and 23%, respectively. 

 For	ܴఒ ൌ 0.5, the position (݊௬) and diameter (݊) strings for the optimized structure are 3-2-3-2-1-2-

3-1 and 1-1-1-4-4-4-4-4, respectively. The amplitude ratio (ܨ ⁄ܨ ) for the optimized and solid 

structures and the amount of attenuation are 1.465, 1.798, and 19%, respectively. 

 For	ܴఒ ൌ 0.625, the position (݊௬) and diameter (݊) strings for the optimized structure are 1-2-2-3-

2-1-2-3 and 1-1-4-4-4-4-4-4, respectively. The amplitude ratio (ܨ ⁄ܨ ) for the optimized and solid 

structures and the amount of attenuation are 1.660, 2.015, and 18%, respectively. 

 For	ܴఒ ൌ 0.75, the position (݊௬) and diameter (݊) strings for the optimized structure are 1-1-2-2-2-

1-2-3 and 1-1-1-4-4-4-4-4, respectively. The amplitude ratio (ܨ ⁄ܨ ) for the optimized and solid 

structures and the amount of attenuation are 1.758, 2.087, and 16%, respectively. 

The results show that similar to the structures with ݊௬ ൌ 1 and	݊௬ ൌ 2, the optimized structures are 

mainly composed of the holes with the smallest and largest diameters except for the structure that is 

optimized for ܴఒ ൌ 0.125, which only contains the holes with large diameters. It can also be observed 

that the first hole has a smallest diameter, while the last hole has the largest possible dimension.  
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Table 9-9 ࡲ ⁄ࡸࡲ 	of the optimized structures for different values of  2D porous ,ࣅࡾ
structure (࢟ ൌ ) 

ܨ ⁄ܨ  at ܴఒ 

Optimized for ܴఒ: 

Solid plate 
0.125 0.250 0.375 0.500 0.625 0.750 

0.125 0.683 0.782 0.790 0.880 0.813 0.923 1.364 
0.250 1.112 1.015 1.128 1.197 1.185 1.293 1.514 
0.375 1.418 1.423 1.277 1.323 1.293 1.359 1.649 
0.500 1.677 1.686 1.506 1.465 1.460 1.500 1.798 
0.625 1.898 1.892 1.714 1.706 1.660 1.667 2.015 
0.750 2.000 1.969 1.826 1.844 1.798 1.758 2.087 

 

Table 9-10 Attenuation at the optimized 2D porous structures for different 
࢟) ,values ࣅࡾ ൌ ) 

Attenuation at 
ܴఒ (%) 

Optimized for ܴఒ: 

0.125 0.250 0.375 0.500 0.625 0.750 

0.125 50 43 42 35 40 32 
0.250 27 33 25 21 22 15 
0.375 14 14 23 20 22 18 
0.500 7 6 16 19 19 17 
0.625 6 6 15 15 18 17 
0.750 4 6 13 12 14 16 

Range (%) 4-50 6-43 13-42 12-35 14-40 16-32 
 

The attenuation-ܴఒ curve for the porous structure with ݊௬ ൌ 3 is plotted in Figure 9-15. This figure and 

the attenuation ranges in Table 9-10 show that the minimum value of attenuation for the structure that is 

optimized for ܴఒ ൌ 0.75 is 16% which is higher than the other structures; therefore, for the structure with 

݊௬ ൌ 3, it can be recommended to use the structure with the position string of 1-1-2-2-2-1-2-3 and 

diameter string of 1-1-1-4-4-4-4-4 for attenuating the loadings with the wavelength ratios of 0.125 to 

0.75.   

The global attenuation range for the structure with ݊௬ ൌ 3 is 4 to 50%. The minimum attenuation value 

(4%) occurs for the structure which is optimized for	ܴఒ ൌ 0.125 and is subjected to the transient loading 

with	ܴఒ ൌ 0.75, while the maximum attenuation value (50%) happens at the structure that is optimized 

for ܴఒ ൌ 0.125 and is subjected to the loading with the same value of	ܴఒ. 
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Figure 9-15 Attenuation vs. ࢟ 2D Porous structure with ,ࣅࡾ ൌ  
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9.7 2D porous stress wave attenuators with ܡܖ ൌ  

The optimization zone for the 2D porous stress wave attenuator with ݊௬ ൌ 4 is shown in Figure 9-16. The 

solution space for this problem is composed of ሺ4 ൈ 4ሻ଼ ൌ 4,294,967,296 combinations and GA 

optimization procedure is utilized for the optimal design. An integer-valued GA is performed for each 

wavelength ratio with 16 integer variables. The first eight variables which represent the position of the 

holes have the lower and upper bound values of 1 and 4, respectively. Variables 9 to 16 are related to the 

diameter of the holes and their lower and upper bounds are 1 and 4. Similar to the previous cases, the 

population size and function tolerance of GA are 100 and 1E-6, respectively. 

The optimized position and diameter strings for this structure are presented in Table 9-11. Schematics of 

the optimal designs (with their attenuation capacity) and their corresponding force histories at the 

boundary are depicted in Figure 9-17 and Figure 9-18, respectively.  To provide a better comparison, the 

force histories at the boundary of a solid plate with similar dimensions are also depicted in Figure 9-18 for 

each value of	ܴఒ. The values of ܨ ⁄ܨ  and amount of attenuation at each porous plate are presented in 

Table 9-12 and Table 9-13. 

 

 

Figure 9-16 Optimization zone for the porous structure with ࢞ ൌ ૡ, ࢘ ൌ , and ࢟ ൌ  
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Table 9-11 Optimized position and diameter string for the 2D porous 
structure with ࢟ ൌ  

ܴఒ ݊௬ ݊ 

0.125 1-2-1-2-4-1-2-4 4-4-4-4-4-4-4-4 
0.25 4-1-4-1-4-1-4-1 1-4-4-4-4-4-4-4 

0.375 2-1-1-4-2-1-4-1 1-1-4-4-4-4-4-4 
0.5 2-2-1-2-3-2-3-1 1-1-4-4-4-4-4-4 

0.625 4-2-2-3-2-3-2-1 1-1-4-4-4-4-4-4 
0.75 2-3-2-3-2-1-3-4 1-1-4-4-4-4-4-4 

 

 

Figure 9-17 Optimal design of the 2D porous stress wave attenuators, ࢟ ൌ  
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Figure 9-18 Force history at the boundary of the optimized 2D porous structures with ࢟ ൌ  

According to Figure 9-17, Figure 9-18, Table 9-12 and Table 9-13, the results of the GA optimization for 

the porous structure with ݊௬ ൌ 4 can be explained as follows: 

 For	ܴఒ ൌ 0.125, the position (݊௬) and diameter (݊) strings for the optimized structure are 1-2-1-2-

4-1-2-4and 4-4-4-4-4-4-4-4, respectively.  The ratio of the amplitude of the force at the boundary to 

the amplitude of the loading (ܨ ⁄ܨ ) is 0.868. For a solid plate with no holes, the amount of  ܨ ⁄ܨ  

is 1.494; therefore, the amount of attenuation that can be obtained with the optimized structure 

is	1 െ 0.868 1.494⁄ ൌ 42%.  
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 For	ܴఒ ൌ 0.250, the position (݊௬) and diameter (݊) strings for the optimized structure are 4-1-4-1-

4-1-4-1 and 1-4-4-4-4-4-4-4, respectively. The amplitude ratio (ܨ ⁄ܨ ) for the optimized and solid 

structures and the amount of attenuation are 1.052, 1.567, and 33%, respectively. 

 For	ܴఒ ൌ 0.375, the position (݊௬) and diameter (݊) strings for the optimized structure are 2-1-1-4-

2-1-4-1 and 1-1-4-4-4-4-4-4, respectively. The amplitude ratio (ܨ ⁄ܨ ) for the optimized and solid 

structures and the amount of attenuation are 1.348, 1.647, and 18%, respectively. 

 For	ܴఒ ൌ 0.5 the position (݊௬) and diameter (݊) strings for the optimized structure are 2-2-1-2-3-2-

3-1 and 1-1-4-4-4-4-4-4, respectively. The amplitude ratio (ܨ ⁄ܨ ) for the optimized and solid 

structures and the amount of attenuation are 1.493, 1.737, and 14%, respectively. 

 For	ܴఒ ൌ 0.625 the position (݊௬) and diameter (݊) strings for the optimized structure are 4-2-2-3-2-

3-2-1 and 1-1-4-4-4-4-4-4, respectively. The amplitude ratio (ܨ ⁄ܨ ) for the optimized and solid 

structures and the amount of attenuation are 1.577, 1.849, and 15%, respectively. 

