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Preface

MCEER is a national center of excellence dedicated to the discovery and development
of new knowledge, tools and technologies that equip communities to become more
disaster resilient in the face of earthquakes and other extreme events. MCEER accom-
plishes this through a system of multidisciplinary, multi-hazard research, in tandem
with complimentary education and outreach initiatives.

Headquartered at the University at Buffalo, The State University of New York, MCEER
was originally established by the National Science Foundation in 1986, as the first Na-
tional Center for Earthquake Engineering Research (NCEER). In 1998, it became known
as the Multidisciplinary Center for Earthquake Engineering Research (MCEER), from
which the current name, MCEER, evolved.

Comprising a consortium of researchers and industry partners from numerous disci-
plines and institutions throughout the United States, MCEER’s mission has expanded
from its original focus on earthquake engineering to one which addresses the technical
and socio-economic impacts of a variety of hazards, both natural and man-made, on
critical infrastructure, facilities, and society.

The Center derives support from several Federal agencies, including the National Sci-
ence Foundation, Federal Highway Administration, National Institute of Standards
and Technology, Department of Homeland Security /Federal Emergency Management
Agency, and the State of New York, other state governments, academic institutions,
foreign governments and private industry.

The Bonneville Power Administration (BPA) and the California Energy Commission
(CEC) are supporting a series of studies on the resilience of electric power substation
equipment that focus on the following topics:

* Reducing Disruption of Power Systems in Earthquakes: Advanced Methods for
Protecting Substation Equipment
* Analysis of the Seismic Performance of Transformer Bushings

Itis envisioned that these studies will result in the development of cost effective seismic
protective solutions for transformer-bushing systems and other electrical substation
equipment considering inertial effects and dynamic interaction with conductors. Fur-
thermore, new knowledge discovered about the bushing-transformer seismic interaction
will be translated into a proposed revision of the IEEE 693 Standard. A series of MCEER
reports will document the results of these studies.

In this report, the dynamic response of high voltage transformer bushing systems under seismic
excitation was studied to evaluate possible methods to mitigate the seismic vulnerability and
damage to “as installed” bushings. Finite element models of four different high voltage trans-
formers were used to perform modal and linear dynamic time analyses to compare the response
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of the bushing structures “as installed” on flexible transformer covers and on a rigid base,
and to investigate the efficiency of several stiffening techniques used to ensure the integrity of
the bushings during strong earthquakes. In addition, a two-stage experimental investigation,
consisting of system identification testing and shake table testing, was conducted to verify the
response trends identified by the numerical studies. The experimental and numerical results
clearly show that the bushing structures “as installed” on flexible transformer covers are more
vulnerable to seismic excitations compared to the ones mounted on a rigid base. Moreover, these
studies showed that stiffening the transformer covers at the base of the bushings can be ben-
eficial for their response against ground shaking. From the stiffening techniques investigated,
incorporating flexural stiffeners on the cover plate of the transformer tank appears to be the
most efficient approach.
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ABSTRACT

In the past few decades, electrical substation equipment has shown vulnerable behavior under
strong earthquakes, resulting in severe damage to electric power networks. High voltage
bushings, which are designed to isolate and transmit electricity from a transformer to the high
voltage lines, are the most critical as well as the most vulnerable components of the electrical
substations. Rehabilitation of existing bushing structures and proper design of new ones could
considerably reduce potential damage to them. Several experimental and numerical studies
conducted to investigate the seismic performance of transformer bushing structures have shown
that improved seismic performance may be achieved for bushings mounted on a rigid base
compared to those mounted on actual transformer tanks (“as installed” conditions), which appear

to be very flexible.

This reports investigates the seismic response of bushing structures both “as installed” on a
flexible base and on a rigid base as well as attempts to identify feasible approaches of stiffening
the base of the transformer bushings as a measure to mitigate their vulnerability under strong
seismic excitation. Finite element models of four different high voltage transformers were used
for performing modal and linear dynamic time history analyses in order to compare the response
of the bushing structures “as installed” and on a rigid base as well as investigate the efficiency of
several stiffening techniques to ensure the integrity of the bushings during strong earthquakes. In
addition, a two stage experimental investigation, consisting of system identification testing and
shake table testing, was conducted to verify the response trends identified by the numerical

studies.

Both numerical and experimental studies clearly showed that the bushing structures “as
installed” are very vulnerable to seismic excitation as well as very flexible compared to the ones
mounted on a rigid base. Moreover, these studies showed that stiffening the base of the bushings
can be beneficial for their response against ground shaking. From the stiffening techniques
investigated, incorporating flexural stiffeners on the cover plate of the transformer tank appears

to be the most efficient approach.
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SECTION 1
INTRODUCTION

The electric power network is a vital component of everyday life in modern societies. Electrical
substations are critical components of the electric power network that supplies power for
industrial, business and residential use and they are susceptible to significant damage under
strong seismic excitation. Rehabilitation of existing substations and proper design of new
systems will reduce the possible post-earthquake effects/damage. In Figure 1-1 a typical

electrical substation is presented.

Figure 1-1 Typical Electrical Substation (Ersoy et al., 2008)

1.1. Description of Electrical Substation Equipment

Electrical substation is called the subsidiary station which serves several functions starting with
the protection of the transmission and distribution lines as well as the equipment within the
substation by using sensors of abnormal system operating conditions that trigger devices which
isolate these lines and equipment. Most of the substations operate as a means of transfer of

power between different voltage levels by utilizing power transformers and as a means of



reconfiguration of the power network by opening transmission lines or partitioning multi-section

busses (Schiff, 1999).

One of the most essential pieces of equipment in any electrical substation is the power
transformer. The power transformer is a device, without any moving parts, which transfers the
electric power from one circuit to another through inductively coupled conductors. The basic
components of this device are the coils, steel core, oil, tank and bushings. A simplified cross

section of a typical power transformer with its components is illustrated in Figure 1-2.

Surge Arrester, <5 — Iéligl:iVotltage
onductor
N - /
Low Voltage L
Conductor éE I-}IslgthOItage Oil Reservoir
E /usmg / Conservator
Low Voltage ! ‘E
Bushing ~. ;Tank over E
Oil Filled Tank | [ 5
& .......... L
. ===~ «——— Transformer Windings
....... - / Tank Wall
--.".|_—"Ferrous Core
= | __— Core Support
Tank Floor

Figure 1-2 Simplified Cross Section of Typical High Voltage Power Transformer and its
Components (Koliou et al., 2012)

The coils and core are enclosed in the steel tank in order to protect them from the elements of
nature, vandalism and for safety purposes, while the oil is placed in the tank, over the coils and

core, as a means of cooling (Pansini, 1999).

Bushings are insulated conductors providing electrical connections between high voltage lines
and oil-filled transformers, and are typically mounted on the top of a transformer or on a turret

attached to the transformer. They are mainly composed of a flange plate by which the bushing is
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attached to the turret, porcelain units (above the flange plate) and a metallic dome at the top. In
cross section, the bushing is composed of a central core that provides electrical connectivity, a
condensor that wraps the core, perimeter annular porcelain units, and oil that fills the gaps
between the condensor and the porcelain unit (Gilani et al., 2001). A typical porcelain 230 kV

bushing with its components is presented in Figure 1-3.

Top of Bushing

Dome
Sheds
Upper-2 Porcelain Unit

Midheight of Bushing
Typical Gasket

Upper-1 Porcelain Unit
Lifting Lugs

Aluminum Flange Plate

N Aluminum Lower Support

Lower Porcelain Unit

Bottom of Bushing

Figure 1-3 Typical Porcelain 230 kV Bushing with its Components (after Gilani et al., 2001)

1.2. Background on Seismic Vulnerability of Transformer Bushing Systems

In the past few decades, electrical substation equipment has demonstrated vulnerable behavior
during several earthquakes worldwide, resulting in severe damage to the electric power
networks. Characteristic examples of such events are the 1989 Loma Prieta (Villaverde et al.,
2001) and 1994 Northridge (Schiff, 1997) earthquakes in United States, 1995 Kobe earthquake
in Japan (Schiff, 1998), 1999 Chi-Chi earthquake in Taiwan (Schiff & Tang, 2000) and 1999
Izmit earthquake in Turkey (Tang, 2000).

The overall seismic performance of the substations and their equipment varies. It has been

observed that the low voltage equipment (at or below 115kV) performs well when properly



anchored, while the performance of high voltage equipment (at or above 220kV) depends on the
specific type of components and their installation practices (Schiff, 1999).

The most severe damage to electrical substation equipment can be categorized into damage to the
power transformers and damage to the bushings. The observed failure types of power
transformers are: (i) failure (overturning or shifting) of unrestrained transformer, (ii) anchorage
failure, (iii) conservator failure, (iv) foundation failure, (v) damage to control boxes, (vi) oil
leakage of radiators and (vii) failure of lightning arrestors (Ersoy et al, 2008; Schiff, 1999). The
first two types of failure are the most common despite the fact that it is a simple procedure to fix
the transformer base to the foundation either by anchor bolts or welds. Characteristic damage of
foundation failure and overturned transformer in 1999 Izmit earthquake are shown in Figure 1-4

and Figure 1-5, respectively.

As for the bushing failures, it has been observed that the lack of slack in the connecting cable
between the bushing and the connecting equipment results in fracture of the porcelain body,
while oil leakages between the base flange of high voltage bushings and their upper porcelain
body have occurred due to gasket failure. Note that the most vulnerable gasket is the one closest
to the flange connecting the bushing to the transformer. Figure 1-6 presents the bushing failure at
the gasket level, while bushing failures during the 1999 Chi-Chi earthquake are shown in Figure

1-7. Table 1-1 summarizes the damage observed during past earthquakes.

Table 1-1 Damage Observed during Historical Earthquake Events (Koliou et al., 2012)

Earthquake Event Ma(gl\l/}lt)u de Observed Damage
Loma Prieta (1989), USA 6.9 Cracked porcelain bqshlngs, anchorage failures &
oil leakage
Northridge (1994), USA 6.7 Failure of bushings, anchorage, radiators, surge

arrestors & conservators

Kobe (1995), Japan 6.9 Anchorage failure

Transmission tower foundation damage & surge

Chi-Chi (1999), Taiwan 7.6 ,
arrestors' damage

Failures of transformer tanks & bushings due to
unanchored transformers

Izmit (1999), Turkey 7.4




Figure 1-4 Damage to Transformer Foundation due to Lack of Anchorage, Izmit Turkey 1999
(Wang, 2008)

Figure 1-5 Transformer Turned Over, Izmit Turkey 1999 (Sezen & Whittaker, 2006)



Figure 1-6 Bushing Failure at the Flange (Ersoy et al., 2008)

; F“FL"I

Figure 1-7 Bushing Failure, Taiwan 1999 (Wang, 2008)
1.3. Seismic Design Recommendations for Electrical Substation Equipment

In the United States, recommendations for the seismic design of substation buildings, structures
and equipment located in moderate and high seismic areas are provided in the IEEE-693

Standard (IEEE, 2005). Although substation designers are not obligated to follow the guidelines



within this document, most of them have generally adopted the IEEE-693 Standard for the

design of new electrical equipment.

The IEEE-693 Standard has established design response spectra of high and moderate seismic
qualification level for analysis and testing of equipment as shown in Figure 1-8 and Figure 1-9,

respectively. A damping ratio of 2% is recommended for the analysis of substation equipment.

According to IEEE-693 Standard, the substation equipment can be qualified by conducting static
analysis, static coefficient analysis, response spectrum analysis or shake table testing depending
on the type of the equipment and the voltage rating. The seismic qualification of high voltage
bushing structures is conducted through shake table testing with the bushing mounted on a test
fixture, simulating a rigid base. For this reason, the IEEE-693 Standard considers that the motion
at the base of the bushing is equal to the ground motion multiplied by a frequency independent

amplification factor of 2.
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Figure 1-8 High Required Response Spectrum (after IEEE, 2005)
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1.4. Literature Review

Several experimental and numerical studies have been conducted during the past 15 years on the

seismic performance evaluation and/or rehabilitation of transformer-bushing systems.

In 1997, Wilcoski & Smith (Wilcoski & Smith, 1997) developed a fragility testing procedure to
define the vulnerability of bushing structures under earthquake and other transient motions by
documenting the failure modes observed. During shake table tests of a 500kV bushing, which
were conducted as part of this study, the bushing structure experienced oil leakage when the
IEEE-693 spectrum was scaled to Peak Ground Acceleration (PGA) of 1g. The measured
fundamental frequencies of the 500kV bushing varied within a range of 5.7Hz to 6.4Hz, while

the damping ratio was reported to lie between 2.5% and 3% of critical.

Bellorini et al. (1998) performed seismic qualification tests as well as finite element analyses of a
230kV transformer-bushing system in order to evaluate the dynamic characteristics of both the
power transformer and the bushing structure. During the experimental phase, which consisted of
multi point random (MPR) excitation tests as well as forced vibration (FV) tests, the fundamental
frequencies of the transformer tank and bushing structure were measured equal to 3.5Hz and
11Hz, respectively, while the damping ratio was estimated as 2% of critical. The experimental
findings matched with good accuracy the numerical results. In this study, the amplification

between the ground and the bushing flange as well as the ground and the bushing center of



gravity (CG) was investigated and compared to the IEC 61463 (International Electrotechnical

Commotion “Bushing-Seismic Qualification” Standard).

Seismic qualification tests (per the IEEE-693 Provisions) of three different voltage rate bushings
(196kV, 230kV and 550kV) were performed at the earthquake simulator at the Pacific
Earthquake Engineering Research (PEER) Center at the University of California, Berkeley
(Gilani et al., 1998; Gilani et al., 1999; Gilani et al., 2001; Whittaker et al., 2004). Two 196kV
porcelain bushings mounted on a rigid support structure at an angle of 20 degrees were tested
under earthquake motions of moderate and high seismicity level. Both bushing structures were
qualified for the moderate level motions, and survived the high level motions with negligible
damage. The measured fundamental frequencies of the bushings were between 14Hz and 16Hz,
while the damping ratio was estimated to vary within a range of 2.5% to 4% of critical. Two
identical 230kV porcelain bushings were tested using the same configuration as for the 196kV
bushings (rigid frame structure) as well as a flexible support structure. For the rigid mounting
conditions, the bushings were qualified for high level seismicity motions without any structural
damage or oil leakage. Their fundamental frequencies were measured varying between 18Hz and
20Hz, while the damping ratio was computed to fluctuate between 2% to 3% of critical. As for
the flexible support, the fundamental frequencies were between 5.5Hz and 7.5Hz, while the
damping ratio varied within a range of 2% to 5% of critical. One of the bushings survived oil
leakage and slip of the porcelain units during high level qualification shaking. Additionally, two
different ring configurations around the gasket were used as a retrofit approach to prevent
slippage and oil leakage during extreme ground shaking, which appeared to work efficiently for
only one of the bushing structures. Finally, three 550kV porcelain bushings were tested using the
rigid support structure as for the rest of the bushings. None of the bushings was qualified for
moderate level earthquake motions, since they survived oil leakage as well as slippage of the
upper porcelain unit over the gasket connection, exposing the gasket to significant residual
displacement. Frequency of approximately 8Hz and damping ratio of 4% of critical were

measured for all three bushings.

Villaverde et al. (2001) performed experimental and numerical studies to quantify the ground
motion amplification at the bushing base due to the flexibility of the transformer tank and turrets.

For these studies, typical 230kV and 500kV bushings were considered. According to the results



obtained by the testing, the frequencies of the bushing structures varied between 2.5Hz and
3.5Hz for the 500kV bushings and were approximately 4Hz for the 230kV ones. As for the
damping ratios, they were within a range of 1.5% and 4% of critical for both 230kV and 500kV
bushings. Three dimensional finite element models were developed to match the experimental
findings and investigate the amplification factor between the ground and the bushing flange. For
some analysis cases, the amplification factor was found to be almost double compared to the

proposed value per IEEE-693 Standard.

Ersoy et al. (2001) investigated analytically and experimentally friction pendulum systems (FPS)
as an approach of seismic rehabilitation and design of transformer-bushing systems in order to
mitigate their seismic vulnerability. The effect of various parameters (i.e., on the bushing ground
motion characteristics, peak ground acceleration, bi-axial motions, and bearing radius) on the
seismic performance of typical transformer-bushing systems isolated with FPS bearings was
investigated under one- and two-dimensional earthquake motions. Isolating the transformer tank
using FPS appeared to be an effective approach since the inertia forces decreased considerably in

the transformer-bushing system.

Implementation of base isolation systems as a means to reduce the seismic demand of the
transformer-bushing systems was also investigated by Murota (2003). Experimental and
numerical studies were performed for two types of isolation systems: (i) sliding bearing system
and (ii) segmented high-damping rubber bearing system and were proven to be effective

techniques for seismic protection of power transformers.

Ersoy and Saadeghvaziri (2004) identified and verified with numerical analysis of finite element
models for three different transformer-bushing systems, the influence of the flexible tank top

plate on the response of the bushing structure.

Filiatrault & Matt (2005, 2006) conducted numerical and experimental studies on the response of
transformer-bushing systems during ground shaking, mainly aiming on investigating the
amplification factor between the ground and the base of the bushing. Finite element analyses of
four different transformer-bushing models (525kV, 230kV and two 500kV) were performed
under an ensemble of 20 ground motions representative of the California region scaled to match

the IEEE-693 high performance required spectrum. Note that analyses were performed
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considering two different support conditions of the bushing: (i) rigid support and (ii) flexible
support on the tank top plate. It was found that the amplification factor between the ground and
the base of the bushing exceeded the factor of 2 proposed by the IEEE-693 Standard, especially
for transformer-bushing systems with bushing’s fundamental frequency close to the fundamental
frequency of the transformer tank. The experimental investigation included uniaxial shake table
tests of a 525kV transformer-bushing system conducted at the University of California, San
Diego. The results of the tests confirmed the influence of the flexibility of the tank top plate on
the dynamic properties of the bushing. As for the amplification factor, the numerically identified
trends were verified experimentally since it was observed that four out of five ground motions
considered for testing generated amplification factors larger than the IEEE-693 recommended
value of 2.0. Additionally, as presented in Matt & Filiatrault (2004), two retrofit schemes were
investigated numerically for a 230kV transformer in order to reduce the amplification that occurs
between the ground and the bushing attachment point. More specifically, the first approach
included double angle braces attached between the top of the turret and the top of the transformer
tank, while the second scheme consisted of four bracing elements attached between the top of the
transformer tank and the foundation in addition to the double angle braces (first bracing
configuration). Despite the fact that both bracing configurations appeared to considerably reduce
the amplification between the ground and the base of the bushing structure, the reduction was not

large enough to meet the criteria of IEEE-693 Standard (value of 2.0).

Analytical investigation incorporating modeling variations and structural modifications of finite
element models representing existing transformer-bushing structure was conducted by
Oikonomou (2010). The main objective of this study was to identify the dynamic characteristics
and important interactions between various components (of the transformer-bushing system) and
the high voltage bushings. Detailed sensitivity analyses, which were conducted utilizing a three
dimensional finite element model, consisted of three identical 196kV bushings mounted on tank
top plate of a 230kV power transformer, clearly showed that the top (cover) plate of the
transformer tank influences significantly the response of the high voltage bushings (Reinhorn et

al., 2011).

The numerical and experimental studies conducted in the past 15 years have indicated a

generally improved seismic response of high voltage bushings when mounted on a rigid base
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compared to their actual performance in the field during real earthquakes. The reason for this
discrepancy is that the high voltage bushings, “as installed” in the field, are mounted on the
flexible plate of the transformer tank, while during the shake table tests (qualification testing) are

mounted on a rigid base.

1.5. Research Objectives

The main objectives of this research were to investigate the seismic response of transformer
bushing systems installed both on a rigid base and on the flexible plate of the transformer tanks
“as installed” conditions), as well as identify feasible approaches to stiffen the base of the “as
installed” bushings in order to reduce the seismic demand and achieve an improved seismic
response. The seismic demand of the transformer bushing systems may be reduced by isolating
the transformer tank itself (global stiffening solution) as already reported in the literature (Ersoy
et al., 2001; Murota, 2003; Matt & Filiatrault, 2004), however in this research, the local solution

of stiffening the base of the bushing structure was investigated.

The approach of stiffening the bushing base to shift its fundamental frequency towards the rigid
base conditions and reduce the seismically induced loading is conceptually presented in Figure
1-10. As shown in this figure , the fundamental frequency of the “as installed” high voltage
bushings is in the green area, which includes the plateau of the response spectra, while by
stiffening the bushing base, the fundamental frequency range moves towards the pink area,
where the bushing receives less seismic forces. Note that the frequency ranges indicated in
Figure 1-10 are based on the computed fundamental frequencies of transformer-bushing systems
in Section 2. Several stiffening approaches were investigated in order to achieve a significantly

improved response of the bushing structures and are presented in the following chapters.

This research was divided into three parts. The first part consisted of a series of numerical finite
element analyses for different transformer models, while the second part focused on the
experimental investigation of a typical transformer bushing system. In both parts, the response
component of interest was the moments at the base of the high voltage bushings since the shear
and axial force demand imposed during an earthquake is typically much lower than the bushing
capacity. The third part focused on analytical derivations of simplified relations of evaluating the

dynamic properties and forces of the transformer-bushing system mainly showing that the
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flexibility of the transformer cover produces (i) a reduction of the fundamental frequency, (ii)

additional motion at the bushing base and (iii) additional vertical vibration of the bushings.

Finite element numerical analyses were conducted for four different transformer models of
various sizes and voltages. The first series of linear dynamic time-history analyses were
performed in order to evaluate the dynamic properties of the bushings and compare the response
of the bushing structure installed on a rigid base and “as installed”. The second part of the
numerical analyses focused on investigating the efficiency of several stiffening approaches in

order to ensure the bushing structure integrity during strong earthquakes.

The results obtained from the finite element analyses were verified experimentally by a series of
shake table tests performed in the Structural Engineering and Earthquake Simulation Laboratory
(SEESL) at the University at Buffalo. A numerical model was also developed for the test
configurations in order to predict the response of the bushing structure through modal and

dynamic time history analyses.
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P L e e T B MRt Ao\ o e R A =—2% Damping
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Figure 1-10 Influence of Stiffening the Base of the High Voltage Bushings on the IEEE-693 High
Required Response Spectra (Koliou et al., 2012)

13



1.6. Report Organization

Following this introductory section, Section 2 presents the four finite elements models of the
transformer bushing systems considered for numerical investigation. Moreover, this section deals
with a preliminary investigation of the transformer bushings through modal and dynamic time
history analyses. Section 3 refers to the proposed stiffening approaches that can be used in order
to mitigate the seismic vulnerability of the bushing structures. The finite element models were
modified and analyzed to determine the efficiency of each stiffening technique. Sections 4 and 5
present an experimental study aiming at the verification of the numerically identified trends.
System identification testing of the bushing structure by a series of hammer tests and pull-back
tests are described in Section 4, while Section 5 presents a series of shake table tests on the same
bushing test structure. In Section 6, a comparison between the predicted numerical results and
the experimental measurements is presented. Section 7 presents the analytically derived
simplified methods of evaluating the dynamic properties of the transformer-bushing systems.
Finally, Section 8 summarizes this study, along with the most important conclusions.

Recommendations for future research are also included in this last section.
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SECTION 2

NUMERICAL INVESTIGATION OF HIGH VOLTAGE TRANSFORMER-
BUSHINGS SYSTEMS

2.1. Introduction

In this section, a numerical investigation on the seismic response of bushings mounted on
transformer tank bases (“as installed”) and on rigid bases is presented. Four different finite
element models of transformer bushing systems were used for performing modal and linear
dynamic time history analyses using the commercial structural analysis program SAP2000

Advanced V.14.1.0 (Computers and Structures, 2009).

2.2. Description of Transformer Models Considered

Four different types of transformer bushing systems of various sizes, geometries and voltages, as
shown in Figure 2-1, were considered for analysis in this research. Table 2-1 presents details on
the dimensions and weight of each transformer model (Filiatrault & Matt, 2006; Oikonomou,

2010).

Each three dimensional finite element model was built in the commercial structural analysis
program SAP2000 Advanced V.14.1.0 (Computers and Structures, 2009). The transformer frames
were modeled as shell elements with the appropriate thickness and mass allowing for in—plane
deformation and out—of—plane bending, while the transformer tank was considered to be full of
oil. Beam elements as well as appropriate shell elements were used for modeling the stiffeners
attached to tank sides (Filiatrault & Matt, 2006). The high voltage bushings were mounted on the
cover plate of the transformer tank and each bushing, which was modeled as multiple beam
elements in series with the appropriate geometry, stiffness and mass, consisted of three parts.: (i)
the upper part represented the actual high voltage bushing, (ii) the central part was a radial array
of rigid elements connected to the turret, which represented the bushing flange and (iii) the lower
part in the assembly was the turret, which was modeled as a polyhedron of the same number of
surfaces as the number of the radial rigid elements. The radiators were represented by vertical

elements of rectangular cross section, while the high voltage surge arrestors were modeled as
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vertical beams with circular cross section (Oikonomou, 2010). The oil conservator of the 230kV
Ferranti Packard transformer model, which was represented by a cylindrical tank made up of
shell elements, considered to be full of oil and the oil was distributed uniformly on the walls as
vertical loading. The tank was supported by two horizontal and two diagonal beams fixed to the

tank wall (Oikonomou, 2010).

Finally, it has to be mentioned that the geometry, thickness and locations of all walls, plates and

beams were obtained from manufacturer’s structural drawings.

Table 2-1 Dimensions of Transformer Models Considered

Transformer Model Dimensions (ff) Wei.ght**
Length Width Height (kips)
Westinghouse 525kV 8.8 9.9 22.8 463
Siemens 230kV 10.0 24.2 14.4 478
Siemens 500kV 10.8 26.0 16.8 673
Ferranti Packard 230kV 8.3 26.0 13.0 266

"Including oil
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2.3. Modal Analysis of High Voltage Transformer-Bushings Systems

2.3.1. Modal Analysis of High Voltage Bushings on a Rigid Base

In order to conduct the modal analysis of bushing systems installed on a rigid base, the dynamic
properties of the transformer bushing models were modified. More specifically, two different
procedures were followed to create a rigid base for the high voltage bushings. The first approach
focused on the restraint of all the degrees of freedom of the initial model, except for those of the
bushing, resulting in bushing on rigid foundations, while for the second approach all the
elements of the initial model, except for the bushing, were deleted and the bushing itself is

restrained at its base.

Note that in both procedures used to represent the rigid base the results of the modal analysis
were identical. Moreover, the period obtained for the Ferranti Packard 230kV model was almost
equal to the period computed for the Siemens 230kV model, as shown in Table 2-2, which
indicates that the frequency of the 230kV bushing on a rigid base is independent of the

manufacturer.

Table 2-2 Fundamental Periods and Natural Frequencies of High Voltage Bushings on a Rigid Base

Model Description Period (sec) Frequency (Hz)
Westinghouse 525kV Model — mode 1 — 0.108 9.27
Siemens 230kV Model — mode 1 — 0.059 16.85
Siemens 500kV Model — mode 1 — 0.114 8.75
Ferranti Packard 230kV Model — mode 1 — 0.060 16.80

2.3.2. Modal Analysis of High Voltage Bushings on a Transformer Tank (“as
installed” conditions)

For each one of the transformer bushing models, a modal analysis was performed and the natural
frequencies for all the modes were obtained. Note that for the Westinghouse 525kV, Siemens
230kV and Siemens 500kV transformers, the number of modes considered are greatly reduced
due to the complexity of the finite element models (Filiatrault & Matt, 2006), while for the
Ferranti Packard 230kV transformer model more than 200 modes were considered. At least 90%

of the total mass participation was accounted for in the two principal directions of each model.
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The frequency of each mode is presented in Table 2-3, Table 2-4 and Table 2-5 for the

Westinghouse 525kV, Siemens 230kV and Siemens 500kV transformer, respectively, while the

first 40 modes of the Ferranti Packard 230kV transformer are shown in Table 2-6. However,

since the high voltage bushings were mainly investigated in this research, the deformation of the

first mode of each bushing system is presented in Figure 2-2.

Table 2-3 Periods and Natural Frequencies of Westinghouse 525kV Transformer-Bushing Model

Mode Mode Description Period (sec) | Frequency (Hz)
1 | Surger Arrestor (1¥ mode) 0.377 2.65
2 | High Voltage Bushing (1* mode) 0.342 2.92
3 Surger Arrestor (2™ mode) 0.328 3.05
4 | High Voltage Bushing (2™ mode) 0.292 3.42
5 Transformer Frame (1% mode Transverse) 0.119 8.38
6 Transformer Frame (1% mode Longitudinal) 0.088 11.37
7 | High Voltage Bushing (3" mode) 0.076 13.15
8 Surger Arrestor (3" mode) 0.069 14.58
9 | Surger Arrestor (4™ mode) 0.065 15.31
10 | Transformer Frame (Transverse 2" mode) 0.049 20.16
11 | Transformer Shell (1* mode Out of plane bending) 0.040 24.81
12 | Transformer Frame (Longitudinal 2" mode) 0.029 33.90
13 | Transformer Frame Torsion (1* mode) 0.023 42.79
14 | Transformer Shell (2" mode Out of plane bending) 0.019 50.71

Table 2-4 Periods and Natural Frequencies of Siemens 230kV Transformer-Bushing Model

Mode Mode Description Period (sec) | Frequency (Hz)
1 | High Voltage Bushings (1* mode) 0.109 9.14
2 High Voltage Bushings (2™ mode) 0.097 10.26
3 Transformer Frame (1% mode Transverse) 0.093 10.76
4 Transformer Frame & Bushings (2" mode Transverse) 0.086 11.57
5 Oil Conservator Tank (1* mode Longitudinal) 0.083 12.03
6 High Voltage Bushings (3" mode) 0.076 13.23
7 High Voltage Bushings (4th mode) 0.074 13.51
8 Transformer Frame (2" mode Transverse) 0.059 16.88
9 | Transformer Shell (1* mode Out of plane bending) 0.052 19.17
10 | Transformer Frame (1* mode Longitudinal) 0.039 25.05
11 | Transformer Frame (4™ mode Transverse) 0.039 25.95
12 | Transformer Shell (2™ mode Out of plane bending) 0.027 37.19
13 | Transformer Frame (2™ mode Longitudinal) 0.026 37.89
14 | Transformer Shell (3™ mode Out of plane bending) 0.024 41.32
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Table 2-5 Periods and Natural Frequencies of Siemens 500kV Transformer-Bushing Model

Mode Mode Description Period (sec) | Frequency (Hz)
1 High Voltage Arrestor (1* mode) 0.369 2.71
2 High Voltage Arrestor (2" mode) 0.340 2.94
3 High Voltage Bushing (1* mode Transverse) 0.292 342
4 | Oil Conservator (1* mode) 0.158 6.35
5 | Oil Conservator (2™ mode) 0.143 6.99
6 Low Voltage Arrestor (1* mode) 0.134 7.45
7 Low Voltage Arrestor (2" mode) 0.123 8.13
8 High Voltage Bushing (2" mode Longitudinal) 0.119 8.38
9 High Voltage Bushing (3™ mode) 0.118 8.44
10 | Oil Conservator & Low Voltage Bushing (1 mode) 0.101 9.89
11 Transformer Frame (1* mode Transverse) 0.095 10.51
12 | High Voltage Arrestor (3" mode) 0.091 11.01
13 | Low Voltage Bushing(1* mode) 0.080 12.46
14 | Low Voltage Arrestor (3" mode) 0.067 14.90
15 | Transformer Frame (2" mode Transverse) 0.063 15.84
16 | Transformer Shell (1* mode Out of Plate Bending) 0.057 17.61

High Voltage & Low Voltage Bushings
171 and Arrestors(4™ mode) 0.050 19.85
18 | Transformer Frame (1* mode Longitudinal) 0.048 20.85
19 | Transformer Frame (2" mode Longitudinal) 0.046 21.93
20 | Transformer Frame (2™ mode Longitudinal) 0.044 22.73
21 | Transformer Shell (2" mode Out of Plate Bending) 0.035 28.73
22 | Oil Conservator (2" mode) 0.026 37.81
23 | Transformer Shell (3" Out of Plate Bending) 0.022 44.86
24 | Transformer Shell and Oil Conservator (1* mode) 0.021 47.94
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Table 2-6 Periods and Natural Frequencies of Ferranti Packard 230kV Transformer-Bushing

Model (Oikonomou, 2010)

Mode Mode Description Period Frequency (Hz)
1 High Voltage Arrestor Close to Conservator 0.596 1.68
2 High Voltage Arrestor Furthest to Conservator 0.595 1.68
3 Radiator 0.370 2.70
4 Conservator/Radiator 0.368 2.72
5 High Voltage Arrester Middle Unit 0.345 2.90
6 High Voltage Arrestor Support with Bushing 0.243 4.12
7 High Voltage Bushing Center unit 0.210 4.76
8 Radiator with High Voltage Bushing movement 0.192 5.20
9 Radiator with High Voltage Bushing movement 0.186 5.39
10 Radiator with High Voltage Bushing movement 0.183 5.46
11 High Voltage Bushings Outer Units 0.179 5.59
12 Radiator and Conservator with High Voltage Bushing 0.170 5.89
13 Radiator and Conservator with High Voltage Bushing 0.164 6.09
14 High Voltage Bushings Outer Units 0.159 6.30
15 High Voltage Bushings Outer Units 0.158 6.31
16 Larger Radiator 0.149 6.72
17 High Voltage Bushings large movement 0.142 7.05
18 Radiators 0.139 7.21
19 High Voltage Bushing Center Unit 0.131 7.64

20 High Voltage Bushing Center Unit 0.128 7.81

21 Radiators 0.124 8.08

22 Radiators 0.117 8.56

23 High Voltage Arrestor Support, Vertical movement 0.115 8.72

24 High Voltage Arrestor Support, Vertical movement 0.111 9.01

25 Radiator 0.102 9.79

26 Radiator 0.094 10.68
27 Radiator, Conservator, and Low Voltage Arrestor 0.090 11.07
28 Radiator and Conservator 0.087 11.55
29 Radiator 0.077 12.97
30 Low Voltage Arrestor Support 0.073 13.63
31 Radiator, Conservator, and Low Voltage Arrestor 0.069 14.40
32 Low Voltage Bushings and Arrestor Support 0.061 16.35
33 Low Voltage Bushings and Arrestor Support 0.056 17.80
34 Radiator, Conservator, and Low Voltage Arrestor 0.049 20.35
35 Transformer Tank 0.040 25.10
36 Transformer Tank, top plate vertical movement 0.035 28.35
37 Transformer Tank 0.033 29.96
38 Transformer Tank 0.018 54.51
39 Transformer Tank 0.018 55.74
40 Transformer Tank, vertical movement 0.017 60.39
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a. Westinghouse 525kV Transformer Model b. Siemens 230kV Transformer Model

(1* mode — Longitudinal) (1 mode — Transverse)

c. Siemens 500kV Transformer Model d. Ferranti Packard 230kV Transformer

(1% mode — Transverse) Model (1* mode Transverse)

Figure 2-2 Deformed Shape of High Voltage Bushing Models
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Comparing the results obtained from the modal analyses of bushings installed on transformer
tanks (“as installed” conditions) and on a rigid base, it can be concluded that the transformer
tanks are very flexible compared to the rigid base in all the four cases of the high voltage
transformer- bushing models. The fundamental frequencies of bushings mounted on a rigid base

are more than double of the ones mounted on the flexible tank top plate as shown in Table 2-7.