 For	ܴఒ ൌ 0.75 the position (݊௬) and diameter (݊) strings for the optimized structure are 2-3-2-3-2-

1-3-4 and 1-1-4-4-4-4-4-4, respectively. The amplitude ratio (ܨ ⁄ܨ ) for the optimized and solid 

structures and the amount of attenuation are 1.718, 2.080, and 17%, respectively. 
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Table 9-12 ࡲ ⁄ࡸࡲ  of the optimized structures for different values of	2 ,ࣅࡾD porous 
structure (࢟ ൌ ) 

ܨ ⁄ܨ  at ܴఒ 

Optimized for ܴఒ: 

Solid plate 
0.125 0.250 0.375 0.500 0.625 0.750 

0.125 0.868 0.904 0.972 1.023 1.045 1.010 1.494 
0.250 1.249 1.052 1.163 1.358 1.440 1.365 1.567 
0.375 1.472 1.405 1.348 1.425 1.488 1.432 1.647 
0.500 1.648 1.725 1.578 1.493 1.522 1.536 1.737 
0.625 1.767 1.880 1.762 1.636 1.577 1.639 1.849 
0.750 1.912 1.979 1.927 1.851 1.770 1.718 2.080 

 

Table 9-13 Attenuation at the optimized 2D porous structures for different ࣅࡾ 
values, (࢟ ൌ ) 

Attenuation at ܴఒ 
(%) 

Optimized for ܴఒ: 

0.125 0.250 0.375 0.500 0.625 0.750 

0.125 42 39 35 32 30 32 
0.250 20 33 26 13 8 13 
0.375 11 15 18 13 10 13 
0.500 5 1 9 14 12 12 
0.625 4 -2 5 12 15 11 
0.750 8 5 7 11 15 17 

Range (%) 4-42 -2-39 5-35 11-32 8-30 11-32 
 

The attenuation-ܴఒ curve for the porous structure with ݊௬ ൌ 4 is plotted in Figure 9-19. This figure and 

the attenuation ranges in Table 9-13 show that the minimum value of attenuation for the structure that is 

optimized for ܴఒ ൌ 0.5 and 0.75 is 11% which is higher than the other structures; therefore, for the 

structure with	݊௬ ൌ 4, it can be recommended to use the optimized structures for ܴఒ ൌ 0.5 and 0.75 for 

attenuating the loads with the wavelength ratios of 0.125 to 0.75.   

The global attenuation range for the structure with ݊௬ ൌ 4 is -2 to 42%. The minimum attenuation value 

(-2%) occurs for the structures which is optimized for	ܴఒ ൌ 0.25 and is subjected to the load with	ܴఒ ൌ

0.625, while the maximum attenuation value (42%) relates to the structure that is optimized for ܴఒ ൌ

0.125 and is subjected to the load with the same value of	ܴఒ. 
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Figure 9-19 Attenuation vs. ࢟ 2D Porous structure with ,ࣅࡾ ൌ  

 

9.8 Effect of ࢟ on the attenuation capacity  

The global attenuation range for the 2D porous stress wave attenuators with different values of ݊௬ are 

presented in Table 9-14. The numbers show that the attenuation capacity decreases by increasing	݊௬, 

which reveals that the porous plates with small values of width/height ratios are more effective stress 

wave attenuators. In fact, this behavior was predictable because all of the plates have a constant number 

(eight) of circular holes; therefore, the ratio of the volume (area) of the holes to the volume of the plates 

decreases by increasing the dimensions of the plates. Consequently, the amount of attenuation dwindles in 

larger plates as the discontinuities occupy a smaller portion of the structure and they cannot affect the 

waves significantly. 

Table 9-14 Global attenuation range for different  ࢟ values, 2D 

porous stress wave attenuators 

݊௬ 1 2 3 4 

Attenuation range 
(%) 

16 to 66 7 to 56 4 to 50 -2 to 42 
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9.9 2D porous stress wave attenuators with	ܡܖ ൌ , ܚܖ ൌ  

To explore the efficiency of the porous plates further, the optimal design of a plate with ݊௬ ൌ 4 is 

investigated when there is only one dimension available for the diameter of the holes, i.e. ݊ ൌ 1. The 

optimization zone for this structure is shown in Figure 9-20.The global search space for this problem has 

ሺ4 ൈ 1ሻ଼ ൌ 65,536 combinations and an integer-valued GA optimization (with 8 variables with the 

values between 1 and 4) is performed with the population size and tolerance function of 100 and 1E-6, 

respectively. The position string, schematic of the optimal designs, and the stress history at the boundaries 

are presented in Table 9-15, Figure 9-21, and Figure 9-22.  

 

Figure 9-20 Optimization zone for the porous structure with ࢞ ൌ ૡ, ࢘ ൌ , and ࢟ ൌ  

 

Table 9-15 Optimized position and diameter string for the 2D 
porous structure with ࢟ ൌ  and ࢘ ൌ  

ܴఒ ݊௬ 

0.125 4-3-4-1-4-3-4-1 
0.25 1-4-1-4-1-4-1-4 
0.375 3-4-1-4-1-4-3-4 
0.5 3-4-3-2-4-3-2-4 

0.625 3-2-3-2-3-2-3-4 
0.75 1-2-3-2-3-4-2-1 
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The results of the optimization show that the position of the holes are significantly dependent on the value 

of wavelength ratio (ܴఒ). For example, in the optimal design for	ܴఒ ൌ 0.25, all of the holes are located at 

the bottom and top of the plate (the position string is 1-4-1-4-1-4-1-4) while for	ܴఒ ൌ 0.625 all of the 

holes (except the last hole) are located in positions 2 and 3, which are in the middle of the plate. For	ܴఒ ൌ

0.125, we can observe that there is no hole in the second position. Moreover, the position string of 4-3-4-

1 is repeated twice for this structure. There is no special repeating pattern for	ܴఒ ൌ 0.375, 0.5, and	0.75, 

and there is no hole in positions 2 and 1 for the optimal design of the structures with	ܴఒ ൌ 0.375, and	0.5, 

respectively. By comparing the attenuation values of the structure with ݊௬ ൌ 4 and ݊ ൌ 1 with the 

structure with ݊௬ ൌ 4 and	݊ ൌ 4, it can be observed that the structure with ݊௬ ൌ 4 and	݊ ൌ 4 has 

slightly higher attenuation capacity (about 2-3% except for	ܴఒ ൌ 0.125 which has lower attenuation 

capacity). Therefore, it can be concluded that it is better to have a combination of small and large holes 

for optimizing the porous plates. Another important issue which should be noted is that the size of the 

solution space for these two structures is completely different (compare 65,536 with 4,294,967,296). This 

means the likelihood of a better existing solution for the structure with ݊௬ ൌ 4 and	݊ ൌ 4 is much higher 

than the structure with ݊௬ ൌ 4 and	݊ ൌ 1 due to having a very large solution space. Therefore, it can be 

concluded that the structures with different diameter dimensions have higher attenuation potentials.  
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Figure 9-21 Optimal design of the 2D porous stress wave attenuators, ࢟ ൌ , ࢘ ൌ  
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Figure 9-22 Force history at the boundary of the optimized 2D porous structures with	࢟ ൌ , 
࢘ ൌ  
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Table 9-16 ࡲ ⁄ࡸࡲ  of the optimized structures for different values of	2 ,ࣅࡾD porous 
structure (࢟ ൌ , ࢘ ൌ ) 

ܨ ⁄ܨ  at ܴఒ 

Optimized for ܴఒ: 

Solid plate 
0.125 0.250 0.375 0.500 0.625 0.750 

0.125 0.853 0.875 0.910 0.945 0.994 0.933 1.494 
0.250 1.181 1.090 1.188 1.366 1.510 1.398 1.567 
0.375 1.456 1.482 1.388 1.461 1.590 1.539 1.647 
0.500 1.671 1.792 1.701 1.550 1.615 1.631 1.737 
0.625 1.814 1.927 1.880 1.738 1.631 1.701 1.849 
0.750 2.019 2.020 1.974 1.891 1.851 1.767 2.080 

 

Table 9-17 Amount of attenuation of the optimized structures for different 
values of	2 ,ࣅࡾD porous structure (࢟ ൌ , ࢘ ൌ ) 

Attenuation at 
ܴఒ (%) 

Optimized for ܴఒ: 

0.125 0.250 0.375 0.500 0.625 0.750 

0.125 43 41 39 37 33 38 
0.250 25 30 24 13 4 11 
0.375 12 10 16 11 3 7 
0.500 4 -3 2 11 7 6 
0.625 2 -4 -2 6 12 8 
0.750 3 3 5 9 11 15 

Range (%) 2-43 -4-41 -2-39 6-37 3-33 6-38 
 

The attenuation-ܴఒ curve for the porous structure with ݊௬ ൌ 4 and ݊ ൌ 1 is plotted in Figure 9-23. This 

figure and the attenuation ranges in Figure 9-16 show that the minimum value of attenuation for the 

structure that is optimized for ܴఒ ൌ 0.5 and 0.75 is 6%, which is higher than the other structures; 

therefore, for the structure with	݊௬ ൌ 4 and	݊ ൌ 1, it can be recommended to use the optimized 

structures for ܴఒ ൌ 0.5 and 0.75 for attenuating the loads with the wavelength ratios of 0.125 to 0.75.   