Table 2-7 Comparison of High Voltage Bushings on a Rigid Base and “As Installed”

Model Description Support Frequency (Hz)
Westinghouse 525kV Model — mode 1 — “?{Si gl?ds tgg:: - gg%
Siemens 230kV Model —mode 1 — “%igl?ds tggsg - 196..1845
Siemens 500kV Model — mode 1 — “?ggjlds tég:g - 347%
Ferranti Packard 230kV Model — model — “?{Si glflds tég: : - 1467860

2.4. Dynamic Analysis of Transformer Bushings

2.4.1. Earthquake Ground Motions Considered

Two ground motion ensembles were selected for performing linear dynamic time history
analyses of the transformer-bushing models. The first ensemble consisted of 20 ground motions
recorded within the California region selected such that the location of the measurement was far
enough from the fault rupture to be free of any near fault directivity pulses (Filiatrault & Matt,
2006). The second ensemble selected in this study was the un-normalized (original) motions of
the FEMA P695 Far Field Ground Motion Set (FEMA P695, 2009), which contains 22 historical
ground motions from all over the world with two horizontal components each, recorded at the
same station. This ground motion ensemble is considered to be representative of the seismicity in
the Western United States. Further information about the earthquake events is presented in Table

2-8 and Table 2-9 for ensemble 1 and ensemble 2, respectively.
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Table 2-8 California Region Earthquake Ground Motion Ensemble — Ensemble 1 —

IE(%X Nallilnaerthquake E;::: M., Recording Station PGA (g)
1 Superstition Hills 1987 6.7 Brawley 0.12
2 Superstition Hills 1987 6.7 El Centro Imp. Co. Cent 0.26
3 Superstition Hills 1987 6.7 Plaster City 0.19
4 Northridge 1994 6.7 Beverly Hills 14145 Mulhol 0.42
5 Northridge 1994 6.7 Canoga Park — Topanga Can 0.36
6 Northridge 1994 6.7 Glendale — Las Palmas 0.36
7 Northridge 1994 6.7 LA — Hollywood Stor FF# 0.23
8 Northridge 1994 6.7 LA — N Faring Rd 0.27
9 Northridge 1994 6.7 N. Hollywood — Coldwater Can 0.27
10 Northridge 1994 6.7 Sunland — Mt Gleason Ave 0.16
11 Loma Prieta 1989 6.9 Capitola 0.53
12 Loma Prieta 1989 6.9 Gilroy Array #3 0.56
13 Loma Prieta 1989 6.9 Gilroy Array #4 0.42
14 Loma Prieta 1989 6.9 Gilroy Array #7 0.23
15 Loma Prieta 1989 6.9 Hollister Diff. Array 0.28
16 Loma Prieta 1989 6.9 Saratoga — W Valley Coll. 0.33
17 Cape Mendocino 1992 7.1 Fortuna Fortuna Blvd# 0.12
18 Cape Mendocino 1992 7.1 Rio Dell Overpass — FF# 0.39
19 Landers 1992 7.3 Desert Hot Springs# 0.15
20 Landers 1992 7.3 Yermo Fire Station# 0.15
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Table 2-9 FEMA P695 Earthquake Ground Motion Ensemble — Ensemble 2 —

EQ Earthquake Event S GAC -
) Name Recording Station P
Index 00 1p. Earthquake Year | My ] j
1 12011 Northridge 1994 | 6.7 Beverly Hills — Mulhol 0.52
2 12012 Northridge 1994 | 6.7 Canyon Country—WLC 0.48
3 12041 Duzce, Turkey 1999 | 7.1 Bolu 0.82
4 12052 Hector Mine 1999 | 7.1 Hector 0.34
5 12061 Imperial Valley 1979 | 6.5 Delta 0.35
6 12062 Imperial Valley 1979 | 6.5 El Centro Array#11 0.38
7 12071 Kobe, Japan 1995 | 6.9 Nishi — Akashi 0.51
8 12072 Kobe, Japan 1995 | 6.9 Shin — Osaka 0.24
9 12081 Kocaeli, Turkey 1999 | 7.5 Duzce 0.36
10 12082 Kocaeli, Turkey 1999 | 7.5 Arcelik 0.22
11 12091 Landers 1992 | 7.3 Yermo Fire Station 0.24
12 12092 Landers 1992 | 7.3 Coolwater 0.42
13 12101 Loma Prieta 1989 | 6.9 Capitola 0.53
14 12102 Loma Prieta 1989 | 6.9 Gilroy Array#3 0.56
15 12111 Manjil, Iran 1990 | 7.4 Abbar 0.51
16 12121 Superstition Hills 1987 | 6.5 El Centro Imp. Co. 0.36
17 12122 Superstition Hills 1987 | 6.5 Poe Road (temp) 0.45
18 12132 Cape Mendocino 1992 | 7.0 Rio Dell Overpass 0.55
19 12141 Chi-Chi, Taiwan 1999 | 7.6 CHY 101 0.44
20 12142 Chi-Chi, Taiwan 1999 | 7.6 TCUO045 0.51
21 12151 San Fernando 1971 | 6.6 LA — Hollywood Stor. 0.21
22 12171 Friuli, Italy 1976 | 6.5 Tolmezzo 0.35

E3
Larger component

2.4.2. Scaling Procedure

The geometric mean spectrum of each ensemble was scaled to match the IEEE — 693, 2%
damped, high required response spectrum in a range of frequencies between 2.0 and 30.0Hz.
This range was selected since the fundamental frequencies of the bushing structures vary from
2.5Hz (“as installed”) and 25Hz (rigid base) for the different types of bushings (Filiatrault &
Matt, 2006; Fahad et al., 2010; Muhammad, 2012).

Despite being a popular measure in the investigation of ground motions, the median was rejected
as a scaling parameter in this study, since it is not defined by an analytical mathematical
equation. In fact, the median is described as the number separating the higher half of a

sample/population from its lower half, and is computed by arranging all the values of that sample
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in ascending/descending order and picking the middle one (or the arithmentic mean of the two
middle ones). On the other hand, the geometric mean, which indicates the central tendency or
typical value of a set of numbers, is a more appealing measure, since it is calculated by the

following equality as:

v M
Sageomean (f) = [H Sai(f)] (2-1)

where S ( f ) is the geometric mean of the spectral acceleration at a number of prescribed

ageomean

frequencies and S, (f)is the spectral acceleration at the prescribed frequencies.

The scaling of both ground motion ensembles was performed using the “Weighted Scaling
Procedure”. This method, which utilizes information on spectral acceleration at a number of
frequencies, is more complex to apply but should, in principle, result in better matching of the

target spectra.

The main target of this procedure was that each ensemble of ground motions J (J=1 to 2) must

be scaled only in amplitude by a factor F, in order to minimize the error between the scaled

motion spectrum and the target IEEE - 693 spectrum at a number of prescribed frequencies. The
error to minimize was obtained as a weighted average of the errors at the prescribed frequencies

as:

E,= Z W (S[EEE (fo)- FJSageomean (fk))z (2-2)

k

where E, is the weighted average of the errors at the prescribed frequencies, w, is the weight
factor considered at a number of prescribed frequencies, S, (f,)is the target IEEE - 693
spectrum at a number of prescribed frequencies, S,.,,ca (f) is the geometric mean of the

spectral acceleration at a number of prescribed frequencies and F, is the scale factor in

amplitude.
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In order to find a minimum of the error function in equation (2-2), its derivative with respect to
F; was set equal to zero. Furthermore, to confirm that the obtained solution represented a
minimum (and not a maximum), the second derivative was calculated and was found to be
positive. This means that the obtained solution represented the minimum error, which was found

to be:

F = Z Wi SIEEE (ﬁc )Sageomean (ﬁc )

’ z Wk Sazgeomean (fk ) (2-3)

where F, is the scale factor in amplitude, w, is the weight factor considered at a number of
prescribed frequencies, S, (f,)is the target IEEE - 693 spectrum at a number of prescribed

frequencies and S ( f ) is the geometric mean of the spectral acceleration at a number of

ageomean

prescribed frequencies.

Considering that F; referred to the geometric mean of the J™ ensemble, from equation (2-3), it
was straightforward to show that the scale factor for each ground motion separately could be
assumed equal to F).. The scale factor F; was computed based on the procedure described above
equal to 2.20 for ensemble 1 and /.74 for ensemble 2. The scaling result of both ensembles using
both the geometric mean and the median spectra is presented in Figure 2-3 and Figure 2-4 for

ensemble 1 and ensemble 2, respectively.

27



2.5 ---------

‘l """"""""""""""""""" P ——IEEE 693 High Required
| ! Spectrum, 2% Damping
' ! — Scaled Geometric Mean
J M L gy A N R Spectrum
: : = Scaled Median Spectrum
5 i : .
§15 14—~ -\ P Rt BEEED B At sl o :
= | ' | !
o 0 | |
3 ! ! |
o 11--PM----4e e R N e it GLEE EEET T E e a
() l 1 I 1
< ' 5 ' E
& : ! : .
805 F--------- | Biaiataiat bt eiebel Bt ehaty bl Bl o bbbl bl 1 :
=3 | | | |
@ I ! ' :
l I ' 1
0 2 ; 1 i
1 2 10 30 100

Frequency (Hz)

Figure 2-3 Scaling of California Region Ground Motion Ensemble — Ensemble 1 —
25 -

R ' [——IEEE 693 High Required
\ ! Spectrum, 2% Damping
| ! = Scaled Geometric Mean
> 2 qommees | I W SN B H T Spectrum
= | ! = Scaled Median Spectrum
S ' ’ :
® 154 AT RN R e R s .
) ) | i
: | | |
< At : NN S B :
g l | l |
b ! : .
g 05 4---------  aREEEE EEEE LR RS EELLE i el '
n | : | i
! : ! :
' ! l 1
0 (] : 1 :
1 2 10 30 100

Frequency (Hz)
Figure 2-4 Scaling of FEMA P695 Ground Motion Ensemble — Ensemble 2 —

28



2.4.3. Dynamic Analysis Procedure

For all the transformer-bushings models, linear dynamic time history analyses were performed
using both the ground motion ensembles 1 and 2 scaled as described in Section 2.4.2. The
models were analyzed in the transverse and the longitudinal direction in all cases. All the

analyses performed are summarized in the following table.

Table 2-10 Dynamic Analyses Cases

Direction of motion Ensemble 1 Ensemble 2 Ensemble 2
(FEMA P695 -1D) | (FEMA P69S - 2D)
Longitudinal 4 v P
Transverse v v

According to Table 2-10, the second ensemble was analyzed as 1D and 2D. The 1D analysis
included all the 44 components analyzed in both transverse and longitudinal direction separately,
while the 2D analysis included the 22 ground motions combining the two components in the
longitudinal and transverse direction, respectively. Two cases were considered for the 2D
analysis: “Case 1” applied the component 1 in the longitudinal direction and the component 2 in
the transverse, whereas for “Case 2” the directions of the ground motion components were
rotated by 90 degrees compared to “Case 1”. Note that the effects of vertical ground motions

were not considered in this study.

From each analysis, the bending moment at the base of the bushing was obtained in its horizontal
axes as a function of time. The maximum bending moment at a given time instant ¢ was

calculated as:

M ()= max (M (1) + 2 (1) (2-4)

where M,(t) and M,(?) are the moments at the base of the bushing at time ¢ and with respect to the

longitudinal and transverse axis of the transformer tank, respectively; while max is the maximum
t

absolute value over the time-history response.

Based on results of all analyses (see Table 2-10), cumulative distribution functions (CDF)

associated with the probability of non-exceeding (PoNE) a prescribed maximum moment at the
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base of the bushing under the two ensembles of ground motions were calculated. The PONE was
estimated by counting the number of ground motion records causing a prescribed value of the
maximum bending moment at the bushing base not to be exceeded and dividing this number by
the total number of records considered in the analyses. A lognormal cumulative distribution
function was then fitted to the empirical data. The lognormal CDF was defined by the median

value (PoNE=50%) of the maximum bending moment and by the dispersion parameter [3

expressed as the standard deviation of the log of the values of M .

2.4.4. Dynamic Analysis Results

Linear dynamic time history analyses were conducted for all the analysis cases described in
Table 2-10 and the maximum bending moment at the base of the bushing for each of the
transformer models was computed according to equation (2-4). Based on the lognormal CDFs
shown in the following figures, it can be observed that for all transformer cases, the bushing
mounted on the transformer tank is very flexible compared to the bushing mounted on a rigid
base. This fact can be easily identified for the maximum moment values of 50% probability of

non exceedance that are marked in each lognormal CDF.
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A Moment Amplification Factor (MAF) defined as the ratio of the maximum bending moment at
the base of the bushing mounted on the cover plate of the transformer (“as installed” conditions)
to the maximum bending moment obtained for the same bushing mounted on a rigid base (see
equation (2-5)) was computed for all analysis cases and compared to the amplification factor of
two defined by the IEEE-693 Standard.

Moment when Bushing as Installed (2-5)

Moment Amplification Factor =
Moment when Bushing Mounted on Rigid Base

Figure 2-17 to Figure 2-19 present the MAF in the form of empirical and log normal CDFs,
while the median values of the MAF-CDFs are compared in Figure 2-20 to Figure 2-22 with the
frequency-independent amplification factor of 2 recommended by the IEEE-693 Standard
showing that the recommended amplification factor is non-conservative for all the transformer
bushing systems. Although not much higher than the proposed amplification factor, the value of
that factor computed for all the transformer models appeared to be around three apart from the
Siemens 230kV transformer model. The Siemens 230kV model appeared to be the most flexible
transformer (especially in the longitudinal direction) since the peak bending moment at the base

of the “as installed” bushing was more than 10 times larger than if it was rigidly mounted.
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2.5. Summary and Conclusions

In this section, a preliminary investigation of the seismic response of the bushings mounted on a
rigid base and “as installed” on transformer tanks, was conducted by performing modal and
linear time history analyses. According to the results, it was observed that the bushing “as
installed” is more vulnerable to seismic loading than similar bushings mounted on a rigid base. It
is clear that bushings on transformer tanks have to be stiffer in such a way that their response
moves closer to the response of the rigid base analysis and therefore the system becomes
adequately resistant against intense ground shaking. In order to achieve results close to the ones
of the rigid base analysis, various stiffening approaches were investigated and presented in the

following section.