The global attenuation range for the structure with ݊௬ ൌ 4 and ݊ ൌ 1 is -4 to 43%. The minimum 

attenuation value (-4%) occurs for the structures which is optimized for	ܴఒ ൌ 0.25 and is subjected to the 

load with	ܴఒ ൌ 0.625, while the maximum attenuation value (43%) relates to the structure that is 

optimized for ܴఒ ൌ 0.125 and is subjected to the load with the same value of	ܴఒ. 
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Figure 9-23 Attenuation vs. ࢟ 2D Porous structure with ,ࣅࡾ ൌ  
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9.10 Verifying the coupled GA-FE optimization methodology using exhaustive search  

To evaluate the performance of the developed coupled GA-FE optimization methodology, an exhaustive 

search is performed for the porous structure with ݊௬ ൌ 4 and	݊ ൌ 1. The solution space for this structure 

is small (it has 65,536 combinations) compared to the other structures and it is feasible to perform an 

exhaustive search. The results of the exhaustive search are presented in Table 9-18 and Figure 9-24. By 

comparing these results with the GA optimization results in Table 9-15 and Figure 9-21, it is obvious that 

the developed GA-FE tool generates very close results to the exhaustive search.  

For ܴఒ ൌ 0.125, the position strings for GA and exhaustive search results are “4-3-4-1-4-3-4-1” and “1-2-

1-4-1-2-1-4”, respectively, which are exactly the same if we consider the symmetry of the patterns 

(replace 4 with 1 and 3 with 2 and vice versa). The same thing is true for	ܴఒ ൌ 0.25, 0.375 and the results 

are exactly the same. For ܴఒ ൌ 0.5, the optimized position string from GA is 3-4-3-2-4-3-2-4, which has a 

symmetric string of 2-1-2-3-1-2-3-1. The position string from the exhaustive search for	ܴఒ ൌ 0.5 is 2-1-3-

2-1-2-3-1, which means that the position of third and fourth holes are different than the GA result. 

However, the amounts of ܨ ⁄ܨ  in both of these structures are very close to each other, and the GA 

optimized structure has a very close behavior to the best solution. For ܴఒ ൌ 0.625, the exhaustive search 

and GA results are exactly the same. For ܴఒ ൌ 0.75 the results of the GA and exhaustive search are quite 

different; however, the value of ܨ ⁄ܨ  are very close to each other (compare 1.767 with 1.760). This 

means that the GA has converged to a satisfactory solution although it is not the best, which is not 

unexpected due to the nature of the heuristic algorithms.  

Although the performance of the developed GA-FE methodology is verified for a problem that has a 

small solution space (because it is not feasible to do exhaustive search for larger problems); however, as 

the optimization results exactly generate the best available solution (except for ܴఒ ൌ 0.5 and	0.75), it can 

be concluded that this coupled GA-FE optimization methodology is appropriate for optimal design of the 

stress wave attenuators. 
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Table 9-18 Position and diameter string for the 2D porous structure with 

࢟ 	ൌ 	 and ࢘ ൌ  from the exhaustive search 

ܴఒ ݊௬ 

0.125 1-2-1-4-1-2-1-4 
0.25 4-1-4-1-4-1-4-1 
0.375 2-1-4-1-4-1-2-1 
0.5 2-1-3-2-1-2-3-1 

0.625 3-2-3-2-3-2-3-4 
0.75 4-2-2-3-3-3-2-1 

 

 

 

Figure 9-24 Exhaustive search results for 2D porous stress wave attenuators with ࢟ ൌ  and 
࢘ ൌ  
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9.11 Summary 

The optimal design of the 2D porous stress wave attenuators was studied in this section. The optimization 

was performed for the structures with different numbers of holes in the vertical direction (݊௬) and 

different numbers of dimensions for the diameter of the holes (݊). It was observed that the optimized 

stress wave attenuators are usually composed of the holes with the smallest and largest diameters, and the 

holes are usually arranged in a pattern in which the small holes are located close to the loading surface 

while the large holes are neighboring the fixed boundary.  In addition, in the majority of the optimal 

designs, the first and the last holes have the minimum and maximum diameters. These observations are 

similar to the results that are found for the layered stress wave attenuators if we presume that the zones 

with small and large holes are similar to the high and low impedance materials, respectively. 

At the end of the section, an exhaustive search was performed to verify the performance of the developed 

GA-FE optimization methodology. The comparison of the GA results with the exhaustive search revealed 

that this optimization methodology works very well for these types of problems, and the results are very 

close to the best solutions.  
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SECTION 10 

INTERFACE PROFILE OPTIMIZATION FOR STRESS WAVE 

ATTENUATION IN BI-LAYERED PLATES 

 

10.1 Introduction 

Most of the research on wave propagation in layered structures has focused on the effect of impedance 

mismatch between the layers and the way that the change in the material properties occur, i.e., graded or 

abrupt. This means that the major parameter, which is explored in the literature, is the material effect. For 

this reason, many of these studies are based on one-dimensional wave propagation, even in two-

dimensional structures, such as plates. In fact, in many practical applications, the structures have more 

than one dimension and their wave propagation behavior depends on their geometric specifications in 

addition to their material properties. For layered systems, the geometric properties can be attributed to the 

global shape of the structure and the interface profile between the layers. By changing the geometry of the 

interface profile between the layers, the wave propagation characteristics and the attenuation capacity of 

the layered structures can be altered.  

This section investigates the effect of the interface profile between two media in layered structures and 

illustrates the development of a methodology for optimizing the shape of this profile for the objective of 

stress wave attenuation in finite bi-layered plates. 

 

10.2 Theory and background   

Discontinuity in material and geometric properties leads to wave scattering in elastic media. The general 

case of wave scattering happens for an incident wave at an oblique angle associated with the interface of 

two different materials, as shown in Figure 10-1. The two materials can be solid, fluid, vacuum, or any 

other combination. The continuity in displacement and stress at an interface results in wave scattering 

through reflection and transmission in two media at different angles. Solids can sustain both dilatational 

and shear waves, and each one of these waves generates dilatational plus shear waves at an interface. 

Thus, for dilatational and shear wave incident on an interface at an oblique angle, eight new waves will be 

generated, as shown in  Figure 10-1. However, in fluids and vacuum, fewer waves will be generated 

because shear waves do not travel in non-viscous fluids, and longitudinal and shear waves do not 

propagate in vacuum.  
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Figure 10-1 shows the scattering of stress waves at the interface of two solid materials. In this figure, ܫ 

and ܫ௦ represent displacement amplitudes of incident dilatational and shear waves and ܴିௌ, ܴି, ܶିௌ 

and ܶି correspond to the displacement amplitude of reflected shear, reflected dilatational, transmitted 

shear, and transmitted dilatational waves for a dilatation incident wave (ܫ), respectively. Similar 

notations are used for a shear incident wave (ܫௌ) by converting the first index from ܦ to ܵ, i.e., 	ܴௌିௌ, 

ܴௌି, ௌܶିௌ and ௌܶି. 

The direction of reflected and transmitted waves is governed by Snell's law (Auld (1973)), which can be 

expressed for incident dilatational and shear waves using Eq. (10.1) and (10.2) as follows: 

ሻܫെܦߠሺ݊݅ݏ

1ܦܿ
ൌ 	

െܴܵሻܦߠሺ݊݅ݏ

ܿܵ1
ൌ
ሻܴܦെܦߠሺ݊݅ݏ

1ܦܿ
ൌ
െܵܶሻܦߠሺ݊݅ݏ

ܿܵ2
ൌ
ሻܶܦെܦߠሺ݊݅ݏ

2ܦܿ
 (10.1)

 

ሻܫെܵߠሺ݊݅ݏ

ܿܵ1
ൌ 	

െܴܵሻܵߠሺ݊݅ݏ

ܿܵ1
ൌ
ሻܴܦെܵߠሺ݊݅ݏ

1ܦܿ
ൌ
െܵܶሻܵߠሺ݊݅ݏ

ܿܵ2
ൌ
ሻܶܦെܵߠሺ݊݅ݏ

2ܦܿ
 (10.2)

 
where, ܦ െ and S ܫ െ ܦ ,represent the dilatational and shear incident waves. Here ܫ െ ܦ ,ܴܵ െ  ,ܴܦ

ܦ െ ܵܶ, and ܦ െ  represent shear reflected, dilatational reflected, shear transmitted, and dilatational ܶܦ

transmitted waves that are generated from a dilatational incident wave, respectively (see Figure 10-1a). 