41






SECTION 3

NUMERICAL STUDY OF STIFFENED HIGH VOLTAGE
TRANSFORMER-BUSHING SYSTEMS

3.1. Introduction

The objective of this section is to identify feasible approaches to stiffen the base of transformer-
bushing systems in order to drive their response as close as possible to the rigid base case
associated with much smaller bending moments. For this purpose, several geometrical
configurations of stiffeners were implemented on the transformer models and investigated in
order to identify those which were the most practical and efficient in reducing the bending

moment demand at the base of the bushings.

3.2. Description of Stiffening Techniques Considered

With the aim of reducing the bending moments at the base of transformer bushings, several
stiffening approaches were investigated. More specifically, different configurations of axial
stiffeners installed in several locations between the bushings and the transformer tank were

considered as well as flexural stiffeners incorporated on the tank cover plate.
o Axial Stiffeners in Transverse and Longitudinal Direction

As a first stiffening approach, axial stiffeners were added both in the transverse and the
longitudinal direction of all models. An example of this approach is shown in Figure 3-1 for the
Siemens 230kV transformer-bushing model. These axial stiffeners were installed either between
the tank surface and the bushing or between the tank surface and the turret of the bushing
depending on the geometry of the models, so that the displacements of the bushing would be
decreased. Several configurations of these stiffeners were investigated. More specifically, the
effect of stiffening in each direction independently was investigated for several combinations of
angles of the axial stiffeners with respect to the horizontal plane and of stiffness values. Three
different values for the inclination angle with respect to the horizontal were used (30°, 45° and

60°). It was observed that there was a threshold value in the axial stiffness of the stiffeners which
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after it was exceeded; no further increase of the fundamental frequency of the bushing could be
achieved. These stiffness threshold values were computed for all models and inclination angles
(by conducting modal analysis). The final configuration for each model consisted of the optimum
configuration (angle and stiffness yielding the highest natural frequency) determined for each
direction independently. It must be mentioned that for the Ferranti Packard 230kV transformer
model, due to the geometry of the model, only axial stiffeners with an inclination angle of 45°

were considered.

The addition of axial stiffeners in both directions resulted in an increase of the natural
frequencies of all systems in comparison to the natural frequencies obtained from the “as
installed” conditions. However, the increase was not large enough to reach the frequencies
achieved for the rigid base case as shown in the figures presented in Appendix C. The final

values of the angle and stiffness used for the analyses are presented in Table 3-1.

Figure 3-1 Siemens 230kV Transformer-Bushing Model with Axial Stiffeners in Both Directions
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Table 3-1 Properties of Axial Stiffeners Installed in Both Directions

Transformer Model Inclination Angle Sti f?lilersess?lgill()i/in)
Westinghouse 525kV 45° 5.0
Siemens 230kV 45° 10.0
Siemens 500kV 45° 5.0
Ferranti Packard 230kV 45° 5.0

o Axial Stiffeners Connected to the Tank Wall

The second stiffening approach considered included the installation of two axial stiffeners
between the bushing and the wall of each transformer model at an angle of 45°, in order to
decrease the displacements of the bushing compared to the first approach described above. In
this case, the change of the natural frequency of each model for different stiffness values was
also identified in order to determine the most efficient configuration of this approach and for
each finite element model. An example of this stiffening approach is shown in Figure 3-2 for the
Siemens 230kV transformer-bushing model. Similarly to the previous stiffening approach (axial
stiffeners in both directions), a threshold value of stiffness was determined for the present
approach as well. The change of the frequency with respect to the stiffness is presented in

Appendix C for all transformer models, while the stiffness values used for dynamic analyses are

presented in Table 3-2.

Table 3-2 Properties of Axial Stiffeners connected to the Tank Wall

Transformer Model S ti;;l:sis?lgillgi/in)
Westinghouse 525kV 1.0
Siemens 230kV 1.0
Siemens 500 V 5.0
Ferranti Packard 230kV 1.0

45




o Axial Stiffeners

Figure 3-2 Siemens 230kV Transformer-Bushing Model with Axial Stiffeners connected to the
Tank Wall

o Flexural Stiffeners Incorporated on the Top Plate of the Transformer Tank

This stiffening approach was initially investigated only for the Ferranti Packard 230kV
transformer model, which already consisted of three stiffeners in the transverse direction (steel

angles L6 x 4 x 2).

The first attempt to stiffen the transformer bushing system, by incorporating flexural stiffeners
on the tank top plate, was to increase the stiffness of the existing stiffeners by multiplying it
(multiplying the section moment of area I) with a factor varying from 1.5 to 10. According to the
results of this investigation, the efficiency of stiffening the base of the bushing by incorporating
flexural stiffeners appeared to reach a constant value for factors equal to or greater than 2

(threshold value) as presented in Appendix C.

Furthermore, in order to ensure a better system behavior, this approach was extended in the
longitudinal direction as well. Similar flexural stiffeners as those used in the transverse direction,
were installed in the longitudinal direction, and analyses were conducted by multiplying their

stiffness by a factor varying from 1.5 to 10. Similarly to the transverse direction, the fundamental
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frequency of the bushing reached a constant value for factors equal to 2 (threshold value) or

greater as presented in Appendix C.

The final proposed configuration consisted of introducing/replacing flexural stiffeners installed
in both longitudinal and transverse direction of the cover top plate of the transformer tank. The
stiffeners were placed as close as possible to the base of the bushing without interfering with
other components of the transformer (see Figure 3-3). For each model, the moment of inertia of
the stiffeners was selected to reach or exceed a threshold value required to achieve the maximum
possible increase in the bushing fundamental frequencies. This maximum fundamental frequency
of a bushing occurred when its base was made locally rigid and was governed by the global

flexural flexibility of the tank cover plate and walls.

Note that this stiffening approach is feasible and stiffeners have already been utilized and
attached at the top of the transformer tank. Characteristic illustrative examples are the

transformer tanks of Figure 3-4 and Figure 3-5.

Figure 3-3 Ferranti Packard 230kV Transformer Incorporating Flexural Stiffeners on the Tank
Top Plate
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™

Figure 3-5 525kV Transformer Tank Incorporating Stiffening Elements Composed of Thin Plates
and Channels (Matt & Filiatrault, 2004)

3.3. Dynamic Analysis Procedure

Linear dynamic time history analyses were conducted for all the bushings models using both the
ground motion ensembles 1 and 2 described in Section 2. From each analysis, the maximum
moment at the base of the bushing was calculated in its horizontal axes according to equation (2-
4). Taking into consideration the results of all analyses, lognormal cumulative distribution
functions were generated for the probability of non-exceeding (PoNE) a prescribed maximum

moment at the base of the bushing. Moreover, in order to evaluate and quantify the performance
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of the systems incorporating flexural stiffeners on the tank top plate, an Efficiency Factor, E, was
defined for the median values (PoONE = 50%) of maximum bending moments at the base of the

bushings as shown in equation (3-1):

M RIGID — M INSTALLED

E= [M strrenep ~ M nstasiep j *100% (3-1)

where Msrrrenep 18 the median maximum moment at the base of the bushing for the stiffened
case, Mysrarzep 18 the median maximum moment at the base of the bushing “as installed” and
Mzigip 1s the median maximum moment at the base of the bushing when the bushing is mounted

on a rigid base.

According to the definition of equation (3-1), a value of E =0% indicates that the evaluated
stiffening technique does not improve the response of the bushing system at all. On the contrary,
a value of £ =100% indicates that the stiffened transformer-bushing system achieves the same
seismic response as of the bushing mounted on a rigid base. This Efficiency Factor was
computed for all stiffening techniques implemented in the four transformer-bushing models

investigated.

3.4. Analysis Results

According to the CDFs, shown in Figure 3-6 to Figure 3-17, the response (in terms of moment at
the base of the bushing) of the stiffening approach with axial stiffeners in both directions is in
between the response obtained from the rigid base case and the response of the bushing ‘“as
installed”. For the case of introducing axial stiffeners connected from the bushing to the wall of
the tank, the response of each model is between the response obtained from the rigid base case
and the response of the first stiffening approach considered. Furthermore, the response of the
stiffening approach incorporating flexural stiffeners on the top plate of the transformer tank

appeared to be the closest possible to the rigid base response.

The Efficiency Factor was computed for all analysis cases based on the median values of the

maximum moments at the base of the bushing obtained from the fragility curves shown in Figure
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3-6 to Figure 3-17. The median moment values are presented in Appendix B, while the figures

below indicate the Efficiency Factor of each analysis and for each transformer model separately.

For the Westinghouse 525kV transformer, higher values of the efficiency factor were obtained
using axial stiffeners connected to the wall compared to the efficiency factor obtained by adding
axial stiffeners in both directions. In fact, the Efficient Factor for axial stiffeners connected to the
wall reached an average value of 90% (see Figure 3-18) indicating the high efficiency of this

approach for the stiffening of this transformer model.

Similarly to the Westinghouse 525kV transformer, for the Siemens 230kV transformer and
Siemens 500kV transformer, higher values of the efficiency factor were obtained using axial
stiffeners connected to the wall compared to the efficiency factor obtained by adding stiffeners in
both directions. Note that for both transformer models, the efficiency factor obtained in the
transverse direction was smaller than that in the longitudinal direction. However, considering the
total response, it seems that using stiffeners connected to the wall is an efficient stiffening
approach, since the average value of the efficiency factor was over 70% (see Figure 3-19 and

Figure 3-20).

As for the Ferranti Packard 230kV transformer, it seems that both stiffening approaches (either
adding stiffeners in both directions or installing stiffeners connected to the wall) were not as
efficient as for the rest of the transformer models. In fact, the computed average efficiency was
between 40% - 50%, which does not seem to be a satisfactory performance. However, adding
stiffeners on the cover plate appeared to be the most efficient stiffening technique for this
transformer, since in this case the efficiency factor reached an average value of 80% as shown in

Figure 3-21.

The amplification factor of the maximum bending moment at the base of the bushing for the
stiffened mounting conditions was computed according to equation (2-5) for all analysis cases
and compared with the amplification factor obtained from the transformer tank case (bushing as

installed).

Lognormal cumulative distribution functions generated for the moment amplification factor are

presented below (Figure 3-22 to Figure 3-33). According to these curves, the moment
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amplification factor decreased by using the proposed stiffening techniques, while their median

values were less than the amplification factor of two recommended in the IEEE-693 Standard.
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Figure 3-18 Efficiency Factor of Stiffening Techniques for Westinghouse 525kV Transformer
Model
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Figure 3-19 Efficiency Factor of Stiffening Techniques for Siemens 230kV Transformer Model
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Figure 3-20 Efficiency Factor of Stiffening Techniques for Siemens S00kV Transformer Model
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Figure 3-21 Efficiency Factor of Stiffening Techniques for Ferranti Packard 230kV Transformer
Model
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3.5. Flexural Stiffeners Incorporated at the Transformer Top Plate Implemented
as Proposed Stiffening Technique
The stiffening approach of incorporating flexural stiffeners on the cover plate of the
transformer tank was found to be the most efficient method investigated even in cases where
the response of the transformer bushing system was significantly influenced by the cover
plate. In this section the seismic performance of all four transformer models with three
mounting conditions (“as installed”, “stiffened” with flexural stiffeners and rigid base) is
presented. Note that the “as installed” mounting condition is referred herein as “original
stiffener configuration”, while the “stiffened” case is referred as “final stiffener
configuration”. Note that the “original stiffener configuration” corresponds to the original
specifications of the transformer manufacturers. Information on the properties of the flexural
stiffeners in each of the four transformer-bushing system models is provided in Table 3-3,
while a plan view of the transformer tank for each model showing the position of the flexural

stiffeners is presented in Figure 3-34.

Table 3-3 Flexural Stiffeners on the Top Tank Plate for Existing and Stiffened Models

(Koliou et al., 2012)
Transformer Stiffener Configurations for Stiffener Configurations for
Model Existing Models Stiffened Models
5-5x1/2 Plates:
Westinghouse . 5—5.)(1/2. Plateg: . 5 in Longitudinal Direction;
525KV 5 in Longitudinal Direction; . 3 L8x6x1/2': .
3-L7.5x4x1/2: 2 in Transverse Direction;
lin Longitudinal Direction
6-L8x6x1/2:
Siemens 230kV No stiffener 3 in Transverse Direction;
3 in Longitudinal Direction
5-L.8x6x1/2:
Siemens 500kV No stiffener 2 in Transverse Direction;
3 in Longitudinal Direction
Ferranti Packard 3-L6x4x1/2: 6-L8x6x1/2:
230kV 3 in Transverse Direction 3 in Transverse Direction;
3 in Longitudinal Direction
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Figure 3-34 Plan View of Transformer-Bushing Model showing the Location of Flexural
Stiffeners on the Tank Cover Plate (Circles Indicate Locations of High Voltage Bushings)
(Koliou et al., 2012)
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The lognormal CDF associated with the probability of non-exceeding (PoNE) a value of
maximum bending moment at the base of the bushing under the ensemble of ground motions is
shown for each transformer-bushing model and for each mounting condition in Figure 3-35 to
Figure 3-38, while the results of the free vibration analyses performed for all four models in

order to compute the fundamental frequencies of the bushing systems are presented in Table 3-4.

The Efficiency Factor, E, as shown in Figure 3-39, varies from 80% to 97% for the four
transformer-bushing models verifying that incorporating flexural stiffeners on the cover plate of
the transformer tank substantially reduces the induced base bending moments. The MAF, defined
earlier, was computed at the base of the bushings incorporating both the “original” and the
“final” stiffener configurations. The results of Figure 3-40 to Figure 3-43 are presented in form
of empirical and lognormal CDFs, while the median values of the MAF-CDFs are compared in
Figure 3-44 with the frequency independent amplification factor of 2 recommended by IEEE-693
Standard.

= Qriginal Stiffener Configuration

0.8 1 Final Stiffener Configuration

0.7 4 ——Rigid Base

0.6 == o s ]

05— ]

04 o o e ]

03 ]

02 Fm o[ ]

Probability of Non - Exceedance

0.1 o g

0.0 - T T T T T T
0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0

Maximum Bending Moment (kip-in)

Figure 3-35 CDF for Maximum Bending Moments for Westinghouse 525kV Transformer-Bushing
System Model Incorporating Flexural Stiffeners on the Cover Tank Plate (Koliou et al., 2012)
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Figure 3-36 CDF for Maximum Bending Moments for Siemens 230kV Transformer-Bushing

System Model Incorporating Flexural Stiffeners on the Cover Tank Plate (Koliou et al., 2012)
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——Rigid Base

Probability of Non - Exceedance

200.0 250.0
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Figure 3-37 CDF for Maximum Bending Moments for Siemens 500kV Transformer-Bushing
System Model Incorporating Flexural Stiffeners on the Cover Tank Plate (Koliou et al., 2012)
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Figure 3-38 CDF for Maximum Bending Moments for Ferranti Packard 230kV Transformer-
Bushing System Model Incorporating Flexural Stiffeners on the Cover Tank Plate
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Figure 3-39 Efficiency Factors, E, for Four Transformer-Bushing System Models Incorporating

Table 3-4 Computed Fundamental Frequencies of Bushings for Different Mounting Conditions

(Koliou et al., 2012)
Bushings Fundamental Frequency (Hz)
. .. Westinghouse . . Ferranti Packard
Mounting Condition 525KV Siemens 230kV Siemens 500kV 230KV
Original Stiffener

Configuration 2.92 9.14 3.42 4.76
Final Stiffener
Configuration 3.50 11.0 4.05 5.75

Rigid Base 9.27 16.9 8.75 16.8
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Figure 3-40 CDF for Moment Amplification Factors for Westinghouse 525kV Transformer Model
Incorporating Flexural Stiffeners on the Cover Tank Plate (Koliou et al., 2012)
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Incorporating Flexural Stiffeners on the Cover Tank Plate (Koliou et al., 2012)
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Figure 3-42 CDF for Moment Amplification Factors for Siemens 500kV Transformer Model
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3.6. Discussions

In summary, the numerical analyses presented, so far, within this section showed that the
efficiency of the stiffening approaches considered was satisfactory. By introducing axial
stiffeners between the bushing and tank plate or wall or flexural stiffeners on the tank plate, the
maximum bending moment at the base of the bushing decreased moving closer to the rigid base
results, while the moment amplification factor decreased as well reaching values lower than the

amplification factor of 2 recommended in IEEE-693 Standard (IEEE, 2005).

It was observed that adding axial stiffeners, either in both directions or connected to the wall,
was an efficient solution, however, incorporating flexural stiffeners on the cover plate appeared
to be the most efficient solution even in cases where the response of the transformer bushing
system was significantly influenced by the cover plate (Ferranti Packard 230kV model). Thus, it
may be inferred that incorporating flexural stiffeners on the cover plate can improve the

performance of transformer-bushing systems, so that they behave similarly to the rigid base case.