Similarly, ܵ െ ܴܵ, ܵ െ ܵ ,ܴܦ െ ܵܶ, and ܵ െ  represent shear reflected, dilatational reflected, shear ܶܦ

transmitted, and dilatational transmitted waves that are generated from a shear incident wave, respectively 

(see Figure 10-1b).  Furthermore, ܿଵ, ܿଶ, ܿௌଵ, and ܿௌଶ are the dilatational wave velocity in material 1, 

dilatational wave velocity in material 2, shear wave velocity in material 1, and shear wave velocity in 

material 2, respectively.  
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Figure 10-1 Reflection and transmission of waves at the interface of two solids, a) dilatational 

incident wave, b) shear incident wave 

For a travelling stress wave, the displacement and stress continuity at the interface of two media has to be 

satisfied. The interface stress ܵ௫௫ and ܵ௫௬ in thin plates are given by: 

ܵ௫௫ ൌ ߣ
௬ݑ߲
ݕ߲

 ሺߣ  ሻߤ2
௫ݑ߲
ݔ߲

 (10.3)

 

ܵ௫௬ ൌ ߤ ቆ
௫ݑ߲
ݕ߲


௬ݑ߲
ݔ߲

ቇ (10.4)

 

where ߣ and ߤ are Lame’s parameters, and are given by ߣ  ߤ2 ൌ ܿߩ
ଶ , and ߤ ൌ ௌܿߩ

ଶ with ߩ representing 

the mass density of the medium. By enforcing displacement and stress continuity in thin plates at an 

interface, we have: 
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ێ
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൪ (10.5)

 

where ݑ௫
ሺெ௧ଵሻ is the sum of displacement due to incident, transmitted, and reflected waves, and ݑ௫

ሺெ௧ଶሻ is 

the sum of displacement due to transmitted, and reflected waves. The same description applies for ܵ௫௫
ሺெ௧ଵሻ 

and ܵ௫௫
ሺெ௧ଶሻ. Expansion of Eq. (10.5) for incident dilatational wave leads to the following relationship: 

(a) 
(b) 
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Similarly, the expansion of Eq. (10.5) for incident shear wave gives 
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where ܼ1ܼܵ ,2ܦܼ ,1ܦ, and ܼܵ2 are the dilatational impedance in material 1, dilatational impedance in 

material 2, shear impedance in material 1, and shear impedance in material 2, respectively.  

The stress amplitude for reflected and transmitted dilatational and shear waves is plotted in Figure 10-2 

and Figure 10-3 for incident dilatational and shear waves, respectively, for a particular Aluminum (AL)-

High-density polyethylene (HDPE) bi-material interface. The material properties of AL and HDPE are 

given in Table 10-1. It should be noted that Eq. (10.6) and (10.7) are written for the displacement 

amplitudes; however in Figure 10-2 and Figure 10-3, the displacement amplitudes are converted to stress 

amplitudes using appropriate transformations. These figures show that for different incident wave angles, 

the ratio of shear and dilatational stress amplitude varies significantly. For incident shear wave, at an 

angle of 35°, the reflected dilatational wave becomes evanescent; however other waves will continue to 

propagate. Thus, for incident angles greater than 35°, Eq. (10.7) should be modified by removing the 

reflected dilatational wave, and enforcing displacement and stress continuity at the interface. 

These results show that the incident angle has a noticeable effect in mitigating or amplifying the stress 

amplitudes. This means that the amplitude of the stress waves can be altered by converting the straight 

interface between two materials to a jagged path. This idea will be pursued in the remainder of this 

section for optimizing the interface profile of the layers in bi-layered rectangular plates with finite 

dimensions. It should be noted that the analytical solutions in this section are only applicable to semi-
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infinite media, and there is no closed form solution of this kind for finite structures. Accordingly, the FE 

numerical method is utilized for analyzing the proposed rectangular bi-layered plates. 

 

Figure 10-2 Reflection and transmission stress coefficients for incident dilatational wave on AL-
HDPE interface for varying incident angle 

 

Figure 10-3 Reflection and transmission stress coefficients for incident shear wave on AL-
HDPE interface for varying incident angle 

 

10.3 Concept of interface profile optimization  

In the previous section, it was observed that the angle of the incident pulse at the boundary of the two 

solid materials can change the characteristics of the reflected and transmitted waves significantly. 

Considering this fact, an optimization problem can be defined for minimizing the amplitude of the stress 

waves in a bi-layered plate by converting the interface profile between the two layers from a vertical 

straight line to a jagged shape. In this case, the angle of the incident wave at the intersection of the two 

media will no longer be zero (see Figure 10-1). Consequently, the stress waves will be scattered and a 
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number of reflected and transmitted waves will be generated within the structure. By employing an 

appropriate optimization methodology, the profile of the jagged path can be optimized for the objective of 

stress wave attenuation at the clamped boundary of the bi-layered plate.  

In order to introduce the concept of interface profile optimization, consider a general bi-layered plate 

shown in Figure 10-4. A transient dynamic load is applied to the left side of the plate (Line	ܨܣ) and the 

plate is clamped at the right side (line	ܧܬ). The top and bottom parts of the plate (lines ܬܨ and	ܧܣ) are 

traction-free boundaries. The horizontal and vertical dimensions of the plate are ܮ௫ and	ܮ௬, respectively, 

and the plate is divided into two parts: ܨܪܥܣ and	ܪܬܧܥ with lengths ܮଵ and	ܮଶ, respectively. The 

objective of the problem is minimizing the maximum amplitude of the transient reaction force (on 

line	ܨܣ), as it reaches the clamped boundary (line	ܧܬ), by changing the interface profile between the two 

layers of the plate. To do so, an optimization zone (box) can be defined around the boundary of the two 

media, which can be divided into ݊௫ ൌ ݊ െ 1 and ݊௬ ൌ ݉ െ 1 segments in the horizontal and vertical 

directions, respectively, to generate an	݊ ൈ ݉ grid, as shown in Figure 10-4. Thereafter, the optimization 

algorithm can select the points within the generated grid to develop a jagged or smooth interface between 

the two media. Without loss of generality, it is assumed that only one point can be selected by the 

optimization algorithm at each horizontal line (a number between 1 and	݊); therefore, the size of the 

solution space is	݊. The results of the optimization can be shown with an array of numbers. The length 

of this array is equal to the number of horizontal lines in the vertical direction (݊௬), and each number 

within the array is bounded between 1 and the number of the vertical lines in the horizontal direction 

(݊௫). To clarify further, an example is provided in Figure 10-5. In this example, the optimization zone is 

divided into 7 and 5 sections in the horizontal and vertical directions, respectively, which generates an 

8 ൈ 6 grid. Therefore, there are ݊௬ ൌ 6 horizontal lines in the optimization zone and each contains 

݊௫ ൌ 8 points. This means that the optimization array is composed of 6 numbers, which can have a value 

between 1 and 8. For instance, the optimization array for the jagged boundary in Figure 10-5 is 

“3	8	1	4	5	2”.   
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Figure 10-4 General bi-layered rectangular plate and its optimization zone 

 

 

Figure 10-5 Example for the optimized interface between the two layers 

 

10.4 Problem Definition 

In the previous section, the concept of interface profile optimization for a bi-layered plate with jagged 

interface was introduced. This concept is utilized in this section to define a quantitative optimization 

problem for minimizing the amplitude of the stress waves in a bi-layered plate with finite dimensions.  

Consider the bi-layered plates shown in Figure 10-6 with the horizontal and vertical dimensions of 

௫ܮ ൌ 25.2	ܿ݉ and	ܮ௬ ൌ 12.6	ܿ݉, respectively. These plates are divided into two parts with equal 

thickness of	0.5ܮ௫ ൌ 12.6ܿ݉, and the mid-section of the optimization zone is located at the mid-section 

of the plates. The thickness of the optimization zone (ܮ௧) is assumed to be 0.3ܮ௫ ൌ ௫ܮ0.6 ,7.56ܿ݉ ൌ

15.12ܿ݉, and 0.9ܮ௫ ൌ 22.68ܿ݉ for the plates in Figure 10-6a, Figure 10-6b, and Figure 10-6c, 

respectively. The first and second layers of the plates are made of Aluminum (AL) and High-density 

L1

Lopt

Ly

Lx

1
2

j

m

1 2 i n

Mat 1

C

H

Mat 2

L2

nx

ny

Optimization
Zone

A B D E

F G I J

1 2 3 4 5 6 7 8

1

2

6

Mat 1 Mat 2

L2-0.5LoptLoptL1-0.5Lopt

3

4

5

Lx

Ly



 

200 
 

polyethylene (HDPE), respectively. These materials are selected because of their significant impedance 

mismatch, which results in higher amount of wave scattering. According to wave propagation theories, 

the amplitude of the transmitted waves in the interface of two media mitigates as the wave passes from a 

high to a low impedance medium. Therefore, the AL layers in Figure 10-6 are placed on the left, before 

the HDPE layers. The mechanical properties of these materials are presented in Table 10-1. In this 

table,	,ܧ	,ߩ	ߥ,	ܿ,	ܿௌ, and	ܿோ represent Young’s modulus, mass density, Poisson’s ratio, dilatational wave 

velocity (for plane stress condition), shear wave velocity, and Rayleigh wave velocity, respectively, of the 

two materials. The velocity of the different types of waves can be found using the following formulas: 

ܿ ൌ ඨ
ܧ

ሺ1ߩ െ ଶሻߥ
 (10.8)

ܿௌ ൌ ඨ
ܧ

ሺ1ߩ2  ሻߥ
 (10.9)

ܿோ ൌ
0.87  ߥ1.12

1  ߥ
ܿௌ (10.10)

 

The bi-layered plates are subjected to a transient half-sine loading with the duration of ܶ 2⁄ , as shown in 

Figure 10-6. The ratio of the wavelength associated with this pulse to the total horizontal length of the 

structure is called the wavelength ratio and can be designated as: 

ܴఒ ൌ
ߣ
ܮ2

 (10.11)

where	ߣ is the associated wavelength, which is the product of the minimum wave speed within the 

structure (ܿ) and the duration of a complete sine pulse ܶ. The slowest wave in the plate structures is 

the Rayleigh wave; thus, for the problem at hand, ܿ is equal to ܿோ of HDPE, which is	630݉ ⁄ݏ .  