Since the stiffening approach of incorporating flexural stiffeners was found to be most effective
technique of reducing the seismic demand and improving the seismic response of transformer
bushing systems, it was implemented in the rest three models (Westinghouse 525kV, Siemens

230kV and Siemens 500kV). Note that the 2D analysis case of ensemble 2 was only considered
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since it was already shown, through the current section, that the response trends are pretty similar

for all analysis cases.

In order to further investigate the efficiency of this stiffening technique on the dynamic response
of transformer-bushing systems, an experimental study was conducted and is presented in the

next two sections.
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SECTION 4
SYSTEM IDENTIFICATION TESTING

4.1. Introduction — Objectives of Testing

The results of the numerical study presented in the previous section clearly showed that the
transformer-bushing system may behave similarly to the rigid base mounting case by using
appropriate stiffening techniques. The incorporation of flexural stiffeners on the cover plate of
the transformer tank was found to be the most efficient stiffening approach, among all the
techniques investigated numerically, since the seismic demand on the bushings (in terms of
bending moment at their base) decreased significantly compared to the bushings installed on the

unstiffened transformer tanks (“as installed” conditions).

The major objective of the experimental investigation conducted in the context of this research
was to validate the results of the numerical study for the stiffening approach of incorporating
flexural stiffeners on the cover plate of a transformer tank. For this reason, a two stage
experimental study consisting of system identification tests and dynamic (shake table) tests was
conducted in the Structural Engineering and Earthquake Simulation Laboratory (SEESL) of the
University at Buffalo.

In this section, the system identification testing of the bushing structure, by a series of impact
hammer tests and pull tests is presented, while the results of the shake table tests are discussed in

Section 5.

4.2. Scope of System Identification Testing

The system identification testing aimed mainly to investigate if the bushing specimen was
damaged during previous tests conducted in the Structural Engineering and Earthquake
Simulation Laboratory (SEESL) of the University at Buffalo during the summer of 2009
(Muhammad, 2012). More specifically, a series of impact hammer tests and pull-back tests were
conducted for the bushing specimen mounted on a rigid base so that the fundamental frequencies

of the bushing structure were measured and compared to the frequencies from the previous tests.
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4.3. Test Setup Overview
4.3.1. Specimen Description

The specimen used in the system identification tests consisted of a 230kV porcelain bushing
bolted on a reinforced concrete slab mounted on the strong floor of the Structural Engineering
and Earthquake Simulation Laboratory (SEESL) of the University at Buffalo (UB), as shown in
Figure 4-1. More specifically, the bushing was 151.4” tall (see Figure 4-2), while the concrete
slab used to simulate the rigid (fixed) base, had plane dimensions 8’x 8’ and thickness of 1°. A
steel plate was embedded in the top surface of the concrete slab to provide a suitable base for
bolting the bushing structure. Note that extra weight of 251bs was added at the top of the bushing
specimen as required per IEEE-693 Standard (IEEE, 2005) for the qualification testing of
electrical equipment. In Figure 4-3, Figure 4-4 and Figure 4-5, detailed drawings of the
reinforced concrete slab are provided, while the properties/specifications of the bushing structure

considered for this experimental study are summarized in Table 4-1.

Table 4-1 Properties of Bushing Used

Manufacturer N/A ABB
Material of Insulator N/A Porcelain
Voltage Capacity (kV) 230
Total Height (in) 151.4
Length over Mounting Flange (in) 91.4
Length below Mounting Flange (in) 60.0
Max. Diameter over Mounting Flange (in) 11.8
Max. Diameter below Mounting Flange (in) 10.0
Diameter of Mounting Flange (in) 24.0
Bolt Pattern of Mounting Flange (per flange diameter) (in) 12-0 1 1/4 /d21"
Total Weight (Ibs) 840
Location of Center of Gravity (CG) above Flange (in) 14.0
Upper Unit Weight (Ibs) 447
Location of Upper Unit Center of Gravity (CG) (in) 34.0
Lower Unit Weight (Ibs) 293
Location of Lower Unit Center of Gravity (CG) (in) 28.0

"12-® 1 % refers to the minimum edge distance (15”), while 21” represents the largest diameter of the
bolt pattern to accommodate several positions of the bushing on the top/relocatable plate
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Figure 4-2 230kV Bushing Structure used for the Experimental Studies
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4.3.2. Loading System

o Hammer Tests

Impact hammer tests were conducted by hitting the top of bushing with a hammer in the North-
South, North-East and East-West direction to evaluate the natural frequencies and damping
characteristics of the bushing specimen. Figure 4-6a shows the hammer test being conducted in

the North-South direction.
o Pull-Back Tests

The objective of the pull-back tests was to evaluate the static lateral stiffness of the bushing by
pulling its top with two different levels of external forces (one of 300lbs and one of 6001bs) in
the East-West and North-South direction. In order to conduct the pull-back tests, the external
force was applied at the top of the bushing by a forklift or by hand (manually). For this purpose,
a band was tied at the top of the bushing and was connected to a load cell and then to another
band that was already tied to the forklift. Then the forklift moved slowly away from the
specimen and applied a horizontal force. As soon as the force in the band reached the desired
maximum value, the band was slowly released. The configuration used for the pull- back tests is

presented in Figure 4-6b , while the load cell used for this type of testing is shown in Figure 4-7 .
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Figure 4-6 System Identification Testing Configurations

Figure 4-7 Load Cell used for the Pull-Back Tests
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4.3.3. Instrumentation Setup

The response of the bushing was recorded by 20 instruments. More specifically, five
accelerometers, four strain rosettes (3 strain gauges each one), two linear potentiometers (string
pots) and one load cell were used. The accelerometers were attached at the top of the bushing
oriented as shown in Figure 4-8. As for the strain rosettes, one rosette was placed at the base of
the bushing on each face (north, south, east and west) as shown in Figure 4-9, Figure 4-10 and
Figure 4-11. Each one of the rosettes consisted of three strain gauges whose axes were 45° apart.
An example of this configuration is presented in Figure 4-12 for the strain rosette in the west
direction. Note that the strain rosettes in the east and west direction were attached very close to
the lifting lugs of the bushing. Finally, the two linear potentiometers were attached at the top of
the bushing as indicated in Figure 4-13. A summary of the instrumentation list for the system
identification tests is provided in tabular and graphic form in Table 4-2 and Figure 4-14,

respectively.

South East Direction

North East Direct

Figure 4-8 Accelerometers Attached at the Top of the Bushing
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Figure 4-13 Instrumentation Setup during the System Identification Tests
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Table 4-2 Instrumentation List for System Identification Testing

Tag Name Sensor Type Measurement Position
ATBV Accelerometer Acceleration (g) Top of the bushing — Vertical
ATBN Accelerometer Acceleration (g) Top of the b ushmg ~ North
Direction
ATBNE Accelerometer Acceleration (g) Top of the bqshmg — North East
Direction
ATBE Accelerometer Acceleration (g) Top of thq bushlng — East
Direction
ATBSE Accelerometer Acceleration (g) Top of the bughmg — South East
Direction
DSTE Linear Potentiometer | Displacement (in) Top of thg bushlng — Bast
Direction
DSTN Linear Potentiometer | Displacement (in) Top of the b ushmg ~North
Direction
. : . Base of the bushing — North face
SRBWNF Strain Gauge Strain (Ustrain) and West Direction
SRBNF Strain Gauge Strain (Ustrain) | Base of the bushing — North face
. . . Base of the bushing — North face
SRBENF Strain Gauge Strain (Ustrain) and East Direction
. . . Base of the bushing — East face
SRBNEF Strain Gauge Strain (Ustrain) and North Direction
SRBEF Strain Gauge Strain (Ustrain) | Base of the bushing — East face
. . . Base of the bushing — East face
SRBSEF Strain Gauge Strain (Ustrain) and South Direction
. . . Base of the bushing — South face
SRBESF Strain Gauge Strain (Ustrain) and East Direction
SRBSF Strain Gauge Strain (Ustrain) | Base of the bushing — South face
SRBWSF Strain Gauge Strain (Ustrain) Base of the bushing = South face
£ and West Direction
. . . Base of the bushing — West face
SRBSWF Strain Gauge Strain (Ustrain) and South Direction
SRBWF Strain Gauge Strain (Ustrain) | Base of the bushing — West face
. . . Base of the bushing — West face
SRBNWF Strain Gauge Strain (Ustrain) and North Direction
. In series with band for the pull-
LC Load Cell Force (kip) back test
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Figure 4-14 View of Total Instrumentation Setup of Bushing Structure
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4.4. Test Procedures

The experimental process for the system identification testing was divided into two phases; the
impact hammer tests and the pull-back tests. Impact hammer tests were conducted in the North-
South, South-East and East-West direction as described in the previous section. As for the pull-
back tests, two different forces were applied at the top of the bushing; one of 300lbs and one of
600lbs in both the East-West and North-South directions. The testing sequence which was
followed during this experimental investigation is presented in Table 4-3. Note that the force was
applied during the pull-back tests by a forklift in the North-South direction, and was applied

manually in the East-West direction due to space limitations.

Table 4-3 System Identification Test Sequence

Test ID Locatl?n of Test Direction Test Description
Bushing
TB - 8 - NS-IH Concrete Slab North-South Impact Hammer Test
TB - 9 -NE-IH Concrete Slab North-East Impact Hammer Test
TB - 10 -EW-IH Concrete Slab East-West Impact Hammer Test
TB-11-PL300 EW Concrete Slab East-West 3001Ibs Pull-Back Test at Top
TB - 12 - PL300 NS Concrete Slab North-South 3001bs Pull-Back Test at Top
TB - 13 -NS-IH Concrete Slab North-South Impact Hammer Test
TB - 14 -NE-IH Concrete Slab North-East Impact Hammer Test
TB - 15 -EW-IH Concrete Slab East-West Impact Hammer Test
TB - 16 -PL600 NS Concrete Slab North-South 6001lbs Pull-Back Test at Top
TB - 17 -PL600 EW Concrete Slab East-West 6001bs Pull-Back Test at Top

4.5. Test Results

4.5.1. Raw Data

Digitized signals obtained at the end of each test from all the instruments are presented in this
section. Note that the experimental results of one series of impact hammer tests and pull-back
tests are presented. More specifically, raw data from the following tests are presented: (i) TB-13-
NS-IH, (ii) TB-14- NE-IH, (iii) TB-15- EW-IH, (iv) TB-16- PL600 NS and (v) TB-17- PL600
EW. The results are provided in Figure 4-15 to Figure 4-19 in the form of time histories with a
sampling rate of 256Hz.
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4.5.2. Data Processing
4.5.2.1. Results of Frequency Evaluation Tests

The Fourier Amplitude Spectrum from the acceleration time histories was plotted for each
impact hammer test using data collected from the accelerometers. From these plots, the
fundamental frequency of the bushing specimen was identified as shown in Figure 4-20. Note
that prior to conducting the system identification tests, the fundamental frequency of the 230kV
porcelain bushing was expected to vary between 20Hz to 22Hz based on previous experimental
and numerical investigations. According to the experimental results of this testing sequence, the
fundamental frequency of the bushing was identified to be approximately 25Hz. Based on these
results, it may be assumed that the bushing structure was not damaged from the previous

experiments.
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Figure 4-20 Frequency Results obtained from Impact Hammer Tests: (a) East-West Direction and
(b) North-South Direction

4.5.2.2. Results of Damping Ratio Evaluation

The first mode viscous damping ratio of the 230kV porcelain bushing was estimated using the

Half-Power Bandwidth Method. According to this procedure, the k™ mode damping factor, &, , is

determined from the frequencies at which the amplitude of the response at the k™ natural

frequency, p, , is reduced by (1/ J2 ) or frequencies at which the power input is half the input.
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The determination of the damping ratio at that mode is presented graphically in Figure 4-21,

while mathematically is given by the following equation (Bracci et al., 1992):

_ St _ S, i
AT (1)

where f,, f, are the frequencies when o, 0, = (l/ 2 )pfk and f, is the k™ natural frequency.

A

T.F. AMP,

(1INZ) A,

FREQUENCY, HZ.
Figure 4-21 Half-Power Bandwidth Method (Bracci et al., 1992)

The results obtained from the impact hammer tests for the modal participation factors are

presented in Table 4-4.

Table 4-4 Modal Damping Ratios computed from the Impact Hammer Tests

Test Direction Frequency (Hz) Damping Ratio & (%)
North-South 25.30 2.3
East-West 25.35 2.1

4.5.2.3. Results of Stiffness Evaluation

The static lateral stiffness of the bushing structure was estimated using the results obtained from
the pull-back tests (see Table 4-5). More specifically, the force vs. displacement curves were
plotted for the East-West direction of testing, since the instruments in the North-South direction
were malfunctioning resulting in noisy measurements. Note that the force displacement curves
were developed using the results of the plateau of the displacement time histories and force time

histories.
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Table 4-5 Stiffness Values Computed from the Pull-Back Tests

Test Direction Stiffness k (Ibs/in)
North-South 4517
East-West N/A

4.6. Summary

In this section, the system identification testing on a typical porcelain 230kV bushing was
presented. More specifically, a detailed presentation including the test specimen, experimental
instrumentation, test procedure and recorded data was provided. The section ends with the post-
processing of the recorded data from all the identification tests. The following section presents

the dynamic (shake table) tests conducted as the second stage of the experimental investigation.
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SECTION 5
SEISMIC TESTING

5.1. Introduction

In this section, the second stage of the experimental study is presented. The major objective of
the shake table tests, as described in the previous section, was to experimentally investigate the
efficiency of the stiffening approach of incorporating flexural stiffeners on the cover plate of the
transformer tank and validate the results achieved from the numerical studies. The experimental

procedure and the results obtained from the dynamic tests are presented in this section.

5.2. Description of UB SEESL Facility

The seismic tests were performed on one of the two high-performance, six degree of freedom
shake tables in the Structural Engineering and Earthquake Simulation Laboratory (SEESL) of the
University at Buffalo. The twin shake tables, shown in Figure 5-1 and Figure 5-2, are relocatable
and may be rapidly repositioned from being adjacent to being apart up to a distance of 100 feet
(center to center). Together, the tables can host specimens of up to 100 metric tons and up to 120
feet long, and subject them to fully in-phase or totally uncorrelated dynamic excitations (see

http://seesl.buffalo.edu/).

The parent platform of each shake table is 3.6 meters x 3.6 meters, while their deployable surface
may be increased to 7 meters x 7 meters with the installation of extension platforms allowing
testing of larger test specimens without significant change in the shake table performance. Note
that these extensions can be removed to access the original platforms if required. The theoretical

dynamic performance of the twin shake tables is summarized in Table 5-1.
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Table 5-1 Theoretical Dynamic Performance of Twin Shake Tables at SEESL (from
http://seesl.buffalo.edu/)

Table platform size w/o table extension

3. 6 meter x 3.6 meter

Table size w/ extension platform in place

7 meter x 7 meter

Maximum specimen mass

50 ton maximum / 20 ton nominal

Maximum specimen mass with table
extension platform in place

40 ton maximum

Maximum Overturning Moment

46 ton meter

Maximum Off Center Loading Moment

15 ton meter

Frequency of operation

0.1~50 hertz nominal/100 hertz maximum

Nominal Performance

X axis Y axis Z axis

Stroke +.150 m+.150 m+.075 m
Velocity 1250 mm/sec 1250 mm/sec 500 mm/sec
/Acceleration +1.15 g+1.15 g +1.15 g (w/20ton specimen)

Twin Shake Tables with
extension platforms

(SEESL) of the University at Buffalo
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Figure 5-2 3D View of the Structural Engineering and Earthquake Simulation Laboratory (SEESL)
of the University at Buffalo Shake Table Facility

5.3. Test Setup Overview
5.3.1. Specimen Description

The specimen used for seismic testing consisted of the 230kV porcelain bushing, described in
Section 4, as well as a support structure representing a generic transformer tank (see Figure 5-3).
Due to the various structural systems of transformer tanks, developing a supporting frame
representative of the lateral stiffness of all transformer tanks of interest appeared to be practically
infeasible. Thus, it was considered to be more appropriate to design the support structure stiff
enough to prevent amplification of the imposed ground motions in all directions for frequencies

below 33Hz (Kong, 2010; Muhammad, 2012).

The support structure consisted of a rigid frame, a relocatable top plate and an adaptor plate
(attached at the top plate) as shown in Figure 5-3. The rigid frame was of dimensions 8’ x 8 x 8’
(height x length x width), while the four faces of the rigid frame were reinforced by cross bracing
of angle sections L 5” x 57 x %”. Figure 5-5 illustrates a front view of the rigid frame. A steel
square tube of TS 5” x 5” x 2” was used for the four columns at the corners, while the top of the
columns was connected with angle sections L 5” x 5” x % (Kong, 2010; Muhammad, 2012).
The top plate was of dimensions 127” x 127 x %”, as shown in Figure 5-7. Note that more bolt
holes than those originally needed for this study were drilled on the plate to account for possible

relocation of the bushing that might have been required later on in the course of this study.
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Finally, the adaptor plate was designed to be placed between the top plate and the bushing
mounting flange. Due to the four different bolt hole patterns on the adaptor plate (see Figure
5-6), different types of bushings could be mounted on the support structure (Kong, 2010). Note
that for the stiffening of the cover plate, steel angle sections were used (L87x6”x’2” and

L67x4”x'2”) in different positions in order to simulate the flexural stiffeners’ properties.

Figure 5-3 Support Structure on the Shake Table

Figure 5-4 Specimen used for Seismic Testing
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Figure 5-6 Adaptor Plate
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Figure 5-7 Plan View of the Relocatable Plate (Kong, 2010)

5.4. Instrumentation Setup

The dynamic response of the transformer-bushing structure was recorded by more than 40
sensors. More specifically, 20 instruments were installed on the bushing structure (five
accelerometers, four strain rosettes -3 strain gauges each one-, two linear potentiometers -string
pots- and one load cell). Note that these instruments (accelerometers and strain rosettes) were
used to direct measure the moments and shear forces at the base of the bushing structure. In
addition, 7 instrumentation channels, consisting of 3 accelerometers (west, south and vertical
direction) and 4 linear potentiometers (north-west, north-east, west-north and west-south face)
were used in order to measure the dynamic response of the steel/rigid frame. Furthermore, 13
accelerometers were placed on the cover plate: three of them were installed in the north, east and

vertical direction in order to record the response of the plate, while the rest (ten), were place on

102



the cover plate providing measurements in the vertical direction and were distributed along two
perpendicular lines close to the bushing base as shown in Figure 5-8. Finally, three
accelerometers (north, east and vertical direction) and four linear potentiometers (north-west,
north-east, west-north and west-south) were placed on the shake table in order to record the
achieved input motions. Details about the type of sensors and their positions on the specimen
structure are presented in Table 5-2, while detailed drawings and photos showing the positions of

all sensors are provided in Figure 5-8 to Figure 5-11.

Table 5-2 Instrumentation List for System Testing

Tag Name Sensor Type Measurement Position
ATBV Accelerometer Acceleration (g) Top of bushing — Vertical
ATBN Accelerometer Acceleration (g) | Top of bushing — North Direction
ATBNE Accelerometer Acceleration (g) Top ofbushlng B North East
Direction
ATBE Accelerometer Acceleration (g) Top of bushing — East Direction
ATBSE Accelerometer Acceleration (g) Top of bushmg B South East
Direction
AFW Accelerometer Acceleration (g) Rigid Frame — West Direction
AFS Accelerometer Acceleration (g) Rigid Frame — South Direction
AFV Accelerometer Acceleration (g) Rigid Frame — Vertical
ATN Accelerometer Acceleration (g) Shake Table — North Direction
ATV Accelerometer Acceleration (g) Shake Table — Vertical
ATE Accelerometer Acceleration (g) Shake Table — East Direction
APE Accelerometer Acceleration (g) Top of Plate — East Direction
APN Accelerometer Acceleration (g) Top of Plate — North Direction
APV Accelerometer Acceleration (g) Top of Plate — Vertical
APBRI1 Accelerometer Acceleration (g) Top of Plate — Close to Bushing
APBR2 Accelerometer Acceleration (g) Top of Plate — Close to Bushing
APBR3 Accelerometer Acceleration (g) Top of Plate — Close to Bushing
APBR4 Accelerometer Acceleration (g) Top of Plate — Close to Bushing
APBRS Accelerometer Acceleration (g) Top of Plate — Close to Bushing
APBR6 Accelerometer Acceleration (g) Top of Plate — Close to Bushing
APBR7 Accelerometer Acceleration (g) Top of Plate — Close to Bushing
APBRS Accelerometer Acceleration (g) Top of Plate — Close to Bushing
APBR9 Accelerometer Acceleration (g) Top of Plate — Close to Bushing
APBR10 Accelerometer Acceleration (g) Top of Plate — Close to Bushing
DSTE Linear Potentiometer | Displacement (in) | Top of bushing — East Direction
DSTN Linear Potentiometer | Displacement (in) | Top of bushing — North Direction
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Table 5-2 contd.

Top of Rigid Frame — North West

SPFNW Linear Potentiometer | Displacement (in) L
Direction
SPFNE Linear Potentiometer | Displacement (in) Top of Rigid Eramp — North East
Direction
SPFWN Linear Potentiometer | Displacement (in) Top of Rigid Framp ~West North
Direction
SPFWS Linear Potentiometer | Displacement (in) Top of Rigid Framp ~West South
Direction
SPTNW Linear Potentiometer | Displacement (in) | Shake Table — North West Direction
SPTNE Linear Potentiometer | Displacement (in) | Shake Table — North East Direction
SPTWN Linear Potentiometer | Displacement (in) | Shake Table —West North Direction
SPTWS Linear Potentiometer | Displacement (in) | Shake Table ~-West South Direction
SRBWNF Strain Gauge Strain (Ustrain) Base of the bushmg N North face and
West Direction
SRBNF Strain Gauge Strain (Ustrain) Base of the bushing — North face
SRBENF Strain Gauge Strain (Ustrain) Base of the bushmg 3 North face and
East Direction
. . . Base of the bushing — East face and
SRBNEF Strain Gauge Strain (Ustrain) North Direction
SRBEF Strain Gauge Strain (Ustrain) Base of the bushing — East face
: . . Base of the bushing — East face and
SRBSEF Strain Gauge Strain (Ustrain) South Direction
SRBESF Strain Gauge Strain (Ustrain) Base of the bushmg 3 South face and
East Direction
SRBSF Strain Gauge Strain (Ustrain) Base of the bushing — South face
SRBWSF Strain Gauge Strain (Ustrain) Base of the bushmg N S.Och face and
West Direction
SRBSWF Strain Gauge Strain (Ustrain) Base of the bushmg N West face and
South Direction
SRBWF Strain Gauge Strain (Ustrain) Base of the bushing — West face
SRBNWF Strain Gauge Strain (Ustrain) Base of the bushing — West face and

North Direction
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Figure 5-9 Accelerometers on the Rigid Frame
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The experimental procedure for the seismic testing was divided into three phases: (i) the first

phase referred to the specimen stiffened by using flexural stiffeners on the cover (relocatable)

plate with the installation of angle sections L8”x6x’2”, (ii) in the second phase, the stiffening

case of installing smaller sections of stiffeners (L67x47x}5”) was investigated, and (iii) in the last

phase the test specimen used referred to the unstiffened case (“as installed” conditions). Figure

5-12 illustrates the flexural stiffeners (angle sections) installed in both directions (two at the top

of the plate and two at the bottom). Note that during the first phase of testing, the angle sections
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installed at the bottom of the plate were fixed (bolted) on the rigid frame, while the angle
sections of the second phase of testing were not fixed (shorter sections), as shown in Figure 5-13.
Moreover, it has to be mentioned that the testing sequence (see Table 5-3, Table 5-4 and Table
5-5), started with the most efficient approach of adding stiffeners L8”x67x)2”, which was
expected to result in the least seismic demand (as concluded by the numerical studies in Section
3) and finished with testing the “as installed” bushing, which was the case expected to impose

the most seismic demand to the system.

L/ ¢ L J

Stiffeners underneath the plate

fixed (bolted) on the

rigid frame

Figure 5-13 Details on the Connections of Steel Angles

108



Table 5-3 Seismic Test Sequence Phase 1 (Stiffeners L8x6x': on the plate)

Location of

Test ID . Test Description
Bushing
TB- 18 - WN Center of Frame White Noise Test (0-50Hz, 0.1 g)
TB- 19 -TBI Center of Frame Table Impulse Test
TB - 20 - AHSEST2 Center of Frame Acceleration Time History Test (EQ 12041)
TB- 21 - WN Center of Frame White Noise Test (0-50Hz, 0.1 g)
TB- 22 -TBI Center of Frame Table Impulse Test
TB - 23 - AHSESTI Center of Frame Acceleration Time History Test (EQ 12011)
TB- 24 - WN Center of Frame White Noise Test (0-50Hz, 0.1 g)
TB- 25 -TBI Center of Frame Table Impulse Test
TB - 26 - AHSEST3 Center of Frame Acceleration Time History Test (EQ 12072)
TB- 27 - WN Center of Frame White Noise Test (0-50Hz, 0.1 g)
TB - 28 -TBI Center of Frame Table Impulse Test
TB - 29 - AHSEST4 Center of Frame Acceleration Time History Test (EQ 12092)
TB- 30 - WN Center of Frame White Noise Test (0-50Hz, 0.1 g)
TB- 31 -TBI Center of Frame Table Impulse Test
TB - 32 - AHSESTS Center of Frame Acceleration Time History Test (EQ 12132)
TB- 33 - WN Center of Frame White Noise Test (0-50Hz, 0.1 g)
TB - 34 -TBI Center of Frame Table Impulse Test
Table 5-4 Seismic Test Sequence Phase 2 (Stiffeners L6x4x": on the plate)
Test ID Locatu.)n of Test Description
Bushing
TB - 35 - WN Center of Frame White Noise Test (0-50Hz, 0.1 g)
TB - 36 -TBI Center of Frame Table Impulse Test
TB - 37 - AHSEST2 Center of Frame Acceleration Time History Test (EQ 12041))
TB - 38 - WN Center of Frame White Noise Test (0-50Hz, 0.1 g)
TB - 39 - TBI Center of Frame Table Impulse Test
TB - 40 - AHSESTI1 Center of Frame Acceleration Time History Test (EQ 12011)
TB - 41 - WN Center of Frame White Noise Test (0-50Hz, 0.1 g)
TB - 42 - TBI Center of Frame Table Impulse Test
TB - 43 - AHSEST3 Center of Frame Acceleration Time History Test (EQ 12072)
TB - 44 - WN Center of Frame White Noise Test (0-50Hz, 0.1 g)
TB - 45 - TBI Center of Frame Table Impulse Test
TB - 46 - AHSEST4 Center of Frame Acceleration Time History Test (EQ 12092)
TB - 47 - WN Center of Frame White Noise Test (0-50Hz, 0.1 g)
TB - 48 - TBI Center of Frame Table Impulse Test
TB - 49 - AHSESTS Center of Frame Acceleration Time History Test (EQ 12132)
TB - 50 - WN Center of Frame White Noise Test (0-50Hz, 0.1 g)
TB - 51 - TBI Center of Frame Table Impulse Test
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Table 5-5 Seismic Test Sequence Phase 3 (“as installed” Bushing)

Test ID Locatl?n of Test Description
Bushing

TB - 52 - WN Center of Frame White Noise Test (0-50Hz, 0.1 g)

TB - 53 -TBI Center of Frame Table Impulse Test

TB - 54 - AHSEST2 Center of Frame Acceleration Time History Test (EQ 12041)
TB - 55 - WN Center of Frame White Noise Test (0-50Hz, 0.1 g)

TB - 56 - TBI Center of Frame Table Impulse Test

TB - 57 - AHSESTI Center of Frame Acceleration Time History Test (EQ 12011)
TB - 58 - WN Center of Frame White Noise Test (0-50Hz, 0.1 g)

TB - 59 - TBI Center of Frame Table Impulse Test

TB - 60 - AHSEST3 Center of Frame Acceleration Time History Test (EQ 12072)
TB - 61 - WN Center of Frame White Noise Test (0-50Hz, 0.1 g)

TB - 62 - TBI Center of Frame Table Impulse Test

TB - 63 - AHSEST4 Center of Frame Acceleration Time History Test (EQ 12092)
TB - 64 - WN Center of Frame White Noise Test (0-50Hz, 0.1 g)

TB - 65 - TBI Center of Frame Table Impulse Test

TB - 66 - AHSESTS Center of Frame Acceleration Time History Test (EQ 12132)
TB - 67 - WN Center of Frame White Noise Test (0-50Hz, 0.1 g)

TB - 68 - TBI Center of Frame Table Impulse Test

5.4.2. Selection of Input Ground Motions

In order to maintain consistency with the numerical studies, the FEMA P695 Far Field Ground
Motion Set (original un-normalized ground motions) was used as input for the seismic tests
(FEMA P695, 2009). To limit the number of tests, a reduced ground motion ensemble, consisting
of five motions of two components each, was considered, which was selected to be consistent

with the initial ensemble of 22 ground motions.

The selection criteria for the reduced ground motion ensemble were: (i) both ensembles have
very close values for several statistical measures (e.g. median, arithmetic mean, geometric mean,
standard deviation, maximum and minimum) of parameters of interest (e.g. spectral values,
PGA, etc.) at a range of frequencies between 10Hz and 25Hz and (ii) the reduced ground motion
ensemble included no more than one motion from the same event. The fundamental steps of the

selection process are summarized below:
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1. For each motion, the geometric mean of S,y of the two components (S,x and S,y) was
calculated, such that there was a characteristic parameter for each motion at all

frequencies between 10Hz and 25Hz.

2. The geometric mean of the S,y in the frequency range of 10Hz to 25Hz was calculated,
such that there is one value of the characteristic parameter of each motion at the selected

frequency range.

3. The statistical values (median, average, geometric mean, standard deviation, maximum

and minimum) of the characteristic parameter were computed for the 22 motions.

4. Based on the value of the characteristic parameter, the motions were listed in ascending
order, and different combinations of 5 motions were investigated. The combination that
provided statistical values that matched better the statistical values of the 22 motions (or

22 pairs of accelerograms) was the one which was selected for the dynamic tests.

Note that the geometric mean was selected as a characteristic value because it is assumed to
provide an orientation-independent measure of earthquake intensity (Boore et al., 2006). The
basic concept of this selection process was introduced by Sideris (2008) and also presented in
Sideris et al. (2010) for the experimental seismic testing of palletized merchandise in steel
storage racks, where ten ground motions were selected out of the forty four of the initial

ensemble to be used in seismic tests.

According to the approach described above, five pairs of ground motions were selected to match
as close as possible the total twenty two pairs of ground motions of the FEMA P695 Far-Field
ground motion ensemble. The selected reduced ensemble is presented in Table 5-6, while a
comparison of the statistical parameters of interest for the full and the reduced FEMA P695 Far
Field Ground Motion Set is presented numerically in Table 5-7 and in Figure 5-14 and Figure
5-15, graphically. Note that a comparison between the original ensemble of 22 pairs of motions
and the reduced ensemble of 5 pairs of motions as well as between the original ensemble of 44

ground motions and the reduced ensemble of 10 ground motions are presented in these figures.
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Table 5-6 Motions of Reduced Earthquake Ensemble

EQ Earthquake Event
’ Name Recording Station PGA(g)
Index oo 1p. Earthquake Year | My
1 12011 Northridge 1994 | 6.7 | Beverly Hills — Mulhol 0.52
2 12041 Duzce, Turkey 1999 | 7.1 Bolu 0.82
3 12072 Kobe, Japan 1995 | 6.9 Shin — Osaka 0.24
4 12092 Landers 1992 | 7.3 Coolwater 0.42
5 12132 Cape Mendocino 1992 | 7.0 Rio Dell Overpass 0.55

Table 5-7 Comparison of Statistical Parameters for 2% Damped Spectral Acceleration in the
Frequency Range of Interest (10Hz to 25Hz) between the Full and Reduced Ground Motion Sets

. . Ensemble of 22 Reduced Ensemble of Reduced
Statistical Values Pairs of EQS Ensemble of 5 44 EQS Ensemble of 10
Pairs of EQS EQS
ectral Acceleration (g) for {=2%

Median 0.909 0.924 0.920 0.928
Arithmetic Mean 1.026 1.011 1.031 1.018
Geometric Mean 0.927 0.903 0.927 0.903
Standard Deviation 0.495 0.529 0.501 0.518
Maximum 2.531 1.825 2.751 2.002
Minimum 0.412 0.426 0.353 0.404
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5.5. Test Results

5.5.1. Raw Data

In this section, digitized signals obtained from all instruments are presented. For brevity, only
one test from each phase was selected and presented. Note that the selected test was the one with
the strongest ground motion in terms of peak ground acceleration (ID #: 12041 — Duzce,
Turkey). More specifically, raw data from the following tests are presented: (i) TB-20-
AHSEST?2, (i1) TB-37- AHSEST2, (ii1) TB-54- AHSEST?2. The results are illustrated in Figure
5-16 to Figure 5-18 in the form of time histories with a sampling rate of 256Hz.