Table 10-1 Mechanical properties of the plate materials 

Material 
 ܧ

 (ܽܲܩ)
 ߩ

(݇݃ ݉ଷ⁄ ) 
 ߥ

ܿ 
(݉ ⁄ݏ ) 

 ܿௌ 
(݉ ⁄ݏ ) 

 ܿோ 
(݉ ⁄ݏ ) 

Aluminum 68.9 2700 0.33 5351 3097 2887 
HDPE 1.2 950 0.42 1238 667 630 

 

In order to investigate the effect of ܮ௧ on the attenuation capacity of bi-layered plates, the structures in 

Figure 10-6 are subjected to a transient loading with a constant wavelength ratio of ܴఒ ൌ 0.05, and their 
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optimal interface profiles are then identified. It is observed that the structure with ܮ௧ ൌ  ௫ (seeܮ0.3

Figure 10-6a) has higher attenuation capacity compared to the other structures (the details are presented 

later in section 10.8). Therefore, this structure is selected for studying the effect of other parameters such 

as the wavelength ratio of the transient loading and the grid dimensions.  

The wave propagation behavior and attenuation capacity of any structure depends significantly on the 

duration (wavelength) of the transient loading. To examine this effect, the structure identified with 

௧ܮ ൌ ௫ (Figure 10-6a) is subjected to four different wavelength ratios, i.e., ܴఒܮ0.3 ൌ 0.05, 0.1, 0.2, 

and	0.4. Considering the Rayleigh wave speed in HDPE (ܿோ ൌ 630݉ ⁄ݏ ), the duration of the half-sine 

pulses (ܶ 2⁄ ) for each wavelength ratio (ܴఒ) are calculated and presented in Table 10-2. 

The objective of the defined optimization problem is to minimize the maximum amplitude of the total 

reaction force at any instant at the clamped boundary. To provide better insight, the reaction force history 

at the clamped boundary can be normalized by the amplitude of the applied force, and the optimization 

problem can be determined with the following formula: 

Objective	function:	Minimize ܴி (10.12)

where, ܴி represents the normalized force history at the boundary and can be found as: 

ܨܴ ൌ ݔܽ݉ ൬ฬ
ܤܨ
ܮܨ
ฬ൰ (10.13)

 

with ܨ and ܨ representing the force history at the clamped boundary and amplitude of applied transient 

loading, respectively.  

Since the main purpose of this section is showing the effectiveness of interface profile optimization, the 

attenuation capacity of the optimized structures is determined by comparing the performance of these 

structures to bi-layered plates having a straight vertical layer interface. Therefore, the attenuation capacity 

of each optimal design is defined using the following formula: 

݊݅ݐܽݑ݊݁ݐݐܣ ሺ%ሻ ൌ ቆ1 െ
ሺܴிሻ
ሺܴிሻௌ

ቇ ൈ 100 (10.14)

 
where ሺܴிሻ	and ሺܴிሻௌ denote the normalized force history Eq. (10.13) at the boundary of the bi-layered 

plates with jagged and straight vertical interface, respectively. It should be noted that for each optimal 

design, ሺܴிሻௌ is found by analyzing a bi-layered plate with straight vertical interface that is subjected to a 
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transient loading with similar duration used for the corresponding optimal design. All of the properties of 

these plates are similar to the structures in Figure 10-6, except the interface between the layers is a 

straight vertical line and the thickness of each layer (AL and HDPE layers) is 0.5 ൈ 25.2 ൌ 12.6ܿ݉.  

In layered elastic systems, the number of reflections and transmissions of the stress waves increases as the 

analysis is performed for a longer duration of time. Therefore, one of the important factors in 

characterization of these systems is the duration of analysis. For practical problems, it is impossible to 

analyze the structures for infinite time and a stopping time should be selected based on the duration of the 

applied transient loading and the wave speed within the system. In this section, the duration of analysis 

( ܶ) has been set to be 20 times the summation of the duration of the half-sine loading (ܶ 2⁄ ) and the 

maximum amount of time required for the slowest wave to reach the clamped boundary (ݐ). 

Therefore, ܶ can be found using: 

ܣܶ ൌ 20 ൬
ܶ

2
 ൰ (10.15)݄ܿܽ݁ݎݐ

 

݄ܿܽ݁ݎݐ ൌ
ݔ݈
݊݅݉ܥ

 (10.16)

 

where ݈௫ and ܥ are the horizontal length and the slowest wave speed within the system. For the 

problem at hand, ܥ is equal to the Rayleigh wave speed of HDPE. The duration of analysis ( ܶ) for 

different values of ܴఒ is presented in Table 10-2.  

As mentioned in the previous section, the optimization zone can be divided into a grid defined by any 

integer number in the horizontal and vertical directions for generating the required interface for the 

geometry optimization. The optimization zones of the bi-layered plates in Figure 10-6a, Figure 10-6b, and 

Figure 10-6c are divided into 7,14, and 21 segments in the horizontal direction, respectively, while in the 

vertical direction, all of the structures are divided into 7 segments. Based on these divisions, the structures 

in Figure 10-6a, Figure 10-6b, and Figure 10-6c have	8 ൈ 8, 15 ൈ 8, and 22 ൈ 8 grids, respectively.  
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Figure 10-6 Bi-layered plates with a)࢚ࡸ ൌ . ࢞ࡸ, b) ࢚ࡸ ൌ . ࢞ࡸ, c) ࢚ࡸ ൌ .  ࢞ࡸૢ
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Table 10-2 Duration of half-sine loadings (ࢀ ⁄ ) and duration of 
analysis (ࢀ) for different values of wavelength ratios 

ܴఒ ܶ 2⁄  ሺܿ݁ݏሻ ܶሺܿ݁ݏሻ 

0.05 2.0E-05 8.4E-3 
0.1 4.0E-05 8.8E-3 
0.2 8.0E-05 9.6E-3 
0.4 1.60E-04 1.12E-2 

 

Considering the horizontal and vertical dimensions of the optimization zones, the width and height of 

each cell within the generated grids is 1.08cm and 1.80cm, respectively. It is assumed that the 

optimization method can select one point for each horizontal line of the grid. Therefore, the solution 

spaces for the structures with 8 ൈ 8, 15 ൈ 8, and 22 ൈ 8 grids have 8଼ ൌ 15଼ ,7ܧ1.68 ൌ  and ,9ܧ2.56

22଼ ൌ    .combinations, respectively 10ܧ5.49

In order to investigate the effect of grid dimensions, the optimization zone of the structure with ܮ௧ ൌ

௫ is divided into 1,3,5, and 7 cells in the horizontal and vertical directions to generate 2ܮ0.3 ൈ 2, 4 ൈ 4, 

6 ൈ 6, and 8 ൈ 8 grids as shown in Figure 10-7. The sensitivity of the attenuation capacity of the bi-

layered plates with different grid sizes is discussed in Section 10.8.  
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Figure 10-7 Bi-layered plates with ࢚ࡸ ൌ . ࢞ࡸ and ࢞ ൌ ࢟ ൌ , ,  and ૡ 

 

10.5 Optimization method 

The solution space for the defined problems is very large, and it is obvious that an exhaustive search 

described earlier cannot be performed for finding the best solution. Therefore, an appropriate optimization 

procedure should be utilized for this purpose. Similar to the previous sections, GA is used for the 

geometry optimization of the potentially jagged interface.  

As mentioned in section 10.2, there is no closed-form solution for the wave propagation behavior of finite 

bi-layered plates (with jagged interface profiles) subjected to transient dynamic loadings, and FE analysis 

is utilized for this purpose. In the following, FE modeling and the coupling of GA and FE are explained 

thoroughly.  
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10.6 FE modeling 

The validity of using an FE method for wave propagation in plate structures is investigated by Moser, 

Jacobs et al. (1999). For an elastic system without damping, the matrix form of the equation of motion 

can be written as: 

ሷݑܯ  ݑܭ ൌ ܲ (10.17)
 

where ܯ and ܭ represent the mass and stiffness matrices, respectively, and ܲ is the applied dynamic 

force. The dynamic equilibrium equation, Eq. (10.17), can be solved using two general methods: Explicit 

and Implicit. Explicit dynamic analysis is used for the wave propagation analysis of the bi-layered plates, 

as this method is computationally efficient for dynamic modelling of the structures subjected to short 

dynamic loadings with an impulsive nature. The FE explicit analyses of the structures are performed 

using the commercial software Abaqus 6.12 (Simulia (2012)). Abaqus uses a central-difference time 

integration rule for explicit time integration of the equation of motion.  