3 \ \ \ I I
| | | || ——ATBV
2~ R - A -4 ——ATBN
| | | |
| | | |
— | | | |
E . -‘ | |
§ * 1
© o
[] |
] |
Qo |
< |
|
|
|
|
|
|
|
L
=
t
[}
£
]
[1]
3
2

Time (sec)

(b)

Figure 5-16 Raw Data from test TB-20- AHSEST2: (a) Acceleration Time Histories and (b)
Displacement Time Histories
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Figure 5-17 Raw Data from test TB-37- AHSEST2: (a) Acceleration Time Histories and (b)

Displacement Time Histories
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Figure 5-18 Raw Data from test TB-54- AHSEST2: (a) Acceleration Time Histories and (b)
Displacement Time Histories
5.5.2. Data Processing

5.5.2.1. Results of Frequency and Damping Tests

The Fourier Amplitude Spectra of the Acceleration Time Histories were plotted for white noise
tests performed during the three phases of the seismic testing. From these plots, the fundamental

frequency of the bushing structure was identified as shown in Figure 5-19 for the three different
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configurations, which increases with the size of the flexural stiffeners as expected from previous

numerical analysis presented in Section 3.

The viscous damping ratio for the first mode of vibration of the 230kV porcelain bushing was

estimated using the Half-Power Bandwidth Method as described in the previous section. The

results obtained for the three different configurations of the specimen are presented in the

following table.

Table 5-8 Modal Damping Ratios Computed for Each Test Phase

Test Phase Frequency (Hz) Damping Ratio & (%)
Phase 1: Stiffeners L8x6x"2 16.14 4.1
Phase 2: Stiffeners L6x4x)2 15.13 3.2
Phase 3: Bushing “as installed” 10.11 1.9
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5.5.2.2. Seismic Response of Bushing

During the data processing, the measurements obtained from all the instruments were used to
evaluate the dynamic characteristics of the bushing structure. More specifically, the maximum
bending moment and the shear force at the base of the bushing were computed for the first time
in two ways: (i) using strain gauge measurements, and (ii) using accelerometer measurements,
while the peak displacement and acceleration at the top of the bushing were obtained by linear

potentiometer and accelerometer measurements, respectively.

Note that differences in the moment and force results computed with the two approaches were
observed as shown in Table 5-9. The moments measured by the strain gauges were larger by
17% than the ones computed from the acceleration measurements, whereas the forces obtained
from the strain gauge measurements were smaller by 20% than the ones calculated from the
acceleration measurements. Furthermore, the position of the center of inertia of the bushing
structure was found to be higher by 39%-130% than the estimated position mentioned in the

previous section (see Table 4-1).
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These observed differences in the results may be easily proven by the theoretical investigation

that follows.
The demand at the base of the bushing structure is a function of the inertia forces and damping as

shown according to the following equations assuming an approximation of mass and acceleration

distribution as illustrated in Figure 5-20.
H
Vy,= Jm(z)-a(z)dz+c(z)v(z)dz
0 (5-1)
M,= Im(z)-a(z)-zdz+c(z)-v(z)-zdz
0

where m(z) , a(z) , c(z) and v(z) are the mass, acceleration, damping, velocity profiles along

the height z of the bushing structure

m a
(o] _0
- [  ——
0 = i —
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Y Distribution Jistribution
th Approximation Approximation

Figure 5-20 Mass and Acceleration Approximated Distribution

The damping force, which contributes with an out-of phase behavior, may be excluded.
However, by neglecting the damping, the first term of equation (5-1) is dominant, and therefore

the forces become dependent on mass and acceleration response distributions (m(z) and a(z))
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as presented in equation (5-2). Note that the general expression of equation (5-2) can be further
simplified depending on the mass and acceleration response distributions along the height of the
bushing. Two different assumptions of the acceleration profile were considered: (i) uniform

acceleration distribution and (1) linearly variable acceleration distribution.

(5-2)

1. Uniform Acceleration (a (z) =a,)

For a uniform acceleration profile, the shear force and the moment at the base of the bushing can
be computed according to equation (5-3). Note that this approach is based on the assumption

thata is measured at an arbitrary or crudely approximated point in space, z..,defined as “center
of gravity CG”. The parameter z., must not be arbitrary, but the precise result of the mass

distribution of all components of the bushing above the flange. Therefore, with the distribution
assumed constant and the approximated location of the center of the mass, the acceleration

values determined using the above formulas are only rough approximations.

H
v, =abjm(z)dz=Kab :Kacc
0 g
5-3
e e I:m(z)zdz w w (>-3)
M, =ab_[m(z)zdz =abjm(z)dsz—=—abZCG =—a.:Zcg
0 0 Iom(z)dz g 8

where W is the weight of the bushing structure above the flange section
2. Linearly variable acceleration distribution

By assuming a different acceleration distribution from the one described above, where

acceleration is not uniform, but varies linearly, and the mass is also linearly varying along the
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height as per equations (5-4) and (5-5), while the base shear and moment can be computed from

equations (5-6) and (5-7), respectively.

a(2)=a,+(a, -ab)(ij (5-4)

H

m(z):mb—(mb—mo)(éj (5-5)

where % is the acceleration at the top of the bushing structure, % is the acceleration at the base

of the bushing structure, m_ is the mass at the top of the bushing structure and "5 is the mass at

the base of the bushing structure

The shear force can be calculated as:

el () st e

(5-6)
Vv, = m,Ha, {(2% la,+1)+ o (a,/a, +2)}
m,
Similarly, the moment at the base of the bushing structure shall be computed as:
A z 4
M, = ‘![mb —(m, —mo)(ﬁﬂ{ab +(a0 —ab)(gﬂzdz =
2 (5-7)
m,H"a m
MB: b12 "|:(ab/a0+1)+m:(ab/a0+3):|

Summarizing the cases presented above, the moment and shear force values can vary based on

the assumptions made for the mass and acceleration profile. More specifically:

v 1If a, =a, and m, = m, (constant acceleration and mass distribution), the moment and the

shear force at the base of the bushing are:

2
m,H"a,

Vi=m,Ha, and M, =
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v If a, =0and m, =m, ( inverted triangular acceleration and constant mass), the moment

and the shear force at the base of the bushing are:

H H* M
_la, V650 v, and v, =% M

v
2 2 3 1.5

=0.667M,

v If a,=0and m, = 7”( inverted triangular acceleration and variable mass), the moment

and the shear force at the base of the bushing are:

2
_mHa, Vi _ a3 V,and M, = e, M 0.417M,
3 3 4.8 2.4

4

Note that the current practice recommends multiplying the weight of the structure by the
acceleration at the center of gravity (CG) - to calculate the shear force - and then multiply by the

elevation of the center of gravity z.. - to calculate the base moment, which appears to be valid

only for a constant acceleration response along the height of the structure, as presented in

equation (5-3).

According to the results in Table 5-9, the moments and the shear forces at the base of the
bushing structure for the stiffened specimen were smaller compared to the ones of the
unstiffened specimen (“‘as installed” bushing) by an average ratio of 38% (from acceleration
measurements) or 29-39% (from strain gauges measurements) for the testing motion ensemble.
Moreover, the moments at the base of the bushing reduce significantly by incorporating flexural
stiffeners of the transformer top plate compared to the moments obtained for the unstiffened case
(phase 3). When steel angles L6x4x"2 (smaller sections/smaller stiffness) were used as stiffeners,
the maximum bending moment at the base of the bushing was in between the other two cases.
These response trends are also demonstrated in Figure 5-21, where the lognormal cumulative
distribution functions (CDF) for the probability of non-exceeding (PoNE) a prescribed maximum
moment at the base of the bushing are plotted for the three experimental phases. The same trend
was also observed for the relative displacement and the absolute acceleration at the top of the
bushing structure. However, as illustrated in Figure 5-22 and Figure 5-23, unlike the acceleration

values, the displacement values did not decrease significantly.
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Figure 5-21 CDF for Maximum Bending Moments obtained by: (a) Strain Gauges Measurements
and (b) Acceleration Measurements
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Figure 5-23 Maximum Absolute Accelerations Measured at the Top of the Bushing
5.6. Discussions

In summary, the experimental investigation presented within this section verified the efficiency
of the stiffening approach incorporating flexural stiffeners on the top plate of the transformer
structure. More specifically, by introducing stiffeners in the configuration of steel angles
L8x6x"2 the response of the bushing improved significantly compared to the response obtained
not only when the bushing was mounted on the transformer structure (“as installed” conditions),
but when smaller sections (smaller stiffness) of stiffeners were used. Note that the Efficiency

Factor defined in Section 3 was not computed for this experimental investigation, since the case
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of the bushing mounted on a rigid base was not tested under seismic conditions. However,
reduction in the maximum base bending moment was clearly identified from the CDFs provided
earlier in this section. Furthermore, finite element models of the specimen configurations were
developed in order to match the results obtained during the dynamic tests. The numerical models
and the results obtained from the analyses are presented in the following section, while a
comparison between the numerical and the experimental results of the specimen configuration is

also provided.
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SECTION 6
COMPARISON OF NUMERICAL AND EXPERIMENTAL RESULTS

6.1. Introduction

This section presents the finite element models of the specimen configurations used for the
system identification and seismic testing (see Sections 4 and 5, respectively), which were
developed in order to predict the experimental response of the system. The section is divided into
two parts: the first part presents the numerical models considered for the analyses, while the

second part provides a comparison between numerical and experimental findings.

6.2. Description of Numerical Models

Two different finite element models were developed in the commercial structural analysis
program SAP2000 Advanced V.14.1.0 (Computers and Structures, 2009). The first model
represented the configuration of the specimen used for the system identification testing, which
consisted of the fixed concrete slab and the 230kV bushing structure as shown in Figure 6-1. The
second model was developed based on the dimensions and the geometry of the specimen used
for the shake table tests, which consisted of the rigid frame, top plate, adaptor plate and the
bushing structure, as illustrated in Figure 6-2. Note that the numerical model of Figure 6-2 was
modified by adding steel angles of the same dimensions and geometry as in the experimental

procedure in order to simulate the stiffening cases.

The high voltage bushing, in both models, was modeled by multiple beam elements with the
appropriate geometry, stiffness and mass assembled in series in order to represent the 230kV
bushing structure used for the experimental investigation. All the components of the rigid frame
were modeled as beam elements of the steel sections used in the actual frame. More specifically,
the frame was of dimensions 8 x 8 x 8’, its four columns were modeled as beam elements of
sections TS 5 x 5” x %27, while the top of the columns was connected with angle sections L 5” x
57 x ¥”. A more detailed view of the finite element model of the rigid frame is presented in
Figure 6-3. Shell elements of appropriate mass and thickness were used to model the adaptor

plate as well as the top plate of the generic transformer tank (see Figure 6-4), while beam
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elements were used to model the flexural stiffeners (L8x6x1/2 or L6x4x1/2) attached to the top
plate.

230kV Bushing
Concrete Slab

N\

Figure 6-1 Finite Element Model of the Testing Configuration for the System Identification Testing

I

230kV Bushing |

Cover Plate

Rigid Frame

Figure 6-2 Finite Element Model of the Shake Table Testing
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TS 5x5x1/2f

L 5x5x3/4

Figure 6-3 Isometric View of the Finite Element Model Representing the Rigid Frame

Adaptor Plate Mounting (Cover) Plate

Figure 6-4 Finite Element Mesh used for the Modeling of the Adaptor Plate and Cover Plate

6.3. Analysis Procedure and Results

Modal and linear dynamic time history analyses were performed for both models using the
reduced ensemble of five motions which was defined during the experimental investigation (see
Section 5). Note that the ground motions recorded from the shake table tests (achieved motions)
as well as with the damping ratios measured during testing were considered for performing the
analyses in order to compare the experimental and numerical findings. A comparison between
the response spectra of the theoretical motions and the recorded motions from the shake table

tests is provided in Appendix D.
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6.3.1. Modal Analyses Results

Based on the modal analyses performed for both models, the frequencies computed by the finite
element models were very close to the experimental ones as shown in Table 6-1. According to
these results, the finite elements models appeared to predict very well the frequency range of the
bushing in the different configurations, since the difference between the computed fundamental
frequencies and the measured fundamental frequencies on either stiffened or unstiffened
transformer tank deviated between 3% and 9% (see Table 6-1). However, for the bushing
structure mounted on a rigid base, the computed frequency of 21Hz differed 20% from the

measured value of frequency (25Hz).

Table 6-1 Bushing Fundamental Frequency from Numerical Models and Experimental

Investigation
Bushing Configura tiOnNumerical Models Hammer Tests Wh}lfzslt\ls01se Difference (%)
Fundamental Frequency (Hz)
Bushing “as installed” 11.20 N/A 10.11 9.70
Stiffeners L6x4x'5 14.60 N/A 15.13 3.60
Stiffeners L8x6x'% 15.15 N/A 16.14 6.50
Rigid base 21.00 25.30 N/A 20.50

6.3.2. Dynamic Analyses Results

After comparing the modal properties of the bushing structure for the different configurations
both numerically and experimentally, dynamic time history analyses were performed. Note that
the dynamic time history analyses were conducted by using the recorded motions from the shake
table tests as well as the modal damping ratios measured during the testing. Figure 6-5 illustrates
the results obtained from the numerical analyses in the form of lognormal cumulative
distribution function (CDF) for the probability of non-exceeding (PoNE) a prescribed maximum
moment at the base of the bushing. It was clearly identified from the numerical analyses that the
stiffening approach of incorporating flexural stiffeners L8x6x”2 on the top (cover) plate is an
effective measure since the moments at the base of the bushing decreased significantly compared

to the bushing “as installed” and moved towards the rigid base response.

In order to compare the numerical and experimental findings, the moments at the base of the

bushing for all motions considered as well as the median values for each case are presented
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numerically in Table 6-2 and graphically in Figure 6-6. According to these results, the finite
element models appeared to slightly overestimate the moments at the base of the bushing
structure for all the analysis cases as shown in Table 6-3. More specifically, the numerical results
for the configurations with stiffeners differed by 3% to 5% from the experimental results, while
for the bushing without stiffeners (“as installed” conditions), the difference between the

experimental and numerical results reached an average value of 10%.

——Bushing "as installed"
—Stiffeners L6x4x1/2
— Stiffeners L8x6x1/2
—Rigid Base

0.0 20.0 40.0 60.0 80.0 100.0

Maximum Bending Moment (kip-in)

Figure 6-5 CDF for Maximum Bending Moments for Finite Element Models of Experimental

Configurations
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Figure 6-6 CDF for Maximum Bending Moments obtained by Numerical and Experimental
Investigation
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The Efficiency Factor for the experimental results was computed by using equation (3-1) and
considering the values of maximum bending moments at the base of the bushing predicted by the
numerical model (see Figure 6-7) since no seismic test was conducted for the rigid base

condition.

100 -
90 -
80 A
70 4
60 -
50 4
40 -
30 A
20 A
10 -
0 A

M Stiffeners L8x6x1/2
M Stiffeners L6x4x1/2

72

Efficiency (%)

Finite Element Model Results Seismic Testing Results

Figure 6-7 Measured and Computed Efficiency Factors for Stiffened Bushing on Support Structure

The moment amplification factors were calculated for each case according to equation (2-5)
taking into consideration the results of the moments at the base of the bushing presented earlier.
In Table 6-4, the moment amplification factors computed both experimentally and numerically
are presented, and the median values of the amplification factors for all cases are shown in
Figure 6-8. It is clearly shown that the amplification factor reduced by stiffening the base of the
bushing was as expected based on the numerical investigation discussed in Section 3.
Furthermore, the trend of the differences between the numerical and the experimental results did
not change for this component of the comparison since the moment amplification factor
computed for the numerical models was slightly larger than the factor computed from the
experimental results (see Table 6-4). However, the differences of the amplification factors did
not exceed an average value of 6%, which verified that the finite element models captured well

the response of the bushing during the experimental investigation.
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Table 6-4 Moment Amplification Factors computed from Experimental and Numerical Results

Analytical Results Experimental Results
EQID Bushing Stiffeners | Stiffeners Bushing Stiffeners | Stiffeners
“as installed” | L8x6x%: | L6x4x)2 | “as installed” | L8x6x)2 | L6x4x":
Moment Amplification Factor
EQ 1 (12011) 2.04 1.62 1.72 1.95 1.63 1.70
EQ 2 (12041) 1.91 0.83 1.05 1.57 0.86 1.08
EQ 3 (12072) 1.64 1.20 1.46 1.55 1.26 1.39
EQ 4 (12092) 1.91 1.24 1.53 1.74 1.18 1.47
EQ 5 (12132) 1.99 1.41 1.90 2.17 1.44 1.97
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Figure 6-8 Median Values of Moment Amplification Factor computed from Experimental and

6.4. Discussions

Numerical Results

In summary, the numerical analyses presented within this section showed that the finite element

models for the different configurations of the bushing structure predicted the experimental results

with relatively good accuracy. More specifically, the fundamental frequencies of the bushing as

they were predicted by these models matched very well the corresponding recorded values with

an average deviation of 10%, while the predicted values of moment at the base of the bushing

were slightly larger than those recorded during the seismic tests (see Table 6-2). The deviation

between the experimental and analytical results of the moments was between 5% and 10%.