The accuracy of the wave propagation analysis using FE depends, significantly, on the temporal (time 

step) and spatial (element size) resolution of the FE model (Moser, Jacobs et al. (1999)). The explicit 

integration method is conditionally stable, and it is required that the time step of the integration be smaller 

than a critical value. For a system without damping, the critical time step can be found using (Bathe 

(1996)): 

Δݐ ൏ Δݐ ൌ
ܶ

ߨ
 (10.18)

where ܶ is the smallest period of the FE assemblage. Generally, it is difficult to find the smallest period 

of the FE system and the following approximate formula is used for defining the value of the time step 

(Simulia (2012)): 

Δݐ ൎ
L
ܿ

 (10.19)

where L and ܿ represent, respectively, the minimum length of the FE mesh and dilatational wave 

speed. The dilatational wave speed can be found using the Lame’s constants and the mass density of the 

materials (ܿ ൌ ඥሺߣ  ሻߤ2 ⁄ߩ ). Generally, a smaller time step than Eq. (10.19) is used in the explicit 

integration in order to assure the stability of the analysis. For example, Abaqus uses a time step within the 

following range for two-dimensional (2D) analysis (Simulia (2012)): 
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1

√2

L݉݅݊
ܿ݀

൏ Δݐ ൏
L݉݅݊
ܿ݀

 (10.20)

For the FE analysis of the bi-layered plates presented in this section, the time step is selected based on the 

element-by-element estimation of Abaqus. This method chooses the time step based on the smallest 

element characteristic length and the dilatational wave speed, as presented in Eq. (10.20). An interested 

reader is referred to Simulia (2012) for further information on the time step selection for explicit dynamic 

analysis.  

In addition to the time step, special attention should be given to the element size of the FE mesh in order 

to obtain reliable results from the analysis. Generally, in wave propagation problems, the frequency of the 

applied loadings is high and thus their wavelength is small. In order to resolve the spatial features, the 

element size of the FE mesh should be small enough. According to Alleyne and Cawley (1991), it is 

required to have more than 10 nodes per wavelength of the applied loading. Moser, Jacobs et al. (1999) 

suggest the element mesh of the FE model be smaller than the following value: 

݈ ൌ ߣ 20⁄  (10.21)
 
where ߣ is the shortest wavelength within the system. The shortest wavelength can be found using Eq. 

(10.11). The minimum required dimensions of the elements (݈) for the four different values of ܴఒ are 

presented in Table 10-3. Considering these values, the minimum size of the elements in the FE mesh of 

the bi-layered plates is chosen to be	1, 2, 4, and 8݉݉ for ܴఒ ൌ 0.05, 0.1, 0.2, and 0.4, respectively.   

It should be noted that the bi-layered plates in this section are modeled using a 3-node linear plane stress 

triangular element from the Abaqus element library (Element CPS3).  

One of the important characteristics in FE analysis of the bi-layered plates is meshing of the FE model. 

Due to the existence of the potentially jagged interface, the meshing procedure is not straightforward, and 

the FE model should be partitioned appropriately.  Based on the geometry of the jagged interface, the FE 

models are partitioned in a consistent way to produce appropriate mesh and all of the partitioning 

procedures are performed using a developed script, which is explained in the next section.  
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10.7 Coupled GA-FE methodology 

In order to minimize the amplitude of the stress waves in bi-layered plates, it is required to find the stress 

history at the boundary of the structures and evaluate its peak value within each run of the GA. Since the 

target of the problem is optimizing the geometry of the jagged interface between the boundaries, the 

features of the FE models change as the optimization procedure advances. Therefore, new FE models 

should be consistently generated within each run of GA, while more importantly retaining the objectivity 

of the meshing. This is done using the Abaqus Scripting Interface. Using this interface, a comprehensive 

Python script is written that is capable of building all of the features of the FE model without using the 

GUI. This script is implemented in the fitness function calculation of the GA procedure, and performs the 

following tasks in summary:  

 Building the components of the FE model such as parts, materials, sections, and loading 

 Estimating ܶ	and ݈	 using Eq. (10.15) and (10.21) 

 Partitioning the FE model to generate an appropriate mesh 

 Running the explicit dynamic FE analysis 

 Extracting the stress history at the clamped boundary from the output database 

 Calculating the fitness value using Eq. (10.13) 

It should be noted that the optimization toolbox (version 6.2) of Matlab R2012a (MATLAB (2012) is 

used for solving the optimization problems presented herein. For each problem, the details of the GA runs 

are presented in the next section.  

 

Table 10-3 Minimum element size of the mesh for different values 
of ࣅࡾ 

ܴఒ 
 ߣ
ሺ݉ሻ 

݈ 
ሺ݉ሻ 

0.05 0.0252 1.26E-3 

0.1 0.0504 2.52E-3 

0.2 0.1008 5.04E-3 

0.4 0.2016 1.008E-2 
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10.8 Results and discussion 

In this section, the interface profiles of the structures in Figure 10-6 and Figure 10-7 are optimized using 

the developed GA-FE methodology and the results are presented for the effect of different parameters 

separately. The following parameters are investigated: length of the optimization zone (ܮ௧), grid 

dimensions, and wavelength ratio of the transient loading (ܴఒ).   

 

10.8.1 Effect of the length of the optimization zone (࢚ࡸ) 

In order to investigate the effect of	ܮ௧, the optimal designs of the bi-layered plates with 

ݐܮ ൌ 0.3, 0.6, and 0.9ܮ௫ are explored using the proposed GA-FE methodology. The 

dimensions of these structures and their optimization zones are shown in Figure 10-6. The 

grid dimensions of these plates are similar and all are subjected to a transient loading 

with the constant wavelength ratio of	ܴߣ ൌ 0.05. As the optimization algorithm can select one 

point for each horizontal line of the grid, the GA runs are performed with 8 integer variables with the 

lower and upper bounds of ሾ1,8ሿ, ሾ1,15ሿ, and ሾ1,22ሿ for the structures with ݐܮ ൌ 0.3, 0.6, and 0.9ܮ௫, 

respectively. For the plate with ݐܮ ൌ  ௫ (Figure 10-6a) the GA population size is set toܮ0.3

be 100, while for the plates with ݐܮ ൌ 0.6 and 0.9ܮ௫ (Figure 10-6b and Figure 10-6c), this 

value is assumed to be 200. The reason for selecting these values is that the solution 

space for each of the structures with ݐܮ ൌ 0.6 and 0.9ܮ௫ is much larger than that of the 

structure with ݐܮ ൌ  ,௫ (compare 158 and 228 with 88). For all of the optimal designsܮ0.3

the GA was run until the change in the average fitness value of the generations becomes less than a 

tolerance level, which is set at 1 ൈ 10ି. In order to assure the results of the GA optimization procedure, 

the problems are run several times and the results of the previous runs are used as the initial population 

for the next runs. This process is repeated until no further improvement is observed in the results. 

The optimized vertical position strings (value of ݊௫ at each	݊௬) and attenuation capacity for different 

values of ܮ௧ are presented in Table 10-4 and the schematics of the optimal designs are depicted in 

Figure 10-8.  
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Table 10-4 Optimization string and attenuation capacity for different 
values of ࢚ࡸ 

 (%) ௧ Optimization String ሺ݊௫ሻ ሺ݊௫ሻ௫ Attenuationܮ

0.3 7	1	8	7	4	2	1 1 1 8 58 
0.6 5	3	6	5	11	11	5 10 3 11 56 
0.9 12	13	14	12	10	8 4 10 4 14 53 

 

The results of the optimization in Table 10-4 and Figure 10-8 show that the optimal interface profiles for 

the structures with ܮ௧ ൌ 0.6 and 0.9ܮ௫ have a narrow length compared to the length of the optimization 

zone (ܮ௧). For example, the difference between the minimum and maximum values of ݊௫ for the 

structures with ܮ௧ ൌ 0.6 and 0.9ܮ௫ in Figure 10-8b and Figure 10-8c is 11 െ 3 ൌ 8 and 14 െ 4 ൌ 10, 

respectively. This means that the maximum horizontal length of the optimized interface profiles for the 

structures with ܮ௧ ൌ 0.6 and 0.9ܮ௫ is 8 ൈ 1.08 ൌ 8.64ܿ݉	ሺ0.34ܮ௫ሻ and 

10 ൈ 1.08 ൌ 10.80ܿ݉	ሺ0.43ܮ௫ሻ, respectively. These results show that by increasing ܮ௧, the optimal 

interface profiles do not occupy the whole length of the optimization zone. However, the optimal 

interface profile of the structure with ܮ௧ ൌ  ௫ occupies the whole length of the optimization zone asܮ0.3

shown in Figure 10-8a. In addition, according to Table 10-4 and Figure 10-8, the attenuation capacity of 

the structures does not increase for larger values of ܮ௧. This probably happens because the solution 

space for the structures with ܮ௧ ൌ 0.6 and 0.9ܮ௫ is extremely large (158 and 228). As mentioned 

above, to search the solution space further, the population size of the GA optimization for the plates with 

௧ܮ ൌ 0.6 and 0.9ܮ௫ is set to be 200 (compare with 100 for ܮ௧ ൌ 0.3); however, the attenuation 

capacity is not increased. It is not practical to increase the population size of the GA further because of 

the extensive computational cost.  