Finally, it was clearly shown that the stiffening approach of incorporating flexural stiffeners on
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the top (cover) plate is a very efficient stiffening technique since the Efficiency Factor computed

from both analytical and experimental results reached an average value of 70%.
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SECTION 7

ANALYTICAL FREQUENCY EVALUATION OF BUSHING MOUNTED
ON TRANSFORMER COVER

7.1. Introduction

Analytical background and simplified methods for evaluation of fundamental frequencies of
bushing structures were developed and presented in this section. The simplified equations
derived verify the validity of the concept of stiffening the base of the bushing in order to move
the fundamental frequencies closer to the rigid base ones and consequently reduce the seismic
demand. It is clearly shown by the analytical derivations of this section that the variation of
frequencies is dependent on the relative stiffness of the bushing and the transformer cover, which

is not included in the current practice (Reinhorn et al., 2011).

Analytical derivations of approximate frequencies of three different bushing ‘“cases” are
presented within this section: (a) cantilever (bushing structure) with distributed mass and
elasticity mounted on rotational spring, (b) cantilever of distributed mass and elasticity with an
extra lumped mass at the top mounted on rotational spring and (c) cantilever with lumped mass
at the top mounted on rotational spring (without distributed mass and elasticity). Note that the

mounting on the rotational spring was utilized to represent the flexibility of the tank top plate.

7.2. Analytical Derivations of Approximate Frequencies

7.2.1. Cantilever with Distributed Mass and Elasticity Mounted on a Rotational
Spring

An approximation to the frequency ratio curves was obtained using the Southwell-Dunkerley

method (Newmark & Rosenblueth, 1971) as presented below. The cantilever bushing on a

flexible base was treated as the sum of a flexible system on a fixed base and a rigid system on a

flexible base, with both systems having the same uniform mass distribution as shown in Figure

7-1.
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H m,ETl = m,ETl - m, El = oo

>

a) b) c)

Figure 7-1 System Decomposition: (a) Flexible Base Cantilever, (b) Fixed Base Cantilever and (c)
Rigid System on Flexible Base

The frequency of the system on a flexible base was evaluated as follows:

1 1 1

= +
2 2 2
f}{ f fixed frigid

(7-1)

where f,, frea and fq are the frequencies of the systems shown in Figure 7-1 (a), (b) and (c)

respectively. equation (7-1) was manipulated to yield:

1
= 1X 7'2
fe=ta d\/1+(fﬁxed /frigid)2 2

The square of the first mode frequency of the cantilever beam on a fixed base and that of the

rigid beam with a spring at the base were evaluated as:

3 k
d f2, =—"0 7-3
frlgld (27[)2 mH3 ( )

, (3516 EI
fixed — (27[)2 mH4

Substituting equation (7-3) into equation (7-2) led to the following expression for the frequency

ratio:

2
/ 1 3.516
fk = fﬁxed m where A= % =412 (7-4)
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Figure 7-2 shows the variation of the frequency ratio based on the exact solution versus an
approximation using equation (7-4) based on the Southwell-Dunkerley method. Since the
differences appear to be negligible, this solution can be used as an extremely good

approximation for design purposes.

exact
approximation
0.9 |
\
0.8 \ 7
el \
2 |
"'\_xz 0.7 \ 7
J L
061 | 7
~ ~~— _
0.5 | = \’\\‘\: |
0.4 | ‘ ‘ ‘
0 0.2 0.4 v ) |
o = El/KH

Figure 7-2 Interpolation of Exact Solution

7.2.2. Cantilever with Additional Concentrated Mass at the Top Mounted on
Rotational Spring

Similarly to the previous section, an approximation to the frequency ratio curves was obtained
using the Southwell-Dunkerley method (Newmark & Rosenblueth, 1971). The cantilever
bushing on a flexible base was treated as the sum of a flexible system on a fixed base and a rigid
system on a flexible base, with both systems having the same uniform mass distribution m and

the same lumped mass pomH at the top (see Figure 7-3).

-+ 1 PmH ] PmH 1 PmH
H m,E] = m,EI + m, El=co
|k |k
- Wy N
a) b) c)

Figure 7-3 System Decomposition: (a) Flexible Base Cantilever with Additional Concentrated Mass
at the Top, (b) Fixed Base Cantilever and (c¢) Rigid System on Flexible Base

141



The frequency of the system on a flexible base was evaluated per equations (7-1) and (7-2). The

square of the frequency of the rigid system shown in Figure 7-3 (¢) was computed as:

e 1 3k

igid = (2”)2 (3p+1) mH3 (7-5)

The square of the first mode frequency of the cantilever beam with a lumped mass at the top and
on a fixed base may be evaluated itself using the Southwell-Dunkerley method. For this purpose,
the system of Figure 7-3(b) was decomposed in the sum of a cantilever with uniformly

distributed mass m and one with a lumped mass pmH at the top, both systems having the same

stiffness (see Figure 7-4).

o ] PmH . 1 PmH

H m,El = m, El + El

b b

a) b) a)

Figure 7-4 System Decomposition: (a) Fixed Base Cantilever with Uniformly Distributed Mass and
Lumped Mass at the Top, (b) Fixed Base Cantilever with Uniformly Distributed Mass Only and (c¢)
Fixed Base Cantilever with Lumped Mass at the Top Only

The frequency of the combined system was calculated as follows:

1 1 1

2 2 T3
f fixed ]pdistributed ﬁumped

(7-6)

where fieqs faistributed @0 Sflumpea are the frequencies of the systems shown in Figure 7-4 (a), (b)

and (c), respectively, equation (7-6) may be solved for fz,., giving:

2 2
fﬁzxed _ f distributed fiumped (7_7)

2 2
f distributed + fiumped
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The square of the frequencies of the systems shown in Figure 7-4 (b) and (c) was evaluated as:

s 2 EI X 3 EI
stri =(3.516 and =——" 7-8
fdlstrlbuted ( ) m H4 flumped 0 m H4 ( )

Substituting equation (7-8) into equation (7-7) resulted in:

2

> 3 EI (3.516)
- =—> =4, 7'9
Siixed [ where A 3 4.12 (7-9)

p"‘z

By substituting in equation (7-2) the following expression for the frequency ratio was

formulated:

1 3p+1
S = Jinea \f1+;50' where 7(p) p+(1/A) o (7-10)

p=M/mH and A=4.12

Figure 7-5 shows the exact variation of frequency versus that obtained by using equation (7-10)

in the case of a mass parameter p =M /mH =1 In this case, the coefficient y in equation (7-
10) is approximately equal to 3.2. It is shown from equation (7-10) that when p =0, meaning
that there is no lumped mass at the top of the cantilever, y =4 =4.12 and as expected equation
(7-10) coincides with equation (7-4). When p becomes very large, the effect of the distributed

mass is negligible compared to that of the lumped mass at the top and y — 3.

143



exact
approximation
0.9r 7
0.8
°
2
&= 071
=
O 6 \3{(
o [ k\
\\:v
05 | ,,‘\::,\/./,ﬂ\,,;.,;:
0.4 ‘ ‘ ‘ ‘
0 02 04 b ) |
o = El/kH

Figure 7-5 - Interpolation of Exact Solution with y =3.2 for Systems with p =1.

7.2.3. Cantilever with Lumped Mass at the Top Mounted on Spring (No Distributed
Mass)

By defining the lateral bending stiffness of the fixed base cantilever as k, =3El/H 3 and the

lateral stiffness due to the rotational spring at the base as k, =k / H?, the following expression

was formulated:

kok 1
[: :kf
ko +k, I+k,/ky

(7-11)

The frequency of the fixed base cantilever was expressed by equation (7-12), while the

frequency of the system on a flexible base was expressed by equation (7-13) and (7-14).

P L (7-12)
fixed 2ﬂ' M
1 /k, 1 / 1 [1
= |— = —_—= —_— = E— 7'13
5= 2\ fﬁ"ed\/1+kf/k9 T\ T3er ik =\ 1130 13
1+30
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From equations (7-11) and (7-13), it was noticed that for a flexible support structure k, — 0, the

actual frequency f changes to a value that is very small tending to zero. If the base stiffness is

very high, k, — oo, then the “as-installed” frequency £, is same as for the fixed base fjq. If the

base is more flexible, then the frequency f decreases as the square root quantity increases. For
taller bushing structures, although the frequency reduces, the reduction is smaller than for a short

bushing structure.

145






SECTION 8
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

8.1. Summary

In this report, the dynamic response of high voltage transformer bushing systems under seismic
excitation was studied. Possible approaches to stiffen the base of the “as installed” bushings as a

measure to mitigate their seismic vulnerability were identified.

Initially, numerical studies were conducted for four different transformer models of various sizes
and voltages: (i) the Westinghouse 525kV transformer-bushing model, (ii) Siemens 230kV
transformer-bushing model, (iii) Siemens 500kV transformer-bushing model and (iv) Ferranti
Packard 230kV transformer-bushing model. For each model, the bushing structure was
considered mounted on a rigid base or installed on the top plate of the transformer tank. Two
ground motion ensembles were considered for performing linear dynamic time history analyses
of the models: (i) Ensemble 1: 20 historical ground motions recorded within the California
region, and (ii) Ensemble 2: FEMA P695 Far-field ground motion set. A second numerical study
was also conducted investigating the efficiency of the stiffening approaches implemented on
these four finite element models to ensure the bushing structural integrity under strong seismic
excitation, i.e. (i) axial stiffeners in transverse and longitudinal direction, (ii) axial stiffeners
connected to the tank wall, and (ii1) flexural stiffeners on the tank top (cover) plate. For both
numerical studies, the response parameters of interest were the moments at the base of the high

voltage bushings since they could specify the demand due to seismic excitation.

A two stage experimental study, incorporating two types of testing: (i) system identification tests
and (ii) shake table tests conducted in the Structural Engineering and Earthquake Simulation
Laboratory (SEESL) of the University at Buffalo, was carried out in order to experimentally
validate the numerically observed trends. Finally, a finite element model of the specimen

configuration was developed in order to predict/match the experimental findings.

Analytical derivations of approximate bushing frequency were presented to verify the validity of

the stiffening approach concept.
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8.2. Conclusions

Considering the results of all the numerical analyses and the experimental tests presented in this

report, the main conclusions are summarized herein:

e The bushing structures “as installed” on transformer top plates appeared to be vulnerable
compared to the rigid base mounting because of the reduction in their natural frequencies

due to the flexibility of the transformer top (cover) plate.

e Stiffening the base of the bushing was identified as a feasible approach to improve the

dynamic response of the high voltage transformer — bushing systems.

e By introducing axial stiffeners between the bushing structure and tank plate or wall or
flexural stiffeners on the top (cover) plate, the maximum bending moment at the base of
the bushing decreased, moving towards the rigid base results; and the fundamental

frequency of the bushing increased also reaching values closer to the rigid base case.

e Adding axial stiffeners, either in both directions or connected to the tank wall, appeared
to be an efficient approach for the transformer models considered. However,
incorporating flexural stiffeners on the tank top plate appeared to be the most efficient
solution even in cases where the response of the transformer bushing system was
significantly influenced by the cover plate. Moreover, the approach of incorporating
flexural stiffeners was identified as the most practical and economical stiffening solution

to be implemented either in existing transformer bushing systems or new ones.

e The moment amplification factor of 2 recommended in the IEEE-693 Standard for the
bushing “as installed” was found to be non-conservative for all transformer bushing
systems considered in this study. However, stiffening the base of the bushing structure
resulted in a reduction of the moment amplification factor, which reached values lower

than 2.

e The efficiency of the stiffening technique of incorporating flexural stiffeners on the top

(cover) plate of the transformer tank was verified experimentally as well.
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e Moments and shear forces at the base of the bushing were directly measured for first time
during experimental investigation by using strain gauge measurements. Moments and
shear force measurements obtained by using acceleration data (accelerometers at the top
of the bushing structure) were compared to the strain gauge measurements and the

differences identified were significant.

e The finite element models developed to represent the specimen configurations predicted

the experimental results with relatively good accuracy.

8.3. Recommendations for Future Research

Based on the results obtained in this study, the following topics can be considered as potential

subjects for future research on the seismic performance of high voltage bushing structures.

e The two ground motion ensembles considered for the numerical and experimental studies
consisted of far-field motions. However, the response of the high voltage bushings using
near-fault motions is expected to be of great interest for electrical substations close to

active faults.

e The analytical and experimental studies were conducted by performing either 1D or 2D
analyses using the two ground motion ensembles. Taking into consideration the vertical
components of the motions may have an effect on the dynamic response of the high

voltage bushing structure.

e The proposed stiffening technique of incorporating flexural stiffeners on the top cover
plate of the transformer tank could also be an effective option for improving the response
of existing transformers and for the rehabilitation of the existing ones. Transformer
manufacturers should consider optimizing the selections and locations of horizontal
stiffeners on the cover (top plates) of transformer tanks to improve the seismic response

of bushings and reduce damage to transformer-bushing systems in strong earthquakes.
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APPENDIX A
GROUND MOTION TIME HISTORIES AND RESPONSE SPECTRA

In this appendix time histories of the ground motions considered for the numerical analyses in
Section 2 and Section 3 are presented. More specifically, the time histories of the 20 historical
ground motions of California region (Ensemble 1) are presented as well as the time histories of
the ground motions of ensemble 2 (FEMA P695 Far Field Ground Motion Set). Note that for the
second ensemble of ground motions, the time histories of both components of each motion are
plotted and illustrated in this appendix. Additionally, the response spectra of all the ground
motions included in both ensembles and the geometric mean spectrum of each ensemble

(unscaled motions) are presented in this appendix.
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APPENDIX B

MEDIAN VALUES USED FOR EFFICIENCY FACTOR ESTIMATION

In this appendix the median values of the moments at the base of the bushing for each analysis
case and for all the four transformer-bushing models used for the numerical investigation in
Section 2 and Section 3 are presented. More specifically, for each ground motion, the median
bending moments of the bushing “as installed”, mounted on a rigid base, stiffened with axial
stiffeners in both longitudinal and transverse direction, stiffened with axial stiffeners connected
to the tank wall and stiffened with flexural stiffeners incorporated on the cover plate of the
transformer tank (only for Ferranti Packard 230 kV Transformer) are presented. These median
moment values presented within this appendix were used for the calculating the Efficiency

Factor for each stiffening approach considered.
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APPENDIX C

VARIATION OF FREQUENCY AND EFFICIENCY FACTOR FOR DIFFERENT
STIFFENING APPROACHES

In this appendix the variation of frequency and Efficiency Factor for the stiffening approaches
considered in this research are presented. More specifically, for the approach of adding axial
stiffeners in both longitudinal and transverse direction, the variation of frequency is illustrated
for the cases of adding stiffeners in each direction separately and in three different angles of
inclination. Note that these results are presented for all four finite element models considered for
numerical analysis (see Section 2). Moreover, for the stiffening approach of incorporating
flexural stiffeners on the cover plate of the transformer tank (only Ferranti Packard 230 kV

Transformer), the variation of the Efficiency Factor by increasing the stiffness, is presented.

According to the results adding axial stiffeners in both directions did not increase the frequency
significantly for the Westinghouse 525kV transformer model, while by adding stiffeners
connected to the tank wall appeared to be more efficient (in terms of frequency increase) since

the frequency increases almost 50% compared to the bushing “as installed”.

As for the Siemens 230kV transformer model and Siemens 500kV transformer model, the
approach of adding axial stiffeners in both directions appeared to work better for the transverse
direction (direction of first mode of bushing structure), while the frequency did not change

considerably by adding axial stiffeners connected to the tank walls.

Finally, for the Ferranti Packard 230kV transformer model, as mentioned in earlier in this report,
the approach of adding axial stiffeners was not efficient, since not only the decrease of moments
at the base of the bushing was not significant (see Section 3) but the fundamental natural

frequency did not change as shown in Figure s below.

Note that from all the graphs presented below the threshold value of stiffness considered for the

numerical analysis was identified (for the stiffening approaches).
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APPENDIX D

COMPARISON OF DESIRED AND ACHIEVED SHAKE TABLE MOTIONS

In this appendix a comparison between response spectra of the achieved motions from the shake

table tests and the response spectra of the desired (input) ground motions are presented.
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