Based on these results, in the remainder of this section, the structure with ܮ௧ ൌ  ௫ (see Figure 10-6a)ܮ0.3

is selected for investigating the effect of grid dimensions and wavelength ratio of the transient loading.  
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Figure 10-8 Optimal designs of the bi-layered plates in Figure 10-6 for ࣅࡾ ൌ . , a)	࢚ࡸ ൌ
. ࢞ࡸ, b) ࢚ࡸ ൌ . ࢞ࡸ, c) ࢚ࡸ ൌ .  ࢞ࡸૢ

 

10.8.2 Effect of grid dimensions 

To investigate the effect of grid dimensions, the optimal design of the structures in Figure 10-7 are found 

using the developed optimization methodology. The length of the optimization zone (ܮ௧) for all of the 

structures is 0.3ܮ௫ and the structures are subjected to a transient loading with ܴఒ ൌ 0.05. It should be 
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noted that GA is not used for the optimal design of the structures with ݊௫ ൌ ௬ݔ ൌ 2 and 4 (see Figure 10-

7) as the solution space has only 2ଶ ൌ 4 and 4ସ ൌ 256 combinations, respectively. Therefore, simple 

exhaustive search is utilized for the optimization of these structures. However, the coupled GA-FE 

methodology is employed for finding the optimal design of the structures with ݊௫ ൌ ௬ݔ ൌ 6 and 8. The 

details of the GA runs are exactly the same as the previous section and the population size is set to be 100.  

The optimization string and attenuation capacity of the optimal design of the structures in Figure 10-7 are 

presented in Table 10-5 and the schematics of the optimal designs are depicted in Figure 10-9. The results 

show that the attenuation capacity of the bi-layered plates increases significantly when the number of grid 

points varies from 2 to 4 (compare  28% and 	54% for these two cases, respectively). This phenomenon 

(increasing the attenuation capacity) is not observed by increasing the grid points from 4 to 6 and 6 to 8. 

Therefore, for the problem at hand, it is not efficient to generate a very fine grid to obtain higher 

attenuation capacity. Due to these facts, in the next section, the effect of wavelength ratio of the transient 

loading on the behavior of bi-layered plates will be investigated for a structure with ܴఒ ൌ 0.05 and the 

grid dimensions of 1.08 ൈ 1.80	ܿ݉ଶ (see the structure with ݊௫ ൌ ݊௬ ൌ 8 in Figure 10-6a or Figure 10-7). 

 

Table 10-5 Optimization string and attenuation capacity 
for different values of ܠܖ and ܡܖ 

݊௫ and ݊௬ Optimization String Attenuation (%) 

2 1 2 28 

4 3 4 1 1 54 

6 1 1 2 6 5 4 55 

8 7 1 8 7 4 2 1 1 58 
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Figure 10-9 Optimal design of the bi-layered plates in Figure 10-7 for ૃ܀ ൌ .  

 

10.8.3 Effect of wavelength ratio (ૃ܀) 

In order to investigate the effect of the wavelength ratio of the applied transient loading (ܴఒ), the structure 

in Figure 10-6a (with ܮ௧ ൌ ݊௫	ܽ݊݀	௫ܮ0.3 ൌ ݊௬ ൌ 8) is optimized for four different values of ܴఒ as 

indicated in Table 10-2. In the remainder of this section, the optimal designs for ܴఒ ൌ 0.05, 0.1, 0.2 and 

0.4 are identified as structures ܣ, ,ܤ  respectively. The GA runs are performed with 8 integer ,ܦ	and ,ܥ

variables with the lower and upper bounds of ሾ1,8ሿ, and their population size is set to be 100. Other 

details of the GA runs are similar to the previous sections.  

The optimized vertical position strings (value of ݊௫ at each	݊௬) for different values of ܴఒ are presented in 

Table 10-6. The schematic of the optimal designs and the absolute value of the ratio of the force history at 

the boundary (|ܨ ⁄ܨ |) of structures ܣ, ,ܤ  are presented in Figure 10-10, Figure 10-11, Figure ܦ and ,ܥ

10-12, and Figure 10-13, respectively. In order to show the efficiency of the optimal designs, the stress 

history at the boundary of a similar bi-layered plate with a straight vertical interface is also depicted in 

these figures (with dotted lines).  
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Table 10-6 Optimization string and attenuation capacity of the 
structure in Figure 10-6a for different values of ૃ܀ 

ܴఒ Structure 
Optimization 

String 
Attenuation (%) 

7 ܣ 0.05 1 8 7 4 2 1 1 58 
5 ܤ 0.1 5 8 5 2 1 1 1 36 
3 ܥ 0.2 4 4 2 7 7 6 8 28 
5 ܦ 0.4 5 8 4 2 1 1 1 15 

 

The results of the optimization problems can be summarized as follows: 

 The optimization string for ܴఒ ൌ 0.05 (structure ܣ - Figure 10-10) is “7	1	8	7	4	2	1	1", and the 

maximum amount of attenuation that can be obtained by this structure is 58%. Figure 10-10.b shows 

that the stress history at the boundary of the straight structure has a very large value at the beginning; 

however, there is no such peak in the stress history of the jagged structure, which results in a 

significant amount of attenuation.  

 The optimization string for ܴఒ ൌ 0.1 (structure ܤ - Figure 10-11) is “5	5	8	5	2	1	1	1", and the 

maximum amount of attenuation that can be obtained by this structure is 36%. Figure 10-11.b shows 

that the peak values of the force history at the boundary of the straight structure are efficiently 

lessened by the jagged structure; however, the amount of attenuation at ܴఒ ൌ 0.1 is less than at 

ܴఒ ൌ 0.05. 

 The optimization string for ܴఒ ൌ 0.2 (structure ܥ - Figure 10-12) is “3	4	4	2	7	7	6	8", and the 

maximum amount of attenuation that can be obtained by this structure is 28%. Again, the amount of 

attenuation at ܴఒ ൌ 0.2	is decreased compared to ܴఒ ൌ 0.05	 (structure	ܣ) and	0.1 (structure	ܤ).  

 The optimization string for ܴఒ ൌ 0.4 (structure ܦ - Figure 10-13) is “5	5	8	4	2	1	1	1" and the 

maximum amount of attenuation that can be obtained by this structure is only 15%. This structure is 

very similar to structure	ܣ, except the fourth number in the optimization string is 4 instead of 5. 

Compared to the other structures, it is obvious that the lowest amount of attenuation takes place at 

ܴఒ ൌ 0.4.  

These analyses show that the optimal interface profile depends, significantly, on the wavelength ratio (ܴఒ) 

of the applied loading. Moreover, the amount of attenuation decreases significantly by increasing	ܴఒ. 

Considering the dimensions of the plate in Figure 10-6a, the minimum wavelength for structures ܣ, ,ܤ  ,ܥ

and ܦ is 0.1ܮ, ,ܮ0.2  it ,ܮ0.3	respectively. Since the thickness of the optimization zone is ,ܮand 0.8 ,ܮ0.4
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can be concluded that higher amount of attenuation can be obtained if the optimization zone has larger 

length compared to the wavelength of the loading.  

To explore the attenuation capacity of the optimal designs further, structures	ܣ, ,ܤ  are subjected ܦ and ,ܥ

to transient loadings with various ܴఒ values and their corresponding attenuation capacity are presented in 

Table 10-7. Examining the results of this table, the attenuation-ܴఒ curve for each structure is plotted in 

Figure 10-14, and accordingly, the attenuation capacity of each structure can be explained as follows: 

 Structure ܣ has a very high attenuation capacity for ܴఒ ൌ 0.05 (the wavelength for which it is 

optimized) and	ܴఒ ൌ 0.1; however, its performance is poor for larger ܴఒ values, especially for	ܴఒ ൌ

0.4. The minimum value of attenuation for this structure over the four cases is 2%, which occurs 

at	ܴఒ ൌ 0.4.  

 Structures ܤ and ܦ have a very similar attenuation capacity, because their geometries are quite 

similar. The optimization capacities of these structures is very good for ܴఒ ൌ 0.2 (it is only 1% less 

than the attenuation capacity of structure	ܥ). For	ܴఒ ൌ 0.05, the attenuation capacity of structures ܤ 

and ܦ is about 10% lower than that of structure	ܣ. The minimum values of attenuation over the four 

cases for structures ܤ and ܦ are 13% and	15%, respectively.  

 Structure	ܥ provides a lower amount of attenuation for ܴఒ ൌ 0.05, 0.1 and	0.4, and it is only efficient 

for ܴఒ ൌ 0.2 (the wavelength for which it is optimized). The minimum attenuation over the four 

cases for this structure is	9%.  

Based on these observations, either structure ܤ or ܦ is recommended for attenuating the intensity of the 

transient loadings with ܴఒ values between 0.05 and	0.4.  
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Figure 10-10 Structure , a) schematic of the optimal 
design, b) force history at the boundary for ࣅࡾ ൌ .  
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Figure 10-11 Structure , a) schematic of the optimal 
design, b) force history at the boundary for ࣅࡾ ൌ .  
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Figure 10-12 Structure , a) schematic of the optimal design, 
b) force history at the boundary for ࣅࡾ ൌ .  
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Figure 10-13 Structure ࡰ, a) schematic of the optimal design, 
b) force history at the boundary for ࣅࡾ ൌ .  

 

 

 

Table 10-7 Amount of attenuation (%) in the optimized 
structures for different values of ࣅࡾ 

ܴఒ 
Structure 

  ܦ  ܥ  ܤ  ܣ

0.05 58 49 47 48 
0.1 36 36 25 35 
0.2 19 27 28 27 
0.4 2 13 9 15 
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Figure 10-14 Attenuation-ࣅࡾ curve for the optimized structures 

 

10.9 Summary 

The stress wave attenuation in bi-layered rectangular plates with a potentially jagged interface is studied 

in this section. The structures are subjected to transient half-sine loading with various durations, and their 

interface profile is optimized for the objective of stress wave attenuation. A coupled GA-FE optimization 

methodology is developed for finding the optimal design of the interfaces. 

The effect of different parameters such as the length of the optimization zone, the dimensions of the 

optimization grid, and the wavelength ratio of the applied transient loading is investigated. It is observed 

that the attenuation capacity of the bi-layered plates with jagged interface does not increase significantly 

by increasing the length of the optimization zone or by decreasing the dimensions of the grid cell (making 

a very fine optimization grid).  

The results show that the interface profile has a significant effect in attenuating the stress waves, and the 

amount of attenuation depends directly on the associated wavelength of the applied transient loading. In 

addition, there is no unique interface profile for all of the transient loadings, and the optimal design of the 

interface varies for the loads with different wavelengths. The results also show that higher attenuation can 

be obtained if the associated wavelength of the applied load is small compared to the dimensions of the 

structure and the length of the optimization zone.  
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SECTION 11 

SUMMARY, CONCLUSION, AND RECOMMENDATIONS FOR FUTURE 

RESEARCH 

 

11.1 Summary 

This report investigates the wave propagation characteristics of different types of discontinuities and 

proposes new efficient systems for mitigating impulsive loadings. The underlying concept explored in 

this report relies on the attenuation of stress waves in the systems associated with the reflection and 

transmission of waves at the discontinuities. Hence, with impetus to provide a better understanding of the 

attenuation capacity of the impulsive-loading mitigation strategies, the wave reflection and transmission 

in different types of materials and geometric discontinuities are investigated comprehensively.   

The results obtained from these investigations are then utilized for designing new architectures for 

attenuating the stress waves generated from impulsive loadings. In order to design these architectures, the 

theoretical concepts from wave propagation analysis of the systems with discontinuities are combined 

with a heuristic optimization methodology, based on genetic algorithms (GA). In this work, GA is 

exploited for the optimal design of the stress wave attenuators because it avoids the difficulty of obtaining 

gradient information with respect to the design variables and is well-suited for the highly non-linear 

nature of the problems explored in this report.  

Four types of stress wave attenuators are introduced in this report. These attenuators include: (i) layered 

collinear rod structures, (ii) layered diamond-shape beam structures, (iii) non-collinear beam structures, 

and (iv) porous plates. The layered stress wave attenuators have constant geometry while their material 

set-up is optimized during the design procedure. However, the non-collinear beam structures and porous 

plates are made of a single material, and the optimal design procedure seeks to find the best geometry of 

these systems for mitigating the effects of impulsive loadings. In addition to the proposed stress wave 

attenuators, the stress wave attenuation capacity of the bi-layered plates with jagged interface profile is 

also studied in the last section of this report. Similar to the approach used in non-collinear systems and 

porous plates, the material properties of the bi-layered plates remain unchanged during the design 

procedure; however, the profile of the interface between the two materials changes for the objective of 

stress wave attenuation.   

The major contributions of this report can be summarized as follows: 
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 Study the effects of discontinuities in different structures such as rods, beams, and plates  

 Derive reflection and transmission matrices for arbitrary “L” and “T” shaped Timoshenko beams 

 Propose four types of stress wave attenuators 

 Characterize the crucial parameters for designing the proposed stress wave attenuators 

 Develop a heuristic optimal design procedure for finding the best material and geometry 

configurations of the proposed stress wave attenuators  

 Explore the stress wave attenuation capacity of the proposed stress wave attenuators for the 

impulsive loadings with various frequency contents 

 Explore the stress wave attenuation in bi-layered plates with jagged interface profile 

 

11.2 Conclusion   

The key conclusions of the study presented in this report are as follows: 

 The reflection and transmission properties are very different for the various types of discontinuities 

in rods. Some discontinuities such as lumped mass and elastic boundaries can disperse the waves 

although the propagating signal is inherently non-dispersive, while some others such as stepped rods 

induce no dispersion. 

 The reflection and transmission phenomena in Timoshenko beams are much more complex than in 

rods due to the dispersive nature of flexural waves, and reflection and transmission matrices are 

completely dependent on material properties, cross section geometry, and the frequency of loading. 

 The required parameters for designing the layered stress wave attenuators include relative length of 

each layer, in-plane and out-of-plane dimensions, incident wave frequencies (wavelength), rigidity of 

the host structure, and impedance mismatch between different layers. It is observed that the 

dependence of the stress wave attenuator efficiency is a complex function of all parameters, and 

varies significantly in different ranges. The analyses reflect that impedance mismatch between 

different layers, incident wave frequencies (wavelength), and rigidity of the host structure are the 

most critical parameters in design. 

 The developed optimization procedure is very effective for the optimal design of the proposed stress 

wave attenuators.  

 The optimal design of the layered collinear and non-collinear stress wave attenuators are mainly 

composed of the materials with the highest and lowest impedance values, and the structures are 

usually optimized in a pattern in which the waves should pass from a high to low impedance 

material.  
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 Layered non-collinear stress wave attenuators have very high attenuation capacity in comparison to 

the collinear structures because of the existence of the flexural waves and the associated dispersion 

phenomenon.  

 The single-layered non-collinear stress wave attenuators have a noticeable attenuation capacity 

especially for larger number of non-collinear parts within the structure.  

 The general attenuation capacity of the porous plates is lower than the other types of the stress wave 

attenuators.  

 The optimal design of the porous plates are usually composed of holes with the smallest and largest 

diameters, and the holes are usually arranged in a pattern in which the small holes are located close 

to the loading surface while the large holes are neighboring the fixed boundary. In addition, in 

majority of the optimal designs, the first and the last holes have the minimum and maximum 

diameters. 

 In bi-layered plates, the interface profile has a significant effect in attenuating the stress waves, and 

the amount of attenuation depends directly on the wavelength associated with the applied impulsive 

loading. There is no unique interface profile for all of the impulsive loadings and the optimal design 

of the interface varies for the loads with different wavelengths. 

 For all of the studied systems in this report, it is observed that the attenuation capacity increases for 

the impulsive loadings with high frequency values (short wavelength). This happens because the 

discontinuities within the systems can highly alter the characteristics of the stress pulses with short 

wavelengths.  

 

11.3 Recommendations for Future Research 

A list of recommendations for future research follows based on the results and findings of this report: 

 Reflection and transmission matrices can be developed for discontinuities with viscous and plastic 

material properties.  

 The major mechanism of stress wave attenuation in the layered systems in this report is stress wave 

scattering due to the impedance mismatch between the materials. A more comprehensive 

investigation can be performed by exploiting materials with viscous and plastic behaviors. The 

viscous and plastic behavior of materials can increase the attenuation capacity of the structures by 

adding the inelastic attenuation mechanism to the scattering attenuation.  

 Generally, numerical analysis such as FE is utilized for shape optimization of continuous structures. 

In these problems, it is required that the FE model be modified during the optimization process. The 
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developed python scripts in this report can analyze the complex structural systems under various 

types of loading using FE method. These scripts can be easily modified during the optimization 

procedure; therefore, they can be coupled with various topology optimization techniques such as 

“ground structure method”, “homogenization method”, “Evolutionary structural optimization 

(ESO)”, and “level set method (LSM)” for developing more efficient mitigating systems.  

 The numerical and theoretical results obtained in this report can be verified using physical 

experimentation such as Split Hopkinson bar test.  

 All of the investigated concepts in this report can be applied to the problems with the objective of 

stress wave amplification.  
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